1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineLoopInfo.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/InitializePasses.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #define DEBUG_TYPE "pipeliner" 23 using namespace llvm; 24 25 static cl::opt<bool> SwapBranchTargetsMVE( 26 "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false), 27 cl::desc("Swap target blocks of a conditional branch for MVE expander")); 28 29 void ModuloSchedule::print(raw_ostream &OS) { 30 for (MachineInstr *MI : ScheduledInstrs) 31 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 32 } 33 34 //===----------------------------------------------------------------------===// 35 // ModuloScheduleExpander implementation 36 //===----------------------------------------------------------------------===// 37 38 /// Return the register values for the operands of a Phi instruction. 39 /// This function assume the instruction is a Phi. 40 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 41 unsigned &InitVal, unsigned &LoopVal) { 42 assert(Phi.isPHI() && "Expecting a Phi."); 43 44 InitVal = 0; 45 LoopVal = 0; 46 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 47 if (Phi.getOperand(i + 1).getMBB() != Loop) 48 InitVal = Phi.getOperand(i).getReg(); 49 else 50 LoopVal = Phi.getOperand(i).getReg(); 51 52 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 53 } 54 55 /// Return the Phi register value that comes from the incoming block. 56 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 57 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 58 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 59 return Phi.getOperand(i).getReg(); 60 return 0; 61 } 62 63 /// Return the Phi register value that comes the loop block. 64 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 65 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 66 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 67 return Phi.getOperand(i).getReg(); 68 return 0; 69 } 70 71 void ModuloScheduleExpander::expand() { 72 BB = Schedule.getLoop()->getTopBlock(); 73 Preheader = *BB->pred_begin(); 74 if (Preheader == BB) 75 Preheader = *std::next(BB->pred_begin()); 76 77 // Iterate over the definitions in each instruction, and compute the 78 // stage difference for each use. Keep the maximum value. 79 for (MachineInstr *MI : Schedule.getInstructions()) { 80 int DefStage = Schedule.getStage(MI); 81 for (const MachineOperand &Op : MI->all_defs()) { 82 Register Reg = Op.getReg(); 83 unsigned MaxDiff = 0; 84 bool PhiIsSwapped = false; 85 for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 86 MachineInstr *UseMI = UseOp.getParent(); 87 int UseStage = Schedule.getStage(UseMI); 88 unsigned Diff = 0; 89 if (UseStage != -1 && UseStage >= DefStage) 90 Diff = UseStage - DefStage; 91 if (MI->isPHI()) { 92 if (isLoopCarried(*MI)) 93 ++Diff; 94 else 95 PhiIsSwapped = true; 96 } 97 MaxDiff = std::max(Diff, MaxDiff); 98 } 99 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 100 } 101 } 102 103 generatePipelinedLoop(); 104 } 105 106 void ModuloScheduleExpander::generatePipelinedLoop() { 107 LoopInfo = TII->analyzeLoopForPipelining(BB); 108 assert(LoopInfo && "Must be able to analyze loop!"); 109 110 // Create a new basic block for the kernel and add it to the CFG. 111 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 112 113 unsigned MaxStageCount = Schedule.getNumStages() - 1; 114 115 // Remember the registers that are used in different stages. The index is 116 // the iteration, or stage, that the instruction is scheduled in. This is 117 // a map between register names in the original block and the names created 118 // in each stage of the pipelined loop. 119 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 120 121 // The renaming destination by Phis for the registers across stages. 122 // This map is updated during Phis generation to point to the most recent 123 // renaming destination. 124 ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; 125 126 InstrMapTy InstrMap; 127 128 SmallVector<MachineBasicBlock *, 4> PrologBBs; 129 130 // Generate the prolog instructions that set up the pipeline. 131 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 132 MF.insert(BB->getIterator(), KernelBB); 133 LIS.insertMBBInMaps(KernelBB); 134 135 // Rearrange the instructions to generate the new, pipelined loop, 136 // and update register names as needed. 137 for (MachineInstr *CI : Schedule.getInstructions()) { 138 if (CI->isPHI()) 139 continue; 140 unsigned StageNum = Schedule.getStage(CI); 141 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 142 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 143 KernelBB->push_back(NewMI); 144 InstrMap[NewMI] = CI; 145 } 146 147 // Copy any terminator instructions to the new kernel, and update 148 // names as needed. 149 for (MachineInstr &MI : BB->terminators()) { 150 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 151 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 152 KernelBB->push_back(NewMI); 153 InstrMap[NewMI] = &MI; 154 } 155 156 NewKernel = KernelBB; 157 KernelBB->transferSuccessors(BB); 158 KernelBB->replaceSuccessor(BB, KernelBB); 159 160 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 161 InstrMap, MaxStageCount, MaxStageCount, false); 162 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi, 163 InstrMap, MaxStageCount, MaxStageCount, false); 164 165 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 166 167 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 168 // Generate the epilog instructions to complete the pipeline. 169 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs, 170 PrologBBs); 171 172 // We need this step because the register allocation doesn't handle some 173 // situations well, so we insert copies to help out. 174 splitLifetimes(KernelBB, EpilogBBs); 175 176 // Remove dead instructions due to loop induction variables. 177 removeDeadInstructions(KernelBB, EpilogBBs); 178 179 // Add branches between prolog and epilog blocks. 180 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 181 182 delete[] VRMap; 183 delete[] VRMapPhi; 184 } 185 186 void ModuloScheduleExpander::cleanup() { 187 // Remove the original loop since it's no longer referenced. 188 for (auto &I : *BB) 189 LIS.RemoveMachineInstrFromMaps(I); 190 BB->clear(); 191 BB->eraseFromParent(); 192 } 193 194 /// Generate the pipeline prolog code. 195 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 196 MachineBasicBlock *KernelBB, 197 ValueMapTy *VRMap, 198 MBBVectorTy &PrologBBs) { 199 MachineBasicBlock *PredBB = Preheader; 200 InstrMapTy InstrMap; 201 202 // Generate a basic block for each stage, not including the last stage, 203 // which will be generated in the kernel. Each basic block may contain 204 // instructions from multiple stages/iterations. 205 for (unsigned i = 0; i < LastStage; ++i) { 206 // Create and insert the prolog basic block prior to the original loop 207 // basic block. The original loop is removed later. 208 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 209 PrologBBs.push_back(NewBB); 210 MF.insert(BB->getIterator(), NewBB); 211 NewBB->transferSuccessors(PredBB); 212 PredBB->addSuccessor(NewBB); 213 PredBB = NewBB; 214 LIS.insertMBBInMaps(NewBB); 215 216 // Generate instructions for each appropriate stage. Process instructions 217 // in original program order. 218 for (int StageNum = i; StageNum >= 0; --StageNum) { 219 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 220 BBE = BB->getFirstTerminator(); 221 BBI != BBE; ++BBI) { 222 if (Schedule.getStage(&*BBI) == StageNum) { 223 if (BBI->isPHI()) 224 continue; 225 MachineInstr *NewMI = 226 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 227 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 228 NewBB->push_back(NewMI); 229 InstrMap[NewMI] = &*BBI; 230 } 231 } 232 } 233 rewritePhiValues(NewBB, i, VRMap, InstrMap); 234 LLVM_DEBUG({ 235 dbgs() << "prolog:\n"; 236 NewBB->dump(); 237 }); 238 } 239 240 PredBB->replaceSuccessor(BB, KernelBB); 241 242 // Check if we need to remove the branch from the preheader to the original 243 // loop, and replace it with a branch to the new loop. 244 unsigned numBranches = TII->removeBranch(*Preheader); 245 if (numBranches) { 246 SmallVector<MachineOperand, 0> Cond; 247 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 248 } 249 } 250 251 /// Generate the pipeline epilog code. The epilog code finishes the iterations 252 /// that were started in either the prolog or the kernel. We create a basic 253 /// block for each stage that needs to complete. 254 void ModuloScheduleExpander::generateEpilog( 255 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 256 ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, 257 MBBVectorTy &PrologBBs) { 258 // We need to change the branch from the kernel to the first epilog block, so 259 // this call to analyze branch uses the kernel rather than the original BB. 260 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 261 SmallVector<MachineOperand, 4> Cond; 262 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 263 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 264 if (checkBranch) 265 return; 266 267 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 268 if (*LoopExitI == KernelBB) 269 ++LoopExitI; 270 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 271 MachineBasicBlock *LoopExitBB = *LoopExitI; 272 273 MachineBasicBlock *PredBB = KernelBB; 274 MachineBasicBlock *EpilogStart = LoopExitBB; 275 InstrMapTy InstrMap; 276 277 // Generate a basic block for each stage, not including the last stage, 278 // which was generated for the kernel. Each basic block may contain 279 // instructions from multiple stages/iterations. 280 int EpilogStage = LastStage + 1; 281 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 282 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 283 EpilogBBs.push_back(NewBB); 284 MF.insert(BB->getIterator(), NewBB); 285 286 PredBB->replaceSuccessor(LoopExitBB, NewBB); 287 NewBB->addSuccessor(LoopExitBB); 288 LIS.insertMBBInMaps(NewBB); 289 290 if (EpilogStart == LoopExitBB) 291 EpilogStart = NewBB; 292 293 // Add instructions to the epilog depending on the current block. 294 // Process instructions in original program order. 295 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 296 for (auto &BBI : *BB) { 297 if (BBI.isPHI()) 298 continue; 299 MachineInstr *In = &BBI; 300 if ((unsigned)Schedule.getStage(In) == StageNum) { 301 // Instructions with memoperands in the epilog are updated with 302 // conservative values. 303 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 304 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 305 NewBB->push_back(NewMI); 306 InstrMap[NewMI] = In; 307 } 308 } 309 } 310 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 311 InstrMap, LastStage, EpilogStage, i == 1); 312 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi, 313 InstrMap, LastStage, EpilogStage, i == 1); 314 PredBB = NewBB; 315 316 LLVM_DEBUG({ 317 dbgs() << "epilog:\n"; 318 NewBB->dump(); 319 }); 320 } 321 322 // Fix any Phi nodes in the loop exit block. 323 LoopExitBB->replacePhiUsesWith(BB, PredBB); 324 325 // Create a branch to the new epilog from the kernel. 326 // Remove the original branch and add a new branch to the epilog. 327 TII->removeBranch(*KernelBB); 328 assert((OrigBB == TBB || OrigBB == FBB) && 329 "Unable to determine looping branch direction"); 330 if (OrigBB != TBB) 331 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 332 else 333 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 334 // Add a branch to the loop exit. 335 if (EpilogBBs.size() > 0) { 336 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 337 SmallVector<MachineOperand, 4> Cond1; 338 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 339 } 340 } 341 342 /// Replace all uses of FromReg that appear outside the specified 343 /// basic block with ToReg. 344 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 345 MachineBasicBlock *MBB, 346 MachineRegisterInfo &MRI, 347 LiveIntervals &LIS) { 348 for (MachineOperand &O : 349 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 350 if (O.getParent()->getParent() != MBB) 351 O.setReg(ToReg); 352 if (!LIS.hasInterval(ToReg)) 353 LIS.createEmptyInterval(ToReg); 354 } 355 356 /// Return true if the register has a use that occurs outside the 357 /// specified loop. 358 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 359 MachineRegisterInfo &MRI) { 360 for (const MachineOperand &MO : MRI.use_operands(Reg)) 361 if (MO.getParent()->getParent() != BB) 362 return true; 363 return false; 364 } 365 366 /// Generate Phis for the specific block in the generated pipelined code. 367 /// This function looks at the Phis from the original code to guide the 368 /// creation of new Phis. 369 void ModuloScheduleExpander::generateExistingPhis( 370 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 371 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 372 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 373 // Compute the stage number for the initial value of the Phi, which 374 // comes from the prolog. The prolog to use depends on to which kernel/ 375 // epilog that we're adding the Phi. 376 unsigned PrologStage = 0; 377 unsigned PrevStage = 0; 378 bool InKernel = (LastStageNum == CurStageNum); 379 if (InKernel) { 380 PrologStage = LastStageNum - 1; 381 PrevStage = CurStageNum; 382 } else { 383 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 384 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 385 } 386 387 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 388 BBE = BB->getFirstNonPHI(); 389 BBI != BBE; ++BBI) { 390 Register Def = BBI->getOperand(0).getReg(); 391 392 unsigned InitVal = 0; 393 unsigned LoopVal = 0; 394 getPhiRegs(*BBI, BB, InitVal, LoopVal); 395 396 unsigned PhiOp1 = 0; 397 // The Phi value from the loop body typically is defined in the loop, but 398 // not always. So, we need to check if the value is defined in the loop. 399 unsigned PhiOp2 = LoopVal; 400 if (auto It = VRMap[LastStageNum].find(LoopVal); 401 It != VRMap[LastStageNum].end()) 402 PhiOp2 = It->second; 403 404 int StageScheduled = Schedule.getStage(&*BBI); 405 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 406 unsigned NumStages = getStagesForReg(Def, CurStageNum); 407 if (NumStages == 0) { 408 // We don't need to generate a Phi anymore, but we need to rename any uses 409 // of the Phi value. 410 unsigned NewReg = VRMap[PrevStage][LoopVal]; 411 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 412 InitVal, NewReg); 413 if (VRMap[CurStageNum].count(LoopVal)) 414 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 415 } 416 // Adjust the number of Phis needed depending on the number of prologs left, 417 // and the distance from where the Phi is first scheduled. The number of 418 // Phis cannot exceed the number of prolog stages. Each stage can 419 // potentially define two values. 420 unsigned MaxPhis = PrologStage + 2; 421 if (!InKernel && (int)PrologStage <= LoopValStage) 422 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 423 unsigned NumPhis = std::min(NumStages, MaxPhis); 424 425 unsigned NewReg = 0; 426 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 427 // In the epilog, we may need to look back one stage to get the correct 428 // Phi name, because the epilog and prolog blocks execute the same stage. 429 // The correct name is from the previous block only when the Phi has 430 // been completely scheduled prior to the epilog, and Phi value is not 431 // needed in multiple stages. 432 int StageDiff = 0; 433 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 434 NumPhis == 1) 435 StageDiff = 1; 436 // Adjust the computations below when the phi and the loop definition 437 // are scheduled in different stages. 438 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 439 StageDiff = StageScheduled - LoopValStage; 440 for (unsigned np = 0; np < NumPhis; ++np) { 441 // If the Phi hasn't been scheduled, then use the initial Phi operand 442 // value. Otherwise, use the scheduled version of the instruction. This 443 // is a little complicated when a Phi references another Phi. 444 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 445 PhiOp1 = InitVal; 446 // Check if the Phi has already been scheduled in a prolog stage. 447 else if (PrologStage >= AccessStage + StageDiff + np && 448 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 449 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 450 // Check if the Phi has already been scheduled, but the loop instruction 451 // is either another Phi, or doesn't occur in the loop. 452 else if (PrologStage >= AccessStage + StageDiff + np) { 453 // If the Phi references another Phi, we need to examine the other 454 // Phi to get the correct value. 455 PhiOp1 = LoopVal; 456 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 457 int Indirects = 1; 458 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 459 int PhiStage = Schedule.getStage(InstOp1); 460 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 461 PhiOp1 = getInitPhiReg(*InstOp1, BB); 462 else 463 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 464 InstOp1 = MRI.getVRegDef(PhiOp1); 465 int PhiOpStage = Schedule.getStage(InstOp1); 466 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 467 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 468 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 469 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 470 break; 471 } 472 ++Indirects; 473 } 474 } else 475 PhiOp1 = InitVal; 476 // If this references a generated Phi in the kernel, get the Phi operand 477 // from the incoming block. 478 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 479 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 480 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 481 482 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 483 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 484 // In the epilog, a map lookup is needed to get the value from the kernel, 485 // or previous epilog block. How is does this depends on if the 486 // instruction is scheduled in the previous block. 487 if (!InKernel) { 488 int StageDiffAdj = 0; 489 if (LoopValStage != -1 && StageScheduled > LoopValStage) 490 StageDiffAdj = StageScheduled - LoopValStage; 491 // Use the loop value defined in the kernel, unless the kernel 492 // contains the last definition of the Phi. 493 if (np == 0 && PrevStage == LastStageNum && 494 (StageScheduled != 0 || LoopValStage != 0) && 495 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 496 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 497 // Use the value defined by the Phi. We add one because we switch 498 // from looking at the loop value to the Phi definition. 499 else if (np > 0 && PrevStage == LastStageNum && 500 VRMap[PrevStage - np + 1].count(Def)) 501 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 502 // Use the loop value defined in the kernel. 503 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 504 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 505 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 506 // Use the value defined by the Phi, unless we're generating the first 507 // epilog and the Phi refers to a Phi in a different stage. 508 else if (VRMap[PrevStage - np].count(Def) && 509 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 510 (LoopValStage == StageScheduled))) 511 PhiOp2 = VRMap[PrevStage - np][Def]; 512 } 513 514 // Check if we can reuse an existing Phi. This occurs when a Phi 515 // references another Phi, and the other Phi is scheduled in an 516 // earlier stage. We can try to reuse an existing Phi up until the last 517 // stage of the current Phi. 518 if (LoopDefIsPhi) { 519 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 520 int LVNumStages = getStagesForPhi(LoopVal); 521 int StageDiff = (StageScheduled - LoopValStage); 522 LVNumStages -= StageDiff; 523 // Make sure the loop value Phi has been processed already. 524 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 525 NewReg = PhiOp2; 526 unsigned ReuseStage = CurStageNum; 527 if (isLoopCarried(*PhiInst)) 528 ReuseStage -= LVNumStages; 529 // Check if the Phi to reuse has been generated yet. If not, then 530 // there is nothing to reuse. 531 if (VRMap[ReuseStage - np].count(LoopVal)) { 532 NewReg = VRMap[ReuseStage - np][LoopVal]; 533 534 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 535 Def, NewReg); 536 // Update the map with the new Phi name. 537 VRMap[CurStageNum - np][Def] = NewReg; 538 PhiOp2 = NewReg; 539 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 540 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 541 542 if (IsLast && np == NumPhis - 1) 543 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 544 continue; 545 } 546 } 547 } 548 if (InKernel && StageDiff > 0 && 549 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 550 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 551 } 552 553 const TargetRegisterClass *RC = MRI.getRegClass(Def); 554 NewReg = MRI.createVirtualRegister(RC); 555 556 MachineInstrBuilder NewPhi = 557 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 558 TII->get(TargetOpcode::PHI), NewReg); 559 NewPhi.addReg(PhiOp1).addMBB(BB1); 560 NewPhi.addReg(PhiOp2).addMBB(BB2); 561 if (np == 0) 562 InstrMap[NewPhi] = &*BBI; 563 564 // We define the Phis after creating the new pipelined code, so 565 // we need to rename the Phi values in scheduled instructions. 566 567 unsigned PrevReg = 0; 568 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 569 PrevReg = VRMap[PrevStage - np][LoopVal]; 570 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 571 NewReg, PrevReg); 572 // If the Phi has been scheduled, use the new name for rewriting. 573 if (VRMap[CurStageNum - np].count(Def)) { 574 unsigned R = VRMap[CurStageNum - np][Def]; 575 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 576 NewReg); 577 } 578 579 // Check if we need to rename any uses that occurs after the loop. The 580 // register to replace depends on whether the Phi is scheduled in the 581 // epilog. 582 if (IsLast && np == NumPhis - 1) 583 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 584 585 // In the kernel, a dependent Phi uses the value from this Phi. 586 if (InKernel) 587 PhiOp2 = NewReg; 588 589 // Update the map with the new Phi name. 590 VRMap[CurStageNum - np][Def] = NewReg; 591 } 592 593 while (NumPhis++ < NumStages) { 594 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 595 NewReg, 0); 596 } 597 598 // Check if we need to rename a Phi that has been eliminated due to 599 // scheduling. 600 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 601 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 602 } 603 } 604 605 /// Generate Phis for the specified block in the generated pipelined code. 606 /// These are new Phis needed because the definition is scheduled after the 607 /// use in the pipelined sequence. 608 void ModuloScheduleExpander::generatePhis( 609 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 610 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, 611 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 612 bool IsLast) { 613 // Compute the stage number that contains the initial Phi value, and 614 // the Phi from the previous stage. 615 unsigned PrologStage = 0; 616 unsigned PrevStage = 0; 617 unsigned StageDiff = CurStageNum - LastStageNum; 618 bool InKernel = (StageDiff == 0); 619 if (InKernel) { 620 PrologStage = LastStageNum - 1; 621 PrevStage = CurStageNum; 622 } else { 623 PrologStage = LastStageNum - StageDiff; 624 PrevStage = LastStageNum + StageDiff - 1; 625 } 626 627 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 628 BBE = BB->instr_end(); 629 BBI != BBE; ++BBI) { 630 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 631 MachineOperand &MO = BBI->getOperand(i); 632 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 633 continue; 634 635 int StageScheduled = Schedule.getStage(&*BBI); 636 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 637 Register Def = MO.getReg(); 638 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 639 // An instruction scheduled in stage 0 and is used after the loop 640 // requires a phi in the epilog for the last definition from either 641 // the kernel or prolog. 642 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 643 hasUseAfterLoop(Def, BB, MRI)) 644 NumPhis = 1; 645 if (!InKernel && (unsigned)StageScheduled > PrologStage) 646 continue; 647 648 unsigned PhiOp2; 649 if (InKernel) { 650 PhiOp2 = VRMap[PrevStage][Def]; 651 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 652 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 653 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 654 } 655 // The number of Phis can't exceed the number of prolog stages. The 656 // prolog stage number is zero based. 657 if (NumPhis > PrologStage + 1 - StageScheduled) 658 NumPhis = PrologStage + 1 - StageScheduled; 659 for (unsigned np = 0; np < NumPhis; ++np) { 660 // Example for 661 // Org: 662 // %Org = ... (Scheduled at Stage#0, NumPhi = 2) 663 // 664 // Prolog0 (Stage0): 665 // %Clone0 = ... 666 // Prolog1 (Stage1): 667 // %Clone1 = ... 668 // Kernel (Stage2): 669 // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel 670 // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel 671 // %Clone2 = ... 672 // Epilog0 (Stage3): 673 // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel 674 // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel 675 // Epilog1 (Stage4): 676 // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 677 // 678 // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} 679 // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} 680 // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} 681 682 unsigned PhiOp1 = VRMap[PrologStage][Def]; 683 if (np <= PrologStage) 684 PhiOp1 = VRMap[PrologStage - np][Def]; 685 if (!InKernel) { 686 if (PrevStage == LastStageNum && np == 0) 687 PhiOp2 = VRMap[LastStageNum][Def]; 688 else 689 PhiOp2 = VRMapPhi[PrevStage - np][Def]; 690 } 691 692 const TargetRegisterClass *RC = MRI.getRegClass(Def); 693 Register NewReg = MRI.createVirtualRegister(RC); 694 695 MachineInstrBuilder NewPhi = 696 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 697 TII->get(TargetOpcode::PHI), NewReg); 698 NewPhi.addReg(PhiOp1).addMBB(BB1); 699 NewPhi.addReg(PhiOp2).addMBB(BB2); 700 if (np == 0) 701 InstrMap[NewPhi] = &*BBI; 702 703 // Rewrite uses and update the map. The actions depend upon whether 704 // we generating code for the kernel or epilog blocks. 705 if (InKernel) { 706 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 707 NewReg); 708 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 709 NewReg); 710 711 PhiOp2 = NewReg; 712 VRMapPhi[PrevStage - np - 1][Def] = NewReg; 713 } else { 714 VRMapPhi[CurStageNum - np][Def] = NewReg; 715 if (np == NumPhis - 1) 716 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 717 NewReg); 718 } 719 if (IsLast && np == NumPhis - 1) 720 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 721 } 722 } 723 } 724 } 725 726 /// Remove instructions that generate values with no uses. 727 /// Typically, these are induction variable operations that generate values 728 /// used in the loop itself. A dead instruction has a definition with 729 /// no uses, or uses that occur in the original loop only. 730 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 731 MBBVectorTy &EpilogBBs) { 732 // For each epilog block, check that the value defined by each instruction 733 // is used. If not, delete it. 734 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 735 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 736 ME = MBB->instr_rend(); 737 MI != ME;) { 738 // From DeadMachineInstructionElem. Don't delete inline assembly. 739 if (MI->isInlineAsm()) { 740 ++MI; 741 continue; 742 } 743 bool SawStore = false; 744 // Check if it's safe to remove the instruction due to side effects. 745 // We can, and want to, remove Phis here. 746 if (!MI->isSafeToMove(SawStore) && !MI->isPHI()) { 747 ++MI; 748 continue; 749 } 750 bool used = true; 751 for (const MachineOperand &MO : MI->all_defs()) { 752 Register reg = MO.getReg(); 753 // Assume physical registers are used, unless they are marked dead. 754 if (reg.isPhysical()) { 755 used = !MO.isDead(); 756 if (used) 757 break; 758 continue; 759 } 760 unsigned realUses = 0; 761 for (const MachineOperand &U : MRI.use_operands(reg)) { 762 // Check if there are any uses that occur only in the original 763 // loop. If so, that's not a real use. 764 if (U.getParent()->getParent() != BB) { 765 realUses++; 766 used = true; 767 break; 768 } 769 } 770 if (realUses > 0) 771 break; 772 used = false; 773 } 774 if (!used) { 775 LIS.RemoveMachineInstrFromMaps(*MI); 776 MI++->eraseFromParent(); 777 continue; 778 } 779 ++MI; 780 } 781 // In the kernel block, check if we can remove a Phi that generates a value 782 // used in an instruction removed in the epilog block. 783 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 784 Register reg = MI.getOperand(0).getReg(); 785 if (MRI.use_begin(reg) == MRI.use_end()) { 786 LIS.RemoveMachineInstrFromMaps(MI); 787 MI.eraseFromParent(); 788 } 789 } 790 } 791 792 /// For loop carried definitions, we split the lifetime of a virtual register 793 /// that has uses past the definition in the next iteration. A copy with a new 794 /// virtual register is inserted before the definition, which helps with 795 /// generating a better register assignment. 796 /// 797 /// v1 = phi(a, v2) v1 = phi(a, v2) 798 /// v2 = phi(b, v3) v2 = phi(b, v3) 799 /// v3 = .. v4 = copy v1 800 /// .. = V1 v3 = .. 801 /// .. = v4 802 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 803 MBBVectorTy &EpilogBBs) { 804 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 805 for (auto &PHI : KernelBB->phis()) { 806 Register Def = PHI.getOperand(0).getReg(); 807 // Check for any Phi definition that used as an operand of another Phi 808 // in the same block. 809 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 810 E = MRI.use_instr_end(); 811 I != E; ++I) { 812 if (I->isPHI() && I->getParent() == KernelBB) { 813 // Get the loop carried definition. 814 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 815 if (!LCDef) 816 continue; 817 MachineInstr *MI = MRI.getVRegDef(LCDef); 818 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 819 continue; 820 // Search through the rest of the block looking for uses of the Phi 821 // definition. If one occurs, then split the lifetime. 822 unsigned SplitReg = 0; 823 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 824 KernelBB->instr_end())) 825 if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) { 826 // We split the lifetime when we find the first use. 827 if (SplitReg == 0) { 828 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 829 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 830 TII->get(TargetOpcode::COPY), SplitReg) 831 .addReg(Def); 832 } 833 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 834 } 835 if (!SplitReg) 836 continue; 837 // Search through each of the epilog blocks for any uses to be renamed. 838 for (auto &Epilog : EpilogBBs) 839 for (auto &I : *Epilog) 840 if (I.readsRegister(Def, /*TRI=*/nullptr)) 841 I.substituteRegister(Def, SplitReg, 0, *TRI); 842 break; 843 } 844 } 845 } 846 } 847 848 /// Remove the incoming block from the Phis in a basic block. 849 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 850 for (MachineInstr &MI : *BB) { 851 if (!MI.isPHI()) 852 break; 853 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 854 if (MI.getOperand(i + 1).getMBB() == Incoming) { 855 MI.removeOperand(i + 1); 856 MI.removeOperand(i); 857 break; 858 } 859 } 860 } 861 862 /// Create branches from each prolog basic block to the appropriate epilog 863 /// block. These edges are needed if the loop ends before reaching the 864 /// kernel. 865 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 866 MBBVectorTy &PrologBBs, 867 MachineBasicBlock *KernelBB, 868 MBBVectorTy &EpilogBBs, 869 ValueMapTy *VRMap) { 870 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 871 MachineBasicBlock *LastPro = KernelBB; 872 MachineBasicBlock *LastEpi = KernelBB; 873 874 // Start from the blocks connected to the kernel and work "out" 875 // to the first prolog and the last epilog blocks. 876 SmallVector<MachineInstr *, 4> PrevInsts; 877 unsigned MaxIter = PrologBBs.size() - 1; 878 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 879 // Add branches to the prolog that go to the corresponding 880 // epilog, and the fall-thru prolog/kernel block. 881 MachineBasicBlock *Prolog = PrologBBs[j]; 882 MachineBasicBlock *Epilog = EpilogBBs[i]; 883 884 SmallVector<MachineOperand, 4> Cond; 885 std::optional<bool> StaticallyGreater = 886 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 887 unsigned numAdded = 0; 888 if (!StaticallyGreater) { 889 Prolog->addSuccessor(Epilog); 890 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 891 } else if (*StaticallyGreater == false) { 892 Prolog->addSuccessor(Epilog); 893 Prolog->removeSuccessor(LastPro); 894 LastEpi->removeSuccessor(Epilog); 895 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 896 removePhis(Epilog, LastEpi); 897 // Remove the blocks that are no longer referenced. 898 if (LastPro != LastEpi) { 899 LastEpi->clear(); 900 LastEpi->eraseFromParent(); 901 } 902 if (LastPro == KernelBB) { 903 LoopInfo->disposed(&LIS); 904 NewKernel = nullptr; 905 } 906 LastPro->clear(); 907 LastPro->eraseFromParent(); 908 } else { 909 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 910 removePhis(Epilog, Prolog); 911 } 912 LastPro = Prolog; 913 LastEpi = Epilog; 914 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 915 E = Prolog->instr_rend(); 916 I != E && numAdded > 0; ++I, --numAdded) 917 updateInstruction(&*I, false, j, 0, VRMap); 918 } 919 920 if (NewKernel) { 921 LoopInfo->setPreheader(PrologBBs[MaxIter]); 922 LoopInfo->adjustTripCount(-(MaxIter + 1)); 923 } 924 } 925 926 /// Return true if we can compute the amount the instruction changes 927 /// during each iteration. Set Delta to the amount of the change. 928 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 929 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 930 const MachineOperand *BaseOp; 931 int64_t Offset; 932 bool OffsetIsScalable; 933 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 934 return false; 935 936 // FIXME: This algorithm assumes instructions have fixed-size offsets. 937 if (OffsetIsScalable) 938 return false; 939 940 if (!BaseOp->isReg()) 941 return false; 942 943 Register BaseReg = BaseOp->getReg(); 944 945 MachineRegisterInfo &MRI = MF.getRegInfo(); 946 // Check if there is a Phi. If so, get the definition in the loop. 947 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 948 if (BaseDef && BaseDef->isPHI()) { 949 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 950 BaseDef = MRI.getVRegDef(BaseReg); 951 } 952 if (!BaseDef) 953 return false; 954 955 int D = 0; 956 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 957 return false; 958 959 Delta = D; 960 return true; 961 } 962 963 /// Update the memory operand with a new offset when the pipeliner 964 /// generates a new copy of the instruction that refers to a 965 /// different memory location. 966 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 967 MachineInstr &OldMI, 968 unsigned Num) { 969 if (Num == 0) 970 return; 971 // If the instruction has memory operands, then adjust the offset 972 // when the instruction appears in different stages. 973 if (NewMI.memoperands_empty()) 974 return; 975 SmallVector<MachineMemOperand *, 2> NewMMOs; 976 for (MachineMemOperand *MMO : NewMI.memoperands()) { 977 // TODO: Figure out whether isAtomic is really necessary (see D57601). 978 if (MMO->isVolatile() || MMO->isAtomic() || 979 (MMO->isInvariant() && MMO->isDereferenceable()) || 980 (!MMO->getValue())) { 981 NewMMOs.push_back(MMO); 982 continue; 983 } 984 unsigned Delta; 985 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 986 int64_t AdjOffset = Delta * Num; 987 NewMMOs.push_back( 988 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 989 } else { 990 NewMMOs.push_back(MF.getMachineMemOperand( 991 MMO, 0, LocationSize::beforeOrAfterPointer())); 992 } 993 } 994 NewMI.setMemRefs(MF, NewMMOs); 995 } 996 997 /// Clone the instruction for the new pipelined loop and update the 998 /// memory operands, if needed. 999 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 1000 unsigned CurStageNum, 1001 unsigned InstStageNum) { 1002 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1003 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1004 return NewMI; 1005 } 1006 1007 /// Clone the instruction for the new pipelined loop. If needed, this 1008 /// function updates the instruction using the values saved in the 1009 /// InstrChanges structure. 1010 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1011 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1012 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1013 auto It = InstrChanges.find(OldMI); 1014 if (It != InstrChanges.end()) { 1015 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1016 unsigned BasePos, OffsetPos; 1017 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1018 return nullptr; 1019 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1020 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1021 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1022 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1023 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1024 } 1025 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1026 return NewMI; 1027 } 1028 1029 /// Update the machine instruction with new virtual registers. This 1030 /// function may change the definitions and/or uses. 1031 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1032 bool LastDef, 1033 unsigned CurStageNum, 1034 unsigned InstrStageNum, 1035 ValueMapTy *VRMap) { 1036 for (MachineOperand &MO : NewMI->operands()) { 1037 if (!MO.isReg() || !MO.getReg().isVirtual()) 1038 continue; 1039 Register reg = MO.getReg(); 1040 if (MO.isDef()) { 1041 // Create a new virtual register for the definition. 1042 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1043 Register NewReg = MRI.createVirtualRegister(RC); 1044 MO.setReg(NewReg); 1045 VRMap[CurStageNum][reg] = NewReg; 1046 if (LastDef) 1047 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1048 } else if (MO.isUse()) { 1049 MachineInstr *Def = MRI.getVRegDef(reg); 1050 // Compute the stage that contains the last definition for instruction. 1051 int DefStageNum = Schedule.getStage(Def); 1052 unsigned StageNum = CurStageNum; 1053 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1054 // Compute the difference in stages between the defintion and the use. 1055 unsigned StageDiff = (InstrStageNum - DefStageNum); 1056 // Make an adjustment to get the last definition. 1057 StageNum -= StageDiff; 1058 } 1059 if (auto It = VRMap[StageNum].find(reg); It != VRMap[StageNum].end()) 1060 MO.setReg(It->second); 1061 } 1062 } 1063 } 1064 1065 /// Return the instruction in the loop that defines the register. 1066 /// If the definition is a Phi, then follow the Phi operand to 1067 /// the instruction in the loop. 1068 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1069 SmallPtrSet<MachineInstr *, 8> Visited; 1070 MachineInstr *Def = MRI.getVRegDef(Reg); 1071 while (Def->isPHI()) { 1072 if (!Visited.insert(Def).second) 1073 break; 1074 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1075 if (Def->getOperand(i + 1).getMBB() == BB) { 1076 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1077 break; 1078 } 1079 } 1080 return Def; 1081 } 1082 1083 /// Return the new name for the value from the previous stage. 1084 unsigned ModuloScheduleExpander::getPrevMapVal( 1085 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1086 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1087 unsigned PrevVal = 0; 1088 if (StageNum > PhiStage) { 1089 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1090 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1091 // The name is defined in the previous stage. 1092 PrevVal = VRMap[StageNum - 1][LoopVal]; 1093 else if (VRMap[StageNum].count(LoopVal)) 1094 // The previous name is defined in the current stage when the instruction 1095 // order is swapped. 1096 PrevVal = VRMap[StageNum][LoopVal]; 1097 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1098 // The loop value hasn't yet been scheduled. 1099 PrevVal = LoopVal; 1100 else if (StageNum == PhiStage + 1) 1101 // The loop value is another phi, which has not been scheduled. 1102 PrevVal = getInitPhiReg(*LoopInst, BB); 1103 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1104 // The loop value is another phi, which has been scheduled. 1105 PrevVal = 1106 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1107 LoopStage, VRMap, BB); 1108 } 1109 return PrevVal; 1110 } 1111 1112 /// Rewrite the Phi values in the specified block to use the mappings 1113 /// from the initial operand. Once the Phi is scheduled, we switch 1114 /// to using the loop value instead of the Phi value, so those names 1115 /// do not need to be rewritten. 1116 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1117 unsigned StageNum, 1118 ValueMapTy *VRMap, 1119 InstrMapTy &InstrMap) { 1120 for (auto &PHI : BB->phis()) { 1121 unsigned InitVal = 0; 1122 unsigned LoopVal = 0; 1123 getPhiRegs(PHI, BB, InitVal, LoopVal); 1124 Register PhiDef = PHI.getOperand(0).getReg(); 1125 1126 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1127 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1128 unsigned NumPhis = getStagesForPhi(PhiDef); 1129 if (NumPhis > StageNum) 1130 NumPhis = StageNum; 1131 for (unsigned np = 0; np <= NumPhis; ++np) { 1132 unsigned NewVal = 1133 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1134 if (!NewVal) 1135 NewVal = InitVal; 1136 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1137 NewVal); 1138 } 1139 } 1140 } 1141 1142 /// Rewrite a previously scheduled instruction to use the register value 1143 /// from the new instruction. Make sure the instruction occurs in the 1144 /// basic block, and we don't change the uses in the new instruction. 1145 void ModuloScheduleExpander::rewriteScheduledInstr( 1146 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1147 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1148 unsigned PrevReg) { 1149 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1150 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1151 // Rewrite uses that have been scheduled already to use the new 1152 // Phi register. 1153 for (MachineOperand &UseOp : 1154 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1155 MachineInstr *UseMI = UseOp.getParent(); 1156 if (UseMI->getParent() != BB) 1157 continue; 1158 if (UseMI->isPHI()) { 1159 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1160 continue; 1161 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1162 continue; 1163 } 1164 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1165 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1166 MachineInstr *OrigMI = OrigInstr->second; 1167 int StageSched = Schedule.getStage(OrigMI); 1168 int CycleSched = Schedule.getCycle(OrigMI); 1169 unsigned ReplaceReg = 0; 1170 // This is the stage for the scheduled instruction. 1171 if (StagePhi == StageSched && Phi->isPHI()) { 1172 int CyclePhi = Schedule.getCycle(Phi); 1173 if (PrevReg && InProlog) 1174 ReplaceReg = PrevReg; 1175 else if (PrevReg && !isLoopCarried(*Phi) && 1176 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1177 ReplaceReg = PrevReg; 1178 else 1179 ReplaceReg = NewReg; 1180 } 1181 // The scheduled instruction occurs before the scheduled Phi, and the 1182 // Phi is not loop carried. 1183 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1184 ReplaceReg = NewReg; 1185 if (StagePhi > StageSched && Phi->isPHI()) 1186 ReplaceReg = NewReg; 1187 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1188 ReplaceReg = NewReg; 1189 if (ReplaceReg) { 1190 const TargetRegisterClass *NRC = 1191 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1192 if (NRC) 1193 UseOp.setReg(ReplaceReg); 1194 else { 1195 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 1196 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 1197 SplitReg) 1198 .addReg(ReplaceReg); 1199 UseOp.setReg(SplitReg); 1200 } 1201 } 1202 } 1203 } 1204 1205 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1206 if (!Phi.isPHI()) 1207 return false; 1208 int DefCycle = Schedule.getCycle(&Phi); 1209 int DefStage = Schedule.getStage(&Phi); 1210 1211 unsigned InitVal = 0; 1212 unsigned LoopVal = 0; 1213 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1214 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1215 if (!Use || Use->isPHI()) 1216 return true; 1217 int LoopCycle = Schedule.getCycle(Use); 1218 int LoopStage = Schedule.getStage(Use); 1219 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1220 } 1221 1222 //===----------------------------------------------------------------------===// 1223 // PeelingModuloScheduleExpander implementation 1224 //===----------------------------------------------------------------------===// 1225 // This is a reimplementation of ModuloScheduleExpander that works by creating 1226 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1227 //===----------------------------------------------------------------------===// 1228 1229 namespace { 1230 // Remove any dead phis in MBB. Dead phis either have only one block as input 1231 // (in which case they are the identity) or have no uses. 1232 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1233 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1234 bool Changed = true; 1235 while (Changed) { 1236 Changed = false; 1237 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1238 assert(MI.isPHI()); 1239 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1240 if (LIS) 1241 LIS->RemoveMachineInstrFromMaps(MI); 1242 MI.eraseFromParent(); 1243 Changed = true; 1244 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1245 const TargetRegisterClass *ConstrainRegClass = 1246 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1247 MRI.getRegClass(MI.getOperand(0).getReg())); 1248 assert(ConstrainRegClass && 1249 "Expected a valid constrained register class!"); 1250 (void)ConstrainRegClass; 1251 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1252 MI.getOperand(1).getReg()); 1253 if (LIS) 1254 LIS->RemoveMachineInstrFromMaps(MI); 1255 MI.eraseFromParent(); 1256 Changed = true; 1257 } 1258 } 1259 } 1260 } 1261 1262 /// Rewrites the kernel block in-place to adhere to the given schedule. 1263 /// KernelRewriter holds all of the state required to perform the rewriting. 1264 class KernelRewriter { 1265 ModuloSchedule &S; 1266 MachineBasicBlock *BB; 1267 MachineBasicBlock *PreheaderBB, *ExitBB; 1268 MachineRegisterInfo &MRI; 1269 const TargetInstrInfo *TII; 1270 LiveIntervals *LIS; 1271 1272 // Map from register class to canonical undef register for that class. 1273 DenseMap<const TargetRegisterClass *, Register> Undefs; 1274 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1275 // this map is only used when InitReg is non-undef. 1276 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1277 // Map from LoopReg to phi register where the InitReg is undef. 1278 DenseMap<Register, Register> UndefPhis; 1279 1280 // Reg is used by MI. Return the new register MI should use to adhere to the 1281 // schedule. Insert phis as necessary. 1282 Register remapUse(Register Reg, MachineInstr &MI); 1283 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1284 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1285 // or will be chosen so as to share another phi. 1286 Register phi(Register LoopReg, std::optional<Register> InitReg = {}, 1287 const TargetRegisterClass *RC = nullptr); 1288 // Create an undef register of the given register class. 1289 Register undef(const TargetRegisterClass *RC); 1290 1291 public: 1292 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1293 LiveIntervals *LIS = nullptr); 1294 void rewrite(); 1295 }; 1296 } // namespace 1297 1298 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1299 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1300 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1301 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1302 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1303 PreheaderBB = *BB->pred_begin(); 1304 if (PreheaderBB == BB) 1305 PreheaderBB = *std::next(BB->pred_begin()); 1306 } 1307 1308 void KernelRewriter::rewrite() { 1309 // Rearrange the loop to be in schedule order. Note that the schedule may 1310 // contain instructions that are not owned by the loop block (InstrChanges and 1311 // friends), so we gracefully handle unowned instructions and delete any 1312 // instructions that weren't in the schedule. 1313 auto InsertPt = BB->getFirstTerminator(); 1314 MachineInstr *FirstMI = nullptr; 1315 for (MachineInstr *MI : S.getInstructions()) { 1316 if (MI->isPHI()) 1317 continue; 1318 if (MI->getParent()) 1319 MI->removeFromParent(); 1320 BB->insert(InsertPt, MI); 1321 if (!FirstMI) 1322 FirstMI = MI; 1323 } 1324 assert(FirstMI && "Failed to find first MI in schedule"); 1325 1326 // At this point all of the scheduled instructions are between FirstMI 1327 // and the end of the block. Kill from the first non-phi to FirstMI. 1328 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1329 if (LIS) 1330 LIS->RemoveMachineInstrFromMaps(*I); 1331 (I++)->eraseFromParent(); 1332 } 1333 1334 // Now remap every instruction in the loop. 1335 for (MachineInstr &MI : *BB) { 1336 if (MI.isPHI() || MI.isTerminator()) 1337 continue; 1338 for (MachineOperand &MO : MI.uses()) { 1339 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1340 continue; 1341 Register Reg = remapUse(MO.getReg(), MI); 1342 MO.setReg(Reg); 1343 } 1344 } 1345 EliminateDeadPhis(BB, MRI, LIS); 1346 1347 // Ensure a phi exists for all instructions that are either referenced by 1348 // an illegal phi or by an instruction outside the loop. This allows us to 1349 // treat remaps of these values the same as "normal" values that come from 1350 // loop-carried phis. 1351 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1352 if (MI->isPHI()) { 1353 Register R = MI->getOperand(0).getReg(); 1354 phi(R); 1355 continue; 1356 } 1357 1358 for (MachineOperand &Def : MI->defs()) { 1359 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1360 if (MI.getParent() != BB) { 1361 phi(Def.getReg()); 1362 break; 1363 } 1364 } 1365 } 1366 } 1367 } 1368 1369 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1370 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1371 if (!Producer) 1372 return Reg; 1373 1374 int ConsumerStage = S.getStage(&MI); 1375 if (!Producer->isPHI()) { 1376 // Non-phi producers are simple to remap. Insert as many phis as the 1377 // difference between the consumer and producer stages. 1378 if (Producer->getParent() != BB) 1379 // Producer was not inside the loop. Use the register as-is. 1380 return Reg; 1381 int ProducerStage = S.getStage(Producer); 1382 assert(ConsumerStage != -1 && 1383 "In-loop consumer should always be scheduled!"); 1384 assert(ConsumerStage >= ProducerStage); 1385 unsigned StageDiff = ConsumerStage - ProducerStage; 1386 1387 for (unsigned I = 0; I < StageDiff; ++I) 1388 Reg = phi(Reg); 1389 return Reg; 1390 } 1391 1392 // First, dive through the phi chain to find the defaults for the generated 1393 // phis. 1394 SmallVector<std::optional<Register>, 4> Defaults; 1395 Register LoopReg = Reg; 1396 auto LoopProducer = Producer; 1397 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1398 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1399 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1400 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1401 assert(LoopProducer); 1402 } 1403 int LoopProducerStage = S.getStage(LoopProducer); 1404 1405 std::optional<Register> IllegalPhiDefault; 1406 1407 if (LoopProducerStage == -1) { 1408 // Do nothing. 1409 } else if (LoopProducerStage > ConsumerStage) { 1410 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1411 // In addition, Consumer's cycle must be scheduled after Producer in the 1412 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1413 // functions. 1414 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1415 int LoopProducerCycle = S.getCycle(LoopProducer); 1416 int ConsumerCycle = S.getCycle(&MI); 1417 #endif 1418 assert(LoopProducerCycle <= ConsumerCycle); 1419 assert(LoopProducerStage == ConsumerStage + 1); 1420 // Peel off the first phi from Defaults and insert a phi between producer 1421 // and consumer. This phi will not be at the front of the block so we 1422 // consider it illegal. It will only exist during the rewrite process; it 1423 // needs to exist while we peel off prologs because these could take the 1424 // default value. After that we can replace all uses with the loop producer 1425 // value. 1426 IllegalPhiDefault = Defaults.front(); 1427 Defaults.erase(Defaults.begin()); 1428 } else { 1429 assert(ConsumerStage >= LoopProducerStage); 1430 int StageDiff = ConsumerStage - LoopProducerStage; 1431 if (StageDiff > 0) { 1432 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1433 << " to " << (Defaults.size() + StageDiff) << "\n"); 1434 // If we need more phis than we have defaults for, pad out with undefs for 1435 // the earliest phis, which are at the end of the defaults chain (the 1436 // chain is in reverse order). 1437 Defaults.resize(Defaults.size() + StageDiff, 1438 Defaults.empty() ? std::optional<Register>() 1439 : Defaults.back()); 1440 } 1441 } 1442 1443 // Now we know the number of stages to jump back, insert the phi chain. 1444 auto DefaultI = Defaults.rbegin(); 1445 while (DefaultI != Defaults.rend()) 1446 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1447 1448 if (IllegalPhiDefault) { 1449 // The consumer optionally consumes LoopProducer in the same iteration 1450 // (because the producer is scheduled at an earlier cycle than the consumer) 1451 // or the initial value. To facilitate this we create an illegal block here 1452 // by embedding a phi in the middle of the block. We will fix this up 1453 // immediately prior to pruning. 1454 auto RC = MRI.getRegClass(Reg); 1455 Register R = MRI.createVirtualRegister(RC); 1456 MachineInstr *IllegalPhi = 1457 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1458 .addReg(*IllegalPhiDefault) 1459 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1460 .addReg(LoopReg) 1461 .addMBB(BB); // Block choice is arbitrary and has no effect. 1462 // Illegal phi should belong to the producer stage so that it can be 1463 // filtered correctly during peeling. 1464 S.setStage(IllegalPhi, LoopProducerStage); 1465 return R; 1466 } 1467 1468 return LoopReg; 1469 } 1470 1471 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg, 1472 const TargetRegisterClass *RC) { 1473 // If the init register is not undef, try and find an existing phi. 1474 if (InitReg) { 1475 auto I = Phis.find({LoopReg, *InitReg}); 1476 if (I != Phis.end()) 1477 return I->second; 1478 } else { 1479 for (auto &KV : Phis) { 1480 if (KV.first.first == LoopReg) 1481 return KV.second; 1482 } 1483 } 1484 1485 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1486 // find a phi that takes undef as input. 1487 auto I = UndefPhis.find(LoopReg); 1488 if (I != UndefPhis.end()) { 1489 Register R = I->second; 1490 if (!InitReg) 1491 // Found a phi taking undef as input, and this input is undef so return 1492 // without any more changes. 1493 return R; 1494 // Found a phi taking undef as input, so rewrite it to take InitReg. 1495 MachineInstr *MI = MRI.getVRegDef(R); 1496 MI->getOperand(1).setReg(*InitReg); 1497 Phis.insert({{LoopReg, *InitReg}, R}); 1498 const TargetRegisterClass *ConstrainRegClass = 1499 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1500 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1501 (void)ConstrainRegClass; 1502 UndefPhis.erase(I); 1503 return R; 1504 } 1505 1506 // Failed to find any existing phi to reuse, so create a new one. 1507 if (!RC) 1508 RC = MRI.getRegClass(LoopReg); 1509 Register R = MRI.createVirtualRegister(RC); 1510 if (InitReg) { 1511 const TargetRegisterClass *ConstrainRegClass = 1512 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1513 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1514 (void)ConstrainRegClass; 1515 } 1516 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1517 .addReg(InitReg ? *InitReg : undef(RC)) 1518 .addMBB(PreheaderBB) 1519 .addReg(LoopReg) 1520 .addMBB(BB); 1521 if (!InitReg) 1522 UndefPhis[LoopReg] = R; 1523 else 1524 Phis[{LoopReg, *InitReg}] = R; 1525 return R; 1526 } 1527 1528 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1529 Register &R = Undefs[RC]; 1530 if (R == 0) { 1531 // Create an IMPLICIT_DEF that defines this register if we need it. 1532 // All uses of this should be removed by the time we have finished unrolling 1533 // prologs and epilogs. 1534 R = MRI.createVirtualRegister(RC); 1535 auto *InsertBB = &PreheaderBB->getParent()->front(); 1536 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1537 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1538 } 1539 return R; 1540 } 1541 1542 namespace { 1543 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1544 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1545 /// through and defaults for these phis. 1546 class KernelOperandInfo { 1547 MachineBasicBlock *BB; 1548 MachineRegisterInfo &MRI; 1549 SmallVector<Register, 4> PhiDefaults; 1550 MachineOperand *Source; 1551 MachineOperand *Target; 1552 1553 public: 1554 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1555 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1556 : MRI(MRI) { 1557 Source = MO; 1558 BB = MO->getParent()->getParent(); 1559 while (isRegInLoop(MO)) { 1560 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1561 if (MI->isFullCopy()) { 1562 MO = &MI->getOperand(1); 1563 continue; 1564 } 1565 if (!MI->isPHI()) 1566 break; 1567 // If this is an illegal phi, don't count it in distance. 1568 if (IllegalPhis.count(MI)) { 1569 MO = &MI->getOperand(3); 1570 continue; 1571 } 1572 1573 Register Default = getInitPhiReg(*MI, BB); 1574 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1575 : &MI->getOperand(3); 1576 PhiDefaults.push_back(Default); 1577 } 1578 Target = MO; 1579 } 1580 1581 bool operator==(const KernelOperandInfo &Other) const { 1582 return PhiDefaults.size() == Other.PhiDefaults.size(); 1583 } 1584 1585 void print(raw_ostream &OS) const { 1586 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1587 << *Source->getParent(); 1588 } 1589 1590 private: 1591 bool isRegInLoop(MachineOperand *MO) { 1592 return MO->isReg() && MO->getReg().isVirtual() && 1593 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1594 } 1595 }; 1596 } // namespace 1597 1598 MachineBasicBlock * 1599 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1600 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1601 if (LPD == LPD_Front) 1602 PeeledFront.push_back(NewBB); 1603 else 1604 PeeledBack.push_front(NewBB); 1605 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1606 ++I, ++NI) { 1607 CanonicalMIs[&*I] = &*I; 1608 CanonicalMIs[&*NI] = &*I; 1609 BlockMIs[{NewBB, &*I}] = &*NI; 1610 BlockMIs[{BB, &*I}] = &*I; 1611 } 1612 return NewBB; 1613 } 1614 1615 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1616 int MinStage) { 1617 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1618 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1619 MachineInstr *MI = &*I++; 1620 int Stage = getStage(MI); 1621 if (Stage == -1 || Stage >= MinStage) 1622 continue; 1623 1624 for (MachineOperand &DefMO : MI->defs()) { 1625 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1626 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1627 // Only PHIs can use values from this block by construction. 1628 // Match with the equivalent PHI in B. 1629 assert(UseMI.isPHI()); 1630 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1631 MI->getParent()); 1632 Subs.emplace_back(&UseMI, Reg); 1633 } 1634 for (auto &Sub : Subs) 1635 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1636 *MRI.getTargetRegisterInfo()); 1637 } 1638 if (LIS) 1639 LIS->RemoveMachineInstrFromMaps(*MI); 1640 MI->eraseFromParent(); 1641 } 1642 } 1643 1644 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1645 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1646 auto InsertPt = DestBB->getFirstNonPHI(); 1647 DenseMap<Register, Register> Remaps; 1648 for (MachineInstr &MI : llvm::make_early_inc_range( 1649 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1650 if (MI.isPHI()) { 1651 // This is an illegal PHI. If we move any instructions using an illegal 1652 // PHI, we need to create a legal Phi. 1653 if (getStage(&MI) != Stage) { 1654 // The legal Phi is not necessary if the illegal phi's stage 1655 // is being moved. 1656 Register PhiR = MI.getOperand(0).getReg(); 1657 auto RC = MRI.getRegClass(PhiR); 1658 Register NR = MRI.createVirtualRegister(RC); 1659 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1660 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1661 .addReg(PhiR) 1662 .addMBB(SourceBB); 1663 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1664 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1665 Remaps[PhiR] = NR; 1666 } 1667 } 1668 if (getStage(&MI) != Stage) 1669 continue; 1670 MI.removeFromParent(); 1671 DestBB->insert(InsertPt, &MI); 1672 auto *KernelMI = CanonicalMIs[&MI]; 1673 BlockMIs[{DestBB, KernelMI}] = &MI; 1674 BlockMIs.erase({SourceBB, KernelMI}); 1675 } 1676 SmallVector<MachineInstr *, 4> PhiToDelete; 1677 for (MachineInstr &MI : DestBB->phis()) { 1678 assert(MI.getNumOperands() == 3); 1679 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1680 // If the instruction referenced by the phi is moved inside the block 1681 // we don't need the phi anymore. 1682 if (getStage(Def) == Stage) { 1683 Register PhiReg = MI.getOperand(0).getReg(); 1684 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(), 1685 /*TRI=*/nullptr) != -1); 1686 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1687 MI.getOperand(0).setReg(PhiReg); 1688 PhiToDelete.push_back(&MI); 1689 } 1690 } 1691 for (auto *P : PhiToDelete) 1692 P->eraseFromParent(); 1693 InsertPt = DestBB->getFirstNonPHI(); 1694 // Helper to clone Phi instructions into the destination block. We clone Phi 1695 // greedily to avoid combinatorial explosion of Phi instructions. 1696 auto clonePhi = [&](MachineInstr *Phi) { 1697 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1698 DestBB->insert(InsertPt, NewMI); 1699 Register OrigR = Phi->getOperand(0).getReg(); 1700 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1701 NewMI->getOperand(0).setReg(R); 1702 NewMI->getOperand(1).setReg(OrigR); 1703 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1704 Remaps[OrigR] = R; 1705 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1706 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1707 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1708 return R; 1709 }; 1710 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1711 for (MachineOperand &MO : I->uses()) { 1712 if (!MO.isReg()) 1713 continue; 1714 if (auto It = Remaps.find(MO.getReg()); It != Remaps.end()) 1715 MO.setReg(It->second); 1716 else { 1717 // If we are using a phi from the source block we need to add a new phi 1718 // pointing to the old one. 1719 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1720 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1721 Register R = clonePhi(Use); 1722 MO.setReg(R); 1723 } 1724 } 1725 } 1726 } 1727 } 1728 1729 Register 1730 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1731 MachineInstr *Phi) { 1732 unsigned distance = PhiNodeLoopIteration[Phi]; 1733 MachineInstr *CanonicalUse = CanonicalPhi; 1734 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1735 for (unsigned I = 0; I < distance; ++I) { 1736 assert(CanonicalUse->isPHI()); 1737 assert(CanonicalUse->getNumOperands() == 5); 1738 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1739 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1740 std::swap(LoopRegIdx, InitRegIdx); 1741 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1742 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1743 } 1744 return CanonicalUseReg; 1745 } 1746 1747 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1748 BitVector LS(Schedule.getNumStages(), true); 1749 BitVector AS(Schedule.getNumStages(), true); 1750 LiveStages[BB] = LS; 1751 AvailableStages[BB] = AS; 1752 1753 // Peel out the prologs. 1754 LS.reset(); 1755 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1756 LS[I] = true; 1757 Prologs.push_back(peelKernel(LPD_Front)); 1758 LiveStages[Prologs.back()] = LS; 1759 AvailableStages[Prologs.back()] = LS; 1760 } 1761 1762 // Create a block that will end up as the new loop exiting block (dominated by 1763 // all prologs and epilogs). It will only contain PHIs, in the same order as 1764 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1765 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1766 // property that any value deffed in BB but used outside of BB is used by a 1767 // PHI in the exiting block. 1768 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1769 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1770 // Push out the epilogs, again in reverse order. 1771 // We can't assume anything about the minumum loop trip count at this point, 1772 // so emit a fairly complex epilog. 1773 1774 // We first peel number of stages minus one epilogue. Then we remove dead 1775 // stages and reorder instructions based on their stage. If we have 3 stages 1776 // we generate first: 1777 // E0[3, 2, 1] 1778 // E1[3', 2'] 1779 // E2[3''] 1780 // And then we move instructions based on their stages to have: 1781 // E0[3] 1782 // E1[2, 3'] 1783 // E2[1, 2', 3''] 1784 // The transformation is legal because we only move instructions past 1785 // instructions of a previous loop iteration. 1786 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1787 Epilogs.push_back(peelKernel(LPD_Back)); 1788 MachineBasicBlock *B = Epilogs.back(); 1789 filterInstructions(B, Schedule.getNumStages() - I); 1790 // Keep track at which iteration each phi belongs to. We need it to know 1791 // what version of the variable to use during prologue/epilogue stitching. 1792 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1793 for (MachineInstr &Phi : B->phis()) 1794 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1795 } 1796 for (size_t I = 0; I < Epilogs.size(); I++) { 1797 LS.reset(); 1798 for (size_t J = I; J < Epilogs.size(); J++) { 1799 int Iteration = J; 1800 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1801 // Move stage one block at a time so that Phi nodes are updated correctly. 1802 for (size_t K = Iteration; K > I; K--) 1803 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1804 LS[Stage] = true; 1805 } 1806 LiveStages[Epilogs[I]] = LS; 1807 AvailableStages[Epilogs[I]] = AS; 1808 } 1809 1810 // Now we've defined all the prolog and epilog blocks as a fallthrough 1811 // sequence, add the edges that will be followed if the loop trip count is 1812 // lower than the number of stages (connecting prologs directly with epilogs). 1813 auto PI = Prologs.begin(); 1814 auto EI = Epilogs.begin(); 1815 assert(Prologs.size() == Epilogs.size()); 1816 for (; PI != Prologs.end(); ++PI, ++EI) { 1817 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1818 (*PI)->addSuccessor(*EI); 1819 for (MachineInstr &MI : (*EI)->phis()) { 1820 Register Reg = MI.getOperand(1).getReg(); 1821 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1822 if (Use && Use->getParent() == Pred) { 1823 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1824 if (CanonicalUse->isPHI()) { 1825 // If the use comes from a phi we need to skip as many phi as the 1826 // distance between the epilogue and the kernel. Trace through the phi 1827 // chain to find the right value. 1828 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1829 } 1830 Reg = getEquivalentRegisterIn(Reg, *PI); 1831 } 1832 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1833 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1834 } 1835 } 1836 1837 // Create a list of all blocks in order. 1838 SmallVector<MachineBasicBlock *, 8> Blocks; 1839 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1840 Blocks.push_back(BB); 1841 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1842 1843 // Iterate in reverse order over all instructions, remapping as we go. 1844 for (MachineBasicBlock *B : reverse(Blocks)) { 1845 for (auto I = B->instr_rbegin(); 1846 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1847 MachineBasicBlock::reverse_instr_iterator MI = I++; 1848 rewriteUsesOf(&*MI); 1849 } 1850 } 1851 for (auto *MI : IllegalPhisToDelete) { 1852 if (LIS) 1853 LIS->RemoveMachineInstrFromMaps(*MI); 1854 MI->eraseFromParent(); 1855 } 1856 IllegalPhisToDelete.clear(); 1857 1858 // Now all remapping has been done, we're free to optimize the generated code. 1859 for (MachineBasicBlock *B : reverse(Blocks)) 1860 EliminateDeadPhis(B, MRI, LIS); 1861 EliminateDeadPhis(ExitingBB, MRI, LIS); 1862 } 1863 1864 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1865 MachineFunction &MF = *BB->getParent(); 1866 MachineBasicBlock *Exit = *BB->succ_begin(); 1867 if (Exit == BB) 1868 Exit = *std::next(BB->succ_begin()); 1869 1870 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1871 MF.insert(std::next(BB->getIterator()), NewBB); 1872 1873 // Clone all phis in BB into NewBB and rewrite. 1874 for (MachineInstr &MI : BB->phis()) { 1875 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1876 Register OldR = MI.getOperand(3).getReg(); 1877 Register R = MRI.createVirtualRegister(RC); 1878 SmallVector<MachineInstr *, 4> Uses; 1879 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1880 if (Use.getParent() != BB) 1881 Uses.push_back(&Use); 1882 for (MachineInstr *Use : Uses) 1883 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1884 *MRI.getTargetRegisterInfo()); 1885 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1886 .addReg(OldR) 1887 .addMBB(BB); 1888 BlockMIs[{NewBB, &MI}] = NI; 1889 CanonicalMIs[NI] = &MI; 1890 } 1891 BB->replaceSuccessor(Exit, NewBB); 1892 Exit->replacePhiUsesWith(BB, NewBB); 1893 NewBB->addSuccessor(Exit); 1894 1895 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1896 SmallVector<MachineOperand, 4> Cond; 1897 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1898 (void)CanAnalyzeBr; 1899 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1900 TII->removeBranch(*BB); 1901 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1902 Cond, DebugLoc()); 1903 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1904 return NewBB; 1905 } 1906 1907 Register 1908 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1909 MachineBasicBlock *BB) { 1910 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1911 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr); 1912 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1913 } 1914 1915 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1916 if (MI->isPHI()) { 1917 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1918 // and it is produced by this block. 1919 Register PhiR = MI->getOperand(0).getReg(); 1920 Register R = MI->getOperand(3).getReg(); 1921 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1922 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1923 R = MI->getOperand(1).getReg(); 1924 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1925 MRI.replaceRegWith(PhiR, R); 1926 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1927 // later to figure out how to remap registers. 1928 MI->getOperand(0).setReg(PhiR); 1929 IllegalPhisToDelete.push_back(MI); 1930 return; 1931 } 1932 1933 int Stage = getStage(MI); 1934 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1935 LiveStages[MI->getParent()].test(Stage)) 1936 // Instruction is live, no rewriting to do. 1937 return; 1938 1939 for (MachineOperand &DefMO : MI->defs()) { 1940 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1941 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1942 // Only PHIs can use values from this block by construction. 1943 // Match with the equivalent PHI in B. 1944 assert(UseMI.isPHI()); 1945 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1946 MI->getParent()); 1947 Subs.emplace_back(&UseMI, Reg); 1948 } 1949 for (auto &Sub : Subs) 1950 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1951 *MRI.getTargetRegisterInfo()); 1952 } 1953 if (LIS) 1954 LIS->RemoveMachineInstrFromMaps(*MI); 1955 MI->eraseFromParent(); 1956 } 1957 1958 void PeelingModuloScheduleExpander::fixupBranches() { 1959 // Work outwards from the kernel. 1960 bool KernelDisposed = false; 1961 int TC = Schedule.getNumStages() - 1; 1962 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1963 ++PI, ++EI, --TC) { 1964 MachineBasicBlock *Prolog = *PI; 1965 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1966 MachineBasicBlock *Epilog = *EI; 1967 SmallVector<MachineOperand, 4> Cond; 1968 TII->removeBranch(*Prolog); 1969 std::optional<bool> StaticallyGreater = 1970 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1971 if (!StaticallyGreater) { 1972 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1973 // Dynamically branch based on Cond. 1974 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1975 } else if (*StaticallyGreater == false) { 1976 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1977 // Prolog never falls through; branch to epilog and orphan interior 1978 // blocks. Leave it to unreachable-block-elim to clean up. 1979 Prolog->removeSuccessor(Fallthrough); 1980 for (MachineInstr &P : Fallthrough->phis()) { 1981 P.removeOperand(2); 1982 P.removeOperand(1); 1983 } 1984 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1985 KernelDisposed = true; 1986 } else { 1987 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1988 // Prolog always falls through; remove incoming values in epilog. 1989 Prolog->removeSuccessor(Epilog); 1990 for (MachineInstr &P : Epilog->phis()) { 1991 P.removeOperand(4); 1992 P.removeOperand(3); 1993 } 1994 } 1995 } 1996 1997 if (!KernelDisposed) { 1998 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1999 LoopInfo->setPreheader(Prologs.back()); 2000 } else { 2001 LoopInfo->disposed(); 2002 } 2003 } 2004 2005 void PeelingModuloScheduleExpander::rewriteKernel() { 2006 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2007 KR.rewrite(); 2008 } 2009 2010 void PeelingModuloScheduleExpander::expand() { 2011 BB = Schedule.getLoop()->getTopBlock(); 2012 Preheader = Schedule.getLoop()->getLoopPreheader(); 2013 LLVM_DEBUG(Schedule.dump()); 2014 LoopInfo = TII->analyzeLoopForPipelining(BB); 2015 assert(LoopInfo); 2016 2017 rewriteKernel(); 2018 peelPrologAndEpilogs(); 2019 fixupBranches(); 2020 } 2021 2022 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 2023 BB = Schedule.getLoop()->getTopBlock(); 2024 Preheader = Schedule.getLoop()->getLoopPreheader(); 2025 2026 // Dump the schedule before we invalidate and remap all its instructions. 2027 // Stash it in a string so we can print it if we found an error. 2028 std::string ScheduleDump; 2029 raw_string_ostream OS(ScheduleDump); 2030 Schedule.print(OS); 2031 OS.flush(); 2032 2033 // First, run the normal ModuleScheduleExpander. We don't support any 2034 // InstrChanges. 2035 assert(LIS && "Requires LiveIntervals!"); 2036 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2037 ModuloScheduleExpander::InstrChangesTy()); 2038 MSE.expand(); 2039 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2040 if (!ExpandedKernel) { 2041 // The expander optimized away the kernel. We can't do any useful checking. 2042 MSE.cleanup(); 2043 return; 2044 } 2045 // Before running the KernelRewriter, re-add BB into the CFG. 2046 Preheader->addSuccessor(BB); 2047 2048 // Now run the new expansion algorithm. 2049 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2050 KR.rewrite(); 2051 peelPrologAndEpilogs(); 2052 2053 // Collect all illegal phis that the new algorithm created. We'll give these 2054 // to KernelOperandInfo. 2055 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2056 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2057 if (NI->isPHI()) 2058 IllegalPhis.insert(&*NI); 2059 } 2060 2061 // Co-iterate across both kernels. We expect them to be identical apart from 2062 // phis and full COPYs (we look through both). 2063 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2064 auto OI = ExpandedKernel->begin(); 2065 auto NI = BB->begin(); 2066 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2067 while (OI->isPHI() || OI->isFullCopy()) 2068 ++OI; 2069 while (NI->isPHI() || NI->isFullCopy()) 2070 ++NI; 2071 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2072 // Analyze every operand separately. 2073 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2074 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2075 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2076 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2077 } 2078 2079 bool Failed = false; 2080 for (auto &OldAndNew : KOIs) { 2081 if (OldAndNew.first == OldAndNew.second) 2082 continue; 2083 Failed = true; 2084 errs() << "Modulo kernel validation error: [\n"; 2085 errs() << " [golden] "; 2086 OldAndNew.first.print(errs()); 2087 errs() << " "; 2088 OldAndNew.second.print(errs()); 2089 errs() << "]\n"; 2090 } 2091 2092 if (Failed) { 2093 errs() << "Golden reference kernel:\n"; 2094 ExpandedKernel->print(errs()); 2095 errs() << "New kernel:\n"; 2096 BB->print(errs()); 2097 errs() << ScheduleDump; 2098 report_fatal_error( 2099 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2100 } 2101 2102 // Cleanup by removing BB from the CFG again as the original 2103 // ModuloScheduleExpander intended. 2104 Preheader->removeSuccessor(BB); 2105 MSE.cleanup(); 2106 } 2107 2108 MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) { 2109 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2110 2111 // TODO: Offset information needs to be corrected. 2112 NewMI->dropMemRefs(MF); 2113 2114 return NewMI; 2115 } 2116 2117 /// Create a dedicated exit for Loop. Exit is the original exit for Loop. 2118 /// If it is already dedicated exit, return it. Otherwise, insert a new 2119 /// block between them and return the new block. 2120 static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop, 2121 MachineBasicBlock *Exit) { 2122 if (Exit->pred_size() == 1) 2123 return Exit; 2124 2125 MachineFunction *MF = Loop->getParent(); 2126 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2127 2128 MachineBasicBlock *NewExit = 2129 MF->CreateMachineBasicBlock(Loop->getBasicBlock()); 2130 MF->insert(Loop->getIterator(), NewExit); 2131 2132 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2133 SmallVector<MachineOperand, 4> Cond; 2134 TII->analyzeBranch(*Loop, TBB, FBB, Cond); 2135 if (TBB == Loop) 2136 FBB = NewExit; 2137 else if (FBB == Loop) 2138 TBB = NewExit; 2139 else 2140 llvm_unreachable("unexpected loop structure"); 2141 TII->removeBranch(*Loop); 2142 TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc()); 2143 Loop->replaceSuccessor(Exit, NewExit); 2144 TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc()); 2145 NewExit->addSuccessor(Exit); 2146 2147 Exit->replacePhiUsesWith(Loop, NewExit); 2148 2149 return NewExit; 2150 } 2151 2152 /// Insert branch code into the end of MBB. It branches to GreaterThan if the 2153 /// remaining trip count for instructions in LastStage0Insts is greater than 2154 /// RequiredTC, and to Otherwise otherwise. 2155 void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB, 2156 int RequiredTC, 2157 InstrMapTy &LastStage0Insts, 2158 MachineBasicBlock &GreaterThan, 2159 MachineBasicBlock &Otherwise) { 2160 SmallVector<MachineOperand, 4> Cond; 2161 LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond, 2162 LastStage0Insts); 2163 2164 if (SwapBranchTargetsMVE) { 2165 // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and 2166 // FBB for optimal performance. 2167 if (TII->reverseBranchCondition(Cond)) 2168 llvm_unreachable("can not reverse branch condition"); 2169 TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc()); 2170 } else { 2171 TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc()); 2172 } 2173 } 2174 2175 /// Generate a pipelined loop that is unrolled by using MVE algorithm and any 2176 /// other necessary blocks. The control flow is modified to execute the 2177 /// pipelined loop if the trip count satisfies the condition, otherwise the 2178 /// original loop. The original loop is also used to execute the remainder 2179 /// iterations which occur due to unrolling. 2180 void ModuloScheduleExpanderMVE::generatePipelinedLoop() { 2181 // The control flow for pipelining with MVE: 2182 // 2183 // OrigPreheader: 2184 // // The block that is originally the loop preheader 2185 // goto Check 2186 // 2187 // Check: 2188 // // Check whether the trip count satisfies the requirements to pipeline. 2189 // if (LoopCounter > NumStages + NumUnroll - 2) 2190 // // The minimum number of iterations to pipeline = 2191 // // iterations executed in prolog/epilog (NumStages-1) + 2192 // // iterations executed in one kernel run (NumUnroll) 2193 // goto Prolog 2194 // // fallback to the original loop 2195 // goto NewPreheader 2196 // 2197 // Prolog: 2198 // // All prolog stages. There are no direct branches to the epilogue. 2199 // goto NewKernel 2200 // 2201 // NewKernel: 2202 // // NumUnroll copies of the kernel 2203 // if (LoopCounter > MVE-1) 2204 // goto NewKernel 2205 // goto Epilog 2206 // 2207 // Epilog: 2208 // // All epilog stages. 2209 // if (LoopCounter > 0) 2210 // // The remainder is executed in the original loop 2211 // goto NewPreheader 2212 // goto NewExit 2213 // 2214 // NewPreheader: 2215 // // Newly created preheader for the original loop. 2216 // // The initial values of the phis in the loop are merged from two paths. 2217 // NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog 2218 // goto OrigKernel 2219 // 2220 // OrigKernel: 2221 // // The original loop block. 2222 // if (LoopCounter != 0) 2223 // goto OrigKernel 2224 // goto NewExit 2225 // 2226 // NewExit: 2227 // // Newly created dedicated exit for the original loop. 2228 // // Merge values which are referenced after the loop 2229 // Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog 2230 // goto OrigExit 2231 // 2232 // OrigExit: 2233 // // The block that is originally the loop exit. 2234 // // If it is already deicated exit, NewExit is not created. 2235 2236 // An example of where each stage is executed: 2237 // Assume #Stages 3, #MVE 4, #Iterations 12 2238 // Iter 0 1 2 3 4 5 6 7 8 9 10-11 2239 // ------------------------------------------------- 2240 // Stage 0 Prolog#0 2241 // Stage 1 0 Prolog#1 2242 // Stage 2 1 0 Kernel Unroll#0 Iter#0 2243 // Stage 2 1 0 Kernel Unroll#1 Iter#0 2244 // Stage 2 1 0 Kernel Unroll#2 Iter#0 2245 // Stage 2 1 0 Kernel Unroll#3 Iter#0 2246 // Stage 2 1 0 Kernel Unroll#0 Iter#1 2247 // Stage 2 1 0 Kernel Unroll#1 Iter#1 2248 // Stage 2 1 0 Kernel Unroll#2 Iter#1 2249 // Stage 2 1 0 Kernel Unroll#3 Iter#1 2250 // Stage 2 1 Epilog#0 2251 // Stage 2 Epilog#1 2252 // Stage 0-2 OrigKernel 2253 2254 LoopInfo = TII->analyzeLoopForPipelining(OrigKernel); 2255 assert(LoopInfo && "Must be able to analyze loop!"); 2256 2257 calcNumUnroll(); 2258 2259 Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2260 Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2261 NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2262 Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2263 NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2264 2265 MF.insert(OrigKernel->getIterator(), Check); 2266 MF.insert(OrigKernel->getIterator(), Prolog); 2267 MF.insert(OrigKernel->getIterator(), NewKernel); 2268 MF.insert(OrigKernel->getIterator(), Epilog); 2269 MF.insert(OrigKernel->getIterator(), NewPreheader); 2270 2271 NewExit = createDedicatedExit(OrigKernel, OrigExit); 2272 2273 NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader); 2274 TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc()); 2275 2276 OrigPreheader->addSuccessor(Check); 2277 TII->removeBranch(*OrigPreheader); 2278 TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc()); 2279 2280 Check->addSuccessor(Prolog); 2281 Check->addSuccessor(NewPreheader); 2282 2283 Prolog->addSuccessor(NewKernel); 2284 2285 NewKernel->addSuccessor(NewKernel); 2286 NewKernel->addSuccessor(Epilog); 2287 2288 Epilog->addSuccessor(NewPreheader); 2289 Epilog->addSuccessor(NewExit); 2290 2291 InstrMapTy LastStage0Insts; 2292 insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2, 2293 LastStage0Insts, *Prolog, *NewPreheader); 2294 2295 // VRMaps map (prolog/kernel/epilog phase#, original register#) to new 2296 // register# 2297 SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap; 2298 generateProlog(PrologVRMap); 2299 generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts); 2300 generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts); 2301 } 2302 2303 /// Replace MI's use operands according to the maps. 2304 void ModuloScheduleExpanderMVE::updateInstrUse( 2305 MachineInstr *MI, int StageNum, int PhaseNum, 2306 SmallVectorImpl<ValueMapTy> &CurVRMap, 2307 SmallVectorImpl<ValueMapTy> *PrevVRMap) { 2308 // If MI is in the prolog/kernel/epilog block, CurVRMap is 2309 // PrologVRMap/KernelVRMap/EpilogVRMap respectively. 2310 // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively. 2311 // Refer to the appropriate map according to the stage difference between 2312 // MI and the definition of an operand. 2313 2314 for (MachineOperand &UseMO : MI->uses()) { 2315 if (!UseMO.isReg() || !UseMO.getReg().isVirtual()) 2316 continue; 2317 int DiffStage = 0; 2318 Register OrigReg = UseMO.getReg(); 2319 MachineInstr *DefInst = MRI.getVRegDef(OrigReg); 2320 if (!DefInst || DefInst->getParent() != OrigKernel) 2321 continue; 2322 unsigned InitReg = 0; 2323 unsigned DefReg = OrigReg; 2324 if (DefInst->isPHI()) { 2325 ++DiffStage; 2326 unsigned LoopReg; 2327 getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg); 2328 // LoopReg is guaranteed to be defined within the loop by canApply() 2329 DefReg = LoopReg; 2330 DefInst = MRI.getVRegDef(LoopReg); 2331 } 2332 unsigned DefStageNum = Schedule.getStage(DefInst); 2333 DiffStage += StageNum - DefStageNum; 2334 Register NewReg; 2335 if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg)) 2336 // NewReg is defined in a previous phase of the same block 2337 NewReg = CurVRMap[PhaseNum - DiffStage][DefReg]; 2338 else if (!PrevVRMap) 2339 // Since this is the first iteration, refer the initial register of the 2340 // loop 2341 NewReg = InitReg; 2342 else 2343 // Cases where DiffStage is larger than PhaseNum. 2344 // If MI is in the kernel block, the value is defined by the previous 2345 // iteration and PhiVRMap is referenced. If MI is in the epilog block, the 2346 // value is defined in the kernel block and KernelVRMap is referenced. 2347 NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg]; 2348 2349 const TargetRegisterClass *NRC = 2350 MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg)); 2351 if (NRC) 2352 UseMO.setReg(NewReg); 2353 else { 2354 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2355 BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 2356 SplitReg) 2357 .addReg(NewReg); 2358 UseMO.setReg(SplitReg); 2359 } 2360 } 2361 } 2362 2363 /// Return a phi if Reg is referenced by the phi. 2364 /// canApply() guarantees that at most only one such phi exists. 2365 static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) { 2366 for (MachineInstr &Phi : Loop->phis()) { 2367 unsigned InitVal, LoopVal; 2368 getPhiRegs(Phi, Loop, InitVal, LoopVal); 2369 if (LoopVal == Reg) 2370 return Φ 2371 } 2372 return nullptr; 2373 } 2374 2375 /// Generate phis for registers defined by OrigMI. 2376 void ModuloScheduleExpanderMVE::generatePhi( 2377 MachineInstr *OrigMI, int UnrollNum, 2378 SmallVectorImpl<ValueMapTy> &PrologVRMap, 2379 SmallVectorImpl<ValueMapTy> &KernelVRMap, 2380 SmallVectorImpl<ValueMapTy> &PhiVRMap) { 2381 int StageNum = Schedule.getStage(OrigMI); 2382 bool UsePrologReg; 2383 if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum) 2384 UsePrologReg = true; 2385 else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum) 2386 UsePrologReg = false; 2387 else 2388 return; 2389 2390 // Examples that show which stages are merged by phi. 2391 // Meaning of the symbol following the stage number: 2392 // a/b: Stages with the same letter are merged (UsePrologReg == true) 2393 // +: Merged with the initial value (UsePrologReg == false) 2394 // *: No phis required 2395 // 2396 // #Stages 3, #MVE 4 2397 // Iter 0 1 2 3 4 5 6 7 8 2398 // ----------------------------------------- 2399 // Stage 0a Prolog#0 2400 // Stage 1a 0b Prolog#1 2401 // Stage 2* 1* 0* Kernel Unroll#0 2402 // Stage 2* 1* 0+ Kernel Unroll#1 2403 // Stage 2* 1+ 0a Kernel Unroll#2 2404 // Stage 2+ 1a 0b Kernel Unroll#3 2405 // 2406 // #Stages 3, #MVE 2 2407 // Iter 0 1 2 3 4 5 6 7 8 2408 // ----------------------------------------- 2409 // Stage 0a Prolog#0 2410 // Stage 1a 0b Prolog#1 2411 // Stage 2* 1+ 0a Kernel Unroll#0 2412 // Stage 2+ 1a 0b Kernel Unroll#1 2413 // 2414 // #Stages 3, #MVE 1 2415 // Iter 0 1 2 3 4 5 6 7 8 2416 // ----------------------------------------- 2417 // Stage 0* Prolog#0 2418 // Stage 1a 0b Prolog#1 2419 // Stage 2+ 1a 0b Kernel Unroll#0 2420 2421 for (MachineOperand &DefMO : OrigMI->defs()) { 2422 if (!DefMO.isReg() || DefMO.isDead()) 2423 continue; 2424 Register OrigReg = DefMO.getReg(); 2425 auto NewReg = KernelVRMap[UnrollNum].find(OrigReg); 2426 if (NewReg == KernelVRMap[UnrollNum].end()) 2427 continue; 2428 Register CorrespondReg; 2429 if (UsePrologReg) { 2430 int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1; 2431 CorrespondReg = PrologVRMap[PrologNum][OrigReg]; 2432 } else { 2433 MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel); 2434 if (!Phi) 2435 continue; 2436 CorrespondReg = getInitPhiReg(*Phi, OrigKernel); 2437 } 2438 2439 assert(CorrespondReg.isValid()); 2440 Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2441 BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(), 2442 TII->get(TargetOpcode::PHI), PhiReg) 2443 .addReg(NewReg->second) 2444 .addMBB(NewKernel) 2445 .addReg(CorrespondReg) 2446 .addMBB(Prolog); 2447 PhiVRMap[UnrollNum][OrigReg] = PhiReg; 2448 } 2449 } 2450 2451 static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg, 2452 MachineBasicBlock *NewMBB) { 2453 for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) { 2454 if (Phi.getOperand(Idx).getReg() == OrigReg) { 2455 Phi.getOperand(Idx).setReg(NewReg); 2456 Phi.getOperand(Idx + 1).setMBB(NewMBB); 2457 return; 2458 } 2459 } 2460 } 2461 2462 /// Generate phis that merge values from multiple routes 2463 void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg, 2464 Register NewReg) { 2465 SmallVector<MachineOperand *> UsesAfterLoop; 2466 SmallVector<MachineInstr *> LoopPhis; 2467 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg), 2468 E = MRI.use_end(); 2469 I != E; ++I) { 2470 MachineOperand &O = *I; 2471 if (O.getParent()->getParent() != OrigKernel && 2472 O.getParent()->getParent() != Prolog && 2473 O.getParent()->getParent() != NewKernel && 2474 O.getParent()->getParent() != Epilog) 2475 UsesAfterLoop.push_back(&O); 2476 if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI()) 2477 LoopPhis.push_back(O.getParent()); 2478 } 2479 2480 // Merge the route that only execute the pipelined loop (when there are no 2481 // remaining iterations) with the route that execute the original loop. 2482 if (!UsesAfterLoop.empty()) { 2483 Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2484 BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(), 2485 TII->get(TargetOpcode::PHI), PhiReg) 2486 .addReg(OrigReg) 2487 .addMBB(OrigKernel) 2488 .addReg(NewReg) 2489 .addMBB(Epilog); 2490 2491 for (MachineOperand *MO : UsesAfterLoop) 2492 MO->setReg(PhiReg); 2493 2494 if (!LIS.hasInterval(PhiReg)) 2495 LIS.createEmptyInterval(PhiReg); 2496 } 2497 2498 // Merge routes from the pipelined loop and the bypassed route before the 2499 // original loop 2500 if (!LoopPhis.empty()) { 2501 for (MachineInstr *Phi : LoopPhis) { 2502 unsigned InitReg, LoopReg; 2503 getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg); 2504 Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg)); 2505 BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(), 2506 TII->get(TargetOpcode::PHI), NewInit) 2507 .addReg(InitReg) 2508 .addMBB(Check) 2509 .addReg(NewReg) 2510 .addMBB(Epilog); 2511 replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader); 2512 } 2513 } 2514 } 2515 2516 void ModuloScheduleExpanderMVE::generateProlog( 2517 SmallVectorImpl<ValueMapTy> &PrologVRMap) { 2518 PrologVRMap.clear(); 2519 PrologVRMap.resize(Schedule.getNumStages() - 1); 2520 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2521 for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1; 2522 ++PrologNum) { 2523 for (MachineInstr *MI : Schedule.getInstructions()) { 2524 if (MI->isPHI()) 2525 continue; 2526 int StageNum = Schedule.getStage(MI); 2527 if (StageNum > PrologNum) 2528 continue; 2529 MachineInstr *NewMI = cloneInstr(MI); 2530 updateInstrDef(NewMI, PrologVRMap[PrologNum], false); 2531 NewMIMap[NewMI] = {PrologNum, StageNum}; 2532 Prolog->push_back(NewMI); 2533 } 2534 } 2535 2536 for (auto I : NewMIMap) { 2537 MachineInstr *MI = I.first; 2538 int PrologNum = I.second.first; 2539 int StageNum = I.second.second; 2540 updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr); 2541 } 2542 2543 LLVM_DEBUG({ 2544 dbgs() << "prolog:\n"; 2545 Prolog->dump(); 2546 }); 2547 } 2548 2549 void ModuloScheduleExpanderMVE::generateKernel( 2550 SmallVectorImpl<ValueMapTy> &PrologVRMap, 2551 SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) { 2552 KernelVRMap.clear(); 2553 KernelVRMap.resize(NumUnroll); 2554 SmallVector<ValueMapTy> PhiVRMap; 2555 PhiVRMap.resize(NumUnroll); 2556 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2557 DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0; 2558 for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) { 2559 for (MachineInstr *MI : Schedule.getInstructions()) { 2560 if (MI->isPHI()) 2561 continue; 2562 int StageNum = Schedule.getStage(MI); 2563 MachineInstr *NewMI = cloneInstr(MI); 2564 if (UnrollNum == NumUnroll - 1) 2565 LastStage0Insts[MI] = NewMI; 2566 updateInstrDef(NewMI, KernelVRMap[UnrollNum], 2567 (UnrollNum == NumUnroll - 1 && StageNum == 0)); 2568 generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap); 2569 NewMIMap[NewMI] = {UnrollNum, StageNum}; 2570 NewKernel->push_back(NewMI); 2571 } 2572 } 2573 2574 for (auto I : NewMIMap) { 2575 MachineInstr *MI = I.first; 2576 int UnrollNum = I.second.first; 2577 int StageNum = I.second.second; 2578 updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap); 2579 } 2580 2581 // If remaining trip count is greater than NumUnroll-1, loop continues 2582 insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel, 2583 *Epilog); 2584 2585 LLVM_DEBUG({ 2586 dbgs() << "kernel:\n"; 2587 NewKernel->dump(); 2588 }); 2589 } 2590 2591 void ModuloScheduleExpanderMVE::generateEpilog( 2592 SmallVectorImpl<ValueMapTy> &KernelVRMap, 2593 SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) { 2594 EpilogVRMap.clear(); 2595 EpilogVRMap.resize(Schedule.getNumStages() - 1); 2596 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2597 for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1; 2598 ++EpilogNum) { 2599 for (MachineInstr *MI : Schedule.getInstructions()) { 2600 if (MI->isPHI()) 2601 continue; 2602 int StageNum = Schedule.getStage(MI); 2603 if (StageNum <= EpilogNum) 2604 continue; 2605 MachineInstr *NewMI = cloneInstr(MI); 2606 updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum); 2607 NewMIMap[NewMI] = {EpilogNum, StageNum}; 2608 Epilog->push_back(NewMI); 2609 } 2610 } 2611 2612 for (auto I : NewMIMap) { 2613 MachineInstr *MI = I.first; 2614 int EpilogNum = I.second.first; 2615 int StageNum = I.second.second; 2616 updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap); 2617 } 2618 2619 // If there are remaining iterations, they are executed in the original loop. 2620 // Instructions related to loop control, such as loop counter comparison, 2621 // are indicated by shouldIgnoreForPipelining() and are assumed to be placed 2622 // in stage 0. Thus, the map is for the last one in the kernel. 2623 insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit); 2624 2625 LLVM_DEBUG({ 2626 dbgs() << "epilog:\n"; 2627 Epilog->dump(); 2628 }); 2629 } 2630 2631 /// Calculate the number of unroll required and set it to NumUnroll 2632 void ModuloScheduleExpanderMVE::calcNumUnroll() { 2633 DenseMap<MachineInstr *, unsigned> Inst2Idx; 2634 NumUnroll = 1; 2635 for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I) 2636 Inst2Idx[Schedule.getInstructions()[I]] = I; 2637 2638 for (MachineInstr *MI : Schedule.getInstructions()) { 2639 if (MI->isPHI()) 2640 continue; 2641 int StageNum = Schedule.getStage(MI); 2642 for (const MachineOperand &MO : MI->uses()) { 2643 if (!MO.isReg() || !MO.getReg().isVirtual()) 2644 continue; 2645 MachineInstr *DefMI = MRI.getVRegDef(MO.getReg()); 2646 if (DefMI->getParent() != OrigKernel) 2647 continue; 2648 2649 int NumUnrollLocal = 1; 2650 if (DefMI->isPHI()) { 2651 ++NumUnrollLocal; 2652 // canApply() guarantees that DefMI is not phi and is an instruction in 2653 // the loop 2654 DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel)); 2655 } 2656 NumUnrollLocal += StageNum - Schedule.getStage(DefMI); 2657 if (Inst2Idx[MI] <= Inst2Idx[DefMI]) 2658 --NumUnrollLocal; 2659 NumUnroll = std::max(NumUnroll, NumUnrollLocal); 2660 } 2661 } 2662 LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n"); 2663 } 2664 2665 /// Create new virtual registers for definitions of NewMI and update NewMI. 2666 /// If the definitions are referenced after the pipelined loop, phis are 2667 /// created to merge with other routes. 2668 void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI, 2669 ValueMapTy &VRMap, 2670 bool LastDef) { 2671 for (MachineOperand &MO : NewMI->all_defs()) { 2672 if (!MO.getReg().isVirtual()) 2673 continue; 2674 Register Reg = MO.getReg(); 2675 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 2676 Register NewReg = MRI.createVirtualRegister(RC); 2677 MO.setReg(NewReg); 2678 VRMap[Reg] = NewReg; 2679 if (LastDef) 2680 mergeRegUsesAfterPipeline(Reg, NewReg); 2681 } 2682 } 2683 2684 void ModuloScheduleExpanderMVE::expand() { 2685 OrigKernel = Schedule.getLoop()->getTopBlock(); 2686 OrigPreheader = Schedule.getLoop()->getLoopPreheader(); 2687 OrigExit = Schedule.getLoop()->getExitBlock(); 2688 2689 LLVM_DEBUG(Schedule.dump()); 2690 2691 generatePipelinedLoop(); 2692 } 2693 2694 /// Check if ModuloScheduleExpanderMVE can be applied to L 2695 bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) { 2696 if (!L.getExitBlock()) { 2697 LLVM_DEBUG(dbgs() << "Can not apply MVE expander: No single exit block.\n"); 2698 return false; 2699 } 2700 2701 MachineBasicBlock *BB = L.getTopBlock(); 2702 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 2703 2704 // Put some constraints on the operands of the phis to simplify the 2705 // transformation 2706 DenseSet<unsigned> UsedByPhi; 2707 for (MachineInstr &MI : BB->phis()) { 2708 // Registers defined by phis must be used only inside the loop and be never 2709 // used by phis. 2710 for (MachineOperand &MO : MI.defs()) 2711 if (MO.isReg()) 2712 for (MachineInstr &Ref : MRI.use_instructions(MO.getReg())) 2713 if (Ref.getParent() != BB || Ref.isPHI()) { 2714 LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A phi result is " 2715 "referenced outside of the loop or by phi.\n"); 2716 return false; 2717 } 2718 2719 // A source register from the loop block must be defined inside the loop. 2720 // A register defined inside the loop must be referenced by only one phi at 2721 // most. 2722 unsigned InitVal, LoopVal; 2723 getPhiRegs(MI, MI.getParent(), InitVal, LoopVal); 2724 if (!Register(LoopVal).isVirtual() || 2725 MRI.getVRegDef(LoopVal)->getParent() != BB) { 2726 LLVM_DEBUG( 2727 dbgs() << "Can not apply MVE expander: A phi source value coming " 2728 "from the loop is not defined in the loop.\n"); 2729 return false; 2730 } 2731 if (UsedByPhi.count(LoopVal)) { 2732 LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the " 2733 "loop is referenced by two or more phis.\n"); 2734 return false; 2735 } 2736 UsedByPhi.insert(LoopVal); 2737 } 2738 2739 return true; 2740 } 2741 2742 //===----------------------------------------------------------------------===// 2743 // ModuloScheduleTestPass implementation 2744 //===----------------------------------------------------------------------===// 2745 // This pass constructs a ModuloSchedule from its module and runs 2746 // ModuloScheduleExpander. 2747 // 2748 // The module is expected to contain a single-block analyzable loop. 2749 // The total order of instructions is taken from the loop as-is. 2750 // Instructions are expected to be annotated with a PostInstrSymbol. 2751 // This PostInstrSymbol must have the following format: 2752 // "Stage=%d Cycle=%d". 2753 //===----------------------------------------------------------------------===// 2754 2755 namespace { 2756 class ModuloScheduleTest : public MachineFunctionPass { 2757 public: 2758 static char ID; 2759 2760 ModuloScheduleTest() : MachineFunctionPass(ID) { 2761 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2762 } 2763 2764 bool runOnMachineFunction(MachineFunction &MF) override; 2765 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2766 2767 void getAnalysisUsage(AnalysisUsage &AU) const override { 2768 AU.addRequired<MachineLoopInfoWrapperPass>(); 2769 AU.addRequired<LiveIntervalsWrapperPass>(); 2770 MachineFunctionPass::getAnalysisUsage(AU); 2771 } 2772 }; 2773 } // namespace 2774 2775 char ModuloScheduleTest::ID = 0; 2776 2777 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2778 "Modulo Schedule test pass", false, false) 2779 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 2780 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 2781 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2782 "Modulo Schedule test pass", false, false) 2783 2784 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2785 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2786 for (auto *L : MLI) { 2787 if (L->getTopBlock() != L->getBottomBlock()) 2788 continue; 2789 runOnLoop(MF, *L); 2790 return false; 2791 } 2792 return false; 2793 } 2794 2795 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2796 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2797 std::pair<StringRef, StringRef> StageTokenAndValue = 2798 getToken(StageAndCycle.first, "-"); 2799 std::pair<StringRef, StringRef> CycleTokenAndValue = 2800 getToken(StageAndCycle.second, "-"); 2801 if (StageTokenAndValue.first != "Stage" || 2802 CycleTokenAndValue.first != "_Cycle") { 2803 llvm_unreachable( 2804 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2805 return; 2806 } 2807 2808 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2809 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2810 2811 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2812 } 2813 2814 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2815 LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 2816 MachineBasicBlock *BB = L.getTopBlock(); 2817 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2818 2819 DenseMap<MachineInstr *, int> Cycle, Stage; 2820 std::vector<MachineInstr *> Instrs; 2821 for (MachineInstr &MI : *BB) { 2822 if (MI.isTerminator()) 2823 continue; 2824 Instrs.push_back(&MI); 2825 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2826 dbgs() << "Parsing post-instr symbol for " << MI; 2827 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2828 } 2829 } 2830 2831 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2832 std::move(Stage)); 2833 ModuloScheduleExpander MSE( 2834 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2835 MSE.expand(); 2836 MSE.cleanup(); 2837 } 2838 2839 //===----------------------------------------------------------------------===// 2840 // ModuloScheduleTestAnnotater implementation 2841 //===----------------------------------------------------------------------===// 2842 2843 void ModuloScheduleTestAnnotater::annotate() { 2844 for (MachineInstr *MI : S.getInstructions()) { 2845 SmallVector<char, 16> SV; 2846 raw_svector_ostream OS(SV); 2847 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2848 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2849 MI->setPostInstrSymbol(MF, Sym); 2850 } 2851 } 2852