1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineLoopInfo.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/InitializePasses.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #define DEBUG_TYPE "pipeliner" 23 using namespace llvm; 24 25 void ModuloSchedule::print(raw_ostream &OS) { 26 for (MachineInstr *MI : ScheduledInstrs) 27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 28 } 29 30 //===----------------------------------------------------------------------===// 31 // ModuloScheduleExpander implementation 32 //===----------------------------------------------------------------------===// 33 34 /// Return the register values for the operands of a Phi instruction. 35 /// This function assume the instruction is a Phi. 36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 37 unsigned &InitVal, unsigned &LoopVal) { 38 assert(Phi.isPHI() && "Expecting a Phi."); 39 40 InitVal = 0; 41 LoopVal = 0; 42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 43 if (Phi.getOperand(i + 1).getMBB() != Loop) 44 InitVal = Phi.getOperand(i).getReg(); 45 else 46 LoopVal = Phi.getOperand(i).getReg(); 47 48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 49 } 50 51 /// Return the Phi register value that comes from the incoming block. 52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 54 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 55 return Phi.getOperand(i).getReg(); 56 return 0; 57 } 58 59 /// Return the Phi register value that comes the loop block. 60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 62 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 63 return Phi.getOperand(i).getReg(); 64 return 0; 65 } 66 67 void ModuloScheduleExpander::expand() { 68 BB = Schedule.getLoop()->getTopBlock(); 69 Preheader = *BB->pred_begin(); 70 if (Preheader == BB) 71 Preheader = *std::next(BB->pred_begin()); 72 73 // Iterate over the definitions in each instruction, and compute the 74 // stage difference for each use. Keep the maximum value. 75 for (MachineInstr *MI : Schedule.getInstructions()) { 76 int DefStage = Schedule.getStage(MI); 77 for (const MachineOperand &Op : MI->operands()) { 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 85 MachineInstr *UseMI = UseOp.getParent(); 86 int UseStage = Schedule.getStage(UseMI); 87 unsigned Diff = 0; 88 if (UseStage != -1 && UseStage >= DefStage) 89 Diff = UseStage - DefStage; 90 if (MI->isPHI()) { 91 if (isLoopCarried(*MI)) 92 ++Diff; 93 else 94 PhiIsSwapped = true; 95 } 96 MaxDiff = std::max(Diff, MaxDiff); 97 } 98 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 99 } 100 } 101 102 generatePipelinedLoop(); 103 } 104 105 void ModuloScheduleExpander::generatePipelinedLoop() { 106 LoopInfo = TII->analyzeLoopForPipelining(BB); 107 assert(LoopInfo && "Must be able to analyze loop!"); 108 109 // Create a new basic block for the kernel and add it to the CFG. 110 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 111 112 unsigned MaxStageCount = Schedule.getNumStages() - 1; 113 114 // Remember the registers that are used in different stages. The index is 115 // the iteration, or stage, that the instruction is scheduled in. This is 116 // a map between register names in the original block and the names created 117 // in each stage of the pipelined loop. 118 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 119 120 // The renaming destination by Phis for the registers across stages. 121 // This map is updated during Phis generation to point to the most recent 122 // renaming destination. 123 ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; 124 125 InstrMapTy InstrMap; 126 127 SmallVector<MachineBasicBlock *, 4> PrologBBs; 128 129 // Generate the prolog instructions that set up the pipeline. 130 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 131 MF.insert(BB->getIterator(), KernelBB); 132 133 // Rearrange the instructions to generate the new, pipelined loop, 134 // and update register names as needed. 135 for (MachineInstr *CI : Schedule.getInstructions()) { 136 if (CI->isPHI()) 137 continue; 138 unsigned StageNum = Schedule.getStage(CI); 139 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 140 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 141 KernelBB->push_back(NewMI); 142 InstrMap[NewMI] = CI; 143 } 144 145 // Copy any terminator instructions to the new kernel, and update 146 // names as needed. 147 for (MachineInstr &MI : BB->terminators()) { 148 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 149 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 150 KernelBB->push_back(NewMI); 151 InstrMap[NewMI] = &MI; 152 } 153 154 NewKernel = KernelBB; 155 KernelBB->transferSuccessors(BB); 156 KernelBB->replaceSuccessor(BB, KernelBB); 157 158 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 159 InstrMap, MaxStageCount, MaxStageCount, false); 160 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi, 161 InstrMap, MaxStageCount, MaxStageCount, false); 162 163 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 164 165 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 166 // Generate the epilog instructions to complete the pipeline. 167 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs, 168 PrologBBs); 169 170 // We need this step because the register allocation doesn't handle some 171 // situations well, so we insert copies to help out. 172 splitLifetimes(KernelBB, EpilogBBs); 173 174 // Remove dead instructions due to loop induction variables. 175 removeDeadInstructions(KernelBB, EpilogBBs); 176 177 // Add branches between prolog and epilog blocks. 178 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 179 180 delete[] VRMap; 181 delete[] VRMapPhi; 182 } 183 184 void ModuloScheduleExpander::cleanup() { 185 // Remove the original loop since it's no longer referenced. 186 for (auto &I : *BB) 187 LIS.RemoveMachineInstrFromMaps(I); 188 BB->clear(); 189 BB->eraseFromParent(); 190 } 191 192 /// Generate the pipeline prolog code. 193 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 194 MachineBasicBlock *KernelBB, 195 ValueMapTy *VRMap, 196 MBBVectorTy &PrologBBs) { 197 MachineBasicBlock *PredBB = Preheader; 198 InstrMapTy InstrMap; 199 200 // Generate a basic block for each stage, not including the last stage, 201 // which will be generated in the kernel. Each basic block may contain 202 // instructions from multiple stages/iterations. 203 for (unsigned i = 0; i < LastStage; ++i) { 204 // Create and insert the prolog basic block prior to the original loop 205 // basic block. The original loop is removed later. 206 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 207 PrologBBs.push_back(NewBB); 208 MF.insert(BB->getIterator(), NewBB); 209 NewBB->transferSuccessors(PredBB); 210 PredBB->addSuccessor(NewBB); 211 PredBB = NewBB; 212 213 // Generate instructions for each appropriate stage. Process instructions 214 // in original program order. 215 for (int StageNum = i; StageNum >= 0; --StageNum) { 216 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 217 BBE = BB->getFirstTerminator(); 218 BBI != BBE; ++BBI) { 219 if (Schedule.getStage(&*BBI) == StageNum) { 220 if (BBI->isPHI()) 221 continue; 222 MachineInstr *NewMI = 223 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 224 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 225 NewBB->push_back(NewMI); 226 InstrMap[NewMI] = &*BBI; 227 } 228 } 229 } 230 rewritePhiValues(NewBB, i, VRMap, InstrMap); 231 LLVM_DEBUG({ 232 dbgs() << "prolog:\n"; 233 NewBB->dump(); 234 }); 235 } 236 237 PredBB->replaceSuccessor(BB, KernelBB); 238 239 // Check if we need to remove the branch from the preheader to the original 240 // loop, and replace it with a branch to the new loop. 241 unsigned numBranches = TII->removeBranch(*Preheader); 242 if (numBranches) { 243 SmallVector<MachineOperand, 0> Cond; 244 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 245 } 246 } 247 248 /// Generate the pipeline epilog code. The epilog code finishes the iterations 249 /// that were started in either the prolog or the kernel. We create a basic 250 /// block for each stage that needs to complete. 251 void ModuloScheduleExpander::generateEpilog( 252 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 253 ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, 254 MBBVectorTy &PrologBBs) { 255 // We need to change the branch from the kernel to the first epilog block, so 256 // this call to analyze branch uses the kernel rather than the original BB. 257 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 258 SmallVector<MachineOperand, 4> Cond; 259 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 260 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 261 if (checkBranch) 262 return; 263 264 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 265 if (*LoopExitI == KernelBB) 266 ++LoopExitI; 267 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 268 MachineBasicBlock *LoopExitBB = *LoopExitI; 269 270 MachineBasicBlock *PredBB = KernelBB; 271 MachineBasicBlock *EpilogStart = LoopExitBB; 272 InstrMapTy InstrMap; 273 274 // Generate a basic block for each stage, not including the last stage, 275 // which was generated for the kernel. Each basic block may contain 276 // instructions from multiple stages/iterations. 277 int EpilogStage = LastStage + 1; 278 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 279 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 280 EpilogBBs.push_back(NewBB); 281 MF.insert(BB->getIterator(), NewBB); 282 283 PredBB->replaceSuccessor(LoopExitBB, NewBB); 284 NewBB->addSuccessor(LoopExitBB); 285 286 if (EpilogStart == LoopExitBB) 287 EpilogStart = NewBB; 288 289 // Add instructions to the epilog depending on the current block. 290 // Process instructions in original program order. 291 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 292 for (auto &BBI : *BB) { 293 if (BBI.isPHI()) 294 continue; 295 MachineInstr *In = &BBI; 296 if ((unsigned)Schedule.getStage(In) == StageNum) { 297 // Instructions with memoperands in the epilog are updated with 298 // conservative values. 299 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 300 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 301 NewBB->push_back(NewMI); 302 InstrMap[NewMI] = In; 303 } 304 } 305 } 306 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 307 InstrMap, LastStage, EpilogStage, i == 1); 308 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi, 309 InstrMap, LastStage, EpilogStage, i == 1); 310 PredBB = NewBB; 311 312 LLVM_DEBUG({ 313 dbgs() << "epilog:\n"; 314 NewBB->dump(); 315 }); 316 } 317 318 // Fix any Phi nodes in the loop exit block. 319 LoopExitBB->replacePhiUsesWith(BB, PredBB); 320 321 // Create a branch to the new epilog from the kernel. 322 // Remove the original branch and add a new branch to the epilog. 323 TII->removeBranch(*KernelBB); 324 assert((OrigBB == TBB || OrigBB == FBB) && 325 "Unable to determine looping branch direction"); 326 if (OrigBB != TBB) 327 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 328 else 329 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 330 // Add a branch to the loop exit. 331 if (EpilogBBs.size() > 0) { 332 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 333 SmallVector<MachineOperand, 4> Cond1; 334 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 335 } 336 } 337 338 /// Replace all uses of FromReg that appear outside the specified 339 /// basic block with ToReg. 340 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 341 MachineBasicBlock *MBB, 342 MachineRegisterInfo &MRI, 343 LiveIntervals &LIS) { 344 for (MachineOperand &O : 345 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 346 if (O.getParent()->getParent() != MBB) 347 O.setReg(ToReg); 348 if (!LIS.hasInterval(ToReg)) 349 LIS.createEmptyInterval(ToReg); 350 } 351 352 /// Return true if the register has a use that occurs outside the 353 /// specified loop. 354 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 355 MachineRegisterInfo &MRI) { 356 for (const MachineOperand &MO : MRI.use_operands(Reg)) 357 if (MO.getParent()->getParent() != BB) 358 return true; 359 return false; 360 } 361 362 /// Generate Phis for the specific block in the generated pipelined code. 363 /// This function looks at the Phis from the original code to guide the 364 /// creation of new Phis. 365 void ModuloScheduleExpander::generateExistingPhis( 366 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 367 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 368 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 369 // Compute the stage number for the initial value of the Phi, which 370 // comes from the prolog. The prolog to use depends on to which kernel/ 371 // epilog that we're adding the Phi. 372 unsigned PrologStage = 0; 373 unsigned PrevStage = 0; 374 bool InKernel = (LastStageNum == CurStageNum); 375 if (InKernel) { 376 PrologStage = LastStageNum - 1; 377 PrevStage = CurStageNum; 378 } else { 379 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 380 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 381 } 382 383 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 384 BBE = BB->getFirstNonPHI(); 385 BBI != BBE; ++BBI) { 386 Register Def = BBI->getOperand(0).getReg(); 387 388 unsigned InitVal = 0; 389 unsigned LoopVal = 0; 390 getPhiRegs(*BBI, BB, InitVal, LoopVal); 391 392 unsigned PhiOp1 = 0; 393 // The Phi value from the loop body typically is defined in the loop, but 394 // not always. So, we need to check if the value is defined in the loop. 395 unsigned PhiOp2 = LoopVal; 396 if (VRMap[LastStageNum].count(LoopVal)) 397 PhiOp2 = VRMap[LastStageNum][LoopVal]; 398 399 int StageScheduled = Schedule.getStage(&*BBI); 400 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 401 unsigned NumStages = getStagesForReg(Def, CurStageNum); 402 if (NumStages == 0) { 403 // We don't need to generate a Phi anymore, but we need to rename any uses 404 // of the Phi value. 405 unsigned NewReg = VRMap[PrevStage][LoopVal]; 406 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 407 InitVal, NewReg); 408 if (VRMap[CurStageNum].count(LoopVal)) 409 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 410 } 411 // Adjust the number of Phis needed depending on the number of prologs left, 412 // and the distance from where the Phi is first scheduled. The number of 413 // Phis cannot exceed the number of prolog stages. Each stage can 414 // potentially define two values. 415 unsigned MaxPhis = PrologStage + 2; 416 if (!InKernel && (int)PrologStage <= LoopValStage) 417 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 418 unsigned NumPhis = std::min(NumStages, MaxPhis); 419 420 unsigned NewReg = 0; 421 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 422 // In the epilog, we may need to look back one stage to get the correct 423 // Phi name, because the epilog and prolog blocks execute the same stage. 424 // The correct name is from the previous block only when the Phi has 425 // been completely scheduled prior to the epilog, and Phi value is not 426 // needed in multiple stages. 427 int StageDiff = 0; 428 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 429 NumPhis == 1) 430 StageDiff = 1; 431 // Adjust the computations below when the phi and the loop definition 432 // are scheduled in different stages. 433 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 434 StageDiff = StageScheduled - LoopValStage; 435 for (unsigned np = 0; np < NumPhis; ++np) { 436 // If the Phi hasn't been scheduled, then use the initial Phi operand 437 // value. Otherwise, use the scheduled version of the instruction. This 438 // is a little complicated when a Phi references another Phi. 439 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 440 PhiOp1 = InitVal; 441 // Check if the Phi has already been scheduled in a prolog stage. 442 else if (PrologStage >= AccessStage + StageDiff + np && 443 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 444 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 445 // Check if the Phi has already been scheduled, but the loop instruction 446 // is either another Phi, or doesn't occur in the loop. 447 else if (PrologStage >= AccessStage + StageDiff + np) { 448 // If the Phi references another Phi, we need to examine the other 449 // Phi to get the correct value. 450 PhiOp1 = LoopVal; 451 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 452 int Indirects = 1; 453 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 454 int PhiStage = Schedule.getStage(InstOp1); 455 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 456 PhiOp1 = getInitPhiReg(*InstOp1, BB); 457 else 458 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 459 InstOp1 = MRI.getVRegDef(PhiOp1); 460 int PhiOpStage = Schedule.getStage(InstOp1); 461 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 462 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 463 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 464 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 465 break; 466 } 467 ++Indirects; 468 } 469 } else 470 PhiOp1 = InitVal; 471 // If this references a generated Phi in the kernel, get the Phi operand 472 // from the incoming block. 473 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 474 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 475 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 476 477 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 478 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 479 // In the epilog, a map lookup is needed to get the value from the kernel, 480 // or previous epilog block. How is does this depends on if the 481 // instruction is scheduled in the previous block. 482 if (!InKernel) { 483 int StageDiffAdj = 0; 484 if (LoopValStage != -1 && StageScheduled > LoopValStage) 485 StageDiffAdj = StageScheduled - LoopValStage; 486 // Use the loop value defined in the kernel, unless the kernel 487 // contains the last definition of the Phi. 488 if (np == 0 && PrevStage == LastStageNum && 489 (StageScheduled != 0 || LoopValStage != 0) && 490 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 491 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 492 // Use the value defined by the Phi. We add one because we switch 493 // from looking at the loop value to the Phi definition. 494 else if (np > 0 && PrevStage == LastStageNum && 495 VRMap[PrevStage - np + 1].count(Def)) 496 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 497 // Use the loop value defined in the kernel. 498 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 499 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 500 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 501 // Use the value defined by the Phi, unless we're generating the first 502 // epilog and the Phi refers to a Phi in a different stage. 503 else if (VRMap[PrevStage - np].count(Def) && 504 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 505 (LoopValStage == StageScheduled))) 506 PhiOp2 = VRMap[PrevStage - np][Def]; 507 } 508 509 // Check if we can reuse an existing Phi. This occurs when a Phi 510 // references another Phi, and the other Phi is scheduled in an 511 // earlier stage. We can try to reuse an existing Phi up until the last 512 // stage of the current Phi. 513 if (LoopDefIsPhi) { 514 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 515 int LVNumStages = getStagesForPhi(LoopVal); 516 int StageDiff = (StageScheduled - LoopValStage); 517 LVNumStages -= StageDiff; 518 // Make sure the loop value Phi has been processed already. 519 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 520 NewReg = PhiOp2; 521 unsigned ReuseStage = CurStageNum; 522 if (isLoopCarried(*PhiInst)) 523 ReuseStage -= LVNumStages; 524 // Check if the Phi to reuse has been generated yet. If not, then 525 // there is nothing to reuse. 526 if (VRMap[ReuseStage - np].count(LoopVal)) { 527 NewReg = VRMap[ReuseStage - np][LoopVal]; 528 529 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 530 Def, NewReg); 531 // Update the map with the new Phi name. 532 VRMap[CurStageNum - np][Def] = NewReg; 533 PhiOp2 = NewReg; 534 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 535 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 536 537 if (IsLast && np == NumPhis - 1) 538 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 539 continue; 540 } 541 } 542 } 543 if (InKernel && StageDiff > 0 && 544 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 545 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 546 } 547 548 const TargetRegisterClass *RC = MRI.getRegClass(Def); 549 NewReg = MRI.createVirtualRegister(RC); 550 551 MachineInstrBuilder NewPhi = 552 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 553 TII->get(TargetOpcode::PHI), NewReg); 554 NewPhi.addReg(PhiOp1).addMBB(BB1); 555 NewPhi.addReg(PhiOp2).addMBB(BB2); 556 if (np == 0) 557 InstrMap[NewPhi] = &*BBI; 558 559 // We define the Phis after creating the new pipelined code, so 560 // we need to rename the Phi values in scheduled instructions. 561 562 unsigned PrevReg = 0; 563 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 564 PrevReg = VRMap[PrevStage - np][LoopVal]; 565 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 566 NewReg, PrevReg); 567 // If the Phi has been scheduled, use the new name for rewriting. 568 if (VRMap[CurStageNum - np].count(Def)) { 569 unsigned R = VRMap[CurStageNum - np][Def]; 570 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 571 NewReg); 572 } 573 574 // Check if we need to rename any uses that occurs after the loop. The 575 // register to replace depends on whether the Phi is scheduled in the 576 // epilog. 577 if (IsLast && np == NumPhis - 1) 578 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 579 580 // In the kernel, a dependent Phi uses the value from this Phi. 581 if (InKernel) 582 PhiOp2 = NewReg; 583 584 // Update the map with the new Phi name. 585 VRMap[CurStageNum - np][Def] = NewReg; 586 } 587 588 while (NumPhis++ < NumStages) { 589 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 590 NewReg, 0); 591 } 592 593 // Check if we need to rename a Phi that has been eliminated due to 594 // scheduling. 595 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 596 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 597 } 598 } 599 600 /// Generate Phis for the specified block in the generated pipelined code. 601 /// These are new Phis needed because the definition is scheduled after the 602 /// use in the pipelined sequence. 603 void ModuloScheduleExpander::generatePhis( 604 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 605 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, 606 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 607 bool IsLast) { 608 // Compute the stage number that contains the initial Phi value, and 609 // the Phi from the previous stage. 610 unsigned PrologStage = 0; 611 unsigned PrevStage = 0; 612 unsigned StageDiff = CurStageNum - LastStageNum; 613 bool InKernel = (StageDiff == 0); 614 if (InKernel) { 615 PrologStage = LastStageNum - 1; 616 PrevStage = CurStageNum; 617 } else { 618 PrologStage = LastStageNum - StageDiff; 619 PrevStage = LastStageNum + StageDiff - 1; 620 } 621 622 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 623 BBE = BB->instr_end(); 624 BBI != BBE; ++BBI) { 625 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 626 MachineOperand &MO = BBI->getOperand(i); 627 if (!MO.isReg() || !MO.isDef() || 628 !Register::isVirtualRegister(MO.getReg())) 629 continue; 630 631 int StageScheduled = Schedule.getStage(&*BBI); 632 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 633 Register Def = MO.getReg(); 634 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 635 // An instruction scheduled in stage 0 and is used after the loop 636 // requires a phi in the epilog for the last definition from either 637 // the kernel or prolog. 638 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 639 hasUseAfterLoop(Def, BB, MRI)) 640 NumPhis = 1; 641 if (!InKernel && (unsigned)StageScheduled > PrologStage) 642 continue; 643 644 unsigned PhiOp2; 645 if (InKernel) { 646 PhiOp2 = VRMap[PrevStage][Def]; 647 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 648 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 649 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 650 } 651 // The number of Phis can't exceed the number of prolog stages. The 652 // prolog stage number is zero based. 653 if (NumPhis > PrologStage + 1 - StageScheduled) 654 NumPhis = PrologStage + 1 - StageScheduled; 655 for (unsigned np = 0; np < NumPhis; ++np) { 656 // Example for 657 // Org: 658 // %Org = ... (Scheduled at Stage#0, NumPhi = 2) 659 // 660 // Prolog0 (Stage0): 661 // %Clone0 = ... 662 // Prolog1 (Stage1): 663 // %Clone1 = ... 664 // Kernel (Stage2): 665 // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel 666 // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel 667 // %Clone2 = ... 668 // Epilog0 (Stage3): 669 // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel 670 // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel 671 // Epilog1 (Stage4): 672 // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 673 // 674 // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} 675 // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} 676 // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} 677 678 unsigned PhiOp1 = VRMap[PrologStage][Def]; 679 if (np <= PrologStage) 680 PhiOp1 = VRMap[PrologStage - np][Def]; 681 if (!InKernel) { 682 if (PrevStage == LastStageNum && np == 0) 683 PhiOp2 = VRMap[LastStageNum][Def]; 684 else 685 PhiOp2 = VRMapPhi[PrevStage - np][Def]; 686 } 687 688 const TargetRegisterClass *RC = MRI.getRegClass(Def); 689 Register NewReg = MRI.createVirtualRegister(RC); 690 691 MachineInstrBuilder NewPhi = 692 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 693 TII->get(TargetOpcode::PHI), NewReg); 694 NewPhi.addReg(PhiOp1).addMBB(BB1); 695 NewPhi.addReg(PhiOp2).addMBB(BB2); 696 if (np == 0) 697 InstrMap[NewPhi] = &*BBI; 698 699 // Rewrite uses and update the map. The actions depend upon whether 700 // we generating code for the kernel or epilog blocks. 701 if (InKernel) { 702 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 703 NewReg); 704 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 705 NewReg); 706 707 PhiOp2 = NewReg; 708 VRMapPhi[PrevStage - np - 1][Def] = NewReg; 709 } else { 710 VRMapPhi[CurStageNum - np][Def] = NewReg; 711 if (np == NumPhis - 1) 712 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 713 NewReg); 714 } 715 if (IsLast && np == NumPhis - 1) 716 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 717 } 718 } 719 } 720 } 721 722 /// Remove instructions that generate values with no uses. 723 /// Typically, these are induction variable operations that generate values 724 /// used in the loop itself. A dead instruction has a definition with 725 /// no uses, or uses that occur in the original loop only. 726 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 727 MBBVectorTy &EpilogBBs) { 728 // For each epilog block, check that the value defined by each instruction 729 // is used. If not, delete it. 730 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 731 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 732 ME = MBB->instr_rend(); 733 MI != ME;) { 734 // From DeadMachineInstructionElem. Don't delete inline assembly. 735 if (MI->isInlineAsm()) { 736 ++MI; 737 continue; 738 } 739 bool SawStore = false; 740 // Check if it's safe to remove the instruction due to side effects. 741 // We can, and want to, remove Phis here. 742 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 743 ++MI; 744 continue; 745 } 746 bool used = true; 747 for (const MachineOperand &MO : MI->operands()) { 748 if (!MO.isReg() || !MO.isDef()) 749 continue; 750 Register reg = MO.getReg(); 751 // Assume physical registers are used, unless they are marked dead. 752 if (Register::isPhysicalRegister(reg)) { 753 used = !MO.isDead(); 754 if (used) 755 break; 756 continue; 757 } 758 unsigned realUses = 0; 759 for (const MachineOperand &U : MRI.use_operands(reg)) { 760 // Check if there are any uses that occur only in the original 761 // loop. If so, that's not a real use. 762 if (U.getParent()->getParent() != BB) { 763 realUses++; 764 used = true; 765 break; 766 } 767 } 768 if (realUses > 0) 769 break; 770 used = false; 771 } 772 if (!used) { 773 LIS.RemoveMachineInstrFromMaps(*MI); 774 MI++->eraseFromParent(); 775 continue; 776 } 777 ++MI; 778 } 779 // In the kernel block, check if we can remove a Phi that generates a value 780 // used in an instruction removed in the epilog block. 781 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 782 Register reg = MI.getOperand(0).getReg(); 783 if (MRI.use_begin(reg) == MRI.use_end()) { 784 LIS.RemoveMachineInstrFromMaps(MI); 785 MI.eraseFromParent(); 786 } 787 } 788 } 789 790 /// For loop carried definitions, we split the lifetime of a virtual register 791 /// that has uses past the definition in the next iteration. A copy with a new 792 /// virtual register is inserted before the definition, which helps with 793 /// generating a better register assignment. 794 /// 795 /// v1 = phi(a, v2) v1 = phi(a, v2) 796 /// v2 = phi(b, v3) v2 = phi(b, v3) 797 /// v3 = .. v4 = copy v1 798 /// .. = V1 v3 = .. 799 /// .. = v4 800 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 801 MBBVectorTy &EpilogBBs) { 802 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 803 for (auto &PHI : KernelBB->phis()) { 804 Register Def = PHI.getOperand(0).getReg(); 805 // Check for any Phi definition that used as an operand of another Phi 806 // in the same block. 807 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 808 E = MRI.use_instr_end(); 809 I != E; ++I) { 810 if (I->isPHI() && I->getParent() == KernelBB) { 811 // Get the loop carried definition. 812 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 813 if (!LCDef) 814 continue; 815 MachineInstr *MI = MRI.getVRegDef(LCDef); 816 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 817 continue; 818 // Search through the rest of the block looking for uses of the Phi 819 // definition. If one occurs, then split the lifetime. 820 unsigned SplitReg = 0; 821 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 822 KernelBB->instr_end())) 823 if (BBJ.readsRegister(Def)) { 824 // We split the lifetime when we find the first use. 825 if (SplitReg == 0) { 826 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 827 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 828 TII->get(TargetOpcode::COPY), SplitReg) 829 .addReg(Def); 830 } 831 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 832 } 833 if (!SplitReg) 834 continue; 835 // Search through each of the epilog blocks for any uses to be renamed. 836 for (auto &Epilog : EpilogBBs) 837 for (auto &I : *Epilog) 838 if (I.readsRegister(Def)) 839 I.substituteRegister(Def, SplitReg, 0, *TRI); 840 break; 841 } 842 } 843 } 844 } 845 846 /// Remove the incoming block from the Phis in a basic block. 847 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 848 for (MachineInstr &MI : *BB) { 849 if (!MI.isPHI()) 850 break; 851 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 852 if (MI.getOperand(i + 1).getMBB() == Incoming) { 853 MI.removeOperand(i + 1); 854 MI.removeOperand(i); 855 break; 856 } 857 } 858 } 859 860 /// Create branches from each prolog basic block to the appropriate epilog 861 /// block. These edges are needed if the loop ends before reaching the 862 /// kernel. 863 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 864 MBBVectorTy &PrologBBs, 865 MachineBasicBlock *KernelBB, 866 MBBVectorTy &EpilogBBs, 867 ValueMapTy *VRMap) { 868 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 869 MachineBasicBlock *LastPro = KernelBB; 870 MachineBasicBlock *LastEpi = KernelBB; 871 872 // Start from the blocks connected to the kernel and work "out" 873 // to the first prolog and the last epilog blocks. 874 SmallVector<MachineInstr *, 4> PrevInsts; 875 unsigned MaxIter = PrologBBs.size() - 1; 876 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 877 // Add branches to the prolog that go to the corresponding 878 // epilog, and the fall-thru prolog/kernel block. 879 MachineBasicBlock *Prolog = PrologBBs[j]; 880 MachineBasicBlock *Epilog = EpilogBBs[i]; 881 882 SmallVector<MachineOperand, 4> Cond; 883 Optional<bool> StaticallyGreater = 884 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 885 unsigned numAdded = 0; 886 if (!StaticallyGreater) { 887 Prolog->addSuccessor(Epilog); 888 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 889 } else if (*StaticallyGreater == false) { 890 Prolog->addSuccessor(Epilog); 891 Prolog->removeSuccessor(LastPro); 892 LastEpi->removeSuccessor(Epilog); 893 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 894 removePhis(Epilog, LastEpi); 895 // Remove the blocks that are no longer referenced. 896 if (LastPro != LastEpi) { 897 LastEpi->clear(); 898 LastEpi->eraseFromParent(); 899 } 900 if (LastPro == KernelBB) { 901 LoopInfo->disposed(); 902 NewKernel = nullptr; 903 } 904 LastPro->clear(); 905 LastPro->eraseFromParent(); 906 } else { 907 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 908 removePhis(Epilog, Prolog); 909 } 910 LastPro = Prolog; 911 LastEpi = Epilog; 912 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 913 E = Prolog->instr_rend(); 914 I != E && numAdded > 0; ++I, --numAdded) 915 updateInstruction(&*I, false, j, 0, VRMap); 916 } 917 918 if (NewKernel) { 919 LoopInfo->setPreheader(PrologBBs[MaxIter]); 920 LoopInfo->adjustTripCount(-(MaxIter + 1)); 921 } 922 } 923 924 /// Return true if we can compute the amount the instruction changes 925 /// during each iteration. Set Delta to the amount of the change. 926 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 927 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 928 const MachineOperand *BaseOp; 929 int64_t Offset; 930 bool OffsetIsScalable; 931 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 932 return false; 933 934 // FIXME: This algorithm assumes instructions have fixed-size offsets. 935 if (OffsetIsScalable) 936 return false; 937 938 if (!BaseOp->isReg()) 939 return false; 940 941 Register BaseReg = BaseOp->getReg(); 942 943 MachineRegisterInfo &MRI = MF.getRegInfo(); 944 // Check if there is a Phi. If so, get the definition in the loop. 945 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 946 if (BaseDef && BaseDef->isPHI()) { 947 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 948 BaseDef = MRI.getVRegDef(BaseReg); 949 } 950 if (!BaseDef) 951 return false; 952 953 int D = 0; 954 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 955 return false; 956 957 Delta = D; 958 return true; 959 } 960 961 /// Update the memory operand with a new offset when the pipeliner 962 /// generates a new copy of the instruction that refers to a 963 /// different memory location. 964 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 965 MachineInstr &OldMI, 966 unsigned Num) { 967 if (Num == 0) 968 return; 969 // If the instruction has memory operands, then adjust the offset 970 // when the instruction appears in different stages. 971 if (NewMI.memoperands_empty()) 972 return; 973 SmallVector<MachineMemOperand *, 2> NewMMOs; 974 for (MachineMemOperand *MMO : NewMI.memoperands()) { 975 // TODO: Figure out whether isAtomic is really necessary (see D57601). 976 if (MMO->isVolatile() || MMO->isAtomic() || 977 (MMO->isInvariant() && MMO->isDereferenceable()) || 978 (!MMO->getValue())) { 979 NewMMOs.push_back(MMO); 980 continue; 981 } 982 unsigned Delta; 983 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 984 int64_t AdjOffset = Delta * Num; 985 NewMMOs.push_back( 986 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 987 } else { 988 NewMMOs.push_back( 989 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 990 } 991 } 992 NewMI.setMemRefs(MF, NewMMOs); 993 } 994 995 /// Clone the instruction for the new pipelined loop and update the 996 /// memory operands, if needed. 997 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 998 unsigned CurStageNum, 999 unsigned InstStageNum) { 1000 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1001 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1002 return NewMI; 1003 } 1004 1005 /// Clone the instruction for the new pipelined loop. If needed, this 1006 /// function updates the instruction using the values saved in the 1007 /// InstrChanges structure. 1008 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1009 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1010 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1011 auto It = InstrChanges.find(OldMI); 1012 if (It != InstrChanges.end()) { 1013 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1014 unsigned BasePos, OffsetPos; 1015 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1016 return nullptr; 1017 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1018 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1019 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1020 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1021 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1022 } 1023 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1024 return NewMI; 1025 } 1026 1027 /// Update the machine instruction with new virtual registers. This 1028 /// function may change the definitions and/or uses. 1029 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1030 bool LastDef, 1031 unsigned CurStageNum, 1032 unsigned InstrStageNum, 1033 ValueMapTy *VRMap) { 1034 for (MachineOperand &MO : NewMI->operands()) { 1035 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1036 continue; 1037 Register reg = MO.getReg(); 1038 if (MO.isDef()) { 1039 // Create a new virtual register for the definition. 1040 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1041 Register NewReg = MRI.createVirtualRegister(RC); 1042 MO.setReg(NewReg); 1043 VRMap[CurStageNum][reg] = NewReg; 1044 if (LastDef) 1045 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1046 } else if (MO.isUse()) { 1047 MachineInstr *Def = MRI.getVRegDef(reg); 1048 // Compute the stage that contains the last definition for instruction. 1049 int DefStageNum = Schedule.getStage(Def); 1050 unsigned StageNum = CurStageNum; 1051 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1052 // Compute the difference in stages between the defintion and the use. 1053 unsigned StageDiff = (InstrStageNum - DefStageNum); 1054 // Make an adjustment to get the last definition. 1055 StageNum -= StageDiff; 1056 } 1057 if (VRMap[StageNum].count(reg)) 1058 MO.setReg(VRMap[StageNum][reg]); 1059 } 1060 } 1061 } 1062 1063 /// Return the instruction in the loop that defines the register. 1064 /// If the definition is a Phi, then follow the Phi operand to 1065 /// the instruction in the loop. 1066 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1067 SmallPtrSet<MachineInstr *, 8> Visited; 1068 MachineInstr *Def = MRI.getVRegDef(Reg); 1069 while (Def->isPHI()) { 1070 if (!Visited.insert(Def).second) 1071 break; 1072 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1073 if (Def->getOperand(i + 1).getMBB() == BB) { 1074 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1075 break; 1076 } 1077 } 1078 return Def; 1079 } 1080 1081 /// Return the new name for the value from the previous stage. 1082 unsigned ModuloScheduleExpander::getPrevMapVal( 1083 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1084 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1085 unsigned PrevVal = 0; 1086 if (StageNum > PhiStage) { 1087 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1088 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1089 // The name is defined in the previous stage. 1090 PrevVal = VRMap[StageNum - 1][LoopVal]; 1091 else if (VRMap[StageNum].count(LoopVal)) 1092 // The previous name is defined in the current stage when the instruction 1093 // order is swapped. 1094 PrevVal = VRMap[StageNum][LoopVal]; 1095 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1096 // The loop value hasn't yet been scheduled. 1097 PrevVal = LoopVal; 1098 else if (StageNum == PhiStage + 1) 1099 // The loop value is another phi, which has not been scheduled. 1100 PrevVal = getInitPhiReg(*LoopInst, BB); 1101 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1102 // The loop value is another phi, which has been scheduled. 1103 PrevVal = 1104 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1105 LoopStage, VRMap, BB); 1106 } 1107 return PrevVal; 1108 } 1109 1110 /// Rewrite the Phi values in the specified block to use the mappings 1111 /// from the initial operand. Once the Phi is scheduled, we switch 1112 /// to using the loop value instead of the Phi value, so those names 1113 /// do not need to be rewritten. 1114 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1115 unsigned StageNum, 1116 ValueMapTy *VRMap, 1117 InstrMapTy &InstrMap) { 1118 for (auto &PHI : BB->phis()) { 1119 unsigned InitVal = 0; 1120 unsigned LoopVal = 0; 1121 getPhiRegs(PHI, BB, InitVal, LoopVal); 1122 Register PhiDef = PHI.getOperand(0).getReg(); 1123 1124 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1125 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1126 unsigned NumPhis = getStagesForPhi(PhiDef); 1127 if (NumPhis > StageNum) 1128 NumPhis = StageNum; 1129 for (unsigned np = 0; np <= NumPhis; ++np) { 1130 unsigned NewVal = 1131 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1132 if (!NewVal) 1133 NewVal = InitVal; 1134 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1135 NewVal); 1136 } 1137 } 1138 } 1139 1140 /// Rewrite a previously scheduled instruction to use the register value 1141 /// from the new instruction. Make sure the instruction occurs in the 1142 /// basic block, and we don't change the uses in the new instruction. 1143 void ModuloScheduleExpander::rewriteScheduledInstr( 1144 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1145 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1146 unsigned PrevReg) { 1147 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1148 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1149 // Rewrite uses that have been scheduled already to use the new 1150 // Phi register. 1151 for (MachineOperand &UseOp : 1152 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1153 MachineInstr *UseMI = UseOp.getParent(); 1154 if (UseMI->getParent() != BB) 1155 continue; 1156 if (UseMI->isPHI()) { 1157 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1158 continue; 1159 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1160 continue; 1161 } 1162 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1163 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1164 MachineInstr *OrigMI = OrigInstr->second; 1165 int StageSched = Schedule.getStage(OrigMI); 1166 int CycleSched = Schedule.getCycle(OrigMI); 1167 unsigned ReplaceReg = 0; 1168 // This is the stage for the scheduled instruction. 1169 if (StagePhi == StageSched && Phi->isPHI()) { 1170 int CyclePhi = Schedule.getCycle(Phi); 1171 if (PrevReg && InProlog) 1172 ReplaceReg = PrevReg; 1173 else if (PrevReg && !isLoopCarried(*Phi) && 1174 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1175 ReplaceReg = PrevReg; 1176 else 1177 ReplaceReg = NewReg; 1178 } 1179 // The scheduled instruction occurs before the scheduled Phi, and the 1180 // Phi is not loop carried. 1181 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1182 ReplaceReg = NewReg; 1183 if (StagePhi > StageSched && Phi->isPHI()) 1184 ReplaceReg = NewReg; 1185 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1186 ReplaceReg = NewReg; 1187 if (ReplaceReg) { 1188 const TargetRegisterClass *NRC = 1189 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1190 if (NRC) 1191 UseOp.setReg(ReplaceReg); 1192 else { 1193 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 1194 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 1195 SplitReg) 1196 .addReg(ReplaceReg); 1197 UseOp.setReg(SplitReg); 1198 } 1199 } 1200 } 1201 } 1202 1203 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1204 if (!Phi.isPHI()) 1205 return false; 1206 int DefCycle = Schedule.getCycle(&Phi); 1207 int DefStage = Schedule.getStage(&Phi); 1208 1209 unsigned InitVal = 0; 1210 unsigned LoopVal = 0; 1211 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1212 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1213 if (!Use || Use->isPHI()) 1214 return true; 1215 int LoopCycle = Schedule.getCycle(Use); 1216 int LoopStage = Schedule.getStage(Use); 1217 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1218 } 1219 1220 //===----------------------------------------------------------------------===// 1221 // PeelingModuloScheduleExpander implementation 1222 //===----------------------------------------------------------------------===// 1223 // This is a reimplementation of ModuloScheduleExpander that works by creating 1224 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1225 //===----------------------------------------------------------------------===// 1226 1227 namespace { 1228 // Remove any dead phis in MBB. Dead phis either have only one block as input 1229 // (in which case they are the identity) or have no uses. 1230 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1231 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1232 bool Changed = true; 1233 while (Changed) { 1234 Changed = false; 1235 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1236 assert(MI.isPHI()); 1237 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1238 if (LIS) 1239 LIS->RemoveMachineInstrFromMaps(MI); 1240 MI.eraseFromParent(); 1241 Changed = true; 1242 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1243 const TargetRegisterClass *ConstrainRegClass = 1244 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1245 MRI.getRegClass(MI.getOperand(0).getReg())); 1246 assert(ConstrainRegClass && 1247 "Expected a valid constrained register class!"); 1248 (void)ConstrainRegClass; 1249 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1250 MI.getOperand(1).getReg()); 1251 if (LIS) 1252 LIS->RemoveMachineInstrFromMaps(MI); 1253 MI.eraseFromParent(); 1254 Changed = true; 1255 } 1256 } 1257 } 1258 } 1259 1260 /// Rewrites the kernel block in-place to adhere to the given schedule. 1261 /// KernelRewriter holds all of the state required to perform the rewriting. 1262 class KernelRewriter { 1263 ModuloSchedule &S; 1264 MachineBasicBlock *BB; 1265 MachineBasicBlock *PreheaderBB, *ExitBB; 1266 MachineRegisterInfo &MRI; 1267 const TargetInstrInfo *TII; 1268 LiveIntervals *LIS; 1269 1270 // Map from register class to canonical undef register for that class. 1271 DenseMap<const TargetRegisterClass *, Register> Undefs; 1272 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1273 // this map is only used when InitReg is non-undef. 1274 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1275 // Map from LoopReg to phi register where the InitReg is undef. 1276 DenseMap<Register, Register> UndefPhis; 1277 1278 // Reg is used by MI. Return the new register MI should use to adhere to the 1279 // schedule. Insert phis as necessary. 1280 Register remapUse(Register Reg, MachineInstr &MI); 1281 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1282 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1283 // or will be chosen so as to share another phi. 1284 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1285 const TargetRegisterClass *RC = nullptr); 1286 // Create an undef register of the given register class. 1287 Register undef(const TargetRegisterClass *RC); 1288 1289 public: 1290 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1291 LiveIntervals *LIS = nullptr); 1292 void rewrite(); 1293 }; 1294 } // namespace 1295 1296 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1297 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1298 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1299 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1300 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1301 PreheaderBB = *BB->pred_begin(); 1302 if (PreheaderBB == BB) 1303 PreheaderBB = *std::next(BB->pred_begin()); 1304 } 1305 1306 void KernelRewriter::rewrite() { 1307 // Rearrange the loop to be in schedule order. Note that the schedule may 1308 // contain instructions that are not owned by the loop block (InstrChanges and 1309 // friends), so we gracefully handle unowned instructions and delete any 1310 // instructions that weren't in the schedule. 1311 auto InsertPt = BB->getFirstTerminator(); 1312 MachineInstr *FirstMI = nullptr; 1313 for (MachineInstr *MI : S.getInstructions()) { 1314 if (MI->isPHI()) 1315 continue; 1316 if (MI->getParent()) 1317 MI->removeFromParent(); 1318 BB->insert(InsertPt, MI); 1319 if (!FirstMI) 1320 FirstMI = MI; 1321 } 1322 assert(FirstMI && "Failed to find first MI in schedule"); 1323 1324 // At this point all of the scheduled instructions are between FirstMI 1325 // and the end of the block. Kill from the first non-phi to FirstMI. 1326 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1327 if (LIS) 1328 LIS->RemoveMachineInstrFromMaps(*I); 1329 (I++)->eraseFromParent(); 1330 } 1331 1332 // Now remap every instruction in the loop. 1333 for (MachineInstr &MI : *BB) { 1334 if (MI.isPHI() || MI.isTerminator()) 1335 continue; 1336 for (MachineOperand &MO : MI.uses()) { 1337 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1338 continue; 1339 Register Reg = remapUse(MO.getReg(), MI); 1340 MO.setReg(Reg); 1341 } 1342 } 1343 EliminateDeadPhis(BB, MRI, LIS); 1344 1345 // Ensure a phi exists for all instructions that are either referenced by 1346 // an illegal phi or by an instruction outside the loop. This allows us to 1347 // treat remaps of these values the same as "normal" values that come from 1348 // loop-carried phis. 1349 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1350 if (MI->isPHI()) { 1351 Register R = MI->getOperand(0).getReg(); 1352 phi(R); 1353 continue; 1354 } 1355 1356 for (MachineOperand &Def : MI->defs()) { 1357 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1358 if (MI.getParent() != BB) { 1359 phi(Def.getReg()); 1360 break; 1361 } 1362 } 1363 } 1364 } 1365 } 1366 1367 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1368 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1369 if (!Producer) 1370 return Reg; 1371 1372 int ConsumerStage = S.getStage(&MI); 1373 if (!Producer->isPHI()) { 1374 // Non-phi producers are simple to remap. Insert as many phis as the 1375 // difference between the consumer and producer stages. 1376 if (Producer->getParent() != BB) 1377 // Producer was not inside the loop. Use the register as-is. 1378 return Reg; 1379 int ProducerStage = S.getStage(Producer); 1380 assert(ConsumerStage != -1 && 1381 "In-loop consumer should always be scheduled!"); 1382 assert(ConsumerStage >= ProducerStage); 1383 unsigned StageDiff = ConsumerStage - ProducerStage; 1384 1385 for (unsigned I = 0; I < StageDiff; ++I) 1386 Reg = phi(Reg); 1387 return Reg; 1388 } 1389 1390 // First, dive through the phi chain to find the defaults for the generated 1391 // phis. 1392 SmallVector<Optional<Register>, 4> Defaults; 1393 Register LoopReg = Reg; 1394 auto LoopProducer = Producer; 1395 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1396 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1397 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1398 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1399 assert(LoopProducer); 1400 } 1401 int LoopProducerStage = S.getStage(LoopProducer); 1402 1403 Optional<Register> IllegalPhiDefault; 1404 1405 if (LoopProducerStage == -1) { 1406 // Do nothing. 1407 } else if (LoopProducerStage > ConsumerStage) { 1408 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1409 // In addition, Consumer's cycle must be scheduled after Producer in the 1410 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1411 // functions. 1412 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1413 int LoopProducerCycle = S.getCycle(LoopProducer); 1414 int ConsumerCycle = S.getCycle(&MI); 1415 #endif 1416 assert(LoopProducerCycle <= ConsumerCycle); 1417 assert(LoopProducerStage == ConsumerStage + 1); 1418 // Peel off the first phi from Defaults and insert a phi between producer 1419 // and consumer. This phi will not be at the front of the block so we 1420 // consider it illegal. It will only exist during the rewrite process; it 1421 // needs to exist while we peel off prologs because these could take the 1422 // default value. After that we can replace all uses with the loop producer 1423 // value. 1424 IllegalPhiDefault = Defaults.front(); 1425 Defaults.erase(Defaults.begin()); 1426 } else { 1427 assert(ConsumerStage >= LoopProducerStage); 1428 int StageDiff = ConsumerStage - LoopProducerStage; 1429 if (StageDiff > 0) { 1430 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1431 << " to " << (Defaults.size() + StageDiff) << "\n"); 1432 // If we need more phis than we have defaults for, pad out with undefs for 1433 // the earliest phis, which are at the end of the defaults chain (the 1434 // chain is in reverse order). 1435 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1436 ? Optional<Register>() 1437 : Defaults.back()); 1438 } 1439 } 1440 1441 // Now we know the number of stages to jump back, insert the phi chain. 1442 auto DefaultI = Defaults.rbegin(); 1443 while (DefaultI != Defaults.rend()) 1444 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1445 1446 if (IllegalPhiDefault) { 1447 // The consumer optionally consumes LoopProducer in the same iteration 1448 // (because the producer is scheduled at an earlier cycle than the consumer) 1449 // or the initial value. To facilitate this we create an illegal block here 1450 // by embedding a phi in the middle of the block. We will fix this up 1451 // immediately prior to pruning. 1452 auto RC = MRI.getRegClass(Reg); 1453 Register R = MRI.createVirtualRegister(RC); 1454 MachineInstr *IllegalPhi = 1455 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1456 .addReg(*IllegalPhiDefault) 1457 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1458 .addReg(LoopReg) 1459 .addMBB(BB); // Block choice is arbitrary and has no effect. 1460 // Illegal phi should belong to the producer stage so that it can be 1461 // filtered correctly during peeling. 1462 S.setStage(IllegalPhi, LoopProducerStage); 1463 return R; 1464 } 1465 1466 return LoopReg; 1467 } 1468 1469 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1470 const TargetRegisterClass *RC) { 1471 // If the init register is not undef, try and find an existing phi. 1472 if (InitReg) { 1473 auto I = Phis.find({LoopReg, InitReg.value()}); 1474 if (I != Phis.end()) 1475 return I->second; 1476 } else { 1477 for (auto &KV : Phis) { 1478 if (KV.first.first == LoopReg) 1479 return KV.second; 1480 } 1481 } 1482 1483 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1484 // find a phi that takes undef as input. 1485 auto I = UndefPhis.find(LoopReg); 1486 if (I != UndefPhis.end()) { 1487 Register R = I->second; 1488 if (!InitReg) 1489 // Found a phi taking undef as input, and this input is undef so return 1490 // without any more changes. 1491 return R; 1492 // Found a phi taking undef as input, so rewrite it to take InitReg. 1493 MachineInstr *MI = MRI.getVRegDef(R); 1494 MI->getOperand(1).setReg(InitReg.value()); 1495 Phis.insert({{LoopReg, InitReg.value()}, R}); 1496 const TargetRegisterClass *ConstrainRegClass = 1497 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.value())); 1498 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1499 (void)ConstrainRegClass; 1500 UndefPhis.erase(I); 1501 return R; 1502 } 1503 1504 // Failed to find any existing phi to reuse, so create a new one. 1505 if (!RC) 1506 RC = MRI.getRegClass(LoopReg); 1507 Register R = MRI.createVirtualRegister(RC); 1508 if (InitReg) { 1509 const TargetRegisterClass *ConstrainRegClass = 1510 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1511 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1512 (void)ConstrainRegClass; 1513 } 1514 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1515 .addReg(InitReg ? *InitReg : undef(RC)) 1516 .addMBB(PreheaderBB) 1517 .addReg(LoopReg) 1518 .addMBB(BB); 1519 if (!InitReg) 1520 UndefPhis[LoopReg] = R; 1521 else 1522 Phis[{LoopReg, *InitReg}] = R; 1523 return R; 1524 } 1525 1526 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1527 Register &R = Undefs[RC]; 1528 if (R == 0) { 1529 // Create an IMPLICIT_DEF that defines this register if we need it. 1530 // All uses of this should be removed by the time we have finished unrolling 1531 // prologs and epilogs. 1532 R = MRI.createVirtualRegister(RC); 1533 auto *InsertBB = &PreheaderBB->getParent()->front(); 1534 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1535 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1536 } 1537 return R; 1538 } 1539 1540 namespace { 1541 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1542 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1543 /// through and defaults for these phis. 1544 class KernelOperandInfo { 1545 MachineBasicBlock *BB; 1546 MachineRegisterInfo &MRI; 1547 SmallVector<Register, 4> PhiDefaults; 1548 MachineOperand *Source; 1549 MachineOperand *Target; 1550 1551 public: 1552 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1553 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1554 : MRI(MRI) { 1555 Source = MO; 1556 BB = MO->getParent()->getParent(); 1557 while (isRegInLoop(MO)) { 1558 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1559 if (MI->isFullCopy()) { 1560 MO = &MI->getOperand(1); 1561 continue; 1562 } 1563 if (!MI->isPHI()) 1564 break; 1565 // If this is an illegal phi, don't count it in distance. 1566 if (IllegalPhis.count(MI)) { 1567 MO = &MI->getOperand(3); 1568 continue; 1569 } 1570 1571 Register Default = getInitPhiReg(*MI, BB); 1572 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1573 : &MI->getOperand(3); 1574 PhiDefaults.push_back(Default); 1575 } 1576 Target = MO; 1577 } 1578 1579 bool operator==(const KernelOperandInfo &Other) const { 1580 return PhiDefaults.size() == Other.PhiDefaults.size(); 1581 } 1582 1583 void print(raw_ostream &OS) const { 1584 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1585 << *Source->getParent(); 1586 } 1587 1588 private: 1589 bool isRegInLoop(MachineOperand *MO) { 1590 return MO->isReg() && MO->getReg().isVirtual() && 1591 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1592 } 1593 }; 1594 } // namespace 1595 1596 MachineBasicBlock * 1597 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1598 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1599 if (LPD == LPD_Front) 1600 PeeledFront.push_back(NewBB); 1601 else 1602 PeeledBack.push_front(NewBB); 1603 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1604 ++I, ++NI) { 1605 CanonicalMIs[&*I] = &*I; 1606 CanonicalMIs[&*NI] = &*I; 1607 BlockMIs[{NewBB, &*I}] = &*NI; 1608 BlockMIs[{BB, &*I}] = &*I; 1609 } 1610 return NewBB; 1611 } 1612 1613 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1614 int MinStage) { 1615 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1616 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1617 MachineInstr *MI = &*I++; 1618 int Stage = getStage(MI); 1619 if (Stage == -1 || Stage >= MinStage) 1620 continue; 1621 1622 for (MachineOperand &DefMO : MI->defs()) { 1623 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1624 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1625 // Only PHIs can use values from this block by construction. 1626 // Match with the equivalent PHI in B. 1627 assert(UseMI.isPHI()); 1628 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1629 MI->getParent()); 1630 Subs.emplace_back(&UseMI, Reg); 1631 } 1632 for (auto &Sub : Subs) 1633 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1634 *MRI.getTargetRegisterInfo()); 1635 } 1636 if (LIS) 1637 LIS->RemoveMachineInstrFromMaps(*MI); 1638 MI->eraseFromParent(); 1639 } 1640 } 1641 1642 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1643 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1644 auto InsertPt = DestBB->getFirstNonPHI(); 1645 DenseMap<Register, Register> Remaps; 1646 for (MachineInstr &MI : llvm::make_early_inc_range( 1647 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1648 if (MI.isPHI()) { 1649 // This is an illegal PHI. If we move any instructions using an illegal 1650 // PHI, we need to create a legal Phi. 1651 if (getStage(&MI) != Stage) { 1652 // The legal Phi is not necessary if the illegal phi's stage 1653 // is being moved. 1654 Register PhiR = MI.getOperand(0).getReg(); 1655 auto RC = MRI.getRegClass(PhiR); 1656 Register NR = MRI.createVirtualRegister(RC); 1657 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1658 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1659 .addReg(PhiR) 1660 .addMBB(SourceBB); 1661 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1662 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1663 Remaps[PhiR] = NR; 1664 } 1665 } 1666 if (getStage(&MI) != Stage) 1667 continue; 1668 MI.removeFromParent(); 1669 DestBB->insert(InsertPt, &MI); 1670 auto *KernelMI = CanonicalMIs[&MI]; 1671 BlockMIs[{DestBB, KernelMI}] = &MI; 1672 BlockMIs.erase({SourceBB, KernelMI}); 1673 } 1674 SmallVector<MachineInstr *, 4> PhiToDelete; 1675 for (MachineInstr &MI : DestBB->phis()) { 1676 assert(MI.getNumOperands() == 3); 1677 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1678 // If the instruction referenced by the phi is moved inside the block 1679 // we don't need the phi anymore. 1680 if (getStage(Def) == Stage) { 1681 Register PhiReg = MI.getOperand(0).getReg(); 1682 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1683 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1684 MI.getOperand(0).setReg(PhiReg); 1685 PhiToDelete.push_back(&MI); 1686 } 1687 } 1688 for (auto *P : PhiToDelete) 1689 P->eraseFromParent(); 1690 InsertPt = DestBB->getFirstNonPHI(); 1691 // Helper to clone Phi instructions into the destination block. We clone Phi 1692 // greedily to avoid combinatorial explosion of Phi instructions. 1693 auto clonePhi = [&](MachineInstr *Phi) { 1694 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1695 DestBB->insert(InsertPt, NewMI); 1696 Register OrigR = Phi->getOperand(0).getReg(); 1697 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1698 NewMI->getOperand(0).setReg(R); 1699 NewMI->getOperand(1).setReg(OrigR); 1700 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1701 Remaps[OrigR] = R; 1702 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1703 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1704 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1705 return R; 1706 }; 1707 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1708 for (MachineOperand &MO : I->uses()) { 1709 if (!MO.isReg()) 1710 continue; 1711 if (Remaps.count(MO.getReg())) 1712 MO.setReg(Remaps[MO.getReg()]); 1713 else { 1714 // If we are using a phi from the source block we need to add a new phi 1715 // pointing to the old one. 1716 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1717 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1718 Register R = clonePhi(Use); 1719 MO.setReg(R); 1720 } 1721 } 1722 } 1723 } 1724 } 1725 1726 Register 1727 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1728 MachineInstr *Phi) { 1729 unsigned distance = PhiNodeLoopIteration[Phi]; 1730 MachineInstr *CanonicalUse = CanonicalPhi; 1731 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1732 for (unsigned I = 0; I < distance; ++I) { 1733 assert(CanonicalUse->isPHI()); 1734 assert(CanonicalUse->getNumOperands() == 5); 1735 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1736 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1737 std::swap(LoopRegIdx, InitRegIdx); 1738 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1739 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1740 } 1741 return CanonicalUseReg; 1742 } 1743 1744 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1745 BitVector LS(Schedule.getNumStages(), true); 1746 BitVector AS(Schedule.getNumStages(), true); 1747 LiveStages[BB] = LS; 1748 AvailableStages[BB] = AS; 1749 1750 // Peel out the prologs. 1751 LS.reset(); 1752 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1753 LS[I] = true; 1754 Prologs.push_back(peelKernel(LPD_Front)); 1755 LiveStages[Prologs.back()] = LS; 1756 AvailableStages[Prologs.back()] = LS; 1757 } 1758 1759 // Create a block that will end up as the new loop exiting block (dominated by 1760 // all prologs and epilogs). It will only contain PHIs, in the same order as 1761 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1762 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1763 // property that any value deffed in BB but used outside of BB is used by a 1764 // PHI in the exiting block. 1765 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1766 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1767 // Push out the epilogs, again in reverse order. 1768 // We can't assume anything about the minumum loop trip count at this point, 1769 // so emit a fairly complex epilog. 1770 1771 // We first peel number of stages minus one epilogue. Then we remove dead 1772 // stages and reorder instructions based on their stage. If we have 3 stages 1773 // we generate first: 1774 // E0[3, 2, 1] 1775 // E1[3', 2'] 1776 // E2[3''] 1777 // And then we move instructions based on their stages to have: 1778 // E0[3] 1779 // E1[2, 3'] 1780 // E2[1, 2', 3''] 1781 // The transformation is legal because we only move instructions past 1782 // instructions of a previous loop iteration. 1783 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1784 Epilogs.push_back(peelKernel(LPD_Back)); 1785 MachineBasicBlock *B = Epilogs.back(); 1786 filterInstructions(B, Schedule.getNumStages() - I); 1787 // Keep track at which iteration each phi belongs to. We need it to know 1788 // what version of the variable to use during prologue/epilogue stitching. 1789 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1790 for (MachineInstr &Phi : B->phis()) 1791 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1792 } 1793 for (size_t I = 0; I < Epilogs.size(); I++) { 1794 LS.reset(); 1795 for (size_t J = I; J < Epilogs.size(); J++) { 1796 int Iteration = J; 1797 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1798 // Move stage one block at a time so that Phi nodes are updated correctly. 1799 for (size_t K = Iteration; K > I; K--) 1800 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1801 LS[Stage] = true; 1802 } 1803 LiveStages[Epilogs[I]] = LS; 1804 AvailableStages[Epilogs[I]] = AS; 1805 } 1806 1807 // Now we've defined all the prolog and epilog blocks as a fallthrough 1808 // sequence, add the edges that will be followed if the loop trip count is 1809 // lower than the number of stages (connecting prologs directly with epilogs). 1810 auto PI = Prologs.begin(); 1811 auto EI = Epilogs.begin(); 1812 assert(Prologs.size() == Epilogs.size()); 1813 for (; PI != Prologs.end(); ++PI, ++EI) { 1814 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1815 (*PI)->addSuccessor(*EI); 1816 for (MachineInstr &MI : (*EI)->phis()) { 1817 Register Reg = MI.getOperand(1).getReg(); 1818 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1819 if (Use && Use->getParent() == Pred) { 1820 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1821 if (CanonicalUse->isPHI()) { 1822 // If the use comes from a phi we need to skip as many phi as the 1823 // distance between the epilogue and the kernel. Trace through the phi 1824 // chain to find the right value. 1825 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1826 } 1827 Reg = getEquivalentRegisterIn(Reg, *PI); 1828 } 1829 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1830 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1831 } 1832 } 1833 1834 // Create a list of all blocks in order. 1835 SmallVector<MachineBasicBlock *, 8> Blocks; 1836 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1837 Blocks.push_back(BB); 1838 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1839 1840 // Iterate in reverse order over all instructions, remapping as we go. 1841 for (MachineBasicBlock *B : reverse(Blocks)) { 1842 for (auto I = B->instr_rbegin(); 1843 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1844 MachineBasicBlock::reverse_instr_iterator MI = I++; 1845 rewriteUsesOf(&*MI); 1846 } 1847 } 1848 for (auto *MI : IllegalPhisToDelete) { 1849 if (LIS) 1850 LIS->RemoveMachineInstrFromMaps(*MI); 1851 MI->eraseFromParent(); 1852 } 1853 IllegalPhisToDelete.clear(); 1854 1855 // Now all remapping has been done, we're free to optimize the generated code. 1856 for (MachineBasicBlock *B : reverse(Blocks)) 1857 EliminateDeadPhis(B, MRI, LIS); 1858 EliminateDeadPhis(ExitingBB, MRI, LIS); 1859 } 1860 1861 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1862 MachineFunction &MF = *BB->getParent(); 1863 MachineBasicBlock *Exit = *BB->succ_begin(); 1864 if (Exit == BB) 1865 Exit = *std::next(BB->succ_begin()); 1866 1867 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1868 MF.insert(std::next(BB->getIterator()), NewBB); 1869 1870 // Clone all phis in BB into NewBB and rewrite. 1871 for (MachineInstr &MI : BB->phis()) { 1872 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1873 Register OldR = MI.getOperand(3).getReg(); 1874 Register R = MRI.createVirtualRegister(RC); 1875 SmallVector<MachineInstr *, 4> Uses; 1876 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1877 if (Use.getParent() != BB) 1878 Uses.push_back(&Use); 1879 for (MachineInstr *Use : Uses) 1880 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1881 *MRI.getTargetRegisterInfo()); 1882 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1883 .addReg(OldR) 1884 .addMBB(BB); 1885 BlockMIs[{NewBB, &MI}] = NI; 1886 CanonicalMIs[NI] = &MI; 1887 } 1888 BB->replaceSuccessor(Exit, NewBB); 1889 Exit->replacePhiUsesWith(BB, NewBB); 1890 NewBB->addSuccessor(Exit); 1891 1892 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1893 SmallVector<MachineOperand, 4> Cond; 1894 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1895 (void)CanAnalyzeBr; 1896 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1897 TII->removeBranch(*BB); 1898 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1899 Cond, DebugLoc()); 1900 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1901 return NewBB; 1902 } 1903 1904 Register 1905 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1906 MachineBasicBlock *BB) { 1907 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1908 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1909 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1910 } 1911 1912 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1913 if (MI->isPHI()) { 1914 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1915 // and it is produced by this block. 1916 Register PhiR = MI->getOperand(0).getReg(); 1917 Register R = MI->getOperand(3).getReg(); 1918 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1919 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1920 R = MI->getOperand(1).getReg(); 1921 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1922 MRI.replaceRegWith(PhiR, R); 1923 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1924 // later to figure out how to remap registers. 1925 MI->getOperand(0).setReg(PhiR); 1926 IllegalPhisToDelete.push_back(MI); 1927 return; 1928 } 1929 1930 int Stage = getStage(MI); 1931 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1932 LiveStages[MI->getParent()].test(Stage)) 1933 // Instruction is live, no rewriting to do. 1934 return; 1935 1936 for (MachineOperand &DefMO : MI->defs()) { 1937 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1938 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1939 // Only PHIs can use values from this block by construction. 1940 // Match with the equivalent PHI in B. 1941 assert(UseMI.isPHI()); 1942 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1943 MI->getParent()); 1944 Subs.emplace_back(&UseMI, Reg); 1945 } 1946 for (auto &Sub : Subs) 1947 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1948 *MRI.getTargetRegisterInfo()); 1949 } 1950 if (LIS) 1951 LIS->RemoveMachineInstrFromMaps(*MI); 1952 MI->eraseFromParent(); 1953 } 1954 1955 void PeelingModuloScheduleExpander::fixupBranches() { 1956 // Work outwards from the kernel. 1957 bool KernelDisposed = false; 1958 int TC = Schedule.getNumStages() - 1; 1959 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1960 ++PI, ++EI, --TC) { 1961 MachineBasicBlock *Prolog = *PI; 1962 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1963 MachineBasicBlock *Epilog = *EI; 1964 SmallVector<MachineOperand, 4> Cond; 1965 TII->removeBranch(*Prolog); 1966 Optional<bool> StaticallyGreater = 1967 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1968 if (!StaticallyGreater) { 1969 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1970 // Dynamically branch based on Cond. 1971 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1972 } else if (*StaticallyGreater == false) { 1973 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1974 // Prolog never falls through; branch to epilog and orphan interior 1975 // blocks. Leave it to unreachable-block-elim to clean up. 1976 Prolog->removeSuccessor(Fallthrough); 1977 for (MachineInstr &P : Fallthrough->phis()) { 1978 P.removeOperand(2); 1979 P.removeOperand(1); 1980 } 1981 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1982 KernelDisposed = true; 1983 } else { 1984 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1985 // Prolog always falls through; remove incoming values in epilog. 1986 Prolog->removeSuccessor(Epilog); 1987 for (MachineInstr &P : Epilog->phis()) { 1988 P.removeOperand(4); 1989 P.removeOperand(3); 1990 } 1991 } 1992 } 1993 1994 if (!KernelDisposed) { 1995 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1996 LoopInfo->setPreheader(Prologs.back()); 1997 } else { 1998 LoopInfo->disposed(); 1999 } 2000 } 2001 2002 void PeelingModuloScheduleExpander::rewriteKernel() { 2003 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2004 KR.rewrite(); 2005 } 2006 2007 void PeelingModuloScheduleExpander::expand() { 2008 BB = Schedule.getLoop()->getTopBlock(); 2009 Preheader = Schedule.getLoop()->getLoopPreheader(); 2010 LLVM_DEBUG(Schedule.dump()); 2011 LoopInfo = TII->analyzeLoopForPipelining(BB); 2012 assert(LoopInfo); 2013 2014 rewriteKernel(); 2015 peelPrologAndEpilogs(); 2016 fixupBranches(); 2017 } 2018 2019 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 2020 BB = Schedule.getLoop()->getTopBlock(); 2021 Preheader = Schedule.getLoop()->getLoopPreheader(); 2022 2023 // Dump the schedule before we invalidate and remap all its instructions. 2024 // Stash it in a string so we can print it if we found an error. 2025 std::string ScheduleDump; 2026 raw_string_ostream OS(ScheduleDump); 2027 Schedule.print(OS); 2028 OS.flush(); 2029 2030 // First, run the normal ModuleScheduleExpander. We don't support any 2031 // InstrChanges. 2032 assert(LIS && "Requires LiveIntervals!"); 2033 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2034 ModuloScheduleExpander::InstrChangesTy()); 2035 MSE.expand(); 2036 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2037 if (!ExpandedKernel) { 2038 // The expander optimized away the kernel. We can't do any useful checking. 2039 MSE.cleanup(); 2040 return; 2041 } 2042 // Before running the KernelRewriter, re-add BB into the CFG. 2043 Preheader->addSuccessor(BB); 2044 2045 // Now run the new expansion algorithm. 2046 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2047 KR.rewrite(); 2048 peelPrologAndEpilogs(); 2049 2050 // Collect all illegal phis that the new algorithm created. We'll give these 2051 // to KernelOperandInfo. 2052 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2053 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2054 if (NI->isPHI()) 2055 IllegalPhis.insert(&*NI); 2056 } 2057 2058 // Co-iterate across both kernels. We expect them to be identical apart from 2059 // phis and full COPYs (we look through both). 2060 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2061 auto OI = ExpandedKernel->begin(); 2062 auto NI = BB->begin(); 2063 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2064 while (OI->isPHI() || OI->isFullCopy()) 2065 ++OI; 2066 while (NI->isPHI() || NI->isFullCopy()) 2067 ++NI; 2068 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2069 // Analyze every operand separately. 2070 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2071 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2072 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2073 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2074 } 2075 2076 bool Failed = false; 2077 for (auto &OldAndNew : KOIs) { 2078 if (OldAndNew.first == OldAndNew.second) 2079 continue; 2080 Failed = true; 2081 errs() << "Modulo kernel validation error: [\n"; 2082 errs() << " [golden] "; 2083 OldAndNew.first.print(errs()); 2084 errs() << " "; 2085 OldAndNew.second.print(errs()); 2086 errs() << "]\n"; 2087 } 2088 2089 if (Failed) { 2090 errs() << "Golden reference kernel:\n"; 2091 ExpandedKernel->print(errs()); 2092 errs() << "New kernel:\n"; 2093 BB->print(errs()); 2094 errs() << ScheduleDump; 2095 report_fatal_error( 2096 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2097 } 2098 2099 // Cleanup by removing BB from the CFG again as the original 2100 // ModuloScheduleExpander intended. 2101 Preheader->removeSuccessor(BB); 2102 MSE.cleanup(); 2103 } 2104 2105 //===----------------------------------------------------------------------===// 2106 // ModuloScheduleTestPass implementation 2107 //===----------------------------------------------------------------------===// 2108 // This pass constructs a ModuloSchedule from its module and runs 2109 // ModuloScheduleExpander. 2110 // 2111 // The module is expected to contain a single-block analyzable loop. 2112 // The total order of instructions is taken from the loop as-is. 2113 // Instructions are expected to be annotated with a PostInstrSymbol. 2114 // This PostInstrSymbol must have the following format: 2115 // "Stage=%d Cycle=%d". 2116 //===----------------------------------------------------------------------===// 2117 2118 namespace { 2119 class ModuloScheduleTest : public MachineFunctionPass { 2120 public: 2121 static char ID; 2122 2123 ModuloScheduleTest() : MachineFunctionPass(ID) { 2124 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2125 } 2126 2127 bool runOnMachineFunction(MachineFunction &MF) override; 2128 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2129 2130 void getAnalysisUsage(AnalysisUsage &AU) const override { 2131 AU.addRequired<MachineLoopInfo>(); 2132 AU.addRequired<LiveIntervals>(); 2133 MachineFunctionPass::getAnalysisUsage(AU); 2134 } 2135 }; 2136 } // namespace 2137 2138 char ModuloScheduleTest::ID = 0; 2139 2140 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2141 "Modulo Schedule test pass", false, false) 2142 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2143 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2144 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2145 "Modulo Schedule test pass", false, false) 2146 2147 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2148 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2149 for (auto *L : MLI) { 2150 if (L->getTopBlock() != L->getBottomBlock()) 2151 continue; 2152 runOnLoop(MF, *L); 2153 return false; 2154 } 2155 return false; 2156 } 2157 2158 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2159 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2160 std::pair<StringRef, StringRef> StageTokenAndValue = 2161 getToken(StageAndCycle.first, "-"); 2162 std::pair<StringRef, StringRef> CycleTokenAndValue = 2163 getToken(StageAndCycle.second, "-"); 2164 if (StageTokenAndValue.first != "Stage" || 2165 CycleTokenAndValue.first != "_Cycle") { 2166 llvm_unreachable( 2167 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2168 return; 2169 } 2170 2171 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2172 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2173 2174 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2175 } 2176 2177 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2178 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2179 MachineBasicBlock *BB = L.getTopBlock(); 2180 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2181 2182 DenseMap<MachineInstr *, int> Cycle, Stage; 2183 std::vector<MachineInstr *> Instrs; 2184 for (MachineInstr &MI : *BB) { 2185 if (MI.isTerminator()) 2186 continue; 2187 Instrs.push_back(&MI); 2188 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2189 dbgs() << "Parsing post-instr symbol for " << MI; 2190 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2191 } 2192 } 2193 2194 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2195 std::move(Stage)); 2196 ModuloScheduleExpander MSE( 2197 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2198 MSE.expand(); 2199 MSE.cleanup(); 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // ModuloScheduleTestAnnotater implementation 2204 //===----------------------------------------------------------------------===// 2205 2206 void ModuloScheduleTestAnnotater::annotate() { 2207 for (MachineInstr *MI : S.getInstructions()) { 2208 SmallVector<char, 16> SV; 2209 raw_svector_ostream OS(SV); 2210 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2211 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2212 MI->setPostInstrSymbol(MF, Sym); 2213 } 2214 } 2215