1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineLoopInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSchedule.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Format.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <iterator> 35 #include <tuple> 36 #include <utility> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "machine-trace-metrics" 41 42 char MachineTraceMetrics::ID = 0; 43 44 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 45 46 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, "Machine Trace Metrics", 47 false, true) 48 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 49 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 50 "Machine Trace Metrics", false, true) 51 52 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 53 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 54 } 55 56 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 57 AU.setPreservesAll(); 58 AU.addRequired<MachineLoopInfoWrapperPass>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 63 MF = &Func; 64 const TargetSubtargetInfo &ST = MF->getSubtarget(); 65 TII = ST.getInstrInfo(); 66 TRI = ST.getRegisterInfo(); 67 MRI = &MF->getRegInfo(); 68 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 69 SchedModel.init(&ST); 70 BlockInfo.resize(MF->getNumBlockIDs()); 71 ProcReleaseAtCycles.resize(MF->getNumBlockIDs() * 72 SchedModel.getNumProcResourceKinds()); 73 return false; 74 } 75 76 void MachineTraceMetrics::releaseMemory() { 77 MF = nullptr; 78 BlockInfo.clear(); 79 for (Ensemble *&E : Ensembles) { 80 delete E; 81 E = nullptr; 82 } 83 } 84 85 //===----------------------------------------------------------------------===// 86 // Fixed block information 87 //===----------------------------------------------------------------------===// 88 // 89 // The number of instructions in a basic block and the CPU resources used by 90 // those instructions don't depend on any given trace strategy. 91 92 /// Compute the resource usage in basic block MBB. 93 const MachineTraceMetrics::FixedBlockInfo* 94 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 95 assert(MBB && "No basic block"); 96 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 97 if (FBI->hasResources()) 98 return FBI; 99 100 // Compute resource usage in the block. 101 FBI->HasCalls = false; 102 unsigned InstrCount = 0; 103 104 // Add up per-processor resource cycles as well. 105 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 106 SmallVector<unsigned, 32> PRCycles(PRKinds); 107 108 for (const auto &MI : *MBB) { 109 if (MI.isTransient()) 110 continue; 111 ++InstrCount; 112 if (MI.isCall()) 113 FBI->HasCalls = true; 114 115 // Count processor resources used. 116 if (!SchedModel.hasInstrSchedModel()) 117 continue; 118 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 119 if (!SC->isValid()) 120 continue; 121 122 for (TargetSchedModel::ProcResIter 123 PI = SchedModel.getWriteProcResBegin(SC), 124 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 125 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 126 PRCycles[PI->ProcResourceIdx] += PI->ReleaseAtCycle; 127 } 128 } 129 FBI->InstrCount = InstrCount; 130 131 // Scale the resource cycles so they are comparable. 132 unsigned PROffset = MBB->getNumber() * PRKinds; 133 for (unsigned K = 0; K != PRKinds; ++K) 134 ProcReleaseAtCycles[PROffset + K] = 135 PRCycles[K] * SchedModel.getResourceFactor(K); 136 137 return FBI; 138 } 139 140 ArrayRef<unsigned> 141 MachineTraceMetrics::getProcReleaseAtCycles(unsigned MBBNum) const { 142 assert(BlockInfo[MBBNum].hasResources() && 143 "getResources() must be called before getProcReleaseAtCycles()"); 144 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 145 assert((MBBNum+1) * PRKinds <= ProcReleaseAtCycles.size()); 146 return ArrayRef(ProcReleaseAtCycles.data() + MBBNum * PRKinds, PRKinds); 147 } 148 149 //===----------------------------------------------------------------------===// 150 // Ensemble utility functions 151 //===----------------------------------------------------------------------===// 152 153 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 154 : MTM(*ct) { 155 BlockInfo.resize(MTM.BlockInfo.size()); 156 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 157 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 158 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 159 } 160 161 // Virtual destructor serves as an anchor. 162 MachineTraceMetrics::Ensemble::~Ensemble() = default; 163 164 const MachineLoop* 165 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 166 return MTM.Loops->getLoopFor(MBB); 167 } 168 169 // Update resource-related information in the TraceBlockInfo for MBB. 170 // Only update resources related to the trace above MBB. 171 void MachineTraceMetrics::Ensemble:: 172 computeDepthResources(const MachineBasicBlock *MBB) { 173 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 174 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 175 unsigned PROffset = MBB->getNumber() * PRKinds; 176 177 // Compute resources from trace above. The top block is simple. 178 if (!TBI->Pred) { 179 TBI->InstrDepth = 0; 180 TBI->Head = MBB->getNumber(); 181 std::fill(ProcResourceDepths.begin() + PROffset, 182 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 183 return; 184 } 185 186 // Compute from the block above. A post-order traversal ensures the 187 // predecessor is always computed first. 188 unsigned PredNum = TBI->Pred->getNumber(); 189 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 190 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 191 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 192 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 193 TBI->Head = PredTBI->Head; 194 195 // Compute per-resource depths. 196 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 197 ArrayRef<unsigned> PredPRCycles = MTM.getProcReleaseAtCycles(PredNum); 198 for (unsigned K = 0; K != PRKinds; ++K) 199 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 200 } 201 202 // Update resource-related information in the TraceBlockInfo for MBB. 203 // Only update resources related to the trace below MBB. 204 void MachineTraceMetrics::Ensemble:: 205 computeHeightResources(const MachineBasicBlock *MBB) { 206 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 207 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 208 unsigned PROffset = MBB->getNumber() * PRKinds; 209 210 // Compute resources for the current block. 211 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 212 ArrayRef<unsigned> PRCycles = MTM.getProcReleaseAtCycles(MBB->getNumber()); 213 214 // The trace tail is done. 215 if (!TBI->Succ) { 216 TBI->Tail = MBB->getNumber(); 217 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 218 return; 219 } 220 221 // Compute from the block below. A post-order traversal ensures the 222 // predecessor is always computed first. 223 unsigned SuccNum = TBI->Succ->getNumber(); 224 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 225 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 226 TBI->InstrHeight += SuccTBI->InstrHeight; 227 TBI->Tail = SuccTBI->Tail; 228 229 // Compute per-resource heights. 230 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 231 for (unsigned K = 0; K != PRKinds; ++K) 232 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 233 } 234 235 // Check if depth resources for MBB are valid and return the TBI. 236 // Return NULL if the resources have been invalidated. 237 const MachineTraceMetrics::TraceBlockInfo* 238 MachineTraceMetrics::Ensemble:: 239 getDepthResources(const MachineBasicBlock *MBB) const { 240 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 241 return TBI->hasValidDepth() ? TBI : nullptr; 242 } 243 244 // Check if height resources for MBB are valid and return the TBI. 245 // Return NULL if the resources have been invalidated. 246 const MachineTraceMetrics::TraceBlockInfo* 247 MachineTraceMetrics::Ensemble:: 248 getHeightResources(const MachineBasicBlock *MBB) const { 249 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 250 return TBI->hasValidHeight() ? TBI : nullptr; 251 } 252 253 /// Get an array of processor resource depths for MBB. Indexed by processor 254 /// resource kind, this array contains the scaled processor resources consumed 255 /// by all blocks preceding MBB in its trace. It does not include instructions 256 /// in MBB. 257 /// 258 /// Compare TraceBlockInfo::InstrDepth. 259 ArrayRef<unsigned> 260 MachineTraceMetrics::Ensemble:: 261 getProcResourceDepths(unsigned MBBNum) const { 262 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 263 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 264 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 265 } 266 267 /// Get an array of processor resource heights for MBB. Indexed by processor 268 /// resource kind, this array contains the scaled processor resources consumed 269 /// by this block and all blocks following it in its trace. 270 /// 271 /// Compare TraceBlockInfo::InstrHeight. 272 ArrayRef<unsigned> 273 MachineTraceMetrics::Ensemble:: 274 getProcResourceHeights(unsigned MBBNum) const { 275 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 276 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 277 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 278 } 279 280 //===----------------------------------------------------------------------===// 281 // Trace Selection Strategies 282 //===----------------------------------------------------------------------===// 283 // 284 // A trace selection strategy is implemented as a sub-class of Ensemble. The 285 // trace through a block B is computed by two DFS traversals of the CFG 286 // starting from B. One upwards, and one downwards. During the upwards DFS, 287 // pickTracePred() is called on the post-ordered blocks. During the downwards 288 // DFS, pickTraceSucc() is called in a post-order. 289 // 290 291 // We never allow traces that leave loops, but we do allow traces to enter 292 // nested loops. We also never allow traces to contain back-edges. 293 // 294 // This means that a loop header can never appear above the center block of a 295 // trace, except as the trace head. Below the center block, loop exiting edges 296 // are banned. 297 // 298 // Return true if an edge from the From loop to the To loop is leaving a loop. 299 // Either of To and From can be null. 300 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 301 return From && !From->contains(To); 302 } 303 304 // MinInstrCountEnsemble - Pick the trace that executes the least number of 305 // instructions. 306 namespace { 307 308 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 309 const char *getName() const override { return "MinInstr"; } 310 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 311 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 312 313 public: 314 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 315 : MachineTraceMetrics::Ensemble(mtm) {} 316 }; 317 318 /// Pick only the current basic block for the trace and do not choose any 319 /// predecessors/successors. 320 class LocalEnsemble : public MachineTraceMetrics::Ensemble { 321 const char *getName() const override { return "Local"; } 322 const MachineBasicBlock *pickTracePred(const MachineBasicBlock *) override { 323 return nullptr; 324 }; 325 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock *) override { 326 return nullptr; 327 }; 328 329 public: 330 LocalEnsemble(MachineTraceMetrics *MTM) 331 : MachineTraceMetrics::Ensemble(MTM) {} 332 }; 333 } // end anonymous namespace 334 335 // Select the preferred predecessor for MBB. 336 const MachineBasicBlock* 337 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 338 if (MBB->pred_empty()) 339 return nullptr; 340 const MachineLoop *CurLoop = getLoopFor(MBB); 341 // Don't leave loops, and never follow back-edges. 342 if (CurLoop && MBB == CurLoop->getHeader()) 343 return nullptr; 344 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 345 const MachineBasicBlock *Best = nullptr; 346 unsigned BestDepth = 0; 347 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 348 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 349 getDepthResources(Pred); 350 // Ignore cycles that aren't natural loops. 351 if (!PredTBI) 352 continue; 353 // Pick the predecessor that would give this block the smallest InstrDepth. 354 unsigned Depth = PredTBI->InstrDepth + CurCount; 355 if (!Best || Depth < BestDepth) { 356 Best = Pred; 357 BestDepth = Depth; 358 } 359 } 360 return Best; 361 } 362 363 // Select the preferred successor for MBB. 364 const MachineBasicBlock* 365 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 366 if (MBB->succ_empty()) 367 return nullptr; 368 const MachineLoop *CurLoop = getLoopFor(MBB); 369 const MachineBasicBlock *Best = nullptr; 370 unsigned BestHeight = 0; 371 for (const MachineBasicBlock *Succ : MBB->successors()) { 372 // Don't consider back-edges. 373 if (CurLoop && Succ == CurLoop->getHeader()) 374 continue; 375 // Don't consider successors exiting CurLoop. 376 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 377 continue; 378 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 379 getHeightResources(Succ); 380 // Ignore cycles that aren't natural loops. 381 if (!SuccTBI) 382 continue; 383 // Pick the successor that would give this block the smallest InstrHeight. 384 unsigned Height = SuccTBI->InstrHeight; 385 if (!Best || Height < BestHeight) { 386 Best = Succ; 387 BestHeight = Height; 388 } 389 } 390 return Best; 391 } 392 393 // Get an Ensemble sub-class for the requested trace strategy. 394 MachineTraceMetrics::Ensemble * 395 MachineTraceMetrics::getEnsemble(MachineTraceStrategy strategy) { 396 assert(strategy < MachineTraceStrategy::TS_NumStrategies && 397 "Invalid trace strategy enum"); 398 Ensemble *&E = Ensembles[static_cast<size_t>(strategy)]; 399 if (E) 400 return E; 401 402 // Allocate new Ensemble on demand. 403 switch (strategy) { 404 case MachineTraceStrategy::TS_MinInstrCount: 405 return (E = new MinInstrCountEnsemble(this)); 406 case MachineTraceStrategy::TS_Local: 407 return (E = new LocalEnsemble(this)); 408 default: llvm_unreachable("Invalid trace strategy enum"); 409 } 410 } 411 412 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 413 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 414 << '\n'); 415 BlockInfo[MBB->getNumber()].invalidate(); 416 for (Ensemble *E : Ensembles) 417 if (E) 418 E->invalidate(MBB); 419 } 420 421 void MachineTraceMetrics::verifyAnalysis() const { 422 if (!MF) 423 return; 424 #ifndef NDEBUG 425 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 426 for (Ensemble *E : Ensembles) 427 if (E) 428 E->verify(); 429 #endif 430 } 431 432 //===----------------------------------------------------------------------===// 433 // Trace building 434 //===----------------------------------------------------------------------===// 435 // 436 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 437 // set abstraction that confines the search to the current loop, and doesn't 438 // revisit blocks. 439 440 namespace { 441 442 struct LoopBounds { 443 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 444 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 445 const MachineLoopInfo *Loops; 446 bool Downward = false; 447 448 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 449 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 450 }; 451 452 } // end anonymous namespace 453 454 // Specialize po_iterator_storage in order to prune the post-order traversal so 455 // it is limited to the current loop and doesn't traverse the loop back edges. 456 namespace llvm { 457 458 template<> 459 class po_iterator_storage<LoopBounds, true> { 460 LoopBounds &LB; 461 462 public: 463 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 464 465 void finishPostorder(const MachineBasicBlock*) {} 466 467 bool insertEdge(std::optional<const MachineBasicBlock *> From, 468 const MachineBasicBlock *To) { 469 // Skip already visited To blocks. 470 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 471 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 472 return false; 473 // From is null once when To is the trace center block. 474 if (From) { 475 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 476 // Don't follow backedges, don't leave FromLoop when going upwards. 477 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 478 return false; 479 // Don't leave FromLoop. 480 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 481 return false; 482 } 483 } 484 // To is a new block. Mark the block as visited in case the CFG has cycles 485 // that MachineLoopInfo didn't recognize as a natural loop. 486 return LB.Visited.insert(To).second; 487 } 488 }; 489 490 } // end namespace llvm 491 492 /// Compute the trace through MBB. 493 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 494 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 495 << printMBBReference(*MBB) << '\n'); 496 // Set up loop bounds for the backwards post-order traversal. 497 LoopBounds Bounds(BlockInfo, MTM.Loops); 498 499 // Run an upwards post-order search for the trace start. 500 Bounds.Downward = false; 501 Bounds.Visited.clear(); 502 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 503 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 504 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 505 // All the predecessors have been visited, pick the preferred one. 506 TBI.Pred = pickTracePred(I); 507 LLVM_DEBUG({ 508 if (TBI.Pred) 509 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 510 else 511 dbgs() << "null\n"; 512 }); 513 // The trace leading to I is now known, compute the depth resources. 514 computeDepthResources(I); 515 } 516 517 // Run a downwards post-order search for the trace end. 518 Bounds.Downward = true; 519 Bounds.Visited.clear(); 520 for (const auto *I : post_order_ext(MBB, Bounds)) { 521 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 522 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 523 // All the successors have been visited, pick the preferred one. 524 TBI.Succ = pickTraceSucc(I); 525 LLVM_DEBUG({ 526 if (TBI.Succ) 527 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 528 else 529 dbgs() << "null\n"; 530 }); 531 // The trace leaving I is now known, compute the height resources. 532 computeHeightResources(I); 533 } 534 } 535 536 /// Invalidate traces through BadMBB. 537 void 538 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 539 SmallVector<const MachineBasicBlock*, 16> WorkList; 540 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 541 542 // Invalidate height resources of blocks above MBB. 543 if (BadTBI.hasValidHeight()) { 544 BadTBI.invalidateHeight(); 545 WorkList.push_back(BadMBB); 546 do { 547 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 548 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 549 << getName() << " height.\n"); 550 // Find any MBB predecessors that have MBB as their preferred successor. 551 // They are the only ones that need to be invalidated. 552 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 553 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 554 if (!TBI.hasValidHeight()) 555 continue; 556 if (TBI.Succ == MBB) { 557 TBI.invalidateHeight(); 558 WorkList.push_back(Pred); 559 continue; 560 } 561 // Verify that TBI.Succ is actually a *I successor. 562 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 563 } 564 } while (!WorkList.empty()); 565 } 566 567 // Invalidate depth resources of blocks below MBB. 568 if (BadTBI.hasValidDepth()) { 569 BadTBI.invalidateDepth(); 570 WorkList.push_back(BadMBB); 571 do { 572 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 573 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 574 << getName() << " depth.\n"); 575 // Find any MBB successors that have MBB as their preferred predecessor. 576 // They are the only ones that need to be invalidated. 577 for (const MachineBasicBlock *Succ : MBB->successors()) { 578 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 579 if (!TBI.hasValidDepth()) 580 continue; 581 if (TBI.Pred == MBB) { 582 TBI.invalidateDepth(); 583 WorkList.push_back(Succ); 584 continue; 585 } 586 // Verify that TBI.Pred is actually a *I predecessor. 587 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 588 } 589 } while (!WorkList.empty()); 590 } 591 592 // Clear any per-instruction data. We only have to do this for BadMBB itself 593 // because the instructions in that block may change. Other blocks may be 594 // invalidated, but their instructions will stay the same, so there is no 595 // need to erase the Cycle entries. They will be overwritten when we 596 // recompute. 597 for (const auto &I : *BadMBB) 598 Cycles.erase(&I); 599 } 600 601 void MachineTraceMetrics::Ensemble::verify() const { 602 #ifndef NDEBUG 603 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 604 "Outdated BlockInfo size"); 605 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 606 const TraceBlockInfo &TBI = BlockInfo[Num]; 607 if (TBI.hasValidDepth() && TBI.Pred) { 608 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 609 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 610 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 611 "Trace is broken, depth should have been invalidated."); 612 const MachineLoop *Loop = getLoopFor(MBB); 613 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 614 } 615 if (TBI.hasValidHeight() && TBI.Succ) { 616 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 617 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 618 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 619 "Trace is broken, height should have been invalidated."); 620 const MachineLoop *Loop = getLoopFor(MBB); 621 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 622 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 623 "Trace contains backedge"); 624 } 625 } 626 #endif 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Data Dependencies 631 //===----------------------------------------------------------------------===// 632 // 633 // Compute the depth and height of each instruction based on data dependencies 634 // and instruction latencies. These cycle numbers assume that the CPU can issue 635 // an infinite number of instructions per cycle as long as their dependencies 636 // are ready. 637 638 // A data dependency is represented as a defining MI and operand numbers on the 639 // defining and using MI. 640 namespace { 641 642 struct DataDep { 643 const MachineInstr *DefMI; 644 unsigned DefOp; 645 unsigned UseOp; 646 647 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 648 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 649 650 /// Create a DataDep from an SSA form virtual register. 651 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 652 : UseOp(UseOp) { 653 assert(Register::isVirtualRegister(VirtReg)); 654 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 655 assert(!DefI.atEnd() && "Register has no defs"); 656 DefMI = DefI->getParent(); 657 DefOp = DefI.getOperandNo(); 658 assert((++DefI).atEnd() && "Register has multiple defs"); 659 } 660 }; 661 662 } // end anonymous namespace 663 664 // Get the input data dependencies that must be ready before UseMI can issue. 665 // Return true if UseMI has any physreg operands. 666 static bool getDataDeps(const MachineInstr &UseMI, 667 SmallVectorImpl<DataDep> &Deps, 668 const MachineRegisterInfo *MRI) { 669 // Debug values should not be included in any calculations. 670 if (UseMI.isDebugInstr()) 671 return false; 672 673 bool HasPhysRegs = false; 674 for (const MachineOperand &MO : UseMI.operands()) { 675 if (!MO.isReg()) 676 continue; 677 Register Reg = MO.getReg(); 678 if (!Reg) 679 continue; 680 if (Reg.isPhysical()) { 681 HasPhysRegs = true; 682 continue; 683 } 684 // Collect virtual register reads. 685 if (MO.readsReg()) 686 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 687 } 688 return HasPhysRegs; 689 } 690 691 // Get the input data dependencies of a PHI instruction, using Pred as the 692 // preferred predecessor. 693 // This will add at most one dependency to Deps. 694 static void getPHIDeps(const MachineInstr &UseMI, 695 SmallVectorImpl<DataDep> &Deps, 696 const MachineBasicBlock *Pred, 697 const MachineRegisterInfo *MRI) { 698 // No predecessor at the beginning of a trace. Ignore dependencies. 699 if (!Pred) 700 return; 701 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 702 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 703 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 704 Register Reg = UseMI.getOperand(i).getReg(); 705 Deps.push_back(DataDep(MRI, Reg, i)); 706 return; 707 } 708 } 709 } 710 711 // Identify physreg dependencies for UseMI, and update the live regunit 712 // tracking set when scanning instructions downwards. 713 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 714 SmallVectorImpl<DataDep> &Deps, 715 SparseSet<LiveRegUnit> &RegUnits, 716 const TargetRegisterInfo *TRI) { 717 SmallVector<MCRegister, 8> Kills; 718 SmallVector<unsigned, 8> LiveDefOps; 719 720 for (const MachineOperand &MO : UseMI->operands()) { 721 if (!MO.isReg() || !MO.getReg().isPhysical()) 722 continue; 723 MCRegister Reg = MO.getReg().asMCReg(); 724 // Track live defs and kills for updating RegUnits. 725 if (MO.isDef()) { 726 if (MO.isDead()) 727 Kills.push_back(Reg); 728 else 729 LiveDefOps.push_back(MO.getOperandNo()); 730 } else if (MO.isKill()) 731 Kills.push_back(Reg); 732 // Identify dependencies. 733 if (!MO.readsReg()) 734 continue; 735 for (MCRegUnit Unit : TRI->regunits(Reg)) { 736 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 737 if (I == RegUnits.end()) 738 continue; 739 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 740 break; 741 } 742 } 743 744 // Update RegUnits to reflect live registers after UseMI. 745 // First kills. 746 for (MCRegister Kill : Kills) 747 for (MCRegUnit Unit : TRI->regunits(Kill)) 748 RegUnits.erase(Unit); 749 750 // Second, live defs. 751 for (unsigned DefOp : LiveDefOps) { 752 for (MCRegUnit Unit : 753 TRI->regunits(UseMI->getOperand(DefOp).getReg().asMCReg())) { 754 LiveRegUnit &LRU = RegUnits[Unit]; 755 LRU.MI = UseMI; 756 LRU.Op = DefOp; 757 } 758 } 759 } 760 761 /// The length of the critical path through a trace is the maximum of two path 762 /// lengths: 763 /// 764 /// 1. The maximum height+depth over all instructions in the trace center block. 765 /// 766 /// 2. The longest cross-block dependency chain. For small blocks, it is 767 /// possible that the critical path through the trace doesn't include any 768 /// instructions in the block. 769 /// 770 /// This function computes the second number from the live-in list of the 771 /// center block. 772 unsigned MachineTraceMetrics::Ensemble:: 773 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 774 assert(TBI.HasValidInstrDepths && "Missing depth info"); 775 assert(TBI.HasValidInstrHeights && "Missing height info"); 776 unsigned MaxLen = 0; 777 for (const LiveInReg &LIR : TBI.LiveIns) { 778 if (!LIR.Reg.isVirtual()) 779 continue; 780 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 781 // Ignore dependencies outside the current trace. 782 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 783 if (!DefTBI.isUsefulDominator(TBI)) 784 continue; 785 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 786 MaxLen = std::max(MaxLen, Len); 787 } 788 return MaxLen; 789 } 790 791 void MachineTraceMetrics::Ensemble:: 792 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 793 SparseSet<LiveRegUnit> &RegUnits) { 794 SmallVector<DataDep, 8> Deps; 795 // Collect all data dependencies. 796 if (UseMI.isPHI()) 797 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 798 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 799 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 800 801 // Filter and process dependencies, computing the earliest issue cycle. 802 unsigned Cycle = 0; 803 for (const DataDep &Dep : Deps) { 804 const TraceBlockInfo&DepTBI = 805 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 806 // Ignore dependencies from outside the current trace. 807 if (!DepTBI.isUsefulDominator(TBI)) 808 continue; 809 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 810 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 811 // Add latency if DefMI is a real instruction. Transients get latency 0. 812 if (!Dep.DefMI->isTransient()) 813 DepCycle += MTM.SchedModel 814 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 815 Cycle = std::max(Cycle, DepCycle); 816 } 817 // Remember the instruction depth. 818 InstrCycles &MICycles = Cycles[&UseMI]; 819 MICycles.Depth = Cycle; 820 821 if (TBI.HasValidInstrHeights) { 822 // Update critical path length. 823 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 824 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 825 } else { 826 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 827 } 828 } 829 830 void MachineTraceMetrics::Ensemble:: 831 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 832 SparseSet<LiveRegUnit> &RegUnits) { 833 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 834 } 835 836 void MachineTraceMetrics::Ensemble:: 837 updateDepths(MachineBasicBlock::iterator Start, 838 MachineBasicBlock::iterator End, 839 SparseSet<LiveRegUnit> &RegUnits) { 840 for (; Start != End; Start++) 841 updateDepth(Start->getParent(), *Start, RegUnits); 842 } 843 844 /// Compute instruction depths for all instructions above or in MBB in its 845 /// trace. This assumes that the trace through MBB has already been computed. 846 void MachineTraceMetrics::Ensemble:: 847 computeInstrDepths(const MachineBasicBlock *MBB) { 848 // The top of the trace may already be computed, and HasValidInstrDepths 849 // implies Head->HasValidInstrDepths, so we only need to start from the first 850 // block in the trace that needs to be recomputed. 851 SmallVector<const MachineBasicBlock*, 8> Stack; 852 do { 853 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 854 assert(TBI.hasValidDepth() && "Incomplete trace"); 855 if (TBI.HasValidInstrDepths) 856 break; 857 Stack.push_back(MBB); 858 MBB = TBI.Pred; 859 } while (MBB); 860 861 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 862 // in the trace. We should track any live-out physregs that were defined in 863 // the trace. This is quite rare in SSA form, typically created by CSE 864 // hoisting a compare. 865 SparseSet<LiveRegUnit> RegUnits; 866 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 867 868 // Go through trace blocks in top-down order, stopping after the center block. 869 while (!Stack.empty()) { 870 MBB = Stack.pop_back_val(); 871 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 872 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 873 TBI.HasValidInstrDepths = true; 874 TBI.CriticalPath = 0; 875 876 // Print out resource depths here as well. 877 LLVM_DEBUG({ 878 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 879 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 880 for (unsigned K = 0; K != PRDepths.size(); ++K) 881 if (PRDepths[K]) { 882 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 883 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 884 << MTM.SchedModel.getProcResource(K)->Name << " (" 885 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 886 } 887 }); 888 889 // Also compute the critical path length through MBB when possible. 890 if (TBI.HasValidInstrHeights) 891 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 892 893 for (const auto &UseMI : *MBB) { 894 updateDepth(TBI, UseMI, RegUnits); 895 } 896 } 897 } 898 899 // Identify physreg dependencies for MI when scanning instructions upwards. 900 // Return the issue height of MI after considering any live regunits. 901 // Height is the issue height computed from virtual register dependencies alone. 902 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 903 SparseSet<LiveRegUnit> &RegUnits, 904 const TargetSchedModel &SchedModel, 905 const TargetInstrInfo *TII, 906 const TargetRegisterInfo *TRI) { 907 SmallVector<unsigned, 8> ReadOps; 908 909 for (const MachineOperand &MO : MI.operands()) { 910 if (!MO.isReg()) 911 continue; 912 Register Reg = MO.getReg(); 913 if (!Reg.isPhysical()) 914 continue; 915 if (MO.readsReg()) 916 ReadOps.push_back(MO.getOperandNo()); 917 if (!MO.isDef()) 918 continue; 919 // This is a def of Reg. Remove corresponding entries from RegUnits, and 920 // update MI Height to consider the physreg dependencies. 921 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 922 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 923 if (I == RegUnits.end()) 924 continue; 925 unsigned DepHeight = I->Cycle; 926 if (!MI.isTransient()) { 927 // We may not know the UseMI of this dependency, if it came from the 928 // live-in list. SchedModel can handle a NULL UseMI. 929 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 930 I->MI, I->Op); 931 } 932 Height = std::max(Height, DepHeight); 933 // This regunit is dead above MI. 934 RegUnits.erase(I); 935 } 936 } 937 938 // Now we know the height of MI. Update any regunits read. 939 for (unsigned Op : ReadOps) { 940 MCRegister Reg = MI.getOperand(Op).getReg().asMCReg(); 941 for (MCRegUnit Unit : TRI->regunits(Reg)) { 942 LiveRegUnit &LRU = RegUnits[Unit]; 943 // Set the height to the highest reader of the unit. 944 if (LRU.Cycle <= Height && LRU.MI != &MI) { 945 LRU.Cycle = Height; 946 LRU.MI = &MI; 947 LRU.Op = Op; 948 } 949 } 950 } 951 952 return Height; 953 } 954 955 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 956 957 // Push the height of DefMI upwards if required to match UseMI. 958 // Return true if this is the first time DefMI was seen. 959 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 960 unsigned UseHeight, MIHeightMap &Heights, 961 const TargetSchedModel &SchedModel, 962 const TargetInstrInfo *TII) { 963 // Adjust height by Dep.DefMI latency. 964 if (!Dep.DefMI->isTransient()) 965 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 966 Dep.UseOp); 967 968 // Update Heights[DefMI] to be the maximum height seen. 969 MIHeightMap::iterator I; 970 bool New; 971 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 972 if (New) 973 return true; 974 975 // DefMI has been pushed before. Give it the max height. 976 if (I->second < UseHeight) 977 I->second = UseHeight; 978 return false; 979 } 980 981 /// Assuming that the virtual register defined by DefMI:DefOp was used by 982 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 983 /// when reaching the block that contains DefMI. 984 void MachineTraceMetrics::Ensemble:: 985 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 986 ArrayRef<const MachineBasicBlock*> Trace) { 987 assert(!Trace.empty() && "Trace should contain at least one block"); 988 Register Reg = DefMI->getOperand(DefOp).getReg(); 989 assert(Reg.isVirtual()); 990 const MachineBasicBlock *DefMBB = DefMI->getParent(); 991 992 // Reg is live-in to all blocks in Trace that follow DefMBB. 993 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 994 if (MBB == DefMBB) 995 return; 996 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 997 // Just add the register. The height will be updated later. 998 TBI.LiveIns.push_back(Reg); 999 } 1000 } 1001 1002 /// Compute instruction heights in the trace through MBB. This updates MBB and 1003 /// the blocks below it in the trace. It is assumed that the trace has already 1004 /// been computed. 1005 void MachineTraceMetrics::Ensemble:: 1006 computeInstrHeights(const MachineBasicBlock *MBB) { 1007 // The bottom of the trace may already be computed. 1008 // Find the blocks that need updating. 1009 SmallVector<const MachineBasicBlock*, 8> Stack; 1010 do { 1011 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1012 assert(TBI.hasValidHeight() && "Incomplete trace"); 1013 if (TBI.HasValidInstrHeights) 1014 break; 1015 Stack.push_back(MBB); 1016 TBI.LiveIns.clear(); 1017 MBB = TBI.Succ; 1018 } while (MBB); 1019 1020 // As we move upwards in the trace, keep track of instructions that are 1021 // required by deeper trace instructions. Map MI -> height required so far. 1022 MIHeightMap Heights; 1023 1024 // For physregs, the def isn't known when we see the use. 1025 // Instead, keep track of the highest use of each regunit. 1026 SparseSet<LiveRegUnit> RegUnits; 1027 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1028 1029 // If the bottom of the trace was already precomputed, initialize heights 1030 // from its live-in list. 1031 // MBB is the highest precomputed block in the trace. 1032 if (MBB) { 1033 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1034 for (LiveInReg &LI : TBI.LiveIns) { 1035 if (LI.Reg.isVirtual()) { 1036 // For virtual registers, the def latency is included. 1037 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1038 if (Height < LI.Height) 1039 Height = LI.Height; 1040 } else { 1041 // For register units, the def latency is not included because we don't 1042 // know the def yet. 1043 RegUnits[LI.Reg].Cycle = LI.Height; 1044 } 1045 } 1046 } 1047 1048 // Go through the trace blocks in bottom-up order. 1049 SmallVector<DataDep, 8> Deps; 1050 for (;!Stack.empty(); Stack.pop_back()) { 1051 MBB = Stack.back(); 1052 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1053 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1054 TBI.HasValidInstrHeights = true; 1055 TBI.CriticalPath = 0; 1056 1057 LLVM_DEBUG({ 1058 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1059 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1060 for (unsigned K = 0; K != PRHeights.size(); ++K) 1061 if (PRHeights[K]) { 1062 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1063 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1064 << MTM.SchedModel.getProcResource(K)->Name << " (" 1065 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1066 } 1067 }); 1068 1069 // Get dependencies from PHIs in the trace successor. 1070 const MachineBasicBlock *Succ = TBI.Succ; 1071 // If MBB is the last block in the trace, and it has a back-edge to the 1072 // loop header, get loop-carried dependencies from PHIs in the header. For 1073 // that purpose, pretend that all the loop header PHIs have height 0. 1074 if (!Succ) 1075 if (const MachineLoop *Loop = getLoopFor(MBB)) 1076 if (MBB->isSuccessor(Loop->getHeader())) 1077 Succ = Loop->getHeader(); 1078 1079 if (Succ) { 1080 for (const auto &PHI : *Succ) { 1081 if (!PHI.isPHI()) 1082 break; 1083 Deps.clear(); 1084 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1085 if (!Deps.empty()) { 1086 // Loop header PHI heights are all 0. 1087 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1088 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1089 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1090 MTM.TII)) 1091 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1092 } 1093 } 1094 } 1095 1096 // Go through the block backwards. 1097 for (const MachineInstr &MI : reverse(*MBB)) { 1098 // Find the MI height as determined by virtual register uses in the 1099 // trace below. 1100 unsigned Cycle = 0; 1101 MIHeightMap::iterator HeightI = Heights.find(&MI); 1102 if (HeightI != Heights.end()) { 1103 Cycle = HeightI->second; 1104 // We won't be seeing any more MI uses. 1105 Heights.erase(HeightI); 1106 } 1107 1108 // Don't process PHI deps. They depend on the specific predecessor, and 1109 // we'll get them when visiting the predecessor. 1110 Deps.clear(); 1111 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1112 1113 // There may also be regunit dependencies to include in the height. 1114 if (HasPhysRegs) 1115 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1116 MTM.TII, MTM.TRI); 1117 1118 // Update the required height of any virtual registers read by MI. 1119 for (const DataDep &Dep : Deps) 1120 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1121 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1122 1123 InstrCycles &MICycles = Cycles[&MI]; 1124 MICycles.Height = Cycle; 1125 if (!TBI.HasValidInstrDepths) { 1126 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1127 continue; 1128 } 1129 // Update critical path length. 1130 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1131 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1132 } 1133 1134 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1135 // height because the final height isn't known until now. 1136 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1137 for (LiveInReg &LIR : TBI.LiveIns) { 1138 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1139 LIR.Height = Heights.lookup(DefMI); 1140 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1141 } 1142 1143 // Transfer the live regunits to the live-in list. 1144 for (const LiveRegUnit &RU : RegUnits) { 1145 TBI.LiveIns.push_back(LiveInReg(RU.RegUnit, RU.Cycle)); 1146 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RU.RegUnit, MTM.TRI) << '@' 1147 << RU.Cycle); 1148 } 1149 LLVM_DEBUG(dbgs() << '\n'); 1150 1151 if (!TBI.HasValidInstrDepths) 1152 continue; 1153 // Add live-ins to the critical path length. 1154 TBI.CriticalPath = std::max(TBI.CriticalPath, 1155 computeCrossBlockCriticalPath(TBI)); 1156 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1157 } 1158 } 1159 1160 MachineTraceMetrics::Trace 1161 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1162 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1163 1164 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1165 computeTrace(MBB); 1166 if (!TBI.HasValidInstrDepths) 1167 computeInstrDepths(MBB); 1168 if (!TBI.HasValidInstrHeights) 1169 computeInstrHeights(MBB); 1170 1171 return Trace(*this, TBI); 1172 } 1173 1174 unsigned 1175 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1176 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1177 "MI must be in the trace center block"); 1178 InstrCycles Cyc = getInstrCycles(MI); 1179 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1180 } 1181 1182 unsigned 1183 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1184 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1185 SmallVector<DataDep, 1> Deps; 1186 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1187 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1188 DataDep &Dep = Deps.front(); 1189 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1190 // Add latency if DefMI is a real instruction. Transients get latency 0. 1191 if (!Dep.DefMI->isTransient()) 1192 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1193 &PHI, Dep.UseOp); 1194 return DepCycle; 1195 } 1196 1197 /// When bottom is set include instructions in current block in estimate. 1198 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1199 // Find the limiting processor resource. 1200 // Numbers have been pre-scaled to be comparable. 1201 unsigned PRMax = 0; 1202 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1203 if (Bottom) { 1204 ArrayRef<unsigned> PRCycles = TE.MTM.getProcReleaseAtCycles(getBlockNum()); 1205 for (unsigned K = 0; K != PRDepths.size(); ++K) 1206 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1207 } else { 1208 for (unsigned PRD : PRDepths) 1209 PRMax = std::max(PRMax, PRD); 1210 } 1211 // Convert to cycle count. 1212 PRMax = TE.MTM.getCycles(PRMax); 1213 1214 /// All instructions before current block 1215 unsigned Instrs = TBI.InstrDepth; 1216 // plus instructions in current block 1217 if (Bottom) 1218 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1219 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1220 Instrs /= IW; 1221 // Assume issue width 1 without a schedule model. 1222 return std::max(Instrs, PRMax); 1223 } 1224 1225 unsigned MachineTraceMetrics::Trace::getResourceLength( 1226 ArrayRef<const MachineBasicBlock *> Extrablocks, 1227 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1228 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1229 // Add up resources above and below the center block. 1230 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1231 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1232 unsigned PRMax = 0; 1233 1234 // Capture computing cycles from extra instructions 1235 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1236 unsigned ResourceIdx) 1237 ->unsigned { 1238 unsigned Cycles = 0; 1239 for (const MCSchedClassDesc *SC : Instrs) { 1240 if (!SC->isValid()) 1241 continue; 1242 for (TargetSchedModel::ProcResIter 1243 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1244 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1245 PI != PE; ++PI) { 1246 if (PI->ProcResourceIdx != ResourceIdx) 1247 continue; 1248 Cycles += (PI->ReleaseAtCycle * 1249 TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1250 } 1251 } 1252 return Cycles; 1253 }; 1254 1255 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1256 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1257 for (const MachineBasicBlock *MBB : Extrablocks) 1258 PRCycles += TE.MTM.getProcReleaseAtCycles(MBB->getNumber())[K]; 1259 PRCycles += extraCycles(ExtraInstrs, K); 1260 PRCycles -= extraCycles(RemoveInstrs, K); 1261 PRMax = std::max(PRMax, PRCycles); 1262 } 1263 // Convert to cycle count. 1264 PRMax = TE.MTM.getCycles(PRMax); 1265 1266 // Instrs: #instructions in current trace outside current block. 1267 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1268 // Add instruction count from the extra blocks. 1269 for (const MachineBasicBlock *MBB : Extrablocks) 1270 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1271 Instrs += ExtraInstrs.size(); 1272 Instrs -= RemoveInstrs.size(); 1273 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1274 Instrs /= IW; 1275 // Assume issue width 1 without a schedule model. 1276 return std::max(Instrs, PRMax); 1277 } 1278 1279 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1280 const MachineInstr &UseMI) const { 1281 if (DefMI.getParent() == UseMI.getParent()) 1282 return true; 1283 1284 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1285 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1286 1287 return DepTBI.isUsefulDominator(TBI); 1288 } 1289 1290 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1291 OS << getName() << " ensemble:\n"; 1292 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1293 OS << " %bb." << i << '\t'; 1294 BlockInfo[i].print(OS); 1295 OS << '\n'; 1296 } 1297 } 1298 1299 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1300 if (hasValidDepth()) { 1301 OS << "depth=" << InstrDepth; 1302 if (Pred) 1303 OS << " pred=" << printMBBReference(*Pred); 1304 else 1305 OS << " pred=null"; 1306 OS << " head=%bb." << Head; 1307 if (HasValidInstrDepths) 1308 OS << " +instrs"; 1309 } else 1310 OS << "depth invalid"; 1311 OS << ", "; 1312 if (hasValidHeight()) { 1313 OS << "height=" << InstrHeight; 1314 if (Succ) 1315 OS << " succ=" << printMBBReference(*Succ); 1316 else 1317 OS << " succ=null"; 1318 OS << " tail=%bb." << Tail; 1319 if (HasValidInstrHeights) 1320 OS << " +instrs"; 1321 } else 1322 OS << "height invalid"; 1323 if (HasValidInstrDepths && HasValidInstrHeights) 1324 OS << ", crit=" << CriticalPath; 1325 } 1326 1327 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1328 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1329 1330 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1331 << " --> %bb." << TBI.Tail << ':'; 1332 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1333 OS << ' ' << getInstrCount() << " instrs."; 1334 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1335 OS << ' ' << TBI.CriticalPath << " cycles."; 1336 1337 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1338 OS << "\n%bb." << MBBNum; 1339 while (Block->hasValidDepth() && Block->Pred) { 1340 unsigned Num = Block->Pred->getNumber(); 1341 OS << " <- " << printMBBReference(*Block->Pred); 1342 Block = &TE.BlockInfo[Num]; 1343 } 1344 1345 Block = &TBI; 1346 OS << "\n "; 1347 while (Block->hasValidHeight() && Block->Succ) { 1348 unsigned Num = Block->Succ->getNumber(); 1349 OS << " -> " << printMBBReference(*Block->Succ); 1350 Block = &TE.BlockInfo[Num]; 1351 } 1352 OS << '\n'; 1353 } 1354