1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineLoopInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSchedule.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <tuple> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "machine-trace-metrics" 39 40 AnalysisKey MachineTraceMetricsAnalysis::Key; 41 42 MachineTraceMetricsAnalysis::Result 43 MachineTraceMetricsAnalysis::run(MachineFunction &MF, 44 MachineFunctionAnalysisManager &MFAM) { 45 return Result(MF, MFAM.getResult<MachineLoopAnalysis>(MF)); 46 } 47 48 PreservedAnalyses 49 MachineTraceMetricsVerifierPass::run(MachineFunction &MF, 50 MachineFunctionAnalysisManager &MFAM) { 51 MFAM.getResult<MachineTraceMetricsAnalysis>(MF).verifyAnalysis(); 52 return PreservedAnalyses::all(); 53 } 54 55 char MachineTraceMetricsWrapperPass::ID = 0; 56 57 char &llvm::MachineTraceMetricsID = MachineTraceMetricsWrapperPass::ID; 58 59 INITIALIZE_PASS_BEGIN(MachineTraceMetricsWrapperPass, DEBUG_TYPE, 60 "Machine Trace Metrics", false, true) 61 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 62 INITIALIZE_PASS_END(MachineTraceMetricsWrapperPass, DEBUG_TYPE, 63 "Machine Trace Metrics", false, true) 64 65 MachineTraceMetricsWrapperPass::MachineTraceMetricsWrapperPass() 66 : MachineFunctionPass(ID) {} 67 68 void MachineTraceMetricsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 69 AU.setPreservesAll(); 70 AU.addRequired<MachineLoopInfoWrapperPass>(); 71 MachineFunctionPass::getAnalysisUsage(AU); 72 } 73 74 void MachineTraceMetrics::init(MachineFunction &Func, 75 const MachineLoopInfo &LI) { 76 MF = &Func; 77 const TargetSubtargetInfo &ST = MF->getSubtarget(); 78 TII = ST.getInstrInfo(); 79 TRI = ST.getRegisterInfo(); 80 MRI = &MF->getRegInfo(); 81 Loops = &LI; 82 SchedModel.init(&ST); 83 BlockInfo.resize(MF->getNumBlockIDs()); 84 ProcReleaseAtCycles.resize(MF->getNumBlockIDs() * 85 SchedModel.getNumProcResourceKinds()); 86 } 87 88 bool MachineTraceMetricsWrapperPass::runOnMachineFunction(MachineFunction &MF) { 89 MTM.init(MF, getAnalysis<MachineLoopInfoWrapperPass>().getLI()); 90 return false; 91 } 92 93 MachineTraceMetrics::~MachineTraceMetrics() { clear(); } 94 95 void MachineTraceMetrics::clear() { 96 MF = nullptr; 97 BlockInfo.clear(); 98 for (auto &E : Ensembles) 99 E.reset(); 100 } 101 102 //===----------------------------------------------------------------------===// 103 // Fixed block information 104 //===----------------------------------------------------------------------===// 105 // 106 // The number of instructions in a basic block and the CPU resources used by 107 // those instructions don't depend on any given trace strategy. 108 109 /// Compute the resource usage in basic block MBB. 110 const MachineTraceMetrics::FixedBlockInfo* 111 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 112 assert(MBB && "No basic block"); 113 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 114 if (FBI->hasResources()) 115 return FBI; 116 117 // Compute resource usage in the block. 118 FBI->HasCalls = false; 119 unsigned InstrCount = 0; 120 121 // Add up per-processor resource cycles as well. 122 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 123 SmallVector<unsigned, 32> PRCycles(PRKinds); 124 125 for (const auto &MI : *MBB) { 126 if (MI.isTransient()) 127 continue; 128 ++InstrCount; 129 if (MI.isCall()) 130 FBI->HasCalls = true; 131 132 // Count processor resources used. 133 if (!SchedModel.hasInstrSchedModel()) 134 continue; 135 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 136 if (!SC->isValid()) 137 continue; 138 139 for (TargetSchedModel::ProcResIter 140 PI = SchedModel.getWriteProcResBegin(SC), 141 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 142 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 143 PRCycles[PI->ProcResourceIdx] += PI->ReleaseAtCycle; 144 } 145 } 146 FBI->InstrCount = InstrCount; 147 148 // Scale the resource cycles so they are comparable. 149 unsigned PROffset = MBB->getNumber() * PRKinds; 150 for (unsigned K = 0; K != PRKinds; ++K) 151 ProcReleaseAtCycles[PROffset + K] = 152 PRCycles[K] * SchedModel.getResourceFactor(K); 153 154 return FBI; 155 } 156 157 ArrayRef<unsigned> 158 MachineTraceMetrics::getProcReleaseAtCycles(unsigned MBBNum) const { 159 assert(BlockInfo[MBBNum].hasResources() && 160 "getResources() must be called before getProcReleaseAtCycles()"); 161 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 162 assert((MBBNum+1) * PRKinds <= ProcReleaseAtCycles.size()); 163 return ArrayRef(ProcReleaseAtCycles.data() + MBBNum * PRKinds, PRKinds); 164 } 165 166 //===----------------------------------------------------------------------===// 167 // Ensemble utility functions 168 //===----------------------------------------------------------------------===// 169 170 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 171 : MTM(*ct) { 172 BlockInfo.resize(MTM.BlockInfo.size()); 173 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 174 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 175 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 176 } 177 178 // Virtual destructor serves as an anchor. 179 MachineTraceMetrics::Ensemble::~Ensemble() = default; 180 181 const MachineLoop* 182 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 183 return MTM.Loops->getLoopFor(MBB); 184 } 185 186 // Update resource-related information in the TraceBlockInfo for MBB. 187 // Only update resources related to the trace above MBB. 188 void MachineTraceMetrics::Ensemble:: 189 computeDepthResources(const MachineBasicBlock *MBB) { 190 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 191 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 192 unsigned PROffset = MBB->getNumber() * PRKinds; 193 194 // Compute resources from trace above. The top block is simple. 195 if (!TBI->Pred) { 196 TBI->InstrDepth = 0; 197 TBI->Head = MBB->getNumber(); 198 std::fill(ProcResourceDepths.begin() + PROffset, 199 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 200 return; 201 } 202 203 // Compute from the block above. A post-order traversal ensures the 204 // predecessor is always computed first. 205 unsigned PredNum = TBI->Pred->getNumber(); 206 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 207 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 208 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 209 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 210 TBI->Head = PredTBI->Head; 211 212 // Compute per-resource depths. 213 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 214 ArrayRef<unsigned> PredPRCycles = MTM.getProcReleaseAtCycles(PredNum); 215 for (unsigned K = 0; K != PRKinds; ++K) 216 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 217 } 218 219 // Update resource-related information in the TraceBlockInfo for MBB. 220 // Only update resources related to the trace below MBB. 221 void MachineTraceMetrics::Ensemble:: 222 computeHeightResources(const MachineBasicBlock *MBB) { 223 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 224 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 225 unsigned PROffset = MBB->getNumber() * PRKinds; 226 227 // Compute resources for the current block. 228 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 229 ArrayRef<unsigned> PRCycles = MTM.getProcReleaseAtCycles(MBB->getNumber()); 230 231 // The trace tail is done. 232 if (!TBI->Succ) { 233 TBI->Tail = MBB->getNumber(); 234 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 235 return; 236 } 237 238 // Compute from the block below. A post-order traversal ensures the 239 // predecessor is always computed first. 240 unsigned SuccNum = TBI->Succ->getNumber(); 241 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 242 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 243 TBI->InstrHeight += SuccTBI->InstrHeight; 244 TBI->Tail = SuccTBI->Tail; 245 246 // Compute per-resource heights. 247 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 248 for (unsigned K = 0; K != PRKinds; ++K) 249 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 250 } 251 252 // Check if depth resources for MBB are valid and return the TBI. 253 // Return NULL if the resources have been invalidated. 254 const MachineTraceMetrics::TraceBlockInfo* 255 MachineTraceMetrics::Ensemble:: 256 getDepthResources(const MachineBasicBlock *MBB) const { 257 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 258 return TBI->hasValidDepth() ? TBI : nullptr; 259 } 260 261 // Check if height resources for MBB are valid and return the TBI. 262 // Return NULL if the resources have been invalidated. 263 const MachineTraceMetrics::TraceBlockInfo* 264 MachineTraceMetrics::Ensemble:: 265 getHeightResources(const MachineBasicBlock *MBB) const { 266 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 267 return TBI->hasValidHeight() ? TBI : nullptr; 268 } 269 270 /// Get an array of processor resource depths for MBB. Indexed by processor 271 /// resource kind, this array contains the scaled processor resources consumed 272 /// by all blocks preceding MBB in its trace. It does not include instructions 273 /// in MBB. 274 /// 275 /// Compare TraceBlockInfo::InstrDepth. 276 ArrayRef<unsigned> 277 MachineTraceMetrics::Ensemble:: 278 getProcResourceDepths(unsigned MBBNum) const { 279 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 280 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 281 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 282 } 283 284 /// Get an array of processor resource heights for MBB. Indexed by processor 285 /// resource kind, this array contains the scaled processor resources consumed 286 /// by this block and all blocks following it in its trace. 287 /// 288 /// Compare TraceBlockInfo::InstrHeight. 289 ArrayRef<unsigned> 290 MachineTraceMetrics::Ensemble:: 291 getProcResourceHeights(unsigned MBBNum) const { 292 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 293 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 294 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 295 } 296 297 //===----------------------------------------------------------------------===// 298 // Trace Selection Strategies 299 //===----------------------------------------------------------------------===// 300 // 301 // A trace selection strategy is implemented as a sub-class of Ensemble. The 302 // trace through a block B is computed by two DFS traversals of the CFG 303 // starting from B. One upwards, and one downwards. During the upwards DFS, 304 // pickTracePred() is called on the post-ordered blocks. During the downwards 305 // DFS, pickTraceSucc() is called in a post-order. 306 // 307 308 // We never allow traces that leave loops, but we do allow traces to enter 309 // nested loops. We also never allow traces to contain back-edges. 310 // 311 // This means that a loop header can never appear above the center block of a 312 // trace, except as the trace head. Below the center block, loop exiting edges 313 // are banned. 314 // 315 // Return true if an edge from the From loop to the To loop is leaving a loop. 316 // Either of To and From can be null. 317 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 318 return From && !From->contains(To); 319 } 320 321 // MinInstrCountEnsemble - Pick the trace that executes the least number of 322 // instructions. 323 namespace { 324 325 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 326 const char *getName() const override { return "MinInstr"; } 327 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 328 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 329 330 public: 331 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 332 : MachineTraceMetrics::Ensemble(mtm) {} 333 }; 334 335 /// Pick only the current basic block for the trace and do not choose any 336 /// predecessors/successors. 337 class LocalEnsemble : public MachineTraceMetrics::Ensemble { 338 const char *getName() const override { return "Local"; } 339 const MachineBasicBlock *pickTracePred(const MachineBasicBlock *) override { 340 return nullptr; 341 }; 342 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock *) override { 343 return nullptr; 344 }; 345 346 public: 347 LocalEnsemble(MachineTraceMetrics *MTM) 348 : MachineTraceMetrics::Ensemble(MTM) {} 349 }; 350 } // end anonymous namespace 351 352 // Select the preferred predecessor for MBB. 353 const MachineBasicBlock* 354 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 355 if (MBB->pred_empty()) 356 return nullptr; 357 const MachineLoop *CurLoop = getLoopFor(MBB); 358 // Don't leave loops, and never follow back-edges. 359 if (CurLoop && MBB == CurLoop->getHeader()) 360 return nullptr; 361 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 362 const MachineBasicBlock *Best = nullptr; 363 unsigned BestDepth = 0; 364 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 365 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 366 getDepthResources(Pred); 367 // Ignore cycles that aren't natural loops. 368 if (!PredTBI) 369 continue; 370 // Pick the predecessor that would give this block the smallest InstrDepth. 371 unsigned Depth = PredTBI->InstrDepth + CurCount; 372 if (!Best || Depth < BestDepth) { 373 Best = Pred; 374 BestDepth = Depth; 375 } 376 } 377 return Best; 378 } 379 380 // Select the preferred successor for MBB. 381 const MachineBasicBlock* 382 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 383 if (MBB->succ_empty()) 384 return nullptr; 385 const MachineLoop *CurLoop = getLoopFor(MBB); 386 const MachineBasicBlock *Best = nullptr; 387 unsigned BestHeight = 0; 388 for (const MachineBasicBlock *Succ : MBB->successors()) { 389 // Don't consider back-edges. 390 if (CurLoop && Succ == CurLoop->getHeader()) 391 continue; 392 // Don't consider successors exiting CurLoop. 393 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 394 continue; 395 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 396 getHeightResources(Succ); 397 // Ignore cycles that aren't natural loops. 398 if (!SuccTBI) 399 continue; 400 // Pick the successor that would give this block the smallest InstrHeight. 401 unsigned Height = SuccTBI->InstrHeight; 402 if (!Best || Height < BestHeight) { 403 Best = Succ; 404 BestHeight = Height; 405 } 406 } 407 return Best; 408 } 409 410 // Get an Ensemble sub-class for the requested trace strategy. 411 MachineTraceMetrics::Ensemble * 412 MachineTraceMetrics::getEnsemble(MachineTraceStrategy strategy) { 413 assert(strategy < MachineTraceStrategy::TS_NumStrategies && 414 "Invalid trace strategy enum"); 415 std::unique_ptr<MachineTraceMetrics::Ensemble> &E = 416 Ensembles[static_cast<size_t>(strategy)]; 417 if (E) 418 return E.get(); 419 420 // Allocate new Ensemble on demand. 421 switch (strategy) { 422 case MachineTraceStrategy::TS_MinInstrCount: 423 E = std::make_unique<MinInstrCountEnsemble>(MinInstrCountEnsemble(this)); 424 break; 425 case MachineTraceStrategy::TS_Local: 426 E = std::make_unique<LocalEnsemble>(LocalEnsemble(this)); 427 break; 428 default: llvm_unreachable("Invalid trace strategy enum"); 429 } 430 return E.get(); 431 } 432 433 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 434 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 435 << '\n'); 436 BlockInfo[MBB->getNumber()].invalidate(); 437 for (auto &E : Ensembles) 438 if (E) 439 E->invalidate(MBB); 440 } 441 442 bool MachineTraceMetrics::invalidate( 443 MachineFunction &, const PreservedAnalyses &PA, 444 MachineFunctionAnalysisManager::Invalidator &) { 445 // Check whether the analysis, all analyses on machine functions, or the 446 // machine function's CFG have been preserved. 447 auto PAC = PA.getChecker<MachineTraceMetricsAnalysis>(); 448 return !PAC.preserved() && 449 !PAC.preservedSet<AllAnalysesOn<MachineFunction>>() && 450 !PAC.preservedSet<CFGAnalyses>(); 451 } 452 453 void MachineTraceMetrics::verifyAnalysis() const { 454 if (!MF) 455 return; 456 #ifndef NDEBUG 457 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 458 for (auto &E : Ensembles) 459 if (E) 460 E->verify(); 461 #endif 462 } 463 464 //===----------------------------------------------------------------------===// 465 // Trace building 466 //===----------------------------------------------------------------------===// 467 // 468 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 469 // set abstraction that confines the search to the current loop, and doesn't 470 // revisit blocks. 471 472 namespace { 473 474 struct LoopBounds { 475 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 476 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 477 const MachineLoopInfo *Loops; 478 bool Downward = false; 479 480 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 481 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 482 }; 483 484 } // end anonymous namespace 485 486 // Specialize po_iterator_storage in order to prune the post-order traversal so 487 // it is limited to the current loop and doesn't traverse the loop back edges. 488 namespace llvm { 489 490 template<> 491 class po_iterator_storage<LoopBounds, true> { 492 LoopBounds &LB; 493 494 public: 495 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 496 497 void finishPostorder(const MachineBasicBlock*) {} 498 499 bool insertEdge(std::optional<const MachineBasicBlock *> From, 500 const MachineBasicBlock *To) { 501 // Skip already visited To blocks. 502 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 503 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 504 return false; 505 // From is null once when To is the trace center block. 506 if (From) { 507 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 508 // Don't follow backedges, don't leave FromLoop when going upwards. 509 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 510 return false; 511 // Don't leave FromLoop. 512 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 513 return false; 514 } 515 } 516 // To is a new block. Mark the block as visited in case the CFG has cycles 517 // that MachineLoopInfo didn't recognize as a natural loop. 518 return LB.Visited.insert(To).second; 519 } 520 }; 521 522 } // end namespace llvm 523 524 /// Compute the trace through MBB. 525 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 526 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 527 << printMBBReference(*MBB) << '\n'); 528 // Set up loop bounds for the backwards post-order traversal. 529 LoopBounds Bounds(BlockInfo, MTM.Loops); 530 531 // Run an upwards post-order search for the trace start. 532 Bounds.Downward = false; 533 Bounds.Visited.clear(); 534 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 535 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 536 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 537 // All the predecessors have been visited, pick the preferred one. 538 TBI.Pred = pickTracePred(I); 539 LLVM_DEBUG({ 540 if (TBI.Pred) 541 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 542 else 543 dbgs() << "null\n"; 544 }); 545 // The trace leading to I is now known, compute the depth resources. 546 computeDepthResources(I); 547 } 548 549 // Run a downwards post-order search for the trace end. 550 Bounds.Downward = true; 551 Bounds.Visited.clear(); 552 for (const auto *I : post_order_ext(MBB, Bounds)) { 553 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 554 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 555 // All the successors have been visited, pick the preferred one. 556 TBI.Succ = pickTraceSucc(I); 557 LLVM_DEBUG({ 558 if (TBI.Succ) 559 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 560 else 561 dbgs() << "null\n"; 562 }); 563 // The trace leaving I is now known, compute the height resources. 564 computeHeightResources(I); 565 } 566 } 567 568 /// Invalidate traces through BadMBB. 569 void 570 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 571 SmallVector<const MachineBasicBlock*, 16> WorkList; 572 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 573 574 // Invalidate height resources of blocks above MBB. 575 if (BadTBI.hasValidHeight()) { 576 BadTBI.invalidateHeight(); 577 WorkList.push_back(BadMBB); 578 do { 579 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 580 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 581 << getName() << " height.\n"); 582 // Find any MBB predecessors that have MBB as their preferred successor. 583 // They are the only ones that need to be invalidated. 584 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 585 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 586 if (!TBI.hasValidHeight()) 587 continue; 588 if (TBI.Succ == MBB) { 589 TBI.invalidateHeight(); 590 WorkList.push_back(Pred); 591 continue; 592 } 593 // Verify that TBI.Succ is actually a *I successor. 594 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 595 } 596 } while (!WorkList.empty()); 597 } 598 599 // Invalidate depth resources of blocks below MBB. 600 if (BadTBI.hasValidDepth()) { 601 BadTBI.invalidateDepth(); 602 WorkList.push_back(BadMBB); 603 do { 604 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 605 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 606 << getName() << " depth.\n"); 607 // Find any MBB successors that have MBB as their preferred predecessor. 608 // They are the only ones that need to be invalidated. 609 for (const MachineBasicBlock *Succ : MBB->successors()) { 610 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 611 if (!TBI.hasValidDepth()) 612 continue; 613 if (TBI.Pred == MBB) { 614 TBI.invalidateDepth(); 615 WorkList.push_back(Succ); 616 continue; 617 } 618 // Verify that TBI.Pred is actually a *I predecessor. 619 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 620 } 621 } while (!WorkList.empty()); 622 } 623 624 // Clear any per-instruction data. We only have to do this for BadMBB itself 625 // because the instructions in that block may change. Other blocks may be 626 // invalidated, but their instructions will stay the same, so there is no 627 // need to erase the Cycle entries. They will be overwritten when we 628 // recompute. 629 for (const auto &I : *BadMBB) 630 Cycles.erase(&I); 631 } 632 633 void MachineTraceMetrics::Ensemble::verify() const { 634 #ifndef NDEBUG 635 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 636 "Outdated BlockInfo size"); 637 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 638 const TraceBlockInfo &TBI = BlockInfo[Num]; 639 if (TBI.hasValidDepth() && TBI.Pred) { 640 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 641 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 642 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 643 "Trace is broken, depth should have been invalidated."); 644 const MachineLoop *Loop = getLoopFor(MBB); 645 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 646 } 647 if (TBI.hasValidHeight() && TBI.Succ) { 648 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 649 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 650 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 651 "Trace is broken, height should have been invalidated."); 652 const MachineLoop *Loop = getLoopFor(MBB); 653 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 654 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 655 "Trace contains backedge"); 656 } 657 } 658 #endif 659 } 660 661 //===----------------------------------------------------------------------===// 662 // Data Dependencies 663 //===----------------------------------------------------------------------===// 664 // 665 // Compute the depth and height of each instruction based on data dependencies 666 // and instruction latencies. These cycle numbers assume that the CPU can issue 667 // an infinite number of instructions per cycle as long as their dependencies 668 // are ready. 669 670 // A data dependency is represented as a defining MI and operand numbers on the 671 // defining and using MI. 672 namespace { 673 674 struct DataDep { 675 const MachineInstr *DefMI; 676 unsigned DefOp; 677 unsigned UseOp; 678 679 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 680 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 681 682 /// Create a DataDep from an SSA form virtual register. 683 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 684 : UseOp(UseOp) { 685 assert(Register::isVirtualRegister(VirtReg)); 686 MachineOperand *DefMO = MRI->getOneDef(VirtReg); 687 assert(DefMO && "Register does not have unique def"); 688 DefMI = DefMO->getParent(); 689 DefOp = DefMO->getOperandNo(); 690 } 691 }; 692 693 } // end anonymous namespace 694 695 // Get the input data dependencies that must be ready before UseMI can issue. 696 // Return true if UseMI has any physreg operands. 697 static bool getDataDeps(const MachineInstr &UseMI, 698 SmallVectorImpl<DataDep> &Deps, 699 const MachineRegisterInfo *MRI) { 700 // Debug values should not be included in any calculations. 701 if (UseMI.isDebugInstr()) 702 return false; 703 704 bool HasPhysRegs = false; 705 for (const MachineOperand &MO : UseMI.operands()) { 706 if (!MO.isReg()) 707 continue; 708 Register Reg = MO.getReg(); 709 if (!Reg) 710 continue; 711 if (Reg.isPhysical()) { 712 HasPhysRegs = true; 713 continue; 714 } 715 // Collect virtual register reads. 716 if (MO.readsReg()) 717 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 718 } 719 return HasPhysRegs; 720 } 721 722 // Get the input data dependencies of a PHI instruction, using Pred as the 723 // preferred predecessor. 724 // This will add at most one dependency to Deps. 725 static void getPHIDeps(const MachineInstr &UseMI, 726 SmallVectorImpl<DataDep> &Deps, 727 const MachineBasicBlock *Pred, 728 const MachineRegisterInfo *MRI) { 729 // No predecessor at the beginning of a trace. Ignore dependencies. 730 if (!Pred) 731 return; 732 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 733 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 734 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 735 Register Reg = UseMI.getOperand(i).getReg(); 736 Deps.push_back(DataDep(MRI, Reg, i)); 737 return; 738 } 739 } 740 } 741 742 // Identify physreg dependencies for UseMI, and update the live regunit 743 // tracking set when scanning instructions downwards. 744 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 745 SmallVectorImpl<DataDep> &Deps, 746 SparseSet<LiveRegUnit> &RegUnits, 747 const TargetRegisterInfo *TRI) { 748 SmallVector<MCRegister, 8> Kills; 749 SmallVector<unsigned, 8> LiveDefOps; 750 751 for (const MachineOperand &MO : UseMI->operands()) { 752 if (!MO.isReg() || !MO.getReg().isPhysical()) 753 continue; 754 MCRegister Reg = MO.getReg().asMCReg(); 755 // Track live defs and kills for updating RegUnits. 756 if (MO.isDef()) { 757 if (MO.isDead()) 758 Kills.push_back(Reg); 759 else 760 LiveDefOps.push_back(MO.getOperandNo()); 761 } else if (MO.isKill()) 762 Kills.push_back(Reg); 763 // Identify dependencies. 764 if (!MO.readsReg()) 765 continue; 766 for (MCRegUnit Unit : TRI->regunits(Reg)) { 767 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 768 if (I == RegUnits.end()) 769 continue; 770 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 771 break; 772 } 773 } 774 775 // Update RegUnits to reflect live registers after UseMI. 776 // First kills. 777 for (MCRegister Kill : Kills) 778 for (MCRegUnit Unit : TRI->regunits(Kill)) 779 RegUnits.erase(Unit); 780 781 // Second, live defs. 782 for (unsigned DefOp : LiveDefOps) { 783 for (MCRegUnit Unit : 784 TRI->regunits(UseMI->getOperand(DefOp).getReg().asMCReg())) { 785 LiveRegUnit &LRU = RegUnits[Unit]; 786 LRU.MI = UseMI; 787 LRU.Op = DefOp; 788 } 789 } 790 } 791 792 /// The length of the critical path through a trace is the maximum of two path 793 /// lengths: 794 /// 795 /// 1. The maximum height+depth over all instructions in the trace center block. 796 /// 797 /// 2. The longest cross-block dependency chain. For small blocks, it is 798 /// possible that the critical path through the trace doesn't include any 799 /// instructions in the block. 800 /// 801 /// This function computes the second number from the live-in list of the 802 /// center block. 803 unsigned MachineTraceMetrics::Ensemble:: 804 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 805 assert(TBI.HasValidInstrDepths && "Missing depth info"); 806 assert(TBI.HasValidInstrHeights && "Missing height info"); 807 unsigned MaxLen = 0; 808 for (const LiveInReg &LIR : TBI.LiveIns) { 809 if (!LIR.Reg.isVirtual()) 810 continue; 811 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 812 // Ignore dependencies outside the current trace. 813 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 814 if (!DefTBI.isUsefulDominator(TBI)) 815 continue; 816 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 817 MaxLen = std::max(MaxLen, Len); 818 } 819 return MaxLen; 820 } 821 822 void MachineTraceMetrics::Ensemble:: 823 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 824 SparseSet<LiveRegUnit> &RegUnits) { 825 SmallVector<DataDep, 8> Deps; 826 // Collect all data dependencies. 827 if (UseMI.isPHI()) 828 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 829 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 830 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 831 832 // Filter and process dependencies, computing the earliest issue cycle. 833 unsigned Cycle = 0; 834 for (const DataDep &Dep : Deps) { 835 const TraceBlockInfo&DepTBI = 836 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 837 // Ignore dependencies from outside the current trace. 838 if (!DepTBI.isUsefulDominator(TBI)) 839 continue; 840 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 841 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 842 // Add latency if DefMI is a real instruction. Transients get latency 0. 843 if (!Dep.DefMI->isTransient()) 844 DepCycle += MTM.SchedModel 845 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 846 Cycle = std::max(Cycle, DepCycle); 847 } 848 // Remember the instruction depth. 849 InstrCycles &MICycles = Cycles[&UseMI]; 850 MICycles.Depth = Cycle; 851 852 if (TBI.HasValidInstrHeights) { 853 // Update critical path length. 854 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 855 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 856 } else { 857 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 858 } 859 } 860 861 void MachineTraceMetrics::Ensemble:: 862 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 863 SparseSet<LiveRegUnit> &RegUnits) { 864 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 865 } 866 867 void MachineTraceMetrics::Ensemble:: 868 updateDepths(MachineBasicBlock::iterator Start, 869 MachineBasicBlock::iterator End, 870 SparseSet<LiveRegUnit> &RegUnits) { 871 for (; Start != End; Start++) 872 updateDepth(Start->getParent(), *Start, RegUnits); 873 } 874 875 /// Compute instruction depths for all instructions above or in MBB in its 876 /// trace. This assumes that the trace through MBB has already been computed. 877 void MachineTraceMetrics::Ensemble:: 878 computeInstrDepths(const MachineBasicBlock *MBB) { 879 // The top of the trace may already be computed, and HasValidInstrDepths 880 // implies Head->HasValidInstrDepths, so we only need to start from the first 881 // block in the trace that needs to be recomputed. 882 SmallVector<const MachineBasicBlock*, 8> Stack; 883 do { 884 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 885 assert(TBI.hasValidDepth() && "Incomplete trace"); 886 if (TBI.HasValidInstrDepths) 887 break; 888 Stack.push_back(MBB); 889 MBB = TBI.Pred; 890 } while (MBB); 891 892 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 893 // in the trace. We should track any live-out physregs that were defined in 894 // the trace. This is quite rare in SSA form, typically created by CSE 895 // hoisting a compare. 896 SparseSet<LiveRegUnit> RegUnits; 897 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 898 899 // Go through trace blocks in top-down order, stopping after the center block. 900 while (!Stack.empty()) { 901 MBB = Stack.pop_back_val(); 902 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 903 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 904 TBI.HasValidInstrDepths = true; 905 TBI.CriticalPath = 0; 906 907 // Print out resource depths here as well. 908 LLVM_DEBUG({ 909 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 910 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 911 for (unsigned K = 0; K != PRDepths.size(); ++K) 912 if (PRDepths[K]) { 913 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 914 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 915 << MTM.SchedModel.getProcResource(K)->Name << " (" 916 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 917 } 918 }); 919 920 // Also compute the critical path length through MBB when possible. 921 if (TBI.HasValidInstrHeights) 922 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 923 924 for (const auto &UseMI : *MBB) { 925 updateDepth(TBI, UseMI, RegUnits); 926 } 927 } 928 } 929 930 // Identify physreg dependencies for MI when scanning instructions upwards. 931 // Return the issue height of MI after considering any live regunits. 932 // Height is the issue height computed from virtual register dependencies alone. 933 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 934 SparseSet<LiveRegUnit> &RegUnits, 935 const TargetSchedModel &SchedModel, 936 const TargetInstrInfo *TII, 937 const TargetRegisterInfo *TRI) { 938 SmallVector<unsigned, 8> ReadOps; 939 940 for (const MachineOperand &MO : MI.operands()) { 941 if (!MO.isReg()) 942 continue; 943 Register Reg = MO.getReg(); 944 if (!Reg.isPhysical()) 945 continue; 946 if (MO.readsReg()) 947 ReadOps.push_back(MO.getOperandNo()); 948 if (!MO.isDef()) 949 continue; 950 // This is a def of Reg. Remove corresponding entries from RegUnits, and 951 // update MI Height to consider the physreg dependencies. 952 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 953 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 954 if (I == RegUnits.end()) 955 continue; 956 unsigned DepHeight = I->Cycle; 957 if (!MI.isTransient()) { 958 // We may not know the UseMI of this dependency, if it came from the 959 // live-in list. SchedModel can handle a NULL UseMI. 960 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 961 I->MI, I->Op); 962 } 963 Height = std::max(Height, DepHeight); 964 // This regunit is dead above MI. 965 RegUnits.erase(I); 966 } 967 } 968 969 // Now we know the height of MI. Update any regunits read. 970 for (unsigned Op : ReadOps) { 971 MCRegister Reg = MI.getOperand(Op).getReg().asMCReg(); 972 for (MCRegUnit Unit : TRI->regunits(Reg)) { 973 LiveRegUnit &LRU = RegUnits[Unit]; 974 // Set the height to the highest reader of the unit. 975 if (LRU.Cycle <= Height && LRU.MI != &MI) { 976 LRU.Cycle = Height; 977 LRU.MI = &MI; 978 LRU.Op = Op; 979 } 980 } 981 } 982 983 return Height; 984 } 985 986 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 987 988 // Push the height of DefMI upwards if required to match UseMI. 989 // Return true if this is the first time DefMI was seen. 990 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 991 unsigned UseHeight, MIHeightMap &Heights, 992 const TargetSchedModel &SchedModel, 993 const TargetInstrInfo *TII) { 994 // Adjust height by Dep.DefMI latency. 995 if (!Dep.DefMI->isTransient()) 996 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 997 Dep.UseOp); 998 999 // Update Heights[DefMI] to be the maximum height seen. 1000 MIHeightMap::iterator I; 1001 bool New; 1002 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 1003 if (New) 1004 return true; 1005 1006 // DefMI has been pushed before. Give it the max height. 1007 if (I->second < UseHeight) 1008 I->second = UseHeight; 1009 return false; 1010 } 1011 1012 /// Assuming that the virtual register defined by DefMI:DefOp was used by 1013 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 1014 /// when reaching the block that contains DefMI. 1015 void MachineTraceMetrics::Ensemble:: 1016 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 1017 ArrayRef<const MachineBasicBlock*> Trace) { 1018 assert(!Trace.empty() && "Trace should contain at least one block"); 1019 Register Reg = DefMI->getOperand(DefOp).getReg(); 1020 assert(Reg.isVirtual()); 1021 const MachineBasicBlock *DefMBB = DefMI->getParent(); 1022 1023 // Reg is live-in to all blocks in Trace that follow DefMBB. 1024 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 1025 if (MBB == DefMBB) 1026 return; 1027 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1028 // Just add the register. The height will be updated later. 1029 TBI.LiveIns.push_back(Reg); 1030 } 1031 } 1032 1033 /// Compute instruction heights in the trace through MBB. This updates MBB and 1034 /// the blocks below it in the trace. It is assumed that the trace has already 1035 /// been computed. 1036 void MachineTraceMetrics::Ensemble:: 1037 computeInstrHeights(const MachineBasicBlock *MBB) { 1038 // The bottom of the trace may already be computed. 1039 // Find the blocks that need updating. 1040 SmallVector<const MachineBasicBlock*, 8> Stack; 1041 do { 1042 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1043 assert(TBI.hasValidHeight() && "Incomplete trace"); 1044 if (TBI.HasValidInstrHeights) 1045 break; 1046 Stack.push_back(MBB); 1047 TBI.LiveIns.clear(); 1048 MBB = TBI.Succ; 1049 } while (MBB); 1050 1051 // As we move upwards in the trace, keep track of instructions that are 1052 // required by deeper trace instructions. Map MI -> height required so far. 1053 MIHeightMap Heights; 1054 1055 // For physregs, the def isn't known when we see the use. 1056 // Instead, keep track of the highest use of each regunit. 1057 SparseSet<LiveRegUnit> RegUnits; 1058 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1059 1060 // If the bottom of the trace was already precomputed, initialize heights 1061 // from its live-in list. 1062 // MBB is the highest precomputed block in the trace. 1063 if (MBB) { 1064 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1065 for (LiveInReg &LI : TBI.LiveIns) { 1066 if (LI.Reg.isVirtual()) { 1067 // For virtual registers, the def latency is included. 1068 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1069 if (Height < LI.Height) 1070 Height = LI.Height; 1071 } else { 1072 // For register units, the def latency is not included because we don't 1073 // know the def yet. 1074 RegUnits[LI.Reg].Cycle = LI.Height; 1075 } 1076 } 1077 } 1078 1079 // Go through the trace blocks in bottom-up order. 1080 SmallVector<DataDep, 8> Deps; 1081 for (;!Stack.empty(); Stack.pop_back()) { 1082 MBB = Stack.back(); 1083 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1084 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1085 TBI.HasValidInstrHeights = true; 1086 TBI.CriticalPath = 0; 1087 1088 LLVM_DEBUG({ 1089 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1090 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1091 for (unsigned K = 0; K != PRHeights.size(); ++K) 1092 if (PRHeights[K]) { 1093 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1094 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1095 << MTM.SchedModel.getProcResource(K)->Name << " (" 1096 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1097 } 1098 }); 1099 1100 // Get dependencies from PHIs in the trace successor. 1101 const MachineBasicBlock *Succ = TBI.Succ; 1102 // If MBB is the last block in the trace, and it has a back-edge to the 1103 // loop header, get loop-carried dependencies from PHIs in the header. For 1104 // that purpose, pretend that all the loop header PHIs have height 0. 1105 if (!Succ) 1106 if (const MachineLoop *Loop = getLoopFor(MBB)) 1107 if (MBB->isSuccessor(Loop->getHeader())) 1108 Succ = Loop->getHeader(); 1109 1110 if (Succ) { 1111 for (const auto &PHI : *Succ) { 1112 if (!PHI.isPHI()) 1113 break; 1114 Deps.clear(); 1115 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1116 if (!Deps.empty()) { 1117 // Loop header PHI heights are all 0. 1118 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1119 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1120 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1121 MTM.TII)) 1122 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1123 } 1124 } 1125 } 1126 1127 // Go through the block backwards. 1128 for (const MachineInstr &MI : reverse(*MBB)) { 1129 // Find the MI height as determined by virtual register uses in the 1130 // trace below. 1131 unsigned Cycle = 0; 1132 MIHeightMap::iterator HeightI = Heights.find(&MI); 1133 if (HeightI != Heights.end()) { 1134 Cycle = HeightI->second; 1135 // We won't be seeing any more MI uses. 1136 Heights.erase(HeightI); 1137 } 1138 1139 // Don't process PHI deps. They depend on the specific predecessor, and 1140 // we'll get them when visiting the predecessor. 1141 Deps.clear(); 1142 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1143 1144 // There may also be regunit dependencies to include in the height. 1145 if (HasPhysRegs) 1146 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1147 MTM.TII, MTM.TRI); 1148 1149 // Update the required height of any virtual registers read by MI. 1150 for (const DataDep &Dep : Deps) 1151 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1152 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1153 1154 InstrCycles &MICycles = Cycles[&MI]; 1155 MICycles.Height = Cycle; 1156 if (!TBI.HasValidInstrDepths) { 1157 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1158 continue; 1159 } 1160 // Update critical path length. 1161 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1162 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1163 } 1164 1165 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1166 // height because the final height isn't known until now. 1167 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1168 for (LiveInReg &LIR : TBI.LiveIns) { 1169 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1170 LIR.Height = Heights.lookup(DefMI); 1171 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1172 } 1173 1174 // Transfer the live regunits to the live-in list. 1175 for (const LiveRegUnit &RU : RegUnits) { 1176 TBI.LiveIns.push_back(LiveInReg(RU.RegUnit, RU.Cycle)); 1177 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RU.RegUnit, MTM.TRI) << '@' 1178 << RU.Cycle); 1179 } 1180 LLVM_DEBUG(dbgs() << '\n'); 1181 1182 if (!TBI.HasValidInstrDepths) 1183 continue; 1184 // Add live-ins to the critical path length. 1185 TBI.CriticalPath = std::max(TBI.CriticalPath, 1186 computeCrossBlockCriticalPath(TBI)); 1187 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1188 } 1189 } 1190 1191 MachineTraceMetrics::Trace 1192 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1193 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1194 1195 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1196 computeTrace(MBB); 1197 if (!TBI.HasValidInstrDepths) 1198 computeInstrDepths(MBB); 1199 if (!TBI.HasValidInstrHeights) 1200 computeInstrHeights(MBB); 1201 1202 return Trace(*this, TBI); 1203 } 1204 1205 unsigned 1206 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1207 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1208 "MI must be in the trace center block"); 1209 InstrCycles Cyc = getInstrCycles(MI); 1210 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1211 } 1212 1213 unsigned 1214 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1215 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1216 SmallVector<DataDep, 1> Deps; 1217 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1218 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1219 DataDep &Dep = Deps.front(); 1220 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1221 // Add latency if DefMI is a real instruction. Transients get latency 0. 1222 if (!Dep.DefMI->isTransient()) 1223 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1224 &PHI, Dep.UseOp); 1225 return DepCycle; 1226 } 1227 1228 /// When bottom is set include instructions in current block in estimate. 1229 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1230 // Find the limiting processor resource. 1231 // Numbers have been pre-scaled to be comparable. 1232 unsigned PRMax = 0; 1233 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1234 if (Bottom) { 1235 ArrayRef<unsigned> PRCycles = TE.MTM.getProcReleaseAtCycles(getBlockNum()); 1236 for (unsigned K = 0; K != PRDepths.size(); ++K) 1237 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1238 } else { 1239 for (unsigned PRD : PRDepths) 1240 PRMax = std::max(PRMax, PRD); 1241 } 1242 // Convert to cycle count. 1243 PRMax = TE.MTM.getCycles(PRMax); 1244 1245 /// All instructions before current block 1246 unsigned Instrs = TBI.InstrDepth; 1247 // plus instructions in current block 1248 if (Bottom) 1249 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1250 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1251 Instrs /= IW; 1252 // Assume issue width 1 without a schedule model. 1253 return std::max(Instrs, PRMax); 1254 } 1255 1256 unsigned MachineTraceMetrics::Trace::getResourceLength( 1257 ArrayRef<const MachineBasicBlock *> Extrablocks, 1258 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1259 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1260 // Add up resources above and below the center block. 1261 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1262 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1263 unsigned PRMax = 0; 1264 1265 // Capture computing cycles from extra instructions 1266 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1267 unsigned ResourceIdx) 1268 ->unsigned { 1269 unsigned Cycles = 0; 1270 for (const MCSchedClassDesc *SC : Instrs) { 1271 if (!SC->isValid()) 1272 continue; 1273 for (TargetSchedModel::ProcResIter 1274 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1275 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1276 PI != PE; ++PI) { 1277 if (PI->ProcResourceIdx != ResourceIdx) 1278 continue; 1279 Cycles += (PI->ReleaseAtCycle * 1280 TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1281 } 1282 } 1283 return Cycles; 1284 }; 1285 1286 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1287 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1288 for (const MachineBasicBlock *MBB : Extrablocks) 1289 PRCycles += TE.MTM.getProcReleaseAtCycles(MBB->getNumber())[K]; 1290 PRCycles += extraCycles(ExtraInstrs, K); 1291 PRCycles -= extraCycles(RemoveInstrs, K); 1292 PRMax = std::max(PRMax, PRCycles); 1293 } 1294 // Convert to cycle count. 1295 PRMax = TE.MTM.getCycles(PRMax); 1296 1297 // Instrs: #instructions in current trace outside current block. 1298 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1299 // Add instruction count from the extra blocks. 1300 for (const MachineBasicBlock *MBB : Extrablocks) 1301 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1302 Instrs += ExtraInstrs.size(); 1303 Instrs -= RemoveInstrs.size(); 1304 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1305 Instrs /= IW; 1306 // Assume issue width 1 without a schedule model. 1307 return std::max(Instrs, PRMax); 1308 } 1309 1310 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1311 const MachineInstr &UseMI) const { 1312 if (DefMI.getParent() == UseMI.getParent()) 1313 return true; 1314 1315 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1316 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1317 1318 return DepTBI.isUsefulDominator(TBI); 1319 } 1320 1321 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1322 OS << getName() << " ensemble:\n"; 1323 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1324 OS << " %bb." << i << '\t'; 1325 BlockInfo[i].print(OS); 1326 OS << '\n'; 1327 } 1328 } 1329 1330 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1331 if (hasValidDepth()) { 1332 OS << "depth=" << InstrDepth; 1333 if (Pred) 1334 OS << " pred=" << printMBBReference(*Pred); 1335 else 1336 OS << " pred=null"; 1337 OS << " head=%bb." << Head; 1338 if (HasValidInstrDepths) 1339 OS << " +instrs"; 1340 } else 1341 OS << "depth invalid"; 1342 OS << ", "; 1343 if (hasValidHeight()) { 1344 OS << "height=" << InstrHeight; 1345 if (Succ) 1346 OS << " succ=" << printMBBReference(*Succ); 1347 else 1348 OS << " succ=null"; 1349 OS << " tail=%bb." << Tail; 1350 if (HasValidInstrHeights) 1351 OS << " +instrs"; 1352 } else 1353 OS << "height invalid"; 1354 if (HasValidInstrDepths && HasValidInstrHeights) 1355 OS << ", crit=" << CriticalPath; 1356 } 1357 1358 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1359 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1360 1361 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1362 << " --> %bb." << TBI.Tail << ':'; 1363 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1364 OS << ' ' << getInstrCount() << " instrs."; 1365 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1366 OS << ' ' << TBI.CriticalPath << " cycles."; 1367 1368 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1369 OS << "\n%bb." << MBBNum; 1370 while (Block->hasValidDepth() && Block->Pred) { 1371 unsigned Num = Block->Pred->getNumber(); 1372 OS << " <- " << printMBBReference(*Block->Pred); 1373 Block = &TE.BlockInfo[Num]; 1374 } 1375 1376 Block = &TBI; 1377 OS << "\n "; 1378 while (Block->hasValidHeight() && Block->Succ) { 1379 unsigned Num = Block->Succ->getNumber(); 1380 OS << " -> " << printMBBReference(*Block->Succ); 1381 Block = &TE.BlockInfo[Num]; 1382 } 1383 OS << '\n'; 1384 } 1385