1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/PostOrderIterator.h" 12 #include "llvm/ADT/SparseSet.h" 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 15 #include "llvm/CodeGen/MachineLoopInfo.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/MC/MCSubtargetInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "machine-trace-metrics" 29 30 char MachineTraceMetrics::ID = 0; 31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 32 33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 34 "machine-trace-metrics", "Machine Trace Metrics", false, true) 35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 37 INITIALIZE_PASS_END(MachineTraceMetrics, 38 "machine-trace-metrics", "Machine Trace Metrics", false, true) 39 40 MachineTraceMetrics::MachineTraceMetrics() 41 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 42 MRI(nullptr), Loops(nullptr) { 43 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 44 } 45 46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesAll(); 48 AU.addRequired<MachineBranchProbabilityInfo>(); 49 AU.addRequired<MachineLoopInfo>(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 } 52 53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 54 MF = &Func; 55 const TargetSubtargetInfo &ST = MF->getSubtarget(); 56 TII = ST.getInstrInfo(); 57 TRI = ST.getRegisterInfo(); 58 MRI = &MF->getRegInfo(); 59 Loops = &getAnalysis<MachineLoopInfo>(); 60 SchedModel.init(ST.getSchedModel(), &ST, TII); 61 BlockInfo.resize(MF->getNumBlockIDs()); 62 ProcResourceCycles.resize(MF->getNumBlockIDs() * 63 SchedModel.getNumProcResourceKinds()); 64 return false; 65 } 66 67 void MachineTraceMetrics::releaseMemory() { 68 MF = nullptr; 69 BlockInfo.clear(); 70 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 71 delete Ensembles[i]; 72 Ensembles[i] = nullptr; 73 } 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Fixed block information 78 //===----------------------------------------------------------------------===// 79 // 80 // The number of instructions in a basic block and the CPU resources used by 81 // those instructions don't depend on any given trace strategy. 82 83 /// Compute the resource usage in basic block MBB. 84 const MachineTraceMetrics::FixedBlockInfo* 85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 86 assert(MBB && "No basic block"); 87 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 88 if (FBI->hasResources()) 89 return FBI; 90 91 // Compute resource usage in the block. 92 FBI->HasCalls = false; 93 unsigned InstrCount = 0; 94 95 // Add up per-processor resource cycles as well. 96 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 97 SmallVector<unsigned, 32> PRCycles(PRKinds); 98 99 for (const auto &MI : *MBB) { 100 if (MI.isTransient()) 101 continue; 102 ++InstrCount; 103 if (MI.isCall()) 104 FBI->HasCalls = true; 105 106 // Count processor resources used. 107 if (!SchedModel.hasInstrSchedModel()) 108 continue; 109 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 110 if (!SC->isValid()) 111 continue; 112 113 for (TargetSchedModel::ProcResIter 114 PI = SchedModel.getWriteProcResBegin(SC), 115 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 116 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 117 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 118 } 119 } 120 FBI->InstrCount = InstrCount; 121 122 // Scale the resource cycles so they are comparable. 123 unsigned PROffset = MBB->getNumber() * PRKinds; 124 for (unsigned K = 0; K != PRKinds; ++K) 125 ProcResourceCycles[PROffset + K] = 126 PRCycles[K] * SchedModel.getResourceFactor(K); 127 128 return FBI; 129 } 130 131 ArrayRef<unsigned> 132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 133 assert(BlockInfo[MBBNum].hasResources() && 134 "getResources() must be called before getProcResourceCycles()"); 135 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 136 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 137 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 138 } 139 140 141 //===----------------------------------------------------------------------===// 142 // Ensemble utility functions 143 //===----------------------------------------------------------------------===// 144 145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 146 : MTM(*ct) { 147 BlockInfo.resize(MTM.BlockInfo.size()); 148 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 149 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 150 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 151 } 152 153 // Virtual destructor serves as an anchor. 154 MachineTraceMetrics::Ensemble::~Ensemble() {} 155 156 const MachineLoop* 157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 158 return MTM.Loops->getLoopFor(MBB); 159 } 160 161 // Update resource-related information in the TraceBlockInfo for MBB. 162 // Only update resources related to the trace above MBB. 163 void MachineTraceMetrics::Ensemble:: 164 computeDepthResources(const MachineBasicBlock *MBB) { 165 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 166 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 167 unsigned PROffset = MBB->getNumber() * PRKinds; 168 169 // Compute resources from trace above. The top block is simple. 170 if (!TBI->Pred) { 171 TBI->InstrDepth = 0; 172 TBI->Head = MBB->getNumber(); 173 std::fill(ProcResourceDepths.begin() + PROffset, 174 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 175 return; 176 } 177 178 // Compute from the block above. A post-order traversal ensures the 179 // predecessor is always computed first. 180 unsigned PredNum = TBI->Pred->getNumber(); 181 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 182 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 183 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 184 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 185 TBI->Head = PredTBI->Head; 186 187 // Compute per-resource depths. 188 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 189 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 190 for (unsigned K = 0; K != PRKinds; ++K) 191 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 192 } 193 194 // Update resource-related information in the TraceBlockInfo for MBB. 195 // Only update resources related to the trace below MBB. 196 void MachineTraceMetrics::Ensemble:: 197 computeHeightResources(const MachineBasicBlock *MBB) { 198 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 199 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 200 unsigned PROffset = MBB->getNumber() * PRKinds; 201 202 // Compute resources for the current block. 203 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 204 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 205 206 // The trace tail is done. 207 if (!TBI->Succ) { 208 TBI->Tail = MBB->getNumber(); 209 std::copy(PRCycles.begin(), PRCycles.end(), 210 ProcResourceHeights.begin() + PROffset); 211 return; 212 } 213 214 // Compute from the block below. A post-order traversal ensures the 215 // predecessor is always computed first. 216 unsigned SuccNum = TBI->Succ->getNumber(); 217 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 218 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 219 TBI->InstrHeight += SuccTBI->InstrHeight; 220 TBI->Tail = SuccTBI->Tail; 221 222 // Compute per-resource heights. 223 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 224 for (unsigned K = 0; K != PRKinds; ++K) 225 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 226 } 227 228 // Check if depth resources for MBB are valid and return the TBI. 229 // Return NULL if the resources have been invalidated. 230 const MachineTraceMetrics::TraceBlockInfo* 231 MachineTraceMetrics::Ensemble:: 232 getDepthResources(const MachineBasicBlock *MBB) const { 233 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 234 return TBI->hasValidDepth() ? TBI : nullptr; 235 } 236 237 // Check if height resources for MBB are valid and return the TBI. 238 // Return NULL if the resources have been invalidated. 239 const MachineTraceMetrics::TraceBlockInfo* 240 MachineTraceMetrics::Ensemble:: 241 getHeightResources(const MachineBasicBlock *MBB) const { 242 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 243 return TBI->hasValidHeight() ? TBI : nullptr; 244 } 245 246 /// Get an array of processor resource depths for MBB. Indexed by processor 247 /// resource kind, this array contains the scaled processor resources consumed 248 /// by all blocks preceding MBB in its trace. It does not include instructions 249 /// in MBB. 250 /// 251 /// Compare TraceBlockInfo::InstrDepth. 252 ArrayRef<unsigned> 253 MachineTraceMetrics::Ensemble:: 254 getProcResourceDepths(unsigned MBBNum) const { 255 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 256 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 257 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 258 } 259 260 /// Get an array of processor resource heights for MBB. Indexed by processor 261 /// resource kind, this array contains the scaled processor resources consumed 262 /// by this block and all blocks following it in its trace. 263 /// 264 /// Compare TraceBlockInfo::InstrHeight. 265 ArrayRef<unsigned> 266 MachineTraceMetrics::Ensemble:: 267 getProcResourceHeights(unsigned MBBNum) const { 268 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 269 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 270 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // Trace Selection Strategies 275 //===----------------------------------------------------------------------===// 276 // 277 // A trace selection strategy is implemented as a sub-class of Ensemble. The 278 // trace through a block B is computed by two DFS traversals of the CFG 279 // starting from B. One upwards, and one downwards. During the upwards DFS, 280 // pickTracePred() is called on the post-ordered blocks. During the downwards 281 // DFS, pickTraceSucc() is called in a post-order. 282 // 283 284 // We never allow traces that leave loops, but we do allow traces to enter 285 // nested loops. We also never allow traces to contain back-edges. 286 // 287 // This means that a loop header can never appear above the center block of a 288 // trace, except as the trace head. Below the center block, loop exiting edges 289 // are banned. 290 // 291 // Return true if an edge from the From loop to the To loop is leaving a loop. 292 // Either of To and From can be null. 293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 294 return From && !From->contains(To); 295 } 296 297 // MinInstrCountEnsemble - Pick the trace that executes the least number of 298 // instructions. 299 namespace { 300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 301 const char *getName() const override { return "MinInstr"; } 302 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 303 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 304 305 public: 306 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 307 : MachineTraceMetrics::Ensemble(mtm) {} 308 }; 309 } 310 311 // Select the preferred predecessor for MBB. 312 const MachineBasicBlock* 313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 314 if (MBB->pred_empty()) 315 return nullptr; 316 const MachineLoop *CurLoop = getLoopFor(MBB); 317 // Don't leave loops, and never follow back-edges. 318 if (CurLoop && MBB == CurLoop->getHeader()) 319 return nullptr; 320 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 321 const MachineBasicBlock *Best = nullptr; 322 unsigned BestDepth = 0; 323 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 324 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 325 getDepthResources(Pred); 326 // Ignore cycles that aren't natural loops. 327 if (!PredTBI) 328 continue; 329 // Pick the predecessor that would give this block the smallest InstrDepth. 330 unsigned Depth = PredTBI->InstrDepth + CurCount; 331 if (!Best || Depth < BestDepth) 332 Best = Pred, BestDepth = Depth; 333 } 334 return Best; 335 } 336 337 // Select the preferred successor for MBB. 338 const MachineBasicBlock* 339 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 340 if (MBB->pred_empty()) 341 return nullptr; 342 const MachineLoop *CurLoop = getLoopFor(MBB); 343 const MachineBasicBlock *Best = nullptr; 344 unsigned BestHeight = 0; 345 for (const MachineBasicBlock *Succ : MBB->successors()) { 346 // Don't consider back-edges. 347 if (CurLoop && Succ == CurLoop->getHeader()) 348 continue; 349 // Don't consider successors exiting CurLoop. 350 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 351 continue; 352 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 353 getHeightResources(Succ); 354 // Ignore cycles that aren't natural loops. 355 if (!SuccTBI) 356 continue; 357 // Pick the successor that would give this block the smallest InstrHeight. 358 unsigned Height = SuccTBI->InstrHeight; 359 if (!Best || Height < BestHeight) 360 Best = Succ, BestHeight = Height; 361 } 362 return Best; 363 } 364 365 // Get an Ensemble sub-class for the requested trace strategy. 366 MachineTraceMetrics::Ensemble * 367 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 368 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 369 Ensemble *&E = Ensembles[strategy]; 370 if (E) 371 return E; 372 373 // Allocate new Ensemble on demand. 374 switch (strategy) { 375 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 376 default: llvm_unreachable("Invalid trace strategy enum"); 377 } 378 } 379 380 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 381 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 382 BlockInfo[MBB->getNumber()].invalidate(); 383 for (unsigned i = 0; i != TS_NumStrategies; ++i) 384 if (Ensembles[i]) 385 Ensembles[i]->invalidate(MBB); 386 } 387 388 void MachineTraceMetrics::verifyAnalysis() const { 389 if (!MF) 390 return; 391 #ifndef NDEBUG 392 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 393 for (unsigned i = 0; i != TS_NumStrategies; ++i) 394 if (Ensembles[i]) 395 Ensembles[i]->verify(); 396 #endif 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Trace building 401 //===----------------------------------------------------------------------===// 402 // 403 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 404 // set abstraction that confines the search to the current loop, and doesn't 405 // revisit blocks. 406 407 namespace { 408 struct LoopBounds { 409 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 410 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 411 const MachineLoopInfo *Loops; 412 bool Downward; 413 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 414 const MachineLoopInfo *loops) 415 : Blocks(blocks), Loops(loops), Downward(false) {} 416 }; 417 } 418 419 // Specialize po_iterator_storage in order to prune the post-order traversal so 420 // it is limited to the current loop and doesn't traverse the loop back edges. 421 namespace llvm { 422 template<> 423 class po_iterator_storage<LoopBounds, true> { 424 LoopBounds &LB; 425 public: 426 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 427 void finishPostorder(const MachineBasicBlock*) {} 428 429 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 430 // Skip already visited To blocks. 431 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 432 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 433 return false; 434 // From is null once when To is the trace center block. 435 if (From) { 436 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 437 // Don't follow backedges, don't leave FromLoop when going upwards. 438 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 439 return false; 440 // Don't leave FromLoop. 441 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 442 return false; 443 } 444 } 445 // To is a new block. Mark the block as visited in case the CFG has cycles 446 // that MachineLoopInfo didn't recognize as a natural loop. 447 return LB.Visited.insert(To).second; 448 } 449 }; 450 } 451 452 /// Compute the trace through MBB. 453 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 454 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 455 << MBB->getNumber() << '\n'); 456 // Set up loop bounds for the backwards post-order traversal. 457 LoopBounds Bounds(BlockInfo, MTM.Loops); 458 459 // Run an upwards post-order search for the trace start. 460 Bounds.Downward = false; 461 Bounds.Visited.clear(); 462 for (auto I : inverse_post_order_ext(MBB, Bounds)) { 463 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 464 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 465 // All the predecessors have been visited, pick the preferred one. 466 TBI.Pred = pickTracePred(I); 467 DEBUG({ 468 if (TBI.Pred) 469 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 470 else 471 dbgs() << "null\n"; 472 }); 473 // The trace leading to I is now known, compute the depth resources. 474 computeDepthResources(I); 475 } 476 477 // Run a downwards post-order search for the trace end. 478 Bounds.Downward = true; 479 Bounds.Visited.clear(); 480 for (auto I : post_order_ext(MBB, Bounds)) { 481 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 482 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 483 // All the successors have been visited, pick the preferred one. 484 TBI.Succ = pickTraceSucc(I); 485 DEBUG({ 486 if (TBI.Succ) 487 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 488 else 489 dbgs() << "null\n"; 490 }); 491 // The trace leaving I is now known, compute the height resources. 492 computeHeightResources(I); 493 } 494 } 495 496 /// Invalidate traces through BadMBB. 497 void 498 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 499 SmallVector<const MachineBasicBlock*, 16> WorkList; 500 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 501 502 // Invalidate height resources of blocks above MBB. 503 if (BadTBI.hasValidHeight()) { 504 BadTBI.invalidateHeight(); 505 WorkList.push_back(BadMBB); 506 do { 507 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 508 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 509 << " height.\n"); 510 // Find any MBB predecessors that have MBB as their preferred successor. 511 // They are the only ones that need to be invalidated. 512 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 513 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 514 if (!TBI.hasValidHeight()) 515 continue; 516 if (TBI.Succ == MBB) { 517 TBI.invalidateHeight(); 518 WorkList.push_back(Pred); 519 continue; 520 } 521 // Verify that TBI.Succ is actually a *I successor. 522 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 523 } 524 } while (!WorkList.empty()); 525 } 526 527 // Invalidate depth resources of blocks below MBB. 528 if (BadTBI.hasValidDepth()) { 529 BadTBI.invalidateDepth(); 530 WorkList.push_back(BadMBB); 531 do { 532 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 533 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 534 << " depth.\n"); 535 // Find any MBB successors that have MBB as their preferred predecessor. 536 // They are the only ones that need to be invalidated. 537 for (const MachineBasicBlock *Succ : MBB->successors()) { 538 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 539 if (!TBI.hasValidDepth()) 540 continue; 541 if (TBI.Pred == MBB) { 542 TBI.invalidateDepth(); 543 WorkList.push_back(Succ); 544 continue; 545 } 546 // Verify that TBI.Pred is actually a *I predecessor. 547 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 548 } 549 } while (!WorkList.empty()); 550 } 551 552 // Clear any per-instruction data. We only have to do this for BadMBB itself 553 // because the instructions in that block may change. Other blocks may be 554 // invalidated, but their instructions will stay the same, so there is no 555 // need to erase the Cycle entries. They will be overwritten when we 556 // recompute. 557 for (const auto &I : *BadMBB) 558 Cycles.erase(&I); 559 } 560 561 void MachineTraceMetrics::Ensemble::verify() const { 562 #ifndef NDEBUG 563 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 564 "Outdated BlockInfo size"); 565 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 566 const TraceBlockInfo &TBI = BlockInfo[Num]; 567 if (TBI.hasValidDepth() && TBI.Pred) { 568 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 569 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 570 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 571 "Trace is broken, depth should have been invalidated."); 572 const MachineLoop *Loop = getLoopFor(MBB); 573 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 574 } 575 if (TBI.hasValidHeight() && TBI.Succ) { 576 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 577 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 578 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 579 "Trace is broken, height should have been invalidated."); 580 const MachineLoop *Loop = getLoopFor(MBB); 581 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 582 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 583 "Trace contains backedge"); 584 } 585 } 586 #endif 587 } 588 589 //===----------------------------------------------------------------------===// 590 // Data Dependencies 591 //===----------------------------------------------------------------------===// 592 // 593 // Compute the depth and height of each instruction based on data dependencies 594 // and instruction latencies. These cycle numbers assume that the CPU can issue 595 // an infinite number of instructions per cycle as long as their dependencies 596 // are ready. 597 598 // A data dependency is represented as a defining MI and operand numbers on the 599 // defining and using MI. 600 namespace { 601 struct DataDep { 602 const MachineInstr *DefMI; 603 unsigned DefOp; 604 unsigned UseOp; 605 606 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 607 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 608 609 /// Create a DataDep from an SSA form virtual register. 610 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 611 : UseOp(UseOp) { 612 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 613 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 614 assert(!DefI.atEnd() && "Register has no defs"); 615 DefMI = DefI->getParent(); 616 DefOp = DefI.getOperandNo(); 617 assert((++DefI).atEnd() && "Register has multiple defs"); 618 } 619 }; 620 } 621 622 // Get the input data dependencies that must be ready before UseMI can issue. 623 // Return true if UseMI has any physreg operands. 624 static bool getDataDeps(const MachineInstr *UseMI, 625 SmallVectorImpl<DataDep> &Deps, 626 const MachineRegisterInfo *MRI) { 627 bool HasPhysRegs = false; 628 for (MachineInstr::const_mop_iterator I = UseMI->operands_begin(), 629 E = UseMI->operands_end(); I != E; ++I) { 630 const MachineOperand &MO = *I; 631 if (!MO.isReg()) 632 continue; 633 unsigned Reg = MO.getReg(); 634 if (!Reg) 635 continue; 636 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 637 HasPhysRegs = true; 638 continue; 639 } 640 // Collect virtual register reads. 641 if (MO.readsReg()) 642 Deps.push_back(DataDep(MRI, Reg, UseMI->getOperandNo(I))); 643 } 644 return HasPhysRegs; 645 } 646 647 // Get the input data dependencies of a PHI instruction, using Pred as the 648 // preferred predecessor. 649 // This will add at most one dependency to Deps. 650 static void getPHIDeps(const MachineInstr *UseMI, 651 SmallVectorImpl<DataDep> &Deps, 652 const MachineBasicBlock *Pred, 653 const MachineRegisterInfo *MRI) { 654 // No predecessor at the beginning of a trace. Ignore dependencies. 655 if (!Pred) 656 return; 657 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 658 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 659 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 660 unsigned Reg = UseMI->getOperand(i).getReg(); 661 Deps.push_back(DataDep(MRI, Reg, i)); 662 return; 663 } 664 } 665 } 666 667 // Keep track of physreg data dependencies by recording each live register unit. 668 // Associate each regunit with an instruction operand. Depending on the 669 // direction instructions are scanned, it could be the operand that defined the 670 // regunit, or the highest operand to read the regunit. 671 namespace { 672 struct LiveRegUnit { 673 unsigned RegUnit; 674 unsigned Cycle; 675 const MachineInstr *MI; 676 unsigned Op; 677 678 unsigned getSparseSetIndex() const { return RegUnit; } 679 680 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 681 }; 682 } 683 684 // Identify physreg dependencies for UseMI, and update the live regunit 685 // tracking set when scanning instructions downwards. 686 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 687 SmallVectorImpl<DataDep> &Deps, 688 SparseSet<LiveRegUnit> &RegUnits, 689 const TargetRegisterInfo *TRI) { 690 SmallVector<unsigned, 8> Kills; 691 SmallVector<unsigned, 8> LiveDefOps; 692 693 for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), 694 ME = UseMI->operands_end(); MI != ME; ++MI) { 695 const MachineOperand &MO = *MI; 696 if (!MO.isReg()) 697 continue; 698 unsigned Reg = MO.getReg(); 699 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 700 continue; 701 // Track live defs and kills for updating RegUnits. 702 if (MO.isDef()) { 703 if (MO.isDead()) 704 Kills.push_back(Reg); 705 else 706 LiveDefOps.push_back(UseMI->getOperandNo(MI)); 707 } else if (MO.isKill()) 708 Kills.push_back(Reg); 709 // Identify dependencies. 710 if (!MO.readsReg()) 711 continue; 712 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 713 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 714 if (I == RegUnits.end()) 715 continue; 716 Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); 717 break; 718 } 719 } 720 721 // Update RegUnits to reflect live registers after UseMI. 722 // First kills. 723 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 724 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 725 RegUnits.erase(*Units); 726 727 // Second, live defs. 728 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 729 unsigned DefOp = LiveDefOps[i]; 730 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 731 Units.isValid(); ++Units) { 732 LiveRegUnit &LRU = RegUnits[*Units]; 733 LRU.MI = UseMI; 734 LRU.Op = DefOp; 735 } 736 } 737 } 738 739 /// The length of the critical path through a trace is the maximum of two path 740 /// lengths: 741 /// 742 /// 1. The maximum height+depth over all instructions in the trace center block. 743 /// 744 /// 2. The longest cross-block dependency chain. For small blocks, it is 745 /// possible that the critical path through the trace doesn't include any 746 /// instructions in the block. 747 /// 748 /// This function computes the second number from the live-in list of the 749 /// center block. 750 unsigned MachineTraceMetrics::Ensemble:: 751 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 752 assert(TBI.HasValidInstrDepths && "Missing depth info"); 753 assert(TBI.HasValidInstrHeights && "Missing height info"); 754 unsigned MaxLen = 0; 755 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 756 const LiveInReg &LIR = TBI.LiveIns[i]; 757 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 758 continue; 759 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 760 // Ignore dependencies outside the current trace. 761 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 762 if (!DefTBI.isUsefulDominator(TBI)) 763 continue; 764 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 765 MaxLen = std::max(MaxLen, Len); 766 } 767 return MaxLen; 768 } 769 770 /// Compute instruction depths for all instructions above or in MBB in its 771 /// trace. This assumes that the trace through MBB has already been computed. 772 void MachineTraceMetrics::Ensemble:: 773 computeInstrDepths(const MachineBasicBlock *MBB) { 774 // The top of the trace may already be computed, and HasValidInstrDepths 775 // implies Head->HasValidInstrDepths, so we only need to start from the first 776 // block in the trace that needs to be recomputed. 777 SmallVector<const MachineBasicBlock*, 8> Stack; 778 do { 779 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 780 assert(TBI.hasValidDepth() && "Incomplete trace"); 781 if (TBI.HasValidInstrDepths) 782 break; 783 Stack.push_back(MBB); 784 MBB = TBI.Pred; 785 } while (MBB); 786 787 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 788 // in the trace. We should track any live-out physregs that were defined in 789 // the trace. This is quite rare in SSA form, typically created by CSE 790 // hoisting a compare. 791 SparseSet<LiveRegUnit> RegUnits; 792 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 793 794 // Go through trace blocks in top-down order, stopping after the center block. 795 SmallVector<DataDep, 8> Deps; 796 while (!Stack.empty()) { 797 MBB = Stack.pop_back_val(); 798 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 799 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 800 TBI.HasValidInstrDepths = true; 801 TBI.CriticalPath = 0; 802 803 // Print out resource depths here as well. 804 DEBUG({ 805 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 806 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 807 for (unsigned K = 0; K != PRDepths.size(); ++K) 808 if (PRDepths[K]) { 809 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 810 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 811 << MTM.SchedModel.getProcResource(K)->Name << " (" 812 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 813 } 814 }); 815 816 // Also compute the critical path length through MBB when possible. 817 if (TBI.HasValidInstrHeights) 818 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 819 820 for (const auto &UseMI : *MBB) { 821 // Collect all data dependencies. 822 Deps.clear(); 823 if (UseMI.isPHI()) 824 getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI); 825 else if (getDataDeps(&UseMI, Deps, MTM.MRI)) 826 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 827 828 // Filter and process dependencies, computing the earliest issue cycle. 829 unsigned Cycle = 0; 830 for (const DataDep &Dep : Deps) { 831 const TraceBlockInfo&DepTBI = 832 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 833 // Ignore dependencies from outside the current trace. 834 if (!DepTBI.isUsefulDominator(TBI)) 835 continue; 836 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 837 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 838 // Add latency if DefMI is a real instruction. Transients get latency 0. 839 if (!Dep.DefMI->isTransient()) 840 DepCycle += MTM.SchedModel 841 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 842 Cycle = std::max(Cycle, DepCycle); 843 } 844 // Remember the instruction depth. 845 InstrCycles &MICycles = Cycles[&UseMI]; 846 MICycles.Depth = Cycle; 847 848 if (!TBI.HasValidInstrHeights) { 849 DEBUG(dbgs() << Cycle << '\t' << UseMI); 850 continue; 851 } 852 // Update critical path length. 853 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 854 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 855 } 856 } 857 } 858 859 // Identify physreg dependencies for MI when scanning instructions upwards. 860 // Return the issue height of MI after considering any live regunits. 861 // Height is the issue height computed from virtual register dependencies alone. 862 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 863 SparseSet<LiveRegUnit> &RegUnits, 864 const TargetSchedModel &SchedModel, 865 const TargetInstrInfo *TII, 866 const TargetRegisterInfo *TRI) { 867 SmallVector<unsigned, 8> ReadOps; 868 869 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 870 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 871 const MachineOperand &MO = *MOI; 872 if (!MO.isReg()) 873 continue; 874 unsigned Reg = MO.getReg(); 875 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 876 continue; 877 if (MO.readsReg()) 878 ReadOps.push_back(MI->getOperandNo(MOI)); 879 if (!MO.isDef()) 880 continue; 881 // This is a def of Reg. Remove corresponding entries from RegUnits, and 882 // update MI Height to consider the physreg dependencies. 883 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 884 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 885 if (I == RegUnits.end()) 886 continue; 887 unsigned DepHeight = I->Cycle; 888 if (!MI->isTransient()) { 889 // We may not know the UseMI of this dependency, if it came from the 890 // live-in list. SchedModel can handle a NULL UseMI. 891 DepHeight += SchedModel 892 .computeOperandLatency(MI, MI->getOperandNo(MOI), I->MI, I->Op); 893 } 894 Height = std::max(Height, DepHeight); 895 // This regunit is dead above MI. 896 RegUnits.erase(I); 897 } 898 } 899 900 // Now we know the height of MI. Update any regunits read. 901 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 902 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 903 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 904 LiveRegUnit &LRU = RegUnits[*Units]; 905 // Set the height to the highest reader of the unit. 906 if (LRU.Cycle <= Height && LRU.MI != MI) { 907 LRU.Cycle = Height; 908 LRU.MI = MI; 909 LRU.Op = ReadOps[i]; 910 } 911 } 912 } 913 914 return Height; 915 } 916 917 918 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 919 920 // Push the height of DefMI upwards if required to match UseMI. 921 // Return true if this is the first time DefMI was seen. 922 static bool pushDepHeight(const DataDep &Dep, 923 const MachineInstr *UseMI, unsigned UseHeight, 924 MIHeightMap &Heights, 925 const TargetSchedModel &SchedModel, 926 const TargetInstrInfo *TII) { 927 // Adjust height by Dep.DefMI latency. 928 if (!Dep.DefMI->isTransient()) 929 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 930 UseMI, Dep.UseOp); 931 932 // Update Heights[DefMI] to be the maximum height seen. 933 MIHeightMap::iterator I; 934 bool New; 935 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 936 if (New) 937 return true; 938 939 // DefMI has been pushed before. Give it the max height. 940 if (I->second < UseHeight) 941 I->second = UseHeight; 942 return false; 943 } 944 945 /// Assuming that the virtual register defined by DefMI:DefOp was used by 946 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 947 /// when reaching the block that contains DefMI. 948 void MachineTraceMetrics::Ensemble:: 949 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 950 ArrayRef<const MachineBasicBlock*> Trace) { 951 assert(!Trace.empty() && "Trace should contain at least one block"); 952 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 953 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 954 const MachineBasicBlock *DefMBB = DefMI->getParent(); 955 956 // Reg is live-in to all blocks in Trace that follow DefMBB. 957 for (unsigned i = Trace.size(); i; --i) { 958 const MachineBasicBlock *MBB = Trace[i-1]; 959 if (MBB == DefMBB) 960 return; 961 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 962 // Just add the register. The height will be updated later. 963 TBI.LiveIns.push_back(Reg); 964 } 965 } 966 967 /// Compute instruction heights in the trace through MBB. This updates MBB and 968 /// the blocks below it in the trace. It is assumed that the trace has already 969 /// been computed. 970 void MachineTraceMetrics::Ensemble:: 971 computeInstrHeights(const MachineBasicBlock *MBB) { 972 // The bottom of the trace may already be computed. 973 // Find the blocks that need updating. 974 SmallVector<const MachineBasicBlock*, 8> Stack; 975 do { 976 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 977 assert(TBI.hasValidHeight() && "Incomplete trace"); 978 if (TBI.HasValidInstrHeights) 979 break; 980 Stack.push_back(MBB); 981 TBI.LiveIns.clear(); 982 MBB = TBI.Succ; 983 } while (MBB); 984 985 // As we move upwards in the trace, keep track of instructions that are 986 // required by deeper trace instructions. Map MI -> height required so far. 987 MIHeightMap Heights; 988 989 // For physregs, the def isn't known when we see the use. 990 // Instead, keep track of the highest use of each regunit. 991 SparseSet<LiveRegUnit> RegUnits; 992 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 993 994 // If the bottom of the trace was already precomputed, initialize heights 995 // from its live-in list. 996 // MBB is the highest precomputed block in the trace. 997 if (MBB) { 998 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 999 for (LiveInReg &LI : TBI.LiveIns) { 1000 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1001 // For virtual registers, the def latency is included. 1002 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1003 if (Height < LI.Height) 1004 Height = LI.Height; 1005 } else { 1006 // For register units, the def latency is not included because we don't 1007 // know the def yet. 1008 RegUnits[LI.Reg].Cycle = LI.Height; 1009 } 1010 } 1011 } 1012 1013 // Go through the trace blocks in bottom-up order. 1014 SmallVector<DataDep, 8> Deps; 1015 for (;!Stack.empty(); Stack.pop_back()) { 1016 MBB = Stack.back(); 1017 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1018 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1019 TBI.HasValidInstrHeights = true; 1020 TBI.CriticalPath = 0; 1021 1022 DEBUG({ 1023 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1024 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1025 for (unsigned K = 0; K != PRHeights.size(); ++K) 1026 if (PRHeights[K]) { 1027 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1028 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1029 << MTM.SchedModel.getProcResource(K)->Name << " (" 1030 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1031 } 1032 }); 1033 1034 // Get dependencies from PHIs in the trace successor. 1035 const MachineBasicBlock *Succ = TBI.Succ; 1036 // If MBB is the last block in the trace, and it has a back-edge to the 1037 // loop header, get loop-carried dependencies from PHIs in the header. For 1038 // that purpose, pretend that all the loop header PHIs have height 0. 1039 if (!Succ) 1040 if (const MachineLoop *Loop = getLoopFor(MBB)) 1041 if (MBB->isSuccessor(Loop->getHeader())) 1042 Succ = Loop->getHeader(); 1043 1044 if (Succ) { 1045 for (const auto &PHI : *Succ) { 1046 if (!PHI.isPHI()) 1047 break; 1048 Deps.clear(); 1049 getPHIDeps(&PHI, Deps, MBB, MTM.MRI); 1050 if (!Deps.empty()) { 1051 // Loop header PHI heights are all 0. 1052 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1053 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1054 if (pushDepHeight(Deps.front(), &PHI, Height, 1055 Heights, MTM.SchedModel, MTM.TII)) 1056 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1057 } 1058 } 1059 } 1060 1061 // Go through the block backwards. 1062 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1063 BI != BB;) { 1064 const MachineInstr *MI = --BI; 1065 1066 // Find the MI height as determined by virtual register uses in the 1067 // trace below. 1068 unsigned Cycle = 0; 1069 MIHeightMap::iterator HeightI = Heights.find(MI); 1070 if (HeightI != Heights.end()) { 1071 Cycle = HeightI->second; 1072 // We won't be seeing any more MI uses. 1073 Heights.erase(HeightI); 1074 } 1075 1076 // Don't process PHI deps. They depend on the specific predecessor, and 1077 // we'll get them when visiting the predecessor. 1078 Deps.clear(); 1079 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1080 1081 // There may also be regunit dependencies to include in the height. 1082 if (HasPhysRegs) 1083 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1084 MTM.SchedModel, MTM.TII, MTM.TRI); 1085 1086 // Update the required height of any virtual registers read by MI. 1087 for (const DataDep &Dep : Deps) 1088 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1089 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1090 1091 InstrCycles &MICycles = Cycles[MI]; 1092 MICycles.Height = Cycle; 1093 if (!TBI.HasValidInstrDepths) { 1094 DEBUG(dbgs() << Cycle << '\t' << *MI); 1095 continue; 1096 } 1097 // Update critical path length. 1098 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1099 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1100 } 1101 1102 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1103 // height because the final height isn't known until now. 1104 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1105 for (LiveInReg &LIR : TBI.LiveIns) { 1106 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1107 LIR.Height = Heights.lookup(DefMI); 1108 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1109 } 1110 1111 // Transfer the live regunits to the live-in list. 1112 for (SparseSet<LiveRegUnit>::const_iterator 1113 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1114 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1115 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1116 << '@' << RI->Cycle); 1117 } 1118 DEBUG(dbgs() << '\n'); 1119 1120 if (!TBI.HasValidInstrDepths) 1121 continue; 1122 // Add live-ins to the critical path length. 1123 TBI.CriticalPath = std::max(TBI.CriticalPath, 1124 computeCrossBlockCriticalPath(TBI)); 1125 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1126 } 1127 } 1128 1129 MachineTraceMetrics::Trace 1130 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1131 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1132 1133 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1134 computeTrace(MBB); 1135 if (!TBI.HasValidInstrDepths) 1136 computeInstrDepths(MBB); 1137 if (!TBI.HasValidInstrHeights) 1138 computeInstrHeights(MBB); 1139 1140 return Trace(*this, TBI); 1141 } 1142 1143 unsigned 1144 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1145 assert(MI && "Not an instruction."); 1146 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1147 "MI must be in the trace center block"); 1148 InstrCycles Cyc = getInstrCycles(MI); 1149 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1150 } 1151 1152 unsigned 1153 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1154 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1155 SmallVector<DataDep, 1> Deps; 1156 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1157 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1158 DataDep &Dep = Deps.front(); 1159 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1160 // Add latency if DefMI is a real instruction. Transients get latency 0. 1161 if (!Dep.DefMI->isTransient()) 1162 DepCycle += TE.MTM.SchedModel 1163 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 1164 return DepCycle; 1165 } 1166 1167 /// When bottom is set include instructions in current block in estimate. 1168 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1169 // Find the limiting processor resource. 1170 // Numbers have been pre-scaled to be comparable. 1171 unsigned PRMax = 0; 1172 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1173 if (Bottom) { 1174 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1175 for (unsigned K = 0; K != PRDepths.size(); ++K) 1176 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1177 } else { 1178 for (unsigned K = 0; K != PRDepths.size(); ++K) 1179 PRMax = std::max(PRMax, PRDepths[K]); 1180 } 1181 // Convert to cycle count. 1182 PRMax = TE.MTM.getCycles(PRMax); 1183 1184 /// All instructions before current block 1185 unsigned Instrs = TBI.InstrDepth; 1186 // plus instructions in current block 1187 if (Bottom) 1188 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1189 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1190 Instrs /= IW; 1191 // Assume issue width 1 without a schedule model. 1192 return std::max(Instrs, PRMax); 1193 } 1194 1195 unsigned MachineTraceMetrics::Trace::getResourceLength( 1196 ArrayRef<const MachineBasicBlock *> Extrablocks, 1197 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1198 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1199 // Add up resources above and below the center block. 1200 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1201 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1202 unsigned PRMax = 0; 1203 1204 // Capture computing cycles from extra instructions 1205 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1206 unsigned ResourceIdx) 1207 ->unsigned { 1208 unsigned Cycles = 0; 1209 for (const MCSchedClassDesc *SC : Instrs) { 1210 if (!SC->isValid()) 1211 continue; 1212 for (TargetSchedModel::ProcResIter 1213 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1214 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1215 PI != PE; ++PI) { 1216 if (PI->ProcResourceIdx != ResourceIdx) 1217 continue; 1218 Cycles += 1219 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1220 } 1221 } 1222 return Cycles; 1223 }; 1224 1225 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1226 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1227 for (const MachineBasicBlock *MBB : Extrablocks) 1228 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1229 PRCycles += extraCycles(ExtraInstrs, K); 1230 PRCycles -= extraCycles(RemoveInstrs, K); 1231 PRMax = std::max(PRMax, PRCycles); 1232 } 1233 // Convert to cycle count. 1234 PRMax = TE.MTM.getCycles(PRMax); 1235 1236 // Instrs: #instructions in current trace outside current block. 1237 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1238 // Add instruction count from the extra blocks. 1239 for (const MachineBasicBlock *MBB : Extrablocks) 1240 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1241 Instrs += ExtraInstrs.size(); 1242 Instrs -= RemoveInstrs.size(); 1243 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1244 Instrs /= IW; 1245 // Assume issue width 1 without a schedule model. 1246 return std::max(Instrs, PRMax); 1247 } 1248 1249 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI, 1250 const MachineInstr *UseMI) const { 1251 if (DefMI->getParent() == UseMI->getParent()) 1252 return true; 1253 1254 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()]; 1255 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()]; 1256 1257 return DepTBI.isUsefulDominator(TBI); 1258 } 1259 1260 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1261 OS << getName() << " ensemble:\n"; 1262 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1263 OS << " BB#" << i << '\t'; 1264 BlockInfo[i].print(OS); 1265 OS << '\n'; 1266 } 1267 } 1268 1269 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1270 if (hasValidDepth()) { 1271 OS << "depth=" << InstrDepth; 1272 if (Pred) 1273 OS << " pred=BB#" << Pred->getNumber(); 1274 else 1275 OS << " pred=null"; 1276 OS << " head=BB#" << Head; 1277 if (HasValidInstrDepths) 1278 OS << " +instrs"; 1279 } else 1280 OS << "depth invalid"; 1281 OS << ", "; 1282 if (hasValidHeight()) { 1283 OS << "height=" << InstrHeight; 1284 if (Succ) 1285 OS << " succ=BB#" << Succ->getNumber(); 1286 else 1287 OS << " succ=null"; 1288 OS << " tail=BB#" << Tail; 1289 if (HasValidInstrHeights) 1290 OS << " +instrs"; 1291 } else 1292 OS << "height invalid"; 1293 if (HasValidInstrDepths && HasValidInstrHeights) 1294 OS << ", crit=" << CriticalPath; 1295 } 1296 1297 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1298 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1299 1300 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1301 << " --> BB#" << TBI.Tail << ':'; 1302 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1303 OS << ' ' << getInstrCount() << " instrs."; 1304 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1305 OS << ' ' << TBI.CriticalPath << " cycles."; 1306 1307 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1308 OS << "\nBB#" << MBBNum; 1309 while (Block->hasValidDepth() && Block->Pred) { 1310 unsigned Num = Block->Pred->getNumber(); 1311 OS << " <- BB#" << Num; 1312 Block = &TE.BlockInfo[Num]; 1313 } 1314 1315 Block = &TBI; 1316 OS << "\n "; 1317 while (Block->hasValidHeight() && Block->Succ) { 1318 unsigned Num = Block->Succ->getNumber(); 1319 OS << " -> BB#" << Num; 1320 Block = &TE.BlockInfo[Num]; 1321 } 1322 OS << '\n'; 1323 } 1324