1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSchedule.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <iterator> 36 #include <tuple> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-trace-metrics" 42 43 char MachineTraceMetrics::ID = 0; 44 45 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 46 47 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 48 "Machine Trace Metrics", false, true) 49 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 51 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 52 "Machine Trace Metrics", false, true) 53 54 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 55 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 56 } 57 58 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.setPreservesAll(); 60 AU.addRequired<MachineBranchProbabilityInfo>(); 61 AU.addRequired<MachineLoopInfo>(); 62 MachineFunctionPass::getAnalysisUsage(AU); 63 } 64 65 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 66 MF = &Func; 67 const TargetSubtargetInfo &ST = MF->getSubtarget(); 68 TII = ST.getInstrInfo(); 69 TRI = ST.getRegisterInfo(); 70 MRI = &MF->getRegInfo(); 71 Loops = &getAnalysis<MachineLoopInfo>(); 72 SchedModel.init(&ST); 73 BlockInfo.resize(MF->getNumBlockIDs()); 74 ProcResourceCycles.resize(MF->getNumBlockIDs() * 75 SchedModel.getNumProcResourceKinds()); 76 return false; 77 } 78 79 void MachineTraceMetrics::releaseMemory() { 80 MF = nullptr; 81 BlockInfo.clear(); 82 for (Ensemble *&E : Ensembles) { 83 delete E; 84 E = nullptr; 85 } 86 } 87 88 //===----------------------------------------------------------------------===// 89 // Fixed block information 90 //===----------------------------------------------------------------------===// 91 // 92 // The number of instructions in a basic block and the CPU resources used by 93 // those instructions don't depend on any given trace strategy. 94 95 /// Compute the resource usage in basic block MBB. 96 const MachineTraceMetrics::FixedBlockInfo* 97 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 98 assert(MBB && "No basic block"); 99 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 100 if (FBI->hasResources()) 101 return FBI; 102 103 // Compute resource usage in the block. 104 FBI->HasCalls = false; 105 unsigned InstrCount = 0; 106 107 // Add up per-processor resource cycles as well. 108 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 109 SmallVector<unsigned, 32> PRCycles(PRKinds); 110 111 for (const auto &MI : *MBB) { 112 if (MI.isTransient()) 113 continue; 114 ++InstrCount; 115 if (MI.isCall()) 116 FBI->HasCalls = true; 117 118 // Count processor resources used. 119 if (!SchedModel.hasInstrSchedModel()) 120 continue; 121 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 122 if (!SC->isValid()) 123 continue; 124 125 for (TargetSchedModel::ProcResIter 126 PI = SchedModel.getWriteProcResBegin(SC), 127 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 128 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 129 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 130 } 131 } 132 FBI->InstrCount = InstrCount; 133 134 // Scale the resource cycles so they are comparable. 135 unsigned PROffset = MBB->getNumber() * PRKinds; 136 for (unsigned K = 0; K != PRKinds; ++K) 137 ProcResourceCycles[PROffset + K] = 138 PRCycles[K] * SchedModel.getResourceFactor(K); 139 140 return FBI; 141 } 142 143 ArrayRef<unsigned> 144 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 145 assert(BlockInfo[MBBNum].hasResources() && 146 "getResources() must be called before getProcResourceCycles()"); 147 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 148 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 149 return ArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // Ensemble utility functions 154 //===----------------------------------------------------------------------===// 155 156 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 157 : MTM(*ct) { 158 BlockInfo.resize(MTM.BlockInfo.size()); 159 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 160 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 161 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 162 } 163 164 // Virtual destructor serves as an anchor. 165 MachineTraceMetrics::Ensemble::~Ensemble() = default; 166 167 const MachineLoop* 168 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 169 return MTM.Loops->getLoopFor(MBB); 170 } 171 172 // Update resource-related information in the TraceBlockInfo for MBB. 173 // Only update resources related to the trace above MBB. 174 void MachineTraceMetrics::Ensemble:: 175 computeDepthResources(const MachineBasicBlock *MBB) { 176 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 177 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 178 unsigned PROffset = MBB->getNumber() * PRKinds; 179 180 // Compute resources from trace above. The top block is simple. 181 if (!TBI->Pred) { 182 TBI->InstrDepth = 0; 183 TBI->Head = MBB->getNumber(); 184 std::fill(ProcResourceDepths.begin() + PROffset, 185 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 186 return; 187 } 188 189 // Compute from the block above. A post-order traversal ensures the 190 // predecessor is always computed first. 191 unsigned PredNum = TBI->Pred->getNumber(); 192 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 193 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 194 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 195 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 196 TBI->Head = PredTBI->Head; 197 198 // Compute per-resource depths. 199 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 200 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 201 for (unsigned K = 0; K != PRKinds; ++K) 202 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 203 } 204 205 // Update resource-related information in the TraceBlockInfo for MBB. 206 // Only update resources related to the trace below MBB. 207 void MachineTraceMetrics::Ensemble:: 208 computeHeightResources(const MachineBasicBlock *MBB) { 209 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 210 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 211 unsigned PROffset = MBB->getNumber() * PRKinds; 212 213 // Compute resources for the current block. 214 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 215 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 216 217 // The trace tail is done. 218 if (!TBI->Succ) { 219 TBI->Tail = MBB->getNumber(); 220 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 221 return; 222 } 223 224 // Compute from the block below. A post-order traversal ensures the 225 // predecessor is always computed first. 226 unsigned SuccNum = TBI->Succ->getNumber(); 227 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 228 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 229 TBI->InstrHeight += SuccTBI->InstrHeight; 230 TBI->Tail = SuccTBI->Tail; 231 232 // Compute per-resource heights. 233 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 234 for (unsigned K = 0; K != PRKinds; ++K) 235 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 236 } 237 238 // Check if depth resources for MBB are valid and return the TBI. 239 // Return NULL if the resources have been invalidated. 240 const MachineTraceMetrics::TraceBlockInfo* 241 MachineTraceMetrics::Ensemble:: 242 getDepthResources(const MachineBasicBlock *MBB) const { 243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 244 return TBI->hasValidDepth() ? TBI : nullptr; 245 } 246 247 // Check if height resources for MBB are valid and return the TBI. 248 // Return NULL if the resources have been invalidated. 249 const MachineTraceMetrics::TraceBlockInfo* 250 MachineTraceMetrics::Ensemble:: 251 getHeightResources(const MachineBasicBlock *MBB) const { 252 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 253 return TBI->hasValidHeight() ? TBI : nullptr; 254 } 255 256 /// Get an array of processor resource depths for MBB. Indexed by processor 257 /// resource kind, this array contains the scaled processor resources consumed 258 /// by all blocks preceding MBB in its trace. It does not include instructions 259 /// in MBB. 260 /// 261 /// Compare TraceBlockInfo::InstrDepth. 262 ArrayRef<unsigned> 263 MachineTraceMetrics::Ensemble:: 264 getProcResourceDepths(unsigned MBBNum) const { 265 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 266 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 267 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 268 } 269 270 /// Get an array of processor resource heights for MBB. Indexed by processor 271 /// resource kind, this array contains the scaled processor resources consumed 272 /// by this block and all blocks following it in its trace. 273 /// 274 /// Compare TraceBlockInfo::InstrHeight. 275 ArrayRef<unsigned> 276 MachineTraceMetrics::Ensemble:: 277 getProcResourceHeights(unsigned MBBNum) const { 278 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 279 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 280 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // Trace Selection Strategies 285 //===----------------------------------------------------------------------===// 286 // 287 // A trace selection strategy is implemented as a sub-class of Ensemble. The 288 // trace through a block B is computed by two DFS traversals of the CFG 289 // starting from B. One upwards, and one downwards. During the upwards DFS, 290 // pickTracePred() is called on the post-ordered blocks. During the downwards 291 // DFS, pickTraceSucc() is called in a post-order. 292 // 293 294 // We never allow traces that leave loops, but we do allow traces to enter 295 // nested loops. We also never allow traces to contain back-edges. 296 // 297 // This means that a loop header can never appear above the center block of a 298 // trace, except as the trace head. Below the center block, loop exiting edges 299 // are banned. 300 // 301 // Return true if an edge from the From loop to the To loop is leaving a loop. 302 // Either of To and From can be null. 303 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 304 return From && !From->contains(To); 305 } 306 307 // MinInstrCountEnsemble - Pick the trace that executes the least number of 308 // instructions. 309 namespace { 310 311 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 312 const char *getName() const override { return "MinInstr"; } 313 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 314 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 315 316 public: 317 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 318 : MachineTraceMetrics::Ensemble(mtm) {} 319 }; 320 321 } // end anonymous namespace 322 323 // Select the preferred predecessor for MBB. 324 const MachineBasicBlock* 325 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 326 if (MBB->pred_empty()) 327 return nullptr; 328 const MachineLoop *CurLoop = getLoopFor(MBB); 329 // Don't leave loops, and never follow back-edges. 330 if (CurLoop && MBB == CurLoop->getHeader()) 331 return nullptr; 332 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 333 const MachineBasicBlock *Best = nullptr; 334 unsigned BestDepth = 0; 335 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 336 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 337 getDepthResources(Pred); 338 // Ignore cycles that aren't natural loops. 339 if (!PredTBI) 340 continue; 341 // Pick the predecessor that would give this block the smallest InstrDepth. 342 unsigned Depth = PredTBI->InstrDepth + CurCount; 343 if (!Best || Depth < BestDepth) { 344 Best = Pred; 345 BestDepth = Depth; 346 } 347 } 348 return Best; 349 } 350 351 // Select the preferred successor for MBB. 352 const MachineBasicBlock* 353 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 354 if (MBB->succ_empty()) 355 return nullptr; 356 const MachineLoop *CurLoop = getLoopFor(MBB); 357 const MachineBasicBlock *Best = nullptr; 358 unsigned BestHeight = 0; 359 for (const MachineBasicBlock *Succ : MBB->successors()) { 360 // Don't consider back-edges. 361 if (CurLoop && Succ == CurLoop->getHeader()) 362 continue; 363 // Don't consider successors exiting CurLoop. 364 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 365 continue; 366 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 367 getHeightResources(Succ); 368 // Ignore cycles that aren't natural loops. 369 if (!SuccTBI) 370 continue; 371 // Pick the successor that would give this block the smallest InstrHeight. 372 unsigned Height = SuccTBI->InstrHeight; 373 if (!Best || Height < BestHeight) { 374 Best = Succ; 375 BestHeight = Height; 376 } 377 } 378 return Best; 379 } 380 381 // Get an Ensemble sub-class for the requested trace strategy. 382 MachineTraceMetrics::Ensemble * 383 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 384 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 385 Ensemble *&E = Ensembles[strategy]; 386 if (E) 387 return E; 388 389 // Allocate new Ensemble on demand. 390 switch (strategy) { 391 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 392 default: llvm_unreachable("Invalid trace strategy enum"); 393 } 394 } 395 396 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 397 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 398 << '\n'); 399 BlockInfo[MBB->getNumber()].invalidate(); 400 for (Ensemble *E : Ensembles) 401 if (E) 402 E->invalidate(MBB); 403 } 404 405 void MachineTraceMetrics::verifyAnalysis() const { 406 if (!MF) 407 return; 408 #ifndef NDEBUG 409 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 410 for (Ensemble *E : Ensembles) 411 if (E) 412 E->verify(); 413 #endif 414 } 415 416 //===----------------------------------------------------------------------===// 417 // Trace building 418 //===----------------------------------------------------------------------===// 419 // 420 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 421 // set abstraction that confines the search to the current loop, and doesn't 422 // revisit blocks. 423 424 namespace { 425 426 struct LoopBounds { 427 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 428 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 429 const MachineLoopInfo *Loops; 430 bool Downward = false; 431 432 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 433 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 434 }; 435 436 } // end anonymous namespace 437 438 // Specialize po_iterator_storage in order to prune the post-order traversal so 439 // it is limited to the current loop and doesn't traverse the loop back edges. 440 namespace llvm { 441 442 template<> 443 class po_iterator_storage<LoopBounds, true> { 444 LoopBounds &LB; 445 446 public: 447 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 448 449 void finishPostorder(const MachineBasicBlock*) {} 450 451 bool insertEdge(std::optional<const MachineBasicBlock *> From, 452 const MachineBasicBlock *To) { 453 // Skip already visited To blocks. 454 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 455 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 456 return false; 457 // From is null once when To is the trace center block. 458 if (From) { 459 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 460 // Don't follow backedges, don't leave FromLoop when going upwards. 461 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 462 return false; 463 // Don't leave FromLoop. 464 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 465 return false; 466 } 467 } 468 // To is a new block. Mark the block as visited in case the CFG has cycles 469 // that MachineLoopInfo didn't recognize as a natural loop. 470 return LB.Visited.insert(To).second; 471 } 472 }; 473 474 } // end namespace llvm 475 476 /// Compute the trace through MBB. 477 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 478 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 479 << printMBBReference(*MBB) << '\n'); 480 // Set up loop bounds for the backwards post-order traversal. 481 LoopBounds Bounds(BlockInfo, MTM.Loops); 482 483 // Run an upwards post-order search for the trace start. 484 Bounds.Downward = false; 485 Bounds.Visited.clear(); 486 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 487 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 488 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 489 // All the predecessors have been visited, pick the preferred one. 490 TBI.Pred = pickTracePred(I); 491 LLVM_DEBUG({ 492 if (TBI.Pred) 493 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 494 else 495 dbgs() << "null\n"; 496 }); 497 // The trace leading to I is now known, compute the depth resources. 498 computeDepthResources(I); 499 } 500 501 // Run a downwards post-order search for the trace end. 502 Bounds.Downward = true; 503 Bounds.Visited.clear(); 504 for (const auto *I : post_order_ext(MBB, Bounds)) { 505 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 506 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 507 // All the successors have been visited, pick the preferred one. 508 TBI.Succ = pickTraceSucc(I); 509 LLVM_DEBUG({ 510 if (TBI.Succ) 511 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 512 else 513 dbgs() << "null\n"; 514 }); 515 // The trace leaving I is now known, compute the height resources. 516 computeHeightResources(I); 517 } 518 } 519 520 /// Invalidate traces through BadMBB. 521 void 522 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 523 SmallVector<const MachineBasicBlock*, 16> WorkList; 524 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 525 526 // Invalidate height resources of blocks above MBB. 527 if (BadTBI.hasValidHeight()) { 528 BadTBI.invalidateHeight(); 529 WorkList.push_back(BadMBB); 530 do { 531 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 532 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 533 << getName() << " height.\n"); 534 // Find any MBB predecessors that have MBB as their preferred successor. 535 // They are the only ones that need to be invalidated. 536 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 537 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 538 if (!TBI.hasValidHeight()) 539 continue; 540 if (TBI.Succ == MBB) { 541 TBI.invalidateHeight(); 542 WorkList.push_back(Pred); 543 continue; 544 } 545 // Verify that TBI.Succ is actually a *I successor. 546 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 547 } 548 } while (!WorkList.empty()); 549 } 550 551 // Invalidate depth resources of blocks below MBB. 552 if (BadTBI.hasValidDepth()) { 553 BadTBI.invalidateDepth(); 554 WorkList.push_back(BadMBB); 555 do { 556 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 557 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 558 << getName() << " depth.\n"); 559 // Find any MBB successors that have MBB as their preferred predecessor. 560 // They are the only ones that need to be invalidated. 561 for (const MachineBasicBlock *Succ : MBB->successors()) { 562 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 563 if (!TBI.hasValidDepth()) 564 continue; 565 if (TBI.Pred == MBB) { 566 TBI.invalidateDepth(); 567 WorkList.push_back(Succ); 568 continue; 569 } 570 // Verify that TBI.Pred is actually a *I predecessor. 571 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 572 } 573 } while (!WorkList.empty()); 574 } 575 576 // Clear any per-instruction data. We only have to do this for BadMBB itself 577 // because the instructions in that block may change. Other blocks may be 578 // invalidated, but their instructions will stay the same, so there is no 579 // need to erase the Cycle entries. They will be overwritten when we 580 // recompute. 581 for (const auto &I : *BadMBB) 582 Cycles.erase(&I); 583 } 584 585 void MachineTraceMetrics::Ensemble::verify() const { 586 #ifndef NDEBUG 587 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 588 "Outdated BlockInfo size"); 589 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 590 const TraceBlockInfo &TBI = BlockInfo[Num]; 591 if (TBI.hasValidDepth() && TBI.Pred) { 592 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 593 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 594 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 595 "Trace is broken, depth should have been invalidated."); 596 const MachineLoop *Loop = getLoopFor(MBB); 597 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 598 } 599 if (TBI.hasValidHeight() && TBI.Succ) { 600 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 601 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 602 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 603 "Trace is broken, height should have been invalidated."); 604 const MachineLoop *Loop = getLoopFor(MBB); 605 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 606 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 607 "Trace contains backedge"); 608 } 609 } 610 #endif 611 } 612 613 //===----------------------------------------------------------------------===// 614 // Data Dependencies 615 //===----------------------------------------------------------------------===// 616 // 617 // Compute the depth and height of each instruction based on data dependencies 618 // and instruction latencies. These cycle numbers assume that the CPU can issue 619 // an infinite number of instructions per cycle as long as their dependencies 620 // are ready. 621 622 // A data dependency is represented as a defining MI and operand numbers on the 623 // defining and using MI. 624 namespace { 625 626 struct DataDep { 627 const MachineInstr *DefMI; 628 unsigned DefOp; 629 unsigned UseOp; 630 631 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 632 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 633 634 /// Create a DataDep from an SSA form virtual register. 635 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 636 : UseOp(UseOp) { 637 assert(Register::isVirtualRegister(VirtReg)); 638 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 639 assert(!DefI.atEnd() && "Register has no defs"); 640 DefMI = DefI->getParent(); 641 DefOp = DefI.getOperandNo(); 642 assert((++DefI).atEnd() && "Register has multiple defs"); 643 } 644 }; 645 646 } // end anonymous namespace 647 648 // Get the input data dependencies that must be ready before UseMI can issue. 649 // Return true if UseMI has any physreg operands. 650 static bool getDataDeps(const MachineInstr &UseMI, 651 SmallVectorImpl<DataDep> &Deps, 652 const MachineRegisterInfo *MRI) { 653 // Debug values should not be included in any calculations. 654 if (UseMI.isDebugInstr()) 655 return false; 656 657 bool HasPhysRegs = false; 658 for (const MachineOperand &MO : UseMI.operands()) { 659 if (!MO.isReg()) 660 continue; 661 Register Reg = MO.getReg(); 662 if (!Reg) 663 continue; 664 if (Reg.isPhysical()) { 665 HasPhysRegs = true; 666 continue; 667 } 668 // Collect virtual register reads. 669 if (MO.readsReg()) 670 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 671 } 672 return HasPhysRegs; 673 } 674 675 // Get the input data dependencies of a PHI instruction, using Pred as the 676 // preferred predecessor. 677 // This will add at most one dependency to Deps. 678 static void getPHIDeps(const MachineInstr &UseMI, 679 SmallVectorImpl<DataDep> &Deps, 680 const MachineBasicBlock *Pred, 681 const MachineRegisterInfo *MRI) { 682 // No predecessor at the beginning of a trace. Ignore dependencies. 683 if (!Pred) 684 return; 685 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 686 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 687 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 688 Register Reg = UseMI.getOperand(i).getReg(); 689 Deps.push_back(DataDep(MRI, Reg, i)); 690 return; 691 } 692 } 693 } 694 695 // Identify physreg dependencies for UseMI, and update the live regunit 696 // tracking set when scanning instructions downwards. 697 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 698 SmallVectorImpl<DataDep> &Deps, 699 SparseSet<LiveRegUnit> &RegUnits, 700 const TargetRegisterInfo *TRI) { 701 SmallVector<MCRegister, 8> Kills; 702 SmallVector<unsigned, 8> LiveDefOps; 703 704 for (const MachineOperand &MO : UseMI->operands()) { 705 if (!MO.isReg() || !MO.getReg().isPhysical()) 706 continue; 707 MCRegister Reg = MO.getReg().asMCReg(); 708 // Track live defs and kills for updating RegUnits. 709 if (MO.isDef()) { 710 if (MO.isDead()) 711 Kills.push_back(Reg); 712 else 713 LiveDefOps.push_back(MO.getOperandNo()); 714 } else if (MO.isKill()) 715 Kills.push_back(Reg); 716 // Identify dependencies. 717 if (!MO.readsReg()) 718 continue; 719 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 720 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 721 if (I == RegUnits.end()) 722 continue; 723 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 724 break; 725 } 726 } 727 728 // Update RegUnits to reflect live registers after UseMI. 729 // First kills. 730 for (MCRegister Kill : Kills) 731 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 732 RegUnits.erase(*Units); 733 734 // Second, live defs. 735 for (unsigned DefOp : LiveDefOps) { 736 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg().asMCReg(), 737 TRI); 738 Units.isValid(); ++Units) { 739 LiveRegUnit &LRU = RegUnits[*Units]; 740 LRU.MI = UseMI; 741 LRU.Op = DefOp; 742 } 743 } 744 } 745 746 /// The length of the critical path through a trace is the maximum of two path 747 /// lengths: 748 /// 749 /// 1. The maximum height+depth over all instructions in the trace center block. 750 /// 751 /// 2. The longest cross-block dependency chain. For small blocks, it is 752 /// possible that the critical path through the trace doesn't include any 753 /// instructions in the block. 754 /// 755 /// This function computes the second number from the live-in list of the 756 /// center block. 757 unsigned MachineTraceMetrics::Ensemble:: 758 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 759 assert(TBI.HasValidInstrDepths && "Missing depth info"); 760 assert(TBI.HasValidInstrHeights && "Missing height info"); 761 unsigned MaxLen = 0; 762 for (const LiveInReg &LIR : TBI.LiveIns) { 763 if (!LIR.Reg.isVirtual()) 764 continue; 765 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 766 // Ignore dependencies outside the current trace. 767 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 768 if (!DefTBI.isUsefulDominator(TBI)) 769 continue; 770 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 771 MaxLen = std::max(MaxLen, Len); 772 } 773 return MaxLen; 774 } 775 776 void MachineTraceMetrics::Ensemble:: 777 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 778 SparseSet<LiveRegUnit> &RegUnits) { 779 SmallVector<DataDep, 8> Deps; 780 // Collect all data dependencies. 781 if (UseMI.isPHI()) 782 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 783 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 784 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 785 786 // Filter and process dependencies, computing the earliest issue cycle. 787 unsigned Cycle = 0; 788 for (const DataDep &Dep : Deps) { 789 const TraceBlockInfo&DepTBI = 790 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 791 // Ignore dependencies from outside the current trace. 792 if (!DepTBI.isUsefulDominator(TBI)) 793 continue; 794 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 795 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 796 // Add latency if DefMI is a real instruction. Transients get latency 0. 797 if (!Dep.DefMI->isTransient()) 798 DepCycle += MTM.SchedModel 799 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 800 Cycle = std::max(Cycle, DepCycle); 801 } 802 // Remember the instruction depth. 803 InstrCycles &MICycles = Cycles[&UseMI]; 804 MICycles.Depth = Cycle; 805 806 if (TBI.HasValidInstrHeights) { 807 // Update critical path length. 808 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 809 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 810 } else { 811 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 812 } 813 } 814 815 void MachineTraceMetrics::Ensemble:: 816 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 817 SparseSet<LiveRegUnit> &RegUnits) { 818 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 819 } 820 821 void MachineTraceMetrics::Ensemble:: 822 updateDepths(MachineBasicBlock::iterator Start, 823 MachineBasicBlock::iterator End, 824 SparseSet<LiveRegUnit> &RegUnits) { 825 for (; Start != End; Start++) 826 updateDepth(Start->getParent(), *Start, RegUnits); 827 } 828 829 /// Compute instruction depths for all instructions above or in MBB in its 830 /// trace. This assumes that the trace through MBB has already been computed. 831 void MachineTraceMetrics::Ensemble:: 832 computeInstrDepths(const MachineBasicBlock *MBB) { 833 // The top of the trace may already be computed, and HasValidInstrDepths 834 // implies Head->HasValidInstrDepths, so we only need to start from the first 835 // block in the trace that needs to be recomputed. 836 SmallVector<const MachineBasicBlock*, 8> Stack; 837 do { 838 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 839 assert(TBI.hasValidDepth() && "Incomplete trace"); 840 if (TBI.HasValidInstrDepths) 841 break; 842 Stack.push_back(MBB); 843 MBB = TBI.Pred; 844 } while (MBB); 845 846 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 847 // in the trace. We should track any live-out physregs that were defined in 848 // the trace. This is quite rare in SSA form, typically created by CSE 849 // hoisting a compare. 850 SparseSet<LiveRegUnit> RegUnits; 851 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 852 853 // Go through trace blocks in top-down order, stopping after the center block. 854 while (!Stack.empty()) { 855 MBB = Stack.pop_back_val(); 856 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 857 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 858 TBI.HasValidInstrDepths = true; 859 TBI.CriticalPath = 0; 860 861 // Print out resource depths here as well. 862 LLVM_DEBUG({ 863 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 864 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 865 for (unsigned K = 0; K != PRDepths.size(); ++K) 866 if (PRDepths[K]) { 867 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 868 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 869 << MTM.SchedModel.getProcResource(K)->Name << " (" 870 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 871 } 872 }); 873 874 // Also compute the critical path length through MBB when possible. 875 if (TBI.HasValidInstrHeights) 876 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 877 878 for (const auto &UseMI : *MBB) { 879 updateDepth(TBI, UseMI, RegUnits); 880 } 881 } 882 } 883 884 // Identify physreg dependencies for MI when scanning instructions upwards. 885 // Return the issue height of MI after considering any live regunits. 886 // Height is the issue height computed from virtual register dependencies alone. 887 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 888 SparseSet<LiveRegUnit> &RegUnits, 889 const TargetSchedModel &SchedModel, 890 const TargetInstrInfo *TII, 891 const TargetRegisterInfo *TRI) { 892 SmallVector<unsigned, 8> ReadOps; 893 894 for (const MachineOperand &MO : MI.operands()) { 895 if (!MO.isReg()) 896 continue; 897 Register Reg = MO.getReg(); 898 if (!Reg.isPhysical()) 899 continue; 900 if (MO.readsReg()) 901 ReadOps.push_back(MO.getOperandNo()); 902 if (!MO.isDef()) 903 continue; 904 // This is a def of Reg. Remove corresponding entries from RegUnits, and 905 // update MI Height to consider the physreg dependencies. 906 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 907 ++Units) { 908 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 909 if (I == RegUnits.end()) 910 continue; 911 unsigned DepHeight = I->Cycle; 912 if (!MI.isTransient()) { 913 // We may not know the UseMI of this dependency, if it came from the 914 // live-in list. SchedModel can handle a NULL UseMI. 915 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 916 I->MI, I->Op); 917 } 918 Height = std::max(Height, DepHeight); 919 // This regunit is dead above MI. 920 RegUnits.erase(I); 921 } 922 } 923 924 // Now we know the height of MI. Update any regunits read. 925 for (size_t I = 0, E = ReadOps.size(); I != E; ++I) { 926 MCRegister Reg = MI.getOperand(ReadOps[I]).getReg().asMCReg(); 927 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 928 LiveRegUnit &LRU = RegUnits[*Units]; 929 // Set the height to the highest reader of the unit. 930 if (LRU.Cycle <= Height && LRU.MI != &MI) { 931 LRU.Cycle = Height; 932 LRU.MI = &MI; 933 LRU.Op = ReadOps[I]; 934 } 935 } 936 } 937 938 return Height; 939 } 940 941 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 942 943 // Push the height of DefMI upwards if required to match UseMI. 944 // Return true if this is the first time DefMI was seen. 945 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 946 unsigned UseHeight, MIHeightMap &Heights, 947 const TargetSchedModel &SchedModel, 948 const TargetInstrInfo *TII) { 949 // Adjust height by Dep.DefMI latency. 950 if (!Dep.DefMI->isTransient()) 951 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 952 Dep.UseOp); 953 954 // Update Heights[DefMI] to be the maximum height seen. 955 MIHeightMap::iterator I; 956 bool New; 957 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 958 if (New) 959 return true; 960 961 // DefMI has been pushed before. Give it the max height. 962 if (I->second < UseHeight) 963 I->second = UseHeight; 964 return false; 965 } 966 967 /// Assuming that the virtual register defined by DefMI:DefOp was used by 968 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 969 /// when reaching the block that contains DefMI. 970 void MachineTraceMetrics::Ensemble:: 971 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 972 ArrayRef<const MachineBasicBlock*> Trace) { 973 assert(!Trace.empty() && "Trace should contain at least one block"); 974 Register Reg = DefMI->getOperand(DefOp).getReg(); 975 assert(Reg.isVirtual()); 976 const MachineBasicBlock *DefMBB = DefMI->getParent(); 977 978 // Reg is live-in to all blocks in Trace that follow DefMBB. 979 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 980 if (MBB == DefMBB) 981 return; 982 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 983 // Just add the register. The height will be updated later. 984 TBI.LiveIns.push_back(Reg); 985 } 986 } 987 988 /// Compute instruction heights in the trace through MBB. This updates MBB and 989 /// the blocks below it in the trace. It is assumed that the trace has already 990 /// been computed. 991 void MachineTraceMetrics::Ensemble:: 992 computeInstrHeights(const MachineBasicBlock *MBB) { 993 // The bottom of the trace may already be computed. 994 // Find the blocks that need updating. 995 SmallVector<const MachineBasicBlock*, 8> Stack; 996 do { 997 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 998 assert(TBI.hasValidHeight() && "Incomplete trace"); 999 if (TBI.HasValidInstrHeights) 1000 break; 1001 Stack.push_back(MBB); 1002 TBI.LiveIns.clear(); 1003 MBB = TBI.Succ; 1004 } while (MBB); 1005 1006 // As we move upwards in the trace, keep track of instructions that are 1007 // required by deeper trace instructions. Map MI -> height required so far. 1008 MIHeightMap Heights; 1009 1010 // For physregs, the def isn't known when we see the use. 1011 // Instead, keep track of the highest use of each regunit. 1012 SparseSet<LiveRegUnit> RegUnits; 1013 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1014 1015 // If the bottom of the trace was already precomputed, initialize heights 1016 // from its live-in list. 1017 // MBB is the highest precomputed block in the trace. 1018 if (MBB) { 1019 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1020 for (LiveInReg &LI : TBI.LiveIns) { 1021 if (LI.Reg.isVirtual()) { 1022 // For virtual registers, the def latency is included. 1023 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1024 if (Height < LI.Height) 1025 Height = LI.Height; 1026 } else { 1027 // For register units, the def latency is not included because we don't 1028 // know the def yet. 1029 RegUnits[LI.Reg].Cycle = LI.Height; 1030 } 1031 } 1032 } 1033 1034 // Go through the trace blocks in bottom-up order. 1035 SmallVector<DataDep, 8> Deps; 1036 for (;!Stack.empty(); Stack.pop_back()) { 1037 MBB = Stack.back(); 1038 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1039 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1040 TBI.HasValidInstrHeights = true; 1041 TBI.CriticalPath = 0; 1042 1043 LLVM_DEBUG({ 1044 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1045 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1046 for (unsigned K = 0; K != PRHeights.size(); ++K) 1047 if (PRHeights[K]) { 1048 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1049 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1050 << MTM.SchedModel.getProcResource(K)->Name << " (" 1051 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1052 } 1053 }); 1054 1055 // Get dependencies from PHIs in the trace successor. 1056 const MachineBasicBlock *Succ = TBI.Succ; 1057 // If MBB is the last block in the trace, and it has a back-edge to the 1058 // loop header, get loop-carried dependencies from PHIs in the header. For 1059 // that purpose, pretend that all the loop header PHIs have height 0. 1060 if (!Succ) 1061 if (const MachineLoop *Loop = getLoopFor(MBB)) 1062 if (MBB->isSuccessor(Loop->getHeader())) 1063 Succ = Loop->getHeader(); 1064 1065 if (Succ) { 1066 for (const auto &PHI : *Succ) { 1067 if (!PHI.isPHI()) 1068 break; 1069 Deps.clear(); 1070 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1071 if (!Deps.empty()) { 1072 // Loop header PHI heights are all 0. 1073 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1074 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1075 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1076 MTM.TII)) 1077 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1078 } 1079 } 1080 } 1081 1082 // Go through the block backwards. 1083 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1084 BI != BB;) { 1085 const MachineInstr &MI = *--BI; 1086 1087 // Find the MI height as determined by virtual register uses in the 1088 // trace below. 1089 unsigned Cycle = 0; 1090 MIHeightMap::iterator HeightI = Heights.find(&MI); 1091 if (HeightI != Heights.end()) { 1092 Cycle = HeightI->second; 1093 // We won't be seeing any more MI uses. 1094 Heights.erase(HeightI); 1095 } 1096 1097 // Don't process PHI deps. They depend on the specific predecessor, and 1098 // we'll get them when visiting the predecessor. 1099 Deps.clear(); 1100 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1101 1102 // There may also be regunit dependencies to include in the height. 1103 if (HasPhysRegs) 1104 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1105 MTM.TII, MTM.TRI); 1106 1107 // Update the required height of any virtual registers read by MI. 1108 for (const DataDep &Dep : Deps) 1109 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1110 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1111 1112 InstrCycles &MICycles = Cycles[&MI]; 1113 MICycles.Height = Cycle; 1114 if (!TBI.HasValidInstrDepths) { 1115 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1116 continue; 1117 } 1118 // Update critical path length. 1119 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1120 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1121 } 1122 1123 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1124 // height because the final height isn't known until now. 1125 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1126 for (LiveInReg &LIR : TBI.LiveIns) { 1127 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1128 LIR.Height = Heights.lookup(DefMI); 1129 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1130 } 1131 1132 // Transfer the live regunits to the live-in list. 1133 for (SparseSet<LiveRegUnit>::const_iterator 1134 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1135 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1136 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@' 1137 << RI->Cycle); 1138 } 1139 LLVM_DEBUG(dbgs() << '\n'); 1140 1141 if (!TBI.HasValidInstrDepths) 1142 continue; 1143 // Add live-ins to the critical path length. 1144 TBI.CriticalPath = std::max(TBI.CriticalPath, 1145 computeCrossBlockCriticalPath(TBI)); 1146 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1147 } 1148 } 1149 1150 MachineTraceMetrics::Trace 1151 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1152 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1153 1154 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1155 computeTrace(MBB); 1156 if (!TBI.HasValidInstrDepths) 1157 computeInstrDepths(MBB); 1158 if (!TBI.HasValidInstrHeights) 1159 computeInstrHeights(MBB); 1160 1161 return Trace(*this, TBI); 1162 } 1163 1164 unsigned 1165 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1166 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1167 "MI must be in the trace center block"); 1168 InstrCycles Cyc = getInstrCycles(MI); 1169 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1170 } 1171 1172 unsigned 1173 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1174 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1175 SmallVector<DataDep, 1> Deps; 1176 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1177 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1178 DataDep &Dep = Deps.front(); 1179 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1180 // Add latency if DefMI is a real instruction. Transients get latency 0. 1181 if (!Dep.DefMI->isTransient()) 1182 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1183 &PHI, Dep.UseOp); 1184 return DepCycle; 1185 } 1186 1187 /// When bottom is set include instructions in current block in estimate. 1188 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1189 // Find the limiting processor resource. 1190 // Numbers have been pre-scaled to be comparable. 1191 unsigned PRMax = 0; 1192 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1193 if (Bottom) { 1194 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1195 for (unsigned K = 0; K != PRDepths.size(); ++K) 1196 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1197 } else { 1198 for (unsigned PRD : PRDepths) 1199 PRMax = std::max(PRMax, PRD); 1200 } 1201 // Convert to cycle count. 1202 PRMax = TE.MTM.getCycles(PRMax); 1203 1204 /// All instructions before current block 1205 unsigned Instrs = TBI.InstrDepth; 1206 // plus instructions in current block 1207 if (Bottom) 1208 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1209 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1210 Instrs /= IW; 1211 // Assume issue width 1 without a schedule model. 1212 return std::max(Instrs, PRMax); 1213 } 1214 1215 unsigned MachineTraceMetrics::Trace::getResourceLength( 1216 ArrayRef<const MachineBasicBlock *> Extrablocks, 1217 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1218 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1219 // Add up resources above and below the center block. 1220 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1221 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1222 unsigned PRMax = 0; 1223 1224 // Capture computing cycles from extra instructions 1225 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1226 unsigned ResourceIdx) 1227 ->unsigned { 1228 unsigned Cycles = 0; 1229 for (const MCSchedClassDesc *SC : Instrs) { 1230 if (!SC->isValid()) 1231 continue; 1232 for (TargetSchedModel::ProcResIter 1233 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1234 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1235 PI != PE; ++PI) { 1236 if (PI->ProcResourceIdx != ResourceIdx) 1237 continue; 1238 Cycles += 1239 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1240 } 1241 } 1242 return Cycles; 1243 }; 1244 1245 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1246 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1247 for (const MachineBasicBlock *MBB : Extrablocks) 1248 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1249 PRCycles += extraCycles(ExtraInstrs, K); 1250 PRCycles -= extraCycles(RemoveInstrs, K); 1251 PRMax = std::max(PRMax, PRCycles); 1252 } 1253 // Convert to cycle count. 1254 PRMax = TE.MTM.getCycles(PRMax); 1255 1256 // Instrs: #instructions in current trace outside current block. 1257 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1258 // Add instruction count from the extra blocks. 1259 for (const MachineBasicBlock *MBB : Extrablocks) 1260 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1261 Instrs += ExtraInstrs.size(); 1262 Instrs -= RemoveInstrs.size(); 1263 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1264 Instrs /= IW; 1265 // Assume issue width 1 without a schedule model. 1266 return std::max(Instrs, PRMax); 1267 } 1268 1269 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1270 const MachineInstr &UseMI) const { 1271 if (DefMI.getParent() == UseMI.getParent()) 1272 return true; 1273 1274 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1275 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1276 1277 return DepTBI.isUsefulDominator(TBI); 1278 } 1279 1280 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1281 OS << getName() << " ensemble:\n"; 1282 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1283 OS << " %bb." << i << '\t'; 1284 BlockInfo[i].print(OS); 1285 OS << '\n'; 1286 } 1287 } 1288 1289 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1290 if (hasValidDepth()) { 1291 OS << "depth=" << InstrDepth; 1292 if (Pred) 1293 OS << " pred=" << printMBBReference(*Pred); 1294 else 1295 OS << " pred=null"; 1296 OS << " head=%bb." << Head; 1297 if (HasValidInstrDepths) 1298 OS << " +instrs"; 1299 } else 1300 OS << "depth invalid"; 1301 OS << ", "; 1302 if (hasValidHeight()) { 1303 OS << "height=" << InstrHeight; 1304 if (Succ) 1305 OS << " succ=" << printMBBReference(*Succ); 1306 else 1307 OS << " succ=null"; 1308 OS << " tail=%bb." << Tail; 1309 if (HasValidInstrHeights) 1310 OS << " +instrs"; 1311 } else 1312 OS << "height invalid"; 1313 if (HasValidInstrDepths && HasValidInstrHeights) 1314 OS << ", crit=" << CriticalPath; 1315 } 1316 1317 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1318 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1319 1320 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1321 << " --> %bb." << TBI.Tail << ':'; 1322 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1323 OS << ' ' << getInstrCount() << " instrs."; 1324 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1325 OS << ' ' << TBI.CriticalPath << " cycles."; 1326 1327 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1328 OS << "\n%bb." << MBBNum; 1329 while (Block->hasValidDepth() && Block->Pred) { 1330 unsigned Num = Block->Pred->getNumber(); 1331 OS << " <- " << printMBBReference(*Block->Pred); 1332 Block = &TE.BlockInfo[Num]; 1333 } 1334 1335 Block = &TBI; 1336 OS << "\n "; 1337 while (Block->hasValidHeight() && Block->Succ) { 1338 unsigned Num = Block->Succ->getNumber(); 1339 OS << " -> " << printMBBReference(*Block->Succ); 1340 Block = &TE.BlockInfo[Num]; 1341 } 1342 OS << '\n'; 1343 } 1344