1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "machine-trace-metrics" 11 #include "llvm/CodeGen/MachineTraceMetrics.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SparseSet.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 16 #include "llvm/CodeGen/MachineLoopInfo.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/MC/MCSubtargetInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetInstrInfo.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 char MachineTraceMetrics::ID = 0; 30 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 31 32 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 33 "machine-trace-metrics", "Machine Trace Metrics", false, true) 34 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 35 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 36 INITIALIZE_PASS_END(MachineTraceMetrics, 37 "machine-trace-metrics", "Machine Trace Metrics", false, true) 38 39 MachineTraceMetrics::MachineTraceMetrics() 40 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 41 MRI(nullptr), Loops(nullptr) { 42 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 43 } 44 45 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 46 AU.setPreservesAll(); 47 AU.addRequired<MachineBranchProbabilityInfo>(); 48 AU.addRequired<MachineLoopInfo>(); 49 MachineFunctionPass::getAnalysisUsage(AU); 50 } 51 52 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 53 MF = &Func; 54 TII = MF->getTarget().getInstrInfo(); 55 TRI = MF->getTarget().getRegisterInfo(); 56 MRI = &MF->getRegInfo(); 57 Loops = &getAnalysis<MachineLoopInfo>(); 58 const TargetSubtargetInfo &ST = 59 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 60 SchedModel.init(*ST.getSchedModel(), &ST, TII); 61 BlockInfo.resize(MF->getNumBlockIDs()); 62 ProcResourceCycles.resize(MF->getNumBlockIDs() * 63 SchedModel.getNumProcResourceKinds()); 64 return false; 65 } 66 67 void MachineTraceMetrics::releaseMemory() { 68 MF = nullptr; 69 BlockInfo.clear(); 70 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 71 delete Ensembles[i]; 72 Ensembles[i] = nullptr; 73 } 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Fixed block information 78 //===----------------------------------------------------------------------===// 79 // 80 // The number of instructions in a basic block and the CPU resources used by 81 // those instructions don't depend on any given trace strategy. 82 83 /// Compute the resource usage in basic block MBB. 84 const MachineTraceMetrics::FixedBlockInfo* 85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 86 assert(MBB && "No basic block"); 87 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 88 if (FBI->hasResources()) 89 return FBI; 90 91 // Compute resource usage in the block. 92 FBI->HasCalls = false; 93 unsigned InstrCount = 0; 94 95 // Add up per-processor resource cycles as well. 96 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 97 SmallVector<unsigned, 32> PRCycles(PRKinds); 98 99 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 100 I != E; ++I) { 101 const MachineInstr *MI = I; 102 if (MI->isTransient()) 103 continue; 104 ++InstrCount; 105 if (MI->isCall()) 106 FBI->HasCalls = true; 107 108 // Count processor resources used. 109 if (!SchedModel.hasInstrSchedModel()) 110 continue; 111 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(MI); 112 if (!SC->isValid()) 113 continue; 114 115 for (TargetSchedModel::ProcResIter 116 PI = SchedModel.getWriteProcResBegin(SC), 117 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 118 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 119 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 120 } 121 } 122 FBI->InstrCount = InstrCount; 123 124 // Scale the resource cycles so they are comparable. 125 unsigned PROffset = MBB->getNumber() * PRKinds; 126 for (unsigned K = 0; K != PRKinds; ++K) 127 ProcResourceCycles[PROffset + K] = 128 PRCycles[K] * SchedModel.getResourceFactor(K); 129 130 return FBI; 131 } 132 133 ArrayRef<unsigned> 134 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 135 assert(BlockInfo[MBBNum].hasResources() && 136 "getResources() must be called before getProcResourceCycles()"); 137 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 138 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 139 return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds, 140 PRKinds); 141 } 142 143 144 //===----------------------------------------------------------------------===// 145 // Ensemble utility functions 146 //===----------------------------------------------------------------------===// 147 148 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 149 : MTM(*ct) { 150 BlockInfo.resize(MTM.BlockInfo.size()); 151 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 152 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 153 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 154 } 155 156 // Virtual destructor serves as an anchor. 157 MachineTraceMetrics::Ensemble::~Ensemble() {} 158 159 const MachineLoop* 160 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 161 return MTM.Loops->getLoopFor(MBB); 162 } 163 164 // Update resource-related information in the TraceBlockInfo for MBB. 165 // Only update resources related to the trace above MBB. 166 void MachineTraceMetrics::Ensemble:: 167 computeDepthResources(const MachineBasicBlock *MBB) { 168 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 169 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 170 unsigned PROffset = MBB->getNumber() * PRKinds; 171 172 // Compute resources from trace above. The top block is simple. 173 if (!TBI->Pred) { 174 TBI->InstrDepth = 0; 175 TBI->Head = MBB->getNumber(); 176 std::fill(ProcResourceDepths.begin() + PROffset, 177 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 178 return; 179 } 180 181 // Compute from the block above. A post-order traversal ensures the 182 // predecessor is always computed first. 183 unsigned PredNum = TBI->Pred->getNumber(); 184 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 185 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 186 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 187 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 188 TBI->Head = PredTBI->Head; 189 190 // Compute per-resource depths. 191 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 192 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 193 for (unsigned K = 0; K != PRKinds; ++K) 194 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 195 } 196 197 // Update resource-related information in the TraceBlockInfo for MBB. 198 // Only update resources related to the trace below MBB. 199 void MachineTraceMetrics::Ensemble:: 200 computeHeightResources(const MachineBasicBlock *MBB) { 201 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 202 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 203 unsigned PROffset = MBB->getNumber() * PRKinds; 204 205 // Compute resources for the current block. 206 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 207 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 208 209 // The trace tail is done. 210 if (!TBI->Succ) { 211 TBI->Tail = MBB->getNumber(); 212 std::copy(PRCycles.begin(), PRCycles.end(), 213 ProcResourceHeights.begin() + PROffset); 214 return; 215 } 216 217 // Compute from the block below. A post-order traversal ensures the 218 // predecessor is always computed first. 219 unsigned SuccNum = TBI->Succ->getNumber(); 220 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 221 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 222 TBI->InstrHeight += SuccTBI->InstrHeight; 223 TBI->Tail = SuccTBI->Tail; 224 225 // Compute per-resource heights. 226 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 227 for (unsigned K = 0; K != PRKinds; ++K) 228 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 229 } 230 231 // Check if depth resources for MBB are valid and return the TBI. 232 // Return NULL if the resources have been invalidated. 233 const MachineTraceMetrics::TraceBlockInfo* 234 MachineTraceMetrics::Ensemble:: 235 getDepthResources(const MachineBasicBlock *MBB) const { 236 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 237 return TBI->hasValidDepth() ? TBI : nullptr; 238 } 239 240 // Check if height resources for MBB are valid and return the TBI. 241 // Return NULL if the resources have been invalidated. 242 const MachineTraceMetrics::TraceBlockInfo* 243 MachineTraceMetrics::Ensemble:: 244 getHeightResources(const MachineBasicBlock *MBB) const { 245 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 246 return TBI->hasValidHeight() ? TBI : nullptr; 247 } 248 249 /// Get an array of processor resource depths for MBB. Indexed by processor 250 /// resource kind, this array contains the scaled processor resources consumed 251 /// by all blocks preceding MBB in its trace. It does not include instructions 252 /// in MBB. 253 /// 254 /// Compare TraceBlockInfo::InstrDepth. 255 ArrayRef<unsigned> 256 MachineTraceMetrics::Ensemble:: 257 getProcResourceDepths(unsigned MBBNum) const { 258 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 259 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 260 return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds, 261 PRKinds); 262 } 263 264 /// Get an array of processor resource heights for MBB. Indexed by processor 265 /// resource kind, this array contains the scaled processor resources consumed 266 /// by this block and all blocks following it in its trace. 267 /// 268 /// Compare TraceBlockInfo::InstrHeight. 269 ArrayRef<unsigned> 270 MachineTraceMetrics::Ensemble:: 271 getProcResourceHeights(unsigned MBBNum) const { 272 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 273 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 274 return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds, 275 PRKinds); 276 } 277 278 //===----------------------------------------------------------------------===// 279 // Trace Selection Strategies 280 //===----------------------------------------------------------------------===// 281 // 282 // A trace selection strategy is implemented as a sub-class of Ensemble. The 283 // trace through a block B is computed by two DFS traversals of the CFG 284 // starting from B. One upwards, and one downwards. During the upwards DFS, 285 // pickTracePred() is called on the post-ordered blocks. During the downwards 286 // DFS, pickTraceSucc() is called in a post-order. 287 // 288 289 // We never allow traces that leave loops, but we do allow traces to enter 290 // nested loops. We also never allow traces to contain back-edges. 291 // 292 // This means that a loop header can never appear above the center block of a 293 // trace, except as the trace head. Below the center block, loop exiting edges 294 // are banned. 295 // 296 // Return true if an edge from the From loop to the To loop is leaving a loop. 297 // Either of To and From can be null. 298 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 299 return From && !From->contains(To); 300 } 301 302 // MinInstrCountEnsemble - Pick the trace that executes the least number of 303 // instructions. 304 namespace { 305 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 306 const char *getName() const override { return "MinInstr"; } 307 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 308 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 309 310 public: 311 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 312 : MachineTraceMetrics::Ensemble(mtm) {} 313 }; 314 } 315 316 // Select the preferred predecessor for MBB. 317 const MachineBasicBlock* 318 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 319 if (MBB->pred_empty()) 320 return nullptr; 321 const MachineLoop *CurLoop = getLoopFor(MBB); 322 // Don't leave loops, and never follow back-edges. 323 if (CurLoop && MBB == CurLoop->getHeader()) 324 return nullptr; 325 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 326 const MachineBasicBlock *Best = nullptr; 327 unsigned BestDepth = 0; 328 for (MachineBasicBlock::const_pred_iterator 329 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 330 const MachineBasicBlock *Pred = *I; 331 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 332 getDepthResources(Pred); 333 // Ignore cycles that aren't natural loops. 334 if (!PredTBI) 335 continue; 336 // Pick the predecessor that would give this block the smallest InstrDepth. 337 unsigned Depth = PredTBI->InstrDepth + CurCount; 338 if (!Best || Depth < BestDepth) 339 Best = Pred, BestDepth = Depth; 340 } 341 return Best; 342 } 343 344 // Select the preferred successor for MBB. 345 const MachineBasicBlock* 346 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 347 if (MBB->pred_empty()) 348 return nullptr; 349 const MachineLoop *CurLoop = getLoopFor(MBB); 350 const MachineBasicBlock *Best = nullptr; 351 unsigned BestHeight = 0; 352 for (MachineBasicBlock::const_succ_iterator 353 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 354 const MachineBasicBlock *Succ = *I; 355 // Don't consider back-edges. 356 if (CurLoop && Succ == CurLoop->getHeader()) 357 continue; 358 // Don't consider successors exiting CurLoop. 359 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 360 continue; 361 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 362 getHeightResources(Succ); 363 // Ignore cycles that aren't natural loops. 364 if (!SuccTBI) 365 continue; 366 // Pick the successor that would give this block the smallest InstrHeight. 367 unsigned Height = SuccTBI->InstrHeight; 368 if (!Best || Height < BestHeight) 369 Best = Succ, BestHeight = Height; 370 } 371 return Best; 372 } 373 374 // Get an Ensemble sub-class for the requested trace strategy. 375 MachineTraceMetrics::Ensemble * 376 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 377 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 378 Ensemble *&E = Ensembles[strategy]; 379 if (E) 380 return E; 381 382 // Allocate new Ensemble on demand. 383 switch (strategy) { 384 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 385 default: llvm_unreachable("Invalid trace strategy enum"); 386 } 387 } 388 389 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 390 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 391 BlockInfo[MBB->getNumber()].invalidate(); 392 for (unsigned i = 0; i != TS_NumStrategies; ++i) 393 if (Ensembles[i]) 394 Ensembles[i]->invalidate(MBB); 395 } 396 397 void MachineTraceMetrics::verifyAnalysis() const { 398 if (!MF) 399 return; 400 #ifndef NDEBUG 401 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 402 for (unsigned i = 0; i != TS_NumStrategies; ++i) 403 if (Ensembles[i]) 404 Ensembles[i]->verify(); 405 #endif 406 } 407 408 //===----------------------------------------------------------------------===// 409 // Trace building 410 //===----------------------------------------------------------------------===// 411 // 412 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 413 // set abstraction that confines the search to the current loop, and doesn't 414 // revisit blocks. 415 416 namespace { 417 struct LoopBounds { 418 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 419 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 420 const MachineLoopInfo *Loops; 421 bool Downward; 422 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 423 const MachineLoopInfo *loops) 424 : Blocks(blocks), Loops(loops), Downward(false) {} 425 }; 426 } 427 428 // Specialize po_iterator_storage in order to prune the post-order traversal so 429 // it is limited to the current loop and doesn't traverse the loop back edges. 430 namespace llvm { 431 template<> 432 class po_iterator_storage<LoopBounds, true> { 433 LoopBounds &LB; 434 public: 435 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 436 void finishPostorder(const MachineBasicBlock*) {} 437 438 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 439 // Skip already visited To blocks. 440 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 441 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 442 return false; 443 // From is null once when To is the trace center block. 444 if (From) { 445 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 446 // Don't follow backedges, don't leave FromLoop when going upwards. 447 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 448 return false; 449 // Don't leave FromLoop. 450 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 451 return false; 452 } 453 } 454 // To is a new block. Mark the block as visited in case the CFG has cycles 455 // that MachineLoopInfo didn't recognize as a natural loop. 456 return LB.Visited.insert(To); 457 } 458 }; 459 } 460 461 /// Compute the trace through MBB. 462 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 463 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 464 << MBB->getNumber() << '\n'); 465 // Set up loop bounds for the backwards post-order traversal. 466 LoopBounds Bounds(BlockInfo, MTM.Loops); 467 468 // Run an upwards post-order search for the trace start. 469 Bounds.Downward = false; 470 Bounds.Visited.clear(); 471 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 472 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 473 I != E; ++I) { 474 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 475 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 476 // All the predecessors have been visited, pick the preferred one. 477 TBI.Pred = pickTracePred(*I); 478 DEBUG({ 479 if (TBI.Pred) 480 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 481 else 482 dbgs() << "null\n"; 483 }); 484 // The trace leading to I is now known, compute the depth resources. 485 computeDepthResources(*I); 486 } 487 488 // Run a downwards post-order search for the trace end. 489 Bounds.Downward = true; 490 Bounds.Visited.clear(); 491 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 492 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 493 I != E; ++I) { 494 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 495 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 496 // All the successors have been visited, pick the preferred one. 497 TBI.Succ = pickTraceSucc(*I); 498 DEBUG({ 499 if (TBI.Succ) 500 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 501 else 502 dbgs() << "null\n"; 503 }); 504 // The trace leaving I is now known, compute the height resources. 505 computeHeightResources(*I); 506 } 507 } 508 509 /// Invalidate traces through BadMBB. 510 void 511 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 512 SmallVector<const MachineBasicBlock*, 16> WorkList; 513 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 514 515 // Invalidate height resources of blocks above MBB. 516 if (BadTBI.hasValidHeight()) { 517 BadTBI.invalidateHeight(); 518 WorkList.push_back(BadMBB); 519 do { 520 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 521 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 522 << " height.\n"); 523 // Find any MBB predecessors that have MBB as their preferred successor. 524 // They are the only ones that need to be invalidated. 525 for (MachineBasicBlock::const_pred_iterator 526 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 527 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 528 if (!TBI.hasValidHeight()) 529 continue; 530 if (TBI.Succ == MBB) { 531 TBI.invalidateHeight(); 532 WorkList.push_back(*I); 533 continue; 534 } 535 // Verify that TBI.Succ is actually a *I successor. 536 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 537 } 538 } while (!WorkList.empty()); 539 } 540 541 // Invalidate depth resources of blocks below MBB. 542 if (BadTBI.hasValidDepth()) { 543 BadTBI.invalidateDepth(); 544 WorkList.push_back(BadMBB); 545 do { 546 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 547 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 548 << " depth.\n"); 549 // Find any MBB successors that have MBB as their preferred predecessor. 550 // They are the only ones that need to be invalidated. 551 for (MachineBasicBlock::const_succ_iterator 552 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 553 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 554 if (!TBI.hasValidDepth()) 555 continue; 556 if (TBI.Pred == MBB) { 557 TBI.invalidateDepth(); 558 WorkList.push_back(*I); 559 continue; 560 } 561 // Verify that TBI.Pred is actually a *I predecessor. 562 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 563 } 564 } while (!WorkList.empty()); 565 } 566 567 // Clear any per-instruction data. We only have to do this for BadMBB itself 568 // because the instructions in that block may change. Other blocks may be 569 // invalidated, but their instructions will stay the same, so there is no 570 // need to erase the Cycle entries. They will be overwritten when we 571 // recompute. 572 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); 573 I != E; ++I) 574 Cycles.erase(I); 575 } 576 577 void MachineTraceMetrics::Ensemble::verify() const { 578 #ifndef NDEBUG 579 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 580 "Outdated BlockInfo size"); 581 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 582 const TraceBlockInfo &TBI = BlockInfo[Num]; 583 if (TBI.hasValidDepth() && TBI.Pred) { 584 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 585 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 586 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 587 "Trace is broken, depth should have been invalidated."); 588 const MachineLoop *Loop = getLoopFor(MBB); 589 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 590 } 591 if (TBI.hasValidHeight() && TBI.Succ) { 592 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 593 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 594 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 595 "Trace is broken, height should have been invalidated."); 596 const MachineLoop *Loop = getLoopFor(MBB); 597 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 598 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 599 "Trace contains backedge"); 600 } 601 } 602 #endif 603 } 604 605 //===----------------------------------------------------------------------===// 606 // Data Dependencies 607 //===----------------------------------------------------------------------===// 608 // 609 // Compute the depth and height of each instruction based on data dependencies 610 // and instruction latencies. These cycle numbers assume that the CPU can issue 611 // an infinite number of instructions per cycle as long as their dependencies 612 // are ready. 613 614 // A data dependency is represented as a defining MI and operand numbers on the 615 // defining and using MI. 616 namespace { 617 struct DataDep { 618 const MachineInstr *DefMI; 619 unsigned DefOp; 620 unsigned UseOp; 621 622 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 623 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 624 625 /// Create a DataDep from an SSA form virtual register. 626 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 627 : UseOp(UseOp) { 628 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 629 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 630 assert(!DefI.atEnd() && "Register has no defs"); 631 DefMI = DefI->getParent(); 632 DefOp = DefI.getOperandNo(); 633 assert((++DefI).atEnd() && "Register has multiple defs"); 634 } 635 }; 636 } 637 638 // Get the input data dependencies that must be ready before UseMI can issue. 639 // Return true if UseMI has any physreg operands. 640 static bool getDataDeps(const MachineInstr *UseMI, 641 SmallVectorImpl<DataDep> &Deps, 642 const MachineRegisterInfo *MRI) { 643 bool HasPhysRegs = false; 644 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 645 if (!MO->isReg()) 646 continue; 647 unsigned Reg = MO->getReg(); 648 if (!Reg) 649 continue; 650 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 651 HasPhysRegs = true; 652 continue; 653 } 654 // Collect virtual register reads. 655 if (MO->readsReg()) 656 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 657 } 658 return HasPhysRegs; 659 } 660 661 // Get the input data dependencies of a PHI instruction, using Pred as the 662 // preferred predecessor. 663 // This will add at most one dependency to Deps. 664 static void getPHIDeps(const MachineInstr *UseMI, 665 SmallVectorImpl<DataDep> &Deps, 666 const MachineBasicBlock *Pred, 667 const MachineRegisterInfo *MRI) { 668 // No predecessor at the beginning of a trace. Ignore dependencies. 669 if (!Pred) 670 return; 671 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 672 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 673 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 674 unsigned Reg = UseMI->getOperand(i).getReg(); 675 Deps.push_back(DataDep(MRI, Reg, i)); 676 return; 677 } 678 } 679 } 680 681 // Keep track of physreg data dependencies by recording each live register unit. 682 // Associate each regunit with an instruction operand. Depending on the 683 // direction instructions are scanned, it could be the operand that defined the 684 // regunit, or the highest operand to read the regunit. 685 namespace { 686 struct LiveRegUnit { 687 unsigned RegUnit; 688 unsigned Cycle; 689 const MachineInstr *MI; 690 unsigned Op; 691 692 unsigned getSparseSetIndex() const { return RegUnit; } 693 694 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 695 }; 696 } 697 698 // Identify physreg dependencies for UseMI, and update the live regunit 699 // tracking set when scanning instructions downwards. 700 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 701 SmallVectorImpl<DataDep> &Deps, 702 SparseSet<LiveRegUnit> &RegUnits, 703 const TargetRegisterInfo *TRI) { 704 SmallVector<unsigned, 8> Kills; 705 SmallVector<unsigned, 8> LiveDefOps; 706 707 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 708 if (!MO->isReg()) 709 continue; 710 unsigned Reg = MO->getReg(); 711 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 712 continue; 713 // Track live defs and kills for updating RegUnits. 714 if (MO->isDef()) { 715 if (MO->isDead()) 716 Kills.push_back(Reg); 717 else 718 LiveDefOps.push_back(MO.getOperandNo()); 719 } else if (MO->isKill()) 720 Kills.push_back(Reg); 721 // Identify dependencies. 722 if (!MO->readsReg()) 723 continue; 724 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 725 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 726 if (I == RegUnits.end()) 727 continue; 728 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 729 break; 730 } 731 } 732 733 // Update RegUnits to reflect live registers after UseMI. 734 // First kills. 735 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 736 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 737 RegUnits.erase(*Units); 738 739 // Second, live defs. 740 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 741 unsigned DefOp = LiveDefOps[i]; 742 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 743 Units.isValid(); ++Units) { 744 LiveRegUnit &LRU = RegUnits[*Units]; 745 LRU.MI = UseMI; 746 LRU.Op = DefOp; 747 } 748 } 749 } 750 751 /// The length of the critical path through a trace is the maximum of two path 752 /// lengths: 753 /// 754 /// 1. The maximum height+depth over all instructions in the trace center block. 755 /// 756 /// 2. The longest cross-block dependency chain. For small blocks, it is 757 /// possible that the critical path through the trace doesn't include any 758 /// instructions in the block. 759 /// 760 /// This function computes the second number from the live-in list of the 761 /// center block. 762 unsigned MachineTraceMetrics::Ensemble:: 763 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 764 assert(TBI.HasValidInstrDepths && "Missing depth info"); 765 assert(TBI.HasValidInstrHeights && "Missing height info"); 766 unsigned MaxLen = 0; 767 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 768 const LiveInReg &LIR = TBI.LiveIns[i]; 769 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 770 continue; 771 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 772 // Ignore dependencies outside the current trace. 773 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 774 if (!DefTBI.isUsefulDominator(TBI)) 775 continue; 776 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 777 MaxLen = std::max(MaxLen, Len); 778 } 779 return MaxLen; 780 } 781 782 /// Compute instruction depths for all instructions above or in MBB in its 783 /// trace. This assumes that the trace through MBB has already been computed. 784 void MachineTraceMetrics::Ensemble:: 785 computeInstrDepths(const MachineBasicBlock *MBB) { 786 // The top of the trace may already be computed, and HasValidInstrDepths 787 // implies Head->HasValidInstrDepths, so we only need to start from the first 788 // block in the trace that needs to be recomputed. 789 SmallVector<const MachineBasicBlock*, 8> Stack; 790 do { 791 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 792 assert(TBI.hasValidDepth() && "Incomplete trace"); 793 if (TBI.HasValidInstrDepths) 794 break; 795 Stack.push_back(MBB); 796 MBB = TBI.Pred; 797 } while (MBB); 798 799 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 800 // in the trace. We should track any live-out physregs that were defined in 801 // the trace. This is quite rare in SSA form, typically created by CSE 802 // hoisting a compare. 803 SparseSet<LiveRegUnit> RegUnits; 804 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 805 806 // Go through trace blocks in top-down order, stopping after the center block. 807 SmallVector<DataDep, 8> Deps; 808 while (!Stack.empty()) { 809 MBB = Stack.pop_back_val(); 810 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 811 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 812 TBI.HasValidInstrDepths = true; 813 TBI.CriticalPath = 0; 814 815 // Print out resource depths here as well. 816 DEBUG({ 817 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 818 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 819 for (unsigned K = 0; K != PRDepths.size(); ++K) 820 if (PRDepths[K]) { 821 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 822 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 823 << MTM.SchedModel.getProcResource(K)->Name << " (" 824 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 825 } 826 }); 827 828 // Also compute the critical path length through MBB when possible. 829 if (TBI.HasValidInstrHeights) 830 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 831 832 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 833 I != E; ++I) { 834 const MachineInstr *UseMI = I; 835 836 // Collect all data dependencies. 837 Deps.clear(); 838 if (UseMI->isPHI()) 839 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 840 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 841 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); 842 843 // Filter and process dependencies, computing the earliest issue cycle. 844 unsigned Cycle = 0; 845 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 846 const DataDep &Dep = Deps[i]; 847 const TraceBlockInfo&DepTBI = 848 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 849 // Ignore dependencies from outside the current trace. 850 if (!DepTBI.isUsefulDominator(TBI)) 851 continue; 852 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 853 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 854 // Add latency if DefMI is a real instruction. Transients get latency 0. 855 if (!Dep.DefMI->isTransient()) 856 DepCycle += MTM.SchedModel 857 .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp); 858 Cycle = std::max(Cycle, DepCycle); 859 } 860 // Remember the instruction depth. 861 InstrCycles &MICycles = Cycles[UseMI]; 862 MICycles.Depth = Cycle; 863 864 if (!TBI.HasValidInstrHeights) { 865 DEBUG(dbgs() << Cycle << '\t' << *UseMI); 866 continue; 867 } 868 // Update critical path length. 869 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 870 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); 871 } 872 } 873 } 874 875 // Identify physreg dependencies for MI when scanning instructions upwards. 876 // Return the issue height of MI after considering any live regunits. 877 // Height is the issue height computed from virtual register dependencies alone. 878 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 879 SparseSet<LiveRegUnit> &RegUnits, 880 const TargetSchedModel &SchedModel, 881 const TargetInstrInfo *TII, 882 const TargetRegisterInfo *TRI) { 883 SmallVector<unsigned, 8> ReadOps; 884 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 885 if (!MO->isReg()) 886 continue; 887 unsigned Reg = MO->getReg(); 888 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 889 continue; 890 if (MO->readsReg()) 891 ReadOps.push_back(MO.getOperandNo()); 892 if (!MO->isDef()) 893 continue; 894 // This is a def of Reg. Remove corresponding entries from RegUnits, and 895 // update MI Height to consider the physreg dependencies. 896 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 897 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 898 if (I == RegUnits.end()) 899 continue; 900 unsigned DepHeight = I->Cycle; 901 if (!MI->isTransient()) { 902 // We may not know the UseMI of this dependency, if it came from the 903 // live-in list. SchedModel can handle a NULL UseMI. 904 DepHeight += SchedModel 905 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op); 906 } 907 Height = std::max(Height, DepHeight); 908 // This regunit is dead above MI. 909 RegUnits.erase(I); 910 } 911 } 912 913 // Now we know the height of MI. Update any regunits read. 914 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 915 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 916 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 917 LiveRegUnit &LRU = RegUnits[*Units]; 918 // Set the height to the highest reader of the unit. 919 if (LRU.Cycle <= Height && LRU.MI != MI) { 920 LRU.Cycle = Height; 921 LRU.MI = MI; 922 LRU.Op = ReadOps[i]; 923 } 924 } 925 } 926 927 return Height; 928 } 929 930 931 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 932 933 // Push the height of DefMI upwards if required to match UseMI. 934 // Return true if this is the first time DefMI was seen. 935 static bool pushDepHeight(const DataDep &Dep, 936 const MachineInstr *UseMI, unsigned UseHeight, 937 MIHeightMap &Heights, 938 const TargetSchedModel &SchedModel, 939 const TargetInstrInfo *TII) { 940 // Adjust height by Dep.DefMI latency. 941 if (!Dep.DefMI->isTransient()) 942 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 943 UseMI, Dep.UseOp); 944 945 // Update Heights[DefMI] to be the maximum height seen. 946 MIHeightMap::iterator I; 947 bool New; 948 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 949 if (New) 950 return true; 951 952 // DefMI has been pushed before. Give it the max height. 953 if (I->second < UseHeight) 954 I->second = UseHeight; 955 return false; 956 } 957 958 /// Assuming that the virtual register defined by DefMI:DefOp was used by 959 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 960 /// when reaching the block that contains DefMI. 961 void MachineTraceMetrics::Ensemble:: 962 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 963 ArrayRef<const MachineBasicBlock*> Trace) { 964 assert(!Trace.empty() && "Trace should contain at least one block"); 965 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 966 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 967 const MachineBasicBlock *DefMBB = DefMI->getParent(); 968 969 // Reg is live-in to all blocks in Trace that follow DefMBB. 970 for (unsigned i = Trace.size(); i; --i) { 971 const MachineBasicBlock *MBB = Trace[i-1]; 972 if (MBB == DefMBB) 973 return; 974 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 975 // Just add the register. The height will be updated later. 976 TBI.LiveIns.push_back(Reg); 977 } 978 } 979 980 /// Compute instruction heights in the trace through MBB. This updates MBB and 981 /// the blocks below it in the trace. It is assumed that the trace has already 982 /// been computed. 983 void MachineTraceMetrics::Ensemble:: 984 computeInstrHeights(const MachineBasicBlock *MBB) { 985 // The bottom of the trace may already be computed. 986 // Find the blocks that need updating. 987 SmallVector<const MachineBasicBlock*, 8> Stack; 988 do { 989 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 990 assert(TBI.hasValidHeight() && "Incomplete trace"); 991 if (TBI.HasValidInstrHeights) 992 break; 993 Stack.push_back(MBB); 994 TBI.LiveIns.clear(); 995 MBB = TBI.Succ; 996 } while (MBB); 997 998 // As we move upwards in the trace, keep track of instructions that are 999 // required by deeper trace instructions. Map MI -> height required so far. 1000 MIHeightMap Heights; 1001 1002 // For physregs, the def isn't known when we see the use. 1003 // Instead, keep track of the highest use of each regunit. 1004 SparseSet<LiveRegUnit> RegUnits; 1005 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1006 1007 // If the bottom of the trace was already precomputed, initialize heights 1008 // from its live-in list. 1009 // MBB is the highest precomputed block in the trace. 1010 if (MBB) { 1011 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1012 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1013 LiveInReg LI = TBI.LiveIns[i]; 1014 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1015 // For virtual registers, the def latency is included. 1016 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1017 if (Height < LI.Height) 1018 Height = LI.Height; 1019 } else { 1020 // For register units, the def latency is not included because we don't 1021 // know the def yet. 1022 RegUnits[LI.Reg].Cycle = LI.Height; 1023 } 1024 } 1025 } 1026 1027 // Go through the trace blocks in bottom-up order. 1028 SmallVector<DataDep, 8> Deps; 1029 for (;!Stack.empty(); Stack.pop_back()) { 1030 MBB = Stack.back(); 1031 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1032 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1033 TBI.HasValidInstrHeights = true; 1034 TBI.CriticalPath = 0; 1035 1036 DEBUG({ 1037 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1038 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1039 for (unsigned K = 0; K != PRHeights.size(); ++K) 1040 if (PRHeights[K]) { 1041 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1042 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1043 << MTM.SchedModel.getProcResource(K)->Name << " (" 1044 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1045 } 1046 }); 1047 1048 // Get dependencies from PHIs in the trace successor. 1049 const MachineBasicBlock *Succ = TBI.Succ; 1050 // If MBB is the last block in the trace, and it has a back-edge to the 1051 // loop header, get loop-carried dependencies from PHIs in the header. For 1052 // that purpose, pretend that all the loop header PHIs have height 0. 1053 if (!Succ) 1054 if (const MachineLoop *Loop = getLoopFor(MBB)) 1055 if (MBB->isSuccessor(Loop->getHeader())) 1056 Succ = Loop->getHeader(); 1057 1058 if (Succ) { 1059 for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end(); 1060 I != E && I->isPHI(); ++I) { 1061 const MachineInstr *PHI = I; 1062 Deps.clear(); 1063 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1064 if (!Deps.empty()) { 1065 // Loop header PHI heights are all 0. 1066 unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0; 1067 DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI); 1068 if (pushDepHeight(Deps.front(), PHI, Height, 1069 Heights, MTM.SchedModel, MTM.TII)) 1070 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1071 } 1072 } 1073 } 1074 1075 // Go through the block backwards. 1076 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1077 BI != BB;) { 1078 const MachineInstr *MI = --BI; 1079 1080 // Find the MI height as determined by virtual register uses in the 1081 // trace below. 1082 unsigned Cycle = 0; 1083 MIHeightMap::iterator HeightI = Heights.find(MI); 1084 if (HeightI != Heights.end()) { 1085 Cycle = HeightI->second; 1086 // We won't be seeing any more MI uses. 1087 Heights.erase(HeightI); 1088 } 1089 1090 // Don't process PHI deps. They depend on the specific predecessor, and 1091 // we'll get them when visiting the predecessor. 1092 Deps.clear(); 1093 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1094 1095 // There may also be regunit dependencies to include in the height. 1096 if (HasPhysRegs) 1097 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1098 MTM.SchedModel, MTM.TII, MTM.TRI); 1099 1100 // Update the required height of any virtual registers read by MI. 1101 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1102 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1103 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1104 1105 InstrCycles &MICycles = Cycles[MI]; 1106 MICycles.Height = Cycle; 1107 if (!TBI.HasValidInstrDepths) { 1108 DEBUG(dbgs() << Cycle << '\t' << *MI); 1109 continue; 1110 } 1111 // Update critical path length. 1112 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1113 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1114 } 1115 1116 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1117 // height because the final height isn't known until now. 1118 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1119 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1120 LiveInReg &LIR = TBI.LiveIns[i]; 1121 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1122 LIR.Height = Heights.lookup(DefMI); 1123 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1124 } 1125 1126 // Transfer the live regunits to the live-in list. 1127 for (SparseSet<LiveRegUnit>::const_iterator 1128 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1129 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1130 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1131 << '@' << RI->Cycle); 1132 } 1133 DEBUG(dbgs() << '\n'); 1134 1135 if (!TBI.HasValidInstrDepths) 1136 continue; 1137 // Add live-ins to the critical path length. 1138 TBI.CriticalPath = std::max(TBI.CriticalPath, 1139 computeCrossBlockCriticalPath(TBI)); 1140 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1141 } 1142 } 1143 1144 MachineTraceMetrics::Trace 1145 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1146 // FIXME: Check cache tags, recompute as needed. 1147 computeTrace(MBB); 1148 computeInstrDepths(MBB); 1149 computeInstrHeights(MBB); 1150 return Trace(*this, BlockInfo[MBB->getNumber()]); 1151 } 1152 1153 unsigned 1154 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1155 assert(MI && "Not an instruction."); 1156 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1157 "MI must be in the trace center block"); 1158 InstrCycles Cyc = getInstrCycles(MI); 1159 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1160 } 1161 1162 unsigned 1163 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1164 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1165 SmallVector<DataDep, 1> Deps; 1166 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1167 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1168 DataDep &Dep = Deps.front(); 1169 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1170 // Add latency if DefMI is a real instruction. Transients get latency 0. 1171 if (!Dep.DefMI->isTransient()) 1172 DepCycle += TE.MTM.SchedModel 1173 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 1174 return DepCycle; 1175 } 1176 1177 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1178 // Find the limiting processor resource. 1179 // Numbers have been pre-scaled to be comparable. 1180 unsigned PRMax = 0; 1181 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1182 if (Bottom) { 1183 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1184 for (unsigned K = 0; K != PRDepths.size(); ++K) 1185 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1186 } else { 1187 for (unsigned K = 0; K != PRDepths.size(); ++K) 1188 PRMax = std::max(PRMax, PRDepths[K]); 1189 } 1190 // Convert to cycle count. 1191 PRMax = TE.MTM.getCycles(PRMax); 1192 1193 unsigned Instrs = TBI.InstrDepth; 1194 if (Bottom) 1195 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1196 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1197 Instrs /= IW; 1198 // Assume issue width 1 without a schedule model. 1199 return std::max(Instrs, PRMax); 1200 } 1201 1202 1203 unsigned MachineTraceMetrics::Trace:: 1204 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks, 1205 ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const { 1206 // Add up resources above and below the center block. 1207 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1208 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1209 unsigned PRMax = 0; 1210 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1211 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1212 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1213 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1214 for (unsigned I = 0; I != ExtraInstrs.size(); ++I) { 1215 const MCSchedClassDesc* SC = ExtraInstrs[I]; 1216 if (!SC->isValid()) 1217 continue; 1218 for (TargetSchedModel::ProcResIter 1219 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1220 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 1221 if (PI->ProcResourceIdx != K) 1222 continue; 1223 PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K)); 1224 } 1225 } 1226 PRMax = std::max(PRMax, PRCycles); 1227 } 1228 // Convert to cycle count. 1229 PRMax = TE.MTM.getCycles(PRMax); 1230 1231 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1232 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1233 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1234 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1235 Instrs /= IW; 1236 // Assume issue width 1 without a schedule model. 1237 return std::max(Instrs, PRMax); 1238 } 1239 1240 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1241 OS << getName() << " ensemble:\n"; 1242 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1243 OS << " BB#" << i << '\t'; 1244 BlockInfo[i].print(OS); 1245 OS << '\n'; 1246 } 1247 } 1248 1249 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1250 if (hasValidDepth()) { 1251 OS << "depth=" << InstrDepth; 1252 if (Pred) 1253 OS << " pred=BB#" << Pred->getNumber(); 1254 else 1255 OS << " pred=null"; 1256 OS << " head=BB#" << Head; 1257 if (HasValidInstrDepths) 1258 OS << " +instrs"; 1259 } else 1260 OS << "depth invalid"; 1261 OS << ", "; 1262 if (hasValidHeight()) { 1263 OS << "height=" << InstrHeight; 1264 if (Succ) 1265 OS << " succ=BB#" << Succ->getNumber(); 1266 else 1267 OS << " succ=null"; 1268 OS << " tail=BB#" << Tail; 1269 if (HasValidInstrHeights) 1270 OS << " +instrs"; 1271 } else 1272 OS << "height invalid"; 1273 if (HasValidInstrDepths && HasValidInstrHeights) 1274 OS << ", crit=" << CriticalPath; 1275 } 1276 1277 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1278 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1279 1280 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1281 << " --> BB#" << TBI.Tail << ':'; 1282 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1283 OS << ' ' << getInstrCount() << " instrs."; 1284 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1285 OS << ' ' << TBI.CriticalPath << " cycles."; 1286 1287 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1288 OS << "\nBB#" << MBBNum; 1289 while (Block->hasValidDepth() && Block->Pred) { 1290 unsigned Num = Block->Pred->getNumber(); 1291 OS << " <- BB#" << Num; 1292 Block = &TE.BlockInfo[Num]; 1293 } 1294 1295 Block = &TBI; 1296 OS << "\n "; 1297 while (Block->hasValidHeight() && Block->Succ) { 1298 unsigned Num = Block->Succ->getNumber(); 1299 OS << " -> BB#" << Num; 1300 Block = &TE.BlockInfo[Num]; 1301 } 1302 OS << '\n'; 1303 } 1304