1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "machine-trace-metrics" 11 #include "llvm/CodeGen/MachineTraceMetrics.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SparseSet.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 16 #include "llvm/CodeGen/MachineLoopInfo.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/MC/MCSubtargetInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetInstrInfo.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 char MachineTraceMetrics::ID = 0; 30 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 31 32 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 33 "machine-trace-metrics", "Machine Trace Metrics", false, true) 34 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 35 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 36 INITIALIZE_PASS_END(MachineTraceMetrics, 37 "machine-trace-metrics", "Machine Trace Metrics", false, true) 38 39 MachineTraceMetrics::MachineTraceMetrics() 40 : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) { 41 std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0); 42 } 43 44 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 45 AU.setPreservesAll(); 46 AU.addRequired<MachineBranchProbabilityInfo>(); 47 AU.addRequired<MachineLoopInfo>(); 48 MachineFunctionPass::getAnalysisUsage(AU); 49 } 50 51 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 52 MF = &Func; 53 TII = MF->getTarget().getInstrInfo(); 54 TRI = MF->getTarget().getRegisterInfo(); 55 MRI = &MF->getRegInfo(); 56 Loops = &getAnalysis<MachineLoopInfo>(); 57 const TargetSubtargetInfo &ST = 58 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 59 SchedModel.init(*ST.getSchedModel(), &ST, TII); 60 BlockInfo.resize(MF->getNumBlockIDs()); 61 ProcResourceCycles.resize(MF->getNumBlockIDs() * 62 SchedModel.getNumProcResourceKinds()); 63 return false; 64 } 65 66 void MachineTraceMetrics::releaseMemory() { 67 MF = 0; 68 BlockInfo.clear(); 69 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 70 delete Ensembles[i]; 71 Ensembles[i] = 0; 72 } 73 } 74 75 //===----------------------------------------------------------------------===// 76 // Fixed block information 77 //===----------------------------------------------------------------------===// 78 // 79 // The number of instructions in a basic block and the CPU resources used by 80 // those instructions don't depend on any given trace strategy. 81 82 /// Compute the resource usage in basic block MBB. 83 const MachineTraceMetrics::FixedBlockInfo* 84 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 85 assert(MBB && "No basic block"); 86 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 87 if (FBI->hasResources()) 88 return FBI; 89 90 // Compute resource usage in the block. 91 FBI->HasCalls = false; 92 unsigned InstrCount = 0; 93 94 // Add up per-processor resource cycles as well. 95 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 96 SmallVector<unsigned, 32> PRCycles(PRKinds); 97 98 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 99 I != E; ++I) { 100 const MachineInstr *MI = I; 101 if (MI->isTransient()) 102 continue; 103 ++InstrCount; 104 if (MI->isCall()) 105 FBI->HasCalls = true; 106 107 // Count processor resources used. 108 if (!SchedModel.hasInstrSchedModel()) 109 continue; 110 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(MI); 111 if (!SC->isValid()) 112 continue; 113 114 for (TargetSchedModel::ProcResIter 115 PI = SchedModel.getWriteProcResBegin(SC), 116 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 117 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 118 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 119 } 120 } 121 FBI->InstrCount = InstrCount; 122 123 // Scale the resource cycles so they are comparable. 124 unsigned PROffset = MBB->getNumber() * PRKinds; 125 for (unsigned K = 0; K != PRKinds; ++K) 126 ProcResourceCycles[PROffset + K] = 127 PRCycles[K] * SchedModel.getResourceFactor(K); 128 129 return FBI; 130 } 131 132 ArrayRef<unsigned> 133 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 134 assert(BlockInfo[MBBNum].hasResources() && 135 "getResources() must be called before getProcResourceCycles()"); 136 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 137 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 138 return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds, 139 PRKinds); 140 } 141 142 143 //===----------------------------------------------------------------------===// 144 // Ensemble utility functions 145 //===----------------------------------------------------------------------===// 146 147 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 148 : MTM(*ct) { 149 BlockInfo.resize(MTM.BlockInfo.size()); 150 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 151 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 152 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 153 } 154 155 // Virtual destructor serves as an anchor. 156 MachineTraceMetrics::Ensemble::~Ensemble() {} 157 158 const MachineLoop* 159 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 160 return MTM.Loops->getLoopFor(MBB); 161 } 162 163 // Update resource-related information in the TraceBlockInfo for MBB. 164 // Only update resources related to the trace above MBB. 165 void MachineTraceMetrics::Ensemble:: 166 computeDepthResources(const MachineBasicBlock *MBB) { 167 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 168 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 169 unsigned PROffset = MBB->getNumber() * PRKinds; 170 171 // Compute resources from trace above. The top block is simple. 172 if (!TBI->Pred) { 173 TBI->InstrDepth = 0; 174 TBI->Head = MBB->getNumber(); 175 std::fill(ProcResourceDepths.begin() + PROffset, 176 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 177 return; 178 } 179 180 // Compute from the block above. A post-order traversal ensures the 181 // predecessor is always computed first. 182 unsigned PredNum = TBI->Pred->getNumber(); 183 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 184 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 185 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 186 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 187 TBI->Head = PredTBI->Head; 188 189 // Compute per-resource depths. 190 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 191 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 192 for (unsigned K = 0; K != PRKinds; ++K) 193 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 194 } 195 196 // Update resource-related information in the TraceBlockInfo for MBB. 197 // Only update resources related to the trace below MBB. 198 void MachineTraceMetrics::Ensemble:: 199 computeHeightResources(const MachineBasicBlock *MBB) { 200 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 201 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 202 unsigned PROffset = MBB->getNumber() * PRKinds; 203 204 // Compute resources for the current block. 205 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 206 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 207 208 // The trace tail is done. 209 if (!TBI->Succ) { 210 TBI->Tail = MBB->getNumber(); 211 std::copy(PRCycles.begin(), PRCycles.end(), 212 ProcResourceHeights.begin() + PROffset); 213 return; 214 } 215 216 // Compute from the block below. A post-order traversal ensures the 217 // predecessor is always computed first. 218 unsigned SuccNum = TBI->Succ->getNumber(); 219 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 220 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 221 TBI->InstrHeight += SuccTBI->InstrHeight; 222 TBI->Tail = SuccTBI->Tail; 223 224 // Compute per-resource heights. 225 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 226 for (unsigned K = 0; K != PRKinds; ++K) 227 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 228 } 229 230 // Check if depth resources for MBB are valid and return the TBI. 231 // Return NULL if the resources have been invalidated. 232 const MachineTraceMetrics::TraceBlockInfo* 233 MachineTraceMetrics::Ensemble:: 234 getDepthResources(const MachineBasicBlock *MBB) const { 235 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 236 return TBI->hasValidDepth() ? TBI : 0; 237 } 238 239 // Check if height resources for MBB are valid and return the TBI. 240 // Return NULL if the resources have been invalidated. 241 const MachineTraceMetrics::TraceBlockInfo* 242 MachineTraceMetrics::Ensemble:: 243 getHeightResources(const MachineBasicBlock *MBB) const { 244 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 245 return TBI->hasValidHeight() ? TBI : 0; 246 } 247 248 /// Get an array of processor resource depths for MBB. Indexed by processor 249 /// resource kind, this array contains the scaled processor resources consumed 250 /// by all blocks preceding MBB in its trace. It does not include instructions 251 /// in MBB. 252 /// 253 /// Compare TraceBlockInfo::InstrDepth. 254 ArrayRef<unsigned> 255 MachineTraceMetrics::Ensemble:: 256 getProcResourceDepths(unsigned MBBNum) const { 257 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 258 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 259 return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds, 260 PRKinds); 261 } 262 263 /// Get an array of processor resource heights for MBB. Indexed by processor 264 /// resource kind, this array contains the scaled processor resources consumed 265 /// by this block and all blocks following it in its trace. 266 /// 267 /// Compare TraceBlockInfo::InstrHeight. 268 ArrayRef<unsigned> 269 MachineTraceMetrics::Ensemble:: 270 getProcResourceHeights(unsigned MBBNum) const { 271 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 272 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 273 return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds, 274 PRKinds); 275 } 276 277 //===----------------------------------------------------------------------===// 278 // Trace Selection Strategies 279 //===----------------------------------------------------------------------===// 280 // 281 // A trace selection strategy is implemented as a sub-class of Ensemble. The 282 // trace through a block B is computed by two DFS traversals of the CFG 283 // starting from B. One upwards, and one downwards. During the upwards DFS, 284 // pickTracePred() is called on the post-ordered blocks. During the downwards 285 // DFS, pickTraceSucc() is called in a post-order. 286 // 287 288 // We never allow traces that leave loops, but we do allow traces to enter 289 // nested loops. We also never allow traces to contain back-edges. 290 // 291 // This means that a loop header can never appear above the center block of a 292 // trace, except as the trace head. Below the center block, loop exiting edges 293 // are banned. 294 // 295 // Return true if an edge from the From loop to the To loop is leaving a loop. 296 // Either of To and From can be null. 297 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 298 return From && !From->contains(To); 299 } 300 301 // MinInstrCountEnsemble - Pick the trace that executes the least number of 302 // instructions. 303 namespace { 304 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 305 const char *getName() const { return "MinInstr"; } 306 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*); 307 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*); 308 309 public: 310 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 311 : MachineTraceMetrics::Ensemble(mtm) {} 312 }; 313 } 314 315 // Select the preferred predecessor for MBB. 316 const MachineBasicBlock* 317 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 318 if (MBB->pred_empty()) 319 return 0; 320 const MachineLoop *CurLoop = getLoopFor(MBB); 321 // Don't leave loops, and never follow back-edges. 322 if (CurLoop && MBB == CurLoop->getHeader()) 323 return 0; 324 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 325 const MachineBasicBlock *Best = 0; 326 unsigned BestDepth = 0; 327 for (MachineBasicBlock::const_pred_iterator 328 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 329 const MachineBasicBlock *Pred = *I; 330 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 331 getDepthResources(Pred); 332 // Ignore cycles that aren't natural loops. 333 if (!PredTBI) 334 continue; 335 // Pick the predecessor that would give this block the smallest InstrDepth. 336 unsigned Depth = PredTBI->InstrDepth + CurCount; 337 if (!Best || Depth < BestDepth) 338 Best = Pred, BestDepth = Depth; 339 } 340 return Best; 341 } 342 343 // Select the preferred successor for MBB. 344 const MachineBasicBlock* 345 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 346 if (MBB->pred_empty()) 347 return 0; 348 const MachineLoop *CurLoop = getLoopFor(MBB); 349 const MachineBasicBlock *Best = 0; 350 unsigned BestHeight = 0; 351 for (MachineBasicBlock::const_succ_iterator 352 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 353 const MachineBasicBlock *Succ = *I; 354 // Don't consider back-edges. 355 if (CurLoop && Succ == CurLoop->getHeader()) 356 continue; 357 // Don't consider successors exiting CurLoop. 358 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 359 continue; 360 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 361 getHeightResources(Succ); 362 // Ignore cycles that aren't natural loops. 363 if (!SuccTBI) 364 continue; 365 // Pick the successor that would give this block the smallest InstrHeight. 366 unsigned Height = SuccTBI->InstrHeight; 367 if (!Best || Height < BestHeight) 368 Best = Succ, BestHeight = Height; 369 } 370 return Best; 371 } 372 373 // Get an Ensemble sub-class for the requested trace strategy. 374 MachineTraceMetrics::Ensemble * 375 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 376 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 377 Ensemble *&E = Ensembles[strategy]; 378 if (E) 379 return E; 380 381 // Allocate new Ensemble on demand. 382 switch (strategy) { 383 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 384 default: llvm_unreachable("Invalid trace strategy enum"); 385 } 386 } 387 388 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 389 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 390 BlockInfo[MBB->getNumber()].invalidate(); 391 for (unsigned i = 0; i != TS_NumStrategies; ++i) 392 if (Ensembles[i]) 393 Ensembles[i]->invalidate(MBB); 394 } 395 396 void MachineTraceMetrics::verifyAnalysis() const { 397 if (!MF) 398 return; 399 #ifndef NDEBUG 400 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 401 for (unsigned i = 0; i != TS_NumStrategies; ++i) 402 if (Ensembles[i]) 403 Ensembles[i]->verify(); 404 #endif 405 } 406 407 //===----------------------------------------------------------------------===// 408 // Trace building 409 //===----------------------------------------------------------------------===// 410 // 411 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 412 // set abstraction that confines the search to the current loop, and doesn't 413 // revisit blocks. 414 415 namespace { 416 struct LoopBounds { 417 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 418 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 419 const MachineLoopInfo *Loops; 420 bool Downward; 421 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 422 const MachineLoopInfo *loops) 423 : Blocks(blocks), Loops(loops), Downward(false) {} 424 }; 425 } 426 427 // Specialize po_iterator_storage in order to prune the post-order traversal so 428 // it is limited to the current loop and doesn't traverse the loop back edges. 429 namespace llvm { 430 template<> 431 class po_iterator_storage<LoopBounds, true> { 432 LoopBounds &LB; 433 public: 434 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 435 void finishPostorder(const MachineBasicBlock*) {} 436 437 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 438 // Skip already visited To blocks. 439 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 440 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 441 return false; 442 // From is null once when To is the trace center block. 443 if (From) { 444 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 445 // Don't follow backedges, don't leave FromLoop when going upwards. 446 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 447 return false; 448 // Don't leave FromLoop. 449 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 450 return false; 451 } 452 } 453 // To is a new block. Mark the block as visited in case the CFG has cycles 454 // that MachineLoopInfo didn't recognize as a natural loop. 455 return LB.Visited.insert(To); 456 } 457 }; 458 } 459 460 /// Compute the trace through MBB. 461 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 462 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 463 << MBB->getNumber() << '\n'); 464 // Set up loop bounds for the backwards post-order traversal. 465 LoopBounds Bounds(BlockInfo, MTM.Loops); 466 467 // Run an upwards post-order search for the trace start. 468 Bounds.Downward = false; 469 Bounds.Visited.clear(); 470 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 471 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 472 I != E; ++I) { 473 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 474 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 475 // All the predecessors have been visited, pick the preferred one. 476 TBI.Pred = pickTracePred(*I); 477 DEBUG({ 478 if (TBI.Pred) 479 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 480 else 481 dbgs() << "null\n"; 482 }); 483 // The trace leading to I is now known, compute the depth resources. 484 computeDepthResources(*I); 485 } 486 487 // Run a downwards post-order search for the trace end. 488 Bounds.Downward = true; 489 Bounds.Visited.clear(); 490 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 491 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 492 I != E; ++I) { 493 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 494 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 495 // All the successors have been visited, pick the preferred one. 496 TBI.Succ = pickTraceSucc(*I); 497 DEBUG({ 498 if (TBI.Succ) 499 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 500 else 501 dbgs() << "null\n"; 502 }); 503 // The trace leaving I is now known, compute the height resources. 504 computeHeightResources(*I); 505 } 506 } 507 508 /// Invalidate traces through BadMBB. 509 void 510 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 511 SmallVector<const MachineBasicBlock*, 16> WorkList; 512 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 513 514 // Invalidate height resources of blocks above MBB. 515 if (BadTBI.hasValidHeight()) { 516 BadTBI.invalidateHeight(); 517 WorkList.push_back(BadMBB); 518 do { 519 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 520 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 521 << " height.\n"); 522 // Find any MBB predecessors that have MBB as their preferred successor. 523 // They are the only ones that need to be invalidated. 524 for (MachineBasicBlock::const_pred_iterator 525 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 526 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 527 if (!TBI.hasValidHeight()) 528 continue; 529 if (TBI.Succ == MBB) { 530 TBI.invalidateHeight(); 531 WorkList.push_back(*I); 532 continue; 533 } 534 // Verify that TBI.Succ is actually a *I successor. 535 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 536 } 537 } while (!WorkList.empty()); 538 } 539 540 // Invalidate depth resources of blocks below MBB. 541 if (BadTBI.hasValidDepth()) { 542 BadTBI.invalidateDepth(); 543 WorkList.push_back(BadMBB); 544 do { 545 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 546 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 547 << " depth.\n"); 548 // Find any MBB successors that have MBB as their preferred predecessor. 549 // They are the only ones that need to be invalidated. 550 for (MachineBasicBlock::const_succ_iterator 551 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 552 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 553 if (!TBI.hasValidDepth()) 554 continue; 555 if (TBI.Pred == MBB) { 556 TBI.invalidateDepth(); 557 WorkList.push_back(*I); 558 continue; 559 } 560 // Verify that TBI.Pred is actually a *I predecessor. 561 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 562 } 563 } while (!WorkList.empty()); 564 } 565 566 // Clear any per-instruction data. We only have to do this for BadMBB itself 567 // because the instructions in that block may change. Other blocks may be 568 // invalidated, but their instructions will stay the same, so there is no 569 // need to erase the Cycle entries. They will be overwritten when we 570 // recompute. 571 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); 572 I != E; ++I) 573 Cycles.erase(I); 574 } 575 576 void MachineTraceMetrics::Ensemble::verify() const { 577 #ifndef NDEBUG 578 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 579 "Outdated BlockInfo size"); 580 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 581 const TraceBlockInfo &TBI = BlockInfo[Num]; 582 if (TBI.hasValidDepth() && TBI.Pred) { 583 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 584 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 585 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 586 "Trace is broken, depth should have been invalidated."); 587 const MachineLoop *Loop = getLoopFor(MBB); 588 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 589 } 590 if (TBI.hasValidHeight() && TBI.Succ) { 591 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 592 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 593 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 594 "Trace is broken, height should have been invalidated."); 595 const MachineLoop *Loop = getLoopFor(MBB); 596 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 597 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 598 "Trace contains backedge"); 599 } 600 } 601 #endif 602 } 603 604 //===----------------------------------------------------------------------===// 605 // Data Dependencies 606 //===----------------------------------------------------------------------===// 607 // 608 // Compute the depth and height of each instruction based on data dependencies 609 // and instruction latencies. These cycle numbers assume that the CPU can issue 610 // an infinite number of instructions per cycle as long as their dependencies 611 // are ready. 612 613 // A data dependency is represented as a defining MI and operand numbers on the 614 // defining and using MI. 615 namespace { 616 struct DataDep { 617 const MachineInstr *DefMI; 618 unsigned DefOp; 619 unsigned UseOp; 620 621 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 622 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 623 624 /// Create a DataDep from an SSA form virtual register. 625 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 626 : UseOp(UseOp) { 627 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 628 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 629 assert(!DefI.atEnd() && "Register has no defs"); 630 DefMI = &*DefI; 631 DefOp = DefI.getOperandNo(); 632 assert((++DefI).atEnd() && "Register has multiple defs"); 633 } 634 }; 635 } 636 637 // Get the input data dependencies that must be ready before UseMI can issue. 638 // Return true if UseMI has any physreg operands. 639 static bool getDataDeps(const MachineInstr *UseMI, 640 SmallVectorImpl<DataDep> &Deps, 641 const MachineRegisterInfo *MRI) { 642 bool HasPhysRegs = false; 643 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 644 if (!MO->isReg()) 645 continue; 646 unsigned Reg = MO->getReg(); 647 if (!Reg) 648 continue; 649 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 650 HasPhysRegs = true; 651 continue; 652 } 653 // Collect virtual register reads. 654 if (MO->readsReg()) 655 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 656 } 657 return HasPhysRegs; 658 } 659 660 // Get the input data dependencies of a PHI instruction, using Pred as the 661 // preferred predecessor. 662 // This will add at most one dependency to Deps. 663 static void getPHIDeps(const MachineInstr *UseMI, 664 SmallVectorImpl<DataDep> &Deps, 665 const MachineBasicBlock *Pred, 666 const MachineRegisterInfo *MRI) { 667 // No predecessor at the beginning of a trace. Ignore dependencies. 668 if (!Pred) 669 return; 670 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 671 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 672 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 673 unsigned Reg = UseMI->getOperand(i).getReg(); 674 Deps.push_back(DataDep(MRI, Reg, i)); 675 return; 676 } 677 } 678 } 679 680 // Keep track of physreg data dependencies by recording each live register unit. 681 // Associate each regunit with an instruction operand. Depending on the 682 // direction instructions are scanned, it could be the operand that defined the 683 // regunit, or the highest operand to read the regunit. 684 namespace { 685 struct LiveRegUnit { 686 unsigned RegUnit; 687 unsigned Cycle; 688 const MachineInstr *MI; 689 unsigned Op; 690 691 unsigned getSparseSetIndex() const { return RegUnit; } 692 693 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {} 694 }; 695 } 696 697 // Identify physreg dependencies for UseMI, and update the live regunit 698 // tracking set when scanning instructions downwards. 699 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 700 SmallVectorImpl<DataDep> &Deps, 701 SparseSet<LiveRegUnit> &RegUnits, 702 const TargetRegisterInfo *TRI) { 703 SmallVector<unsigned, 8> Kills; 704 SmallVector<unsigned, 8> LiveDefOps; 705 706 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 707 if (!MO->isReg()) 708 continue; 709 unsigned Reg = MO->getReg(); 710 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 711 continue; 712 // Track live defs and kills for updating RegUnits. 713 if (MO->isDef()) { 714 if (MO->isDead()) 715 Kills.push_back(Reg); 716 else 717 LiveDefOps.push_back(MO.getOperandNo()); 718 } else if (MO->isKill()) 719 Kills.push_back(Reg); 720 // Identify dependencies. 721 if (!MO->readsReg()) 722 continue; 723 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 724 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 725 if (I == RegUnits.end()) 726 continue; 727 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 728 break; 729 } 730 } 731 732 // Update RegUnits to reflect live registers after UseMI. 733 // First kills. 734 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 735 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 736 RegUnits.erase(*Units); 737 738 // Second, live defs. 739 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 740 unsigned DefOp = LiveDefOps[i]; 741 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 742 Units.isValid(); ++Units) { 743 LiveRegUnit &LRU = RegUnits[*Units]; 744 LRU.MI = UseMI; 745 LRU.Op = DefOp; 746 } 747 } 748 } 749 750 /// The length of the critical path through a trace is the maximum of two path 751 /// lengths: 752 /// 753 /// 1. The maximum height+depth over all instructions in the trace center block. 754 /// 755 /// 2. The longest cross-block dependency chain. For small blocks, it is 756 /// possible that the critical path through the trace doesn't include any 757 /// instructions in the block. 758 /// 759 /// This function computes the second number from the live-in list of the 760 /// center block. 761 unsigned MachineTraceMetrics::Ensemble:: 762 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 763 assert(TBI.HasValidInstrDepths && "Missing depth info"); 764 assert(TBI.HasValidInstrHeights && "Missing height info"); 765 unsigned MaxLen = 0; 766 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 767 const LiveInReg &LIR = TBI.LiveIns[i]; 768 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 769 continue; 770 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 771 // Ignore dependencies outside the current trace. 772 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 773 if (!DefTBI.isUsefulDominator(TBI)) 774 continue; 775 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 776 MaxLen = std::max(MaxLen, Len); 777 } 778 return MaxLen; 779 } 780 781 /// Compute instruction depths for all instructions above or in MBB in its 782 /// trace. This assumes that the trace through MBB has already been computed. 783 void MachineTraceMetrics::Ensemble:: 784 computeInstrDepths(const MachineBasicBlock *MBB) { 785 // The top of the trace may already be computed, and HasValidInstrDepths 786 // implies Head->HasValidInstrDepths, so we only need to start from the first 787 // block in the trace that needs to be recomputed. 788 SmallVector<const MachineBasicBlock*, 8> Stack; 789 do { 790 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 791 assert(TBI.hasValidDepth() && "Incomplete trace"); 792 if (TBI.HasValidInstrDepths) 793 break; 794 Stack.push_back(MBB); 795 MBB = TBI.Pred; 796 } while (MBB); 797 798 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 799 // in the trace. We should track any live-out physregs that were defined in 800 // the trace. This is quite rare in SSA form, typically created by CSE 801 // hoisting a compare. 802 SparseSet<LiveRegUnit> RegUnits; 803 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 804 805 // Go through trace blocks in top-down order, stopping after the center block. 806 SmallVector<DataDep, 8> Deps; 807 while (!Stack.empty()) { 808 MBB = Stack.pop_back_val(); 809 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 810 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 811 TBI.HasValidInstrDepths = true; 812 TBI.CriticalPath = 0; 813 814 // Print out resource depths here as well. 815 DEBUG({ 816 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 817 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 818 for (unsigned K = 0; K != PRDepths.size(); ++K) 819 if (PRDepths[K]) { 820 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 821 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 822 << MTM.SchedModel.getProcResource(K)->Name << " (" 823 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 824 } 825 }); 826 827 // Also compute the critical path length through MBB when possible. 828 if (TBI.HasValidInstrHeights) 829 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 830 831 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 832 I != E; ++I) { 833 const MachineInstr *UseMI = I; 834 835 // Collect all data dependencies. 836 Deps.clear(); 837 if (UseMI->isPHI()) 838 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 839 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 840 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); 841 842 // Filter and process dependencies, computing the earliest issue cycle. 843 unsigned Cycle = 0; 844 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 845 const DataDep &Dep = Deps[i]; 846 const TraceBlockInfo&DepTBI = 847 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 848 // Ignore dependencies from outside the current trace. 849 if (!DepTBI.isUsefulDominator(TBI)) 850 continue; 851 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 852 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 853 // Add latency if DefMI is a real instruction. Transients get latency 0. 854 if (!Dep.DefMI->isTransient()) 855 DepCycle += MTM.SchedModel 856 .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp, 857 /* FindMin = */ false); 858 Cycle = std::max(Cycle, DepCycle); 859 } 860 // Remember the instruction depth. 861 InstrCycles &MICycles = Cycles[UseMI]; 862 MICycles.Depth = Cycle; 863 864 if (!TBI.HasValidInstrHeights) { 865 DEBUG(dbgs() << Cycle << '\t' << *UseMI); 866 continue; 867 } 868 // Update critical path length. 869 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 870 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); 871 } 872 } 873 } 874 875 // Identify physreg dependencies for MI when scanning instructions upwards. 876 // Return the issue height of MI after considering any live regunits. 877 // Height is the issue height computed from virtual register dependencies alone. 878 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 879 SparseSet<LiveRegUnit> &RegUnits, 880 const TargetSchedModel &SchedModel, 881 const TargetInstrInfo *TII, 882 const TargetRegisterInfo *TRI) { 883 SmallVector<unsigned, 8> ReadOps; 884 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 885 if (!MO->isReg()) 886 continue; 887 unsigned Reg = MO->getReg(); 888 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 889 continue; 890 if (MO->readsReg()) 891 ReadOps.push_back(MO.getOperandNo()); 892 if (!MO->isDef()) 893 continue; 894 // This is a def of Reg. Remove corresponding entries from RegUnits, and 895 // update MI Height to consider the physreg dependencies. 896 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 897 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 898 if (I == RegUnits.end()) 899 continue; 900 unsigned DepHeight = I->Cycle; 901 if (!MI->isTransient()) { 902 // We may not know the UseMI of this dependency, if it came from the 903 // live-in list. SchedModel can handle a NULL UseMI. 904 DepHeight += SchedModel 905 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op, 906 /* FindMin = */ false); 907 } 908 Height = std::max(Height, DepHeight); 909 // This regunit is dead above MI. 910 RegUnits.erase(I); 911 } 912 } 913 914 // Now we know the height of MI. Update any regunits read. 915 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 916 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 917 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 918 LiveRegUnit &LRU = RegUnits[*Units]; 919 // Set the height to the highest reader of the unit. 920 if (LRU.Cycle <= Height && LRU.MI != MI) { 921 LRU.Cycle = Height; 922 LRU.MI = MI; 923 LRU.Op = ReadOps[i]; 924 } 925 } 926 } 927 928 return Height; 929 } 930 931 932 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 933 934 // Push the height of DefMI upwards if required to match UseMI. 935 // Return true if this is the first time DefMI was seen. 936 static bool pushDepHeight(const DataDep &Dep, 937 const MachineInstr *UseMI, unsigned UseHeight, 938 MIHeightMap &Heights, 939 const TargetSchedModel &SchedModel, 940 const TargetInstrInfo *TII) { 941 // Adjust height by Dep.DefMI latency. 942 if (!Dep.DefMI->isTransient()) 943 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 944 UseMI, Dep.UseOp, false); 945 946 // Update Heights[DefMI] to be the maximum height seen. 947 MIHeightMap::iterator I; 948 bool New; 949 tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 950 if (New) 951 return true; 952 953 // DefMI has been pushed before. Give it the max height. 954 if (I->second < UseHeight) 955 I->second = UseHeight; 956 return false; 957 } 958 959 /// Assuming that the virtual register defined by DefMI:DefOp was used by 960 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 961 /// when reaching the block that contains DefMI. 962 void MachineTraceMetrics::Ensemble:: 963 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 964 ArrayRef<const MachineBasicBlock*> Trace) { 965 assert(!Trace.empty() && "Trace should contain at least one block"); 966 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 967 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 968 const MachineBasicBlock *DefMBB = DefMI->getParent(); 969 970 // Reg is live-in to all blocks in Trace that follow DefMBB. 971 for (unsigned i = Trace.size(); i; --i) { 972 const MachineBasicBlock *MBB = Trace[i-1]; 973 if (MBB == DefMBB) 974 return; 975 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 976 // Just add the register. The height will be updated later. 977 TBI.LiveIns.push_back(Reg); 978 } 979 } 980 981 /// Compute instruction heights in the trace through MBB. This updates MBB and 982 /// the blocks below it in the trace. It is assumed that the trace has already 983 /// been computed. 984 void MachineTraceMetrics::Ensemble:: 985 computeInstrHeights(const MachineBasicBlock *MBB) { 986 // The bottom of the trace may already be computed. 987 // Find the blocks that need updating. 988 SmallVector<const MachineBasicBlock*, 8> Stack; 989 do { 990 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 991 assert(TBI.hasValidHeight() && "Incomplete trace"); 992 if (TBI.HasValidInstrHeights) 993 break; 994 Stack.push_back(MBB); 995 TBI.LiveIns.clear(); 996 MBB = TBI.Succ; 997 } while (MBB); 998 999 // As we move upwards in the trace, keep track of instructions that are 1000 // required by deeper trace instructions. Map MI -> height required so far. 1001 MIHeightMap Heights; 1002 1003 // For physregs, the def isn't known when we see the use. 1004 // Instead, keep track of the highest use of each regunit. 1005 SparseSet<LiveRegUnit> RegUnits; 1006 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1007 1008 // If the bottom of the trace was already precomputed, initialize heights 1009 // from its live-in list. 1010 // MBB is the highest precomputed block in the trace. 1011 if (MBB) { 1012 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1013 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1014 LiveInReg LI = TBI.LiveIns[i]; 1015 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1016 // For virtual registers, the def latency is included. 1017 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1018 if (Height < LI.Height) 1019 Height = LI.Height; 1020 } else { 1021 // For register units, the def latency is not included because we don't 1022 // know the def yet. 1023 RegUnits[LI.Reg].Cycle = LI.Height; 1024 } 1025 } 1026 } 1027 1028 // Go through the trace blocks in bottom-up order. 1029 SmallVector<DataDep, 8> Deps; 1030 for (;!Stack.empty(); Stack.pop_back()) { 1031 MBB = Stack.back(); 1032 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1033 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1034 TBI.HasValidInstrHeights = true; 1035 TBI.CriticalPath = 0; 1036 1037 DEBUG({ 1038 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1039 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1040 for (unsigned K = 0; K != PRHeights.size(); ++K) 1041 if (PRHeights[K]) { 1042 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1043 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1044 << MTM.SchedModel.getProcResource(K)->Name << " (" 1045 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1046 } 1047 }); 1048 1049 // Get dependencies from PHIs in the trace successor. 1050 const MachineBasicBlock *Succ = TBI.Succ; 1051 // If MBB is the last block in the trace, and it has a back-edge to the 1052 // loop header, get loop-carried dependencies from PHIs in the header. For 1053 // that purpose, pretend that all the loop header PHIs have height 0. 1054 if (!Succ) 1055 if (const MachineLoop *Loop = getLoopFor(MBB)) 1056 if (MBB->isSuccessor(Loop->getHeader())) 1057 Succ = Loop->getHeader(); 1058 1059 if (Succ) { 1060 for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end(); 1061 I != E && I->isPHI(); ++I) { 1062 const MachineInstr *PHI = I; 1063 Deps.clear(); 1064 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1065 if (!Deps.empty()) { 1066 // Loop header PHI heights are all 0. 1067 unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0; 1068 DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI); 1069 if (pushDepHeight(Deps.front(), PHI, Height, 1070 Heights, MTM.SchedModel, MTM.TII)) 1071 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1072 } 1073 } 1074 } 1075 1076 // Go through the block backwards. 1077 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1078 BI != BB;) { 1079 const MachineInstr *MI = --BI; 1080 1081 // Find the MI height as determined by virtual register uses in the 1082 // trace below. 1083 unsigned Cycle = 0; 1084 MIHeightMap::iterator HeightI = Heights.find(MI); 1085 if (HeightI != Heights.end()) { 1086 Cycle = HeightI->second; 1087 // We won't be seeing any more MI uses. 1088 Heights.erase(HeightI); 1089 } 1090 1091 // Don't process PHI deps. They depend on the specific predecessor, and 1092 // we'll get them when visiting the predecessor. 1093 Deps.clear(); 1094 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1095 1096 // There may also be regunit dependencies to include in the height. 1097 if (HasPhysRegs) 1098 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1099 MTM.SchedModel, MTM.TII, MTM.TRI); 1100 1101 // Update the required height of any virtual registers read by MI. 1102 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1103 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1104 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1105 1106 InstrCycles &MICycles = Cycles[MI]; 1107 MICycles.Height = Cycle; 1108 if (!TBI.HasValidInstrDepths) { 1109 DEBUG(dbgs() << Cycle << '\t' << *MI); 1110 continue; 1111 } 1112 // Update critical path length. 1113 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1114 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1115 } 1116 1117 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1118 // height because the final height isn't known until now. 1119 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1120 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1121 LiveInReg &LIR = TBI.LiveIns[i]; 1122 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1123 LIR.Height = Heights.lookup(DefMI); 1124 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1125 } 1126 1127 // Transfer the live regunits to the live-in list. 1128 for (SparseSet<LiveRegUnit>::const_iterator 1129 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1130 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1131 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1132 << '@' << RI->Cycle); 1133 } 1134 DEBUG(dbgs() << '\n'); 1135 1136 if (!TBI.HasValidInstrDepths) 1137 continue; 1138 // Add live-ins to the critical path length. 1139 TBI.CriticalPath = std::max(TBI.CriticalPath, 1140 computeCrossBlockCriticalPath(TBI)); 1141 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1142 } 1143 } 1144 1145 MachineTraceMetrics::Trace 1146 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1147 // FIXME: Check cache tags, recompute as needed. 1148 computeTrace(MBB); 1149 computeInstrDepths(MBB); 1150 computeInstrHeights(MBB); 1151 return Trace(*this, BlockInfo[MBB->getNumber()]); 1152 } 1153 1154 unsigned 1155 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1156 assert(MI && "Not an instruction."); 1157 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1158 "MI must be in the trace center block"); 1159 InstrCycles Cyc = getInstrCycles(MI); 1160 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1161 } 1162 1163 unsigned 1164 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1165 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1166 SmallVector<DataDep, 1> Deps; 1167 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1168 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1169 DataDep &Dep = Deps.front(); 1170 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1171 // Add latency if DefMI is a real instruction. Transients get latency 0. 1172 if (!Dep.DefMI->isTransient()) 1173 DepCycle += TE.MTM.SchedModel 1174 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp, false); 1175 return DepCycle; 1176 } 1177 1178 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1179 // Find the limiting processor resource. 1180 // Numbers have been pre-scaled to be comparable. 1181 unsigned PRMax = 0; 1182 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1183 if (Bottom) { 1184 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1185 for (unsigned K = 0; K != PRDepths.size(); ++K) 1186 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1187 } else { 1188 for (unsigned K = 0; K != PRDepths.size(); ++K) 1189 PRMax = std::max(PRMax, PRDepths[K]); 1190 } 1191 // Convert to cycle count. 1192 PRMax = TE.MTM.getCycles(PRMax); 1193 1194 unsigned Instrs = TBI.InstrDepth; 1195 if (Bottom) 1196 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1197 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1198 Instrs /= IW; 1199 // Assume issue width 1 without a schedule model. 1200 return std::max(Instrs, PRMax); 1201 } 1202 1203 1204 unsigned MachineTraceMetrics::Trace:: 1205 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks, 1206 ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const { 1207 // Add up resources above and below the center block. 1208 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1209 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1210 unsigned PRMax = 0; 1211 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1212 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1213 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1214 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1215 for (unsigned I = 0; I != ExtraInstrs.size(); ++I) { 1216 const MCSchedClassDesc* SC = ExtraInstrs[I]; 1217 if (!SC->isValid()) 1218 continue; 1219 for (TargetSchedModel::ProcResIter 1220 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1221 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 1222 if (PI->ProcResourceIdx != K) 1223 continue; 1224 PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K)); 1225 } 1226 } 1227 PRMax = std::max(PRMax, PRCycles); 1228 } 1229 // Convert to cycle count. 1230 PRMax = TE.MTM.getCycles(PRMax); 1231 1232 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1233 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1234 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1235 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1236 Instrs /= IW; 1237 // Assume issue width 1 without a schedule model. 1238 return std::max(Instrs, PRMax); 1239 } 1240 1241 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1242 OS << getName() << " ensemble:\n"; 1243 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1244 OS << " BB#" << i << '\t'; 1245 BlockInfo[i].print(OS); 1246 OS << '\n'; 1247 } 1248 } 1249 1250 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1251 if (hasValidDepth()) { 1252 OS << "depth=" << InstrDepth; 1253 if (Pred) 1254 OS << " pred=BB#" << Pred->getNumber(); 1255 else 1256 OS << " pred=null"; 1257 OS << " head=BB#" << Head; 1258 if (HasValidInstrDepths) 1259 OS << " +instrs"; 1260 } else 1261 OS << "depth invalid"; 1262 OS << ", "; 1263 if (hasValidHeight()) { 1264 OS << "height=" << InstrHeight; 1265 if (Succ) 1266 OS << " succ=BB#" << Succ->getNumber(); 1267 else 1268 OS << " succ=null"; 1269 OS << " tail=BB#" << Tail; 1270 if (HasValidInstrHeights) 1271 OS << " +instrs"; 1272 } else 1273 OS << "height invalid"; 1274 if (HasValidInstrDepths && HasValidInstrHeights) 1275 OS << ", crit=" << CriticalPath; 1276 } 1277 1278 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1279 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1280 1281 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1282 << " --> BB#" << TBI.Tail << ':'; 1283 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1284 OS << ' ' << getInstrCount() << " instrs."; 1285 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1286 OS << ' ' << TBI.CriticalPath << " cycles."; 1287 1288 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1289 OS << "\nBB#" << MBBNum; 1290 while (Block->hasValidDepth() && Block->Pred) { 1291 unsigned Num = Block->Pred->getNumber(); 1292 OS << " <- BB#" << Num; 1293 Block = &TE.BlockInfo[Num]; 1294 } 1295 1296 Block = &TBI; 1297 OS << "\n "; 1298 while (Block->hasValidHeight() && Block->Succ) { 1299 unsigned Num = Block->Succ->getNumber(); 1300 OS << " -> BB#" << Num; 1301 Block = &TE.BlockInfo[Num]; 1302 } 1303 OS << '\n'; 1304 } 1305