1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSchedule.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <iterator> 36 #include <tuple> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-trace-metrics" 42 43 char MachineTraceMetrics::ID = 0; 44 45 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 46 47 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 48 "Machine Trace Metrics", false, true) 49 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 51 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 52 "Machine Trace Metrics", false, true) 53 54 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 55 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 56 } 57 58 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.setPreservesAll(); 60 AU.addRequired<MachineBranchProbabilityInfo>(); 61 AU.addRequired<MachineLoopInfo>(); 62 MachineFunctionPass::getAnalysisUsage(AU); 63 } 64 65 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 66 MF = &Func; 67 const TargetSubtargetInfo &ST = MF->getSubtarget(); 68 TII = ST.getInstrInfo(); 69 TRI = ST.getRegisterInfo(); 70 MRI = &MF->getRegInfo(); 71 Loops = &getAnalysis<MachineLoopInfo>(); 72 SchedModel.init(&ST); 73 BlockInfo.resize(MF->getNumBlockIDs()); 74 ProcResourceCycles.resize(MF->getNumBlockIDs() * 75 SchedModel.getNumProcResourceKinds()); 76 return false; 77 } 78 79 void MachineTraceMetrics::releaseMemory() { 80 MF = nullptr; 81 BlockInfo.clear(); 82 for (Ensemble *&E : Ensembles) { 83 delete E; 84 E = nullptr; 85 } 86 } 87 88 //===----------------------------------------------------------------------===// 89 // Fixed block information 90 //===----------------------------------------------------------------------===// 91 // 92 // The number of instructions in a basic block and the CPU resources used by 93 // those instructions don't depend on any given trace strategy. 94 95 /// Compute the resource usage in basic block MBB. 96 const MachineTraceMetrics::FixedBlockInfo* 97 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 98 assert(MBB && "No basic block"); 99 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 100 if (FBI->hasResources()) 101 return FBI; 102 103 // Compute resource usage in the block. 104 FBI->HasCalls = false; 105 unsigned InstrCount = 0; 106 107 // Add up per-processor resource cycles as well. 108 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 109 SmallVector<unsigned, 32> PRCycles(PRKinds); 110 111 for (const auto &MI : *MBB) { 112 if (MI.isTransient()) 113 continue; 114 ++InstrCount; 115 if (MI.isCall()) 116 FBI->HasCalls = true; 117 118 // Count processor resources used. 119 if (!SchedModel.hasInstrSchedModel()) 120 continue; 121 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 122 if (!SC->isValid()) 123 continue; 124 125 for (TargetSchedModel::ProcResIter 126 PI = SchedModel.getWriteProcResBegin(SC), 127 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 128 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 129 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 130 } 131 } 132 FBI->InstrCount = InstrCount; 133 134 // Scale the resource cycles so they are comparable. 135 unsigned PROffset = MBB->getNumber() * PRKinds; 136 for (unsigned K = 0; K != PRKinds; ++K) 137 ProcResourceCycles[PROffset + K] = 138 PRCycles[K] * SchedModel.getResourceFactor(K); 139 140 return FBI; 141 } 142 143 ArrayRef<unsigned> 144 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 145 assert(BlockInfo[MBBNum].hasResources() && 146 "getResources() must be called before getProcResourceCycles()"); 147 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 148 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 149 return ArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // Ensemble utility functions 154 //===----------------------------------------------------------------------===// 155 156 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 157 : MTM(*ct) { 158 BlockInfo.resize(MTM.BlockInfo.size()); 159 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 160 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 161 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 162 } 163 164 // Virtual destructor serves as an anchor. 165 MachineTraceMetrics::Ensemble::~Ensemble() = default; 166 167 const MachineLoop* 168 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 169 return MTM.Loops->getLoopFor(MBB); 170 } 171 172 // Update resource-related information in the TraceBlockInfo for MBB. 173 // Only update resources related to the trace above MBB. 174 void MachineTraceMetrics::Ensemble:: 175 computeDepthResources(const MachineBasicBlock *MBB) { 176 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 177 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 178 unsigned PROffset = MBB->getNumber() * PRKinds; 179 180 // Compute resources from trace above. The top block is simple. 181 if (!TBI->Pred) { 182 TBI->InstrDepth = 0; 183 TBI->Head = MBB->getNumber(); 184 std::fill(ProcResourceDepths.begin() + PROffset, 185 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 186 return; 187 } 188 189 // Compute from the block above. A post-order traversal ensures the 190 // predecessor is always computed first. 191 unsigned PredNum = TBI->Pred->getNumber(); 192 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 193 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 194 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 195 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 196 TBI->Head = PredTBI->Head; 197 198 // Compute per-resource depths. 199 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 200 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 201 for (unsigned K = 0; K != PRKinds; ++K) 202 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 203 } 204 205 // Update resource-related information in the TraceBlockInfo for MBB. 206 // Only update resources related to the trace below MBB. 207 void MachineTraceMetrics::Ensemble:: 208 computeHeightResources(const MachineBasicBlock *MBB) { 209 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 210 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 211 unsigned PROffset = MBB->getNumber() * PRKinds; 212 213 // Compute resources for the current block. 214 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 215 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 216 217 // The trace tail is done. 218 if (!TBI->Succ) { 219 TBI->Tail = MBB->getNumber(); 220 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 221 return; 222 } 223 224 // Compute from the block below. A post-order traversal ensures the 225 // predecessor is always computed first. 226 unsigned SuccNum = TBI->Succ->getNumber(); 227 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 228 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 229 TBI->InstrHeight += SuccTBI->InstrHeight; 230 TBI->Tail = SuccTBI->Tail; 231 232 // Compute per-resource heights. 233 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 234 for (unsigned K = 0; K != PRKinds; ++K) 235 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 236 } 237 238 // Check if depth resources for MBB are valid and return the TBI. 239 // Return NULL if the resources have been invalidated. 240 const MachineTraceMetrics::TraceBlockInfo* 241 MachineTraceMetrics::Ensemble:: 242 getDepthResources(const MachineBasicBlock *MBB) const { 243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 244 return TBI->hasValidDepth() ? TBI : nullptr; 245 } 246 247 // Check if height resources for MBB are valid and return the TBI. 248 // Return NULL if the resources have been invalidated. 249 const MachineTraceMetrics::TraceBlockInfo* 250 MachineTraceMetrics::Ensemble:: 251 getHeightResources(const MachineBasicBlock *MBB) const { 252 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 253 return TBI->hasValidHeight() ? TBI : nullptr; 254 } 255 256 /// Get an array of processor resource depths for MBB. Indexed by processor 257 /// resource kind, this array contains the scaled processor resources consumed 258 /// by all blocks preceding MBB in its trace. It does not include instructions 259 /// in MBB. 260 /// 261 /// Compare TraceBlockInfo::InstrDepth. 262 ArrayRef<unsigned> 263 MachineTraceMetrics::Ensemble:: 264 getProcResourceDepths(unsigned MBBNum) const { 265 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 266 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 267 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 268 } 269 270 /// Get an array of processor resource heights for MBB. Indexed by processor 271 /// resource kind, this array contains the scaled processor resources consumed 272 /// by this block and all blocks following it in its trace. 273 /// 274 /// Compare TraceBlockInfo::InstrHeight. 275 ArrayRef<unsigned> 276 MachineTraceMetrics::Ensemble:: 277 getProcResourceHeights(unsigned MBBNum) const { 278 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 279 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 280 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // Trace Selection Strategies 285 //===----------------------------------------------------------------------===// 286 // 287 // A trace selection strategy is implemented as a sub-class of Ensemble. The 288 // trace through a block B is computed by two DFS traversals of the CFG 289 // starting from B. One upwards, and one downwards. During the upwards DFS, 290 // pickTracePred() is called on the post-ordered blocks. During the downwards 291 // DFS, pickTraceSucc() is called in a post-order. 292 // 293 294 // We never allow traces that leave loops, but we do allow traces to enter 295 // nested loops. We also never allow traces to contain back-edges. 296 // 297 // This means that a loop header can never appear above the center block of a 298 // trace, except as the trace head. Below the center block, loop exiting edges 299 // are banned. 300 // 301 // Return true if an edge from the From loop to the To loop is leaving a loop. 302 // Either of To and From can be null. 303 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 304 return From && !From->contains(To); 305 } 306 307 // MinInstrCountEnsemble - Pick the trace that executes the least number of 308 // instructions. 309 namespace { 310 311 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 312 const char *getName() const override { return "MinInstr"; } 313 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 314 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 315 316 public: 317 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 318 : MachineTraceMetrics::Ensemble(mtm) {} 319 }; 320 321 } // end anonymous namespace 322 323 // Select the preferred predecessor for MBB. 324 const MachineBasicBlock* 325 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 326 if (MBB->pred_empty()) 327 return nullptr; 328 const MachineLoop *CurLoop = getLoopFor(MBB); 329 // Don't leave loops, and never follow back-edges. 330 if (CurLoop && MBB == CurLoop->getHeader()) 331 return nullptr; 332 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 333 const MachineBasicBlock *Best = nullptr; 334 unsigned BestDepth = 0; 335 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 336 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 337 getDepthResources(Pred); 338 // Ignore cycles that aren't natural loops. 339 if (!PredTBI) 340 continue; 341 // Pick the predecessor that would give this block the smallest InstrDepth. 342 unsigned Depth = PredTBI->InstrDepth + CurCount; 343 if (!Best || Depth < BestDepth) { 344 Best = Pred; 345 BestDepth = Depth; 346 } 347 } 348 return Best; 349 } 350 351 // Select the preferred successor for MBB. 352 const MachineBasicBlock* 353 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 354 if (MBB->succ_empty()) 355 return nullptr; 356 const MachineLoop *CurLoop = getLoopFor(MBB); 357 const MachineBasicBlock *Best = nullptr; 358 unsigned BestHeight = 0; 359 for (const MachineBasicBlock *Succ : MBB->successors()) { 360 // Don't consider back-edges. 361 if (CurLoop && Succ == CurLoop->getHeader()) 362 continue; 363 // Don't consider successors exiting CurLoop. 364 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 365 continue; 366 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 367 getHeightResources(Succ); 368 // Ignore cycles that aren't natural loops. 369 if (!SuccTBI) 370 continue; 371 // Pick the successor that would give this block the smallest InstrHeight. 372 unsigned Height = SuccTBI->InstrHeight; 373 if (!Best || Height < BestHeight) { 374 Best = Succ; 375 BestHeight = Height; 376 } 377 } 378 return Best; 379 } 380 381 // Get an Ensemble sub-class for the requested trace strategy. 382 MachineTraceMetrics::Ensemble * 383 MachineTraceMetrics::getEnsemble(MachineTraceStrategy strategy) { 384 assert(strategy < MachineTraceStrategy::TS_NumStrategies && 385 "Invalid trace strategy enum"); 386 Ensemble *&E = Ensembles[static_cast<size_t>(strategy)]; 387 if (E) 388 return E; 389 390 // Allocate new Ensemble on demand. 391 switch (strategy) { 392 case MachineTraceStrategy::TS_MinInstrCount: 393 return (E = new MinInstrCountEnsemble(this)); 394 default: llvm_unreachable("Invalid trace strategy enum"); 395 } 396 } 397 398 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 399 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 400 << '\n'); 401 BlockInfo[MBB->getNumber()].invalidate(); 402 for (Ensemble *E : Ensembles) 403 if (E) 404 E->invalidate(MBB); 405 } 406 407 void MachineTraceMetrics::verifyAnalysis() const { 408 if (!MF) 409 return; 410 #ifndef NDEBUG 411 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 412 for (Ensemble *E : Ensembles) 413 if (E) 414 E->verify(); 415 #endif 416 } 417 418 //===----------------------------------------------------------------------===// 419 // Trace building 420 //===----------------------------------------------------------------------===// 421 // 422 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 423 // set abstraction that confines the search to the current loop, and doesn't 424 // revisit blocks. 425 426 namespace { 427 428 struct LoopBounds { 429 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 430 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 431 const MachineLoopInfo *Loops; 432 bool Downward = false; 433 434 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 435 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 436 }; 437 438 } // end anonymous namespace 439 440 // Specialize po_iterator_storage in order to prune the post-order traversal so 441 // it is limited to the current loop and doesn't traverse the loop back edges. 442 namespace llvm { 443 444 template<> 445 class po_iterator_storage<LoopBounds, true> { 446 LoopBounds &LB; 447 448 public: 449 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 450 451 void finishPostorder(const MachineBasicBlock*) {} 452 453 bool insertEdge(std::optional<const MachineBasicBlock *> From, 454 const MachineBasicBlock *To) { 455 // Skip already visited To blocks. 456 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 457 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 458 return false; 459 // From is null once when To is the trace center block. 460 if (From) { 461 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 462 // Don't follow backedges, don't leave FromLoop when going upwards. 463 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 464 return false; 465 // Don't leave FromLoop. 466 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 467 return false; 468 } 469 } 470 // To is a new block. Mark the block as visited in case the CFG has cycles 471 // that MachineLoopInfo didn't recognize as a natural loop. 472 return LB.Visited.insert(To).second; 473 } 474 }; 475 476 } // end namespace llvm 477 478 /// Compute the trace through MBB. 479 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 480 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 481 << printMBBReference(*MBB) << '\n'); 482 // Set up loop bounds for the backwards post-order traversal. 483 LoopBounds Bounds(BlockInfo, MTM.Loops); 484 485 // Run an upwards post-order search for the trace start. 486 Bounds.Downward = false; 487 Bounds.Visited.clear(); 488 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 489 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 490 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 491 // All the predecessors have been visited, pick the preferred one. 492 TBI.Pred = pickTracePred(I); 493 LLVM_DEBUG({ 494 if (TBI.Pred) 495 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 496 else 497 dbgs() << "null\n"; 498 }); 499 // The trace leading to I is now known, compute the depth resources. 500 computeDepthResources(I); 501 } 502 503 // Run a downwards post-order search for the trace end. 504 Bounds.Downward = true; 505 Bounds.Visited.clear(); 506 for (const auto *I : post_order_ext(MBB, Bounds)) { 507 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 508 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 509 // All the successors have been visited, pick the preferred one. 510 TBI.Succ = pickTraceSucc(I); 511 LLVM_DEBUG({ 512 if (TBI.Succ) 513 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 514 else 515 dbgs() << "null\n"; 516 }); 517 // The trace leaving I is now known, compute the height resources. 518 computeHeightResources(I); 519 } 520 } 521 522 /// Invalidate traces through BadMBB. 523 void 524 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 525 SmallVector<const MachineBasicBlock*, 16> WorkList; 526 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 527 528 // Invalidate height resources of blocks above MBB. 529 if (BadTBI.hasValidHeight()) { 530 BadTBI.invalidateHeight(); 531 WorkList.push_back(BadMBB); 532 do { 533 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 534 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 535 << getName() << " height.\n"); 536 // Find any MBB predecessors that have MBB as their preferred successor. 537 // They are the only ones that need to be invalidated. 538 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 539 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 540 if (!TBI.hasValidHeight()) 541 continue; 542 if (TBI.Succ == MBB) { 543 TBI.invalidateHeight(); 544 WorkList.push_back(Pred); 545 continue; 546 } 547 // Verify that TBI.Succ is actually a *I successor. 548 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 549 } 550 } while (!WorkList.empty()); 551 } 552 553 // Invalidate depth resources of blocks below MBB. 554 if (BadTBI.hasValidDepth()) { 555 BadTBI.invalidateDepth(); 556 WorkList.push_back(BadMBB); 557 do { 558 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 559 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 560 << getName() << " depth.\n"); 561 // Find any MBB successors that have MBB as their preferred predecessor. 562 // They are the only ones that need to be invalidated. 563 for (const MachineBasicBlock *Succ : MBB->successors()) { 564 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 565 if (!TBI.hasValidDepth()) 566 continue; 567 if (TBI.Pred == MBB) { 568 TBI.invalidateDepth(); 569 WorkList.push_back(Succ); 570 continue; 571 } 572 // Verify that TBI.Pred is actually a *I predecessor. 573 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 574 } 575 } while (!WorkList.empty()); 576 } 577 578 // Clear any per-instruction data. We only have to do this for BadMBB itself 579 // because the instructions in that block may change. Other blocks may be 580 // invalidated, but their instructions will stay the same, so there is no 581 // need to erase the Cycle entries. They will be overwritten when we 582 // recompute. 583 for (const auto &I : *BadMBB) 584 Cycles.erase(&I); 585 } 586 587 void MachineTraceMetrics::Ensemble::verify() const { 588 #ifndef NDEBUG 589 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 590 "Outdated BlockInfo size"); 591 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 592 const TraceBlockInfo &TBI = BlockInfo[Num]; 593 if (TBI.hasValidDepth() && TBI.Pred) { 594 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 595 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 596 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 597 "Trace is broken, depth should have been invalidated."); 598 const MachineLoop *Loop = getLoopFor(MBB); 599 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 600 } 601 if (TBI.hasValidHeight() && TBI.Succ) { 602 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 603 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 604 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 605 "Trace is broken, height should have been invalidated."); 606 const MachineLoop *Loop = getLoopFor(MBB); 607 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 608 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 609 "Trace contains backedge"); 610 } 611 } 612 #endif 613 } 614 615 //===----------------------------------------------------------------------===// 616 // Data Dependencies 617 //===----------------------------------------------------------------------===// 618 // 619 // Compute the depth and height of each instruction based on data dependencies 620 // and instruction latencies. These cycle numbers assume that the CPU can issue 621 // an infinite number of instructions per cycle as long as their dependencies 622 // are ready. 623 624 // A data dependency is represented as a defining MI and operand numbers on the 625 // defining and using MI. 626 namespace { 627 628 struct DataDep { 629 const MachineInstr *DefMI; 630 unsigned DefOp; 631 unsigned UseOp; 632 633 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 634 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 635 636 /// Create a DataDep from an SSA form virtual register. 637 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 638 : UseOp(UseOp) { 639 assert(Register::isVirtualRegister(VirtReg)); 640 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 641 assert(!DefI.atEnd() && "Register has no defs"); 642 DefMI = DefI->getParent(); 643 DefOp = DefI.getOperandNo(); 644 assert((++DefI).atEnd() && "Register has multiple defs"); 645 } 646 }; 647 648 } // end anonymous namespace 649 650 // Get the input data dependencies that must be ready before UseMI can issue. 651 // Return true if UseMI has any physreg operands. 652 static bool getDataDeps(const MachineInstr &UseMI, 653 SmallVectorImpl<DataDep> &Deps, 654 const MachineRegisterInfo *MRI) { 655 // Debug values should not be included in any calculations. 656 if (UseMI.isDebugInstr()) 657 return false; 658 659 bool HasPhysRegs = false; 660 for (const MachineOperand &MO : UseMI.operands()) { 661 if (!MO.isReg()) 662 continue; 663 Register Reg = MO.getReg(); 664 if (!Reg) 665 continue; 666 if (Reg.isPhysical()) { 667 HasPhysRegs = true; 668 continue; 669 } 670 // Collect virtual register reads. 671 if (MO.readsReg()) 672 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 673 } 674 return HasPhysRegs; 675 } 676 677 // Get the input data dependencies of a PHI instruction, using Pred as the 678 // preferred predecessor. 679 // This will add at most one dependency to Deps. 680 static void getPHIDeps(const MachineInstr &UseMI, 681 SmallVectorImpl<DataDep> &Deps, 682 const MachineBasicBlock *Pred, 683 const MachineRegisterInfo *MRI) { 684 // No predecessor at the beginning of a trace. Ignore dependencies. 685 if (!Pred) 686 return; 687 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 688 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 689 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 690 Register Reg = UseMI.getOperand(i).getReg(); 691 Deps.push_back(DataDep(MRI, Reg, i)); 692 return; 693 } 694 } 695 } 696 697 // Identify physreg dependencies for UseMI, and update the live regunit 698 // tracking set when scanning instructions downwards. 699 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 700 SmallVectorImpl<DataDep> &Deps, 701 SparseSet<LiveRegUnit> &RegUnits, 702 const TargetRegisterInfo *TRI) { 703 SmallVector<MCRegister, 8> Kills; 704 SmallVector<unsigned, 8> LiveDefOps; 705 706 for (const MachineOperand &MO : UseMI->operands()) { 707 if (!MO.isReg() || !MO.getReg().isPhysical()) 708 continue; 709 MCRegister Reg = MO.getReg().asMCReg(); 710 // Track live defs and kills for updating RegUnits. 711 if (MO.isDef()) { 712 if (MO.isDead()) 713 Kills.push_back(Reg); 714 else 715 LiveDefOps.push_back(MO.getOperandNo()); 716 } else if (MO.isKill()) 717 Kills.push_back(Reg); 718 // Identify dependencies. 719 if (!MO.readsReg()) 720 continue; 721 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 722 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 723 if (I == RegUnits.end()) 724 continue; 725 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 726 break; 727 } 728 } 729 730 // Update RegUnits to reflect live registers after UseMI. 731 // First kills. 732 for (MCRegister Kill : Kills) 733 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 734 RegUnits.erase(*Units); 735 736 // Second, live defs. 737 for (unsigned DefOp : LiveDefOps) { 738 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg().asMCReg(), 739 TRI); 740 Units.isValid(); ++Units) { 741 LiveRegUnit &LRU = RegUnits[*Units]; 742 LRU.MI = UseMI; 743 LRU.Op = DefOp; 744 } 745 } 746 } 747 748 /// The length of the critical path through a trace is the maximum of two path 749 /// lengths: 750 /// 751 /// 1. The maximum height+depth over all instructions in the trace center block. 752 /// 753 /// 2. The longest cross-block dependency chain. For small blocks, it is 754 /// possible that the critical path through the trace doesn't include any 755 /// instructions in the block. 756 /// 757 /// This function computes the second number from the live-in list of the 758 /// center block. 759 unsigned MachineTraceMetrics::Ensemble:: 760 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 761 assert(TBI.HasValidInstrDepths && "Missing depth info"); 762 assert(TBI.HasValidInstrHeights && "Missing height info"); 763 unsigned MaxLen = 0; 764 for (const LiveInReg &LIR : TBI.LiveIns) { 765 if (!LIR.Reg.isVirtual()) 766 continue; 767 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 768 // Ignore dependencies outside the current trace. 769 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 770 if (!DefTBI.isUsefulDominator(TBI)) 771 continue; 772 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 773 MaxLen = std::max(MaxLen, Len); 774 } 775 return MaxLen; 776 } 777 778 void MachineTraceMetrics::Ensemble:: 779 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 780 SparseSet<LiveRegUnit> &RegUnits) { 781 SmallVector<DataDep, 8> Deps; 782 // Collect all data dependencies. 783 if (UseMI.isPHI()) 784 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 785 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 786 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 787 788 // Filter and process dependencies, computing the earliest issue cycle. 789 unsigned Cycle = 0; 790 for (const DataDep &Dep : Deps) { 791 const TraceBlockInfo&DepTBI = 792 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 793 // Ignore dependencies from outside the current trace. 794 if (!DepTBI.isUsefulDominator(TBI)) 795 continue; 796 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 797 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 798 // Add latency if DefMI is a real instruction. Transients get latency 0. 799 if (!Dep.DefMI->isTransient()) 800 DepCycle += MTM.SchedModel 801 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 802 Cycle = std::max(Cycle, DepCycle); 803 } 804 // Remember the instruction depth. 805 InstrCycles &MICycles = Cycles[&UseMI]; 806 MICycles.Depth = Cycle; 807 808 if (TBI.HasValidInstrHeights) { 809 // Update critical path length. 810 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 811 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 812 } else { 813 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 814 } 815 } 816 817 void MachineTraceMetrics::Ensemble:: 818 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 819 SparseSet<LiveRegUnit> &RegUnits) { 820 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 821 } 822 823 void MachineTraceMetrics::Ensemble:: 824 updateDepths(MachineBasicBlock::iterator Start, 825 MachineBasicBlock::iterator End, 826 SparseSet<LiveRegUnit> &RegUnits) { 827 for (; Start != End; Start++) 828 updateDepth(Start->getParent(), *Start, RegUnits); 829 } 830 831 /// Compute instruction depths for all instructions above or in MBB in its 832 /// trace. This assumes that the trace through MBB has already been computed. 833 void MachineTraceMetrics::Ensemble:: 834 computeInstrDepths(const MachineBasicBlock *MBB) { 835 // The top of the trace may already be computed, and HasValidInstrDepths 836 // implies Head->HasValidInstrDepths, so we only need to start from the first 837 // block in the trace that needs to be recomputed. 838 SmallVector<const MachineBasicBlock*, 8> Stack; 839 do { 840 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 841 assert(TBI.hasValidDepth() && "Incomplete trace"); 842 if (TBI.HasValidInstrDepths) 843 break; 844 Stack.push_back(MBB); 845 MBB = TBI.Pred; 846 } while (MBB); 847 848 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 849 // in the trace. We should track any live-out physregs that were defined in 850 // the trace. This is quite rare in SSA form, typically created by CSE 851 // hoisting a compare. 852 SparseSet<LiveRegUnit> RegUnits; 853 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 854 855 // Go through trace blocks in top-down order, stopping after the center block. 856 while (!Stack.empty()) { 857 MBB = Stack.pop_back_val(); 858 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 859 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 860 TBI.HasValidInstrDepths = true; 861 TBI.CriticalPath = 0; 862 863 // Print out resource depths here as well. 864 LLVM_DEBUG({ 865 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 866 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 867 for (unsigned K = 0; K != PRDepths.size(); ++K) 868 if (PRDepths[K]) { 869 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 870 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 871 << MTM.SchedModel.getProcResource(K)->Name << " (" 872 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 873 } 874 }); 875 876 // Also compute the critical path length through MBB when possible. 877 if (TBI.HasValidInstrHeights) 878 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 879 880 for (const auto &UseMI : *MBB) { 881 updateDepth(TBI, UseMI, RegUnits); 882 } 883 } 884 } 885 886 // Identify physreg dependencies for MI when scanning instructions upwards. 887 // Return the issue height of MI after considering any live regunits. 888 // Height is the issue height computed from virtual register dependencies alone. 889 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 890 SparseSet<LiveRegUnit> &RegUnits, 891 const TargetSchedModel &SchedModel, 892 const TargetInstrInfo *TII, 893 const TargetRegisterInfo *TRI) { 894 SmallVector<unsigned, 8> ReadOps; 895 896 for (const MachineOperand &MO : MI.operands()) { 897 if (!MO.isReg()) 898 continue; 899 Register Reg = MO.getReg(); 900 if (!Reg.isPhysical()) 901 continue; 902 if (MO.readsReg()) 903 ReadOps.push_back(MO.getOperandNo()); 904 if (!MO.isDef()) 905 continue; 906 // This is a def of Reg. Remove corresponding entries from RegUnits, and 907 // update MI Height to consider the physreg dependencies. 908 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 909 ++Units) { 910 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 911 if (I == RegUnits.end()) 912 continue; 913 unsigned DepHeight = I->Cycle; 914 if (!MI.isTransient()) { 915 // We may not know the UseMI of this dependency, if it came from the 916 // live-in list. SchedModel can handle a NULL UseMI. 917 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 918 I->MI, I->Op); 919 } 920 Height = std::max(Height, DepHeight); 921 // This regunit is dead above MI. 922 RegUnits.erase(I); 923 } 924 } 925 926 // Now we know the height of MI. Update any regunits read. 927 for (size_t I = 0, E = ReadOps.size(); I != E; ++I) { 928 MCRegister Reg = MI.getOperand(ReadOps[I]).getReg().asMCReg(); 929 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 930 LiveRegUnit &LRU = RegUnits[*Units]; 931 // Set the height to the highest reader of the unit. 932 if (LRU.Cycle <= Height && LRU.MI != &MI) { 933 LRU.Cycle = Height; 934 LRU.MI = &MI; 935 LRU.Op = ReadOps[I]; 936 } 937 } 938 } 939 940 return Height; 941 } 942 943 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 944 945 // Push the height of DefMI upwards if required to match UseMI. 946 // Return true if this is the first time DefMI was seen. 947 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 948 unsigned UseHeight, MIHeightMap &Heights, 949 const TargetSchedModel &SchedModel, 950 const TargetInstrInfo *TII) { 951 // Adjust height by Dep.DefMI latency. 952 if (!Dep.DefMI->isTransient()) 953 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 954 Dep.UseOp); 955 956 // Update Heights[DefMI] to be the maximum height seen. 957 MIHeightMap::iterator I; 958 bool New; 959 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 960 if (New) 961 return true; 962 963 // DefMI has been pushed before. Give it the max height. 964 if (I->second < UseHeight) 965 I->second = UseHeight; 966 return false; 967 } 968 969 /// Assuming that the virtual register defined by DefMI:DefOp was used by 970 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 971 /// when reaching the block that contains DefMI. 972 void MachineTraceMetrics::Ensemble:: 973 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 974 ArrayRef<const MachineBasicBlock*> Trace) { 975 assert(!Trace.empty() && "Trace should contain at least one block"); 976 Register Reg = DefMI->getOperand(DefOp).getReg(); 977 assert(Reg.isVirtual()); 978 const MachineBasicBlock *DefMBB = DefMI->getParent(); 979 980 // Reg is live-in to all blocks in Trace that follow DefMBB. 981 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 982 if (MBB == DefMBB) 983 return; 984 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 985 // Just add the register. The height will be updated later. 986 TBI.LiveIns.push_back(Reg); 987 } 988 } 989 990 /// Compute instruction heights in the trace through MBB. This updates MBB and 991 /// the blocks below it in the trace. It is assumed that the trace has already 992 /// been computed. 993 void MachineTraceMetrics::Ensemble:: 994 computeInstrHeights(const MachineBasicBlock *MBB) { 995 // The bottom of the trace may already be computed. 996 // Find the blocks that need updating. 997 SmallVector<const MachineBasicBlock*, 8> Stack; 998 do { 999 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1000 assert(TBI.hasValidHeight() && "Incomplete trace"); 1001 if (TBI.HasValidInstrHeights) 1002 break; 1003 Stack.push_back(MBB); 1004 TBI.LiveIns.clear(); 1005 MBB = TBI.Succ; 1006 } while (MBB); 1007 1008 // As we move upwards in the trace, keep track of instructions that are 1009 // required by deeper trace instructions. Map MI -> height required so far. 1010 MIHeightMap Heights; 1011 1012 // For physregs, the def isn't known when we see the use. 1013 // Instead, keep track of the highest use of each regunit. 1014 SparseSet<LiveRegUnit> RegUnits; 1015 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1016 1017 // If the bottom of the trace was already precomputed, initialize heights 1018 // from its live-in list. 1019 // MBB is the highest precomputed block in the trace. 1020 if (MBB) { 1021 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1022 for (LiveInReg &LI : TBI.LiveIns) { 1023 if (LI.Reg.isVirtual()) { 1024 // For virtual registers, the def latency is included. 1025 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1026 if (Height < LI.Height) 1027 Height = LI.Height; 1028 } else { 1029 // For register units, the def latency is not included because we don't 1030 // know the def yet. 1031 RegUnits[LI.Reg].Cycle = LI.Height; 1032 } 1033 } 1034 } 1035 1036 // Go through the trace blocks in bottom-up order. 1037 SmallVector<DataDep, 8> Deps; 1038 for (;!Stack.empty(); Stack.pop_back()) { 1039 MBB = Stack.back(); 1040 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1041 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1042 TBI.HasValidInstrHeights = true; 1043 TBI.CriticalPath = 0; 1044 1045 LLVM_DEBUG({ 1046 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1047 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1048 for (unsigned K = 0; K != PRHeights.size(); ++K) 1049 if (PRHeights[K]) { 1050 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1051 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1052 << MTM.SchedModel.getProcResource(K)->Name << " (" 1053 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1054 } 1055 }); 1056 1057 // Get dependencies from PHIs in the trace successor. 1058 const MachineBasicBlock *Succ = TBI.Succ; 1059 // If MBB is the last block in the trace, and it has a back-edge to the 1060 // loop header, get loop-carried dependencies from PHIs in the header. For 1061 // that purpose, pretend that all the loop header PHIs have height 0. 1062 if (!Succ) 1063 if (const MachineLoop *Loop = getLoopFor(MBB)) 1064 if (MBB->isSuccessor(Loop->getHeader())) 1065 Succ = Loop->getHeader(); 1066 1067 if (Succ) { 1068 for (const auto &PHI : *Succ) { 1069 if (!PHI.isPHI()) 1070 break; 1071 Deps.clear(); 1072 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1073 if (!Deps.empty()) { 1074 // Loop header PHI heights are all 0. 1075 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1076 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1077 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1078 MTM.TII)) 1079 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1080 } 1081 } 1082 } 1083 1084 // Go through the block backwards. 1085 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1086 BI != BB;) { 1087 const MachineInstr &MI = *--BI; 1088 1089 // Find the MI height as determined by virtual register uses in the 1090 // trace below. 1091 unsigned Cycle = 0; 1092 MIHeightMap::iterator HeightI = Heights.find(&MI); 1093 if (HeightI != Heights.end()) { 1094 Cycle = HeightI->second; 1095 // We won't be seeing any more MI uses. 1096 Heights.erase(HeightI); 1097 } 1098 1099 // Don't process PHI deps. They depend on the specific predecessor, and 1100 // we'll get them when visiting the predecessor. 1101 Deps.clear(); 1102 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1103 1104 // There may also be regunit dependencies to include in the height. 1105 if (HasPhysRegs) 1106 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1107 MTM.TII, MTM.TRI); 1108 1109 // Update the required height of any virtual registers read by MI. 1110 for (const DataDep &Dep : Deps) 1111 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1112 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1113 1114 InstrCycles &MICycles = Cycles[&MI]; 1115 MICycles.Height = Cycle; 1116 if (!TBI.HasValidInstrDepths) { 1117 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1118 continue; 1119 } 1120 // Update critical path length. 1121 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1122 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1123 } 1124 1125 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1126 // height because the final height isn't known until now. 1127 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1128 for (LiveInReg &LIR : TBI.LiveIns) { 1129 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1130 LIR.Height = Heights.lookup(DefMI); 1131 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1132 } 1133 1134 // Transfer the live regunits to the live-in list. 1135 for (SparseSet<LiveRegUnit>::const_iterator 1136 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1137 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1138 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@' 1139 << RI->Cycle); 1140 } 1141 LLVM_DEBUG(dbgs() << '\n'); 1142 1143 if (!TBI.HasValidInstrDepths) 1144 continue; 1145 // Add live-ins to the critical path length. 1146 TBI.CriticalPath = std::max(TBI.CriticalPath, 1147 computeCrossBlockCriticalPath(TBI)); 1148 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1149 } 1150 } 1151 1152 MachineTraceMetrics::Trace 1153 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1154 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1155 1156 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1157 computeTrace(MBB); 1158 if (!TBI.HasValidInstrDepths) 1159 computeInstrDepths(MBB); 1160 if (!TBI.HasValidInstrHeights) 1161 computeInstrHeights(MBB); 1162 1163 return Trace(*this, TBI); 1164 } 1165 1166 unsigned 1167 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1168 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1169 "MI must be in the trace center block"); 1170 InstrCycles Cyc = getInstrCycles(MI); 1171 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1172 } 1173 1174 unsigned 1175 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1176 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1177 SmallVector<DataDep, 1> Deps; 1178 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1179 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1180 DataDep &Dep = Deps.front(); 1181 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1182 // Add latency if DefMI is a real instruction. Transients get latency 0. 1183 if (!Dep.DefMI->isTransient()) 1184 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1185 &PHI, Dep.UseOp); 1186 return DepCycle; 1187 } 1188 1189 /// When bottom is set include instructions in current block in estimate. 1190 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1191 // Find the limiting processor resource. 1192 // Numbers have been pre-scaled to be comparable. 1193 unsigned PRMax = 0; 1194 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1195 if (Bottom) { 1196 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1197 for (unsigned K = 0; K != PRDepths.size(); ++K) 1198 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1199 } else { 1200 for (unsigned PRD : PRDepths) 1201 PRMax = std::max(PRMax, PRD); 1202 } 1203 // Convert to cycle count. 1204 PRMax = TE.MTM.getCycles(PRMax); 1205 1206 /// All instructions before current block 1207 unsigned Instrs = TBI.InstrDepth; 1208 // plus instructions in current block 1209 if (Bottom) 1210 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1211 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1212 Instrs /= IW; 1213 // Assume issue width 1 without a schedule model. 1214 return std::max(Instrs, PRMax); 1215 } 1216 1217 unsigned MachineTraceMetrics::Trace::getResourceLength( 1218 ArrayRef<const MachineBasicBlock *> Extrablocks, 1219 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1220 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1221 // Add up resources above and below the center block. 1222 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1223 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1224 unsigned PRMax = 0; 1225 1226 // Capture computing cycles from extra instructions 1227 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1228 unsigned ResourceIdx) 1229 ->unsigned { 1230 unsigned Cycles = 0; 1231 for (const MCSchedClassDesc *SC : Instrs) { 1232 if (!SC->isValid()) 1233 continue; 1234 for (TargetSchedModel::ProcResIter 1235 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1236 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1237 PI != PE; ++PI) { 1238 if (PI->ProcResourceIdx != ResourceIdx) 1239 continue; 1240 Cycles += 1241 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1242 } 1243 } 1244 return Cycles; 1245 }; 1246 1247 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1248 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1249 for (const MachineBasicBlock *MBB : Extrablocks) 1250 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1251 PRCycles += extraCycles(ExtraInstrs, K); 1252 PRCycles -= extraCycles(RemoveInstrs, K); 1253 PRMax = std::max(PRMax, PRCycles); 1254 } 1255 // Convert to cycle count. 1256 PRMax = TE.MTM.getCycles(PRMax); 1257 1258 // Instrs: #instructions in current trace outside current block. 1259 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1260 // Add instruction count from the extra blocks. 1261 for (const MachineBasicBlock *MBB : Extrablocks) 1262 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1263 Instrs += ExtraInstrs.size(); 1264 Instrs -= RemoveInstrs.size(); 1265 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1266 Instrs /= IW; 1267 // Assume issue width 1 without a schedule model. 1268 return std::max(Instrs, PRMax); 1269 } 1270 1271 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1272 const MachineInstr &UseMI) const { 1273 if (DefMI.getParent() == UseMI.getParent()) 1274 return true; 1275 1276 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1277 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1278 1279 return DepTBI.isUsefulDominator(TBI); 1280 } 1281 1282 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1283 OS << getName() << " ensemble:\n"; 1284 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1285 OS << " %bb." << i << '\t'; 1286 BlockInfo[i].print(OS); 1287 OS << '\n'; 1288 } 1289 } 1290 1291 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1292 if (hasValidDepth()) { 1293 OS << "depth=" << InstrDepth; 1294 if (Pred) 1295 OS << " pred=" << printMBBReference(*Pred); 1296 else 1297 OS << " pred=null"; 1298 OS << " head=%bb." << Head; 1299 if (HasValidInstrDepths) 1300 OS << " +instrs"; 1301 } else 1302 OS << "depth invalid"; 1303 OS << ", "; 1304 if (hasValidHeight()) { 1305 OS << "height=" << InstrHeight; 1306 if (Succ) 1307 OS << " succ=" << printMBBReference(*Succ); 1308 else 1309 OS << " succ=null"; 1310 OS << " tail=%bb." << Tail; 1311 if (HasValidInstrHeights) 1312 OS << " +instrs"; 1313 } else 1314 OS << "height invalid"; 1315 if (HasValidInstrDepths && HasValidInstrHeights) 1316 OS << ", crit=" << CriticalPath; 1317 } 1318 1319 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1320 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1321 1322 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1323 << " --> %bb." << TBI.Tail << ':'; 1324 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1325 OS << ' ' << getInstrCount() << " instrs."; 1326 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1327 OS << ' ' << TBI.CriticalPath << " cycles."; 1328 1329 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1330 OS << "\n%bb." << MBBNum; 1331 while (Block->hasValidDepth() && Block->Pred) { 1332 unsigned Num = Block->Pred->getNumber(); 1333 OS << " <- " << printMBBReference(*Block->Pred); 1334 Block = &TE.BlockInfo[Num]; 1335 } 1336 1337 Block = &TBI; 1338 OS << "\n "; 1339 while (Block->hasValidHeight() && Block->Succ) { 1340 unsigned Num = Block->Succ->getNumber(); 1341 OS << " -> " << printMBBReference(*Block->Succ); 1342 Block = &TE.BlockInfo[Num]; 1343 } 1344 OS << '\n'; 1345 } 1346