1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineLoopInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSchedule.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Format.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <iterator> 35 #include <tuple> 36 #include <utility> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "machine-trace-metrics" 41 42 AnalysisKey MachineTraceMetricsAnalysis::Key; 43 44 MachineTraceMetricsAnalysis::Result 45 MachineTraceMetricsAnalysis::run(MachineFunction &MF, 46 MachineFunctionAnalysisManager &MFAM) { 47 return Result(MF, MFAM.getResult<MachineLoopAnalysis>(MF)); 48 } 49 50 PreservedAnalyses 51 MachineTraceMetricsVerifierPass::run(MachineFunction &MF, 52 MachineFunctionAnalysisManager &MFAM) { 53 MFAM.getResult<MachineTraceMetricsAnalysis>(MF).verifyAnalysis(); 54 return PreservedAnalyses::all(); 55 } 56 57 char MachineTraceMetricsWrapperPass::ID = 0; 58 59 char &llvm::MachineTraceMetricsID = MachineTraceMetricsWrapperPass::ID; 60 61 INITIALIZE_PASS_BEGIN(MachineTraceMetricsWrapperPass, DEBUG_TYPE, 62 "Machine Trace Metrics", false, true) 63 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 64 INITIALIZE_PASS_END(MachineTraceMetricsWrapperPass, DEBUG_TYPE, 65 "Machine Trace Metrics", false, true) 66 67 MachineTraceMetricsWrapperPass::MachineTraceMetricsWrapperPass() 68 : MachineFunctionPass(ID) {} 69 70 void MachineTraceMetricsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 71 AU.setPreservesAll(); 72 AU.addRequired<MachineLoopInfoWrapperPass>(); 73 MachineFunctionPass::getAnalysisUsage(AU); 74 } 75 76 void MachineTraceMetrics::init(MachineFunction &Func, 77 const MachineLoopInfo &LI) { 78 MF = &Func; 79 const TargetSubtargetInfo &ST = MF->getSubtarget(); 80 TII = ST.getInstrInfo(); 81 TRI = ST.getRegisterInfo(); 82 MRI = &MF->getRegInfo(); 83 Loops = &LI; 84 SchedModel.init(&ST); 85 BlockInfo.resize(MF->getNumBlockIDs()); 86 ProcReleaseAtCycles.resize(MF->getNumBlockIDs() * 87 SchedModel.getNumProcResourceKinds()); 88 } 89 90 bool MachineTraceMetricsWrapperPass::runOnMachineFunction(MachineFunction &MF) { 91 MTM.init(MF, getAnalysis<MachineLoopInfoWrapperPass>().getLI()); 92 return false; 93 } 94 95 MachineTraceMetrics::~MachineTraceMetrics() { clear(); } 96 97 void MachineTraceMetrics::clear() { 98 MF = nullptr; 99 BlockInfo.clear(); 100 for (auto &E : Ensembles) 101 E.reset(); 102 } 103 104 //===----------------------------------------------------------------------===// 105 // Fixed block information 106 //===----------------------------------------------------------------------===// 107 // 108 // The number of instructions in a basic block and the CPU resources used by 109 // those instructions don't depend on any given trace strategy. 110 111 /// Compute the resource usage in basic block MBB. 112 const MachineTraceMetrics::FixedBlockInfo* 113 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 114 assert(MBB && "No basic block"); 115 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 116 if (FBI->hasResources()) 117 return FBI; 118 119 // Compute resource usage in the block. 120 FBI->HasCalls = false; 121 unsigned InstrCount = 0; 122 123 // Add up per-processor resource cycles as well. 124 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 125 SmallVector<unsigned, 32> PRCycles(PRKinds); 126 127 for (const auto &MI : *MBB) { 128 if (MI.isTransient()) 129 continue; 130 ++InstrCount; 131 if (MI.isCall()) 132 FBI->HasCalls = true; 133 134 // Count processor resources used. 135 if (!SchedModel.hasInstrSchedModel()) 136 continue; 137 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 138 if (!SC->isValid()) 139 continue; 140 141 for (TargetSchedModel::ProcResIter 142 PI = SchedModel.getWriteProcResBegin(SC), 143 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 144 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 145 PRCycles[PI->ProcResourceIdx] += PI->ReleaseAtCycle; 146 } 147 } 148 FBI->InstrCount = InstrCount; 149 150 // Scale the resource cycles so they are comparable. 151 unsigned PROffset = MBB->getNumber() * PRKinds; 152 for (unsigned K = 0; K != PRKinds; ++K) 153 ProcReleaseAtCycles[PROffset + K] = 154 PRCycles[K] * SchedModel.getResourceFactor(K); 155 156 return FBI; 157 } 158 159 ArrayRef<unsigned> 160 MachineTraceMetrics::getProcReleaseAtCycles(unsigned MBBNum) const { 161 assert(BlockInfo[MBBNum].hasResources() && 162 "getResources() must be called before getProcReleaseAtCycles()"); 163 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 164 assert((MBBNum+1) * PRKinds <= ProcReleaseAtCycles.size()); 165 return ArrayRef(ProcReleaseAtCycles.data() + MBBNum * PRKinds, PRKinds); 166 } 167 168 //===----------------------------------------------------------------------===// 169 // Ensemble utility functions 170 //===----------------------------------------------------------------------===// 171 172 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 173 : MTM(*ct) { 174 BlockInfo.resize(MTM.BlockInfo.size()); 175 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 176 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 177 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 178 } 179 180 // Virtual destructor serves as an anchor. 181 MachineTraceMetrics::Ensemble::~Ensemble() = default; 182 183 const MachineLoop* 184 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 185 return MTM.Loops->getLoopFor(MBB); 186 } 187 188 // Update resource-related information in the TraceBlockInfo for MBB. 189 // Only update resources related to the trace above MBB. 190 void MachineTraceMetrics::Ensemble:: 191 computeDepthResources(const MachineBasicBlock *MBB) { 192 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 193 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 194 unsigned PROffset = MBB->getNumber() * PRKinds; 195 196 // Compute resources from trace above. The top block is simple. 197 if (!TBI->Pred) { 198 TBI->InstrDepth = 0; 199 TBI->Head = MBB->getNumber(); 200 std::fill(ProcResourceDepths.begin() + PROffset, 201 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 202 return; 203 } 204 205 // Compute from the block above. A post-order traversal ensures the 206 // predecessor is always computed first. 207 unsigned PredNum = TBI->Pred->getNumber(); 208 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 209 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 210 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 211 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 212 TBI->Head = PredTBI->Head; 213 214 // Compute per-resource depths. 215 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 216 ArrayRef<unsigned> PredPRCycles = MTM.getProcReleaseAtCycles(PredNum); 217 for (unsigned K = 0; K != PRKinds; ++K) 218 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 219 } 220 221 // Update resource-related information in the TraceBlockInfo for MBB. 222 // Only update resources related to the trace below MBB. 223 void MachineTraceMetrics::Ensemble:: 224 computeHeightResources(const MachineBasicBlock *MBB) { 225 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 226 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 227 unsigned PROffset = MBB->getNumber() * PRKinds; 228 229 // Compute resources for the current block. 230 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 231 ArrayRef<unsigned> PRCycles = MTM.getProcReleaseAtCycles(MBB->getNumber()); 232 233 // The trace tail is done. 234 if (!TBI->Succ) { 235 TBI->Tail = MBB->getNumber(); 236 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 237 return; 238 } 239 240 // Compute from the block below. A post-order traversal ensures the 241 // predecessor is always computed first. 242 unsigned SuccNum = TBI->Succ->getNumber(); 243 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 244 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 245 TBI->InstrHeight += SuccTBI->InstrHeight; 246 TBI->Tail = SuccTBI->Tail; 247 248 // Compute per-resource heights. 249 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 250 for (unsigned K = 0; K != PRKinds; ++K) 251 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 252 } 253 254 // Check if depth resources for MBB are valid and return the TBI. 255 // Return NULL if the resources have been invalidated. 256 const MachineTraceMetrics::TraceBlockInfo* 257 MachineTraceMetrics::Ensemble:: 258 getDepthResources(const MachineBasicBlock *MBB) const { 259 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 260 return TBI->hasValidDepth() ? TBI : nullptr; 261 } 262 263 // Check if height resources for MBB are valid and return the TBI. 264 // Return NULL if the resources have been invalidated. 265 const MachineTraceMetrics::TraceBlockInfo* 266 MachineTraceMetrics::Ensemble:: 267 getHeightResources(const MachineBasicBlock *MBB) const { 268 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 269 return TBI->hasValidHeight() ? TBI : nullptr; 270 } 271 272 /// Get an array of processor resource depths for MBB. Indexed by processor 273 /// resource kind, this array contains the scaled processor resources consumed 274 /// by all blocks preceding MBB in its trace. It does not include instructions 275 /// in MBB. 276 /// 277 /// Compare TraceBlockInfo::InstrDepth. 278 ArrayRef<unsigned> 279 MachineTraceMetrics::Ensemble:: 280 getProcResourceDepths(unsigned MBBNum) const { 281 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 282 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 283 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 284 } 285 286 /// Get an array of processor resource heights for MBB. Indexed by processor 287 /// resource kind, this array contains the scaled processor resources consumed 288 /// by this block and all blocks following it in its trace. 289 /// 290 /// Compare TraceBlockInfo::InstrHeight. 291 ArrayRef<unsigned> 292 MachineTraceMetrics::Ensemble:: 293 getProcResourceHeights(unsigned MBBNum) const { 294 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 295 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 296 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 297 } 298 299 //===----------------------------------------------------------------------===// 300 // Trace Selection Strategies 301 //===----------------------------------------------------------------------===// 302 // 303 // A trace selection strategy is implemented as a sub-class of Ensemble. The 304 // trace through a block B is computed by two DFS traversals of the CFG 305 // starting from B. One upwards, and one downwards. During the upwards DFS, 306 // pickTracePred() is called on the post-ordered blocks. During the downwards 307 // DFS, pickTraceSucc() is called in a post-order. 308 // 309 310 // We never allow traces that leave loops, but we do allow traces to enter 311 // nested loops. We also never allow traces to contain back-edges. 312 // 313 // This means that a loop header can never appear above the center block of a 314 // trace, except as the trace head. Below the center block, loop exiting edges 315 // are banned. 316 // 317 // Return true if an edge from the From loop to the To loop is leaving a loop. 318 // Either of To and From can be null. 319 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 320 return From && !From->contains(To); 321 } 322 323 // MinInstrCountEnsemble - Pick the trace that executes the least number of 324 // instructions. 325 namespace { 326 327 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 328 const char *getName() const override { return "MinInstr"; } 329 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 330 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 331 332 public: 333 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 334 : MachineTraceMetrics::Ensemble(mtm) {} 335 }; 336 337 /// Pick only the current basic block for the trace and do not choose any 338 /// predecessors/successors. 339 class LocalEnsemble : public MachineTraceMetrics::Ensemble { 340 const char *getName() const override { return "Local"; } 341 const MachineBasicBlock *pickTracePred(const MachineBasicBlock *) override { 342 return nullptr; 343 }; 344 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock *) override { 345 return nullptr; 346 }; 347 348 public: 349 LocalEnsemble(MachineTraceMetrics *MTM) 350 : MachineTraceMetrics::Ensemble(MTM) {} 351 }; 352 } // end anonymous namespace 353 354 // Select the preferred predecessor for MBB. 355 const MachineBasicBlock* 356 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 357 if (MBB->pred_empty()) 358 return nullptr; 359 const MachineLoop *CurLoop = getLoopFor(MBB); 360 // Don't leave loops, and never follow back-edges. 361 if (CurLoop && MBB == CurLoop->getHeader()) 362 return nullptr; 363 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 364 const MachineBasicBlock *Best = nullptr; 365 unsigned BestDepth = 0; 366 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 367 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 368 getDepthResources(Pred); 369 // Ignore cycles that aren't natural loops. 370 if (!PredTBI) 371 continue; 372 // Pick the predecessor that would give this block the smallest InstrDepth. 373 unsigned Depth = PredTBI->InstrDepth + CurCount; 374 if (!Best || Depth < BestDepth) { 375 Best = Pred; 376 BestDepth = Depth; 377 } 378 } 379 return Best; 380 } 381 382 // Select the preferred successor for MBB. 383 const MachineBasicBlock* 384 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 385 if (MBB->succ_empty()) 386 return nullptr; 387 const MachineLoop *CurLoop = getLoopFor(MBB); 388 const MachineBasicBlock *Best = nullptr; 389 unsigned BestHeight = 0; 390 for (const MachineBasicBlock *Succ : MBB->successors()) { 391 // Don't consider back-edges. 392 if (CurLoop && Succ == CurLoop->getHeader()) 393 continue; 394 // Don't consider successors exiting CurLoop. 395 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 396 continue; 397 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 398 getHeightResources(Succ); 399 // Ignore cycles that aren't natural loops. 400 if (!SuccTBI) 401 continue; 402 // Pick the successor that would give this block the smallest InstrHeight. 403 unsigned Height = SuccTBI->InstrHeight; 404 if (!Best || Height < BestHeight) { 405 Best = Succ; 406 BestHeight = Height; 407 } 408 } 409 return Best; 410 } 411 412 // Get an Ensemble sub-class for the requested trace strategy. 413 MachineTraceMetrics::Ensemble * 414 MachineTraceMetrics::getEnsemble(MachineTraceStrategy strategy) { 415 assert(strategy < MachineTraceStrategy::TS_NumStrategies && 416 "Invalid trace strategy enum"); 417 std::unique_ptr<MachineTraceMetrics::Ensemble> &E = 418 Ensembles[static_cast<size_t>(strategy)]; 419 if (E) 420 return E.get(); 421 422 // Allocate new Ensemble on demand. 423 switch (strategy) { 424 case MachineTraceStrategy::TS_MinInstrCount: 425 E = std::make_unique<MinInstrCountEnsemble>(MinInstrCountEnsemble(this)); 426 break; 427 case MachineTraceStrategy::TS_Local: 428 E = std::make_unique<LocalEnsemble>(LocalEnsemble(this)); 429 break; 430 default: llvm_unreachable("Invalid trace strategy enum"); 431 } 432 return E.get(); 433 } 434 435 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 436 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 437 << '\n'); 438 BlockInfo[MBB->getNumber()].invalidate(); 439 for (auto &E : Ensembles) 440 if (E) 441 E->invalidate(MBB); 442 } 443 444 bool MachineTraceMetrics::invalidate( 445 MachineFunction &, const PreservedAnalyses &PA, 446 MachineFunctionAnalysisManager::Invalidator &) { 447 // Check whether the analysis, all analyses on machine functions, or the 448 // machine function's CFG have been preserved. 449 auto PAC = PA.getChecker<MachineTraceMetricsAnalysis>(); 450 return !PAC.preserved() && 451 !PAC.preservedSet<AllAnalysesOn<MachineFunction>>() && 452 !PAC.preservedSet<CFGAnalyses>(); 453 } 454 455 void MachineTraceMetrics::verifyAnalysis() const { 456 if (!MF) 457 return; 458 #ifndef NDEBUG 459 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 460 for (auto &E : Ensembles) 461 if (E) 462 E->verify(); 463 #endif 464 } 465 466 //===----------------------------------------------------------------------===// 467 // Trace building 468 //===----------------------------------------------------------------------===// 469 // 470 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 471 // set abstraction that confines the search to the current loop, and doesn't 472 // revisit blocks. 473 474 namespace { 475 476 struct LoopBounds { 477 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 478 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 479 const MachineLoopInfo *Loops; 480 bool Downward = false; 481 482 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 483 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 484 }; 485 486 } // end anonymous namespace 487 488 // Specialize po_iterator_storage in order to prune the post-order traversal so 489 // it is limited to the current loop and doesn't traverse the loop back edges. 490 namespace llvm { 491 492 template<> 493 class po_iterator_storage<LoopBounds, true> { 494 LoopBounds &LB; 495 496 public: 497 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 498 499 void finishPostorder(const MachineBasicBlock*) {} 500 501 bool insertEdge(std::optional<const MachineBasicBlock *> From, 502 const MachineBasicBlock *To) { 503 // Skip already visited To blocks. 504 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 505 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 506 return false; 507 // From is null once when To is the trace center block. 508 if (From) { 509 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 510 // Don't follow backedges, don't leave FromLoop when going upwards. 511 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 512 return false; 513 // Don't leave FromLoop. 514 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 515 return false; 516 } 517 } 518 // To is a new block. Mark the block as visited in case the CFG has cycles 519 // that MachineLoopInfo didn't recognize as a natural loop. 520 return LB.Visited.insert(To).second; 521 } 522 }; 523 524 } // end namespace llvm 525 526 /// Compute the trace through MBB. 527 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 528 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 529 << printMBBReference(*MBB) << '\n'); 530 // Set up loop bounds for the backwards post-order traversal. 531 LoopBounds Bounds(BlockInfo, MTM.Loops); 532 533 // Run an upwards post-order search for the trace start. 534 Bounds.Downward = false; 535 Bounds.Visited.clear(); 536 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 537 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 538 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 539 // All the predecessors have been visited, pick the preferred one. 540 TBI.Pred = pickTracePred(I); 541 LLVM_DEBUG({ 542 if (TBI.Pred) 543 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 544 else 545 dbgs() << "null\n"; 546 }); 547 // The trace leading to I is now known, compute the depth resources. 548 computeDepthResources(I); 549 } 550 551 // Run a downwards post-order search for the trace end. 552 Bounds.Downward = true; 553 Bounds.Visited.clear(); 554 for (const auto *I : post_order_ext(MBB, Bounds)) { 555 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 556 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 557 // All the successors have been visited, pick the preferred one. 558 TBI.Succ = pickTraceSucc(I); 559 LLVM_DEBUG({ 560 if (TBI.Succ) 561 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 562 else 563 dbgs() << "null\n"; 564 }); 565 // The trace leaving I is now known, compute the height resources. 566 computeHeightResources(I); 567 } 568 } 569 570 /// Invalidate traces through BadMBB. 571 void 572 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 573 SmallVector<const MachineBasicBlock*, 16> WorkList; 574 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 575 576 // Invalidate height resources of blocks above MBB. 577 if (BadTBI.hasValidHeight()) { 578 BadTBI.invalidateHeight(); 579 WorkList.push_back(BadMBB); 580 do { 581 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 582 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 583 << getName() << " height.\n"); 584 // Find any MBB predecessors that have MBB as their preferred successor. 585 // They are the only ones that need to be invalidated. 586 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 587 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 588 if (!TBI.hasValidHeight()) 589 continue; 590 if (TBI.Succ == MBB) { 591 TBI.invalidateHeight(); 592 WorkList.push_back(Pred); 593 continue; 594 } 595 // Verify that TBI.Succ is actually a *I successor. 596 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 597 } 598 } while (!WorkList.empty()); 599 } 600 601 // Invalidate depth resources of blocks below MBB. 602 if (BadTBI.hasValidDepth()) { 603 BadTBI.invalidateDepth(); 604 WorkList.push_back(BadMBB); 605 do { 606 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 607 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 608 << getName() << " depth.\n"); 609 // Find any MBB successors that have MBB as their preferred predecessor. 610 // They are the only ones that need to be invalidated. 611 for (const MachineBasicBlock *Succ : MBB->successors()) { 612 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 613 if (!TBI.hasValidDepth()) 614 continue; 615 if (TBI.Pred == MBB) { 616 TBI.invalidateDepth(); 617 WorkList.push_back(Succ); 618 continue; 619 } 620 // Verify that TBI.Pred is actually a *I predecessor. 621 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 622 } 623 } while (!WorkList.empty()); 624 } 625 626 // Clear any per-instruction data. We only have to do this for BadMBB itself 627 // because the instructions in that block may change. Other blocks may be 628 // invalidated, but their instructions will stay the same, so there is no 629 // need to erase the Cycle entries. They will be overwritten when we 630 // recompute. 631 for (const auto &I : *BadMBB) 632 Cycles.erase(&I); 633 } 634 635 void MachineTraceMetrics::Ensemble::verify() const { 636 #ifndef NDEBUG 637 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 638 "Outdated BlockInfo size"); 639 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 640 const TraceBlockInfo &TBI = BlockInfo[Num]; 641 if (TBI.hasValidDepth() && TBI.Pred) { 642 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 643 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 644 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 645 "Trace is broken, depth should have been invalidated."); 646 const MachineLoop *Loop = getLoopFor(MBB); 647 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 648 } 649 if (TBI.hasValidHeight() && TBI.Succ) { 650 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 651 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 652 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 653 "Trace is broken, height should have been invalidated."); 654 const MachineLoop *Loop = getLoopFor(MBB); 655 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 656 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 657 "Trace contains backedge"); 658 } 659 } 660 #endif 661 } 662 663 //===----------------------------------------------------------------------===// 664 // Data Dependencies 665 //===----------------------------------------------------------------------===// 666 // 667 // Compute the depth and height of each instruction based on data dependencies 668 // and instruction latencies. These cycle numbers assume that the CPU can issue 669 // an infinite number of instructions per cycle as long as their dependencies 670 // are ready. 671 672 // A data dependency is represented as a defining MI and operand numbers on the 673 // defining and using MI. 674 namespace { 675 676 struct DataDep { 677 const MachineInstr *DefMI; 678 unsigned DefOp; 679 unsigned UseOp; 680 681 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 682 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 683 684 /// Create a DataDep from an SSA form virtual register. 685 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 686 : UseOp(UseOp) { 687 assert(Register::isVirtualRegister(VirtReg)); 688 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 689 assert(!DefI.atEnd() && "Register has no defs"); 690 DefMI = DefI->getParent(); 691 DefOp = DefI.getOperandNo(); 692 assert((++DefI).atEnd() && "Register has multiple defs"); 693 } 694 }; 695 696 } // end anonymous namespace 697 698 // Get the input data dependencies that must be ready before UseMI can issue. 699 // Return true if UseMI has any physreg operands. 700 static bool getDataDeps(const MachineInstr &UseMI, 701 SmallVectorImpl<DataDep> &Deps, 702 const MachineRegisterInfo *MRI) { 703 // Debug values should not be included in any calculations. 704 if (UseMI.isDebugInstr()) 705 return false; 706 707 bool HasPhysRegs = false; 708 for (const MachineOperand &MO : UseMI.operands()) { 709 if (!MO.isReg()) 710 continue; 711 Register Reg = MO.getReg(); 712 if (!Reg) 713 continue; 714 if (Reg.isPhysical()) { 715 HasPhysRegs = true; 716 continue; 717 } 718 // Collect virtual register reads. 719 if (MO.readsReg()) 720 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 721 } 722 return HasPhysRegs; 723 } 724 725 // Get the input data dependencies of a PHI instruction, using Pred as the 726 // preferred predecessor. 727 // This will add at most one dependency to Deps. 728 static void getPHIDeps(const MachineInstr &UseMI, 729 SmallVectorImpl<DataDep> &Deps, 730 const MachineBasicBlock *Pred, 731 const MachineRegisterInfo *MRI) { 732 // No predecessor at the beginning of a trace. Ignore dependencies. 733 if (!Pred) 734 return; 735 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 736 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 737 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 738 Register Reg = UseMI.getOperand(i).getReg(); 739 Deps.push_back(DataDep(MRI, Reg, i)); 740 return; 741 } 742 } 743 } 744 745 // Identify physreg dependencies for UseMI, and update the live regunit 746 // tracking set when scanning instructions downwards. 747 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 748 SmallVectorImpl<DataDep> &Deps, 749 SparseSet<LiveRegUnit> &RegUnits, 750 const TargetRegisterInfo *TRI) { 751 SmallVector<MCRegister, 8> Kills; 752 SmallVector<unsigned, 8> LiveDefOps; 753 754 for (const MachineOperand &MO : UseMI->operands()) { 755 if (!MO.isReg() || !MO.getReg().isPhysical()) 756 continue; 757 MCRegister Reg = MO.getReg().asMCReg(); 758 // Track live defs and kills for updating RegUnits. 759 if (MO.isDef()) { 760 if (MO.isDead()) 761 Kills.push_back(Reg); 762 else 763 LiveDefOps.push_back(MO.getOperandNo()); 764 } else if (MO.isKill()) 765 Kills.push_back(Reg); 766 // Identify dependencies. 767 if (!MO.readsReg()) 768 continue; 769 for (MCRegUnit Unit : TRI->regunits(Reg)) { 770 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 771 if (I == RegUnits.end()) 772 continue; 773 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 774 break; 775 } 776 } 777 778 // Update RegUnits to reflect live registers after UseMI. 779 // First kills. 780 for (MCRegister Kill : Kills) 781 for (MCRegUnit Unit : TRI->regunits(Kill)) 782 RegUnits.erase(Unit); 783 784 // Second, live defs. 785 for (unsigned DefOp : LiveDefOps) { 786 for (MCRegUnit Unit : 787 TRI->regunits(UseMI->getOperand(DefOp).getReg().asMCReg())) { 788 LiveRegUnit &LRU = RegUnits[Unit]; 789 LRU.MI = UseMI; 790 LRU.Op = DefOp; 791 } 792 } 793 } 794 795 /// The length of the critical path through a trace is the maximum of two path 796 /// lengths: 797 /// 798 /// 1. The maximum height+depth over all instructions in the trace center block. 799 /// 800 /// 2. The longest cross-block dependency chain. For small blocks, it is 801 /// possible that the critical path through the trace doesn't include any 802 /// instructions in the block. 803 /// 804 /// This function computes the second number from the live-in list of the 805 /// center block. 806 unsigned MachineTraceMetrics::Ensemble:: 807 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 808 assert(TBI.HasValidInstrDepths && "Missing depth info"); 809 assert(TBI.HasValidInstrHeights && "Missing height info"); 810 unsigned MaxLen = 0; 811 for (const LiveInReg &LIR : TBI.LiveIns) { 812 if (!LIR.Reg.isVirtual()) 813 continue; 814 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 815 // Ignore dependencies outside the current trace. 816 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 817 if (!DefTBI.isUsefulDominator(TBI)) 818 continue; 819 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 820 MaxLen = std::max(MaxLen, Len); 821 } 822 return MaxLen; 823 } 824 825 void MachineTraceMetrics::Ensemble:: 826 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 827 SparseSet<LiveRegUnit> &RegUnits) { 828 SmallVector<DataDep, 8> Deps; 829 // Collect all data dependencies. 830 if (UseMI.isPHI()) 831 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 832 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 833 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 834 835 // Filter and process dependencies, computing the earliest issue cycle. 836 unsigned Cycle = 0; 837 for (const DataDep &Dep : Deps) { 838 const TraceBlockInfo&DepTBI = 839 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 840 // Ignore dependencies from outside the current trace. 841 if (!DepTBI.isUsefulDominator(TBI)) 842 continue; 843 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 844 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 845 // Add latency if DefMI is a real instruction. Transients get latency 0. 846 if (!Dep.DefMI->isTransient()) 847 DepCycle += MTM.SchedModel 848 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 849 Cycle = std::max(Cycle, DepCycle); 850 } 851 // Remember the instruction depth. 852 InstrCycles &MICycles = Cycles[&UseMI]; 853 MICycles.Depth = Cycle; 854 855 if (TBI.HasValidInstrHeights) { 856 // Update critical path length. 857 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 858 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 859 } else { 860 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 861 } 862 } 863 864 void MachineTraceMetrics::Ensemble:: 865 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 866 SparseSet<LiveRegUnit> &RegUnits) { 867 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 868 } 869 870 void MachineTraceMetrics::Ensemble:: 871 updateDepths(MachineBasicBlock::iterator Start, 872 MachineBasicBlock::iterator End, 873 SparseSet<LiveRegUnit> &RegUnits) { 874 for (; Start != End; Start++) 875 updateDepth(Start->getParent(), *Start, RegUnits); 876 } 877 878 /// Compute instruction depths for all instructions above or in MBB in its 879 /// trace. This assumes that the trace through MBB has already been computed. 880 void MachineTraceMetrics::Ensemble:: 881 computeInstrDepths(const MachineBasicBlock *MBB) { 882 // The top of the trace may already be computed, and HasValidInstrDepths 883 // implies Head->HasValidInstrDepths, so we only need to start from the first 884 // block in the trace that needs to be recomputed. 885 SmallVector<const MachineBasicBlock*, 8> Stack; 886 do { 887 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 888 assert(TBI.hasValidDepth() && "Incomplete trace"); 889 if (TBI.HasValidInstrDepths) 890 break; 891 Stack.push_back(MBB); 892 MBB = TBI.Pred; 893 } while (MBB); 894 895 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 896 // in the trace. We should track any live-out physregs that were defined in 897 // the trace. This is quite rare in SSA form, typically created by CSE 898 // hoisting a compare. 899 SparseSet<LiveRegUnit> RegUnits; 900 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 901 902 // Go through trace blocks in top-down order, stopping after the center block. 903 while (!Stack.empty()) { 904 MBB = Stack.pop_back_val(); 905 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 906 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 907 TBI.HasValidInstrDepths = true; 908 TBI.CriticalPath = 0; 909 910 // Print out resource depths here as well. 911 LLVM_DEBUG({ 912 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 913 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 914 for (unsigned K = 0; K != PRDepths.size(); ++K) 915 if (PRDepths[K]) { 916 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 917 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 918 << MTM.SchedModel.getProcResource(K)->Name << " (" 919 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 920 } 921 }); 922 923 // Also compute the critical path length through MBB when possible. 924 if (TBI.HasValidInstrHeights) 925 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 926 927 for (const auto &UseMI : *MBB) { 928 updateDepth(TBI, UseMI, RegUnits); 929 } 930 } 931 } 932 933 // Identify physreg dependencies for MI when scanning instructions upwards. 934 // Return the issue height of MI after considering any live regunits. 935 // Height is the issue height computed from virtual register dependencies alone. 936 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 937 SparseSet<LiveRegUnit> &RegUnits, 938 const TargetSchedModel &SchedModel, 939 const TargetInstrInfo *TII, 940 const TargetRegisterInfo *TRI) { 941 SmallVector<unsigned, 8> ReadOps; 942 943 for (const MachineOperand &MO : MI.operands()) { 944 if (!MO.isReg()) 945 continue; 946 Register Reg = MO.getReg(); 947 if (!Reg.isPhysical()) 948 continue; 949 if (MO.readsReg()) 950 ReadOps.push_back(MO.getOperandNo()); 951 if (!MO.isDef()) 952 continue; 953 // This is a def of Reg. Remove corresponding entries from RegUnits, and 954 // update MI Height to consider the physreg dependencies. 955 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 956 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 957 if (I == RegUnits.end()) 958 continue; 959 unsigned DepHeight = I->Cycle; 960 if (!MI.isTransient()) { 961 // We may not know the UseMI of this dependency, if it came from the 962 // live-in list. SchedModel can handle a NULL UseMI. 963 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 964 I->MI, I->Op); 965 } 966 Height = std::max(Height, DepHeight); 967 // This regunit is dead above MI. 968 RegUnits.erase(I); 969 } 970 } 971 972 // Now we know the height of MI. Update any regunits read. 973 for (unsigned Op : ReadOps) { 974 MCRegister Reg = MI.getOperand(Op).getReg().asMCReg(); 975 for (MCRegUnit Unit : TRI->regunits(Reg)) { 976 LiveRegUnit &LRU = RegUnits[Unit]; 977 // Set the height to the highest reader of the unit. 978 if (LRU.Cycle <= Height && LRU.MI != &MI) { 979 LRU.Cycle = Height; 980 LRU.MI = &MI; 981 LRU.Op = Op; 982 } 983 } 984 } 985 986 return Height; 987 } 988 989 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 990 991 // Push the height of DefMI upwards if required to match UseMI. 992 // Return true if this is the first time DefMI was seen. 993 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 994 unsigned UseHeight, MIHeightMap &Heights, 995 const TargetSchedModel &SchedModel, 996 const TargetInstrInfo *TII) { 997 // Adjust height by Dep.DefMI latency. 998 if (!Dep.DefMI->isTransient()) 999 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 1000 Dep.UseOp); 1001 1002 // Update Heights[DefMI] to be the maximum height seen. 1003 MIHeightMap::iterator I; 1004 bool New; 1005 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 1006 if (New) 1007 return true; 1008 1009 // DefMI has been pushed before. Give it the max height. 1010 if (I->second < UseHeight) 1011 I->second = UseHeight; 1012 return false; 1013 } 1014 1015 /// Assuming that the virtual register defined by DefMI:DefOp was used by 1016 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 1017 /// when reaching the block that contains DefMI. 1018 void MachineTraceMetrics::Ensemble:: 1019 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 1020 ArrayRef<const MachineBasicBlock*> Trace) { 1021 assert(!Trace.empty() && "Trace should contain at least one block"); 1022 Register Reg = DefMI->getOperand(DefOp).getReg(); 1023 assert(Reg.isVirtual()); 1024 const MachineBasicBlock *DefMBB = DefMI->getParent(); 1025 1026 // Reg is live-in to all blocks in Trace that follow DefMBB. 1027 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 1028 if (MBB == DefMBB) 1029 return; 1030 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1031 // Just add the register. The height will be updated later. 1032 TBI.LiveIns.push_back(Reg); 1033 } 1034 } 1035 1036 /// Compute instruction heights in the trace through MBB. This updates MBB and 1037 /// the blocks below it in the trace. It is assumed that the trace has already 1038 /// been computed. 1039 void MachineTraceMetrics::Ensemble:: 1040 computeInstrHeights(const MachineBasicBlock *MBB) { 1041 // The bottom of the trace may already be computed. 1042 // Find the blocks that need updating. 1043 SmallVector<const MachineBasicBlock*, 8> Stack; 1044 do { 1045 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1046 assert(TBI.hasValidHeight() && "Incomplete trace"); 1047 if (TBI.HasValidInstrHeights) 1048 break; 1049 Stack.push_back(MBB); 1050 TBI.LiveIns.clear(); 1051 MBB = TBI.Succ; 1052 } while (MBB); 1053 1054 // As we move upwards in the trace, keep track of instructions that are 1055 // required by deeper trace instructions. Map MI -> height required so far. 1056 MIHeightMap Heights; 1057 1058 // For physregs, the def isn't known when we see the use. 1059 // Instead, keep track of the highest use of each regunit. 1060 SparseSet<LiveRegUnit> RegUnits; 1061 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1062 1063 // If the bottom of the trace was already precomputed, initialize heights 1064 // from its live-in list. 1065 // MBB is the highest precomputed block in the trace. 1066 if (MBB) { 1067 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1068 for (LiveInReg &LI : TBI.LiveIns) { 1069 if (LI.Reg.isVirtual()) { 1070 // For virtual registers, the def latency is included. 1071 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1072 if (Height < LI.Height) 1073 Height = LI.Height; 1074 } else { 1075 // For register units, the def latency is not included because we don't 1076 // know the def yet. 1077 RegUnits[LI.Reg].Cycle = LI.Height; 1078 } 1079 } 1080 } 1081 1082 // Go through the trace blocks in bottom-up order. 1083 SmallVector<DataDep, 8> Deps; 1084 for (;!Stack.empty(); Stack.pop_back()) { 1085 MBB = Stack.back(); 1086 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1087 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1088 TBI.HasValidInstrHeights = true; 1089 TBI.CriticalPath = 0; 1090 1091 LLVM_DEBUG({ 1092 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1093 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1094 for (unsigned K = 0; K != PRHeights.size(); ++K) 1095 if (PRHeights[K]) { 1096 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1097 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1098 << MTM.SchedModel.getProcResource(K)->Name << " (" 1099 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1100 } 1101 }); 1102 1103 // Get dependencies from PHIs in the trace successor. 1104 const MachineBasicBlock *Succ = TBI.Succ; 1105 // If MBB is the last block in the trace, and it has a back-edge to the 1106 // loop header, get loop-carried dependencies from PHIs in the header. For 1107 // that purpose, pretend that all the loop header PHIs have height 0. 1108 if (!Succ) 1109 if (const MachineLoop *Loop = getLoopFor(MBB)) 1110 if (MBB->isSuccessor(Loop->getHeader())) 1111 Succ = Loop->getHeader(); 1112 1113 if (Succ) { 1114 for (const auto &PHI : *Succ) { 1115 if (!PHI.isPHI()) 1116 break; 1117 Deps.clear(); 1118 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1119 if (!Deps.empty()) { 1120 // Loop header PHI heights are all 0. 1121 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1122 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1123 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1124 MTM.TII)) 1125 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1126 } 1127 } 1128 } 1129 1130 // Go through the block backwards. 1131 for (const MachineInstr &MI : reverse(*MBB)) { 1132 // Find the MI height as determined by virtual register uses in the 1133 // trace below. 1134 unsigned Cycle = 0; 1135 MIHeightMap::iterator HeightI = Heights.find(&MI); 1136 if (HeightI != Heights.end()) { 1137 Cycle = HeightI->second; 1138 // We won't be seeing any more MI uses. 1139 Heights.erase(HeightI); 1140 } 1141 1142 // Don't process PHI deps. They depend on the specific predecessor, and 1143 // we'll get them when visiting the predecessor. 1144 Deps.clear(); 1145 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1146 1147 // There may also be regunit dependencies to include in the height. 1148 if (HasPhysRegs) 1149 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1150 MTM.TII, MTM.TRI); 1151 1152 // Update the required height of any virtual registers read by MI. 1153 for (const DataDep &Dep : Deps) 1154 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1155 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1156 1157 InstrCycles &MICycles = Cycles[&MI]; 1158 MICycles.Height = Cycle; 1159 if (!TBI.HasValidInstrDepths) { 1160 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1161 continue; 1162 } 1163 // Update critical path length. 1164 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1165 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1166 } 1167 1168 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1169 // height because the final height isn't known until now. 1170 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1171 for (LiveInReg &LIR : TBI.LiveIns) { 1172 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1173 LIR.Height = Heights.lookup(DefMI); 1174 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1175 } 1176 1177 // Transfer the live regunits to the live-in list. 1178 for (const LiveRegUnit &RU : RegUnits) { 1179 TBI.LiveIns.push_back(LiveInReg(RU.RegUnit, RU.Cycle)); 1180 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RU.RegUnit, MTM.TRI) << '@' 1181 << RU.Cycle); 1182 } 1183 LLVM_DEBUG(dbgs() << '\n'); 1184 1185 if (!TBI.HasValidInstrDepths) 1186 continue; 1187 // Add live-ins to the critical path length. 1188 TBI.CriticalPath = std::max(TBI.CriticalPath, 1189 computeCrossBlockCriticalPath(TBI)); 1190 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1191 } 1192 } 1193 1194 MachineTraceMetrics::Trace 1195 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1196 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1197 1198 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1199 computeTrace(MBB); 1200 if (!TBI.HasValidInstrDepths) 1201 computeInstrDepths(MBB); 1202 if (!TBI.HasValidInstrHeights) 1203 computeInstrHeights(MBB); 1204 1205 return Trace(*this, TBI); 1206 } 1207 1208 unsigned 1209 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1210 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1211 "MI must be in the trace center block"); 1212 InstrCycles Cyc = getInstrCycles(MI); 1213 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1214 } 1215 1216 unsigned 1217 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1218 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1219 SmallVector<DataDep, 1> Deps; 1220 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1221 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1222 DataDep &Dep = Deps.front(); 1223 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1224 // Add latency if DefMI is a real instruction. Transients get latency 0. 1225 if (!Dep.DefMI->isTransient()) 1226 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1227 &PHI, Dep.UseOp); 1228 return DepCycle; 1229 } 1230 1231 /// When bottom is set include instructions in current block in estimate. 1232 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1233 // Find the limiting processor resource. 1234 // Numbers have been pre-scaled to be comparable. 1235 unsigned PRMax = 0; 1236 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1237 if (Bottom) { 1238 ArrayRef<unsigned> PRCycles = TE.MTM.getProcReleaseAtCycles(getBlockNum()); 1239 for (unsigned K = 0; K != PRDepths.size(); ++K) 1240 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1241 } else { 1242 for (unsigned PRD : PRDepths) 1243 PRMax = std::max(PRMax, PRD); 1244 } 1245 // Convert to cycle count. 1246 PRMax = TE.MTM.getCycles(PRMax); 1247 1248 /// All instructions before current block 1249 unsigned Instrs = TBI.InstrDepth; 1250 // plus instructions in current block 1251 if (Bottom) 1252 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1253 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1254 Instrs /= IW; 1255 // Assume issue width 1 without a schedule model. 1256 return std::max(Instrs, PRMax); 1257 } 1258 1259 unsigned MachineTraceMetrics::Trace::getResourceLength( 1260 ArrayRef<const MachineBasicBlock *> Extrablocks, 1261 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1262 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1263 // Add up resources above and below the center block. 1264 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1265 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1266 unsigned PRMax = 0; 1267 1268 // Capture computing cycles from extra instructions 1269 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1270 unsigned ResourceIdx) 1271 ->unsigned { 1272 unsigned Cycles = 0; 1273 for (const MCSchedClassDesc *SC : Instrs) { 1274 if (!SC->isValid()) 1275 continue; 1276 for (TargetSchedModel::ProcResIter 1277 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1278 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1279 PI != PE; ++PI) { 1280 if (PI->ProcResourceIdx != ResourceIdx) 1281 continue; 1282 Cycles += (PI->ReleaseAtCycle * 1283 TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1284 } 1285 } 1286 return Cycles; 1287 }; 1288 1289 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1290 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1291 for (const MachineBasicBlock *MBB : Extrablocks) 1292 PRCycles += TE.MTM.getProcReleaseAtCycles(MBB->getNumber())[K]; 1293 PRCycles += extraCycles(ExtraInstrs, K); 1294 PRCycles -= extraCycles(RemoveInstrs, K); 1295 PRMax = std::max(PRMax, PRCycles); 1296 } 1297 // Convert to cycle count. 1298 PRMax = TE.MTM.getCycles(PRMax); 1299 1300 // Instrs: #instructions in current trace outside current block. 1301 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1302 // Add instruction count from the extra blocks. 1303 for (const MachineBasicBlock *MBB : Extrablocks) 1304 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1305 Instrs += ExtraInstrs.size(); 1306 Instrs -= RemoveInstrs.size(); 1307 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1308 Instrs /= IW; 1309 // Assume issue width 1 without a schedule model. 1310 return std::max(Instrs, PRMax); 1311 } 1312 1313 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1314 const MachineInstr &UseMI) const { 1315 if (DefMI.getParent() == UseMI.getParent()) 1316 return true; 1317 1318 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1319 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1320 1321 return DepTBI.isUsefulDominator(TBI); 1322 } 1323 1324 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1325 OS << getName() << " ensemble:\n"; 1326 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1327 OS << " %bb." << i << '\t'; 1328 BlockInfo[i].print(OS); 1329 OS << '\n'; 1330 } 1331 } 1332 1333 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1334 if (hasValidDepth()) { 1335 OS << "depth=" << InstrDepth; 1336 if (Pred) 1337 OS << " pred=" << printMBBReference(*Pred); 1338 else 1339 OS << " pred=null"; 1340 OS << " head=%bb." << Head; 1341 if (HasValidInstrDepths) 1342 OS << " +instrs"; 1343 } else 1344 OS << "depth invalid"; 1345 OS << ", "; 1346 if (hasValidHeight()) { 1347 OS << "height=" << InstrHeight; 1348 if (Succ) 1349 OS << " succ=" << printMBBReference(*Succ); 1350 else 1351 OS << " succ=null"; 1352 OS << " tail=%bb." << Tail; 1353 if (HasValidInstrHeights) 1354 OS << " +instrs"; 1355 } else 1356 OS << "height invalid"; 1357 if (HasValidInstrDepths && HasValidInstrHeights) 1358 OS << ", crit=" << CriticalPath; 1359 } 1360 1361 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1362 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1363 1364 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1365 << " --> %bb." << TBI.Tail << ':'; 1366 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1367 OS << ' ' << getInstrCount() << " instrs."; 1368 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1369 OS << ' ' << TBI.CriticalPath << " cycles."; 1370 1371 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1372 OS << "\n%bb." << MBBNum; 1373 while (Block->hasValidDepth() && Block->Pred) { 1374 unsigned Num = Block->Pred->getNumber(); 1375 OS << " <- " << printMBBReference(*Block->Pred); 1376 Block = &TE.BlockInfo[Num]; 1377 } 1378 1379 Block = &TBI; 1380 OS << "\n "; 1381 while (Block->hasValidHeight() && Block->Succ) { 1382 unsigned Num = Block->Succ->getNumber(); 1383 OS << " -> " << printMBBReference(*Block->Succ); 1384 Block = &TE.BlockInfo[Num]; 1385 } 1386 OS << '\n'; 1387 } 1388