1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/PostOrderIterator.h" 12 #include "llvm/ADT/SparseSet.h" 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 15 #include "llvm/CodeGen/MachineLoopInfo.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/MC/MCSubtargetInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "machine-trace-metrics" 29 30 char MachineTraceMetrics::ID = 0; 31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 32 33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 34 "machine-trace-metrics", "Machine Trace Metrics", false, true) 35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 37 INITIALIZE_PASS_END(MachineTraceMetrics, 38 "machine-trace-metrics", "Machine Trace Metrics", false, true) 39 40 MachineTraceMetrics::MachineTraceMetrics() 41 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 42 MRI(nullptr), Loops(nullptr) { 43 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 44 } 45 46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesAll(); 48 AU.addRequired<MachineBranchProbabilityInfo>(); 49 AU.addRequired<MachineLoopInfo>(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 } 52 53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 54 MF = &Func; 55 TII = MF->getSubtarget().getInstrInfo(); 56 TRI = MF->getSubtarget().getRegisterInfo(); 57 MRI = &MF->getRegInfo(); 58 Loops = &getAnalysis<MachineLoopInfo>(); 59 const TargetSubtargetInfo &ST = 60 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 61 SchedModel.init(ST.getSchedModel(), &ST, TII); 62 BlockInfo.resize(MF->getNumBlockIDs()); 63 ProcResourceCycles.resize(MF->getNumBlockIDs() * 64 SchedModel.getNumProcResourceKinds()); 65 return false; 66 } 67 68 void MachineTraceMetrics::releaseMemory() { 69 MF = nullptr; 70 BlockInfo.clear(); 71 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 72 delete Ensembles[i]; 73 Ensembles[i] = nullptr; 74 } 75 } 76 77 //===----------------------------------------------------------------------===// 78 // Fixed block information 79 //===----------------------------------------------------------------------===// 80 // 81 // The number of instructions in a basic block and the CPU resources used by 82 // those instructions don't depend on any given trace strategy. 83 84 /// Compute the resource usage in basic block MBB. 85 const MachineTraceMetrics::FixedBlockInfo* 86 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 87 assert(MBB && "No basic block"); 88 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 89 if (FBI->hasResources()) 90 return FBI; 91 92 // Compute resource usage in the block. 93 FBI->HasCalls = false; 94 unsigned InstrCount = 0; 95 96 // Add up per-processor resource cycles as well. 97 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 98 SmallVector<unsigned, 32> PRCycles(PRKinds); 99 100 for (const auto &MI : *MBB) { 101 if (MI.isTransient()) 102 continue; 103 ++InstrCount; 104 if (MI.isCall()) 105 FBI->HasCalls = true; 106 107 // Count processor resources used. 108 if (!SchedModel.hasInstrSchedModel()) 109 continue; 110 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 111 if (!SC->isValid()) 112 continue; 113 114 for (TargetSchedModel::ProcResIter 115 PI = SchedModel.getWriteProcResBegin(SC), 116 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 117 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 118 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 119 } 120 } 121 FBI->InstrCount = InstrCount; 122 123 // Scale the resource cycles so they are comparable. 124 unsigned PROffset = MBB->getNumber() * PRKinds; 125 for (unsigned K = 0; K != PRKinds; ++K) 126 ProcResourceCycles[PROffset + K] = 127 PRCycles[K] * SchedModel.getResourceFactor(K); 128 129 return FBI; 130 } 131 132 ArrayRef<unsigned> 133 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 134 assert(BlockInfo[MBBNum].hasResources() && 135 "getResources() must be called before getProcResourceCycles()"); 136 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 137 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 138 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 139 } 140 141 142 //===----------------------------------------------------------------------===// 143 // Ensemble utility functions 144 //===----------------------------------------------------------------------===// 145 146 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 147 : MTM(*ct) { 148 BlockInfo.resize(MTM.BlockInfo.size()); 149 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 150 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 151 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 152 } 153 154 // Virtual destructor serves as an anchor. 155 MachineTraceMetrics::Ensemble::~Ensemble() {} 156 157 const MachineLoop* 158 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 159 return MTM.Loops->getLoopFor(MBB); 160 } 161 162 // Update resource-related information in the TraceBlockInfo for MBB. 163 // Only update resources related to the trace above MBB. 164 void MachineTraceMetrics::Ensemble:: 165 computeDepthResources(const MachineBasicBlock *MBB) { 166 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 167 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 168 unsigned PROffset = MBB->getNumber() * PRKinds; 169 170 // Compute resources from trace above. The top block is simple. 171 if (!TBI->Pred) { 172 TBI->InstrDepth = 0; 173 TBI->Head = MBB->getNumber(); 174 std::fill(ProcResourceDepths.begin() + PROffset, 175 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 176 return; 177 } 178 179 // Compute from the block above. A post-order traversal ensures the 180 // predecessor is always computed first. 181 unsigned PredNum = TBI->Pred->getNumber(); 182 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 183 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 184 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 185 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 186 TBI->Head = PredTBI->Head; 187 188 // Compute per-resource depths. 189 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 190 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 191 for (unsigned K = 0; K != PRKinds; ++K) 192 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 193 } 194 195 // Update resource-related information in the TraceBlockInfo for MBB. 196 // Only update resources related to the trace below MBB. 197 void MachineTraceMetrics::Ensemble:: 198 computeHeightResources(const MachineBasicBlock *MBB) { 199 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 200 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 201 unsigned PROffset = MBB->getNumber() * PRKinds; 202 203 // Compute resources for the current block. 204 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 205 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 206 207 // The trace tail is done. 208 if (!TBI->Succ) { 209 TBI->Tail = MBB->getNumber(); 210 std::copy(PRCycles.begin(), PRCycles.end(), 211 ProcResourceHeights.begin() + PROffset); 212 return; 213 } 214 215 // Compute from the block below. A post-order traversal ensures the 216 // predecessor is always computed first. 217 unsigned SuccNum = TBI->Succ->getNumber(); 218 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 219 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 220 TBI->InstrHeight += SuccTBI->InstrHeight; 221 TBI->Tail = SuccTBI->Tail; 222 223 // Compute per-resource heights. 224 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 225 for (unsigned K = 0; K != PRKinds; ++K) 226 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 227 } 228 229 // Check if depth resources for MBB are valid and return the TBI. 230 // Return NULL if the resources have been invalidated. 231 const MachineTraceMetrics::TraceBlockInfo* 232 MachineTraceMetrics::Ensemble:: 233 getDepthResources(const MachineBasicBlock *MBB) const { 234 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 235 return TBI->hasValidDepth() ? TBI : nullptr; 236 } 237 238 // Check if height resources for MBB are valid and return the TBI. 239 // Return NULL if the resources have been invalidated. 240 const MachineTraceMetrics::TraceBlockInfo* 241 MachineTraceMetrics::Ensemble:: 242 getHeightResources(const MachineBasicBlock *MBB) const { 243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 244 return TBI->hasValidHeight() ? TBI : nullptr; 245 } 246 247 /// Get an array of processor resource depths for MBB. Indexed by processor 248 /// resource kind, this array contains the scaled processor resources consumed 249 /// by all blocks preceding MBB in its trace. It does not include instructions 250 /// in MBB. 251 /// 252 /// Compare TraceBlockInfo::InstrDepth. 253 ArrayRef<unsigned> 254 MachineTraceMetrics::Ensemble:: 255 getProcResourceDepths(unsigned MBBNum) const { 256 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 257 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 258 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 259 } 260 261 /// Get an array of processor resource heights for MBB. Indexed by processor 262 /// resource kind, this array contains the scaled processor resources consumed 263 /// by this block and all blocks following it in its trace. 264 /// 265 /// Compare TraceBlockInfo::InstrHeight. 266 ArrayRef<unsigned> 267 MachineTraceMetrics::Ensemble:: 268 getProcResourceHeights(unsigned MBBNum) const { 269 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 270 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 271 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Trace Selection Strategies 276 //===----------------------------------------------------------------------===// 277 // 278 // A trace selection strategy is implemented as a sub-class of Ensemble. The 279 // trace through a block B is computed by two DFS traversals of the CFG 280 // starting from B. One upwards, and one downwards. During the upwards DFS, 281 // pickTracePred() is called on the post-ordered blocks. During the downwards 282 // DFS, pickTraceSucc() is called in a post-order. 283 // 284 285 // We never allow traces that leave loops, but we do allow traces to enter 286 // nested loops. We also never allow traces to contain back-edges. 287 // 288 // This means that a loop header can never appear above the center block of a 289 // trace, except as the trace head. Below the center block, loop exiting edges 290 // are banned. 291 // 292 // Return true if an edge from the From loop to the To loop is leaving a loop. 293 // Either of To and From can be null. 294 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 295 return From && !From->contains(To); 296 } 297 298 // MinInstrCountEnsemble - Pick the trace that executes the least number of 299 // instructions. 300 namespace { 301 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 302 const char *getName() const override { return "MinInstr"; } 303 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 304 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 305 306 public: 307 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 308 : MachineTraceMetrics::Ensemble(mtm) {} 309 }; 310 } 311 312 // Select the preferred predecessor for MBB. 313 const MachineBasicBlock* 314 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 315 if (MBB->pred_empty()) 316 return nullptr; 317 const MachineLoop *CurLoop = getLoopFor(MBB); 318 // Don't leave loops, and never follow back-edges. 319 if (CurLoop && MBB == CurLoop->getHeader()) 320 return nullptr; 321 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 322 const MachineBasicBlock *Best = nullptr; 323 unsigned BestDepth = 0; 324 for (MachineBasicBlock::const_pred_iterator 325 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 326 const MachineBasicBlock *Pred = *I; 327 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 328 getDepthResources(Pred); 329 // Ignore cycles that aren't natural loops. 330 if (!PredTBI) 331 continue; 332 // Pick the predecessor that would give this block the smallest InstrDepth. 333 unsigned Depth = PredTBI->InstrDepth + CurCount; 334 if (!Best || Depth < BestDepth) 335 Best = Pred, BestDepth = Depth; 336 } 337 return Best; 338 } 339 340 // Select the preferred successor for MBB. 341 const MachineBasicBlock* 342 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 343 if (MBB->pred_empty()) 344 return nullptr; 345 const MachineLoop *CurLoop = getLoopFor(MBB); 346 const MachineBasicBlock *Best = nullptr; 347 unsigned BestHeight = 0; 348 for (MachineBasicBlock::const_succ_iterator 349 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 350 const MachineBasicBlock *Succ = *I; 351 // Don't consider back-edges. 352 if (CurLoop && Succ == CurLoop->getHeader()) 353 continue; 354 // Don't consider successors exiting CurLoop. 355 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 356 continue; 357 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 358 getHeightResources(Succ); 359 // Ignore cycles that aren't natural loops. 360 if (!SuccTBI) 361 continue; 362 // Pick the successor that would give this block the smallest InstrHeight. 363 unsigned Height = SuccTBI->InstrHeight; 364 if (!Best || Height < BestHeight) 365 Best = Succ, BestHeight = Height; 366 } 367 return Best; 368 } 369 370 // Get an Ensemble sub-class for the requested trace strategy. 371 MachineTraceMetrics::Ensemble * 372 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 373 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 374 Ensemble *&E = Ensembles[strategy]; 375 if (E) 376 return E; 377 378 // Allocate new Ensemble on demand. 379 switch (strategy) { 380 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 381 default: llvm_unreachable("Invalid trace strategy enum"); 382 } 383 } 384 385 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 386 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 387 BlockInfo[MBB->getNumber()].invalidate(); 388 for (unsigned i = 0; i != TS_NumStrategies; ++i) 389 if (Ensembles[i]) 390 Ensembles[i]->invalidate(MBB); 391 } 392 393 void MachineTraceMetrics::verifyAnalysis() const { 394 if (!MF) 395 return; 396 #ifndef NDEBUG 397 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 398 for (unsigned i = 0; i != TS_NumStrategies; ++i) 399 if (Ensembles[i]) 400 Ensembles[i]->verify(); 401 #endif 402 } 403 404 //===----------------------------------------------------------------------===// 405 // Trace building 406 //===----------------------------------------------------------------------===// 407 // 408 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 409 // set abstraction that confines the search to the current loop, and doesn't 410 // revisit blocks. 411 412 namespace { 413 struct LoopBounds { 414 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 415 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 416 const MachineLoopInfo *Loops; 417 bool Downward; 418 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 419 const MachineLoopInfo *loops) 420 : Blocks(blocks), Loops(loops), Downward(false) {} 421 }; 422 } 423 424 // Specialize po_iterator_storage in order to prune the post-order traversal so 425 // it is limited to the current loop and doesn't traverse the loop back edges. 426 namespace llvm { 427 template<> 428 class po_iterator_storage<LoopBounds, true> { 429 LoopBounds &LB; 430 public: 431 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 432 void finishPostorder(const MachineBasicBlock*) {} 433 434 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 435 // Skip already visited To blocks. 436 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 437 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 438 return false; 439 // From is null once when To is the trace center block. 440 if (From) { 441 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 442 // Don't follow backedges, don't leave FromLoop when going upwards. 443 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 444 return false; 445 // Don't leave FromLoop. 446 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 447 return false; 448 } 449 } 450 // To is a new block. Mark the block as visited in case the CFG has cycles 451 // that MachineLoopInfo didn't recognize as a natural loop. 452 return LB.Visited.insert(To).second; 453 } 454 }; 455 } 456 457 /// Compute the trace through MBB. 458 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 459 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 460 << MBB->getNumber() << '\n'); 461 // Set up loop bounds for the backwards post-order traversal. 462 LoopBounds Bounds(BlockInfo, MTM.Loops); 463 464 // Run an upwards post-order search for the trace start. 465 Bounds.Downward = false; 466 Bounds.Visited.clear(); 467 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 468 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 469 I != E; ++I) { 470 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 471 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 472 // All the predecessors have been visited, pick the preferred one. 473 TBI.Pred = pickTracePred(*I); 474 DEBUG({ 475 if (TBI.Pred) 476 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 477 else 478 dbgs() << "null\n"; 479 }); 480 // The trace leading to I is now known, compute the depth resources. 481 computeDepthResources(*I); 482 } 483 484 // Run a downwards post-order search for the trace end. 485 Bounds.Downward = true; 486 Bounds.Visited.clear(); 487 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 488 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 489 I != E; ++I) { 490 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 491 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 492 // All the successors have been visited, pick the preferred one. 493 TBI.Succ = pickTraceSucc(*I); 494 DEBUG({ 495 if (TBI.Succ) 496 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 497 else 498 dbgs() << "null\n"; 499 }); 500 // The trace leaving I is now known, compute the height resources. 501 computeHeightResources(*I); 502 } 503 } 504 505 /// Invalidate traces through BadMBB. 506 void 507 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 508 SmallVector<const MachineBasicBlock*, 16> WorkList; 509 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 510 511 // Invalidate height resources of blocks above MBB. 512 if (BadTBI.hasValidHeight()) { 513 BadTBI.invalidateHeight(); 514 WorkList.push_back(BadMBB); 515 do { 516 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 517 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 518 << " height.\n"); 519 // Find any MBB predecessors that have MBB as their preferred successor. 520 // They are the only ones that need to be invalidated. 521 for (MachineBasicBlock::const_pred_iterator 522 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 523 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 524 if (!TBI.hasValidHeight()) 525 continue; 526 if (TBI.Succ == MBB) { 527 TBI.invalidateHeight(); 528 WorkList.push_back(*I); 529 continue; 530 } 531 // Verify that TBI.Succ is actually a *I successor. 532 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 533 } 534 } while (!WorkList.empty()); 535 } 536 537 // Invalidate depth resources of blocks below MBB. 538 if (BadTBI.hasValidDepth()) { 539 BadTBI.invalidateDepth(); 540 WorkList.push_back(BadMBB); 541 do { 542 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 543 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 544 << " depth.\n"); 545 // Find any MBB successors that have MBB as their preferred predecessor. 546 // They are the only ones that need to be invalidated. 547 for (MachineBasicBlock::const_succ_iterator 548 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 549 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 550 if (!TBI.hasValidDepth()) 551 continue; 552 if (TBI.Pred == MBB) { 553 TBI.invalidateDepth(); 554 WorkList.push_back(*I); 555 continue; 556 } 557 // Verify that TBI.Pred is actually a *I predecessor. 558 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 559 } 560 } while (!WorkList.empty()); 561 } 562 563 // Clear any per-instruction data. We only have to do this for BadMBB itself 564 // because the instructions in that block may change. Other blocks may be 565 // invalidated, but their instructions will stay the same, so there is no 566 // need to erase the Cycle entries. They will be overwritten when we 567 // recompute. 568 for (const auto &I : *BadMBB) 569 Cycles.erase(&I); 570 } 571 572 void MachineTraceMetrics::Ensemble::verify() const { 573 #ifndef NDEBUG 574 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 575 "Outdated BlockInfo size"); 576 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 577 const TraceBlockInfo &TBI = BlockInfo[Num]; 578 if (TBI.hasValidDepth() && TBI.Pred) { 579 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 580 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 581 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 582 "Trace is broken, depth should have been invalidated."); 583 const MachineLoop *Loop = getLoopFor(MBB); 584 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 585 } 586 if (TBI.hasValidHeight() && TBI.Succ) { 587 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 588 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 589 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 590 "Trace is broken, height should have been invalidated."); 591 const MachineLoop *Loop = getLoopFor(MBB); 592 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 593 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 594 "Trace contains backedge"); 595 } 596 } 597 #endif 598 } 599 600 //===----------------------------------------------------------------------===// 601 // Data Dependencies 602 //===----------------------------------------------------------------------===// 603 // 604 // Compute the depth and height of each instruction based on data dependencies 605 // and instruction latencies. These cycle numbers assume that the CPU can issue 606 // an infinite number of instructions per cycle as long as their dependencies 607 // are ready. 608 609 // A data dependency is represented as a defining MI and operand numbers on the 610 // defining and using MI. 611 namespace { 612 struct DataDep { 613 const MachineInstr *DefMI; 614 unsigned DefOp; 615 unsigned UseOp; 616 617 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 618 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 619 620 /// Create a DataDep from an SSA form virtual register. 621 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 622 : UseOp(UseOp) { 623 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 624 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 625 assert(!DefI.atEnd() && "Register has no defs"); 626 DefMI = DefI->getParent(); 627 DefOp = DefI.getOperandNo(); 628 assert((++DefI).atEnd() && "Register has multiple defs"); 629 } 630 }; 631 } 632 633 // Get the input data dependencies that must be ready before UseMI can issue. 634 // Return true if UseMI has any physreg operands. 635 static bool getDataDeps(const MachineInstr *UseMI, 636 SmallVectorImpl<DataDep> &Deps, 637 const MachineRegisterInfo *MRI) { 638 bool HasPhysRegs = false; 639 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 640 if (!MO->isReg()) 641 continue; 642 unsigned Reg = MO->getReg(); 643 if (!Reg) 644 continue; 645 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 646 HasPhysRegs = true; 647 continue; 648 } 649 // Collect virtual register reads. 650 if (MO->readsReg()) 651 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 652 } 653 return HasPhysRegs; 654 } 655 656 // Get the input data dependencies of a PHI instruction, using Pred as the 657 // preferred predecessor. 658 // This will add at most one dependency to Deps. 659 static void getPHIDeps(const MachineInstr *UseMI, 660 SmallVectorImpl<DataDep> &Deps, 661 const MachineBasicBlock *Pred, 662 const MachineRegisterInfo *MRI) { 663 // No predecessor at the beginning of a trace. Ignore dependencies. 664 if (!Pred) 665 return; 666 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 667 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 668 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 669 unsigned Reg = UseMI->getOperand(i).getReg(); 670 Deps.push_back(DataDep(MRI, Reg, i)); 671 return; 672 } 673 } 674 } 675 676 // Keep track of physreg data dependencies by recording each live register unit. 677 // Associate each regunit with an instruction operand. Depending on the 678 // direction instructions are scanned, it could be the operand that defined the 679 // regunit, or the highest operand to read the regunit. 680 namespace { 681 struct LiveRegUnit { 682 unsigned RegUnit; 683 unsigned Cycle; 684 const MachineInstr *MI; 685 unsigned Op; 686 687 unsigned getSparseSetIndex() const { return RegUnit; } 688 689 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 690 }; 691 } 692 693 // Identify physreg dependencies for UseMI, and update the live regunit 694 // tracking set when scanning instructions downwards. 695 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 696 SmallVectorImpl<DataDep> &Deps, 697 SparseSet<LiveRegUnit> &RegUnits, 698 const TargetRegisterInfo *TRI) { 699 SmallVector<unsigned, 8> Kills; 700 SmallVector<unsigned, 8> LiveDefOps; 701 702 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 703 if (!MO->isReg()) 704 continue; 705 unsigned Reg = MO->getReg(); 706 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 707 continue; 708 // Track live defs and kills for updating RegUnits. 709 if (MO->isDef()) { 710 if (MO->isDead()) 711 Kills.push_back(Reg); 712 else 713 LiveDefOps.push_back(MO.getOperandNo()); 714 } else if (MO->isKill()) 715 Kills.push_back(Reg); 716 // Identify dependencies. 717 if (!MO->readsReg()) 718 continue; 719 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 720 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 721 if (I == RegUnits.end()) 722 continue; 723 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 724 break; 725 } 726 } 727 728 // Update RegUnits to reflect live registers after UseMI. 729 // First kills. 730 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 731 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 732 RegUnits.erase(*Units); 733 734 // Second, live defs. 735 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 736 unsigned DefOp = LiveDefOps[i]; 737 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 738 Units.isValid(); ++Units) { 739 LiveRegUnit &LRU = RegUnits[*Units]; 740 LRU.MI = UseMI; 741 LRU.Op = DefOp; 742 } 743 } 744 } 745 746 /// The length of the critical path through a trace is the maximum of two path 747 /// lengths: 748 /// 749 /// 1. The maximum height+depth over all instructions in the trace center block. 750 /// 751 /// 2. The longest cross-block dependency chain. For small blocks, it is 752 /// possible that the critical path through the trace doesn't include any 753 /// instructions in the block. 754 /// 755 /// This function computes the second number from the live-in list of the 756 /// center block. 757 unsigned MachineTraceMetrics::Ensemble:: 758 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 759 assert(TBI.HasValidInstrDepths && "Missing depth info"); 760 assert(TBI.HasValidInstrHeights && "Missing height info"); 761 unsigned MaxLen = 0; 762 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 763 const LiveInReg &LIR = TBI.LiveIns[i]; 764 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 765 continue; 766 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 767 // Ignore dependencies outside the current trace. 768 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 769 if (!DefTBI.isUsefulDominator(TBI)) 770 continue; 771 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 772 MaxLen = std::max(MaxLen, Len); 773 } 774 return MaxLen; 775 } 776 777 /// Compute instruction depths for all instructions above or in MBB in its 778 /// trace. This assumes that the trace through MBB has already been computed. 779 void MachineTraceMetrics::Ensemble:: 780 computeInstrDepths(const MachineBasicBlock *MBB) { 781 // The top of the trace may already be computed, and HasValidInstrDepths 782 // implies Head->HasValidInstrDepths, so we only need to start from the first 783 // block in the trace that needs to be recomputed. 784 SmallVector<const MachineBasicBlock*, 8> Stack; 785 do { 786 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 787 assert(TBI.hasValidDepth() && "Incomplete trace"); 788 if (TBI.HasValidInstrDepths) 789 break; 790 Stack.push_back(MBB); 791 MBB = TBI.Pred; 792 } while (MBB); 793 794 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 795 // in the trace. We should track any live-out physregs that were defined in 796 // the trace. This is quite rare in SSA form, typically created by CSE 797 // hoisting a compare. 798 SparseSet<LiveRegUnit> RegUnits; 799 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 800 801 // Go through trace blocks in top-down order, stopping after the center block. 802 SmallVector<DataDep, 8> Deps; 803 while (!Stack.empty()) { 804 MBB = Stack.pop_back_val(); 805 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 806 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 807 TBI.HasValidInstrDepths = true; 808 TBI.CriticalPath = 0; 809 810 // Print out resource depths here as well. 811 DEBUG({ 812 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 813 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 814 for (unsigned K = 0; K != PRDepths.size(); ++K) 815 if (PRDepths[K]) { 816 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 817 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 818 << MTM.SchedModel.getProcResource(K)->Name << " (" 819 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 820 } 821 }); 822 823 // Also compute the critical path length through MBB when possible. 824 if (TBI.HasValidInstrHeights) 825 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 826 827 for (const auto &UseMI : *MBB) { 828 // Collect all data dependencies. 829 Deps.clear(); 830 if (UseMI.isPHI()) 831 getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI); 832 else if (getDataDeps(&UseMI, Deps, MTM.MRI)) 833 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 834 835 // Filter and process dependencies, computing the earliest issue cycle. 836 unsigned Cycle = 0; 837 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 838 const DataDep &Dep = Deps[i]; 839 const TraceBlockInfo&DepTBI = 840 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 841 // Ignore dependencies from outside the current trace. 842 if (!DepTBI.isUsefulDominator(TBI)) 843 continue; 844 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 845 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 846 // Add latency if DefMI is a real instruction. Transients get latency 0. 847 if (!Dep.DefMI->isTransient()) 848 DepCycle += MTM.SchedModel 849 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 850 Cycle = std::max(Cycle, DepCycle); 851 } 852 // Remember the instruction depth. 853 InstrCycles &MICycles = Cycles[&UseMI]; 854 MICycles.Depth = Cycle; 855 856 if (!TBI.HasValidInstrHeights) { 857 DEBUG(dbgs() << Cycle << '\t' << UseMI); 858 continue; 859 } 860 // Update critical path length. 861 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 862 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 863 } 864 } 865 } 866 867 // Identify physreg dependencies for MI when scanning instructions upwards. 868 // Return the issue height of MI after considering any live regunits. 869 // Height is the issue height computed from virtual register dependencies alone. 870 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 871 SparseSet<LiveRegUnit> &RegUnits, 872 const TargetSchedModel &SchedModel, 873 const TargetInstrInfo *TII, 874 const TargetRegisterInfo *TRI) { 875 SmallVector<unsigned, 8> ReadOps; 876 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 877 if (!MO->isReg()) 878 continue; 879 unsigned Reg = MO->getReg(); 880 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 881 continue; 882 if (MO->readsReg()) 883 ReadOps.push_back(MO.getOperandNo()); 884 if (!MO->isDef()) 885 continue; 886 // This is a def of Reg. Remove corresponding entries from RegUnits, and 887 // update MI Height to consider the physreg dependencies. 888 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 889 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 890 if (I == RegUnits.end()) 891 continue; 892 unsigned DepHeight = I->Cycle; 893 if (!MI->isTransient()) { 894 // We may not know the UseMI of this dependency, if it came from the 895 // live-in list. SchedModel can handle a NULL UseMI. 896 DepHeight += SchedModel 897 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op); 898 } 899 Height = std::max(Height, DepHeight); 900 // This regunit is dead above MI. 901 RegUnits.erase(I); 902 } 903 } 904 905 // Now we know the height of MI. Update any regunits read. 906 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 907 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 908 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 909 LiveRegUnit &LRU = RegUnits[*Units]; 910 // Set the height to the highest reader of the unit. 911 if (LRU.Cycle <= Height && LRU.MI != MI) { 912 LRU.Cycle = Height; 913 LRU.MI = MI; 914 LRU.Op = ReadOps[i]; 915 } 916 } 917 } 918 919 return Height; 920 } 921 922 923 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 924 925 // Push the height of DefMI upwards if required to match UseMI. 926 // Return true if this is the first time DefMI was seen. 927 static bool pushDepHeight(const DataDep &Dep, 928 const MachineInstr *UseMI, unsigned UseHeight, 929 MIHeightMap &Heights, 930 const TargetSchedModel &SchedModel, 931 const TargetInstrInfo *TII) { 932 // Adjust height by Dep.DefMI latency. 933 if (!Dep.DefMI->isTransient()) 934 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 935 UseMI, Dep.UseOp); 936 937 // Update Heights[DefMI] to be the maximum height seen. 938 MIHeightMap::iterator I; 939 bool New; 940 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 941 if (New) 942 return true; 943 944 // DefMI has been pushed before. Give it the max height. 945 if (I->second < UseHeight) 946 I->second = UseHeight; 947 return false; 948 } 949 950 /// Assuming that the virtual register defined by DefMI:DefOp was used by 951 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 952 /// when reaching the block that contains DefMI. 953 void MachineTraceMetrics::Ensemble:: 954 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 955 ArrayRef<const MachineBasicBlock*> Trace) { 956 assert(!Trace.empty() && "Trace should contain at least one block"); 957 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 958 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 959 const MachineBasicBlock *DefMBB = DefMI->getParent(); 960 961 // Reg is live-in to all blocks in Trace that follow DefMBB. 962 for (unsigned i = Trace.size(); i; --i) { 963 const MachineBasicBlock *MBB = Trace[i-1]; 964 if (MBB == DefMBB) 965 return; 966 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 967 // Just add the register. The height will be updated later. 968 TBI.LiveIns.push_back(Reg); 969 } 970 } 971 972 /// Compute instruction heights in the trace through MBB. This updates MBB and 973 /// the blocks below it in the trace. It is assumed that the trace has already 974 /// been computed. 975 void MachineTraceMetrics::Ensemble:: 976 computeInstrHeights(const MachineBasicBlock *MBB) { 977 // The bottom of the trace may already be computed. 978 // Find the blocks that need updating. 979 SmallVector<const MachineBasicBlock*, 8> Stack; 980 do { 981 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 982 assert(TBI.hasValidHeight() && "Incomplete trace"); 983 if (TBI.HasValidInstrHeights) 984 break; 985 Stack.push_back(MBB); 986 TBI.LiveIns.clear(); 987 MBB = TBI.Succ; 988 } while (MBB); 989 990 // As we move upwards in the trace, keep track of instructions that are 991 // required by deeper trace instructions. Map MI -> height required so far. 992 MIHeightMap Heights; 993 994 // For physregs, the def isn't known when we see the use. 995 // Instead, keep track of the highest use of each regunit. 996 SparseSet<LiveRegUnit> RegUnits; 997 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 998 999 // If the bottom of the trace was already precomputed, initialize heights 1000 // from its live-in list. 1001 // MBB is the highest precomputed block in the trace. 1002 if (MBB) { 1003 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1004 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1005 LiveInReg LI = TBI.LiveIns[i]; 1006 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1007 // For virtual registers, the def latency is included. 1008 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1009 if (Height < LI.Height) 1010 Height = LI.Height; 1011 } else { 1012 // For register units, the def latency is not included because we don't 1013 // know the def yet. 1014 RegUnits[LI.Reg].Cycle = LI.Height; 1015 } 1016 } 1017 } 1018 1019 // Go through the trace blocks in bottom-up order. 1020 SmallVector<DataDep, 8> Deps; 1021 for (;!Stack.empty(); Stack.pop_back()) { 1022 MBB = Stack.back(); 1023 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1024 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1025 TBI.HasValidInstrHeights = true; 1026 TBI.CriticalPath = 0; 1027 1028 DEBUG({ 1029 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1030 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1031 for (unsigned K = 0; K != PRHeights.size(); ++K) 1032 if (PRHeights[K]) { 1033 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1034 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1035 << MTM.SchedModel.getProcResource(K)->Name << " (" 1036 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1037 } 1038 }); 1039 1040 // Get dependencies from PHIs in the trace successor. 1041 const MachineBasicBlock *Succ = TBI.Succ; 1042 // If MBB is the last block in the trace, and it has a back-edge to the 1043 // loop header, get loop-carried dependencies from PHIs in the header. For 1044 // that purpose, pretend that all the loop header PHIs have height 0. 1045 if (!Succ) 1046 if (const MachineLoop *Loop = getLoopFor(MBB)) 1047 if (MBB->isSuccessor(Loop->getHeader())) 1048 Succ = Loop->getHeader(); 1049 1050 if (Succ) { 1051 for (const auto &PHI : *Succ) { 1052 if (!PHI.isPHI()) 1053 break; 1054 Deps.clear(); 1055 getPHIDeps(&PHI, Deps, MBB, MTM.MRI); 1056 if (!Deps.empty()) { 1057 // Loop header PHI heights are all 0. 1058 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1059 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1060 if (pushDepHeight(Deps.front(), &PHI, Height, 1061 Heights, MTM.SchedModel, MTM.TII)) 1062 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1063 } 1064 } 1065 } 1066 1067 // Go through the block backwards. 1068 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1069 BI != BB;) { 1070 const MachineInstr *MI = --BI; 1071 1072 // Find the MI height as determined by virtual register uses in the 1073 // trace below. 1074 unsigned Cycle = 0; 1075 MIHeightMap::iterator HeightI = Heights.find(MI); 1076 if (HeightI != Heights.end()) { 1077 Cycle = HeightI->second; 1078 // We won't be seeing any more MI uses. 1079 Heights.erase(HeightI); 1080 } 1081 1082 // Don't process PHI deps. They depend on the specific predecessor, and 1083 // we'll get them when visiting the predecessor. 1084 Deps.clear(); 1085 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1086 1087 // There may also be regunit dependencies to include in the height. 1088 if (HasPhysRegs) 1089 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1090 MTM.SchedModel, MTM.TII, MTM.TRI); 1091 1092 // Update the required height of any virtual registers read by MI. 1093 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1094 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1095 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1096 1097 InstrCycles &MICycles = Cycles[MI]; 1098 MICycles.Height = Cycle; 1099 if (!TBI.HasValidInstrDepths) { 1100 DEBUG(dbgs() << Cycle << '\t' << *MI); 1101 continue; 1102 } 1103 // Update critical path length. 1104 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1105 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1106 } 1107 1108 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1109 // height because the final height isn't known until now. 1110 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1111 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1112 LiveInReg &LIR = TBI.LiveIns[i]; 1113 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1114 LIR.Height = Heights.lookup(DefMI); 1115 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1116 } 1117 1118 // Transfer the live regunits to the live-in list. 1119 for (SparseSet<LiveRegUnit>::const_iterator 1120 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1121 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1122 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1123 << '@' << RI->Cycle); 1124 } 1125 DEBUG(dbgs() << '\n'); 1126 1127 if (!TBI.HasValidInstrDepths) 1128 continue; 1129 // Add live-ins to the critical path length. 1130 TBI.CriticalPath = std::max(TBI.CriticalPath, 1131 computeCrossBlockCriticalPath(TBI)); 1132 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1133 } 1134 } 1135 1136 MachineTraceMetrics::Trace 1137 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1138 // FIXME: Check cache tags, recompute as needed. 1139 computeTrace(MBB); 1140 computeInstrDepths(MBB); 1141 computeInstrHeights(MBB); 1142 return Trace(*this, BlockInfo[MBB->getNumber()]); 1143 } 1144 1145 unsigned 1146 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1147 assert(MI && "Not an instruction."); 1148 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1149 "MI must be in the trace center block"); 1150 InstrCycles Cyc = getInstrCycles(MI); 1151 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1152 } 1153 1154 unsigned 1155 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1156 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1157 SmallVector<DataDep, 1> Deps; 1158 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1159 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1160 DataDep &Dep = Deps.front(); 1161 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1162 // Add latency if DefMI is a real instruction. Transients get latency 0. 1163 if (!Dep.DefMI->isTransient()) 1164 DepCycle += TE.MTM.SchedModel 1165 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 1166 return DepCycle; 1167 } 1168 1169 /// When bottom is set include instructions in current block in estimate. 1170 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1171 // Find the limiting processor resource. 1172 // Numbers have been pre-scaled to be comparable. 1173 unsigned PRMax = 0; 1174 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1175 if (Bottom) { 1176 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1177 for (unsigned K = 0; K != PRDepths.size(); ++K) 1178 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1179 } else { 1180 for (unsigned K = 0; K != PRDepths.size(); ++K) 1181 PRMax = std::max(PRMax, PRDepths[K]); 1182 } 1183 // Convert to cycle count. 1184 PRMax = TE.MTM.getCycles(PRMax); 1185 1186 /// All instructions before current block 1187 unsigned Instrs = TBI.InstrDepth; 1188 // plus instructions in current block 1189 if (Bottom) 1190 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1191 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1192 Instrs /= IW; 1193 // Assume issue width 1 without a schedule model. 1194 return std::max(Instrs, PRMax); 1195 } 1196 1197 unsigned MachineTraceMetrics::Trace::getResourceLength( 1198 ArrayRef<const MachineBasicBlock *> Extrablocks, 1199 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1200 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1201 // Add up resources above and below the center block. 1202 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1203 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1204 unsigned PRMax = 0; 1205 1206 // Capture computing cycles from extra instructions 1207 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1208 unsigned ResourceIdx) 1209 ->unsigned { 1210 unsigned Cycles = 0; 1211 for (unsigned I = 0; I != Instrs.size(); ++I) { 1212 const MCSchedClassDesc *SC = Instrs[I]; 1213 if (!SC->isValid()) 1214 continue; 1215 for (TargetSchedModel::ProcResIter 1216 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1217 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1218 PI != PE; ++PI) { 1219 if (PI->ProcResourceIdx != ResourceIdx) 1220 continue; 1221 Cycles += 1222 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1223 } 1224 } 1225 return Cycles; 1226 }; 1227 1228 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1229 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1230 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1231 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1232 PRCycles += extraCycles(ExtraInstrs, K); 1233 PRCycles -= extraCycles(RemoveInstrs, K); 1234 PRMax = std::max(PRMax, PRCycles); 1235 } 1236 // Convert to cycle count. 1237 PRMax = TE.MTM.getCycles(PRMax); 1238 1239 // Instrs: #instructions in current trace outside current block. 1240 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1241 // Add instruction count from the extra blocks. 1242 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1243 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1244 Instrs += ExtraInstrs.size(); 1245 Instrs -= RemoveInstrs.size(); 1246 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1247 Instrs /= IW; 1248 // Assume issue width 1 without a schedule model. 1249 return std::max(Instrs, PRMax); 1250 } 1251 1252 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI, 1253 const MachineInstr *UseMI) const { 1254 if (DefMI->getParent() == UseMI->getParent()) 1255 return true; 1256 1257 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()]; 1258 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()]; 1259 1260 return DepTBI.isUsefulDominator(TBI); 1261 } 1262 1263 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1264 OS << getName() << " ensemble:\n"; 1265 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1266 OS << " BB#" << i << '\t'; 1267 BlockInfo[i].print(OS); 1268 OS << '\n'; 1269 } 1270 } 1271 1272 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1273 if (hasValidDepth()) { 1274 OS << "depth=" << InstrDepth; 1275 if (Pred) 1276 OS << " pred=BB#" << Pred->getNumber(); 1277 else 1278 OS << " pred=null"; 1279 OS << " head=BB#" << Head; 1280 if (HasValidInstrDepths) 1281 OS << " +instrs"; 1282 } else 1283 OS << "depth invalid"; 1284 OS << ", "; 1285 if (hasValidHeight()) { 1286 OS << "height=" << InstrHeight; 1287 if (Succ) 1288 OS << " succ=BB#" << Succ->getNumber(); 1289 else 1290 OS << " succ=null"; 1291 OS << " tail=BB#" << Tail; 1292 if (HasValidInstrHeights) 1293 OS << " +instrs"; 1294 } else 1295 OS << "height invalid"; 1296 if (HasValidInstrDepths && HasValidInstrHeights) 1297 OS << ", crit=" << CriticalPath; 1298 } 1299 1300 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1301 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1302 1303 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1304 << " --> BB#" << TBI.Tail << ':'; 1305 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1306 OS << ' ' << getInstrCount() << " instrs."; 1307 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1308 OS << ' ' << TBI.CriticalPath << " cycles."; 1309 1310 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1311 OS << "\nBB#" << MBBNum; 1312 while (Block->hasValidDepth() && Block->Pred) { 1313 unsigned Num = Block->Pred->getNumber(); 1314 OS << " <- BB#" << Num; 1315 Block = &TE.BlockInfo[Num]; 1316 } 1317 1318 Block = &TBI; 1319 OS << "\n "; 1320 while (Block->hasValidHeight() && Block->Succ) { 1321 unsigned Num = Block->Succ->getNumber(); 1322 OS << " -> BB#" << Num; 1323 Block = &TE.BlockInfo[Num]; 1324 } 1325 OS << '\n'; 1326 } 1327