1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "early-ifcvt" 11 #include "MachineTraceMetrics.h" 12 #include "llvm/CodeGen/MachineBasicBlock.h" 13 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 14 #include "llvm/CodeGen/MachineLoopInfo.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/Target/TargetInstrInfo.h" 18 #include "llvm/Target/TargetRegisterInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SparseSet.h" 23 24 using namespace llvm; 25 26 char MachineTraceMetrics::ID = 0; 27 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 28 29 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 30 "machine-trace-metrics", "Machine Trace Metrics", false, true) 31 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 32 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 33 INITIALIZE_PASS_END(MachineTraceMetrics, 34 "machine-trace-metrics", "Machine Trace Metrics", false, true) 35 36 MachineTraceMetrics::MachineTraceMetrics() 37 : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) { 38 std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0); 39 } 40 41 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 42 AU.setPreservesAll(); 43 AU.addRequired<MachineBranchProbabilityInfo>(); 44 AU.addRequired<MachineLoopInfo>(); 45 MachineFunctionPass::getAnalysisUsage(AU); 46 } 47 48 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 49 MF = &Func; 50 TII = MF->getTarget().getInstrInfo(); 51 TRI = MF->getTarget().getRegisterInfo(); 52 ItinData = MF->getTarget().getInstrItineraryData(); 53 MRI = &MF->getRegInfo(); 54 Loops = &getAnalysis<MachineLoopInfo>(); 55 BlockInfo.resize(MF->getNumBlockIDs()); 56 return false; 57 } 58 59 void MachineTraceMetrics::releaseMemory() { 60 MF = 0; 61 BlockInfo.clear(); 62 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 63 delete Ensembles[i]; 64 Ensembles[i] = 0; 65 } 66 } 67 68 //===----------------------------------------------------------------------===// 69 // Fixed block information 70 //===----------------------------------------------------------------------===// 71 // 72 // The number of instructions in a basic block and the CPU resources used by 73 // those instructions don't depend on any given trace strategy. 74 75 /// Compute the resource usage in basic block MBB. 76 const MachineTraceMetrics::FixedBlockInfo* 77 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 78 assert(MBB && "No basic block"); 79 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 80 if (FBI->hasResources()) 81 return FBI; 82 83 // Compute resource usage in the block. 84 // FIXME: Compute per-functional unit counts. 85 FBI->HasCalls = false; 86 unsigned InstrCount = 0; 87 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 88 I != E; ++I) { 89 const MachineInstr *MI = I; 90 if (MI->isTransient()) 91 continue; 92 ++InstrCount; 93 if (MI->isCall()) 94 FBI->HasCalls = true; 95 } 96 FBI->InstrCount = InstrCount; 97 return FBI; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // Ensemble utility functions 102 //===----------------------------------------------------------------------===// 103 104 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 105 : MTM(*ct) { 106 BlockInfo.resize(MTM.BlockInfo.size()); 107 } 108 109 // Virtual destructor serves as an anchor. 110 MachineTraceMetrics::Ensemble::~Ensemble() {} 111 112 const MachineLoop* 113 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 114 return MTM.Loops->getLoopFor(MBB); 115 } 116 117 // Update resource-related information in the TraceBlockInfo for MBB. 118 // Only update resources related to the trace above MBB. 119 void MachineTraceMetrics::Ensemble:: 120 computeDepthResources(const MachineBasicBlock *MBB) { 121 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 122 123 // Compute resources from trace above. The top block is simple. 124 if (!TBI->Pred) { 125 TBI->InstrDepth = 0; 126 TBI->Head = MBB->getNumber(); 127 return; 128 } 129 130 // Compute from the block above. A post-order traversal ensures the 131 // predecessor is always computed first. 132 TraceBlockInfo *PredTBI = &BlockInfo[TBI->Pred->getNumber()]; 133 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 134 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 135 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 136 TBI->Head = PredTBI->Head; 137 } 138 139 // Update resource-related information in the TraceBlockInfo for MBB. 140 // Only update resources related to the trace below MBB. 141 void MachineTraceMetrics::Ensemble:: 142 computeHeightResources(const MachineBasicBlock *MBB) { 143 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 144 145 // Compute resources for the current block. 146 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 147 148 // The trace tail is done. 149 if (!TBI->Succ) { 150 TBI->Tail = MBB->getNumber(); 151 return; 152 } 153 154 // Compute from the block below. A post-order traversal ensures the 155 // predecessor is always computed first. 156 TraceBlockInfo *SuccTBI = &BlockInfo[TBI->Succ->getNumber()]; 157 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 158 TBI->InstrHeight += SuccTBI->InstrHeight; 159 TBI->Tail = SuccTBI->Tail; 160 } 161 162 // Check if depth resources for MBB are valid and return the TBI. 163 // Return NULL if the resources have been invalidated. 164 const MachineTraceMetrics::TraceBlockInfo* 165 MachineTraceMetrics::Ensemble:: 166 getDepthResources(const MachineBasicBlock *MBB) const { 167 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 168 return TBI->hasValidDepth() ? TBI : 0; 169 } 170 171 // Check if height resources for MBB are valid and return the TBI. 172 // Return NULL if the resources have been invalidated. 173 const MachineTraceMetrics::TraceBlockInfo* 174 MachineTraceMetrics::Ensemble:: 175 getHeightResources(const MachineBasicBlock *MBB) const { 176 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 177 return TBI->hasValidHeight() ? TBI : 0; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // Trace Selection Strategies 182 //===----------------------------------------------------------------------===// 183 // 184 // A trace selection strategy is implemented as a sub-class of Ensemble. The 185 // trace through a block B is computed by two DFS traversals of the CFG 186 // starting from B. One upwards, and one downwards. During the upwards DFS, 187 // pickTracePred() is called on the post-ordered blocks. During the downwards 188 // DFS, pickTraceSucc() is called in a post-order. 189 // 190 191 // We never allow traces that leave loops, but we do allow traces to enter 192 // nested loops. We also never allow traces to contain back-edges. 193 // 194 // This means that a loop header can never appear above the center block of a 195 // trace, except as the trace head. Below the center block, loop exiting edges 196 // are banned. 197 // 198 // Return true if an edge from the From loop to the To loop is leaving a loop. 199 // Either of To and From can be null. 200 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 201 return From && !From->contains(To); 202 } 203 204 // MinInstrCountEnsemble - Pick the trace that executes the least number of 205 // instructions. 206 namespace { 207 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 208 const char *getName() const { return "MinInstr"; } 209 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*); 210 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*); 211 212 public: 213 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 214 : MachineTraceMetrics::Ensemble(mtm) {} 215 }; 216 } 217 218 // Select the preferred predecessor for MBB. 219 const MachineBasicBlock* 220 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 221 if (MBB->pred_empty()) 222 return 0; 223 const MachineLoop *CurLoop = getLoopFor(MBB); 224 // Don't leave loops, and never follow back-edges. 225 if (CurLoop && MBB == CurLoop->getHeader()) 226 return 0; 227 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 228 const MachineBasicBlock *Best = 0; 229 unsigned BestDepth = 0; 230 for (MachineBasicBlock::const_pred_iterator 231 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 232 const MachineBasicBlock *Pred = *I; 233 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 234 getDepthResources(Pred); 235 assert(PredTBI && "Predecessor must be visited first"); 236 // Pick the predecessor that would give this block the smallest InstrDepth. 237 unsigned Depth = PredTBI->InstrDepth + CurCount; 238 if (!Best || Depth < BestDepth) 239 Best = Pred, BestDepth = Depth; 240 } 241 return Best; 242 } 243 244 // Select the preferred successor for MBB. 245 const MachineBasicBlock* 246 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 247 if (MBB->pred_empty()) 248 return 0; 249 const MachineLoop *CurLoop = getLoopFor(MBB); 250 const MachineBasicBlock *Best = 0; 251 unsigned BestHeight = 0; 252 for (MachineBasicBlock::const_succ_iterator 253 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 254 const MachineBasicBlock *Succ = *I; 255 // Don't consider back-edges. 256 if (CurLoop && Succ == CurLoop->getHeader()) 257 continue; 258 // Don't consider successors exiting CurLoop. 259 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 260 continue; 261 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 262 getHeightResources(Succ); 263 assert(SuccTBI && "Successor must be visited first"); 264 // Pick the successor that would give this block the smallest InstrHeight. 265 unsigned Height = SuccTBI->InstrHeight; 266 if (!Best || Height < BestHeight) 267 Best = Succ, BestHeight = Height; 268 } 269 return Best; 270 } 271 272 // Get an Ensemble sub-class for the requested trace strategy. 273 MachineTraceMetrics::Ensemble * 274 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 275 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 276 Ensemble *&E = Ensembles[strategy]; 277 if (E) 278 return E; 279 280 // Allocate new Ensemble on demand. 281 switch (strategy) { 282 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 283 default: llvm_unreachable("Invalid trace strategy enum"); 284 } 285 } 286 287 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 288 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 289 BlockInfo[MBB->getNumber()].invalidate(); 290 for (unsigned i = 0; i != TS_NumStrategies; ++i) 291 if (Ensembles[i]) 292 Ensembles[i]->invalidate(MBB); 293 } 294 295 void MachineTraceMetrics::verifyAnalysis() const { 296 if (!MF) 297 return; 298 #ifndef NDEBUG 299 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 300 for (unsigned i = 0; i != TS_NumStrategies; ++i) 301 if (Ensembles[i]) 302 Ensembles[i]->verify(); 303 #endif 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Trace building 308 //===----------------------------------------------------------------------===// 309 // 310 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 311 // set abstraction that confines the search to the current loop, and doesn't 312 // revisit blocks. 313 314 namespace { 315 struct LoopBounds { 316 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 317 const MachineLoopInfo *Loops; 318 bool Downward; 319 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 320 const MachineLoopInfo *loops) 321 : Blocks(blocks), Loops(loops), Downward(false) {} 322 }; 323 } 324 325 // Specialize po_iterator_storage in order to prune the post-order traversal so 326 // it is limited to the current loop and doesn't traverse the loop back edges. 327 namespace llvm { 328 template<> 329 class po_iterator_storage<LoopBounds, true> { 330 LoopBounds &LB; 331 public: 332 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 333 void finishPostorder(const MachineBasicBlock*) {} 334 335 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 336 // Skip already visited To blocks. 337 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 338 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 339 return false; 340 // From is null once when To is the trace center block. 341 if (!From) 342 return true; 343 const MachineLoop *FromLoop = LB.Loops->getLoopFor(From); 344 if (!FromLoop) 345 return true; 346 // Don't follow backedges, don't leave FromLoop when going upwards. 347 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 348 return false; 349 // Don't leave FromLoop. 350 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 351 return false; 352 // This is a new block. The PO traversal will compute height/depth 353 // resources, causing us to reject new edges to To. This only works because 354 // we reject back-edges, so the CFG is cycle-free. 355 return true; 356 } 357 }; 358 } 359 360 /// Compute the trace through MBB. 361 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 362 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 363 << MBB->getNumber() << '\n'); 364 // Set up loop bounds for the backwards post-order traversal. 365 LoopBounds Bounds(BlockInfo, MTM.Loops); 366 367 // Run an upwards post-order search for the trace start. 368 Bounds.Downward = false; 369 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 370 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 371 I != E; ++I) { 372 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 373 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 374 // All the predecessors have been visited, pick the preferred one. 375 TBI.Pred = pickTracePred(*I); 376 DEBUG({ 377 if (TBI.Pred) 378 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 379 else 380 dbgs() << "null\n"; 381 }); 382 // The trace leading to I is now known, compute the depth resources. 383 computeDepthResources(*I); 384 } 385 386 // Run a downwards post-order search for the trace end. 387 Bounds.Downward = true; 388 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 389 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 390 I != E; ++I) { 391 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 392 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 393 // All the successors have been visited, pick the preferred one. 394 TBI.Succ = pickTraceSucc(*I); 395 DEBUG({ 396 if (TBI.Succ) 397 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 398 else 399 dbgs() << "null\n"; 400 }); 401 // The trace leaving I is now known, compute the height resources. 402 computeHeightResources(*I); 403 } 404 } 405 406 /// Invalidate traces through BadMBB. 407 void 408 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 409 SmallVector<const MachineBasicBlock*, 16> WorkList; 410 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 411 412 // Invalidate height resources of blocks above MBB. 413 if (BadTBI.hasValidHeight()) { 414 BadTBI.invalidateHeight(); 415 WorkList.push_back(BadMBB); 416 do { 417 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 418 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 419 << " height.\n"); 420 // Find any MBB predecessors that have MBB as their preferred successor. 421 // They are the only ones that need to be invalidated. 422 for (MachineBasicBlock::const_pred_iterator 423 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 424 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 425 if (!TBI.hasValidHeight()) 426 continue; 427 if (TBI.Succ == MBB) { 428 TBI.invalidateHeight(); 429 WorkList.push_back(*I); 430 continue; 431 } 432 // Verify that TBI.Succ is actually a *I successor. 433 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 434 } 435 } while (!WorkList.empty()); 436 } 437 438 // Invalidate depth resources of blocks below MBB. 439 if (BadTBI.hasValidDepth()) { 440 BadTBI.invalidateDepth(); 441 WorkList.push_back(BadMBB); 442 do { 443 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 444 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 445 << " depth.\n"); 446 // Find any MBB successors that have MBB as their preferred predecessor. 447 // They are the only ones that need to be invalidated. 448 for (MachineBasicBlock::const_succ_iterator 449 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 450 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 451 if (!TBI.hasValidDepth()) 452 continue; 453 if (TBI.Pred == MBB) { 454 TBI.invalidateDepth(); 455 WorkList.push_back(*I); 456 continue; 457 } 458 // Verify that TBI.Pred is actually a *I predecessor. 459 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 460 } 461 } while (!WorkList.empty()); 462 } 463 464 // Clear any per-instruction data. We only have to do this for BadMBB itself 465 // because the instructions in that block may change. Other blocks may be 466 // invalidated, but their instructions will stay the same, so there is no 467 // need to erase the Cycle entries. They will be overwritten when we 468 // recompute. 469 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); 470 I != E; ++I) 471 Cycles.erase(I); 472 } 473 474 void MachineTraceMetrics::Ensemble::verify() const { 475 #ifndef NDEBUG 476 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 477 "Outdated BlockInfo size"); 478 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 479 const TraceBlockInfo &TBI = BlockInfo[Num]; 480 if (TBI.hasValidDepth() && TBI.Pred) { 481 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 482 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 483 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 484 "Trace is broken, depth should have been invalidated."); 485 const MachineLoop *Loop = getLoopFor(MBB); 486 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 487 } 488 if (TBI.hasValidHeight() && TBI.Succ) { 489 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 490 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 491 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 492 "Trace is broken, height should have been invalidated."); 493 const MachineLoop *Loop = getLoopFor(MBB); 494 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 495 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 496 "Trace contains backedge"); 497 } 498 } 499 #endif 500 } 501 502 //===----------------------------------------------------------------------===// 503 // Data Dependencies 504 //===----------------------------------------------------------------------===// 505 // 506 // Compute the depth and height of each instruction based on data dependencies 507 // and instruction latencies. These cycle numbers assume that the CPU can issue 508 // an infinite number of instructions per cycle as long as their dependencies 509 // are ready. 510 511 // A data dependency is represented as a defining MI and operand numbers on the 512 // defining and using MI. 513 namespace { 514 struct DataDep { 515 const MachineInstr *DefMI; 516 unsigned DefOp; 517 unsigned UseOp; 518 519 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 520 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 521 522 /// Create a DataDep from an SSA form virtual register. 523 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 524 : UseOp(UseOp) { 525 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 526 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 527 assert(!DefI.atEnd() && "Register has no defs"); 528 DefMI = &*DefI; 529 DefOp = DefI.getOperandNo(); 530 assert((++DefI).atEnd() && "Register has multiple defs"); 531 } 532 }; 533 } 534 535 // Get the input data dependencies that must be ready before UseMI can issue. 536 // Return true if UseMI has any physreg operands. 537 static bool getDataDeps(const MachineInstr *UseMI, 538 SmallVectorImpl<DataDep> &Deps, 539 const MachineRegisterInfo *MRI) { 540 bool HasPhysRegs = false; 541 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 542 if (!MO->isReg()) 543 continue; 544 unsigned Reg = MO->getReg(); 545 if (!Reg) 546 continue; 547 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 548 HasPhysRegs = true; 549 continue; 550 } 551 // Collect virtual register reads. 552 if (MO->readsReg()) 553 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 554 } 555 return HasPhysRegs; 556 } 557 558 // Get the input data dependencies of a PHI instruction, using Pred as the 559 // preferred predecessor. 560 // This will add at most one dependency to Deps. 561 static void getPHIDeps(const MachineInstr *UseMI, 562 SmallVectorImpl<DataDep> &Deps, 563 const MachineBasicBlock *Pred, 564 const MachineRegisterInfo *MRI) { 565 // No predecessor at the beginning of a trace. Ignore dependencies. 566 if (!Pred) 567 return; 568 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 569 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 570 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 571 unsigned Reg = UseMI->getOperand(i).getReg(); 572 Deps.push_back(DataDep(MRI, Reg, i)); 573 return; 574 } 575 } 576 } 577 578 // Keep track of physreg data dependencies by recording each live register unit. 579 // Associate each regunit with an instruction operand. Depending on the 580 // direction instructions are scanned, it could be the operand that defined the 581 // regunit, or the highest operand to read the regunit. 582 namespace { 583 struct LiveRegUnit { 584 unsigned RegUnit; 585 unsigned Cycle; 586 const MachineInstr *MI; 587 unsigned Op; 588 589 unsigned getSparseSetIndex() const { return RegUnit; } 590 591 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {} 592 }; 593 } 594 595 // Identify physreg dependencies for UseMI, and update the live regunit 596 // tracking set when scanning instructions downwards. 597 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 598 SmallVectorImpl<DataDep> &Deps, 599 SparseSet<LiveRegUnit> &RegUnits, 600 const TargetRegisterInfo *TRI) { 601 SmallVector<unsigned, 8> Kills; 602 SmallVector<unsigned, 8> LiveDefOps; 603 604 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 605 if (!MO->isReg()) 606 continue; 607 unsigned Reg = MO->getReg(); 608 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 609 continue; 610 // Track live defs and kills for updating RegUnits. 611 if (MO->isDef()) { 612 if (MO->isDead()) 613 Kills.push_back(Reg); 614 else 615 LiveDefOps.push_back(MO.getOperandNo()); 616 } else if (MO->isKill()) 617 Kills.push_back(Reg); 618 // Identify dependencies. 619 if (!MO->readsReg()) 620 continue; 621 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 622 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 623 if (I == RegUnits.end()) 624 continue; 625 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 626 break; 627 } 628 } 629 630 // Update RegUnits to reflect live registers after UseMI. 631 // First kills. 632 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 633 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 634 RegUnits.erase(*Units); 635 636 // Second, live defs. 637 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 638 unsigned DefOp = LiveDefOps[i]; 639 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 640 Units.isValid(); ++Units) { 641 LiveRegUnit &LRU = RegUnits[*Units]; 642 LRU.MI = UseMI; 643 LRU.Op = DefOp; 644 } 645 } 646 } 647 648 /// The length of the critical path through a trace is the maximum of two path 649 /// lengths: 650 /// 651 /// 1. The maximum height+depth over all instructions in the trace center block. 652 /// 653 /// 2. The longest cross-block dependency chain. For small blocks, it is 654 /// possible that the critical path through the trace doesn't include any 655 /// instructions in the block. 656 /// 657 /// This function computes the second number from the live-in list of the 658 /// center block. 659 unsigned MachineTraceMetrics::Ensemble:: 660 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 661 assert(TBI.HasValidInstrDepths && "Missing depth info"); 662 assert(TBI.HasValidInstrHeights && "Missing height info"); 663 unsigned MaxLen = 0; 664 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 665 const LiveInReg &LIR = TBI.LiveIns[i]; 666 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 667 continue; 668 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 669 // Ignore dependencies outside the current trace. 670 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 671 if (!DefTBI.hasValidDepth() || DefTBI.Head != TBI.Head) 672 continue; 673 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 674 MaxLen = std::max(MaxLen, Len); 675 } 676 return MaxLen; 677 } 678 679 /// Compute instruction depths for all instructions above or in MBB in its 680 /// trace. This assumes that the trace through MBB has already been computed. 681 void MachineTraceMetrics::Ensemble:: 682 computeInstrDepths(const MachineBasicBlock *MBB) { 683 // The top of the trace may already be computed, and HasValidInstrDepths 684 // implies Head->HasValidInstrDepths, so we only need to start from the first 685 // block in the trace that needs to be recomputed. 686 SmallVector<const MachineBasicBlock*, 8> Stack; 687 do { 688 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 689 assert(TBI.hasValidDepth() && "Incomplete trace"); 690 if (TBI.HasValidInstrDepths) 691 break; 692 Stack.push_back(MBB); 693 MBB = TBI.Pred; 694 } while (MBB); 695 696 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 697 // in the trace. We should track any live-out physregs that were defined in 698 // the trace. This is quite rare in SSA form, typically created by CSE 699 // hoisting a compare. 700 SparseSet<LiveRegUnit> RegUnits; 701 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 702 703 // Go through trace blocks in top-down order, stopping after the center block. 704 SmallVector<DataDep, 8> Deps; 705 while (!Stack.empty()) { 706 MBB = Stack.pop_back_val(); 707 DEBUG(dbgs() << "Depths for BB#" << MBB->getNumber() << ":\n"); 708 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 709 TBI.HasValidInstrDepths = true; 710 TBI.CriticalPath = 0; 711 712 // Also compute the critical path length through MBB when possible. 713 if (TBI.HasValidInstrHeights) 714 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 715 716 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 717 I != E; ++I) { 718 const MachineInstr *UseMI = I; 719 720 // Collect all data dependencies. 721 Deps.clear(); 722 if (UseMI->isPHI()) 723 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 724 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 725 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); 726 727 // Filter and process dependencies, computing the earliest issue cycle. 728 unsigned Cycle = 0; 729 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 730 const DataDep &Dep = Deps[i]; 731 const TraceBlockInfo&DepTBI = 732 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 733 // Ignore dependencies from outside the current trace. 734 if (!DepTBI.hasValidDepth() || DepTBI.Head != TBI.Head) 735 continue; 736 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 737 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 738 // Add latency if DefMI is a real instruction. Transients get latency 0. 739 if (!Dep.DefMI->isTransient()) 740 DepCycle += MTM.TII->computeOperandLatency(MTM.ItinData, 741 Dep.DefMI, Dep.DefOp, 742 UseMI, Dep.UseOp, 743 /* FindMin = */ false); 744 Cycle = std::max(Cycle, DepCycle); 745 } 746 // Remember the instruction depth. 747 InstrCycles &MICycles = Cycles[UseMI]; 748 MICycles.Depth = Cycle; 749 750 if (!TBI.HasValidInstrHeights) { 751 DEBUG(dbgs() << Cycle << '\t' << *UseMI); 752 continue; 753 } 754 // Update critical path length. 755 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 756 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); 757 } 758 } 759 } 760 761 // Identify physreg dependencies for MI when scanning instructions upwards. 762 // Return the issue height of MI after considering any live regunits. 763 // Height is the issue height computed from virtual register dependencies alone. 764 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 765 SparseSet<LiveRegUnit> &RegUnits, 766 const InstrItineraryData *ItinData, 767 const TargetInstrInfo *TII, 768 const TargetRegisterInfo *TRI) { 769 SmallVector<unsigned, 8> ReadOps; 770 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 771 if (!MO->isReg()) 772 continue; 773 unsigned Reg = MO->getReg(); 774 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 775 continue; 776 if (MO->readsReg()) 777 ReadOps.push_back(MO.getOperandNo()); 778 if (!MO->isDef()) 779 continue; 780 // This is a def of Reg. Remove corresponding entries from RegUnits, and 781 // update MI Height to consider the physreg dependencies. 782 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 783 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 784 if (I == RegUnits.end()) 785 continue; 786 unsigned DepHeight = I->Cycle; 787 if (!MI->isTransient()) { 788 // We may not know the UseMI of this dependency, if it came from the 789 // live-in list. 790 if (I->MI) 791 DepHeight += TII->computeOperandLatency(ItinData, 792 MI, MO.getOperandNo(), 793 I->MI, I->Op); 794 else 795 // No UseMI. Just use the MI latency instead. 796 DepHeight += TII->getInstrLatency(ItinData, MI); 797 } 798 Height = std::max(Height, DepHeight); 799 // This regunit is dead above MI. 800 RegUnits.erase(I); 801 } 802 } 803 804 // Now we know the height of MI. Update any regunits read. 805 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 806 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 807 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 808 LiveRegUnit &LRU = RegUnits[*Units]; 809 // Set the height to the highest reader of the unit. 810 if (LRU.Cycle <= Height && LRU.MI != MI) { 811 LRU.Cycle = Height; 812 LRU.MI = MI; 813 LRU.Op = ReadOps[i]; 814 } 815 } 816 } 817 818 return Height; 819 } 820 821 822 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 823 824 // Push the height of DefMI upwards if required to match UseMI. 825 // Return true if this is the first time DefMI was seen. 826 static bool pushDepHeight(const DataDep &Dep, 827 const MachineInstr *UseMI, unsigned UseHeight, 828 MIHeightMap &Heights, 829 const InstrItineraryData *ItinData, 830 const TargetInstrInfo *TII) { 831 // Adjust height by Dep.DefMI latency. 832 if (!Dep.DefMI->isTransient()) 833 UseHeight += TII->computeOperandLatency(ItinData, Dep.DefMI, Dep.DefOp, 834 UseMI, Dep.UseOp); 835 836 // Update Heights[DefMI] to be the maximum height seen. 837 MIHeightMap::iterator I; 838 bool New; 839 tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 840 if (New) 841 return true; 842 843 // DefMI has been pushed before. Give it the max height. 844 if (I->second < UseHeight) 845 I->second = UseHeight; 846 return false; 847 } 848 849 /// Assuming that DefMI was used by Trace.back(), add it to the live-in lists 850 /// of all the blocks in Trace. Stop when reaching the block that contains 851 /// DefMI. 852 void MachineTraceMetrics::Ensemble:: 853 addLiveIns(const MachineInstr *DefMI, 854 ArrayRef<const MachineBasicBlock*> Trace) { 855 assert(!Trace.empty() && "Trace should contain at least one block"); 856 unsigned Reg = DefMI->getOperand(0).getReg(); 857 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 858 const MachineBasicBlock *DefMBB = DefMI->getParent(); 859 860 // Reg is live-in to all blocks in Trace that follow DefMBB. 861 for (unsigned i = Trace.size(); i; --i) { 862 const MachineBasicBlock *MBB = Trace[i-1]; 863 if (MBB == DefMBB) 864 return; 865 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 866 // Just add the register. The height will be updated later. 867 TBI.LiveIns.push_back(Reg); 868 } 869 } 870 871 /// Compute instruction heights in the trace through MBB. This updates MBB and 872 /// the blocks below it in the trace. It is assumed that the trace has already 873 /// been computed. 874 void MachineTraceMetrics::Ensemble:: 875 computeInstrHeights(const MachineBasicBlock *MBB) { 876 // The bottom of the trace may already be computed. 877 // Find the blocks that need updating. 878 SmallVector<const MachineBasicBlock*, 8> Stack; 879 do { 880 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 881 assert(TBI.hasValidHeight() && "Incomplete trace"); 882 if (TBI.HasValidInstrHeights) 883 break; 884 Stack.push_back(MBB); 885 TBI.LiveIns.clear(); 886 MBB = TBI.Succ; 887 } while (MBB); 888 889 // As we move upwards in the trace, keep track of instructions that are 890 // required by deeper trace instructions. Map MI -> height required so far. 891 MIHeightMap Heights; 892 893 // For physregs, the def isn't known when we see the use. 894 // Instead, keep track of the highest use of each regunit. 895 SparseSet<LiveRegUnit> RegUnits; 896 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 897 898 // If the bottom of the trace was already precomputed, initialize heights 899 // from its live-in list. 900 // MBB is the highest precomputed block in the trace. 901 if (MBB) { 902 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 903 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 904 LiveInReg LI = TBI.LiveIns[i]; 905 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 906 // For virtual registers, the def latency is included. 907 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 908 if (Height < LI.Height) 909 Height = LI.Height; 910 } else { 911 // For register units, the def latency is not included because we don't 912 // know the def yet. 913 RegUnits[LI.Reg].Cycle = LI.Height; 914 } 915 } 916 } 917 918 // Go through the trace blocks in bottom-up order. 919 SmallVector<DataDep, 8> Deps; 920 for (;!Stack.empty(); Stack.pop_back()) { 921 MBB = Stack.back(); 922 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 923 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 924 TBI.HasValidInstrHeights = true; 925 TBI.CriticalPath = 0; 926 927 // Get dependencies from PHIs in the trace successor. 928 if (TBI.Succ) { 929 for (MachineBasicBlock::const_iterator 930 I = TBI.Succ->begin(), E = TBI.Succ->end(); 931 I != E && !I->isPHI(); ++I) { 932 const MachineInstr *PHI = I; 933 Deps.clear(); 934 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 935 if (!Deps.empty()) 936 if (pushDepHeight(Deps.front(), PHI, Cycles.lookup(PHI).Height, 937 Heights, MTM.ItinData, MTM.TII)) 938 addLiveIns(Deps.front().DefMI, Stack); 939 } 940 } 941 942 // Go through the block backwards. 943 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 944 BI != BB;) { 945 const MachineInstr *MI = --BI; 946 947 // Find the MI height as determined by virtual register uses in the 948 // trace below. 949 unsigned Cycle = 0; 950 MIHeightMap::iterator HeightI = Heights.find(MI); 951 if (HeightI != Heights.end()) { 952 Cycle = HeightI->second; 953 // We won't be seeing any more MI uses. 954 Heights.erase(HeightI); 955 } 956 957 // Don't process PHI deps. They depend on the specific predecessor, and 958 // we'll get them when visiting the predecessor. 959 Deps.clear(); 960 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 961 962 // There may also be regunit dependencies to include in the height. 963 if (HasPhysRegs) 964 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 965 MTM.ItinData, MTM.TII, MTM.TRI); 966 967 // Update the required height of any virtual registers read by MI. 968 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 969 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.ItinData, MTM.TII)) 970 addLiveIns(Deps[i].DefMI, Stack); 971 972 InstrCycles &MICycles = Cycles[MI]; 973 MICycles.Height = Cycle; 974 if (!TBI.HasValidInstrDepths) { 975 DEBUG(dbgs() << Cycle << '\t' << *MI); 976 continue; 977 } 978 // Update critical path length. 979 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 980 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 981 } 982 983 // Update virtual live-in heights. They were added by addLiveIns() with a 0 984 // height because the final height isn't known until now. 985 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 986 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 987 LiveInReg &LIR = TBI.LiveIns[i]; 988 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 989 LIR.Height = Heights.lookup(DefMI); 990 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 991 } 992 993 // Transfer the live regunits to the live-in list. 994 for (SparseSet<LiveRegUnit>::const_iterator 995 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 996 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 997 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 998 << '@' << RI->Cycle); 999 } 1000 DEBUG(dbgs() << '\n'); 1001 1002 if (!TBI.HasValidInstrDepths) 1003 continue; 1004 // Add live-ins to the critical path length. 1005 TBI.CriticalPath = std::max(TBI.CriticalPath, 1006 computeCrossBlockCriticalPath(TBI)); 1007 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1008 } 1009 } 1010 1011 MachineTraceMetrics::Trace 1012 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1013 // FIXME: Check cache tags, recompute as needed. 1014 computeTrace(MBB); 1015 computeInstrDepths(MBB); 1016 computeInstrHeights(MBB); 1017 return Trace(*this, BlockInfo[MBB->getNumber()]); 1018 } 1019 1020 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1021 OS << getName() << " ensemble:\n"; 1022 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1023 OS << " BB#" << i << '\t'; 1024 BlockInfo[i].print(OS); 1025 OS << '\n'; 1026 } 1027 } 1028 1029 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1030 if (hasValidDepth()) { 1031 OS << "depth=" << InstrDepth; 1032 if (Pred) 1033 OS << " pred=BB#" << Pred->getNumber(); 1034 else 1035 OS << " pred=null"; 1036 OS << " head=BB#" << Head; 1037 if (HasValidInstrDepths) 1038 OS << " +instrs"; 1039 } else 1040 OS << "depth invalid"; 1041 OS << ", "; 1042 if (hasValidHeight()) { 1043 OS << "height=" << InstrHeight; 1044 if (Succ) 1045 OS << " succ=BB#" << Succ->getNumber(); 1046 else 1047 OS << " succ=null"; 1048 OS << " tail=BB#" << Tail; 1049 if (HasValidInstrHeights) 1050 OS << " +instrs"; 1051 } else 1052 OS << "height invalid"; 1053 if (HasValidInstrDepths && HasValidInstrHeights) 1054 OS << ", crit=" << CriticalPath; 1055 } 1056 1057 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1058 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1059 1060 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1061 << " --> BB#" << TBI.Tail << ':'; 1062 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1063 OS << ' ' << getInstrCount() << " instrs."; 1064 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1065 OS << ' ' << TBI.CriticalPath << " cycles."; 1066 1067 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1068 OS << "\nBB#" << MBBNum; 1069 while (Block->hasValidDepth() && Block->Pred) { 1070 unsigned Num = Block->Pred->getNumber(); 1071 OS << " <- BB#" << Num; 1072 Block = &TE.BlockInfo[Num]; 1073 } 1074 1075 Block = &TBI; 1076 OS << "\n "; 1077 while (Block->hasValidHeight() && Block->Succ) { 1078 unsigned Num = Block->Succ->getNumber(); 1079 OS << " -> BB#" << Num; 1080 Block = &TE.BlockInfo[Num]; 1081 } 1082 OS << '\n'; 1083 } 1084