1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "machine-trace-metrics" 11 #include "llvm/CodeGen/MachineTraceMetrics.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SparseSet.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 16 #include "llvm/CodeGen/MachineLoopInfo.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/MC/MCSubtargetInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetInstrInfo.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 char MachineTraceMetrics::ID = 0; 30 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 31 32 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 33 "machine-trace-metrics", "Machine Trace Metrics", false, true) 34 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 35 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 36 INITIALIZE_PASS_END(MachineTraceMetrics, 37 "machine-trace-metrics", "Machine Trace Metrics", false, true) 38 39 MachineTraceMetrics::MachineTraceMetrics() 40 : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) { 41 std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0); 42 } 43 44 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 45 AU.setPreservesAll(); 46 AU.addRequired<MachineBranchProbabilityInfo>(); 47 AU.addRequired<MachineLoopInfo>(); 48 MachineFunctionPass::getAnalysisUsage(AU); 49 } 50 51 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 52 MF = &Func; 53 TII = MF->getTarget().getInstrInfo(); 54 TRI = MF->getTarget().getRegisterInfo(); 55 MRI = &MF->getRegInfo(); 56 Loops = &getAnalysis<MachineLoopInfo>(); 57 const TargetSubtargetInfo &ST = 58 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 59 SchedModel.init(*ST.getSchedModel(), &ST, TII); 60 BlockInfo.resize(MF->getNumBlockIDs()); 61 ProcResourceCycles.resize(MF->getNumBlockIDs() * 62 SchedModel.getNumProcResourceKinds()); 63 return false; 64 } 65 66 void MachineTraceMetrics::releaseMemory() { 67 MF = 0; 68 BlockInfo.clear(); 69 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 70 delete Ensembles[i]; 71 Ensembles[i] = 0; 72 } 73 } 74 75 //===----------------------------------------------------------------------===// 76 // Fixed block information 77 //===----------------------------------------------------------------------===// 78 // 79 // The number of instructions in a basic block and the CPU resources used by 80 // those instructions don't depend on any given trace strategy. 81 82 /// Compute the resource usage in basic block MBB. 83 const MachineTraceMetrics::FixedBlockInfo* 84 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 85 assert(MBB && "No basic block"); 86 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 87 if (FBI->hasResources()) 88 return FBI; 89 90 // Compute resource usage in the block. 91 FBI->HasCalls = false; 92 unsigned InstrCount = 0; 93 94 // Add up per-processor resource cycles as well. 95 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 96 SmallVector<unsigned, 32> PRCycles(PRKinds); 97 98 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 99 I != E; ++I) { 100 const MachineInstr *MI = I; 101 if (MI->isTransient()) 102 continue; 103 ++InstrCount; 104 if (MI->isCall()) 105 FBI->HasCalls = true; 106 107 // Count processor resources used. 108 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(MI); 109 if (!SC->isValid()) 110 continue; 111 112 for (TargetSchedModel::ProcResIter 113 PI = SchedModel.getWriteProcResBegin(SC), 114 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 115 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 116 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 117 } 118 } 119 FBI->InstrCount = InstrCount; 120 121 // Scale the resource cycles so they are comparable. 122 unsigned PROffset = MBB->getNumber() * PRKinds; 123 for (unsigned K = 0; K != PRKinds; ++K) 124 ProcResourceCycles[PROffset + K] = 125 PRCycles[K] * SchedModel.getResourceFactor(K); 126 127 return FBI; 128 } 129 130 ArrayRef<unsigned> 131 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 132 assert(BlockInfo[MBBNum].hasResources() && 133 "getResources() must be called before getProcResourceCycles()"); 134 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 135 return ArrayRef<unsigned>(&ProcResourceCycles[MBBNum * PRKinds], PRKinds); 136 } 137 138 139 //===----------------------------------------------------------------------===// 140 // Ensemble utility functions 141 //===----------------------------------------------------------------------===// 142 143 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 144 : MTM(*ct) { 145 BlockInfo.resize(MTM.BlockInfo.size()); 146 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 147 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 148 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 149 } 150 151 // Virtual destructor serves as an anchor. 152 MachineTraceMetrics::Ensemble::~Ensemble() {} 153 154 const MachineLoop* 155 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 156 return MTM.Loops->getLoopFor(MBB); 157 } 158 159 // Update resource-related information in the TraceBlockInfo for MBB. 160 // Only update resources related to the trace above MBB. 161 void MachineTraceMetrics::Ensemble:: 162 computeDepthResources(const MachineBasicBlock *MBB) { 163 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 164 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 165 unsigned PROffset = MBB->getNumber() * PRKinds; 166 167 // Compute resources from trace above. The top block is simple. 168 if (!TBI->Pred) { 169 TBI->InstrDepth = 0; 170 TBI->Head = MBB->getNumber(); 171 std::fill(ProcResourceDepths.begin() + PROffset, 172 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 173 return; 174 } 175 176 // Compute from the block above. A post-order traversal ensures the 177 // predecessor is always computed first. 178 unsigned PredNum = TBI->Pred->getNumber(); 179 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 180 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 181 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 182 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 183 TBI->Head = PredTBI->Head; 184 185 // Compute per-resource depths. 186 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 187 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 188 for (unsigned K = 0; K != PRKinds; ++K) 189 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 190 } 191 192 // Update resource-related information in the TraceBlockInfo for MBB. 193 // Only update resources related to the trace below MBB. 194 void MachineTraceMetrics::Ensemble:: 195 computeHeightResources(const MachineBasicBlock *MBB) { 196 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 197 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 198 unsigned PROffset = MBB->getNumber() * PRKinds; 199 200 // Compute resources for the current block. 201 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 202 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 203 204 // The trace tail is done. 205 if (!TBI->Succ) { 206 TBI->Tail = MBB->getNumber(); 207 std::copy(PRCycles.begin(), PRCycles.end(), 208 ProcResourceHeights.begin() + PROffset); 209 return; 210 } 211 212 // Compute from the block below. A post-order traversal ensures the 213 // predecessor is always computed first. 214 unsigned SuccNum = TBI->Succ->getNumber(); 215 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 216 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 217 TBI->InstrHeight += SuccTBI->InstrHeight; 218 TBI->Tail = SuccTBI->Tail; 219 220 // Compute per-resource heights. 221 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 222 for (unsigned K = 0; K != PRKinds; ++K) 223 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 224 } 225 226 // Check if depth resources for MBB are valid and return the TBI. 227 // Return NULL if the resources have been invalidated. 228 const MachineTraceMetrics::TraceBlockInfo* 229 MachineTraceMetrics::Ensemble:: 230 getDepthResources(const MachineBasicBlock *MBB) const { 231 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 232 return TBI->hasValidDepth() ? TBI : 0; 233 } 234 235 // Check if height resources for MBB are valid and return the TBI. 236 // Return NULL if the resources have been invalidated. 237 const MachineTraceMetrics::TraceBlockInfo* 238 MachineTraceMetrics::Ensemble:: 239 getHeightResources(const MachineBasicBlock *MBB) const { 240 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 241 return TBI->hasValidHeight() ? TBI : 0; 242 } 243 244 /// Get an array of processor resource depths for MBB. Indexed by processor 245 /// resource kind, this array contains the scaled processor resources consumed 246 /// by all blocks preceding MBB in its trace. It does not include instructions 247 /// in MBB. 248 /// 249 /// Compare TraceBlockInfo::InstrDepth. 250 ArrayRef<unsigned> 251 MachineTraceMetrics::Ensemble:: 252 getProcResourceDepths(unsigned MBBNum) const { 253 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 254 return ArrayRef<unsigned>(&ProcResourceDepths[MBBNum * PRKinds], PRKinds); 255 } 256 257 /// Get an array of processor resource heights for MBB. Indexed by processor 258 /// resource kind, this array contains the scaled processor resources consumed 259 /// by this block and all blocks following it in its trace. 260 /// 261 /// Compare TraceBlockInfo::InstrHeight. 262 ArrayRef<unsigned> 263 MachineTraceMetrics::Ensemble:: 264 getProcResourceHeights(unsigned MBBNum) const { 265 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 266 return ArrayRef<unsigned>(&ProcResourceHeights[MBBNum * PRKinds], PRKinds); 267 } 268 269 //===----------------------------------------------------------------------===// 270 // Trace Selection Strategies 271 //===----------------------------------------------------------------------===// 272 // 273 // A trace selection strategy is implemented as a sub-class of Ensemble. The 274 // trace through a block B is computed by two DFS traversals of the CFG 275 // starting from B. One upwards, and one downwards. During the upwards DFS, 276 // pickTracePred() is called on the post-ordered blocks. During the downwards 277 // DFS, pickTraceSucc() is called in a post-order. 278 // 279 280 // We never allow traces that leave loops, but we do allow traces to enter 281 // nested loops. We also never allow traces to contain back-edges. 282 // 283 // This means that a loop header can never appear above the center block of a 284 // trace, except as the trace head. Below the center block, loop exiting edges 285 // are banned. 286 // 287 // Return true if an edge from the From loop to the To loop is leaving a loop. 288 // Either of To and From can be null. 289 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 290 return From && !From->contains(To); 291 } 292 293 // MinInstrCountEnsemble - Pick the trace that executes the least number of 294 // instructions. 295 namespace { 296 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 297 const char *getName() const { return "MinInstr"; } 298 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*); 299 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*); 300 301 public: 302 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 303 : MachineTraceMetrics::Ensemble(mtm) {} 304 }; 305 } 306 307 // Select the preferred predecessor for MBB. 308 const MachineBasicBlock* 309 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 310 if (MBB->pred_empty()) 311 return 0; 312 const MachineLoop *CurLoop = getLoopFor(MBB); 313 // Don't leave loops, and never follow back-edges. 314 if (CurLoop && MBB == CurLoop->getHeader()) 315 return 0; 316 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 317 const MachineBasicBlock *Best = 0; 318 unsigned BestDepth = 0; 319 for (MachineBasicBlock::const_pred_iterator 320 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 321 const MachineBasicBlock *Pred = *I; 322 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 323 getDepthResources(Pred); 324 // Ignore cycles that aren't natural loops. 325 if (!PredTBI) 326 continue; 327 // Pick the predecessor that would give this block the smallest InstrDepth. 328 unsigned Depth = PredTBI->InstrDepth + CurCount; 329 if (!Best || Depth < BestDepth) 330 Best = Pred, BestDepth = Depth; 331 } 332 return Best; 333 } 334 335 // Select the preferred successor for MBB. 336 const MachineBasicBlock* 337 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 338 if (MBB->pred_empty()) 339 return 0; 340 const MachineLoop *CurLoop = getLoopFor(MBB); 341 const MachineBasicBlock *Best = 0; 342 unsigned BestHeight = 0; 343 for (MachineBasicBlock::const_succ_iterator 344 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 345 const MachineBasicBlock *Succ = *I; 346 // Don't consider back-edges. 347 if (CurLoop && Succ == CurLoop->getHeader()) 348 continue; 349 // Don't consider successors exiting CurLoop. 350 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 351 continue; 352 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 353 getHeightResources(Succ); 354 // Ignore cycles that aren't natural loops. 355 if (!SuccTBI) 356 continue; 357 // Pick the successor that would give this block the smallest InstrHeight. 358 unsigned Height = SuccTBI->InstrHeight; 359 if (!Best || Height < BestHeight) 360 Best = Succ, BestHeight = Height; 361 } 362 return Best; 363 } 364 365 // Get an Ensemble sub-class for the requested trace strategy. 366 MachineTraceMetrics::Ensemble * 367 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 368 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 369 Ensemble *&E = Ensembles[strategy]; 370 if (E) 371 return E; 372 373 // Allocate new Ensemble on demand. 374 switch (strategy) { 375 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 376 default: llvm_unreachable("Invalid trace strategy enum"); 377 } 378 } 379 380 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 381 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 382 BlockInfo[MBB->getNumber()].invalidate(); 383 for (unsigned i = 0; i != TS_NumStrategies; ++i) 384 if (Ensembles[i]) 385 Ensembles[i]->invalidate(MBB); 386 } 387 388 void MachineTraceMetrics::verifyAnalysis() const { 389 if (!MF) 390 return; 391 #ifndef NDEBUG 392 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 393 for (unsigned i = 0; i != TS_NumStrategies; ++i) 394 if (Ensembles[i]) 395 Ensembles[i]->verify(); 396 #endif 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Trace building 401 //===----------------------------------------------------------------------===// 402 // 403 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 404 // set abstraction that confines the search to the current loop, and doesn't 405 // revisit blocks. 406 407 namespace { 408 struct LoopBounds { 409 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 410 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 411 const MachineLoopInfo *Loops; 412 bool Downward; 413 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 414 const MachineLoopInfo *loops) 415 : Blocks(blocks), Loops(loops), Downward(false) {} 416 }; 417 } 418 419 // Specialize po_iterator_storage in order to prune the post-order traversal so 420 // it is limited to the current loop and doesn't traverse the loop back edges. 421 namespace llvm { 422 template<> 423 class po_iterator_storage<LoopBounds, true> { 424 LoopBounds &LB; 425 public: 426 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 427 void finishPostorder(const MachineBasicBlock*) {} 428 429 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 430 // Skip already visited To blocks. 431 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 432 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 433 return false; 434 // From is null once when To is the trace center block. 435 if (From) { 436 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 437 // Don't follow backedges, don't leave FromLoop when going upwards. 438 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 439 return false; 440 // Don't leave FromLoop. 441 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 442 return false; 443 } 444 } 445 // To is a new block. Mark the block as visited in case the CFG has cycles 446 // that MachineLoopInfo didn't recognize as a natural loop. 447 return LB.Visited.insert(To); 448 } 449 }; 450 } 451 452 /// Compute the trace through MBB. 453 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 454 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 455 << MBB->getNumber() << '\n'); 456 // Set up loop bounds for the backwards post-order traversal. 457 LoopBounds Bounds(BlockInfo, MTM.Loops); 458 459 // Run an upwards post-order search for the trace start. 460 Bounds.Downward = false; 461 Bounds.Visited.clear(); 462 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 463 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 464 I != E; ++I) { 465 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 466 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 467 // All the predecessors have been visited, pick the preferred one. 468 TBI.Pred = pickTracePred(*I); 469 DEBUG({ 470 if (TBI.Pred) 471 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 472 else 473 dbgs() << "null\n"; 474 }); 475 // The trace leading to I is now known, compute the depth resources. 476 computeDepthResources(*I); 477 } 478 479 // Run a downwards post-order search for the trace end. 480 Bounds.Downward = true; 481 Bounds.Visited.clear(); 482 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 483 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 484 I != E; ++I) { 485 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 486 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 487 // All the successors have been visited, pick the preferred one. 488 TBI.Succ = pickTraceSucc(*I); 489 DEBUG({ 490 if (TBI.Succ) 491 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 492 else 493 dbgs() << "null\n"; 494 }); 495 // The trace leaving I is now known, compute the height resources. 496 computeHeightResources(*I); 497 } 498 } 499 500 /// Invalidate traces through BadMBB. 501 void 502 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 503 SmallVector<const MachineBasicBlock*, 16> WorkList; 504 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 505 506 // Invalidate height resources of blocks above MBB. 507 if (BadTBI.hasValidHeight()) { 508 BadTBI.invalidateHeight(); 509 WorkList.push_back(BadMBB); 510 do { 511 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 512 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 513 << " height.\n"); 514 // Find any MBB predecessors that have MBB as their preferred successor. 515 // They are the only ones that need to be invalidated. 516 for (MachineBasicBlock::const_pred_iterator 517 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 518 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 519 if (!TBI.hasValidHeight()) 520 continue; 521 if (TBI.Succ == MBB) { 522 TBI.invalidateHeight(); 523 WorkList.push_back(*I); 524 continue; 525 } 526 // Verify that TBI.Succ is actually a *I successor. 527 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 528 } 529 } while (!WorkList.empty()); 530 } 531 532 // Invalidate depth resources of blocks below MBB. 533 if (BadTBI.hasValidDepth()) { 534 BadTBI.invalidateDepth(); 535 WorkList.push_back(BadMBB); 536 do { 537 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 538 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 539 << " depth.\n"); 540 // Find any MBB successors that have MBB as their preferred predecessor. 541 // They are the only ones that need to be invalidated. 542 for (MachineBasicBlock::const_succ_iterator 543 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 544 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 545 if (!TBI.hasValidDepth()) 546 continue; 547 if (TBI.Pred == MBB) { 548 TBI.invalidateDepth(); 549 WorkList.push_back(*I); 550 continue; 551 } 552 // Verify that TBI.Pred is actually a *I predecessor. 553 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 554 } 555 } while (!WorkList.empty()); 556 } 557 558 // Clear any per-instruction data. We only have to do this for BadMBB itself 559 // because the instructions in that block may change. Other blocks may be 560 // invalidated, but their instructions will stay the same, so there is no 561 // need to erase the Cycle entries. They will be overwritten when we 562 // recompute. 563 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); 564 I != E; ++I) 565 Cycles.erase(I); 566 } 567 568 void MachineTraceMetrics::Ensemble::verify() const { 569 #ifndef NDEBUG 570 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 571 "Outdated BlockInfo size"); 572 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 573 const TraceBlockInfo &TBI = BlockInfo[Num]; 574 if (TBI.hasValidDepth() && TBI.Pred) { 575 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 576 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 577 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 578 "Trace is broken, depth should have been invalidated."); 579 const MachineLoop *Loop = getLoopFor(MBB); 580 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 581 } 582 if (TBI.hasValidHeight() && TBI.Succ) { 583 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 584 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 585 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 586 "Trace is broken, height should have been invalidated."); 587 const MachineLoop *Loop = getLoopFor(MBB); 588 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 589 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 590 "Trace contains backedge"); 591 } 592 } 593 #endif 594 } 595 596 //===----------------------------------------------------------------------===// 597 // Data Dependencies 598 //===----------------------------------------------------------------------===// 599 // 600 // Compute the depth and height of each instruction based on data dependencies 601 // and instruction latencies. These cycle numbers assume that the CPU can issue 602 // an infinite number of instructions per cycle as long as their dependencies 603 // are ready. 604 605 // A data dependency is represented as a defining MI and operand numbers on the 606 // defining and using MI. 607 namespace { 608 struct DataDep { 609 const MachineInstr *DefMI; 610 unsigned DefOp; 611 unsigned UseOp; 612 613 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 614 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 615 616 /// Create a DataDep from an SSA form virtual register. 617 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 618 : UseOp(UseOp) { 619 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 620 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 621 assert(!DefI.atEnd() && "Register has no defs"); 622 DefMI = &*DefI; 623 DefOp = DefI.getOperandNo(); 624 assert((++DefI).atEnd() && "Register has multiple defs"); 625 } 626 }; 627 } 628 629 // Get the input data dependencies that must be ready before UseMI can issue. 630 // Return true if UseMI has any physreg operands. 631 static bool getDataDeps(const MachineInstr *UseMI, 632 SmallVectorImpl<DataDep> &Deps, 633 const MachineRegisterInfo *MRI) { 634 bool HasPhysRegs = false; 635 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 636 if (!MO->isReg()) 637 continue; 638 unsigned Reg = MO->getReg(); 639 if (!Reg) 640 continue; 641 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 642 HasPhysRegs = true; 643 continue; 644 } 645 // Collect virtual register reads. 646 if (MO->readsReg()) 647 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 648 } 649 return HasPhysRegs; 650 } 651 652 // Get the input data dependencies of a PHI instruction, using Pred as the 653 // preferred predecessor. 654 // This will add at most one dependency to Deps. 655 static void getPHIDeps(const MachineInstr *UseMI, 656 SmallVectorImpl<DataDep> &Deps, 657 const MachineBasicBlock *Pred, 658 const MachineRegisterInfo *MRI) { 659 // No predecessor at the beginning of a trace. Ignore dependencies. 660 if (!Pred) 661 return; 662 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 663 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 664 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 665 unsigned Reg = UseMI->getOperand(i).getReg(); 666 Deps.push_back(DataDep(MRI, Reg, i)); 667 return; 668 } 669 } 670 } 671 672 // Keep track of physreg data dependencies by recording each live register unit. 673 // Associate each regunit with an instruction operand. Depending on the 674 // direction instructions are scanned, it could be the operand that defined the 675 // regunit, or the highest operand to read the regunit. 676 namespace { 677 struct LiveRegUnit { 678 unsigned RegUnit; 679 unsigned Cycle; 680 const MachineInstr *MI; 681 unsigned Op; 682 683 unsigned getSparseSetIndex() const { return RegUnit; } 684 685 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {} 686 }; 687 } 688 689 // Identify physreg dependencies for UseMI, and update the live regunit 690 // tracking set when scanning instructions downwards. 691 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 692 SmallVectorImpl<DataDep> &Deps, 693 SparseSet<LiveRegUnit> &RegUnits, 694 const TargetRegisterInfo *TRI) { 695 SmallVector<unsigned, 8> Kills; 696 SmallVector<unsigned, 8> LiveDefOps; 697 698 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 699 if (!MO->isReg()) 700 continue; 701 unsigned Reg = MO->getReg(); 702 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 703 continue; 704 // Track live defs and kills for updating RegUnits. 705 if (MO->isDef()) { 706 if (MO->isDead()) 707 Kills.push_back(Reg); 708 else 709 LiveDefOps.push_back(MO.getOperandNo()); 710 } else if (MO->isKill()) 711 Kills.push_back(Reg); 712 // Identify dependencies. 713 if (!MO->readsReg()) 714 continue; 715 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 716 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 717 if (I == RegUnits.end()) 718 continue; 719 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 720 break; 721 } 722 } 723 724 // Update RegUnits to reflect live registers after UseMI. 725 // First kills. 726 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 727 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 728 RegUnits.erase(*Units); 729 730 // Second, live defs. 731 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 732 unsigned DefOp = LiveDefOps[i]; 733 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 734 Units.isValid(); ++Units) { 735 LiveRegUnit &LRU = RegUnits[*Units]; 736 LRU.MI = UseMI; 737 LRU.Op = DefOp; 738 } 739 } 740 } 741 742 /// The length of the critical path through a trace is the maximum of two path 743 /// lengths: 744 /// 745 /// 1. The maximum height+depth over all instructions in the trace center block. 746 /// 747 /// 2. The longest cross-block dependency chain. For small blocks, it is 748 /// possible that the critical path through the trace doesn't include any 749 /// instructions in the block. 750 /// 751 /// This function computes the second number from the live-in list of the 752 /// center block. 753 unsigned MachineTraceMetrics::Ensemble:: 754 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 755 assert(TBI.HasValidInstrDepths && "Missing depth info"); 756 assert(TBI.HasValidInstrHeights && "Missing height info"); 757 unsigned MaxLen = 0; 758 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 759 const LiveInReg &LIR = TBI.LiveIns[i]; 760 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 761 continue; 762 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 763 // Ignore dependencies outside the current trace. 764 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 765 if (!DefTBI.isUsefulDominator(TBI)) 766 continue; 767 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 768 MaxLen = std::max(MaxLen, Len); 769 } 770 return MaxLen; 771 } 772 773 /// Compute instruction depths for all instructions above or in MBB in its 774 /// trace. This assumes that the trace through MBB has already been computed. 775 void MachineTraceMetrics::Ensemble:: 776 computeInstrDepths(const MachineBasicBlock *MBB) { 777 // The top of the trace may already be computed, and HasValidInstrDepths 778 // implies Head->HasValidInstrDepths, so we only need to start from the first 779 // block in the trace that needs to be recomputed. 780 SmallVector<const MachineBasicBlock*, 8> Stack; 781 do { 782 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 783 assert(TBI.hasValidDepth() && "Incomplete trace"); 784 if (TBI.HasValidInstrDepths) 785 break; 786 Stack.push_back(MBB); 787 MBB = TBI.Pred; 788 } while (MBB); 789 790 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 791 // in the trace. We should track any live-out physregs that were defined in 792 // the trace. This is quite rare in SSA form, typically created by CSE 793 // hoisting a compare. 794 SparseSet<LiveRegUnit> RegUnits; 795 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 796 797 // Go through trace blocks in top-down order, stopping after the center block. 798 SmallVector<DataDep, 8> Deps; 799 while (!Stack.empty()) { 800 MBB = Stack.pop_back_val(); 801 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 802 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 803 TBI.HasValidInstrDepths = true; 804 TBI.CriticalPath = 0; 805 806 // Print out resource depths here as well. 807 DEBUG({ 808 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 809 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 810 for (unsigned K = 0; K != PRDepths.size(); ++K) 811 if (PRDepths[K]) { 812 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 813 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 814 << MTM.SchedModel.getProcResource(K)->Name << " (" 815 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 816 } 817 }); 818 819 // Also compute the critical path length through MBB when possible. 820 if (TBI.HasValidInstrHeights) 821 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 822 823 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 824 I != E; ++I) { 825 const MachineInstr *UseMI = I; 826 827 // Collect all data dependencies. 828 Deps.clear(); 829 if (UseMI->isPHI()) 830 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 831 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 832 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); 833 834 // Filter and process dependencies, computing the earliest issue cycle. 835 unsigned Cycle = 0; 836 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 837 const DataDep &Dep = Deps[i]; 838 const TraceBlockInfo&DepTBI = 839 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 840 // Ignore dependencies from outside the current trace. 841 if (!DepTBI.isUsefulDominator(TBI)) 842 continue; 843 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 844 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 845 // Add latency if DefMI is a real instruction. Transients get latency 0. 846 if (!Dep.DefMI->isTransient()) 847 DepCycle += MTM.SchedModel 848 .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp, 849 /* FindMin = */ false); 850 Cycle = std::max(Cycle, DepCycle); 851 } 852 // Remember the instruction depth. 853 InstrCycles &MICycles = Cycles[UseMI]; 854 MICycles.Depth = Cycle; 855 856 if (!TBI.HasValidInstrHeights) { 857 DEBUG(dbgs() << Cycle << '\t' << *UseMI); 858 continue; 859 } 860 // Update critical path length. 861 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 862 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); 863 } 864 } 865 } 866 867 // Identify physreg dependencies for MI when scanning instructions upwards. 868 // Return the issue height of MI after considering any live regunits. 869 // Height is the issue height computed from virtual register dependencies alone. 870 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 871 SparseSet<LiveRegUnit> &RegUnits, 872 const TargetSchedModel &SchedModel, 873 const TargetInstrInfo *TII, 874 const TargetRegisterInfo *TRI) { 875 SmallVector<unsigned, 8> ReadOps; 876 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 877 if (!MO->isReg()) 878 continue; 879 unsigned Reg = MO->getReg(); 880 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 881 continue; 882 if (MO->readsReg()) 883 ReadOps.push_back(MO.getOperandNo()); 884 if (!MO->isDef()) 885 continue; 886 // This is a def of Reg. Remove corresponding entries from RegUnits, and 887 // update MI Height to consider the physreg dependencies. 888 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 889 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 890 if (I == RegUnits.end()) 891 continue; 892 unsigned DepHeight = I->Cycle; 893 if (!MI->isTransient()) { 894 // We may not know the UseMI of this dependency, if it came from the 895 // live-in list. SchedModel can handle a NULL UseMI. 896 DepHeight += SchedModel 897 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op, 898 /* FindMin = */ false); 899 } 900 Height = std::max(Height, DepHeight); 901 // This regunit is dead above MI. 902 RegUnits.erase(I); 903 } 904 } 905 906 // Now we know the height of MI. Update any regunits read. 907 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 908 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 909 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 910 LiveRegUnit &LRU = RegUnits[*Units]; 911 // Set the height to the highest reader of the unit. 912 if (LRU.Cycle <= Height && LRU.MI != MI) { 913 LRU.Cycle = Height; 914 LRU.MI = MI; 915 LRU.Op = ReadOps[i]; 916 } 917 } 918 } 919 920 return Height; 921 } 922 923 924 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 925 926 // Push the height of DefMI upwards if required to match UseMI. 927 // Return true if this is the first time DefMI was seen. 928 static bool pushDepHeight(const DataDep &Dep, 929 const MachineInstr *UseMI, unsigned UseHeight, 930 MIHeightMap &Heights, 931 const TargetSchedModel &SchedModel, 932 const TargetInstrInfo *TII) { 933 // Adjust height by Dep.DefMI latency. 934 if (!Dep.DefMI->isTransient()) 935 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 936 UseMI, Dep.UseOp, false); 937 938 // Update Heights[DefMI] to be the maximum height seen. 939 MIHeightMap::iterator I; 940 bool New; 941 tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 942 if (New) 943 return true; 944 945 // DefMI has been pushed before. Give it the max height. 946 if (I->second < UseHeight) 947 I->second = UseHeight; 948 return false; 949 } 950 951 /// Assuming that the virtual register defined by DefMI:DefOp was used by 952 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 953 /// when reaching the block that contains DefMI. 954 void MachineTraceMetrics::Ensemble:: 955 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 956 ArrayRef<const MachineBasicBlock*> Trace) { 957 assert(!Trace.empty() && "Trace should contain at least one block"); 958 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 959 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 960 const MachineBasicBlock *DefMBB = DefMI->getParent(); 961 962 // Reg is live-in to all blocks in Trace that follow DefMBB. 963 for (unsigned i = Trace.size(); i; --i) { 964 const MachineBasicBlock *MBB = Trace[i-1]; 965 if (MBB == DefMBB) 966 return; 967 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 968 // Just add the register. The height will be updated later. 969 TBI.LiveIns.push_back(Reg); 970 } 971 } 972 973 /// Compute instruction heights in the trace through MBB. This updates MBB and 974 /// the blocks below it in the trace. It is assumed that the trace has already 975 /// been computed. 976 void MachineTraceMetrics::Ensemble:: 977 computeInstrHeights(const MachineBasicBlock *MBB) { 978 // The bottom of the trace may already be computed. 979 // Find the blocks that need updating. 980 SmallVector<const MachineBasicBlock*, 8> Stack; 981 do { 982 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 983 assert(TBI.hasValidHeight() && "Incomplete trace"); 984 if (TBI.HasValidInstrHeights) 985 break; 986 Stack.push_back(MBB); 987 TBI.LiveIns.clear(); 988 MBB = TBI.Succ; 989 } while (MBB); 990 991 // As we move upwards in the trace, keep track of instructions that are 992 // required by deeper trace instructions. Map MI -> height required so far. 993 MIHeightMap Heights; 994 995 // For physregs, the def isn't known when we see the use. 996 // Instead, keep track of the highest use of each regunit. 997 SparseSet<LiveRegUnit> RegUnits; 998 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 999 1000 // If the bottom of the trace was already precomputed, initialize heights 1001 // from its live-in list. 1002 // MBB is the highest precomputed block in the trace. 1003 if (MBB) { 1004 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1005 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1006 LiveInReg LI = TBI.LiveIns[i]; 1007 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1008 // For virtual registers, the def latency is included. 1009 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1010 if (Height < LI.Height) 1011 Height = LI.Height; 1012 } else { 1013 // For register units, the def latency is not included because we don't 1014 // know the def yet. 1015 RegUnits[LI.Reg].Cycle = LI.Height; 1016 } 1017 } 1018 } 1019 1020 // Go through the trace blocks in bottom-up order. 1021 SmallVector<DataDep, 8> Deps; 1022 for (;!Stack.empty(); Stack.pop_back()) { 1023 MBB = Stack.back(); 1024 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1025 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1026 TBI.HasValidInstrHeights = true; 1027 TBI.CriticalPath = 0; 1028 1029 DEBUG({ 1030 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1031 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1032 for (unsigned K = 0; K != PRHeights.size(); ++K) 1033 if (PRHeights[K]) { 1034 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1035 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1036 << MTM.SchedModel.getProcResource(K)->Name << " (" 1037 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1038 } 1039 }); 1040 1041 // Get dependencies from PHIs in the trace successor. 1042 const MachineBasicBlock *Succ = TBI.Succ; 1043 // If MBB is the last block in the trace, and it has a back-edge to the 1044 // loop header, get loop-carried dependencies from PHIs in the header. For 1045 // that purpose, pretend that all the loop header PHIs have height 0. 1046 if (!Succ) 1047 if (const MachineLoop *Loop = getLoopFor(MBB)) 1048 if (MBB->isSuccessor(Loop->getHeader())) 1049 Succ = Loop->getHeader(); 1050 1051 if (Succ) { 1052 for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end(); 1053 I != E && I->isPHI(); ++I) { 1054 const MachineInstr *PHI = I; 1055 Deps.clear(); 1056 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1057 if (!Deps.empty()) { 1058 // Loop header PHI heights are all 0. 1059 unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0; 1060 DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI); 1061 if (pushDepHeight(Deps.front(), PHI, Height, 1062 Heights, MTM.SchedModel, MTM.TII)) 1063 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1064 } 1065 } 1066 } 1067 1068 // Go through the block backwards. 1069 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1070 BI != BB;) { 1071 const MachineInstr *MI = --BI; 1072 1073 // Find the MI height as determined by virtual register uses in the 1074 // trace below. 1075 unsigned Cycle = 0; 1076 MIHeightMap::iterator HeightI = Heights.find(MI); 1077 if (HeightI != Heights.end()) { 1078 Cycle = HeightI->second; 1079 // We won't be seeing any more MI uses. 1080 Heights.erase(HeightI); 1081 } 1082 1083 // Don't process PHI deps. They depend on the specific predecessor, and 1084 // we'll get them when visiting the predecessor. 1085 Deps.clear(); 1086 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1087 1088 // There may also be regunit dependencies to include in the height. 1089 if (HasPhysRegs) 1090 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1091 MTM.SchedModel, MTM.TII, MTM.TRI); 1092 1093 // Update the required height of any virtual registers read by MI. 1094 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1095 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1096 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1097 1098 InstrCycles &MICycles = Cycles[MI]; 1099 MICycles.Height = Cycle; 1100 if (!TBI.HasValidInstrDepths) { 1101 DEBUG(dbgs() << Cycle << '\t' << *MI); 1102 continue; 1103 } 1104 // Update critical path length. 1105 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1106 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1107 } 1108 1109 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1110 // height because the final height isn't known until now. 1111 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1112 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1113 LiveInReg &LIR = TBI.LiveIns[i]; 1114 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1115 LIR.Height = Heights.lookup(DefMI); 1116 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1117 } 1118 1119 // Transfer the live regunits to the live-in list. 1120 for (SparseSet<LiveRegUnit>::const_iterator 1121 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1122 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1123 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1124 << '@' << RI->Cycle); 1125 } 1126 DEBUG(dbgs() << '\n'); 1127 1128 if (!TBI.HasValidInstrDepths) 1129 continue; 1130 // Add live-ins to the critical path length. 1131 TBI.CriticalPath = std::max(TBI.CriticalPath, 1132 computeCrossBlockCriticalPath(TBI)); 1133 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1134 } 1135 } 1136 1137 MachineTraceMetrics::Trace 1138 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1139 // FIXME: Check cache tags, recompute as needed. 1140 computeTrace(MBB); 1141 computeInstrDepths(MBB); 1142 computeInstrHeights(MBB); 1143 return Trace(*this, BlockInfo[MBB->getNumber()]); 1144 } 1145 1146 unsigned 1147 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1148 assert(MI && "Not an instruction."); 1149 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1150 "MI must be in the trace center block"); 1151 InstrCycles Cyc = getInstrCycles(MI); 1152 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1153 } 1154 1155 unsigned 1156 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1157 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1158 SmallVector<DataDep, 1> Deps; 1159 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1160 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1161 DataDep &Dep = Deps.front(); 1162 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1163 // Add latency if DefMI is a real instruction. Transients get latency 0. 1164 if (!Dep.DefMI->isTransient()) 1165 DepCycle += TE.MTM.SchedModel 1166 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp, false); 1167 return DepCycle; 1168 } 1169 1170 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1171 // Find the limiting processor resource. 1172 // Numbers have been pre-scaled to be comparable. 1173 unsigned PRMax = 0; 1174 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1175 if (Bottom) { 1176 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1177 for (unsigned K = 0; K != PRDepths.size(); ++K) 1178 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1179 } else { 1180 for (unsigned K = 0; K != PRDepths.size(); ++K) 1181 PRMax = std::max(PRMax, PRDepths[K]); 1182 } 1183 // Convert to cycle count. 1184 PRMax = TE.MTM.getCycles(PRMax); 1185 1186 unsigned Instrs = TBI.InstrDepth; 1187 if (Bottom) 1188 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1189 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1190 Instrs /= IW; 1191 // Assume issue width 1 without a schedule model. 1192 return std::max(Instrs, PRMax); 1193 } 1194 1195 unsigned MachineTraceMetrics::Trace:: 1196 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks) const { 1197 // Add up resources above and below the center block. 1198 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1199 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1200 unsigned PRMax = 0; 1201 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1202 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1203 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1204 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1205 PRMax = std::max(PRMax, PRCycles); 1206 } 1207 // Convert to cycle count. 1208 PRMax = TE.MTM.getCycles(PRMax); 1209 1210 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1211 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1212 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1213 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1214 Instrs /= IW; 1215 // Assume issue width 1 without a schedule model. 1216 return std::max(Instrs, PRMax); 1217 } 1218 1219 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1220 OS << getName() << " ensemble:\n"; 1221 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1222 OS << " BB#" << i << '\t'; 1223 BlockInfo[i].print(OS); 1224 OS << '\n'; 1225 } 1226 } 1227 1228 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1229 if (hasValidDepth()) { 1230 OS << "depth=" << InstrDepth; 1231 if (Pred) 1232 OS << " pred=BB#" << Pred->getNumber(); 1233 else 1234 OS << " pred=null"; 1235 OS << " head=BB#" << Head; 1236 if (HasValidInstrDepths) 1237 OS << " +instrs"; 1238 } else 1239 OS << "depth invalid"; 1240 OS << ", "; 1241 if (hasValidHeight()) { 1242 OS << "height=" << InstrHeight; 1243 if (Succ) 1244 OS << " succ=BB#" << Succ->getNumber(); 1245 else 1246 OS << " succ=null"; 1247 OS << " tail=BB#" << Tail; 1248 if (HasValidInstrHeights) 1249 OS << " +instrs"; 1250 } else 1251 OS << "height invalid"; 1252 if (HasValidInstrDepths && HasValidInstrHeights) 1253 OS << ", crit=" << CriticalPath; 1254 } 1255 1256 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1257 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1258 1259 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1260 << " --> BB#" << TBI.Tail << ':'; 1261 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1262 OS << ' ' << getInstrCount() << " instrs."; 1263 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1264 OS << ' ' << TBI.CriticalPath << " cycles."; 1265 1266 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1267 OS << "\nBB#" << MBBNum; 1268 while (Block->hasValidDepth() && Block->Pred) { 1269 unsigned Num = Block->Pred->getNumber(); 1270 OS << " <- BB#" << Num; 1271 Block = &TE.BlockInfo[Num]; 1272 } 1273 1274 Block = &TBI; 1275 OS << "\n "; 1276 while (Block->hasValidHeight() && Block->Succ) { 1277 unsigned Num = Block->Succ->getNumber(); 1278 OS << " -> BB#" << Num; 1279 Block = &TE.BlockInfo[Num]; 1280 } 1281 OS << '\n'; 1282 } 1283