1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/Optional.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/SparseSet.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSchedule.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <iterator> 37 #include <tuple> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "machine-trace-metrics" 43 44 char MachineTraceMetrics::ID = 0; 45 46 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 47 48 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 49 "Machine Trace Metrics", false, true) 50 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 51 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 52 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 53 "Machine Trace Metrics", false, true) 54 55 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 56 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 57 } 58 59 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 60 AU.setPreservesAll(); 61 AU.addRequired<MachineBranchProbabilityInfo>(); 62 AU.addRequired<MachineLoopInfo>(); 63 MachineFunctionPass::getAnalysisUsage(AU); 64 } 65 66 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 67 MF = &Func; 68 const TargetSubtargetInfo &ST = MF->getSubtarget(); 69 TII = ST.getInstrInfo(); 70 TRI = ST.getRegisterInfo(); 71 MRI = &MF->getRegInfo(); 72 Loops = &getAnalysis<MachineLoopInfo>(); 73 SchedModel.init(ST.getSchedModel(), &ST, TII); 74 BlockInfo.resize(MF->getNumBlockIDs()); 75 ProcResourceCycles.resize(MF->getNumBlockIDs() * 76 SchedModel.getNumProcResourceKinds()); 77 return false; 78 } 79 80 void MachineTraceMetrics::releaseMemory() { 81 MF = nullptr; 82 BlockInfo.clear(); 83 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 84 delete Ensembles[i]; 85 Ensembles[i] = nullptr; 86 } 87 } 88 89 //===----------------------------------------------------------------------===// 90 // Fixed block information 91 //===----------------------------------------------------------------------===// 92 // 93 // The number of instructions in a basic block and the CPU resources used by 94 // those instructions don't depend on any given trace strategy. 95 96 /// Compute the resource usage in basic block MBB. 97 const MachineTraceMetrics::FixedBlockInfo* 98 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 99 assert(MBB && "No basic block"); 100 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 101 if (FBI->hasResources()) 102 return FBI; 103 104 // Compute resource usage in the block. 105 FBI->HasCalls = false; 106 unsigned InstrCount = 0; 107 108 // Add up per-processor resource cycles as well. 109 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 110 SmallVector<unsigned, 32> PRCycles(PRKinds); 111 112 for (const auto &MI : *MBB) { 113 if (MI.isTransient()) 114 continue; 115 ++InstrCount; 116 if (MI.isCall()) 117 FBI->HasCalls = true; 118 119 // Count processor resources used. 120 if (!SchedModel.hasInstrSchedModel()) 121 continue; 122 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 123 if (!SC->isValid()) 124 continue; 125 126 for (TargetSchedModel::ProcResIter 127 PI = SchedModel.getWriteProcResBegin(SC), 128 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 129 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 130 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 131 } 132 } 133 FBI->InstrCount = InstrCount; 134 135 // Scale the resource cycles so they are comparable. 136 unsigned PROffset = MBB->getNumber() * PRKinds; 137 for (unsigned K = 0; K != PRKinds; ++K) 138 ProcResourceCycles[PROffset + K] = 139 PRCycles[K] * SchedModel.getResourceFactor(K); 140 141 return FBI; 142 } 143 144 ArrayRef<unsigned> 145 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 146 assert(BlockInfo[MBBNum].hasResources() && 147 "getResources() must be called before getProcResourceCycles()"); 148 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 149 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 150 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 151 } 152 153 //===----------------------------------------------------------------------===// 154 // Ensemble utility functions 155 //===----------------------------------------------------------------------===// 156 157 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 158 : MTM(*ct) { 159 BlockInfo.resize(MTM.BlockInfo.size()); 160 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 161 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 162 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 163 } 164 165 // Virtual destructor serves as an anchor. 166 MachineTraceMetrics::Ensemble::~Ensemble() = default; 167 168 const MachineLoop* 169 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 170 return MTM.Loops->getLoopFor(MBB); 171 } 172 173 // Update resource-related information in the TraceBlockInfo for MBB. 174 // Only update resources related to the trace above MBB. 175 void MachineTraceMetrics::Ensemble:: 176 computeDepthResources(const MachineBasicBlock *MBB) { 177 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 178 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 179 unsigned PROffset = MBB->getNumber() * PRKinds; 180 181 // Compute resources from trace above. The top block is simple. 182 if (!TBI->Pred) { 183 TBI->InstrDepth = 0; 184 TBI->Head = MBB->getNumber(); 185 std::fill(ProcResourceDepths.begin() + PROffset, 186 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 187 return; 188 } 189 190 // Compute from the block above. A post-order traversal ensures the 191 // predecessor is always computed first. 192 unsigned PredNum = TBI->Pred->getNumber(); 193 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 194 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 195 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 196 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 197 TBI->Head = PredTBI->Head; 198 199 // Compute per-resource depths. 200 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 201 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 202 for (unsigned K = 0; K != PRKinds; ++K) 203 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 204 } 205 206 // Update resource-related information in the TraceBlockInfo for MBB. 207 // Only update resources related to the trace below MBB. 208 void MachineTraceMetrics::Ensemble:: 209 computeHeightResources(const MachineBasicBlock *MBB) { 210 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 211 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 212 unsigned PROffset = MBB->getNumber() * PRKinds; 213 214 // Compute resources for the current block. 215 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 216 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 217 218 // The trace tail is done. 219 if (!TBI->Succ) { 220 TBI->Tail = MBB->getNumber(); 221 std::copy(PRCycles.begin(), PRCycles.end(), 222 ProcResourceHeights.begin() + PROffset); 223 return; 224 } 225 226 // Compute from the block below. A post-order traversal ensures the 227 // predecessor is always computed first. 228 unsigned SuccNum = TBI->Succ->getNumber(); 229 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 230 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 231 TBI->InstrHeight += SuccTBI->InstrHeight; 232 TBI->Tail = SuccTBI->Tail; 233 234 // Compute per-resource heights. 235 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 236 for (unsigned K = 0; K != PRKinds; ++K) 237 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 238 } 239 240 // Check if depth resources for MBB are valid and return the TBI. 241 // Return NULL if the resources have been invalidated. 242 const MachineTraceMetrics::TraceBlockInfo* 243 MachineTraceMetrics::Ensemble:: 244 getDepthResources(const MachineBasicBlock *MBB) const { 245 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 246 return TBI->hasValidDepth() ? TBI : nullptr; 247 } 248 249 // Check if height resources for MBB are valid and return the TBI. 250 // Return NULL if the resources have been invalidated. 251 const MachineTraceMetrics::TraceBlockInfo* 252 MachineTraceMetrics::Ensemble:: 253 getHeightResources(const MachineBasicBlock *MBB) const { 254 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 255 return TBI->hasValidHeight() ? TBI : nullptr; 256 } 257 258 /// Get an array of processor resource depths for MBB. Indexed by processor 259 /// resource kind, this array contains the scaled processor resources consumed 260 /// by all blocks preceding MBB in its trace. It does not include instructions 261 /// in MBB. 262 /// 263 /// Compare TraceBlockInfo::InstrDepth. 264 ArrayRef<unsigned> 265 MachineTraceMetrics::Ensemble:: 266 getProcResourceDepths(unsigned MBBNum) const { 267 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 268 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 269 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 270 } 271 272 /// Get an array of processor resource heights for MBB. Indexed by processor 273 /// resource kind, this array contains the scaled processor resources consumed 274 /// by this block and all blocks following it in its trace. 275 /// 276 /// Compare TraceBlockInfo::InstrHeight. 277 ArrayRef<unsigned> 278 MachineTraceMetrics::Ensemble:: 279 getProcResourceHeights(unsigned MBBNum) const { 280 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 281 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 282 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 283 } 284 285 //===----------------------------------------------------------------------===// 286 // Trace Selection Strategies 287 //===----------------------------------------------------------------------===// 288 // 289 // A trace selection strategy is implemented as a sub-class of Ensemble. The 290 // trace through a block B is computed by two DFS traversals of the CFG 291 // starting from B. One upwards, and one downwards. During the upwards DFS, 292 // pickTracePred() is called on the post-ordered blocks. During the downwards 293 // DFS, pickTraceSucc() is called in a post-order. 294 // 295 296 // We never allow traces that leave loops, but we do allow traces to enter 297 // nested loops. We also never allow traces to contain back-edges. 298 // 299 // This means that a loop header can never appear above the center block of a 300 // trace, except as the trace head. Below the center block, loop exiting edges 301 // are banned. 302 // 303 // Return true if an edge from the From loop to the To loop is leaving a loop. 304 // Either of To and From can be null. 305 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 306 return From && !From->contains(To); 307 } 308 309 // MinInstrCountEnsemble - Pick the trace that executes the least number of 310 // instructions. 311 namespace { 312 313 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 314 const char *getName() const override { return "MinInstr"; } 315 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 316 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 317 318 public: 319 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 320 : MachineTraceMetrics::Ensemble(mtm) {} 321 }; 322 323 } // end anonymous namespace 324 325 // Select the preferred predecessor for MBB. 326 const MachineBasicBlock* 327 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 328 if (MBB->pred_empty()) 329 return nullptr; 330 const MachineLoop *CurLoop = getLoopFor(MBB); 331 // Don't leave loops, and never follow back-edges. 332 if (CurLoop && MBB == CurLoop->getHeader()) 333 return nullptr; 334 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 335 const MachineBasicBlock *Best = nullptr; 336 unsigned BestDepth = 0; 337 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 338 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 339 getDepthResources(Pred); 340 // Ignore cycles that aren't natural loops. 341 if (!PredTBI) 342 continue; 343 // Pick the predecessor that would give this block the smallest InstrDepth. 344 unsigned Depth = PredTBI->InstrDepth + CurCount; 345 if (!Best || Depth < BestDepth) { 346 Best = Pred; 347 BestDepth = Depth; 348 } 349 } 350 return Best; 351 } 352 353 // Select the preferred successor for MBB. 354 const MachineBasicBlock* 355 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 356 if (MBB->pred_empty()) 357 return nullptr; 358 const MachineLoop *CurLoop = getLoopFor(MBB); 359 const MachineBasicBlock *Best = nullptr; 360 unsigned BestHeight = 0; 361 for (const MachineBasicBlock *Succ : MBB->successors()) { 362 // Don't consider back-edges. 363 if (CurLoop && Succ == CurLoop->getHeader()) 364 continue; 365 // Don't consider successors exiting CurLoop. 366 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 367 continue; 368 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 369 getHeightResources(Succ); 370 // Ignore cycles that aren't natural loops. 371 if (!SuccTBI) 372 continue; 373 // Pick the successor that would give this block the smallest InstrHeight. 374 unsigned Height = SuccTBI->InstrHeight; 375 if (!Best || Height < BestHeight) { 376 Best = Succ; 377 BestHeight = Height; 378 } 379 } 380 return Best; 381 } 382 383 // Get an Ensemble sub-class for the requested trace strategy. 384 MachineTraceMetrics::Ensemble * 385 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 386 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 387 Ensemble *&E = Ensembles[strategy]; 388 if (E) 389 return E; 390 391 // Allocate new Ensemble on demand. 392 switch (strategy) { 393 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 394 default: llvm_unreachable("Invalid trace strategy enum"); 395 } 396 } 397 398 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 399 DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 400 << '\n'); 401 BlockInfo[MBB->getNumber()].invalidate(); 402 for (unsigned i = 0; i != TS_NumStrategies; ++i) 403 if (Ensembles[i]) 404 Ensembles[i]->invalidate(MBB); 405 } 406 407 void MachineTraceMetrics::verifyAnalysis() const { 408 if (!MF) 409 return; 410 #ifndef NDEBUG 411 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 412 for (unsigned i = 0; i != TS_NumStrategies; ++i) 413 if (Ensembles[i]) 414 Ensembles[i]->verify(); 415 #endif 416 } 417 418 //===----------------------------------------------------------------------===// 419 // Trace building 420 //===----------------------------------------------------------------------===// 421 // 422 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 423 // set abstraction that confines the search to the current loop, and doesn't 424 // revisit blocks. 425 426 namespace { 427 428 struct LoopBounds { 429 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 430 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 431 const MachineLoopInfo *Loops; 432 bool Downward = false; 433 434 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 435 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 436 }; 437 438 } // end anonymous namespace 439 440 // Specialize po_iterator_storage in order to prune the post-order traversal so 441 // it is limited to the current loop and doesn't traverse the loop back edges. 442 namespace llvm { 443 444 template<> 445 class po_iterator_storage<LoopBounds, true> { 446 LoopBounds &LB; 447 448 public: 449 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 450 451 void finishPostorder(const MachineBasicBlock*) {} 452 453 bool insertEdge(Optional<const MachineBasicBlock *> From, 454 const MachineBasicBlock *To) { 455 // Skip already visited To blocks. 456 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 457 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 458 return false; 459 // From is null once when To is the trace center block. 460 if (From) { 461 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 462 // Don't follow backedges, don't leave FromLoop when going upwards. 463 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 464 return false; 465 // Don't leave FromLoop. 466 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 467 return false; 468 } 469 } 470 // To is a new block. Mark the block as visited in case the CFG has cycles 471 // that MachineLoopInfo didn't recognize as a natural loop. 472 return LB.Visited.insert(To).second; 473 } 474 }; 475 476 } // end namespace llvm 477 478 /// Compute the trace through MBB. 479 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 480 DEBUG(dbgs() << "Computing " << getName() << " trace through " 481 << printMBBReference(*MBB) << '\n'); 482 // Set up loop bounds for the backwards post-order traversal. 483 LoopBounds Bounds(BlockInfo, MTM.Loops); 484 485 // Run an upwards post-order search for the trace start. 486 Bounds.Downward = false; 487 Bounds.Visited.clear(); 488 for (auto I : inverse_post_order_ext(MBB, Bounds)) { 489 DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 490 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 491 // All the predecessors have been visited, pick the preferred one. 492 TBI.Pred = pickTracePred(I); 493 DEBUG({ 494 if (TBI.Pred) 495 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 496 else 497 dbgs() << "null\n"; 498 }); 499 // The trace leading to I is now known, compute the depth resources. 500 computeDepthResources(I); 501 } 502 503 // Run a downwards post-order search for the trace end. 504 Bounds.Downward = true; 505 Bounds.Visited.clear(); 506 for (auto I : post_order_ext(MBB, Bounds)) { 507 DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 508 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 509 // All the successors have been visited, pick the preferred one. 510 TBI.Succ = pickTraceSucc(I); 511 DEBUG({ 512 if (TBI.Succ) 513 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 514 else 515 dbgs() << "null\n"; 516 }); 517 // The trace leaving I is now known, compute the height resources. 518 computeHeightResources(I); 519 } 520 } 521 522 /// Invalidate traces through BadMBB. 523 void 524 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 525 SmallVector<const MachineBasicBlock*, 16> WorkList; 526 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 527 528 // Invalidate height resources of blocks above MBB. 529 if (BadTBI.hasValidHeight()) { 530 BadTBI.invalidateHeight(); 531 WorkList.push_back(BadMBB); 532 do { 533 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 534 DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 535 << getName() << " height.\n"); 536 // Find any MBB predecessors that have MBB as their preferred successor. 537 // They are the only ones that need to be invalidated. 538 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 539 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 540 if (!TBI.hasValidHeight()) 541 continue; 542 if (TBI.Succ == MBB) { 543 TBI.invalidateHeight(); 544 WorkList.push_back(Pred); 545 continue; 546 } 547 // Verify that TBI.Succ is actually a *I successor. 548 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 549 } 550 } while (!WorkList.empty()); 551 } 552 553 // Invalidate depth resources of blocks below MBB. 554 if (BadTBI.hasValidDepth()) { 555 BadTBI.invalidateDepth(); 556 WorkList.push_back(BadMBB); 557 do { 558 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 559 DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 560 << getName() << " depth.\n"); 561 // Find any MBB successors that have MBB as their preferred predecessor. 562 // They are the only ones that need to be invalidated. 563 for (const MachineBasicBlock *Succ : MBB->successors()) { 564 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 565 if (!TBI.hasValidDepth()) 566 continue; 567 if (TBI.Pred == MBB) { 568 TBI.invalidateDepth(); 569 WorkList.push_back(Succ); 570 continue; 571 } 572 // Verify that TBI.Pred is actually a *I predecessor. 573 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 574 } 575 } while (!WorkList.empty()); 576 } 577 578 // Clear any per-instruction data. We only have to do this for BadMBB itself 579 // because the instructions in that block may change. Other blocks may be 580 // invalidated, but their instructions will stay the same, so there is no 581 // need to erase the Cycle entries. They will be overwritten when we 582 // recompute. 583 for (const auto &I : *BadMBB) 584 Cycles.erase(&I); 585 } 586 587 void MachineTraceMetrics::Ensemble::verify() const { 588 #ifndef NDEBUG 589 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 590 "Outdated BlockInfo size"); 591 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 592 const TraceBlockInfo &TBI = BlockInfo[Num]; 593 if (TBI.hasValidDepth() && TBI.Pred) { 594 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 595 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 596 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 597 "Trace is broken, depth should have been invalidated."); 598 const MachineLoop *Loop = getLoopFor(MBB); 599 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 600 } 601 if (TBI.hasValidHeight() && TBI.Succ) { 602 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 603 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 604 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 605 "Trace is broken, height should have been invalidated."); 606 const MachineLoop *Loop = getLoopFor(MBB); 607 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 608 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 609 "Trace contains backedge"); 610 } 611 } 612 #endif 613 } 614 615 //===----------------------------------------------------------------------===// 616 // Data Dependencies 617 //===----------------------------------------------------------------------===// 618 // 619 // Compute the depth and height of each instruction based on data dependencies 620 // and instruction latencies. These cycle numbers assume that the CPU can issue 621 // an infinite number of instructions per cycle as long as their dependencies 622 // are ready. 623 624 // A data dependency is represented as a defining MI and operand numbers on the 625 // defining and using MI. 626 namespace { 627 628 struct DataDep { 629 const MachineInstr *DefMI; 630 unsigned DefOp; 631 unsigned UseOp; 632 633 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 634 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 635 636 /// Create a DataDep from an SSA form virtual register. 637 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 638 : UseOp(UseOp) { 639 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 640 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 641 assert(!DefI.atEnd() && "Register has no defs"); 642 DefMI = DefI->getParent(); 643 DefOp = DefI.getOperandNo(); 644 assert((++DefI).atEnd() && "Register has multiple defs"); 645 } 646 }; 647 648 } // end anonymous namespace 649 650 // Get the input data dependencies that must be ready before UseMI can issue. 651 // Return true if UseMI has any physreg operands. 652 static bool getDataDeps(const MachineInstr &UseMI, 653 SmallVectorImpl<DataDep> &Deps, 654 const MachineRegisterInfo *MRI) { 655 // Debug values should not be included in any calculations. 656 if (UseMI.isDebugValue()) 657 return false; 658 659 bool HasPhysRegs = false; 660 for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(), 661 E = UseMI.operands_end(); I != E; ++I) { 662 const MachineOperand &MO = *I; 663 if (!MO.isReg()) 664 continue; 665 unsigned Reg = MO.getReg(); 666 if (!Reg) 667 continue; 668 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 669 HasPhysRegs = true; 670 continue; 671 } 672 // Collect virtual register reads. 673 if (MO.readsReg()) 674 Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I))); 675 } 676 return HasPhysRegs; 677 } 678 679 // Get the input data dependencies of a PHI instruction, using Pred as the 680 // preferred predecessor. 681 // This will add at most one dependency to Deps. 682 static void getPHIDeps(const MachineInstr &UseMI, 683 SmallVectorImpl<DataDep> &Deps, 684 const MachineBasicBlock *Pred, 685 const MachineRegisterInfo *MRI) { 686 // No predecessor at the beginning of a trace. Ignore dependencies. 687 if (!Pred) 688 return; 689 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 690 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 691 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 692 unsigned Reg = UseMI.getOperand(i).getReg(); 693 Deps.push_back(DataDep(MRI, Reg, i)); 694 return; 695 } 696 } 697 } 698 699 // Identify physreg dependencies for UseMI, and update the live regunit 700 // tracking set when scanning instructions downwards. 701 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 702 SmallVectorImpl<DataDep> &Deps, 703 SparseSet<LiveRegUnit> &RegUnits, 704 const TargetRegisterInfo *TRI) { 705 SmallVector<unsigned, 8> Kills; 706 SmallVector<unsigned, 8> LiveDefOps; 707 708 for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), 709 ME = UseMI->operands_end(); MI != ME; ++MI) { 710 const MachineOperand &MO = *MI; 711 if (!MO.isReg()) 712 continue; 713 unsigned Reg = MO.getReg(); 714 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 715 continue; 716 // Track live defs and kills for updating RegUnits. 717 if (MO.isDef()) { 718 if (MO.isDead()) 719 Kills.push_back(Reg); 720 else 721 LiveDefOps.push_back(UseMI->getOperandNo(MI)); 722 } else if (MO.isKill()) 723 Kills.push_back(Reg); 724 // Identify dependencies. 725 if (!MO.readsReg()) 726 continue; 727 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 728 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 729 if (I == RegUnits.end()) 730 continue; 731 Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); 732 break; 733 } 734 } 735 736 // Update RegUnits to reflect live registers after UseMI. 737 // First kills. 738 for (unsigned Kill : Kills) 739 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 740 RegUnits.erase(*Units); 741 742 // Second, live defs. 743 for (unsigned DefOp : LiveDefOps) { 744 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 745 Units.isValid(); ++Units) { 746 LiveRegUnit &LRU = RegUnits[*Units]; 747 LRU.MI = UseMI; 748 LRU.Op = DefOp; 749 } 750 } 751 } 752 753 /// The length of the critical path through a trace is the maximum of two path 754 /// lengths: 755 /// 756 /// 1. The maximum height+depth over all instructions in the trace center block. 757 /// 758 /// 2. The longest cross-block dependency chain. For small blocks, it is 759 /// possible that the critical path through the trace doesn't include any 760 /// instructions in the block. 761 /// 762 /// This function computes the second number from the live-in list of the 763 /// center block. 764 unsigned MachineTraceMetrics::Ensemble:: 765 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 766 assert(TBI.HasValidInstrDepths && "Missing depth info"); 767 assert(TBI.HasValidInstrHeights && "Missing height info"); 768 unsigned MaxLen = 0; 769 for (const LiveInReg &LIR : TBI.LiveIns) { 770 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 771 continue; 772 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 773 // Ignore dependencies outside the current trace. 774 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 775 if (!DefTBI.isUsefulDominator(TBI)) 776 continue; 777 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 778 MaxLen = std::max(MaxLen, Len); 779 } 780 return MaxLen; 781 } 782 783 void MachineTraceMetrics::Ensemble:: 784 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 785 SparseSet<LiveRegUnit> &RegUnits) { 786 SmallVector<DataDep, 8> Deps; 787 // Collect all data dependencies. 788 if (UseMI.isPHI()) 789 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 790 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 791 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 792 793 // Filter and process dependencies, computing the earliest issue cycle. 794 unsigned Cycle = 0; 795 for (const DataDep &Dep : Deps) { 796 const TraceBlockInfo&DepTBI = 797 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 798 // Ignore dependencies from outside the current trace. 799 if (!DepTBI.isUsefulDominator(TBI)) 800 continue; 801 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 802 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 803 // Add latency if DefMI is a real instruction. Transients get latency 0. 804 if (!Dep.DefMI->isTransient()) 805 DepCycle += MTM.SchedModel 806 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 807 Cycle = std::max(Cycle, DepCycle); 808 } 809 // Remember the instruction depth. 810 InstrCycles &MICycles = Cycles[&UseMI]; 811 MICycles.Depth = Cycle; 812 813 if (TBI.HasValidInstrHeights) { 814 // Update critical path length. 815 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 816 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 817 } else { 818 DEBUG(dbgs() << Cycle << '\t' << UseMI); 819 } 820 } 821 822 void MachineTraceMetrics::Ensemble:: 823 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 824 SparseSet<LiveRegUnit> &RegUnits) { 825 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 826 } 827 828 void MachineTraceMetrics::Ensemble:: 829 updateDepths(MachineBasicBlock::iterator Start, 830 MachineBasicBlock::iterator End, 831 SparseSet<LiveRegUnit> &RegUnits) { 832 for (; Start != End; Start++) 833 updateDepth(Start->getParent(), *Start, RegUnits); 834 } 835 836 /// Compute instruction depths for all instructions above or in MBB in its 837 /// trace. This assumes that the trace through MBB has already been computed. 838 void MachineTraceMetrics::Ensemble:: 839 computeInstrDepths(const MachineBasicBlock *MBB) { 840 // The top of the trace may already be computed, and HasValidInstrDepths 841 // implies Head->HasValidInstrDepths, so we only need to start from the first 842 // block in the trace that needs to be recomputed. 843 SmallVector<const MachineBasicBlock*, 8> Stack; 844 do { 845 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 846 assert(TBI.hasValidDepth() && "Incomplete trace"); 847 if (TBI.HasValidInstrDepths) 848 break; 849 Stack.push_back(MBB); 850 MBB = TBI.Pred; 851 } while (MBB); 852 853 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 854 // in the trace. We should track any live-out physregs that were defined in 855 // the trace. This is quite rare in SSA form, typically created by CSE 856 // hoisting a compare. 857 SparseSet<LiveRegUnit> RegUnits; 858 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 859 860 // Go through trace blocks in top-down order, stopping after the center block. 861 while (!Stack.empty()) { 862 MBB = Stack.pop_back_val(); 863 DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 864 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 865 TBI.HasValidInstrDepths = true; 866 TBI.CriticalPath = 0; 867 868 // Print out resource depths here as well. 869 DEBUG({ 870 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 871 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 872 for (unsigned K = 0; K != PRDepths.size(); ++K) 873 if (PRDepths[K]) { 874 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 875 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 876 << MTM.SchedModel.getProcResource(K)->Name << " (" 877 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 878 } 879 }); 880 881 // Also compute the critical path length through MBB when possible. 882 if (TBI.HasValidInstrHeights) 883 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 884 885 for (const auto &UseMI : *MBB) { 886 updateDepth(TBI, UseMI, RegUnits); 887 } 888 } 889 } 890 891 // Identify physreg dependencies for MI when scanning instructions upwards. 892 // Return the issue height of MI after considering any live regunits. 893 // Height is the issue height computed from virtual register dependencies alone. 894 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 895 SparseSet<LiveRegUnit> &RegUnits, 896 const TargetSchedModel &SchedModel, 897 const TargetInstrInfo *TII, 898 const TargetRegisterInfo *TRI) { 899 SmallVector<unsigned, 8> ReadOps; 900 901 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 902 MOE = MI.operands_end(); 903 MOI != MOE; ++MOI) { 904 const MachineOperand &MO = *MOI; 905 if (!MO.isReg()) 906 continue; 907 unsigned Reg = MO.getReg(); 908 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 909 continue; 910 if (MO.readsReg()) 911 ReadOps.push_back(MI.getOperandNo(MOI)); 912 if (!MO.isDef()) 913 continue; 914 // This is a def of Reg. Remove corresponding entries from RegUnits, and 915 // update MI Height to consider the physreg dependencies. 916 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 917 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 918 if (I == RegUnits.end()) 919 continue; 920 unsigned DepHeight = I->Cycle; 921 if (!MI.isTransient()) { 922 // We may not know the UseMI of this dependency, if it came from the 923 // live-in list. SchedModel can handle a NULL UseMI. 924 DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI), 925 I->MI, I->Op); 926 } 927 Height = std::max(Height, DepHeight); 928 // This regunit is dead above MI. 929 RegUnits.erase(I); 930 } 931 } 932 933 // Now we know the height of MI. Update any regunits read. 934 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 935 unsigned Reg = MI.getOperand(ReadOps[i]).getReg(); 936 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 937 LiveRegUnit &LRU = RegUnits[*Units]; 938 // Set the height to the highest reader of the unit. 939 if (LRU.Cycle <= Height && LRU.MI != &MI) { 940 LRU.Cycle = Height; 941 LRU.MI = &MI; 942 LRU.Op = ReadOps[i]; 943 } 944 } 945 } 946 947 return Height; 948 } 949 950 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 951 952 // Push the height of DefMI upwards if required to match UseMI. 953 // Return true if this is the first time DefMI was seen. 954 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 955 unsigned UseHeight, MIHeightMap &Heights, 956 const TargetSchedModel &SchedModel, 957 const TargetInstrInfo *TII) { 958 // Adjust height by Dep.DefMI latency. 959 if (!Dep.DefMI->isTransient()) 960 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 961 Dep.UseOp); 962 963 // Update Heights[DefMI] to be the maximum height seen. 964 MIHeightMap::iterator I; 965 bool New; 966 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 967 if (New) 968 return true; 969 970 // DefMI has been pushed before. Give it the max height. 971 if (I->second < UseHeight) 972 I->second = UseHeight; 973 return false; 974 } 975 976 /// Assuming that the virtual register defined by DefMI:DefOp was used by 977 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 978 /// when reaching the block that contains DefMI. 979 void MachineTraceMetrics::Ensemble:: 980 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 981 ArrayRef<const MachineBasicBlock*> Trace) { 982 assert(!Trace.empty() && "Trace should contain at least one block"); 983 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 984 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 985 const MachineBasicBlock *DefMBB = DefMI->getParent(); 986 987 // Reg is live-in to all blocks in Trace that follow DefMBB. 988 for (unsigned i = Trace.size(); i; --i) { 989 const MachineBasicBlock *MBB = Trace[i-1]; 990 if (MBB == DefMBB) 991 return; 992 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 993 // Just add the register. The height will be updated later. 994 TBI.LiveIns.push_back(Reg); 995 } 996 } 997 998 /// Compute instruction heights in the trace through MBB. This updates MBB and 999 /// the blocks below it in the trace. It is assumed that the trace has already 1000 /// been computed. 1001 void MachineTraceMetrics::Ensemble:: 1002 computeInstrHeights(const MachineBasicBlock *MBB) { 1003 // The bottom of the trace may already be computed. 1004 // Find the blocks that need updating. 1005 SmallVector<const MachineBasicBlock*, 8> Stack; 1006 do { 1007 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1008 assert(TBI.hasValidHeight() && "Incomplete trace"); 1009 if (TBI.HasValidInstrHeights) 1010 break; 1011 Stack.push_back(MBB); 1012 TBI.LiveIns.clear(); 1013 MBB = TBI.Succ; 1014 } while (MBB); 1015 1016 // As we move upwards in the trace, keep track of instructions that are 1017 // required by deeper trace instructions. Map MI -> height required so far. 1018 MIHeightMap Heights; 1019 1020 // For physregs, the def isn't known when we see the use. 1021 // Instead, keep track of the highest use of each regunit. 1022 SparseSet<LiveRegUnit> RegUnits; 1023 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1024 1025 // If the bottom of the trace was already precomputed, initialize heights 1026 // from its live-in list. 1027 // MBB is the highest precomputed block in the trace. 1028 if (MBB) { 1029 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1030 for (LiveInReg &LI : TBI.LiveIns) { 1031 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1032 // For virtual registers, the def latency is included. 1033 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1034 if (Height < LI.Height) 1035 Height = LI.Height; 1036 } else { 1037 // For register units, the def latency is not included because we don't 1038 // know the def yet. 1039 RegUnits[LI.Reg].Cycle = LI.Height; 1040 } 1041 } 1042 } 1043 1044 // Go through the trace blocks in bottom-up order. 1045 SmallVector<DataDep, 8> Deps; 1046 for (;!Stack.empty(); Stack.pop_back()) { 1047 MBB = Stack.back(); 1048 DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1049 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1050 TBI.HasValidInstrHeights = true; 1051 TBI.CriticalPath = 0; 1052 1053 DEBUG({ 1054 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1055 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1056 for (unsigned K = 0; K != PRHeights.size(); ++K) 1057 if (PRHeights[K]) { 1058 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1059 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1060 << MTM.SchedModel.getProcResource(K)->Name << " (" 1061 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1062 } 1063 }); 1064 1065 // Get dependencies from PHIs in the trace successor. 1066 const MachineBasicBlock *Succ = TBI.Succ; 1067 // If MBB is the last block in the trace, and it has a back-edge to the 1068 // loop header, get loop-carried dependencies from PHIs in the header. For 1069 // that purpose, pretend that all the loop header PHIs have height 0. 1070 if (!Succ) 1071 if (const MachineLoop *Loop = getLoopFor(MBB)) 1072 if (MBB->isSuccessor(Loop->getHeader())) 1073 Succ = Loop->getHeader(); 1074 1075 if (Succ) { 1076 for (const auto &PHI : *Succ) { 1077 if (!PHI.isPHI()) 1078 break; 1079 Deps.clear(); 1080 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1081 if (!Deps.empty()) { 1082 // Loop header PHI heights are all 0. 1083 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1084 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1085 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1086 MTM.TII)) 1087 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1088 } 1089 } 1090 } 1091 1092 // Go through the block backwards. 1093 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1094 BI != BB;) { 1095 const MachineInstr &MI = *--BI; 1096 1097 // Find the MI height as determined by virtual register uses in the 1098 // trace below. 1099 unsigned Cycle = 0; 1100 MIHeightMap::iterator HeightI = Heights.find(&MI); 1101 if (HeightI != Heights.end()) { 1102 Cycle = HeightI->second; 1103 // We won't be seeing any more MI uses. 1104 Heights.erase(HeightI); 1105 } 1106 1107 // Don't process PHI deps. They depend on the specific predecessor, and 1108 // we'll get them when visiting the predecessor. 1109 Deps.clear(); 1110 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1111 1112 // There may also be regunit dependencies to include in the height. 1113 if (HasPhysRegs) 1114 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1115 MTM.TII, MTM.TRI); 1116 1117 // Update the required height of any virtual registers read by MI. 1118 for (const DataDep &Dep : Deps) 1119 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1120 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1121 1122 InstrCycles &MICycles = Cycles[&MI]; 1123 MICycles.Height = Cycle; 1124 if (!TBI.HasValidInstrDepths) { 1125 DEBUG(dbgs() << Cycle << '\t' << MI); 1126 continue; 1127 } 1128 // Update critical path length. 1129 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1130 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1131 } 1132 1133 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1134 // height because the final height isn't known until now. 1135 DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1136 for (LiveInReg &LIR : TBI.LiveIns) { 1137 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1138 LIR.Height = Heights.lookup(DefMI); 1139 DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1140 } 1141 1142 // Transfer the live regunits to the live-in list. 1143 for (SparseSet<LiveRegUnit>::const_iterator 1144 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1145 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1146 DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) 1147 << '@' << RI->Cycle); 1148 } 1149 DEBUG(dbgs() << '\n'); 1150 1151 if (!TBI.HasValidInstrDepths) 1152 continue; 1153 // Add live-ins to the critical path length. 1154 TBI.CriticalPath = std::max(TBI.CriticalPath, 1155 computeCrossBlockCriticalPath(TBI)); 1156 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1157 } 1158 } 1159 1160 MachineTraceMetrics::Trace 1161 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1162 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1163 1164 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1165 computeTrace(MBB); 1166 if (!TBI.HasValidInstrDepths) 1167 computeInstrDepths(MBB); 1168 if (!TBI.HasValidInstrHeights) 1169 computeInstrHeights(MBB); 1170 1171 return Trace(*this, TBI); 1172 } 1173 1174 unsigned 1175 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1176 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1177 "MI must be in the trace center block"); 1178 InstrCycles Cyc = getInstrCycles(MI); 1179 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1180 } 1181 1182 unsigned 1183 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1184 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1185 SmallVector<DataDep, 1> Deps; 1186 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1187 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1188 DataDep &Dep = Deps.front(); 1189 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1190 // Add latency if DefMI is a real instruction. Transients get latency 0. 1191 if (!Dep.DefMI->isTransient()) 1192 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1193 &PHI, Dep.UseOp); 1194 return DepCycle; 1195 } 1196 1197 /// When bottom is set include instructions in current block in estimate. 1198 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1199 // Find the limiting processor resource. 1200 // Numbers have been pre-scaled to be comparable. 1201 unsigned PRMax = 0; 1202 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1203 if (Bottom) { 1204 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1205 for (unsigned K = 0; K != PRDepths.size(); ++K) 1206 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1207 } else { 1208 for (unsigned K = 0; K != PRDepths.size(); ++K) 1209 PRMax = std::max(PRMax, PRDepths[K]); 1210 } 1211 // Convert to cycle count. 1212 PRMax = TE.MTM.getCycles(PRMax); 1213 1214 /// All instructions before current block 1215 unsigned Instrs = TBI.InstrDepth; 1216 // plus instructions in current block 1217 if (Bottom) 1218 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1219 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1220 Instrs /= IW; 1221 // Assume issue width 1 without a schedule model. 1222 return std::max(Instrs, PRMax); 1223 } 1224 1225 unsigned MachineTraceMetrics::Trace::getResourceLength( 1226 ArrayRef<const MachineBasicBlock *> Extrablocks, 1227 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1228 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1229 // Add up resources above and below the center block. 1230 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1231 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1232 unsigned PRMax = 0; 1233 1234 // Capture computing cycles from extra instructions 1235 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1236 unsigned ResourceIdx) 1237 ->unsigned { 1238 unsigned Cycles = 0; 1239 for (const MCSchedClassDesc *SC : Instrs) { 1240 if (!SC->isValid()) 1241 continue; 1242 for (TargetSchedModel::ProcResIter 1243 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1244 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1245 PI != PE; ++PI) { 1246 if (PI->ProcResourceIdx != ResourceIdx) 1247 continue; 1248 Cycles += 1249 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1250 } 1251 } 1252 return Cycles; 1253 }; 1254 1255 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1256 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1257 for (const MachineBasicBlock *MBB : Extrablocks) 1258 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1259 PRCycles += extraCycles(ExtraInstrs, K); 1260 PRCycles -= extraCycles(RemoveInstrs, K); 1261 PRMax = std::max(PRMax, PRCycles); 1262 } 1263 // Convert to cycle count. 1264 PRMax = TE.MTM.getCycles(PRMax); 1265 1266 // Instrs: #instructions in current trace outside current block. 1267 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1268 // Add instruction count from the extra blocks. 1269 for (const MachineBasicBlock *MBB : Extrablocks) 1270 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1271 Instrs += ExtraInstrs.size(); 1272 Instrs -= RemoveInstrs.size(); 1273 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1274 Instrs /= IW; 1275 // Assume issue width 1 without a schedule model. 1276 return std::max(Instrs, PRMax); 1277 } 1278 1279 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1280 const MachineInstr &UseMI) const { 1281 if (DefMI.getParent() == UseMI.getParent()) 1282 return true; 1283 1284 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1285 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1286 1287 return DepTBI.isUsefulDominator(TBI); 1288 } 1289 1290 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1291 OS << getName() << " ensemble:\n"; 1292 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1293 OS << " %bb." << i << '\t'; 1294 BlockInfo[i].print(OS); 1295 OS << '\n'; 1296 } 1297 } 1298 1299 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1300 if (hasValidDepth()) { 1301 OS << "depth=" << InstrDepth; 1302 if (Pred) 1303 OS << " pred=" << printMBBReference(*Pred); 1304 else 1305 OS << " pred=null"; 1306 OS << " head=%bb." << Head; 1307 if (HasValidInstrDepths) 1308 OS << " +instrs"; 1309 } else 1310 OS << "depth invalid"; 1311 OS << ", "; 1312 if (hasValidHeight()) { 1313 OS << "height=" << InstrHeight; 1314 if (Succ) 1315 OS << " succ=" << printMBBReference(*Succ); 1316 else 1317 OS << " succ=null"; 1318 OS << " tail=%bb." << Tail; 1319 if (HasValidInstrHeights) 1320 OS << " +instrs"; 1321 } else 1322 OS << "height invalid"; 1323 if (HasValidInstrDepths && HasValidInstrHeights) 1324 OS << ", crit=" << CriticalPath; 1325 } 1326 1327 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1328 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1329 1330 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1331 << " --> %bb." << TBI.Tail << ':'; 1332 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1333 OS << ' ' << getInstrCount() << " instrs."; 1334 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1335 OS << ' ' << TBI.CriticalPath << " cycles."; 1336 1337 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1338 OS << "\n%bb." << MBBNum; 1339 while (Block->hasValidDepth() && Block->Pred) { 1340 unsigned Num = Block->Pred->getNumber(); 1341 OS << " <- " << printMBBReference(*Block->Pred); 1342 Block = &TE.BlockInfo[Num]; 1343 } 1344 1345 Block = &TBI; 1346 OS << "\n "; 1347 while (Block->hasValidHeight() && Block->Succ) { 1348 unsigned Num = Block->Succ->getNumber(); 1349 OS << " -> " << printMBBReference(*Block->Succ); 1350 Block = &TE.BlockInfo[Num]; 1351 } 1352 OS << '\n'; 1353 } 1354