1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/PostOrderIterator.h" 12 #include "llvm/ADT/SparseSet.h" 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 15 #include "llvm/CodeGen/MachineLoopInfo.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/MC/MCSubtargetInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "machine-trace-metrics" 29 30 char MachineTraceMetrics::ID = 0; 31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 32 33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 34 "machine-trace-metrics", "Machine Trace Metrics", false, true) 35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 37 INITIALIZE_PASS_END(MachineTraceMetrics, 38 "machine-trace-metrics", "Machine Trace Metrics", false, true) 39 40 MachineTraceMetrics::MachineTraceMetrics() 41 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 42 MRI(nullptr), Loops(nullptr) { 43 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 44 } 45 46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.setPreservesAll(); 48 AU.addRequired<MachineBranchProbabilityInfo>(); 49 AU.addRequired<MachineLoopInfo>(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 } 52 53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 54 MF = &Func; 55 TII = MF->getTarget().getInstrInfo(); 56 TRI = MF->getTarget().getRegisterInfo(); 57 MRI = &MF->getRegInfo(); 58 Loops = &getAnalysis<MachineLoopInfo>(); 59 const TargetSubtargetInfo &ST = 60 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 61 SchedModel.init(*ST.getSchedModel(), &ST, TII); 62 BlockInfo.resize(MF->getNumBlockIDs()); 63 ProcResourceCycles.resize(MF->getNumBlockIDs() * 64 SchedModel.getNumProcResourceKinds()); 65 return false; 66 } 67 68 void MachineTraceMetrics::releaseMemory() { 69 MF = nullptr; 70 BlockInfo.clear(); 71 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 72 delete Ensembles[i]; 73 Ensembles[i] = nullptr; 74 } 75 } 76 77 //===----------------------------------------------------------------------===// 78 // Fixed block information 79 //===----------------------------------------------------------------------===// 80 // 81 // The number of instructions in a basic block and the CPU resources used by 82 // those instructions don't depend on any given trace strategy. 83 84 /// Compute the resource usage in basic block MBB. 85 const MachineTraceMetrics::FixedBlockInfo* 86 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 87 assert(MBB && "No basic block"); 88 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 89 if (FBI->hasResources()) 90 return FBI; 91 92 // Compute resource usage in the block. 93 FBI->HasCalls = false; 94 unsigned InstrCount = 0; 95 96 // Add up per-processor resource cycles as well. 97 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 98 SmallVector<unsigned, 32> PRCycles(PRKinds); 99 100 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 101 I != E; ++I) { 102 const MachineInstr *MI = I; 103 if (MI->isTransient()) 104 continue; 105 ++InstrCount; 106 if (MI->isCall()) 107 FBI->HasCalls = true; 108 109 // Count processor resources used. 110 if (!SchedModel.hasInstrSchedModel()) 111 continue; 112 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(MI); 113 if (!SC->isValid()) 114 continue; 115 116 for (TargetSchedModel::ProcResIter 117 PI = SchedModel.getWriteProcResBegin(SC), 118 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 119 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 120 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 121 } 122 } 123 FBI->InstrCount = InstrCount; 124 125 // Scale the resource cycles so they are comparable. 126 unsigned PROffset = MBB->getNumber() * PRKinds; 127 for (unsigned K = 0; K != PRKinds; ++K) 128 ProcResourceCycles[PROffset + K] = 129 PRCycles[K] * SchedModel.getResourceFactor(K); 130 131 return FBI; 132 } 133 134 ArrayRef<unsigned> 135 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 136 assert(BlockInfo[MBBNum].hasResources() && 137 "getResources() must be called before getProcResourceCycles()"); 138 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 139 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 140 return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds, 141 PRKinds); 142 } 143 144 145 //===----------------------------------------------------------------------===// 146 // Ensemble utility functions 147 //===----------------------------------------------------------------------===// 148 149 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 150 : MTM(*ct) { 151 BlockInfo.resize(MTM.BlockInfo.size()); 152 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 153 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 154 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 155 } 156 157 // Virtual destructor serves as an anchor. 158 MachineTraceMetrics::Ensemble::~Ensemble() {} 159 160 const MachineLoop* 161 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 162 return MTM.Loops->getLoopFor(MBB); 163 } 164 165 // Update resource-related information in the TraceBlockInfo for MBB. 166 // Only update resources related to the trace above MBB. 167 void MachineTraceMetrics::Ensemble:: 168 computeDepthResources(const MachineBasicBlock *MBB) { 169 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 170 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 171 unsigned PROffset = MBB->getNumber() * PRKinds; 172 173 // Compute resources from trace above. The top block is simple. 174 if (!TBI->Pred) { 175 TBI->InstrDepth = 0; 176 TBI->Head = MBB->getNumber(); 177 std::fill(ProcResourceDepths.begin() + PROffset, 178 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 179 return; 180 } 181 182 // Compute from the block above. A post-order traversal ensures the 183 // predecessor is always computed first. 184 unsigned PredNum = TBI->Pred->getNumber(); 185 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 186 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 187 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 188 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 189 TBI->Head = PredTBI->Head; 190 191 // Compute per-resource depths. 192 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 193 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 194 for (unsigned K = 0; K != PRKinds; ++K) 195 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 196 } 197 198 // Update resource-related information in the TraceBlockInfo for MBB. 199 // Only update resources related to the trace below MBB. 200 void MachineTraceMetrics::Ensemble:: 201 computeHeightResources(const MachineBasicBlock *MBB) { 202 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 203 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 204 unsigned PROffset = MBB->getNumber() * PRKinds; 205 206 // Compute resources for the current block. 207 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 208 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 209 210 // The trace tail is done. 211 if (!TBI->Succ) { 212 TBI->Tail = MBB->getNumber(); 213 std::copy(PRCycles.begin(), PRCycles.end(), 214 ProcResourceHeights.begin() + PROffset); 215 return; 216 } 217 218 // Compute from the block below. A post-order traversal ensures the 219 // predecessor is always computed first. 220 unsigned SuccNum = TBI->Succ->getNumber(); 221 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 222 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 223 TBI->InstrHeight += SuccTBI->InstrHeight; 224 TBI->Tail = SuccTBI->Tail; 225 226 // Compute per-resource heights. 227 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 228 for (unsigned K = 0; K != PRKinds; ++K) 229 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 230 } 231 232 // Check if depth resources for MBB are valid and return the TBI. 233 // Return NULL if the resources have been invalidated. 234 const MachineTraceMetrics::TraceBlockInfo* 235 MachineTraceMetrics::Ensemble:: 236 getDepthResources(const MachineBasicBlock *MBB) const { 237 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 238 return TBI->hasValidDepth() ? TBI : nullptr; 239 } 240 241 // Check if height resources for MBB are valid and return the TBI. 242 // Return NULL if the resources have been invalidated. 243 const MachineTraceMetrics::TraceBlockInfo* 244 MachineTraceMetrics::Ensemble:: 245 getHeightResources(const MachineBasicBlock *MBB) const { 246 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 247 return TBI->hasValidHeight() ? TBI : nullptr; 248 } 249 250 /// Get an array of processor resource depths for MBB. Indexed by processor 251 /// resource kind, this array contains the scaled processor resources consumed 252 /// by all blocks preceding MBB in its trace. It does not include instructions 253 /// in MBB. 254 /// 255 /// Compare TraceBlockInfo::InstrDepth. 256 ArrayRef<unsigned> 257 MachineTraceMetrics::Ensemble:: 258 getProcResourceDepths(unsigned MBBNum) const { 259 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 260 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 261 return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds, 262 PRKinds); 263 } 264 265 /// Get an array of processor resource heights for MBB. Indexed by processor 266 /// resource kind, this array contains the scaled processor resources consumed 267 /// by this block and all blocks following it in its trace. 268 /// 269 /// Compare TraceBlockInfo::InstrHeight. 270 ArrayRef<unsigned> 271 MachineTraceMetrics::Ensemble:: 272 getProcResourceHeights(unsigned MBBNum) const { 273 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 274 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 275 return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds, 276 PRKinds); 277 } 278 279 //===----------------------------------------------------------------------===// 280 // Trace Selection Strategies 281 //===----------------------------------------------------------------------===// 282 // 283 // A trace selection strategy is implemented as a sub-class of Ensemble. The 284 // trace through a block B is computed by two DFS traversals of the CFG 285 // starting from B. One upwards, and one downwards. During the upwards DFS, 286 // pickTracePred() is called on the post-ordered blocks. During the downwards 287 // DFS, pickTraceSucc() is called in a post-order. 288 // 289 290 // We never allow traces that leave loops, but we do allow traces to enter 291 // nested loops. We also never allow traces to contain back-edges. 292 // 293 // This means that a loop header can never appear above the center block of a 294 // trace, except as the trace head. Below the center block, loop exiting edges 295 // are banned. 296 // 297 // Return true if an edge from the From loop to the To loop is leaving a loop. 298 // Either of To and From can be null. 299 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 300 return From && !From->contains(To); 301 } 302 303 // MinInstrCountEnsemble - Pick the trace that executes the least number of 304 // instructions. 305 namespace { 306 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 307 const char *getName() const override { return "MinInstr"; } 308 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 309 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 310 311 public: 312 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 313 : MachineTraceMetrics::Ensemble(mtm) {} 314 }; 315 } 316 317 // Select the preferred predecessor for MBB. 318 const MachineBasicBlock* 319 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 320 if (MBB->pred_empty()) 321 return nullptr; 322 const MachineLoop *CurLoop = getLoopFor(MBB); 323 // Don't leave loops, and never follow back-edges. 324 if (CurLoop && MBB == CurLoop->getHeader()) 325 return nullptr; 326 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 327 const MachineBasicBlock *Best = nullptr; 328 unsigned BestDepth = 0; 329 for (MachineBasicBlock::const_pred_iterator 330 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 331 const MachineBasicBlock *Pred = *I; 332 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 333 getDepthResources(Pred); 334 // Ignore cycles that aren't natural loops. 335 if (!PredTBI) 336 continue; 337 // Pick the predecessor that would give this block the smallest InstrDepth. 338 unsigned Depth = PredTBI->InstrDepth + CurCount; 339 if (!Best || Depth < BestDepth) 340 Best = Pred, BestDepth = Depth; 341 } 342 return Best; 343 } 344 345 // Select the preferred successor for MBB. 346 const MachineBasicBlock* 347 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 348 if (MBB->pred_empty()) 349 return nullptr; 350 const MachineLoop *CurLoop = getLoopFor(MBB); 351 const MachineBasicBlock *Best = nullptr; 352 unsigned BestHeight = 0; 353 for (MachineBasicBlock::const_succ_iterator 354 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 355 const MachineBasicBlock *Succ = *I; 356 // Don't consider back-edges. 357 if (CurLoop && Succ == CurLoop->getHeader()) 358 continue; 359 // Don't consider successors exiting CurLoop. 360 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 361 continue; 362 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 363 getHeightResources(Succ); 364 // Ignore cycles that aren't natural loops. 365 if (!SuccTBI) 366 continue; 367 // Pick the successor that would give this block the smallest InstrHeight. 368 unsigned Height = SuccTBI->InstrHeight; 369 if (!Best || Height < BestHeight) 370 Best = Succ, BestHeight = Height; 371 } 372 return Best; 373 } 374 375 // Get an Ensemble sub-class for the requested trace strategy. 376 MachineTraceMetrics::Ensemble * 377 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 378 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 379 Ensemble *&E = Ensembles[strategy]; 380 if (E) 381 return E; 382 383 // Allocate new Ensemble on demand. 384 switch (strategy) { 385 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 386 default: llvm_unreachable("Invalid trace strategy enum"); 387 } 388 } 389 390 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 391 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 392 BlockInfo[MBB->getNumber()].invalidate(); 393 for (unsigned i = 0; i != TS_NumStrategies; ++i) 394 if (Ensembles[i]) 395 Ensembles[i]->invalidate(MBB); 396 } 397 398 void MachineTraceMetrics::verifyAnalysis() const { 399 if (!MF) 400 return; 401 #ifndef NDEBUG 402 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 403 for (unsigned i = 0; i != TS_NumStrategies; ++i) 404 if (Ensembles[i]) 405 Ensembles[i]->verify(); 406 #endif 407 } 408 409 //===----------------------------------------------------------------------===// 410 // Trace building 411 //===----------------------------------------------------------------------===// 412 // 413 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 414 // set abstraction that confines the search to the current loop, and doesn't 415 // revisit blocks. 416 417 namespace { 418 struct LoopBounds { 419 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 420 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 421 const MachineLoopInfo *Loops; 422 bool Downward; 423 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 424 const MachineLoopInfo *loops) 425 : Blocks(blocks), Loops(loops), Downward(false) {} 426 }; 427 } 428 429 // Specialize po_iterator_storage in order to prune the post-order traversal so 430 // it is limited to the current loop and doesn't traverse the loop back edges. 431 namespace llvm { 432 template<> 433 class po_iterator_storage<LoopBounds, true> { 434 LoopBounds &LB; 435 public: 436 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 437 void finishPostorder(const MachineBasicBlock*) {} 438 439 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 440 // Skip already visited To blocks. 441 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 442 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 443 return false; 444 // From is null once when To is the trace center block. 445 if (From) { 446 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 447 // Don't follow backedges, don't leave FromLoop when going upwards. 448 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 449 return false; 450 // Don't leave FromLoop. 451 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 452 return false; 453 } 454 } 455 // To is a new block. Mark the block as visited in case the CFG has cycles 456 // that MachineLoopInfo didn't recognize as a natural loop. 457 return LB.Visited.insert(To); 458 } 459 }; 460 } 461 462 /// Compute the trace through MBB. 463 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 464 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 465 << MBB->getNumber() << '\n'); 466 // Set up loop bounds for the backwards post-order traversal. 467 LoopBounds Bounds(BlockInfo, MTM.Loops); 468 469 // Run an upwards post-order search for the trace start. 470 Bounds.Downward = false; 471 Bounds.Visited.clear(); 472 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 473 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 474 I != E; ++I) { 475 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 476 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 477 // All the predecessors have been visited, pick the preferred one. 478 TBI.Pred = pickTracePred(*I); 479 DEBUG({ 480 if (TBI.Pred) 481 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 482 else 483 dbgs() << "null\n"; 484 }); 485 // The trace leading to I is now known, compute the depth resources. 486 computeDepthResources(*I); 487 } 488 489 // Run a downwards post-order search for the trace end. 490 Bounds.Downward = true; 491 Bounds.Visited.clear(); 492 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 493 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 494 I != E; ++I) { 495 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 496 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 497 // All the successors have been visited, pick the preferred one. 498 TBI.Succ = pickTraceSucc(*I); 499 DEBUG({ 500 if (TBI.Succ) 501 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 502 else 503 dbgs() << "null\n"; 504 }); 505 // The trace leaving I is now known, compute the height resources. 506 computeHeightResources(*I); 507 } 508 } 509 510 /// Invalidate traces through BadMBB. 511 void 512 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 513 SmallVector<const MachineBasicBlock*, 16> WorkList; 514 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 515 516 // Invalidate height resources of blocks above MBB. 517 if (BadTBI.hasValidHeight()) { 518 BadTBI.invalidateHeight(); 519 WorkList.push_back(BadMBB); 520 do { 521 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 522 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 523 << " height.\n"); 524 // Find any MBB predecessors that have MBB as their preferred successor. 525 // They are the only ones that need to be invalidated. 526 for (MachineBasicBlock::const_pred_iterator 527 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 528 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 529 if (!TBI.hasValidHeight()) 530 continue; 531 if (TBI.Succ == MBB) { 532 TBI.invalidateHeight(); 533 WorkList.push_back(*I); 534 continue; 535 } 536 // Verify that TBI.Succ is actually a *I successor. 537 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 538 } 539 } while (!WorkList.empty()); 540 } 541 542 // Invalidate depth resources of blocks below MBB. 543 if (BadTBI.hasValidDepth()) { 544 BadTBI.invalidateDepth(); 545 WorkList.push_back(BadMBB); 546 do { 547 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 548 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 549 << " depth.\n"); 550 // Find any MBB successors that have MBB as their preferred predecessor. 551 // They are the only ones that need to be invalidated. 552 for (MachineBasicBlock::const_succ_iterator 553 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 554 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 555 if (!TBI.hasValidDepth()) 556 continue; 557 if (TBI.Pred == MBB) { 558 TBI.invalidateDepth(); 559 WorkList.push_back(*I); 560 continue; 561 } 562 // Verify that TBI.Pred is actually a *I predecessor. 563 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 564 } 565 } while (!WorkList.empty()); 566 } 567 568 // Clear any per-instruction data. We only have to do this for BadMBB itself 569 // because the instructions in that block may change. Other blocks may be 570 // invalidated, but their instructions will stay the same, so there is no 571 // need to erase the Cycle entries. They will be overwritten when we 572 // recompute. 573 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end(); 574 I != E; ++I) 575 Cycles.erase(I); 576 } 577 578 void MachineTraceMetrics::Ensemble::verify() const { 579 #ifndef NDEBUG 580 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 581 "Outdated BlockInfo size"); 582 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 583 const TraceBlockInfo &TBI = BlockInfo[Num]; 584 if (TBI.hasValidDepth() && TBI.Pred) { 585 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 586 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 587 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 588 "Trace is broken, depth should have been invalidated."); 589 const MachineLoop *Loop = getLoopFor(MBB); 590 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 591 } 592 if (TBI.hasValidHeight() && TBI.Succ) { 593 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 594 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 595 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 596 "Trace is broken, height should have been invalidated."); 597 const MachineLoop *Loop = getLoopFor(MBB); 598 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 599 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 600 "Trace contains backedge"); 601 } 602 } 603 #endif 604 } 605 606 //===----------------------------------------------------------------------===// 607 // Data Dependencies 608 //===----------------------------------------------------------------------===// 609 // 610 // Compute the depth and height of each instruction based on data dependencies 611 // and instruction latencies. These cycle numbers assume that the CPU can issue 612 // an infinite number of instructions per cycle as long as their dependencies 613 // are ready. 614 615 // A data dependency is represented as a defining MI and operand numbers on the 616 // defining and using MI. 617 namespace { 618 struct DataDep { 619 const MachineInstr *DefMI; 620 unsigned DefOp; 621 unsigned UseOp; 622 623 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 624 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 625 626 /// Create a DataDep from an SSA form virtual register. 627 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 628 : UseOp(UseOp) { 629 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 630 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 631 assert(!DefI.atEnd() && "Register has no defs"); 632 DefMI = DefI->getParent(); 633 DefOp = DefI.getOperandNo(); 634 assert((++DefI).atEnd() && "Register has multiple defs"); 635 } 636 }; 637 } 638 639 // Get the input data dependencies that must be ready before UseMI can issue. 640 // Return true if UseMI has any physreg operands. 641 static bool getDataDeps(const MachineInstr *UseMI, 642 SmallVectorImpl<DataDep> &Deps, 643 const MachineRegisterInfo *MRI) { 644 bool HasPhysRegs = false; 645 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 646 if (!MO->isReg()) 647 continue; 648 unsigned Reg = MO->getReg(); 649 if (!Reg) 650 continue; 651 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 652 HasPhysRegs = true; 653 continue; 654 } 655 // Collect virtual register reads. 656 if (MO->readsReg()) 657 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 658 } 659 return HasPhysRegs; 660 } 661 662 // Get the input data dependencies of a PHI instruction, using Pred as the 663 // preferred predecessor. 664 // This will add at most one dependency to Deps. 665 static void getPHIDeps(const MachineInstr *UseMI, 666 SmallVectorImpl<DataDep> &Deps, 667 const MachineBasicBlock *Pred, 668 const MachineRegisterInfo *MRI) { 669 // No predecessor at the beginning of a trace. Ignore dependencies. 670 if (!Pred) 671 return; 672 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 673 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 674 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 675 unsigned Reg = UseMI->getOperand(i).getReg(); 676 Deps.push_back(DataDep(MRI, Reg, i)); 677 return; 678 } 679 } 680 } 681 682 // Keep track of physreg data dependencies by recording each live register unit. 683 // Associate each regunit with an instruction operand. Depending on the 684 // direction instructions are scanned, it could be the operand that defined the 685 // regunit, or the highest operand to read the regunit. 686 namespace { 687 struct LiveRegUnit { 688 unsigned RegUnit; 689 unsigned Cycle; 690 const MachineInstr *MI; 691 unsigned Op; 692 693 unsigned getSparseSetIndex() const { return RegUnit; } 694 695 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 696 }; 697 } 698 699 // Identify physreg dependencies for UseMI, and update the live regunit 700 // tracking set when scanning instructions downwards. 701 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 702 SmallVectorImpl<DataDep> &Deps, 703 SparseSet<LiveRegUnit> &RegUnits, 704 const TargetRegisterInfo *TRI) { 705 SmallVector<unsigned, 8> Kills; 706 SmallVector<unsigned, 8> LiveDefOps; 707 708 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 709 if (!MO->isReg()) 710 continue; 711 unsigned Reg = MO->getReg(); 712 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 713 continue; 714 // Track live defs and kills for updating RegUnits. 715 if (MO->isDef()) { 716 if (MO->isDead()) 717 Kills.push_back(Reg); 718 else 719 LiveDefOps.push_back(MO.getOperandNo()); 720 } else if (MO->isKill()) 721 Kills.push_back(Reg); 722 // Identify dependencies. 723 if (!MO->readsReg()) 724 continue; 725 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 726 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 727 if (I == RegUnits.end()) 728 continue; 729 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 730 break; 731 } 732 } 733 734 // Update RegUnits to reflect live registers after UseMI. 735 // First kills. 736 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 737 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 738 RegUnits.erase(*Units); 739 740 // Second, live defs. 741 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 742 unsigned DefOp = LiveDefOps[i]; 743 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 744 Units.isValid(); ++Units) { 745 LiveRegUnit &LRU = RegUnits[*Units]; 746 LRU.MI = UseMI; 747 LRU.Op = DefOp; 748 } 749 } 750 } 751 752 /// The length of the critical path through a trace is the maximum of two path 753 /// lengths: 754 /// 755 /// 1. The maximum height+depth over all instructions in the trace center block. 756 /// 757 /// 2. The longest cross-block dependency chain. For small blocks, it is 758 /// possible that the critical path through the trace doesn't include any 759 /// instructions in the block. 760 /// 761 /// This function computes the second number from the live-in list of the 762 /// center block. 763 unsigned MachineTraceMetrics::Ensemble:: 764 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 765 assert(TBI.HasValidInstrDepths && "Missing depth info"); 766 assert(TBI.HasValidInstrHeights && "Missing height info"); 767 unsigned MaxLen = 0; 768 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 769 const LiveInReg &LIR = TBI.LiveIns[i]; 770 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 771 continue; 772 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 773 // Ignore dependencies outside the current trace. 774 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 775 if (!DefTBI.isUsefulDominator(TBI)) 776 continue; 777 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 778 MaxLen = std::max(MaxLen, Len); 779 } 780 return MaxLen; 781 } 782 783 /// Compute instruction depths for all instructions above or in MBB in its 784 /// trace. This assumes that the trace through MBB has already been computed. 785 void MachineTraceMetrics::Ensemble:: 786 computeInstrDepths(const MachineBasicBlock *MBB) { 787 // The top of the trace may already be computed, and HasValidInstrDepths 788 // implies Head->HasValidInstrDepths, so we only need to start from the first 789 // block in the trace that needs to be recomputed. 790 SmallVector<const MachineBasicBlock*, 8> Stack; 791 do { 792 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 793 assert(TBI.hasValidDepth() && "Incomplete trace"); 794 if (TBI.HasValidInstrDepths) 795 break; 796 Stack.push_back(MBB); 797 MBB = TBI.Pred; 798 } while (MBB); 799 800 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 801 // in the trace. We should track any live-out physregs that were defined in 802 // the trace. This is quite rare in SSA form, typically created by CSE 803 // hoisting a compare. 804 SparseSet<LiveRegUnit> RegUnits; 805 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 806 807 // Go through trace blocks in top-down order, stopping after the center block. 808 SmallVector<DataDep, 8> Deps; 809 while (!Stack.empty()) { 810 MBB = Stack.pop_back_val(); 811 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 812 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 813 TBI.HasValidInstrDepths = true; 814 TBI.CriticalPath = 0; 815 816 // Print out resource depths here as well. 817 DEBUG({ 818 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 819 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 820 for (unsigned K = 0; K != PRDepths.size(); ++K) 821 if (PRDepths[K]) { 822 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 823 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 824 << MTM.SchedModel.getProcResource(K)->Name << " (" 825 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 826 } 827 }); 828 829 // Also compute the critical path length through MBB when possible. 830 if (TBI.HasValidInstrHeights) 831 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 832 833 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); 834 I != E; ++I) { 835 const MachineInstr *UseMI = I; 836 837 // Collect all data dependencies. 838 Deps.clear(); 839 if (UseMI->isPHI()) 840 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 841 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 842 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI); 843 844 // Filter and process dependencies, computing the earliest issue cycle. 845 unsigned Cycle = 0; 846 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 847 const DataDep &Dep = Deps[i]; 848 const TraceBlockInfo&DepTBI = 849 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 850 // Ignore dependencies from outside the current trace. 851 if (!DepTBI.isUsefulDominator(TBI)) 852 continue; 853 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 854 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 855 // Add latency if DefMI is a real instruction. Transients get latency 0. 856 if (!Dep.DefMI->isTransient()) 857 DepCycle += MTM.SchedModel 858 .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp); 859 Cycle = std::max(Cycle, DepCycle); 860 } 861 // Remember the instruction depth. 862 InstrCycles &MICycles = Cycles[UseMI]; 863 MICycles.Depth = Cycle; 864 865 if (!TBI.HasValidInstrHeights) { 866 DEBUG(dbgs() << Cycle << '\t' << *UseMI); 867 continue; 868 } 869 // Update critical path length. 870 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 871 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI); 872 } 873 } 874 } 875 876 // Identify physreg dependencies for MI when scanning instructions upwards. 877 // Return the issue height of MI after considering any live regunits. 878 // Height is the issue height computed from virtual register dependencies alone. 879 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 880 SparseSet<LiveRegUnit> &RegUnits, 881 const TargetSchedModel &SchedModel, 882 const TargetInstrInfo *TII, 883 const TargetRegisterInfo *TRI) { 884 SmallVector<unsigned, 8> ReadOps; 885 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 886 if (!MO->isReg()) 887 continue; 888 unsigned Reg = MO->getReg(); 889 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 890 continue; 891 if (MO->readsReg()) 892 ReadOps.push_back(MO.getOperandNo()); 893 if (!MO->isDef()) 894 continue; 895 // This is a def of Reg. Remove corresponding entries from RegUnits, and 896 // update MI Height to consider the physreg dependencies. 897 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 898 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 899 if (I == RegUnits.end()) 900 continue; 901 unsigned DepHeight = I->Cycle; 902 if (!MI->isTransient()) { 903 // We may not know the UseMI of this dependency, if it came from the 904 // live-in list. SchedModel can handle a NULL UseMI. 905 DepHeight += SchedModel 906 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op); 907 } 908 Height = std::max(Height, DepHeight); 909 // This regunit is dead above MI. 910 RegUnits.erase(I); 911 } 912 } 913 914 // Now we know the height of MI. Update any regunits read. 915 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 916 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 917 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 918 LiveRegUnit &LRU = RegUnits[*Units]; 919 // Set the height to the highest reader of the unit. 920 if (LRU.Cycle <= Height && LRU.MI != MI) { 921 LRU.Cycle = Height; 922 LRU.MI = MI; 923 LRU.Op = ReadOps[i]; 924 } 925 } 926 } 927 928 return Height; 929 } 930 931 932 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 933 934 // Push the height of DefMI upwards if required to match UseMI. 935 // Return true if this is the first time DefMI was seen. 936 static bool pushDepHeight(const DataDep &Dep, 937 const MachineInstr *UseMI, unsigned UseHeight, 938 MIHeightMap &Heights, 939 const TargetSchedModel &SchedModel, 940 const TargetInstrInfo *TII) { 941 // Adjust height by Dep.DefMI latency. 942 if (!Dep.DefMI->isTransient()) 943 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 944 UseMI, Dep.UseOp); 945 946 // Update Heights[DefMI] to be the maximum height seen. 947 MIHeightMap::iterator I; 948 bool New; 949 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 950 if (New) 951 return true; 952 953 // DefMI has been pushed before. Give it the max height. 954 if (I->second < UseHeight) 955 I->second = UseHeight; 956 return false; 957 } 958 959 /// Assuming that the virtual register defined by DefMI:DefOp was used by 960 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 961 /// when reaching the block that contains DefMI. 962 void MachineTraceMetrics::Ensemble:: 963 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 964 ArrayRef<const MachineBasicBlock*> Trace) { 965 assert(!Trace.empty() && "Trace should contain at least one block"); 966 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 967 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 968 const MachineBasicBlock *DefMBB = DefMI->getParent(); 969 970 // Reg is live-in to all blocks in Trace that follow DefMBB. 971 for (unsigned i = Trace.size(); i; --i) { 972 const MachineBasicBlock *MBB = Trace[i-1]; 973 if (MBB == DefMBB) 974 return; 975 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 976 // Just add the register. The height will be updated later. 977 TBI.LiveIns.push_back(Reg); 978 } 979 } 980 981 /// Compute instruction heights in the trace through MBB. This updates MBB and 982 /// the blocks below it in the trace. It is assumed that the trace has already 983 /// been computed. 984 void MachineTraceMetrics::Ensemble:: 985 computeInstrHeights(const MachineBasicBlock *MBB) { 986 // The bottom of the trace may already be computed. 987 // Find the blocks that need updating. 988 SmallVector<const MachineBasicBlock*, 8> Stack; 989 do { 990 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 991 assert(TBI.hasValidHeight() && "Incomplete trace"); 992 if (TBI.HasValidInstrHeights) 993 break; 994 Stack.push_back(MBB); 995 TBI.LiveIns.clear(); 996 MBB = TBI.Succ; 997 } while (MBB); 998 999 // As we move upwards in the trace, keep track of instructions that are 1000 // required by deeper trace instructions. Map MI -> height required so far. 1001 MIHeightMap Heights; 1002 1003 // For physregs, the def isn't known when we see the use. 1004 // Instead, keep track of the highest use of each regunit. 1005 SparseSet<LiveRegUnit> RegUnits; 1006 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1007 1008 // If the bottom of the trace was already precomputed, initialize heights 1009 // from its live-in list. 1010 // MBB is the highest precomputed block in the trace. 1011 if (MBB) { 1012 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1013 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1014 LiveInReg LI = TBI.LiveIns[i]; 1015 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1016 // For virtual registers, the def latency is included. 1017 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1018 if (Height < LI.Height) 1019 Height = LI.Height; 1020 } else { 1021 // For register units, the def latency is not included because we don't 1022 // know the def yet. 1023 RegUnits[LI.Reg].Cycle = LI.Height; 1024 } 1025 } 1026 } 1027 1028 // Go through the trace blocks in bottom-up order. 1029 SmallVector<DataDep, 8> Deps; 1030 for (;!Stack.empty(); Stack.pop_back()) { 1031 MBB = Stack.back(); 1032 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1033 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1034 TBI.HasValidInstrHeights = true; 1035 TBI.CriticalPath = 0; 1036 1037 DEBUG({ 1038 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1039 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1040 for (unsigned K = 0; K != PRHeights.size(); ++K) 1041 if (PRHeights[K]) { 1042 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1043 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1044 << MTM.SchedModel.getProcResource(K)->Name << " (" 1045 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1046 } 1047 }); 1048 1049 // Get dependencies from PHIs in the trace successor. 1050 const MachineBasicBlock *Succ = TBI.Succ; 1051 // If MBB is the last block in the trace, and it has a back-edge to the 1052 // loop header, get loop-carried dependencies from PHIs in the header. For 1053 // that purpose, pretend that all the loop header PHIs have height 0. 1054 if (!Succ) 1055 if (const MachineLoop *Loop = getLoopFor(MBB)) 1056 if (MBB->isSuccessor(Loop->getHeader())) 1057 Succ = Loop->getHeader(); 1058 1059 if (Succ) { 1060 for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end(); 1061 I != E && I->isPHI(); ++I) { 1062 const MachineInstr *PHI = I; 1063 Deps.clear(); 1064 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1065 if (!Deps.empty()) { 1066 // Loop header PHI heights are all 0. 1067 unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0; 1068 DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI); 1069 if (pushDepHeight(Deps.front(), PHI, Height, 1070 Heights, MTM.SchedModel, MTM.TII)) 1071 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1072 } 1073 } 1074 } 1075 1076 // Go through the block backwards. 1077 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1078 BI != BB;) { 1079 const MachineInstr *MI = --BI; 1080 1081 // Find the MI height as determined by virtual register uses in the 1082 // trace below. 1083 unsigned Cycle = 0; 1084 MIHeightMap::iterator HeightI = Heights.find(MI); 1085 if (HeightI != Heights.end()) { 1086 Cycle = HeightI->second; 1087 // We won't be seeing any more MI uses. 1088 Heights.erase(HeightI); 1089 } 1090 1091 // Don't process PHI deps. They depend on the specific predecessor, and 1092 // we'll get them when visiting the predecessor. 1093 Deps.clear(); 1094 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1095 1096 // There may also be regunit dependencies to include in the height. 1097 if (HasPhysRegs) 1098 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 1099 MTM.SchedModel, MTM.TII, MTM.TRI); 1100 1101 // Update the required height of any virtual registers read by MI. 1102 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 1103 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1104 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 1105 1106 InstrCycles &MICycles = Cycles[MI]; 1107 MICycles.Height = Cycle; 1108 if (!TBI.HasValidInstrDepths) { 1109 DEBUG(dbgs() << Cycle << '\t' << *MI); 1110 continue; 1111 } 1112 // Update critical path length. 1113 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1114 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 1115 } 1116 1117 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1118 // height because the final height isn't known until now. 1119 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1120 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 1121 LiveInReg &LIR = TBI.LiveIns[i]; 1122 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1123 LIR.Height = Heights.lookup(DefMI); 1124 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1125 } 1126 1127 // Transfer the live regunits to the live-in list. 1128 for (SparseSet<LiveRegUnit>::const_iterator 1129 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1130 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1131 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1132 << '@' << RI->Cycle); 1133 } 1134 DEBUG(dbgs() << '\n'); 1135 1136 if (!TBI.HasValidInstrDepths) 1137 continue; 1138 // Add live-ins to the critical path length. 1139 TBI.CriticalPath = std::max(TBI.CriticalPath, 1140 computeCrossBlockCriticalPath(TBI)); 1141 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1142 } 1143 } 1144 1145 MachineTraceMetrics::Trace 1146 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1147 // FIXME: Check cache tags, recompute as needed. 1148 computeTrace(MBB); 1149 computeInstrDepths(MBB); 1150 computeInstrHeights(MBB); 1151 return Trace(*this, BlockInfo[MBB->getNumber()]); 1152 } 1153 1154 unsigned 1155 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 1156 assert(MI && "Not an instruction."); 1157 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 1158 "MI must be in the trace center block"); 1159 InstrCycles Cyc = getInstrCycles(MI); 1160 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1161 } 1162 1163 unsigned 1164 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 1165 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1166 SmallVector<DataDep, 1> Deps; 1167 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1168 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1169 DataDep &Dep = Deps.front(); 1170 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 1171 // Add latency if DefMI is a real instruction. Transients get latency 0. 1172 if (!Dep.DefMI->isTransient()) 1173 DepCycle += TE.MTM.SchedModel 1174 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 1175 return DepCycle; 1176 } 1177 1178 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1179 // Find the limiting processor resource. 1180 // Numbers have been pre-scaled to be comparable. 1181 unsigned PRMax = 0; 1182 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1183 if (Bottom) { 1184 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1185 for (unsigned K = 0; K != PRDepths.size(); ++K) 1186 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1187 } else { 1188 for (unsigned K = 0; K != PRDepths.size(); ++K) 1189 PRMax = std::max(PRMax, PRDepths[K]); 1190 } 1191 // Convert to cycle count. 1192 PRMax = TE.MTM.getCycles(PRMax); 1193 1194 unsigned Instrs = TBI.InstrDepth; 1195 if (Bottom) 1196 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1197 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1198 Instrs /= IW; 1199 // Assume issue width 1 without a schedule model. 1200 return std::max(Instrs, PRMax); 1201 } 1202 1203 1204 unsigned MachineTraceMetrics::Trace:: 1205 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks, 1206 ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const { 1207 // Add up resources above and below the center block. 1208 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1209 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1210 unsigned PRMax = 0; 1211 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1212 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1213 for (unsigned I = 0; I != Extrablocks.size(); ++I) 1214 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 1215 for (unsigned I = 0; I != ExtraInstrs.size(); ++I) { 1216 const MCSchedClassDesc* SC = ExtraInstrs[I]; 1217 if (!SC->isValid()) 1218 continue; 1219 for (TargetSchedModel::ProcResIter 1220 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1221 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 1222 if (PI->ProcResourceIdx != K) 1223 continue; 1224 PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K)); 1225 } 1226 } 1227 PRMax = std::max(PRMax, PRCycles); 1228 } 1229 // Convert to cycle count. 1230 PRMax = TE.MTM.getCycles(PRMax); 1231 1232 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1233 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 1234 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 1235 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1236 Instrs /= IW; 1237 // Assume issue width 1 without a schedule model. 1238 return std::max(Instrs, PRMax); 1239 } 1240 1241 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1242 OS << getName() << " ensemble:\n"; 1243 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1244 OS << " BB#" << i << '\t'; 1245 BlockInfo[i].print(OS); 1246 OS << '\n'; 1247 } 1248 } 1249 1250 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1251 if (hasValidDepth()) { 1252 OS << "depth=" << InstrDepth; 1253 if (Pred) 1254 OS << " pred=BB#" << Pred->getNumber(); 1255 else 1256 OS << " pred=null"; 1257 OS << " head=BB#" << Head; 1258 if (HasValidInstrDepths) 1259 OS << " +instrs"; 1260 } else 1261 OS << "depth invalid"; 1262 OS << ", "; 1263 if (hasValidHeight()) { 1264 OS << "height=" << InstrHeight; 1265 if (Succ) 1266 OS << " succ=BB#" << Succ->getNumber(); 1267 else 1268 OS << " succ=null"; 1269 OS << " tail=BB#" << Tail; 1270 if (HasValidInstrHeights) 1271 OS << " +instrs"; 1272 } else 1273 OS << "height invalid"; 1274 if (HasValidInstrDepths && HasValidInstrHeights) 1275 OS << ", crit=" << CriticalPath; 1276 } 1277 1278 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1279 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1280 1281 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1282 << " --> BB#" << TBI.Tail << ':'; 1283 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1284 OS << ' ' << getInstrCount() << " instrs."; 1285 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1286 OS << ' ' << TBI.CriticalPath << " cycles."; 1287 1288 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1289 OS << "\nBB#" << MBBNum; 1290 while (Block->hasValidDepth() && Block->Pred) { 1291 unsigned Num = Block->Pred->getNumber(); 1292 OS << " <- BB#" << Num; 1293 Block = &TE.BlockInfo[Num]; 1294 } 1295 1296 Block = &TBI; 1297 OS << "\n "; 1298 while (Block->hasValidHeight() && Block->Succ) { 1299 unsigned Num = Block->Succ->getNumber(); 1300 OS << " -> BB#" << Num; 1301 Block = &TE.BlockInfo[Num]; 1302 } 1303 OS << '\n'; 1304 } 1305