1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/MachineTraceMetrics.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/Optional.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/SparseSet.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Format.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include "llvm/Target/TargetSubtargetInfo.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <iterator> 37 #include <tuple> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "machine-trace-metrics" 43 44 char MachineTraceMetrics::ID = 0; 45 46 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 47 48 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 49 "Machine Trace Metrics", false, true) 50 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 51 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 52 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 53 "Machine Trace Metrics", false, true) 54 55 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 56 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 57 } 58 59 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 60 AU.setPreservesAll(); 61 AU.addRequired<MachineBranchProbabilityInfo>(); 62 AU.addRequired<MachineLoopInfo>(); 63 MachineFunctionPass::getAnalysisUsage(AU); 64 } 65 66 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 67 MF = &Func; 68 const TargetSubtargetInfo &ST = MF->getSubtarget(); 69 TII = ST.getInstrInfo(); 70 TRI = ST.getRegisterInfo(); 71 MRI = &MF->getRegInfo(); 72 Loops = &getAnalysis<MachineLoopInfo>(); 73 SchedModel.init(ST.getSchedModel(), &ST, TII); 74 BlockInfo.resize(MF->getNumBlockIDs()); 75 ProcResourceCycles.resize(MF->getNumBlockIDs() * 76 SchedModel.getNumProcResourceKinds()); 77 return false; 78 } 79 80 void MachineTraceMetrics::releaseMemory() { 81 MF = nullptr; 82 BlockInfo.clear(); 83 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 84 delete Ensembles[i]; 85 Ensembles[i] = nullptr; 86 } 87 } 88 89 //===----------------------------------------------------------------------===// 90 // Fixed block information 91 //===----------------------------------------------------------------------===// 92 // 93 // The number of instructions in a basic block and the CPU resources used by 94 // those instructions don't depend on any given trace strategy. 95 96 /// Compute the resource usage in basic block MBB. 97 const MachineTraceMetrics::FixedBlockInfo* 98 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 99 assert(MBB && "No basic block"); 100 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 101 if (FBI->hasResources()) 102 return FBI; 103 104 // Compute resource usage in the block. 105 FBI->HasCalls = false; 106 unsigned InstrCount = 0; 107 108 // Add up per-processor resource cycles as well. 109 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 110 SmallVector<unsigned, 32> PRCycles(PRKinds); 111 112 for (const auto &MI : *MBB) { 113 if (MI.isTransient()) 114 continue; 115 ++InstrCount; 116 if (MI.isCall()) 117 FBI->HasCalls = true; 118 119 // Count processor resources used. 120 if (!SchedModel.hasInstrSchedModel()) 121 continue; 122 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 123 if (!SC->isValid()) 124 continue; 125 126 for (TargetSchedModel::ProcResIter 127 PI = SchedModel.getWriteProcResBegin(SC), 128 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 129 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 130 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 131 } 132 } 133 FBI->InstrCount = InstrCount; 134 135 // Scale the resource cycles so they are comparable. 136 unsigned PROffset = MBB->getNumber() * PRKinds; 137 for (unsigned K = 0; K != PRKinds; ++K) 138 ProcResourceCycles[PROffset + K] = 139 PRCycles[K] * SchedModel.getResourceFactor(K); 140 141 return FBI; 142 } 143 144 ArrayRef<unsigned> 145 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 146 assert(BlockInfo[MBBNum].hasResources() && 147 "getResources() must be called before getProcResourceCycles()"); 148 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 149 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 150 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 151 } 152 153 //===----------------------------------------------------------------------===// 154 // Ensemble utility functions 155 //===----------------------------------------------------------------------===// 156 157 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 158 : MTM(*ct) { 159 BlockInfo.resize(MTM.BlockInfo.size()); 160 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 161 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 162 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 163 } 164 165 // Virtual destructor serves as an anchor. 166 MachineTraceMetrics::Ensemble::~Ensemble() = default; 167 168 const MachineLoop* 169 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 170 return MTM.Loops->getLoopFor(MBB); 171 } 172 173 // Update resource-related information in the TraceBlockInfo for MBB. 174 // Only update resources related to the trace above MBB. 175 void MachineTraceMetrics::Ensemble:: 176 computeDepthResources(const MachineBasicBlock *MBB) { 177 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 178 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 179 unsigned PROffset = MBB->getNumber() * PRKinds; 180 181 // Compute resources from trace above. The top block is simple. 182 if (!TBI->Pred) { 183 TBI->InstrDepth = 0; 184 TBI->Head = MBB->getNumber(); 185 std::fill(ProcResourceDepths.begin() + PROffset, 186 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 187 return; 188 } 189 190 // Compute from the block above. A post-order traversal ensures the 191 // predecessor is always computed first. 192 unsigned PredNum = TBI->Pred->getNumber(); 193 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 194 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 195 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 196 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 197 TBI->Head = PredTBI->Head; 198 199 // Compute per-resource depths. 200 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 201 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 202 for (unsigned K = 0; K != PRKinds; ++K) 203 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 204 } 205 206 // Update resource-related information in the TraceBlockInfo for MBB. 207 // Only update resources related to the trace below MBB. 208 void MachineTraceMetrics::Ensemble:: 209 computeHeightResources(const MachineBasicBlock *MBB) { 210 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 211 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 212 unsigned PROffset = MBB->getNumber() * PRKinds; 213 214 // Compute resources for the current block. 215 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 216 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 217 218 // The trace tail is done. 219 if (!TBI->Succ) { 220 TBI->Tail = MBB->getNumber(); 221 std::copy(PRCycles.begin(), PRCycles.end(), 222 ProcResourceHeights.begin() + PROffset); 223 return; 224 } 225 226 // Compute from the block below. A post-order traversal ensures the 227 // predecessor is always computed first. 228 unsigned SuccNum = TBI->Succ->getNumber(); 229 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 230 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 231 TBI->InstrHeight += SuccTBI->InstrHeight; 232 TBI->Tail = SuccTBI->Tail; 233 234 // Compute per-resource heights. 235 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 236 for (unsigned K = 0; K != PRKinds; ++K) 237 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 238 } 239 240 // Check if depth resources for MBB are valid and return the TBI. 241 // Return NULL if the resources have been invalidated. 242 const MachineTraceMetrics::TraceBlockInfo* 243 MachineTraceMetrics::Ensemble:: 244 getDepthResources(const MachineBasicBlock *MBB) const { 245 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 246 return TBI->hasValidDepth() ? TBI : nullptr; 247 } 248 249 // Check if height resources for MBB are valid and return the TBI. 250 // Return NULL if the resources have been invalidated. 251 const MachineTraceMetrics::TraceBlockInfo* 252 MachineTraceMetrics::Ensemble:: 253 getHeightResources(const MachineBasicBlock *MBB) const { 254 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 255 return TBI->hasValidHeight() ? TBI : nullptr; 256 } 257 258 /// Get an array of processor resource depths for MBB. Indexed by processor 259 /// resource kind, this array contains the scaled processor resources consumed 260 /// by all blocks preceding MBB in its trace. It does not include instructions 261 /// in MBB. 262 /// 263 /// Compare TraceBlockInfo::InstrDepth. 264 ArrayRef<unsigned> 265 MachineTraceMetrics::Ensemble:: 266 getProcResourceDepths(unsigned MBBNum) const { 267 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 268 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 269 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 270 } 271 272 /// Get an array of processor resource heights for MBB. Indexed by processor 273 /// resource kind, this array contains the scaled processor resources consumed 274 /// by this block and all blocks following it in its trace. 275 /// 276 /// Compare TraceBlockInfo::InstrHeight. 277 ArrayRef<unsigned> 278 MachineTraceMetrics::Ensemble:: 279 getProcResourceHeights(unsigned MBBNum) const { 280 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 281 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 282 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 283 } 284 285 //===----------------------------------------------------------------------===// 286 // Trace Selection Strategies 287 //===----------------------------------------------------------------------===// 288 // 289 // A trace selection strategy is implemented as a sub-class of Ensemble. The 290 // trace through a block B is computed by two DFS traversals of the CFG 291 // starting from B. One upwards, and one downwards. During the upwards DFS, 292 // pickTracePred() is called on the post-ordered blocks. During the downwards 293 // DFS, pickTraceSucc() is called in a post-order. 294 // 295 296 // We never allow traces that leave loops, but we do allow traces to enter 297 // nested loops. We also never allow traces to contain back-edges. 298 // 299 // This means that a loop header can never appear above the center block of a 300 // trace, except as the trace head. Below the center block, loop exiting edges 301 // are banned. 302 // 303 // Return true if an edge from the From loop to the To loop is leaving a loop. 304 // Either of To and From can be null. 305 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 306 return From && !From->contains(To); 307 } 308 309 // MinInstrCountEnsemble - Pick the trace that executes the least number of 310 // instructions. 311 namespace { 312 313 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 314 const char *getName() const override { return "MinInstr"; } 315 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 316 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 317 318 public: 319 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 320 : MachineTraceMetrics::Ensemble(mtm) {} 321 }; 322 323 } // end anonymous namespace 324 325 // Select the preferred predecessor for MBB. 326 const MachineBasicBlock* 327 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 328 if (MBB->pred_empty()) 329 return nullptr; 330 const MachineLoop *CurLoop = getLoopFor(MBB); 331 // Don't leave loops, and never follow back-edges. 332 if (CurLoop && MBB == CurLoop->getHeader()) 333 return nullptr; 334 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 335 const MachineBasicBlock *Best = nullptr; 336 unsigned BestDepth = 0; 337 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 338 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 339 getDepthResources(Pred); 340 // Ignore cycles that aren't natural loops. 341 if (!PredTBI) 342 continue; 343 // Pick the predecessor that would give this block the smallest InstrDepth. 344 unsigned Depth = PredTBI->InstrDepth + CurCount; 345 if (!Best || Depth < BestDepth) { 346 Best = Pred; 347 BestDepth = Depth; 348 } 349 } 350 return Best; 351 } 352 353 // Select the preferred successor for MBB. 354 const MachineBasicBlock* 355 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 356 if (MBB->pred_empty()) 357 return nullptr; 358 const MachineLoop *CurLoop = getLoopFor(MBB); 359 const MachineBasicBlock *Best = nullptr; 360 unsigned BestHeight = 0; 361 for (const MachineBasicBlock *Succ : MBB->successors()) { 362 // Don't consider back-edges. 363 if (CurLoop && Succ == CurLoop->getHeader()) 364 continue; 365 // Don't consider successors exiting CurLoop. 366 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 367 continue; 368 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 369 getHeightResources(Succ); 370 // Ignore cycles that aren't natural loops. 371 if (!SuccTBI) 372 continue; 373 // Pick the successor that would give this block the smallest InstrHeight. 374 unsigned Height = SuccTBI->InstrHeight; 375 if (!Best || Height < BestHeight) { 376 Best = Succ; 377 BestHeight = Height; 378 } 379 } 380 return Best; 381 } 382 383 // Get an Ensemble sub-class for the requested trace strategy. 384 MachineTraceMetrics::Ensemble * 385 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 386 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 387 Ensemble *&E = Ensembles[strategy]; 388 if (E) 389 return E; 390 391 // Allocate new Ensemble on demand. 392 switch (strategy) { 393 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 394 default: llvm_unreachable("Invalid trace strategy enum"); 395 } 396 } 397 398 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 399 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 400 BlockInfo[MBB->getNumber()].invalidate(); 401 for (unsigned i = 0; i != TS_NumStrategies; ++i) 402 if (Ensembles[i]) 403 Ensembles[i]->invalidate(MBB); 404 } 405 406 void MachineTraceMetrics::verifyAnalysis() const { 407 if (!MF) 408 return; 409 #ifndef NDEBUG 410 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 411 for (unsigned i = 0; i != TS_NumStrategies; ++i) 412 if (Ensembles[i]) 413 Ensembles[i]->verify(); 414 #endif 415 } 416 417 //===----------------------------------------------------------------------===// 418 // Trace building 419 //===----------------------------------------------------------------------===// 420 // 421 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 422 // set abstraction that confines the search to the current loop, and doesn't 423 // revisit blocks. 424 425 namespace { 426 427 struct LoopBounds { 428 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 429 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 430 const MachineLoopInfo *Loops; 431 bool Downward = false; 432 433 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 434 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 435 }; 436 437 } // end anonymous namespace 438 439 // Specialize po_iterator_storage in order to prune the post-order traversal so 440 // it is limited to the current loop and doesn't traverse the loop back edges. 441 namespace llvm { 442 443 template<> 444 class po_iterator_storage<LoopBounds, true> { 445 LoopBounds &LB; 446 447 public: 448 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 449 450 void finishPostorder(const MachineBasicBlock*) {} 451 452 bool insertEdge(Optional<const MachineBasicBlock *> From, 453 const MachineBasicBlock *To) { 454 // Skip already visited To blocks. 455 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 456 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 457 return false; 458 // From is null once when To is the trace center block. 459 if (From) { 460 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 461 // Don't follow backedges, don't leave FromLoop when going upwards. 462 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 463 return false; 464 // Don't leave FromLoop. 465 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 466 return false; 467 } 468 } 469 // To is a new block. Mark the block as visited in case the CFG has cycles 470 // that MachineLoopInfo didn't recognize as a natural loop. 471 return LB.Visited.insert(To).second; 472 } 473 }; 474 475 } // end namespace llvm 476 477 /// Compute the trace through MBB. 478 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 479 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 480 << MBB->getNumber() << '\n'); 481 // Set up loop bounds for the backwards post-order traversal. 482 LoopBounds Bounds(BlockInfo, MTM.Loops); 483 484 // Run an upwards post-order search for the trace start. 485 Bounds.Downward = false; 486 Bounds.Visited.clear(); 487 for (auto I : inverse_post_order_ext(MBB, Bounds)) { 488 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 489 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 490 // All the predecessors have been visited, pick the preferred one. 491 TBI.Pred = pickTracePred(I); 492 DEBUG({ 493 if (TBI.Pred) 494 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 495 else 496 dbgs() << "null\n"; 497 }); 498 // The trace leading to I is now known, compute the depth resources. 499 computeDepthResources(I); 500 } 501 502 // Run a downwards post-order search for the trace end. 503 Bounds.Downward = true; 504 Bounds.Visited.clear(); 505 for (auto I : post_order_ext(MBB, Bounds)) { 506 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 507 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 508 // All the successors have been visited, pick the preferred one. 509 TBI.Succ = pickTraceSucc(I); 510 DEBUG({ 511 if (TBI.Succ) 512 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 513 else 514 dbgs() << "null\n"; 515 }); 516 // The trace leaving I is now known, compute the height resources. 517 computeHeightResources(I); 518 } 519 } 520 521 /// Invalidate traces through BadMBB. 522 void 523 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 524 SmallVector<const MachineBasicBlock*, 16> WorkList; 525 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 526 527 // Invalidate height resources of blocks above MBB. 528 if (BadTBI.hasValidHeight()) { 529 BadTBI.invalidateHeight(); 530 WorkList.push_back(BadMBB); 531 do { 532 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 533 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 534 << " height.\n"); 535 // Find any MBB predecessors that have MBB as their preferred successor. 536 // They are the only ones that need to be invalidated. 537 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 538 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 539 if (!TBI.hasValidHeight()) 540 continue; 541 if (TBI.Succ == MBB) { 542 TBI.invalidateHeight(); 543 WorkList.push_back(Pred); 544 continue; 545 } 546 // Verify that TBI.Succ is actually a *I successor. 547 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 548 } 549 } while (!WorkList.empty()); 550 } 551 552 // Invalidate depth resources of blocks below MBB. 553 if (BadTBI.hasValidDepth()) { 554 BadTBI.invalidateDepth(); 555 WorkList.push_back(BadMBB); 556 do { 557 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 558 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 559 << " depth.\n"); 560 // Find any MBB successors that have MBB as their preferred predecessor. 561 // They are the only ones that need to be invalidated. 562 for (const MachineBasicBlock *Succ : MBB->successors()) { 563 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 564 if (!TBI.hasValidDepth()) 565 continue; 566 if (TBI.Pred == MBB) { 567 TBI.invalidateDepth(); 568 WorkList.push_back(Succ); 569 continue; 570 } 571 // Verify that TBI.Pred is actually a *I predecessor. 572 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 573 } 574 } while (!WorkList.empty()); 575 } 576 577 // Clear any per-instruction data. We only have to do this for BadMBB itself 578 // because the instructions in that block may change. Other blocks may be 579 // invalidated, but their instructions will stay the same, so there is no 580 // need to erase the Cycle entries. They will be overwritten when we 581 // recompute. 582 for (const auto &I : *BadMBB) 583 Cycles.erase(&I); 584 } 585 586 void MachineTraceMetrics::Ensemble::verify() const { 587 #ifndef NDEBUG 588 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 589 "Outdated BlockInfo size"); 590 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 591 const TraceBlockInfo &TBI = BlockInfo[Num]; 592 if (TBI.hasValidDepth() && TBI.Pred) { 593 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 594 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 595 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 596 "Trace is broken, depth should have been invalidated."); 597 const MachineLoop *Loop = getLoopFor(MBB); 598 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 599 } 600 if (TBI.hasValidHeight() && TBI.Succ) { 601 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 602 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 603 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 604 "Trace is broken, height should have been invalidated."); 605 const MachineLoop *Loop = getLoopFor(MBB); 606 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 607 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 608 "Trace contains backedge"); 609 } 610 } 611 #endif 612 } 613 614 //===----------------------------------------------------------------------===// 615 // Data Dependencies 616 //===----------------------------------------------------------------------===// 617 // 618 // Compute the depth and height of each instruction based on data dependencies 619 // and instruction latencies. These cycle numbers assume that the CPU can issue 620 // an infinite number of instructions per cycle as long as their dependencies 621 // are ready. 622 623 // A data dependency is represented as a defining MI and operand numbers on the 624 // defining and using MI. 625 namespace { 626 627 struct DataDep { 628 const MachineInstr *DefMI; 629 unsigned DefOp; 630 unsigned UseOp; 631 632 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 633 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 634 635 /// Create a DataDep from an SSA form virtual register. 636 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 637 : UseOp(UseOp) { 638 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 639 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 640 assert(!DefI.atEnd() && "Register has no defs"); 641 DefMI = DefI->getParent(); 642 DefOp = DefI.getOperandNo(); 643 assert((++DefI).atEnd() && "Register has multiple defs"); 644 } 645 }; 646 647 } // end anonymous namespace 648 649 // Get the input data dependencies that must be ready before UseMI can issue. 650 // Return true if UseMI has any physreg operands. 651 static bool getDataDeps(const MachineInstr &UseMI, 652 SmallVectorImpl<DataDep> &Deps, 653 const MachineRegisterInfo *MRI) { 654 // Debug values should not be included in any calculations. 655 if (UseMI.isDebugValue()) 656 return false; 657 658 bool HasPhysRegs = false; 659 for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(), 660 E = UseMI.operands_end(); I != E; ++I) { 661 const MachineOperand &MO = *I; 662 if (!MO.isReg()) 663 continue; 664 unsigned Reg = MO.getReg(); 665 if (!Reg) 666 continue; 667 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 668 HasPhysRegs = true; 669 continue; 670 } 671 // Collect virtual register reads. 672 if (MO.readsReg()) 673 Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I))); 674 } 675 return HasPhysRegs; 676 } 677 678 // Get the input data dependencies of a PHI instruction, using Pred as the 679 // preferred predecessor. 680 // This will add at most one dependency to Deps. 681 static void getPHIDeps(const MachineInstr &UseMI, 682 SmallVectorImpl<DataDep> &Deps, 683 const MachineBasicBlock *Pred, 684 const MachineRegisterInfo *MRI) { 685 // No predecessor at the beginning of a trace. Ignore dependencies. 686 if (!Pred) 687 return; 688 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 689 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 690 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 691 unsigned Reg = UseMI.getOperand(i).getReg(); 692 Deps.push_back(DataDep(MRI, Reg, i)); 693 return; 694 } 695 } 696 } 697 698 // Identify physreg dependencies for UseMI, and update the live regunit 699 // tracking set when scanning instructions downwards. 700 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 701 SmallVectorImpl<DataDep> &Deps, 702 SparseSet<LiveRegUnit> &RegUnits, 703 const TargetRegisterInfo *TRI) { 704 SmallVector<unsigned, 8> Kills; 705 SmallVector<unsigned, 8> LiveDefOps; 706 707 for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), 708 ME = UseMI->operands_end(); MI != ME; ++MI) { 709 const MachineOperand &MO = *MI; 710 if (!MO.isReg()) 711 continue; 712 unsigned Reg = MO.getReg(); 713 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 714 continue; 715 // Track live defs and kills for updating RegUnits. 716 if (MO.isDef()) { 717 if (MO.isDead()) 718 Kills.push_back(Reg); 719 else 720 LiveDefOps.push_back(UseMI->getOperandNo(MI)); 721 } else if (MO.isKill()) 722 Kills.push_back(Reg); 723 // Identify dependencies. 724 if (!MO.readsReg()) 725 continue; 726 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 727 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 728 if (I == RegUnits.end()) 729 continue; 730 Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); 731 break; 732 } 733 } 734 735 // Update RegUnits to reflect live registers after UseMI. 736 // First kills. 737 for (unsigned Kill : Kills) 738 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 739 RegUnits.erase(*Units); 740 741 // Second, live defs. 742 for (unsigned DefOp : LiveDefOps) { 743 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 744 Units.isValid(); ++Units) { 745 LiveRegUnit &LRU = RegUnits[*Units]; 746 LRU.MI = UseMI; 747 LRU.Op = DefOp; 748 } 749 } 750 } 751 752 /// The length of the critical path through a trace is the maximum of two path 753 /// lengths: 754 /// 755 /// 1. The maximum height+depth over all instructions in the trace center block. 756 /// 757 /// 2. The longest cross-block dependency chain. For small blocks, it is 758 /// possible that the critical path through the trace doesn't include any 759 /// instructions in the block. 760 /// 761 /// This function computes the second number from the live-in list of the 762 /// center block. 763 unsigned MachineTraceMetrics::Ensemble:: 764 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 765 assert(TBI.HasValidInstrDepths && "Missing depth info"); 766 assert(TBI.HasValidInstrHeights && "Missing height info"); 767 unsigned MaxLen = 0; 768 for (const LiveInReg &LIR : TBI.LiveIns) { 769 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 770 continue; 771 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 772 // Ignore dependencies outside the current trace. 773 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 774 if (!DefTBI.isUsefulDominator(TBI)) 775 continue; 776 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 777 MaxLen = std::max(MaxLen, Len); 778 } 779 return MaxLen; 780 } 781 782 void MachineTraceMetrics::Ensemble:: 783 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 784 SparseSet<LiveRegUnit> &RegUnits) { 785 SmallVector<DataDep, 8> Deps; 786 // Collect all data dependencies. 787 if (UseMI.isPHI()) 788 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 789 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 790 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 791 792 // Filter and process dependencies, computing the earliest issue cycle. 793 unsigned Cycle = 0; 794 for (const DataDep &Dep : Deps) { 795 const TraceBlockInfo&DepTBI = 796 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 797 // Ignore dependencies from outside the current trace. 798 if (!DepTBI.isUsefulDominator(TBI)) 799 continue; 800 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 801 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 802 // Add latency if DefMI is a real instruction. Transients get latency 0. 803 if (!Dep.DefMI->isTransient()) 804 DepCycle += MTM.SchedModel 805 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 806 Cycle = std::max(Cycle, DepCycle); 807 } 808 // Remember the instruction depth. 809 InstrCycles &MICycles = Cycles[&UseMI]; 810 MICycles.Depth = Cycle; 811 812 if (TBI.HasValidInstrHeights) { 813 // Update critical path length. 814 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 815 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 816 } else { 817 DEBUG(dbgs() << Cycle << '\t' << UseMI); 818 } 819 } 820 821 void MachineTraceMetrics::Ensemble:: 822 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 823 SparseSet<LiveRegUnit> &RegUnits) { 824 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 825 } 826 827 /// Compute instruction depths for all instructions above or in MBB in its 828 /// trace. This assumes that the trace through MBB has already been computed. 829 void MachineTraceMetrics::Ensemble:: 830 computeInstrDepths(const MachineBasicBlock *MBB) { 831 // The top of the trace may already be computed, and HasValidInstrDepths 832 // implies Head->HasValidInstrDepths, so we only need to start from the first 833 // block in the trace that needs to be recomputed. 834 SmallVector<const MachineBasicBlock*, 8> Stack; 835 do { 836 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 837 assert(TBI.hasValidDepth() && "Incomplete trace"); 838 if (TBI.HasValidInstrDepths) 839 break; 840 Stack.push_back(MBB); 841 MBB = TBI.Pred; 842 } while (MBB); 843 844 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 845 // in the trace. We should track any live-out physregs that were defined in 846 // the trace. This is quite rare in SSA form, typically created by CSE 847 // hoisting a compare. 848 SparseSet<LiveRegUnit> RegUnits; 849 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 850 851 // Go through trace blocks in top-down order, stopping after the center block. 852 while (!Stack.empty()) { 853 MBB = Stack.pop_back_val(); 854 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 855 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 856 TBI.HasValidInstrDepths = true; 857 TBI.CriticalPath = 0; 858 859 // Print out resource depths here as well. 860 DEBUG({ 861 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 862 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 863 for (unsigned K = 0; K != PRDepths.size(); ++K) 864 if (PRDepths[K]) { 865 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 866 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 867 << MTM.SchedModel.getProcResource(K)->Name << " (" 868 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 869 } 870 }); 871 872 // Also compute the critical path length through MBB when possible. 873 if (TBI.HasValidInstrHeights) 874 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 875 876 for (const auto &UseMI : *MBB) { 877 updateDepth(TBI, UseMI, RegUnits); 878 } 879 } 880 } 881 882 // Identify physreg dependencies for MI when scanning instructions upwards. 883 // Return the issue height of MI after considering any live regunits. 884 // Height is the issue height computed from virtual register dependencies alone. 885 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 886 SparseSet<LiveRegUnit> &RegUnits, 887 const TargetSchedModel &SchedModel, 888 const TargetInstrInfo *TII, 889 const TargetRegisterInfo *TRI) { 890 SmallVector<unsigned, 8> ReadOps; 891 892 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 893 MOE = MI.operands_end(); 894 MOI != MOE; ++MOI) { 895 const MachineOperand &MO = *MOI; 896 if (!MO.isReg()) 897 continue; 898 unsigned Reg = MO.getReg(); 899 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 900 continue; 901 if (MO.readsReg()) 902 ReadOps.push_back(MI.getOperandNo(MOI)); 903 if (!MO.isDef()) 904 continue; 905 // This is a def of Reg. Remove corresponding entries from RegUnits, and 906 // update MI Height to consider the physreg dependencies. 907 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 908 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 909 if (I == RegUnits.end()) 910 continue; 911 unsigned DepHeight = I->Cycle; 912 if (!MI.isTransient()) { 913 // We may not know the UseMI of this dependency, if it came from the 914 // live-in list. SchedModel can handle a NULL UseMI. 915 DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI), 916 I->MI, I->Op); 917 } 918 Height = std::max(Height, DepHeight); 919 // This regunit is dead above MI. 920 RegUnits.erase(I); 921 } 922 } 923 924 // Now we know the height of MI. Update any regunits read. 925 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 926 unsigned Reg = MI.getOperand(ReadOps[i]).getReg(); 927 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 928 LiveRegUnit &LRU = RegUnits[*Units]; 929 // Set the height to the highest reader of the unit. 930 if (LRU.Cycle <= Height && LRU.MI != &MI) { 931 LRU.Cycle = Height; 932 LRU.MI = &MI; 933 LRU.Op = ReadOps[i]; 934 } 935 } 936 } 937 938 return Height; 939 } 940 941 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 942 943 // Push the height of DefMI upwards if required to match UseMI. 944 // Return true if this is the first time DefMI was seen. 945 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 946 unsigned UseHeight, MIHeightMap &Heights, 947 const TargetSchedModel &SchedModel, 948 const TargetInstrInfo *TII) { 949 // Adjust height by Dep.DefMI latency. 950 if (!Dep.DefMI->isTransient()) 951 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 952 Dep.UseOp); 953 954 // Update Heights[DefMI] to be the maximum height seen. 955 MIHeightMap::iterator I; 956 bool New; 957 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 958 if (New) 959 return true; 960 961 // DefMI has been pushed before. Give it the max height. 962 if (I->second < UseHeight) 963 I->second = UseHeight; 964 return false; 965 } 966 967 /// Assuming that the virtual register defined by DefMI:DefOp was used by 968 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 969 /// when reaching the block that contains DefMI. 970 void MachineTraceMetrics::Ensemble:: 971 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 972 ArrayRef<const MachineBasicBlock*> Trace) { 973 assert(!Trace.empty() && "Trace should contain at least one block"); 974 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 975 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 976 const MachineBasicBlock *DefMBB = DefMI->getParent(); 977 978 // Reg is live-in to all blocks in Trace that follow DefMBB. 979 for (unsigned i = Trace.size(); i; --i) { 980 const MachineBasicBlock *MBB = Trace[i-1]; 981 if (MBB == DefMBB) 982 return; 983 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 984 // Just add the register. The height will be updated later. 985 TBI.LiveIns.push_back(Reg); 986 } 987 } 988 989 /// Compute instruction heights in the trace through MBB. This updates MBB and 990 /// the blocks below it in the trace. It is assumed that the trace has already 991 /// been computed. 992 void MachineTraceMetrics::Ensemble:: 993 computeInstrHeights(const MachineBasicBlock *MBB) { 994 // The bottom of the trace may already be computed. 995 // Find the blocks that need updating. 996 SmallVector<const MachineBasicBlock*, 8> Stack; 997 do { 998 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 999 assert(TBI.hasValidHeight() && "Incomplete trace"); 1000 if (TBI.HasValidInstrHeights) 1001 break; 1002 Stack.push_back(MBB); 1003 TBI.LiveIns.clear(); 1004 MBB = TBI.Succ; 1005 } while (MBB); 1006 1007 // As we move upwards in the trace, keep track of instructions that are 1008 // required by deeper trace instructions. Map MI -> height required so far. 1009 MIHeightMap Heights; 1010 1011 // For physregs, the def isn't known when we see the use. 1012 // Instead, keep track of the highest use of each regunit. 1013 SparseSet<LiveRegUnit> RegUnits; 1014 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1015 1016 // If the bottom of the trace was already precomputed, initialize heights 1017 // from its live-in list. 1018 // MBB is the highest precomputed block in the trace. 1019 if (MBB) { 1020 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1021 for (LiveInReg &LI : TBI.LiveIns) { 1022 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1023 // For virtual registers, the def latency is included. 1024 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1025 if (Height < LI.Height) 1026 Height = LI.Height; 1027 } else { 1028 // For register units, the def latency is not included because we don't 1029 // know the def yet. 1030 RegUnits[LI.Reg].Cycle = LI.Height; 1031 } 1032 } 1033 } 1034 1035 // Go through the trace blocks in bottom-up order. 1036 SmallVector<DataDep, 8> Deps; 1037 for (;!Stack.empty(); Stack.pop_back()) { 1038 MBB = Stack.back(); 1039 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 1040 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1041 TBI.HasValidInstrHeights = true; 1042 TBI.CriticalPath = 0; 1043 1044 DEBUG({ 1045 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1046 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1047 for (unsigned K = 0; K != PRHeights.size(); ++K) 1048 if (PRHeights[K]) { 1049 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1050 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1051 << MTM.SchedModel.getProcResource(K)->Name << " (" 1052 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1053 } 1054 }); 1055 1056 // Get dependencies from PHIs in the trace successor. 1057 const MachineBasicBlock *Succ = TBI.Succ; 1058 // If MBB is the last block in the trace, and it has a back-edge to the 1059 // loop header, get loop-carried dependencies from PHIs in the header. For 1060 // that purpose, pretend that all the loop header PHIs have height 0. 1061 if (!Succ) 1062 if (const MachineLoop *Loop = getLoopFor(MBB)) 1063 if (MBB->isSuccessor(Loop->getHeader())) 1064 Succ = Loop->getHeader(); 1065 1066 if (Succ) { 1067 for (const auto &PHI : *Succ) { 1068 if (!PHI.isPHI()) 1069 break; 1070 Deps.clear(); 1071 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1072 if (!Deps.empty()) { 1073 // Loop header PHI heights are all 0. 1074 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1075 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1076 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1077 MTM.TII)) 1078 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1079 } 1080 } 1081 } 1082 1083 // Go through the block backwards. 1084 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1085 BI != BB;) { 1086 const MachineInstr &MI = *--BI; 1087 1088 // Find the MI height as determined by virtual register uses in the 1089 // trace below. 1090 unsigned Cycle = 0; 1091 MIHeightMap::iterator HeightI = Heights.find(&MI); 1092 if (HeightI != Heights.end()) { 1093 Cycle = HeightI->second; 1094 // We won't be seeing any more MI uses. 1095 Heights.erase(HeightI); 1096 } 1097 1098 // Don't process PHI deps. They depend on the specific predecessor, and 1099 // we'll get them when visiting the predecessor. 1100 Deps.clear(); 1101 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1102 1103 // There may also be regunit dependencies to include in the height. 1104 if (HasPhysRegs) 1105 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1106 MTM.TII, MTM.TRI); 1107 1108 // Update the required height of any virtual registers read by MI. 1109 for (const DataDep &Dep : Deps) 1110 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1111 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1112 1113 InstrCycles &MICycles = Cycles[&MI]; 1114 MICycles.Height = Cycle; 1115 if (!TBI.HasValidInstrDepths) { 1116 DEBUG(dbgs() << Cycle << '\t' << MI); 1117 continue; 1118 } 1119 // Update critical path length. 1120 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1121 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1122 } 1123 1124 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1125 // height because the final height isn't known until now. 1126 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 1127 for (LiveInReg &LIR : TBI.LiveIns) { 1128 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1129 LIR.Height = Heights.lookup(DefMI); 1130 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 1131 } 1132 1133 // Transfer the live regunits to the live-in list. 1134 for (SparseSet<LiveRegUnit>::const_iterator 1135 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1136 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1137 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 1138 << '@' << RI->Cycle); 1139 } 1140 DEBUG(dbgs() << '\n'); 1141 1142 if (!TBI.HasValidInstrDepths) 1143 continue; 1144 // Add live-ins to the critical path length. 1145 TBI.CriticalPath = std::max(TBI.CriticalPath, 1146 computeCrossBlockCriticalPath(TBI)); 1147 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1148 } 1149 } 1150 1151 MachineTraceMetrics::Trace 1152 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1153 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1154 1155 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1156 computeTrace(MBB); 1157 if (!TBI.HasValidInstrDepths) 1158 computeInstrDepths(MBB); 1159 if (!TBI.HasValidInstrHeights) 1160 computeInstrHeights(MBB); 1161 1162 return Trace(*this, TBI); 1163 } 1164 1165 unsigned 1166 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1167 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1168 "MI must be in the trace center block"); 1169 InstrCycles Cyc = getInstrCycles(MI); 1170 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1171 } 1172 1173 unsigned 1174 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1175 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1176 SmallVector<DataDep, 1> Deps; 1177 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1178 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1179 DataDep &Dep = Deps.front(); 1180 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1181 // Add latency if DefMI is a real instruction. Transients get latency 0. 1182 if (!Dep.DefMI->isTransient()) 1183 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1184 &PHI, Dep.UseOp); 1185 return DepCycle; 1186 } 1187 1188 /// When bottom is set include instructions in current block in estimate. 1189 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1190 // Find the limiting processor resource. 1191 // Numbers have been pre-scaled to be comparable. 1192 unsigned PRMax = 0; 1193 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1194 if (Bottom) { 1195 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1196 for (unsigned K = 0; K != PRDepths.size(); ++K) 1197 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1198 } else { 1199 for (unsigned K = 0; K != PRDepths.size(); ++K) 1200 PRMax = std::max(PRMax, PRDepths[K]); 1201 } 1202 // Convert to cycle count. 1203 PRMax = TE.MTM.getCycles(PRMax); 1204 1205 /// All instructions before current block 1206 unsigned Instrs = TBI.InstrDepth; 1207 // plus instructions in current block 1208 if (Bottom) 1209 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1210 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1211 Instrs /= IW; 1212 // Assume issue width 1 without a schedule model. 1213 return std::max(Instrs, PRMax); 1214 } 1215 1216 unsigned MachineTraceMetrics::Trace::getResourceLength( 1217 ArrayRef<const MachineBasicBlock *> Extrablocks, 1218 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1219 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1220 // Add up resources above and below the center block. 1221 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1222 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1223 unsigned PRMax = 0; 1224 1225 // Capture computing cycles from extra instructions 1226 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1227 unsigned ResourceIdx) 1228 ->unsigned { 1229 unsigned Cycles = 0; 1230 for (const MCSchedClassDesc *SC : Instrs) { 1231 if (!SC->isValid()) 1232 continue; 1233 for (TargetSchedModel::ProcResIter 1234 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1235 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1236 PI != PE; ++PI) { 1237 if (PI->ProcResourceIdx != ResourceIdx) 1238 continue; 1239 Cycles += 1240 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1241 } 1242 } 1243 return Cycles; 1244 }; 1245 1246 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1247 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1248 for (const MachineBasicBlock *MBB : Extrablocks) 1249 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1250 PRCycles += extraCycles(ExtraInstrs, K); 1251 PRCycles -= extraCycles(RemoveInstrs, K); 1252 PRMax = std::max(PRMax, PRCycles); 1253 } 1254 // Convert to cycle count. 1255 PRMax = TE.MTM.getCycles(PRMax); 1256 1257 // Instrs: #instructions in current trace outside current block. 1258 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1259 // Add instruction count from the extra blocks. 1260 for (const MachineBasicBlock *MBB : Extrablocks) 1261 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1262 Instrs += ExtraInstrs.size(); 1263 Instrs -= RemoveInstrs.size(); 1264 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1265 Instrs /= IW; 1266 // Assume issue width 1 without a schedule model. 1267 return std::max(Instrs, PRMax); 1268 } 1269 1270 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1271 const MachineInstr &UseMI) const { 1272 if (DefMI.getParent() == UseMI.getParent()) 1273 return true; 1274 1275 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1276 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1277 1278 return DepTBI.isUsefulDominator(TBI); 1279 } 1280 1281 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1282 OS << getName() << " ensemble:\n"; 1283 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1284 OS << " BB#" << i << '\t'; 1285 BlockInfo[i].print(OS); 1286 OS << '\n'; 1287 } 1288 } 1289 1290 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1291 if (hasValidDepth()) { 1292 OS << "depth=" << InstrDepth; 1293 if (Pred) 1294 OS << " pred=BB#" << Pred->getNumber(); 1295 else 1296 OS << " pred=null"; 1297 OS << " head=BB#" << Head; 1298 if (HasValidInstrDepths) 1299 OS << " +instrs"; 1300 } else 1301 OS << "depth invalid"; 1302 OS << ", "; 1303 if (hasValidHeight()) { 1304 OS << "height=" << InstrHeight; 1305 if (Succ) 1306 OS << " succ=BB#" << Succ->getNumber(); 1307 else 1308 OS << " succ=null"; 1309 OS << " tail=BB#" << Tail; 1310 if (HasValidInstrHeights) 1311 OS << " +instrs"; 1312 } else 1313 OS << "height invalid"; 1314 if (HasValidInstrDepths && HasValidInstrHeights) 1315 OS << ", crit=" << CriticalPath; 1316 } 1317 1318 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1319 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1320 1321 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 1322 << " --> BB#" << TBI.Tail << ':'; 1323 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1324 OS << ' ' << getInstrCount() << " instrs."; 1325 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1326 OS << ' ' << TBI.CriticalPath << " cycles."; 1327 1328 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1329 OS << "\nBB#" << MBBNum; 1330 while (Block->hasValidDepth() && Block->Pred) { 1331 unsigned Num = Block->Pred->getNumber(); 1332 OS << " <- BB#" << Num; 1333 Block = &TE.BlockInfo[Num]; 1334 } 1335 1336 Block = &TBI; 1337 OS << "\n "; 1338 while (Block->hasValidHeight() && Block->Succ) { 1339 unsigned Num = Block->Succ->getNumber(); 1340 OS << " -> BB#" << Num; 1341 Block = &TE.BlockInfo[Num]; 1342 } 1343 OS << '\n'; 1344 } 1345