1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/CycleAnalysis.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/CodeGen/DFAPacketizer.h" 52 #include "llvm/CodeGen/LiveIntervals.h" 53 #include "llvm/CodeGen/MachineBasicBlock.h" 54 #include "llvm/CodeGen/MachineDominators.h" 55 #include "llvm/CodeGen/MachineFunction.h" 56 #include "llvm/CodeGen/MachineFunctionPass.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineLoopInfo.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/ModuloSchedule.h" 64 #include "llvm/CodeGen/Register.h" 65 #include "llvm/CodeGen/RegisterClassInfo.h" 66 #include "llvm/CodeGen/RegisterPressure.h" 67 #include "llvm/CodeGen/ScheduleDAG.h" 68 #include "llvm/CodeGen/ScheduleDAGMutation.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetOpcodes.h" 71 #include "llvm/CodeGen/TargetPassConfig.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/Config/llvm-config.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/MC/LaneBitmask.h" 78 #include "llvm/MC/MCInstrDesc.h" 79 #include "llvm/MC/MCInstrItineraries.h" 80 #include "llvm/MC/MCRegisterInfo.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <algorithm> 88 #include <cassert> 89 #include <climits> 90 #include <cstdint> 91 #include <deque> 92 #include <functional> 93 #include <iomanip> 94 #include <iterator> 95 #include <map> 96 #include <memory> 97 #include <sstream> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "pipeliner" 105 106 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 107 STATISTIC(NumPipelined, "Number of loops software pipelined"); 108 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 109 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 110 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 111 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 112 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 113 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 114 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 115 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 116 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 117 118 /// A command line option to turn software pipelining on or off. 119 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 120 cl::desc("Enable Software Pipelining")); 121 122 /// A command line option to enable SWP at -Os. 123 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 124 cl::desc("Enable SWP at Os."), cl::Hidden, 125 cl::init(false)); 126 127 /// A command line argument to limit minimum initial interval for pipelining. 128 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 129 cl::desc("Size limit for the MII."), 130 cl::Hidden, cl::init(27)); 131 132 /// A command line argument to force pipeliner to use specified initial 133 /// interval. 134 static cl::opt<int> SwpForceII("pipeliner-force-ii", 135 cl::desc("Force pipeliner to use specified II."), 136 cl::Hidden, cl::init(-1)); 137 138 /// A command line argument to limit the number of stages in the pipeline. 139 static cl::opt<int> 140 SwpMaxStages("pipeliner-max-stages", 141 cl::desc("Maximum stages allowed in the generated scheduled."), 142 cl::Hidden, cl::init(3)); 143 144 /// A command line option to disable the pruning of chain dependences due to 145 /// an unrelated Phi. 146 static cl::opt<bool> 147 SwpPruneDeps("pipeliner-prune-deps", 148 cl::desc("Prune dependences between unrelated Phi nodes."), 149 cl::Hidden, cl::init(true)); 150 151 /// A command line option to disable the pruning of loop carried order 152 /// dependences. 153 static cl::opt<bool> 154 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 155 cl::desc("Prune loop carried order dependences."), 156 cl::Hidden, cl::init(true)); 157 158 #ifndef NDEBUG 159 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 160 #endif 161 162 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 163 cl::ReallyHidden, 164 cl::desc("Ignore RecMII")); 165 166 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 167 cl::init(false)); 168 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 169 cl::init(false)); 170 171 static cl::opt<bool> EmitTestAnnotations( 172 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 173 cl::desc("Instead of emitting the pipelined code, annotate instructions " 174 "with the generated schedule for feeding into the " 175 "-modulo-schedule-test pass")); 176 177 static cl::opt<bool> ExperimentalCodeGen( 178 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 179 cl::desc( 180 "Use the experimental peeling code generator for software pipelining")); 181 182 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 183 cl::desc("Range to search for II"), 184 cl::Hidden, cl::init(10)); 185 186 static cl::opt<bool> 187 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 188 cl::desc("Limit register pressure of scheduled loop")); 189 190 static cl::opt<int> 191 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 192 cl::init(5), 193 cl::desc("Margin representing the unused percentage of " 194 "the register pressure limit")); 195 196 static cl::opt<bool> 197 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 198 cl::desc("Use the MVE code generator for software pipelining")); 199 200 namespace llvm { 201 202 // A command line option to enable the CopyToPhi DAG mutation. 203 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 204 cl::init(true), 205 cl::desc("Enable CopyToPhi DAG Mutation")); 206 207 /// A command line argument to force pipeliner to use specified issue 208 /// width. 209 cl::opt<int> SwpForceIssueWidth( 210 "pipeliner-force-issue-width", 211 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 212 cl::init(-1)); 213 214 /// A command line argument to set the window scheduling option. 215 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 216 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 217 cl::desc("Set how to use window scheduling algorithm."), 218 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 219 "Turn off window algorithm."), 220 clEnumValN(WindowSchedulingFlag::WS_On, "on", 221 "Use window algorithm after SMS algorithm fails."), 222 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 223 "Use window algorithm instead of SMS algorithm."))); 224 225 } // end namespace llvm 226 227 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 228 char MachinePipeliner::ID = 0; 229 #ifndef NDEBUG 230 int MachinePipeliner::NumTries = 0; 231 #endif 232 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 233 234 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 235 "Modulo Software Pipelining", false, false) 236 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 237 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 240 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 241 "Modulo Software Pipelining", false, false) 242 243 /// The "main" function for implementing Swing Modulo Scheduling. 244 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 245 if (skipFunction(mf.getFunction())) 246 return false; 247 248 if (!EnableSWP) 249 return false; 250 251 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 252 !EnableSWPOptSize.getPosition()) 253 return false; 254 255 if (!mf.getSubtarget().enableMachinePipeliner()) 256 return false; 257 258 // Cannot pipeline loops without instruction itineraries if we are using 259 // DFA for the pipeliner. 260 if (mf.getSubtarget().useDFAforSMS() && 261 (!mf.getSubtarget().getInstrItineraryData() || 262 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 263 return false; 264 265 MF = &mf; 266 MLI = &getAnalysis<MachineLoopInfo>(); 267 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 268 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 269 TII = MF->getSubtarget().getInstrInfo(); 270 RegClassInfo.runOnMachineFunction(*MF); 271 272 for (const auto &L : *MLI) 273 scheduleLoop(*L); 274 275 return false; 276 } 277 278 /// Attempt to perform the SMS algorithm on the specified loop. This function is 279 /// the main entry point for the algorithm. The function identifies candidate 280 /// loops, calculates the minimum initiation interval, and attempts to schedule 281 /// the loop. 282 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 283 bool Changed = false; 284 for (const auto &InnerLoop : L) 285 Changed |= scheduleLoop(*InnerLoop); 286 287 #ifndef NDEBUG 288 // Stop trying after reaching the limit (if any). 289 int Limit = SwpLoopLimit; 290 if (Limit >= 0) { 291 if (NumTries >= SwpLoopLimit) 292 return Changed; 293 NumTries++; 294 } 295 #endif 296 297 setPragmaPipelineOptions(L); 298 if (!canPipelineLoop(L)) { 299 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 300 ORE->emit([&]() { 301 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 302 L.getStartLoc(), L.getHeader()) 303 << "Failed to pipeline loop"; 304 }); 305 306 LI.LoopPipelinerInfo.reset(); 307 return Changed; 308 } 309 310 ++NumTrytoPipeline; 311 if (useSwingModuloScheduler()) 312 Changed = swingModuloScheduler(L); 313 314 if (useWindowScheduler(Changed)) 315 Changed = runWindowScheduler(L); 316 317 LI.LoopPipelinerInfo.reset(); 318 return Changed; 319 } 320 321 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 322 // Reset the pragma for the next loop in iteration. 323 disabledByPragma = false; 324 II_setByPragma = 0; 325 326 MachineBasicBlock *LBLK = L.getTopBlock(); 327 328 if (LBLK == nullptr) 329 return; 330 331 const BasicBlock *BBLK = LBLK->getBasicBlock(); 332 if (BBLK == nullptr) 333 return; 334 335 const Instruction *TI = BBLK->getTerminator(); 336 if (TI == nullptr) 337 return; 338 339 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 340 if (LoopID == nullptr) 341 return; 342 343 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 344 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 345 346 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 347 MDNode *MD = dyn_cast<MDNode>(MDO); 348 349 if (MD == nullptr) 350 continue; 351 352 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 353 354 if (S == nullptr) 355 continue; 356 357 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 358 assert(MD->getNumOperands() == 2 && 359 "Pipeline initiation interval hint metadata should have two operands."); 360 II_setByPragma = 361 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 362 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 363 } else if (S->getString() == "llvm.loop.pipeline.disable") { 364 disabledByPragma = true; 365 } 366 } 367 } 368 369 /// Return true if the loop can be software pipelined. The algorithm is 370 /// restricted to loops with a single basic block. Make sure that the 371 /// branch in the loop can be analyzed. 372 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 373 if (L.getNumBlocks() != 1) { 374 ORE->emit([&]() { 375 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 376 L.getStartLoc(), L.getHeader()) 377 << "Not a single basic block: " 378 << ore::NV("NumBlocks", L.getNumBlocks()); 379 }); 380 return false; 381 } 382 383 if (disabledByPragma) { 384 ORE->emit([&]() { 385 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 386 L.getStartLoc(), L.getHeader()) 387 << "Disabled by Pragma."; 388 }); 389 return false; 390 } 391 392 // Check if the branch can't be understood because we can't do pipelining 393 // if that's the case. 394 LI.TBB = nullptr; 395 LI.FBB = nullptr; 396 LI.BrCond.clear(); 397 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 398 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 399 NumFailBranch++; 400 ORE->emit([&]() { 401 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 402 L.getStartLoc(), L.getHeader()) 403 << "The branch can't be understood"; 404 }); 405 return false; 406 } 407 408 LI.LoopInductionVar = nullptr; 409 LI.LoopCompare = nullptr; 410 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 411 if (!LI.LoopPipelinerInfo) { 412 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 413 NumFailLoop++; 414 ORE->emit([&]() { 415 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 416 L.getStartLoc(), L.getHeader()) 417 << "The loop structure is not supported"; 418 }); 419 return false; 420 } 421 422 if (!L.getLoopPreheader()) { 423 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 424 NumFailPreheader++; 425 ORE->emit([&]() { 426 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 427 L.getStartLoc(), L.getHeader()) 428 << "No loop preheader found"; 429 }); 430 return false; 431 } 432 433 // Remove any subregisters from inputs to phi nodes. 434 preprocessPhiNodes(*L.getHeader()); 435 return true; 436 } 437 438 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 439 MachineRegisterInfo &MRI = MF->getRegInfo(); 440 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 441 442 for (MachineInstr &PI : B.phis()) { 443 MachineOperand &DefOp = PI.getOperand(0); 444 assert(DefOp.getSubReg() == 0); 445 auto *RC = MRI.getRegClass(DefOp.getReg()); 446 447 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 448 MachineOperand &RegOp = PI.getOperand(i); 449 if (RegOp.getSubReg() == 0) 450 continue; 451 452 // If the operand uses a subregister, replace it with a new register 453 // without subregisters, and generate a copy to the new register. 454 Register NewReg = MRI.createVirtualRegister(RC); 455 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 456 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 457 const DebugLoc &DL = PredB.findDebugLoc(At); 458 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 459 .addReg(RegOp.getReg(), getRegState(RegOp), 460 RegOp.getSubReg()); 461 Slots.insertMachineInstrInMaps(*Copy); 462 RegOp.setReg(NewReg); 463 RegOp.setSubReg(0); 464 } 465 } 466 } 467 468 /// The SMS algorithm consists of the following main steps: 469 /// 1. Computation and analysis of the dependence graph. 470 /// 2. Ordering of the nodes (instructions). 471 /// 3. Attempt to Schedule the loop. 472 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 473 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 474 475 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 476 II_setByPragma, LI.LoopPipelinerInfo.get()); 477 478 MachineBasicBlock *MBB = L.getHeader(); 479 // The kernel should not include any terminator instructions. These 480 // will be added back later. 481 SMS.startBlock(MBB); 482 483 // Compute the number of 'real' instructions in the basic block by 484 // ignoring terminators. 485 unsigned size = MBB->size(); 486 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 487 E = MBB->instr_end(); 488 I != E; ++I, --size) 489 ; 490 491 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 492 SMS.schedule(); 493 SMS.exitRegion(); 494 495 SMS.finishBlock(); 496 return SMS.hasNewSchedule(); 497 } 498 499 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 500 AU.addRequired<AAResultsWrapperPass>(); 501 AU.addPreserved<AAResultsWrapperPass>(); 502 AU.addRequired<MachineLoopInfo>(); 503 AU.addRequired<MachineDominatorTreeWrapperPass>(); 504 AU.addRequired<LiveIntervals>(); 505 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 506 AU.addRequired<TargetPassConfig>(); 507 MachineFunctionPass::getAnalysisUsage(AU); 508 } 509 510 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 511 MachineSchedContext Context; 512 Context.MF = MF; 513 Context.MLI = MLI; 514 Context.MDT = MDT; 515 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 516 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 517 Context.LIS = &getAnalysis<LiveIntervals>(); 518 Context.RegClassInfo->runOnMachineFunction(*MF); 519 WindowScheduler WS(&Context, L); 520 return WS.run(); 521 } 522 523 bool MachinePipeliner::useSwingModuloScheduler() { 524 // SwingModuloScheduler does not work when WindowScheduler is forced. 525 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 526 } 527 528 bool MachinePipeliner::useWindowScheduler(bool Changed) { 529 // WindowScheduler does not work when it is off or when SwingModuloScheduler 530 // is successfully scheduled. 531 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 532 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 533 } 534 535 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 536 if (SwpForceII > 0) 537 MII = SwpForceII; 538 else if (II_setByPragma > 0) 539 MII = II_setByPragma; 540 else 541 MII = std::max(ResMII, RecMII); 542 } 543 544 void SwingSchedulerDAG::setMAX_II() { 545 if (SwpForceII > 0) 546 MAX_II = SwpForceII; 547 else if (II_setByPragma > 0) 548 MAX_II = II_setByPragma; 549 else 550 MAX_II = MII + SwpIISearchRange; 551 } 552 553 /// We override the schedule function in ScheduleDAGInstrs to implement the 554 /// scheduling part of the Swing Modulo Scheduling algorithm. 555 void SwingSchedulerDAG::schedule() { 556 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 557 buildSchedGraph(AA); 558 addLoopCarriedDependences(AA); 559 updatePhiDependences(); 560 Topo.InitDAGTopologicalSorting(); 561 changeDependences(); 562 postProcessDAG(); 563 LLVM_DEBUG(dump()); 564 565 NodeSetType NodeSets; 566 findCircuits(NodeSets); 567 NodeSetType Circuits = NodeSets; 568 569 // Calculate the MII. 570 unsigned ResMII = calculateResMII(); 571 unsigned RecMII = calculateRecMII(NodeSets); 572 573 fuseRecs(NodeSets); 574 575 // This flag is used for testing and can cause correctness problems. 576 if (SwpIgnoreRecMII) 577 RecMII = 0; 578 579 setMII(ResMII, RecMII); 580 setMAX_II(); 581 582 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 583 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 584 585 // Can't schedule a loop without a valid MII. 586 if (MII == 0) { 587 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 588 NumFailZeroMII++; 589 Pass.ORE->emit([&]() { 590 return MachineOptimizationRemarkAnalysis( 591 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 592 << "Invalid Minimal Initiation Interval: 0"; 593 }); 594 return; 595 } 596 597 // Don't pipeline large loops. 598 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 599 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 600 << ", we don't pipeline large loops\n"); 601 NumFailLargeMaxMII++; 602 Pass.ORE->emit([&]() { 603 return MachineOptimizationRemarkAnalysis( 604 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 605 << "Minimal Initiation Interval too large: " 606 << ore::NV("MII", (int)MII) << " > " 607 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 608 << "Refer to -pipeliner-max-mii."; 609 }); 610 return; 611 } 612 613 computeNodeFunctions(NodeSets); 614 615 registerPressureFilter(NodeSets); 616 617 colocateNodeSets(NodeSets); 618 619 checkNodeSets(NodeSets); 620 621 LLVM_DEBUG({ 622 for (auto &I : NodeSets) { 623 dbgs() << " Rec NodeSet "; 624 I.dump(); 625 } 626 }); 627 628 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 629 630 groupRemainingNodes(NodeSets); 631 632 removeDuplicateNodes(NodeSets); 633 634 LLVM_DEBUG({ 635 for (auto &I : NodeSets) { 636 dbgs() << " NodeSet "; 637 I.dump(); 638 } 639 }); 640 641 computeNodeOrder(NodeSets); 642 643 // check for node order issues 644 checkValidNodeOrder(Circuits); 645 646 SMSchedule Schedule(Pass.MF, this); 647 Scheduled = schedulePipeline(Schedule); 648 649 if (!Scheduled){ 650 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 651 NumFailNoSchedule++; 652 Pass.ORE->emit([&]() { 653 return MachineOptimizationRemarkAnalysis( 654 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 655 << "Unable to find schedule"; 656 }); 657 return; 658 } 659 660 unsigned numStages = Schedule.getMaxStageCount(); 661 // No need to generate pipeline if there are no overlapped iterations. 662 if (numStages == 0) { 663 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 664 NumFailZeroStage++; 665 Pass.ORE->emit([&]() { 666 return MachineOptimizationRemarkAnalysis( 667 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 668 << "No need to pipeline - no overlapped iterations in schedule."; 669 }); 670 return; 671 } 672 // Check that the maximum stage count is less than user-defined limit. 673 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 674 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 675 << " : too many stages, abort\n"); 676 NumFailLargeMaxStage++; 677 Pass.ORE->emit([&]() { 678 return MachineOptimizationRemarkAnalysis( 679 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 680 << "Too many stages in schedule: " 681 << ore::NV("numStages", (int)numStages) << " > " 682 << ore::NV("SwpMaxStages", SwpMaxStages) 683 << ". Refer to -pipeliner-max-stages."; 684 }); 685 return; 686 } 687 688 Pass.ORE->emit([&]() { 689 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 690 Loop.getHeader()) 691 << "Pipelined succesfully!"; 692 }); 693 694 // Generate the schedule as a ModuloSchedule. 695 DenseMap<MachineInstr *, int> Cycles, Stages; 696 std::vector<MachineInstr *> OrderedInsts; 697 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 698 ++Cycle) { 699 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 700 OrderedInsts.push_back(SU->getInstr()); 701 Cycles[SU->getInstr()] = Cycle; 702 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 703 } 704 } 705 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 706 for (auto &KV : NewMIs) { 707 Cycles[KV.first] = Cycles[KV.second]; 708 Stages[KV.first] = Stages[KV.second]; 709 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 710 } 711 712 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 713 std::move(Stages)); 714 if (EmitTestAnnotations) { 715 assert(NewInstrChanges.empty() && 716 "Cannot serialize a schedule with InstrChanges!"); 717 ModuloScheduleTestAnnotater MSTI(MF, MS); 718 MSTI.annotate(); 719 return; 720 } 721 // The experimental code generator can't work if there are InstChanges. 722 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 723 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 724 MSE.expand(); 725 } else if (MVECodeGen && NewInstrChanges.empty() && 726 LoopPipelinerInfo->isMVEExpanderSupported() && 727 ModuloScheduleExpanderMVE::canApply(Loop)) { 728 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 729 MSE.expand(); 730 } else { 731 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 732 MSE.expand(); 733 MSE.cleanup(); 734 } 735 ++NumPipelined; 736 } 737 738 /// Clean up after the software pipeliner runs. 739 void SwingSchedulerDAG::finishBlock() { 740 for (auto &KV : NewMIs) 741 MF.deleteMachineInstr(KV.second); 742 NewMIs.clear(); 743 744 // Call the superclass. 745 ScheduleDAGInstrs::finishBlock(); 746 } 747 748 /// Return the register values for the operands of a Phi instruction. 749 /// This function assume the instruction is a Phi. 750 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 751 unsigned &InitVal, unsigned &LoopVal) { 752 assert(Phi.isPHI() && "Expecting a Phi."); 753 754 InitVal = 0; 755 LoopVal = 0; 756 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 757 if (Phi.getOperand(i + 1).getMBB() != Loop) 758 InitVal = Phi.getOperand(i).getReg(); 759 else 760 LoopVal = Phi.getOperand(i).getReg(); 761 762 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 763 } 764 765 /// Return the Phi register value that comes the loop block. 766 static unsigned getLoopPhiReg(const MachineInstr &Phi, 767 const MachineBasicBlock *LoopBB) { 768 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 769 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 770 return Phi.getOperand(i).getReg(); 771 return 0; 772 } 773 774 /// Return true if SUb can be reached from SUa following the chain edges. 775 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 776 SmallPtrSet<SUnit *, 8> Visited; 777 SmallVector<SUnit *, 8> Worklist; 778 Worklist.push_back(SUa); 779 while (!Worklist.empty()) { 780 const SUnit *SU = Worklist.pop_back_val(); 781 for (const auto &SI : SU->Succs) { 782 SUnit *SuccSU = SI.getSUnit(); 783 if (SI.getKind() == SDep::Order) { 784 if (Visited.count(SuccSU)) 785 continue; 786 if (SuccSU == SUb) 787 return true; 788 Worklist.push_back(SuccSU); 789 Visited.insert(SuccSU); 790 } 791 } 792 } 793 return false; 794 } 795 796 /// Return true if the instruction causes a chain between memory 797 /// references before and after it. 798 static bool isDependenceBarrier(MachineInstr &MI) { 799 return MI.isCall() || MI.mayRaiseFPException() || 800 MI.hasUnmodeledSideEffects() || 801 (MI.hasOrderedMemoryRef() && 802 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 803 } 804 805 /// Return the underlying objects for the memory references of an instruction. 806 /// This function calls the code in ValueTracking, but first checks that the 807 /// instruction has a memory operand. 808 static void getUnderlyingObjects(const MachineInstr *MI, 809 SmallVectorImpl<const Value *> &Objs) { 810 if (!MI->hasOneMemOperand()) 811 return; 812 MachineMemOperand *MM = *MI->memoperands_begin(); 813 if (!MM->getValue()) 814 return; 815 getUnderlyingObjects(MM->getValue(), Objs); 816 for (const Value *V : Objs) { 817 if (!isIdentifiedObject(V)) { 818 Objs.clear(); 819 return; 820 } 821 } 822 } 823 824 /// Add a chain edge between a load and store if the store can be an 825 /// alias of the load on a subsequent iteration, i.e., a loop carried 826 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 827 /// but that code doesn't create loop carried dependences. 828 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 829 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 830 Value *UnknownValue = 831 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 832 for (auto &SU : SUnits) { 833 MachineInstr &MI = *SU.getInstr(); 834 if (isDependenceBarrier(MI)) 835 PendingLoads.clear(); 836 else if (MI.mayLoad()) { 837 SmallVector<const Value *, 4> Objs; 838 ::getUnderlyingObjects(&MI, Objs); 839 if (Objs.empty()) 840 Objs.push_back(UnknownValue); 841 for (const auto *V : Objs) { 842 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 843 SUs.push_back(&SU); 844 } 845 } else if (MI.mayStore()) { 846 SmallVector<const Value *, 4> Objs; 847 ::getUnderlyingObjects(&MI, Objs); 848 if (Objs.empty()) 849 Objs.push_back(UnknownValue); 850 for (const auto *V : Objs) { 851 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 852 PendingLoads.find(V); 853 if (I == PendingLoads.end()) 854 continue; 855 for (auto *Load : I->second) { 856 if (isSuccOrder(Load, &SU)) 857 continue; 858 MachineInstr &LdMI = *Load->getInstr(); 859 // First, perform the cheaper check that compares the base register. 860 // If they are the same and the load offset is less than the store 861 // offset, then mark the dependence as loop carried potentially. 862 const MachineOperand *BaseOp1, *BaseOp2; 863 int64_t Offset1, Offset2; 864 bool Offset1IsScalable, Offset2IsScalable; 865 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 866 Offset1IsScalable, TRI) && 867 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 868 Offset2IsScalable, TRI)) { 869 if (BaseOp1->isIdenticalTo(*BaseOp2) && 870 Offset1IsScalable == Offset2IsScalable && 871 (int)Offset1 < (int)Offset2) { 872 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 873 "What happened to the chain edge?"); 874 SDep Dep(Load, SDep::Barrier); 875 Dep.setLatency(1); 876 SU.addPred(Dep); 877 continue; 878 } 879 } 880 // Second, the more expensive check that uses alias analysis on the 881 // base registers. If they alias, and the load offset is less than 882 // the store offset, the mark the dependence as loop carried. 883 if (!AA) { 884 SDep Dep(Load, SDep::Barrier); 885 Dep.setLatency(1); 886 SU.addPred(Dep); 887 continue; 888 } 889 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 890 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 891 if (!MMO1->getValue() || !MMO2->getValue()) { 892 SDep Dep(Load, SDep::Barrier); 893 Dep.setLatency(1); 894 SU.addPred(Dep); 895 continue; 896 } 897 if (MMO1->getValue() == MMO2->getValue() && 898 MMO1->getOffset() <= MMO2->getOffset()) { 899 SDep Dep(Load, SDep::Barrier); 900 Dep.setLatency(1); 901 SU.addPred(Dep); 902 continue; 903 } 904 if (!AA->isNoAlias( 905 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 906 MemoryLocation::getAfter(MMO2->getValue(), 907 MMO2->getAAInfo()))) { 908 SDep Dep(Load, SDep::Barrier); 909 Dep.setLatency(1); 910 SU.addPred(Dep); 911 } 912 } 913 } 914 } 915 } 916 } 917 918 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 919 /// processes dependences for PHIs. This function adds true dependences 920 /// from a PHI to a use, and a loop carried dependence from the use to the 921 /// PHI. The loop carried dependence is represented as an anti dependence 922 /// edge. This function also removes chain dependences between unrelated 923 /// PHIs. 924 void SwingSchedulerDAG::updatePhiDependences() { 925 SmallVector<SDep, 4> RemoveDeps; 926 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 927 928 // Iterate over each DAG node. 929 for (SUnit &I : SUnits) { 930 RemoveDeps.clear(); 931 // Set to true if the instruction has an operand defined by a Phi. 932 unsigned HasPhiUse = 0; 933 unsigned HasPhiDef = 0; 934 MachineInstr *MI = I.getInstr(); 935 // Iterate over each operand, and we process the definitions. 936 for (const MachineOperand &MO : MI->operands()) { 937 if (!MO.isReg()) 938 continue; 939 Register Reg = MO.getReg(); 940 if (MO.isDef()) { 941 // If the register is used by a Phi, then create an anti dependence. 942 for (MachineRegisterInfo::use_instr_iterator 943 UI = MRI.use_instr_begin(Reg), 944 UE = MRI.use_instr_end(); 945 UI != UE; ++UI) { 946 MachineInstr *UseMI = &*UI; 947 SUnit *SU = getSUnit(UseMI); 948 if (SU != nullptr && UseMI->isPHI()) { 949 if (!MI->isPHI()) { 950 SDep Dep(SU, SDep::Anti, Reg); 951 Dep.setLatency(1); 952 I.addPred(Dep); 953 } else { 954 HasPhiDef = Reg; 955 // Add a chain edge to a dependent Phi that isn't an existing 956 // predecessor. 957 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 958 I.addPred(SDep(SU, SDep::Barrier)); 959 } 960 } 961 } 962 } else if (MO.isUse()) { 963 // If the register is defined by a Phi, then create a true dependence. 964 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 965 if (DefMI == nullptr) 966 continue; 967 SUnit *SU = getSUnit(DefMI); 968 if (SU != nullptr && DefMI->isPHI()) { 969 if (!MI->isPHI()) { 970 SDep Dep(SU, SDep::Data, Reg); 971 Dep.setLatency(0); 972 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 973 &SchedModel); 974 I.addPred(Dep); 975 } else { 976 HasPhiUse = Reg; 977 // Add a chain edge to a dependent Phi that isn't an existing 978 // predecessor. 979 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 980 I.addPred(SDep(SU, SDep::Barrier)); 981 } 982 } 983 } 984 } 985 // Remove order dependences from an unrelated Phi. 986 if (!SwpPruneDeps) 987 continue; 988 for (auto &PI : I.Preds) { 989 MachineInstr *PMI = PI.getSUnit()->getInstr(); 990 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 991 if (I.getInstr()->isPHI()) { 992 if (PMI->getOperand(0).getReg() == HasPhiUse) 993 continue; 994 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 995 continue; 996 } 997 RemoveDeps.push_back(PI); 998 } 999 } 1000 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1001 I.removePred(RemoveDeps[i]); 1002 } 1003 } 1004 1005 /// Iterate over each DAG node and see if we can change any dependences 1006 /// in order to reduce the recurrence MII. 1007 void SwingSchedulerDAG::changeDependences() { 1008 // See if an instruction can use a value from the previous iteration. 1009 // If so, we update the base and offset of the instruction and change 1010 // the dependences. 1011 for (SUnit &I : SUnits) { 1012 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1013 int64_t NewOffset = 0; 1014 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1015 NewOffset)) 1016 continue; 1017 1018 // Get the MI and SUnit for the instruction that defines the original base. 1019 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1020 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1021 if (!DefMI) 1022 continue; 1023 SUnit *DefSU = getSUnit(DefMI); 1024 if (!DefSU) 1025 continue; 1026 // Get the MI and SUnit for the instruction that defins the new base. 1027 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1028 if (!LastMI) 1029 continue; 1030 SUnit *LastSU = getSUnit(LastMI); 1031 if (!LastSU) 1032 continue; 1033 1034 if (Topo.IsReachable(&I, LastSU)) 1035 continue; 1036 1037 // Remove the dependence. The value now depends on a prior iteration. 1038 SmallVector<SDep, 4> Deps; 1039 for (const SDep &P : I.Preds) 1040 if (P.getSUnit() == DefSU) 1041 Deps.push_back(P); 1042 for (int i = 0, e = Deps.size(); i != e; i++) { 1043 Topo.RemovePred(&I, Deps[i].getSUnit()); 1044 I.removePred(Deps[i]); 1045 } 1046 // Remove the chain dependence between the instructions. 1047 Deps.clear(); 1048 for (auto &P : LastSU->Preds) 1049 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1050 Deps.push_back(P); 1051 for (int i = 0, e = Deps.size(); i != e; i++) { 1052 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1053 LastSU->removePred(Deps[i]); 1054 } 1055 1056 // Add a dependence between the new instruction and the instruction 1057 // that defines the new base. 1058 SDep Dep(&I, SDep::Anti, NewBase); 1059 Topo.AddPred(LastSU, &I); 1060 LastSU->addPred(Dep); 1061 1062 // Remember the base and offset information so that we can update the 1063 // instruction during code generation. 1064 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1065 } 1066 } 1067 1068 /// Create an instruction stream that represents a single iteration and stage of 1069 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1070 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1071 /// function is an approximation of SMSchedule::finalizeSchedule with all 1072 /// non-const operations removed. 1073 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1074 SMSchedule &Schedule, 1075 std::vector<MachineInstr *> &OrderedInsts, 1076 DenseMap<MachineInstr *, unsigned> &Stages) { 1077 DenseMap<int, std::deque<SUnit *>> Instrs; 1078 1079 // Move all instructions to the first stage from the later stages. 1080 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1081 ++Cycle) { 1082 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1083 Stage <= LastStage; ++Stage) { 1084 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1085 Cycle + Stage * Schedule.getInitiationInterval()))) { 1086 Instrs[Cycle].push_front(SU); 1087 } 1088 } 1089 } 1090 1091 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1092 ++Cycle) { 1093 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1094 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1095 for (SUnit *SU : CycleInstrs) { 1096 MachineInstr *MI = SU->getInstr(); 1097 OrderedInsts.push_back(MI); 1098 Stages[MI] = Schedule.stageScheduled(SU); 1099 } 1100 } 1101 } 1102 1103 namespace { 1104 1105 // FuncUnitSorter - Comparison operator used to sort instructions by 1106 // the number of functional unit choices. 1107 struct FuncUnitSorter { 1108 const InstrItineraryData *InstrItins; 1109 const MCSubtargetInfo *STI; 1110 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1111 1112 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1113 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1114 1115 // Compute the number of functional unit alternatives needed 1116 // at each stage, and take the minimum value. We prioritize the 1117 // instructions by the least number of choices first. 1118 unsigned minFuncUnits(const MachineInstr *Inst, 1119 InstrStage::FuncUnits &F) const { 1120 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1121 unsigned min = UINT_MAX; 1122 if (InstrItins && !InstrItins->isEmpty()) { 1123 for (const InstrStage &IS : 1124 make_range(InstrItins->beginStage(SchedClass), 1125 InstrItins->endStage(SchedClass))) { 1126 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1127 unsigned numAlternatives = llvm::popcount(funcUnits); 1128 if (numAlternatives < min) { 1129 min = numAlternatives; 1130 F = funcUnits; 1131 } 1132 } 1133 return min; 1134 } 1135 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1136 const MCSchedClassDesc *SCDesc = 1137 STI->getSchedModel().getSchedClassDesc(SchedClass); 1138 if (!SCDesc->isValid()) 1139 // No valid Schedule Class Desc for schedClass, should be 1140 // Pseudo/PostRAPseudo 1141 return min; 1142 1143 for (const MCWriteProcResEntry &PRE : 1144 make_range(STI->getWriteProcResBegin(SCDesc), 1145 STI->getWriteProcResEnd(SCDesc))) { 1146 if (!PRE.ReleaseAtCycle) 1147 continue; 1148 const MCProcResourceDesc *ProcResource = 1149 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1150 unsigned NumUnits = ProcResource->NumUnits; 1151 if (NumUnits < min) { 1152 min = NumUnits; 1153 F = PRE.ProcResourceIdx; 1154 } 1155 } 1156 return min; 1157 } 1158 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1159 } 1160 1161 // Compute the critical resources needed by the instruction. This 1162 // function records the functional units needed by instructions that 1163 // must use only one functional unit. We use this as a tie breaker 1164 // for computing the resource MII. The instrutions that require 1165 // the same, highly used, functional unit have high priority. 1166 void calcCriticalResources(MachineInstr &MI) { 1167 unsigned SchedClass = MI.getDesc().getSchedClass(); 1168 if (InstrItins && !InstrItins->isEmpty()) { 1169 for (const InstrStage &IS : 1170 make_range(InstrItins->beginStage(SchedClass), 1171 InstrItins->endStage(SchedClass))) { 1172 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1173 if (llvm::popcount(FuncUnits) == 1) 1174 Resources[FuncUnits]++; 1175 } 1176 return; 1177 } 1178 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1179 const MCSchedClassDesc *SCDesc = 1180 STI->getSchedModel().getSchedClassDesc(SchedClass); 1181 if (!SCDesc->isValid()) 1182 // No valid Schedule Class Desc for schedClass, should be 1183 // Pseudo/PostRAPseudo 1184 return; 1185 1186 for (const MCWriteProcResEntry &PRE : 1187 make_range(STI->getWriteProcResBegin(SCDesc), 1188 STI->getWriteProcResEnd(SCDesc))) { 1189 if (!PRE.ReleaseAtCycle) 1190 continue; 1191 Resources[PRE.ProcResourceIdx]++; 1192 } 1193 return; 1194 } 1195 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1196 } 1197 1198 /// Return true if IS1 has less priority than IS2. 1199 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1200 InstrStage::FuncUnits F1 = 0, F2 = 0; 1201 unsigned MFUs1 = minFuncUnits(IS1, F1); 1202 unsigned MFUs2 = minFuncUnits(IS2, F2); 1203 if (MFUs1 == MFUs2) 1204 return Resources.lookup(F1) < Resources.lookup(F2); 1205 return MFUs1 > MFUs2; 1206 } 1207 }; 1208 1209 /// Calculate the maximum register pressure of the scheduled instructions stream 1210 class HighRegisterPressureDetector { 1211 MachineBasicBlock *OrigMBB; 1212 const MachineFunction &MF; 1213 const MachineRegisterInfo &MRI; 1214 const TargetRegisterInfo *TRI; 1215 1216 const unsigned PSetNum; 1217 1218 // Indexed by PSet ID 1219 // InitSetPressure takes into account the register pressure of live-in 1220 // registers. It's not depend on how the loop is scheduled, so it's enough to 1221 // calculate them once at the beginning. 1222 std::vector<unsigned> InitSetPressure; 1223 1224 // Indexed by PSet ID 1225 // Upper limit for each register pressure set 1226 std::vector<unsigned> PressureSetLimit; 1227 1228 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1229 1230 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1231 1232 public: 1233 using OrderedInstsTy = std::vector<MachineInstr *>; 1234 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1235 1236 private: 1237 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1238 if (Pressures.size() == 0) { 1239 dbgs() << "[]"; 1240 } else { 1241 char Prefix = '['; 1242 for (unsigned P : Pressures) { 1243 dbgs() << Prefix << P; 1244 Prefix = ' '; 1245 } 1246 dbgs() << ']'; 1247 } 1248 } 1249 1250 void dumpPSet(Register Reg) const { 1251 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1252 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1253 ++PSetIter) { 1254 dbgs() << *PSetIter << ' '; 1255 } 1256 dbgs() << '\n'; 1257 } 1258 1259 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1260 Register Reg) const { 1261 auto PSetIter = MRI.getPressureSets(Reg); 1262 unsigned Weight = PSetIter.getWeight(); 1263 for (; PSetIter.isValid(); ++PSetIter) 1264 Pressure[*PSetIter] += Weight; 1265 } 1266 1267 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1268 Register Reg) const { 1269 auto PSetIter = MRI.getPressureSets(Reg); 1270 unsigned Weight = PSetIter.getWeight(); 1271 for (; PSetIter.isValid(); ++PSetIter) { 1272 auto &P = Pressure[*PSetIter]; 1273 assert(P >= Weight && 1274 "register pressure must be greater than or equal weight"); 1275 P -= Weight; 1276 } 1277 } 1278 1279 // Return true if Reg is fixed one, for example, stack pointer 1280 bool isFixedRegister(Register Reg) const { 1281 return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 1282 } 1283 1284 bool isDefinedInThisLoop(Register Reg) const { 1285 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1286 } 1287 1288 // Search for live-in variables. They are factored into the register pressure 1289 // from the begining. Live-in variables used by every iteration should be 1290 // considered as alive throughout the loop. For example, the variable `c` in 1291 // following code. \code 1292 // int c = ...; 1293 // for (int i = 0; i < n; i++) 1294 // a[i] += b[i] + c; 1295 // \endcode 1296 void computeLiveIn() { 1297 DenseSet<Register> Used; 1298 for (auto &MI : *OrigMBB) { 1299 if (MI.isDebugInstr()) 1300 continue; 1301 for (auto &Use : ROMap[&MI].Uses) { 1302 auto Reg = Use.RegUnit; 1303 // Ignore the variable that appears only on one side of phi instruction 1304 // because it's used only at the first iteration. 1305 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1306 continue; 1307 if (isFixedRegister(Reg)) 1308 continue; 1309 if (isDefinedInThisLoop(Reg)) 1310 continue; 1311 Used.insert(Reg); 1312 } 1313 } 1314 1315 for (auto LiveIn : Used) 1316 increaseRegisterPressure(InitSetPressure, LiveIn); 1317 } 1318 1319 // Calculate the upper limit of each pressure set 1320 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1321 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1322 PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); 1323 1324 // We assume fixed registers, such as stack pointer, are already in use. 1325 // Therefore subtracting the weight of the fixed registers from the limit of 1326 // each pressure set in advance. 1327 SmallDenseSet<Register, 8> FixedRegs; 1328 for (const TargetRegisterClass *TRC : TRI->regclasses()) { 1329 for (const MCPhysReg Reg : *TRC) 1330 if (isFixedRegister(Reg)) 1331 FixedRegs.insert(Reg); 1332 } 1333 1334 LLVM_DEBUG({ 1335 for (auto Reg : FixedRegs) { 1336 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 1337 const int *Sets = TRI->getRegUnitPressureSets(Reg); 1338 for (; *Sets != -1; Sets++) { 1339 dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 1340 } 1341 dbgs() << "]\n"; 1342 } 1343 }); 1344 1345 for (auto Reg : FixedRegs) { 1346 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 1347 << "\n"); 1348 auto PSetIter = MRI.getPressureSets(Reg); 1349 unsigned Weight = PSetIter.getWeight(); 1350 for (; PSetIter.isValid(); ++PSetIter) { 1351 unsigned &Limit = PressureSetLimit[*PSetIter]; 1352 assert(Limit >= Weight && 1353 "register pressure limit must be greater than or equal weight"); 1354 Limit -= Weight; 1355 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 1356 << " (decreased by " << Weight << ")\n"); 1357 } 1358 } 1359 } 1360 1361 // There are two patterns of last-use. 1362 // - by an instruction of the current iteration 1363 // - by a phi instruction of the next iteration (loop carried value) 1364 // 1365 // Furthermore, following two groups of instructions are executed 1366 // simultaneously 1367 // - next iteration's phi instructions in i-th stage 1368 // - current iteration's instructions in i+1-th stage 1369 // 1370 // This function calculates the last-use of each register while taking into 1371 // account the above two patterns. 1372 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1373 Instr2StageTy &Stages) const { 1374 // We treat virtual registers that are defined and used in this loop. 1375 // Following virtual register will be ignored 1376 // - live-in one 1377 // - defined but not used in the loop (potentially live-out) 1378 DenseSet<Register> TargetRegs; 1379 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1380 if (isDefinedInThisLoop(Reg)) 1381 TargetRegs.insert(Reg); 1382 }; 1383 for (MachineInstr *MI : OrderedInsts) { 1384 if (MI->isPHI()) { 1385 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1386 UpdateTargetRegs(Reg); 1387 } else { 1388 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1389 UpdateTargetRegs(Use.RegUnit); 1390 } 1391 } 1392 1393 const auto InstrScore = [&Stages](MachineInstr *MI) { 1394 return Stages[MI] + MI->isPHI(); 1395 }; 1396 1397 DenseMap<Register, MachineInstr *> LastUseMI; 1398 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1399 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1400 auto Reg = Use.RegUnit; 1401 if (!TargetRegs.contains(Reg)) 1402 continue; 1403 auto Ite = LastUseMI.find(Reg); 1404 if (Ite == LastUseMI.end()) { 1405 LastUseMI[Reg] = MI; 1406 } else { 1407 MachineInstr *Orig = Ite->second; 1408 MachineInstr *New = MI; 1409 if (InstrScore(Orig) < InstrScore(New)) 1410 LastUseMI[Reg] = New; 1411 } 1412 } 1413 } 1414 1415 Instr2LastUsesTy LastUses; 1416 for (auto &Entry : LastUseMI) 1417 LastUses[Entry.second].insert(Entry.first); 1418 return LastUses; 1419 } 1420 1421 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1422 // iterations and check the register pressure at the point where all stages 1423 // overlapping. 1424 // 1425 // An example of unrolled loop where #Stage is 4.. 1426 // Iter i+0 i+1 i+2 i+3 1427 // ------------------------ 1428 // Stage 0 1429 // Stage 1 0 1430 // Stage 2 1 0 1431 // Stage 3 2 1 0 <- All stages overlap 1432 // 1433 std::vector<unsigned> 1434 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1435 Instr2StageTy &Stages, 1436 const unsigned StageCount) const { 1437 using RegSetTy = SmallDenseSet<Register, 16>; 1438 1439 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1440 // manage the liveness of the registers independently by iterations. 1441 SmallVector<RegSetTy> LiveRegSets(StageCount); 1442 1443 auto CurSetPressure = InitSetPressure; 1444 auto MaxSetPressure = InitSetPressure; 1445 auto LastUses = computeLastUses(OrderedInsts, Stages); 1446 1447 LLVM_DEBUG({ 1448 dbgs() << "Ordered instructions:\n"; 1449 for (MachineInstr *MI : OrderedInsts) { 1450 dbgs() << "Stage " << Stages[MI] << ": "; 1451 MI->dump(); 1452 } 1453 }); 1454 1455 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1456 Register Reg) { 1457 if (!Reg.isValid() || isFixedRegister(Reg)) 1458 return; 1459 1460 bool Inserted = RegSet.insert(Reg).second; 1461 if (!Inserted) 1462 return; 1463 1464 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1465 increaseRegisterPressure(CurSetPressure, Reg); 1466 LLVM_DEBUG(dumpPSet(Reg)); 1467 }; 1468 1469 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1470 Register Reg) { 1471 if (!Reg.isValid() || isFixedRegister(Reg)) 1472 return; 1473 1474 // live-in register 1475 if (!RegSet.contains(Reg)) 1476 return; 1477 1478 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1479 RegSet.erase(Reg); 1480 decreaseRegisterPressure(CurSetPressure, Reg); 1481 LLVM_DEBUG(dumpPSet(Reg)); 1482 }; 1483 1484 for (unsigned I = 0; I < StageCount; I++) { 1485 for (MachineInstr *MI : OrderedInsts) { 1486 const auto Stage = Stages[MI]; 1487 if (I < Stage) 1488 continue; 1489 1490 const unsigned Iter = I - Stage; 1491 1492 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1493 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1494 1495 for (auto LastUse : LastUses[MI]) { 1496 if (MI->isPHI()) { 1497 if (Iter != 0) 1498 EraseReg(LiveRegSets[Iter - 1], LastUse); 1499 } else { 1500 EraseReg(LiveRegSets[Iter], LastUse); 1501 } 1502 } 1503 1504 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1505 MaxSetPressure[PSet] = 1506 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1507 1508 LLVM_DEBUG({ 1509 dbgs() << "CurSetPressure="; 1510 dumpRegisterPressures(CurSetPressure); 1511 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1512 MI->dump(); 1513 }); 1514 } 1515 } 1516 1517 return MaxSetPressure; 1518 } 1519 1520 public: 1521 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1522 const MachineFunction &MF) 1523 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1524 TRI(MF.getSubtarget().getRegisterInfo()), 1525 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1526 PressureSetLimit(PSetNum, 0) {} 1527 1528 // Used to calculate register pressure, which is independent of loop 1529 // scheduling. 1530 void init(const RegisterClassInfo &RCI) { 1531 for (MachineInstr &MI : *OrigMBB) { 1532 if (MI.isDebugInstr()) 1533 continue; 1534 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1535 } 1536 1537 computeLiveIn(); 1538 computePressureSetLimit(RCI); 1539 } 1540 1541 // Calculate the maximum register pressures of the loop and check if they 1542 // exceed the limit 1543 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1544 const unsigned MaxStage) const { 1545 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1546 "the percentage of the margin must be between 0 to 100"); 1547 1548 OrderedInstsTy OrderedInsts; 1549 Instr2StageTy Stages; 1550 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1551 const auto MaxSetPressure = 1552 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1553 1554 LLVM_DEBUG({ 1555 dbgs() << "Dump MaxSetPressure:\n"; 1556 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1557 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1558 } 1559 dbgs() << '\n'; 1560 }); 1561 1562 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1563 unsigned Limit = PressureSetLimit[PSet]; 1564 unsigned Margin = Limit * RegPressureMargin / 100; 1565 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1566 << " Margin=" << Margin << "\n"); 1567 if (Limit < MaxSetPressure[PSet] + Margin) { 1568 LLVM_DEBUG( 1569 dbgs() 1570 << "Rejected the schedule because of too high register pressure\n"); 1571 return true; 1572 } 1573 } 1574 return false; 1575 } 1576 }; 1577 1578 } // end anonymous namespace 1579 1580 /// Calculate the resource constrained minimum initiation interval for the 1581 /// specified loop. We use the DFA to model the resources needed for 1582 /// each instruction, and we ignore dependences. A different DFA is created 1583 /// for each cycle that is required. When adding a new instruction, we attempt 1584 /// to add it to each existing DFA, until a legal space is found. If the 1585 /// instruction cannot be reserved in an existing DFA, we create a new one. 1586 unsigned SwingSchedulerDAG::calculateResMII() { 1587 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1588 ResourceManager RM(&MF.getSubtarget(), this); 1589 return RM.calculateResMII(); 1590 } 1591 1592 /// Calculate the recurrence-constrainted minimum initiation interval. 1593 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1594 /// for each circuit. The II needs to satisfy the inequality 1595 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1596 /// II that satisfies the inequality, and the RecMII is the maximum 1597 /// of those values. 1598 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1599 unsigned RecMII = 0; 1600 1601 for (NodeSet &Nodes : NodeSets) { 1602 if (Nodes.empty()) 1603 continue; 1604 1605 unsigned Delay = Nodes.getLatency(); 1606 unsigned Distance = 1; 1607 1608 // ii = ceil(delay / distance) 1609 unsigned CurMII = (Delay + Distance - 1) / Distance; 1610 Nodes.setRecMII(CurMII); 1611 if (CurMII > RecMII) 1612 RecMII = CurMII; 1613 } 1614 1615 return RecMII; 1616 } 1617 1618 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1619 /// but we do this to find the circuits, and then change them back. 1620 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1621 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1622 for (SUnit &SU : SUnits) { 1623 for (SDep &Pred : SU.Preds) 1624 if (Pred.getKind() == SDep::Anti) 1625 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1626 } 1627 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1628 // Remove this anti dependency and add one in the reverse direction. 1629 SUnit *SU = P.first; 1630 SDep &D = P.second; 1631 SUnit *TargetSU = D.getSUnit(); 1632 unsigned Reg = D.getReg(); 1633 unsigned Lat = D.getLatency(); 1634 SU->removePred(D); 1635 SDep Dep(SU, SDep::Anti, Reg); 1636 Dep.setLatency(Lat); 1637 TargetSU->addPred(Dep); 1638 } 1639 } 1640 1641 /// Create the adjacency structure of the nodes in the graph. 1642 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1643 SwingSchedulerDAG *DAG) { 1644 BitVector Added(SUnits.size()); 1645 DenseMap<int, int> OutputDeps; 1646 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1647 Added.reset(); 1648 // Add any successor to the adjacency matrix and exclude duplicates. 1649 for (auto &SI : SUnits[i].Succs) { 1650 // Only create a back-edge on the first and last nodes of a dependence 1651 // chain. This records any chains and adds them later. 1652 if (SI.getKind() == SDep::Output) { 1653 int N = SI.getSUnit()->NodeNum; 1654 int BackEdge = i; 1655 auto Dep = OutputDeps.find(BackEdge); 1656 if (Dep != OutputDeps.end()) { 1657 BackEdge = Dep->second; 1658 OutputDeps.erase(Dep); 1659 } 1660 OutputDeps[N] = BackEdge; 1661 } 1662 // Do not process a boundary node, an artificial node. 1663 // A back-edge is processed only if it goes to a Phi. 1664 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1665 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1666 continue; 1667 int N = SI.getSUnit()->NodeNum; 1668 if (!Added.test(N)) { 1669 AdjK[i].push_back(N); 1670 Added.set(N); 1671 } 1672 } 1673 // A chain edge between a store and a load is treated as a back-edge in the 1674 // adjacency matrix. 1675 for (auto &PI : SUnits[i].Preds) { 1676 if (!SUnits[i].getInstr()->mayStore() || 1677 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1678 continue; 1679 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1680 int N = PI.getSUnit()->NodeNum; 1681 if (!Added.test(N)) { 1682 AdjK[i].push_back(N); 1683 Added.set(N); 1684 } 1685 } 1686 } 1687 } 1688 // Add back-edges in the adjacency matrix for the output dependences. 1689 for (auto &OD : OutputDeps) 1690 if (!Added.test(OD.second)) { 1691 AdjK[OD.first].push_back(OD.second); 1692 Added.set(OD.second); 1693 } 1694 } 1695 1696 /// Identify an elementary circuit in the dependence graph starting at the 1697 /// specified node. 1698 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1699 bool HasBackedge) { 1700 SUnit *SV = &SUnits[V]; 1701 bool F = false; 1702 Stack.insert(SV); 1703 Blocked.set(V); 1704 1705 for (auto W : AdjK[V]) { 1706 if (NumPaths > MaxPaths) 1707 break; 1708 if (W < S) 1709 continue; 1710 if (W == S) { 1711 if (!HasBackedge) 1712 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1713 F = true; 1714 ++NumPaths; 1715 break; 1716 } else if (!Blocked.test(W)) { 1717 if (circuit(W, S, NodeSets, 1718 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1719 F = true; 1720 } 1721 } 1722 1723 if (F) 1724 unblock(V); 1725 else { 1726 for (auto W : AdjK[V]) { 1727 if (W < S) 1728 continue; 1729 B[W].insert(SV); 1730 } 1731 } 1732 Stack.pop_back(); 1733 return F; 1734 } 1735 1736 /// Unblock a node in the circuit finding algorithm. 1737 void SwingSchedulerDAG::Circuits::unblock(int U) { 1738 Blocked.reset(U); 1739 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1740 while (!BU.empty()) { 1741 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1742 assert(SI != BU.end() && "Invalid B set."); 1743 SUnit *W = *SI; 1744 BU.erase(W); 1745 if (Blocked.test(W->NodeNum)) 1746 unblock(W->NodeNum); 1747 } 1748 } 1749 1750 /// Identify all the elementary circuits in the dependence graph using 1751 /// Johnson's circuit algorithm. 1752 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1753 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1754 // but we do this to find the circuits, and then change them back. 1755 swapAntiDependences(SUnits); 1756 1757 Circuits Cir(SUnits, Topo); 1758 // Create the adjacency structure. 1759 Cir.createAdjacencyStructure(this); 1760 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1761 Cir.reset(); 1762 Cir.circuit(i, i, NodeSets); 1763 } 1764 1765 // Change the dependences back so that we've created a DAG again. 1766 swapAntiDependences(SUnits); 1767 } 1768 1769 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1770 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1771 // additional copies that are needed across iterations. An artificial dependence 1772 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1773 1774 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1775 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1776 // PHI-------True-Dep------> USEOfPhi 1777 1778 // The mutation creates 1779 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1780 1781 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1782 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1783 // late to avoid additional copies across iterations. The possible scheduling 1784 // order would be 1785 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1786 1787 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1788 for (SUnit &SU : DAG->SUnits) { 1789 // Find the COPY/REG_SEQUENCE instruction. 1790 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1791 continue; 1792 1793 // Record the loop carried PHIs. 1794 SmallVector<SUnit *, 4> PHISUs; 1795 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1796 SmallVector<SUnit *, 4> SrcSUs; 1797 1798 for (auto &Dep : SU.Preds) { 1799 SUnit *TmpSU = Dep.getSUnit(); 1800 MachineInstr *TmpMI = TmpSU->getInstr(); 1801 SDep::Kind DepKind = Dep.getKind(); 1802 // Save the loop carried PHI. 1803 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1804 PHISUs.push_back(TmpSU); 1805 // Save the source of COPY/REG_SEQUENCE. 1806 // If the source has no pre-decessors, we will end up creating cycles. 1807 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1808 SrcSUs.push_back(TmpSU); 1809 } 1810 1811 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1812 continue; 1813 1814 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1815 // SUnit to the container. 1816 SmallVector<SUnit *, 8> UseSUs; 1817 // Do not use iterator based loop here as we are updating the container. 1818 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1819 for (auto &Dep : PHISUs[Index]->Succs) { 1820 if (Dep.getKind() != SDep::Data) 1821 continue; 1822 1823 SUnit *TmpSU = Dep.getSUnit(); 1824 MachineInstr *TmpMI = TmpSU->getInstr(); 1825 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1826 PHISUs.push_back(TmpSU); 1827 continue; 1828 } 1829 UseSUs.push_back(TmpSU); 1830 } 1831 } 1832 1833 if (UseSUs.size() == 0) 1834 continue; 1835 1836 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1837 // Add the artificial dependencies if it does not form a cycle. 1838 for (auto *I : UseSUs) { 1839 for (auto *Src : SrcSUs) { 1840 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1841 Src->addPred(SDep(I, SDep::Artificial)); 1842 SDAG->Topo.AddPred(Src, I); 1843 } 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Return true for DAG nodes that we ignore when computing the cost functions. 1850 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1851 /// in the calculation of the ASAP, ALAP, etc functions. 1852 static bool ignoreDependence(const SDep &D, bool isPred) { 1853 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1854 return true; 1855 return D.getKind() == SDep::Anti && isPred; 1856 } 1857 1858 /// Compute several functions need to order the nodes for scheduling. 1859 /// ASAP - Earliest time to schedule a node. 1860 /// ALAP - Latest time to schedule a node. 1861 /// MOV - Mobility function, difference between ALAP and ASAP. 1862 /// D - Depth of each node. 1863 /// H - Height of each node. 1864 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1865 ScheduleInfo.resize(SUnits.size()); 1866 1867 LLVM_DEBUG({ 1868 for (int I : Topo) { 1869 const SUnit &SU = SUnits[I]; 1870 dumpNode(SU); 1871 } 1872 }); 1873 1874 int maxASAP = 0; 1875 // Compute ASAP and ZeroLatencyDepth. 1876 for (int I : Topo) { 1877 int asap = 0; 1878 int zeroLatencyDepth = 0; 1879 SUnit *SU = &SUnits[I]; 1880 for (const SDep &P : SU->Preds) { 1881 SUnit *pred = P.getSUnit(); 1882 if (P.getLatency() == 0) 1883 zeroLatencyDepth = 1884 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1885 if (ignoreDependence(P, true)) 1886 continue; 1887 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1888 getDistance(pred, SU, P) * MII)); 1889 } 1890 maxASAP = std::max(maxASAP, asap); 1891 ScheduleInfo[I].ASAP = asap; 1892 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1893 } 1894 1895 // Compute ALAP, ZeroLatencyHeight, and MOV. 1896 for (int I : llvm::reverse(Topo)) { 1897 int alap = maxASAP; 1898 int zeroLatencyHeight = 0; 1899 SUnit *SU = &SUnits[I]; 1900 for (const SDep &S : SU->Succs) { 1901 SUnit *succ = S.getSUnit(); 1902 if (succ->isBoundaryNode()) 1903 continue; 1904 if (S.getLatency() == 0) 1905 zeroLatencyHeight = 1906 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1907 if (ignoreDependence(S, true)) 1908 continue; 1909 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1910 getDistance(SU, succ, S) * MII)); 1911 } 1912 1913 ScheduleInfo[I].ALAP = alap; 1914 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1915 } 1916 1917 // After computing the node functions, compute the summary for each node set. 1918 for (NodeSet &I : NodeSets) 1919 I.computeNodeSetInfo(this); 1920 1921 LLVM_DEBUG({ 1922 for (unsigned i = 0; i < SUnits.size(); i++) { 1923 dbgs() << "\tNode " << i << ":\n"; 1924 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1925 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1926 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1927 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1928 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1929 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1930 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1931 } 1932 }); 1933 } 1934 1935 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1936 /// as the predecessors of the elements of NodeOrder that are not also in 1937 /// NodeOrder. 1938 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1939 SmallSetVector<SUnit *, 8> &Preds, 1940 const NodeSet *S = nullptr) { 1941 Preds.clear(); 1942 for (const SUnit *SU : NodeOrder) { 1943 for (const SDep &Pred : SU->Preds) { 1944 if (S && S->count(Pred.getSUnit()) == 0) 1945 continue; 1946 if (ignoreDependence(Pred, true)) 1947 continue; 1948 if (NodeOrder.count(Pred.getSUnit()) == 0) 1949 Preds.insert(Pred.getSUnit()); 1950 } 1951 // Back-edges are predecessors with an anti-dependence. 1952 for (const SDep &Succ : SU->Succs) { 1953 if (Succ.getKind() != SDep::Anti) 1954 continue; 1955 if (S && S->count(Succ.getSUnit()) == 0) 1956 continue; 1957 if (NodeOrder.count(Succ.getSUnit()) == 0) 1958 Preds.insert(Succ.getSUnit()); 1959 } 1960 } 1961 return !Preds.empty(); 1962 } 1963 1964 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1965 /// as the successors of the elements of NodeOrder that are not also in 1966 /// NodeOrder. 1967 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1968 SmallSetVector<SUnit *, 8> &Succs, 1969 const NodeSet *S = nullptr) { 1970 Succs.clear(); 1971 for (const SUnit *SU : NodeOrder) { 1972 for (const SDep &Succ : SU->Succs) { 1973 if (S && S->count(Succ.getSUnit()) == 0) 1974 continue; 1975 if (ignoreDependence(Succ, false)) 1976 continue; 1977 if (NodeOrder.count(Succ.getSUnit()) == 0) 1978 Succs.insert(Succ.getSUnit()); 1979 } 1980 for (const SDep &Pred : SU->Preds) { 1981 if (Pred.getKind() != SDep::Anti) 1982 continue; 1983 if (S && S->count(Pred.getSUnit()) == 0) 1984 continue; 1985 if (NodeOrder.count(Pred.getSUnit()) == 0) 1986 Succs.insert(Pred.getSUnit()); 1987 } 1988 } 1989 return !Succs.empty(); 1990 } 1991 1992 /// Return true if there is a path from the specified node to any of the nodes 1993 /// in DestNodes. Keep track and return the nodes in any path. 1994 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1995 SetVector<SUnit *> &DestNodes, 1996 SetVector<SUnit *> &Exclude, 1997 SmallPtrSet<SUnit *, 8> &Visited) { 1998 if (Cur->isBoundaryNode()) 1999 return false; 2000 if (Exclude.contains(Cur)) 2001 return false; 2002 if (DestNodes.contains(Cur)) 2003 return true; 2004 if (!Visited.insert(Cur).second) 2005 return Path.contains(Cur); 2006 bool FoundPath = false; 2007 for (auto &SI : Cur->Succs) 2008 if (!ignoreDependence(SI, false)) 2009 FoundPath |= 2010 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 2011 for (auto &PI : Cur->Preds) 2012 if (PI.getKind() == SDep::Anti) 2013 FoundPath |= 2014 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 2015 if (FoundPath) 2016 Path.insert(Cur); 2017 return FoundPath; 2018 } 2019 2020 /// Compute the live-out registers for the instructions in a node-set. 2021 /// The live-out registers are those that are defined in the node-set, 2022 /// but not used. Except for use operands of Phis. 2023 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 2024 NodeSet &NS) { 2025 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2026 MachineRegisterInfo &MRI = MF.getRegInfo(); 2027 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 2028 SmallSet<unsigned, 4> Uses; 2029 for (SUnit *SU : NS) { 2030 const MachineInstr *MI = SU->getInstr(); 2031 if (MI->isPHI()) 2032 continue; 2033 for (const MachineOperand &MO : MI->all_uses()) { 2034 Register Reg = MO.getReg(); 2035 if (Reg.isVirtual()) 2036 Uses.insert(Reg); 2037 else if (MRI.isAllocatable(Reg)) 2038 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2039 Uses.insert(Unit); 2040 } 2041 } 2042 for (SUnit *SU : NS) 2043 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2044 if (!MO.isDead()) { 2045 Register Reg = MO.getReg(); 2046 if (Reg.isVirtual()) { 2047 if (!Uses.count(Reg)) 2048 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2049 LaneBitmask::getNone())); 2050 } else if (MRI.isAllocatable(Reg)) { 2051 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2052 if (!Uses.count(Unit)) 2053 LiveOutRegs.push_back( 2054 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2055 } 2056 } 2057 RPTracker.addLiveRegs(LiveOutRegs); 2058 } 2059 2060 /// A heuristic to filter nodes in recurrent node-sets if the register 2061 /// pressure of a set is too high. 2062 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2063 for (auto &NS : NodeSets) { 2064 // Skip small node-sets since they won't cause register pressure problems. 2065 if (NS.size() <= 2) 2066 continue; 2067 IntervalPressure RecRegPressure; 2068 RegPressureTracker RecRPTracker(RecRegPressure); 2069 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2070 computeLiveOuts(MF, RecRPTracker, NS); 2071 RecRPTracker.closeBottom(); 2072 2073 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2074 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2075 return A->NodeNum > B->NodeNum; 2076 }); 2077 2078 for (auto &SU : SUnits) { 2079 // Since we're computing the register pressure for a subset of the 2080 // instructions in a block, we need to set the tracker for each 2081 // instruction in the node-set. The tracker is set to the instruction 2082 // just after the one we're interested in. 2083 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2084 RecRPTracker.setPos(std::next(CurInstI)); 2085 2086 RegPressureDelta RPDelta; 2087 ArrayRef<PressureChange> CriticalPSets; 2088 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2089 CriticalPSets, 2090 RecRegPressure.MaxSetPressure); 2091 if (RPDelta.Excess.isValid()) { 2092 LLVM_DEBUG( 2093 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2094 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2095 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2096 NS.setExceedPressure(SU); 2097 break; 2098 } 2099 RecRPTracker.recede(); 2100 } 2101 } 2102 } 2103 2104 /// A heuristic to colocate node sets that have the same set of 2105 /// successors. 2106 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2107 unsigned Colocate = 0; 2108 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2109 NodeSet &N1 = NodeSets[i]; 2110 SmallSetVector<SUnit *, 8> S1; 2111 if (N1.empty() || !succ_L(N1, S1)) 2112 continue; 2113 for (int j = i + 1; j < e; ++j) { 2114 NodeSet &N2 = NodeSets[j]; 2115 if (N1.compareRecMII(N2) != 0) 2116 continue; 2117 SmallSetVector<SUnit *, 8> S2; 2118 if (N2.empty() || !succ_L(N2, S2)) 2119 continue; 2120 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2121 N1.setColocate(++Colocate); 2122 N2.setColocate(Colocate); 2123 break; 2124 } 2125 } 2126 } 2127 } 2128 2129 /// Check if the existing node-sets are profitable. If not, then ignore the 2130 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2131 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2132 /// then it's best to try to schedule all instructions together instead of 2133 /// starting with the recurrent node-sets. 2134 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2135 // Look for loops with a large MII. 2136 if (MII < 17) 2137 return; 2138 // Check if the node-set contains only a simple add recurrence. 2139 for (auto &NS : NodeSets) { 2140 if (NS.getRecMII() > 2) 2141 return; 2142 if (NS.getMaxDepth() > MII) 2143 return; 2144 } 2145 NodeSets.clear(); 2146 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2147 } 2148 2149 /// Add the nodes that do not belong to a recurrence set into groups 2150 /// based upon connected components. 2151 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2152 SetVector<SUnit *> NodesAdded; 2153 SmallPtrSet<SUnit *, 8> Visited; 2154 // Add the nodes that are on a path between the previous node sets and 2155 // the current node set. 2156 for (NodeSet &I : NodeSets) { 2157 SmallSetVector<SUnit *, 8> N; 2158 // Add the nodes from the current node set to the previous node set. 2159 if (succ_L(I, N)) { 2160 SetVector<SUnit *> Path; 2161 for (SUnit *NI : N) { 2162 Visited.clear(); 2163 computePath(NI, Path, NodesAdded, I, Visited); 2164 } 2165 if (!Path.empty()) 2166 I.insert(Path.begin(), Path.end()); 2167 } 2168 // Add the nodes from the previous node set to the current node set. 2169 N.clear(); 2170 if (succ_L(NodesAdded, N)) { 2171 SetVector<SUnit *> Path; 2172 for (SUnit *NI : N) { 2173 Visited.clear(); 2174 computePath(NI, Path, I, NodesAdded, Visited); 2175 } 2176 if (!Path.empty()) 2177 I.insert(Path.begin(), Path.end()); 2178 } 2179 NodesAdded.insert(I.begin(), I.end()); 2180 } 2181 2182 // Create a new node set with the connected nodes of any successor of a node 2183 // in a recurrent set. 2184 NodeSet NewSet; 2185 SmallSetVector<SUnit *, 8> N; 2186 if (succ_L(NodesAdded, N)) 2187 for (SUnit *I : N) 2188 addConnectedNodes(I, NewSet, NodesAdded); 2189 if (!NewSet.empty()) 2190 NodeSets.push_back(NewSet); 2191 2192 // Create a new node set with the connected nodes of any predecessor of a node 2193 // in a recurrent set. 2194 NewSet.clear(); 2195 if (pred_L(NodesAdded, N)) 2196 for (SUnit *I : N) 2197 addConnectedNodes(I, NewSet, NodesAdded); 2198 if (!NewSet.empty()) 2199 NodeSets.push_back(NewSet); 2200 2201 // Create new nodes sets with the connected nodes any remaining node that 2202 // has no predecessor. 2203 for (SUnit &SU : SUnits) { 2204 if (NodesAdded.count(&SU) == 0) { 2205 NewSet.clear(); 2206 addConnectedNodes(&SU, NewSet, NodesAdded); 2207 if (!NewSet.empty()) 2208 NodeSets.push_back(NewSet); 2209 } 2210 } 2211 } 2212 2213 /// Add the node to the set, and add all of its connected nodes to the set. 2214 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2215 SetVector<SUnit *> &NodesAdded) { 2216 NewSet.insert(SU); 2217 NodesAdded.insert(SU); 2218 for (auto &SI : SU->Succs) { 2219 SUnit *Successor = SI.getSUnit(); 2220 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2221 NodesAdded.count(Successor) == 0) 2222 addConnectedNodes(Successor, NewSet, NodesAdded); 2223 } 2224 for (auto &PI : SU->Preds) { 2225 SUnit *Predecessor = PI.getSUnit(); 2226 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2227 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2228 } 2229 } 2230 2231 /// Return true if Set1 contains elements in Set2. The elements in common 2232 /// are returned in a different container. 2233 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2234 SmallSetVector<SUnit *, 8> &Result) { 2235 Result.clear(); 2236 for (SUnit *SU : Set1) { 2237 if (Set2.count(SU) != 0) 2238 Result.insert(SU); 2239 } 2240 return !Result.empty(); 2241 } 2242 2243 /// Merge the recurrence node sets that have the same initial node. 2244 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2245 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2246 ++I) { 2247 NodeSet &NI = *I; 2248 for (NodeSetType::iterator J = I + 1; J != E;) { 2249 NodeSet &NJ = *J; 2250 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2251 if (NJ.compareRecMII(NI) > 0) 2252 NI.setRecMII(NJ.getRecMII()); 2253 for (SUnit *SU : *J) 2254 I->insert(SU); 2255 NodeSets.erase(J); 2256 E = NodeSets.end(); 2257 } else { 2258 ++J; 2259 } 2260 } 2261 } 2262 } 2263 2264 /// Remove nodes that have been scheduled in previous NodeSets. 2265 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2266 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2267 ++I) 2268 for (NodeSetType::iterator J = I + 1; J != E;) { 2269 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2270 2271 if (J->empty()) { 2272 NodeSets.erase(J); 2273 E = NodeSets.end(); 2274 } else { 2275 ++J; 2276 } 2277 } 2278 } 2279 2280 /// Compute an ordered list of the dependence graph nodes, which 2281 /// indicates the order that the nodes will be scheduled. This is a 2282 /// two-level algorithm. First, a partial order is created, which 2283 /// consists of a list of sets ordered from highest to lowest priority. 2284 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2285 SmallSetVector<SUnit *, 8> R; 2286 NodeOrder.clear(); 2287 2288 for (auto &Nodes : NodeSets) { 2289 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2290 OrderKind Order; 2291 SmallSetVector<SUnit *, 8> N; 2292 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2293 R.insert(N.begin(), N.end()); 2294 Order = BottomUp; 2295 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2296 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2297 R.insert(N.begin(), N.end()); 2298 Order = TopDown; 2299 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2300 } else if (isIntersect(N, Nodes, R)) { 2301 // If some of the successors are in the existing node-set, then use the 2302 // top-down ordering. 2303 Order = TopDown; 2304 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2305 } else if (NodeSets.size() == 1) { 2306 for (const auto &N : Nodes) 2307 if (N->Succs.size() == 0) 2308 R.insert(N); 2309 Order = BottomUp; 2310 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2311 } else { 2312 // Find the node with the highest ASAP. 2313 SUnit *maxASAP = nullptr; 2314 for (SUnit *SU : Nodes) { 2315 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2316 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2317 maxASAP = SU; 2318 } 2319 R.insert(maxASAP); 2320 Order = BottomUp; 2321 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2322 } 2323 2324 while (!R.empty()) { 2325 if (Order == TopDown) { 2326 // Choose the node with the maximum height. If more than one, choose 2327 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2328 // choose the node with the lowest MOV. 2329 while (!R.empty()) { 2330 SUnit *maxHeight = nullptr; 2331 for (SUnit *I : R) { 2332 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2333 maxHeight = I; 2334 else if (getHeight(I) == getHeight(maxHeight) && 2335 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2336 maxHeight = I; 2337 else if (getHeight(I) == getHeight(maxHeight) && 2338 getZeroLatencyHeight(I) == 2339 getZeroLatencyHeight(maxHeight) && 2340 getMOV(I) < getMOV(maxHeight)) 2341 maxHeight = I; 2342 } 2343 NodeOrder.insert(maxHeight); 2344 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2345 R.remove(maxHeight); 2346 for (const auto &I : maxHeight->Succs) { 2347 if (Nodes.count(I.getSUnit()) == 0) 2348 continue; 2349 if (NodeOrder.contains(I.getSUnit())) 2350 continue; 2351 if (ignoreDependence(I, false)) 2352 continue; 2353 R.insert(I.getSUnit()); 2354 } 2355 // Back-edges are predecessors with an anti-dependence. 2356 for (const auto &I : maxHeight->Preds) { 2357 if (I.getKind() != SDep::Anti) 2358 continue; 2359 if (Nodes.count(I.getSUnit()) == 0) 2360 continue; 2361 if (NodeOrder.contains(I.getSUnit())) 2362 continue; 2363 R.insert(I.getSUnit()); 2364 } 2365 } 2366 Order = BottomUp; 2367 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2368 SmallSetVector<SUnit *, 8> N; 2369 if (pred_L(NodeOrder, N, &Nodes)) 2370 R.insert(N.begin(), N.end()); 2371 } else { 2372 // Choose the node with the maximum depth. If more than one, choose 2373 // the node with the maximum ZeroLatencyDepth. If still more than one, 2374 // choose the node with the lowest MOV. 2375 while (!R.empty()) { 2376 SUnit *maxDepth = nullptr; 2377 for (SUnit *I : R) { 2378 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2379 maxDepth = I; 2380 else if (getDepth(I) == getDepth(maxDepth) && 2381 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2382 maxDepth = I; 2383 else if (getDepth(I) == getDepth(maxDepth) && 2384 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2385 getMOV(I) < getMOV(maxDepth)) 2386 maxDepth = I; 2387 } 2388 NodeOrder.insert(maxDepth); 2389 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2390 R.remove(maxDepth); 2391 if (Nodes.isExceedSU(maxDepth)) { 2392 Order = TopDown; 2393 R.clear(); 2394 R.insert(Nodes.getNode(0)); 2395 break; 2396 } 2397 for (const auto &I : maxDepth->Preds) { 2398 if (Nodes.count(I.getSUnit()) == 0) 2399 continue; 2400 if (NodeOrder.contains(I.getSUnit())) 2401 continue; 2402 R.insert(I.getSUnit()); 2403 } 2404 // Back-edges are predecessors with an anti-dependence. 2405 for (const auto &I : maxDepth->Succs) { 2406 if (I.getKind() != SDep::Anti) 2407 continue; 2408 if (Nodes.count(I.getSUnit()) == 0) 2409 continue; 2410 if (NodeOrder.contains(I.getSUnit())) 2411 continue; 2412 R.insert(I.getSUnit()); 2413 } 2414 } 2415 Order = TopDown; 2416 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2417 SmallSetVector<SUnit *, 8> N; 2418 if (succ_L(NodeOrder, N, &Nodes)) 2419 R.insert(N.begin(), N.end()); 2420 } 2421 } 2422 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2423 } 2424 2425 LLVM_DEBUG({ 2426 dbgs() << "Node order: "; 2427 for (SUnit *I : NodeOrder) 2428 dbgs() << " " << I->NodeNum << " "; 2429 dbgs() << "\n"; 2430 }); 2431 } 2432 2433 /// Process the nodes in the computed order and create the pipelined schedule 2434 /// of the instructions, if possible. Return true if a schedule is found. 2435 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2436 2437 if (NodeOrder.empty()){ 2438 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2439 return false; 2440 } 2441 2442 bool scheduleFound = false; 2443 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2444 if (LimitRegPressure) { 2445 HRPDetector = 2446 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2447 HRPDetector->init(RegClassInfo); 2448 } 2449 // Keep increasing II until a valid schedule is found. 2450 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2451 Schedule.reset(); 2452 Schedule.setInitiationInterval(II); 2453 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2454 2455 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2456 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2457 do { 2458 SUnit *SU = *NI; 2459 2460 // Compute the schedule time for the instruction, which is based 2461 // upon the scheduled time for any predecessors/successors. 2462 int EarlyStart = INT_MIN; 2463 int LateStart = INT_MAX; 2464 // These values are set when the size of the schedule window is limited 2465 // due to chain dependences. 2466 int SchedEnd = INT_MAX; 2467 int SchedStart = INT_MIN; 2468 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2469 II, this); 2470 LLVM_DEBUG({ 2471 dbgs() << "\n"; 2472 dbgs() << "Inst (" << SU->NodeNum << ") "; 2473 SU->getInstr()->dump(); 2474 dbgs() << "\n"; 2475 }); 2476 LLVM_DEBUG({ 2477 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2478 LateStart, SchedEnd, SchedStart); 2479 }); 2480 2481 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2482 SchedStart > LateStart) 2483 scheduleFound = false; 2484 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2485 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2486 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2487 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2488 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2489 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2490 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2491 SchedEnd = 2492 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2493 // When scheduling a Phi it is better to start at the late cycle and go 2494 // backwards. The default order may insert the Phi too far away from 2495 // its first dependence. 2496 if (SU->getInstr()->isPHI()) 2497 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2498 else 2499 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2500 } else { 2501 int FirstCycle = Schedule.getFirstCycle(); 2502 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2503 FirstCycle + getASAP(SU) + II - 1, II); 2504 } 2505 // Even if we find a schedule, make sure the schedule doesn't exceed the 2506 // allowable number of stages. We keep trying if this happens. 2507 if (scheduleFound) 2508 if (SwpMaxStages > -1 && 2509 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2510 scheduleFound = false; 2511 2512 LLVM_DEBUG({ 2513 if (!scheduleFound) 2514 dbgs() << "\tCan't schedule\n"; 2515 }); 2516 } while (++NI != NE && scheduleFound); 2517 2518 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2519 if (scheduleFound) 2520 scheduleFound = 2521 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2522 2523 // If a schedule is found, check if it is a valid schedule too. 2524 if (scheduleFound) 2525 scheduleFound = Schedule.isValidSchedule(this); 2526 2527 // If a schedule was found and the option is enabled, check if the schedule 2528 // might generate additional register spills/fills. 2529 if (scheduleFound && LimitRegPressure) 2530 scheduleFound = 2531 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2532 } 2533 2534 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2535 << " (II=" << Schedule.getInitiationInterval() 2536 << ")\n"); 2537 2538 if (scheduleFound) { 2539 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2540 if (!scheduleFound) 2541 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2542 } 2543 2544 if (scheduleFound) { 2545 Schedule.finalizeSchedule(this); 2546 Pass.ORE->emit([&]() { 2547 return MachineOptimizationRemarkAnalysis( 2548 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2549 << "Schedule found with Initiation Interval: " 2550 << ore::NV("II", Schedule.getInitiationInterval()) 2551 << ", MaxStageCount: " 2552 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2553 }); 2554 } else 2555 Schedule.reset(); 2556 2557 return scheduleFound && Schedule.getMaxStageCount() > 0; 2558 } 2559 2560 /// Return true if we can compute the amount the instruction changes 2561 /// during each iteration. Set Delta to the amount of the change. 2562 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2563 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2564 const MachineOperand *BaseOp; 2565 int64_t Offset; 2566 bool OffsetIsScalable; 2567 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2568 return false; 2569 2570 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2571 if (OffsetIsScalable) 2572 return false; 2573 2574 if (!BaseOp->isReg()) 2575 return false; 2576 2577 Register BaseReg = BaseOp->getReg(); 2578 2579 MachineRegisterInfo &MRI = MF.getRegInfo(); 2580 // Check if there is a Phi. If so, get the definition in the loop. 2581 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2582 if (BaseDef && BaseDef->isPHI()) { 2583 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2584 BaseDef = MRI.getVRegDef(BaseReg); 2585 } 2586 if (!BaseDef) 2587 return false; 2588 2589 int D = 0; 2590 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2591 return false; 2592 2593 Delta = D; 2594 return true; 2595 } 2596 2597 /// Check if we can change the instruction to use an offset value from the 2598 /// previous iteration. If so, return true and set the base and offset values 2599 /// so that we can rewrite the load, if necessary. 2600 /// v1 = Phi(v0, v3) 2601 /// v2 = load v1, 0 2602 /// v3 = post_store v1, 4, x 2603 /// This function enables the load to be rewritten as v2 = load v3, 4. 2604 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2605 unsigned &BasePos, 2606 unsigned &OffsetPos, 2607 unsigned &NewBase, 2608 int64_t &Offset) { 2609 // Get the load instruction. 2610 if (TII->isPostIncrement(*MI)) 2611 return false; 2612 unsigned BasePosLd, OffsetPosLd; 2613 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2614 return false; 2615 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2616 2617 // Look for the Phi instruction. 2618 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2619 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2620 if (!Phi || !Phi->isPHI()) 2621 return false; 2622 // Get the register defined in the loop block. 2623 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2624 if (!PrevReg) 2625 return false; 2626 2627 // Check for the post-increment load/store instruction. 2628 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2629 if (!PrevDef || PrevDef == MI) 2630 return false; 2631 2632 if (!TII->isPostIncrement(*PrevDef)) 2633 return false; 2634 2635 unsigned BasePos1 = 0, OffsetPos1 = 0; 2636 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2637 return false; 2638 2639 // Make sure that the instructions do not access the same memory location in 2640 // the next iteration. 2641 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2642 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2643 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2644 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2645 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2646 MF.deleteMachineInstr(NewMI); 2647 if (!Disjoint) 2648 return false; 2649 2650 // Set the return value once we determine that we return true. 2651 BasePos = BasePosLd; 2652 OffsetPos = OffsetPosLd; 2653 NewBase = PrevReg; 2654 Offset = StoreOffset; 2655 return true; 2656 } 2657 2658 /// Apply changes to the instruction if needed. The changes are need 2659 /// to improve the scheduling and depend up on the final schedule. 2660 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2661 SMSchedule &Schedule) { 2662 SUnit *SU = getSUnit(MI); 2663 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2664 InstrChanges.find(SU); 2665 if (It != InstrChanges.end()) { 2666 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2667 unsigned BasePos, OffsetPos; 2668 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2669 return; 2670 Register BaseReg = MI->getOperand(BasePos).getReg(); 2671 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2672 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2673 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2674 int BaseStageNum = Schedule.stageScheduled(SU); 2675 int BaseCycleNum = Schedule.cycleScheduled(SU); 2676 if (BaseStageNum < DefStageNum) { 2677 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2678 int OffsetDiff = DefStageNum - BaseStageNum; 2679 if (DefCycleNum < BaseCycleNum) { 2680 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2681 if (OffsetDiff > 0) 2682 --OffsetDiff; 2683 } 2684 int64_t NewOffset = 2685 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2686 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2687 SU->setInstr(NewMI); 2688 MISUnitMap[NewMI] = SU; 2689 NewMIs[MI] = NewMI; 2690 } 2691 } 2692 } 2693 2694 /// Return the instruction in the loop that defines the register. 2695 /// If the definition is a Phi, then follow the Phi operand to 2696 /// the instruction in the loop. 2697 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2698 SmallPtrSet<MachineInstr *, 8> Visited; 2699 MachineInstr *Def = MRI.getVRegDef(Reg); 2700 while (Def->isPHI()) { 2701 if (!Visited.insert(Def).second) 2702 break; 2703 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2704 if (Def->getOperand(i + 1).getMBB() == BB) { 2705 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2706 break; 2707 } 2708 } 2709 return Def; 2710 } 2711 2712 /// Return true for an order or output dependence that is loop carried 2713 /// potentially. A dependence is loop carried if the destination defines a value 2714 /// that may be used or defined by the source in a subsequent iteration. 2715 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2716 bool isSucc) { 2717 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2718 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2719 return false; 2720 2721 if (!SwpPruneLoopCarried) 2722 return true; 2723 2724 if (Dep.getKind() == SDep::Output) 2725 return true; 2726 2727 MachineInstr *SI = Source->getInstr(); 2728 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2729 if (!isSucc) 2730 std::swap(SI, DI); 2731 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2732 2733 // Assume ordered loads and stores may have a loop carried dependence. 2734 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2735 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2736 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2737 return true; 2738 2739 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2740 return false; 2741 2742 // The conservative assumption is that a dependence between memory operations 2743 // may be loop carried. The following code checks when it can be proved that 2744 // there is no loop carried dependence. 2745 unsigned DeltaS, DeltaD; 2746 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2747 return true; 2748 2749 const MachineOperand *BaseOpS, *BaseOpD; 2750 int64_t OffsetS, OffsetD; 2751 bool OffsetSIsScalable, OffsetDIsScalable; 2752 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2753 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2754 TRI) || 2755 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2756 TRI)) 2757 return true; 2758 2759 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2760 "Expected offsets to be byte offsets"); 2761 2762 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2763 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2764 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2765 return true; 2766 2767 unsigned InitValS = 0; 2768 unsigned LoopValS = 0; 2769 unsigned InitValD = 0; 2770 unsigned LoopValD = 0; 2771 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2772 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2773 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2774 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2775 2776 if (!InitDefS->isIdenticalTo(*InitDefD)) 2777 return true; 2778 2779 // Check that the base register is incremented by a constant value for each 2780 // iteration. 2781 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2782 int D = 0; 2783 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2784 return true; 2785 2786 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2787 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2788 2789 // This is the main test, which checks the offset values and the loop 2790 // increment value to determine if the accesses may be loop carried. 2791 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2792 return true; 2793 2794 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2795 DeltaD < AccessSizeD.getValue()) 2796 return true; 2797 2798 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2799 OffsetD + (int64_t)AccessSizeD.getValue()); 2800 } 2801 2802 void SwingSchedulerDAG::postProcessDAG() { 2803 for (auto &M : Mutations) 2804 M->apply(this); 2805 } 2806 2807 /// Try to schedule the node at the specified StartCycle and continue 2808 /// until the node is schedule or the EndCycle is reached. This function 2809 /// returns true if the node is scheduled. This routine may search either 2810 /// forward or backward for a place to insert the instruction based upon 2811 /// the relative values of StartCycle and EndCycle. 2812 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2813 bool forward = true; 2814 LLVM_DEBUG({ 2815 dbgs() << "Trying to insert node between " << StartCycle << " and " 2816 << EndCycle << " II: " << II << "\n"; 2817 }); 2818 if (StartCycle > EndCycle) 2819 forward = false; 2820 2821 // The terminating condition depends on the direction. 2822 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2823 for (int curCycle = StartCycle; curCycle != termCycle; 2824 forward ? ++curCycle : --curCycle) { 2825 2826 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2827 ProcItinResources.canReserveResources(*SU, curCycle)) { 2828 LLVM_DEBUG({ 2829 dbgs() << "\tinsert at cycle " << curCycle << " "; 2830 SU->getInstr()->dump(); 2831 }); 2832 2833 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2834 ProcItinResources.reserveResources(*SU, curCycle); 2835 ScheduledInstrs[curCycle].push_back(SU); 2836 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2837 if (curCycle > LastCycle) 2838 LastCycle = curCycle; 2839 if (curCycle < FirstCycle) 2840 FirstCycle = curCycle; 2841 return true; 2842 } 2843 LLVM_DEBUG({ 2844 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2845 SU->getInstr()->dump(); 2846 }); 2847 } 2848 return false; 2849 } 2850 2851 // Return the cycle of the earliest scheduled instruction in the chain. 2852 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2853 SmallPtrSet<SUnit *, 8> Visited; 2854 SmallVector<SDep, 8> Worklist; 2855 Worklist.push_back(Dep); 2856 int EarlyCycle = INT_MAX; 2857 while (!Worklist.empty()) { 2858 const SDep &Cur = Worklist.pop_back_val(); 2859 SUnit *PrevSU = Cur.getSUnit(); 2860 if (Visited.count(PrevSU)) 2861 continue; 2862 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2863 if (it == InstrToCycle.end()) 2864 continue; 2865 EarlyCycle = std::min(EarlyCycle, it->second); 2866 for (const auto &PI : PrevSU->Preds) 2867 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2868 Worklist.push_back(PI); 2869 Visited.insert(PrevSU); 2870 } 2871 return EarlyCycle; 2872 } 2873 2874 // Return the cycle of the latest scheduled instruction in the chain. 2875 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2876 SmallPtrSet<SUnit *, 8> Visited; 2877 SmallVector<SDep, 8> Worklist; 2878 Worklist.push_back(Dep); 2879 int LateCycle = INT_MIN; 2880 while (!Worklist.empty()) { 2881 const SDep &Cur = Worklist.pop_back_val(); 2882 SUnit *SuccSU = Cur.getSUnit(); 2883 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2884 continue; 2885 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2886 if (it == InstrToCycle.end()) 2887 continue; 2888 LateCycle = std::max(LateCycle, it->second); 2889 for (const auto &SI : SuccSU->Succs) 2890 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2891 Worklist.push_back(SI); 2892 Visited.insert(SuccSU); 2893 } 2894 return LateCycle; 2895 } 2896 2897 /// If an instruction has a use that spans multiple iterations, then 2898 /// return true. These instructions are characterized by having a back-ege 2899 /// to a Phi, which contains a reference to another Phi. 2900 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2901 for (auto &P : SU->Preds) 2902 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2903 for (auto &S : P.getSUnit()->Succs) 2904 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2905 return P.getSUnit(); 2906 return nullptr; 2907 } 2908 2909 /// Compute the scheduling start slot for the instruction. The start slot 2910 /// depends on any predecessor or successor nodes scheduled already. 2911 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2912 int *MinEnd, int *MaxStart, int II, 2913 SwingSchedulerDAG *DAG) { 2914 // Iterate over each instruction that has been scheduled already. The start 2915 // slot computation depends on whether the previously scheduled instruction 2916 // is a predecessor or successor of the specified instruction. 2917 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2918 2919 // Iterate over each instruction in the current cycle. 2920 for (SUnit *I : getInstructions(cycle)) { 2921 // Because we're processing a DAG for the dependences, we recognize 2922 // the back-edge in recurrences by anti dependences. 2923 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2924 const SDep &Dep = SU->Preds[i]; 2925 if (Dep.getSUnit() == I) { 2926 if (!DAG->isBackedge(SU, Dep)) { 2927 int EarlyStart = cycle + Dep.getLatency() - 2928 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2929 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2930 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2931 int End = earliestCycleInChain(Dep) + (II - 1); 2932 *MinEnd = std::min(*MinEnd, End); 2933 } 2934 } else { 2935 int LateStart = cycle - Dep.getLatency() + 2936 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2937 *MinLateStart = std::min(*MinLateStart, LateStart); 2938 } 2939 } 2940 // For instruction that requires multiple iterations, make sure that 2941 // the dependent instruction is not scheduled past the definition. 2942 SUnit *BE = multipleIterations(I, DAG); 2943 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2944 !SU->isPred(I)) 2945 *MinLateStart = std::min(*MinLateStart, cycle); 2946 } 2947 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2948 if (SU->Succs[i].getSUnit() == I) { 2949 const SDep &Dep = SU->Succs[i]; 2950 if (!DAG->isBackedge(SU, Dep)) { 2951 int LateStart = cycle - Dep.getLatency() + 2952 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2953 *MinLateStart = std::min(*MinLateStart, LateStart); 2954 if (DAG->isLoopCarriedDep(SU, Dep)) { 2955 int Start = latestCycleInChain(Dep) + 1 - II; 2956 *MaxStart = std::max(*MaxStart, Start); 2957 } 2958 } else { 2959 int EarlyStart = cycle + Dep.getLatency() - 2960 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2961 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2962 } 2963 } 2964 } 2965 } 2966 } 2967 } 2968 2969 /// Order the instructions within a cycle so that the definitions occur 2970 /// before the uses. Returns true if the instruction is added to the start 2971 /// of the list, or false if added to the end. 2972 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2973 std::deque<SUnit *> &Insts) const { 2974 MachineInstr *MI = SU->getInstr(); 2975 bool OrderBeforeUse = false; 2976 bool OrderAfterDef = false; 2977 bool OrderBeforeDef = false; 2978 unsigned MoveDef = 0; 2979 unsigned MoveUse = 0; 2980 int StageInst1 = stageScheduled(SU); 2981 2982 unsigned Pos = 0; 2983 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2984 ++I, ++Pos) { 2985 for (MachineOperand &MO : MI->operands()) { 2986 if (!MO.isReg() || !MO.getReg().isVirtual()) 2987 continue; 2988 2989 Register Reg = MO.getReg(); 2990 unsigned BasePos, OffsetPos; 2991 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2992 if (MI->getOperand(BasePos).getReg() == Reg) 2993 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2994 Reg = NewReg; 2995 bool Reads, Writes; 2996 std::tie(Reads, Writes) = 2997 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2998 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2999 OrderBeforeUse = true; 3000 if (MoveUse == 0) 3001 MoveUse = Pos; 3002 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3003 // Add the instruction after the scheduled instruction. 3004 OrderAfterDef = true; 3005 MoveDef = Pos; 3006 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3007 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3008 OrderBeforeUse = true; 3009 if (MoveUse == 0) 3010 MoveUse = Pos; 3011 } else { 3012 OrderAfterDef = true; 3013 MoveDef = Pos; 3014 } 3015 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3016 OrderBeforeUse = true; 3017 if (MoveUse == 0) 3018 MoveUse = Pos; 3019 if (MoveUse != 0) { 3020 OrderAfterDef = true; 3021 MoveDef = Pos - 1; 3022 } 3023 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3024 // Add the instruction before the scheduled instruction. 3025 OrderBeforeUse = true; 3026 if (MoveUse == 0) 3027 MoveUse = Pos; 3028 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3029 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3030 if (MoveUse == 0) { 3031 OrderBeforeDef = true; 3032 MoveUse = Pos; 3033 } 3034 } 3035 } 3036 // Check for order dependences between instructions. Make sure the source 3037 // is ordered before the destination. 3038 for (auto &S : SU->Succs) { 3039 if (S.getSUnit() != *I) 3040 continue; 3041 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3042 OrderBeforeUse = true; 3043 if (Pos < MoveUse) 3044 MoveUse = Pos; 3045 } 3046 // We did not handle HW dependences in previous for loop, 3047 // and we normally set Latency = 0 for Anti deps, 3048 // so may have nodes in same cycle with Anti denpendent on HW regs. 3049 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 3050 OrderBeforeUse = true; 3051 if ((MoveUse == 0) || (Pos < MoveUse)) 3052 MoveUse = Pos; 3053 } 3054 } 3055 for (auto &P : SU->Preds) { 3056 if (P.getSUnit() != *I) 3057 continue; 3058 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3059 OrderAfterDef = true; 3060 MoveDef = Pos; 3061 } 3062 } 3063 } 3064 3065 // A circular dependence. 3066 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3067 OrderBeforeUse = false; 3068 3069 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3070 // to a loop-carried dependence. 3071 if (OrderBeforeDef) 3072 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3073 3074 // The uncommon case when the instruction order needs to be updated because 3075 // there is both a use and def. 3076 if (OrderBeforeUse && OrderAfterDef) { 3077 SUnit *UseSU = Insts.at(MoveUse); 3078 SUnit *DefSU = Insts.at(MoveDef); 3079 if (MoveUse > MoveDef) { 3080 Insts.erase(Insts.begin() + MoveUse); 3081 Insts.erase(Insts.begin() + MoveDef); 3082 } else { 3083 Insts.erase(Insts.begin() + MoveDef); 3084 Insts.erase(Insts.begin() + MoveUse); 3085 } 3086 orderDependence(SSD, UseSU, Insts); 3087 orderDependence(SSD, SU, Insts); 3088 orderDependence(SSD, DefSU, Insts); 3089 return; 3090 } 3091 // Put the new instruction first if there is a use in the list. Otherwise, 3092 // put it at the end of the list. 3093 if (OrderBeforeUse) 3094 Insts.push_front(SU); 3095 else 3096 Insts.push_back(SU); 3097 } 3098 3099 /// Return true if the scheduled Phi has a loop carried operand. 3100 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3101 MachineInstr &Phi) const { 3102 if (!Phi.isPHI()) 3103 return false; 3104 assert(Phi.isPHI() && "Expecting a Phi."); 3105 SUnit *DefSU = SSD->getSUnit(&Phi); 3106 unsigned DefCycle = cycleScheduled(DefSU); 3107 int DefStage = stageScheduled(DefSU); 3108 3109 unsigned InitVal = 0; 3110 unsigned LoopVal = 0; 3111 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3112 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3113 if (!UseSU) 3114 return true; 3115 if (UseSU->getInstr()->isPHI()) 3116 return true; 3117 unsigned LoopCycle = cycleScheduled(UseSU); 3118 int LoopStage = stageScheduled(UseSU); 3119 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3120 } 3121 3122 /// Return true if the instruction is a definition that is loop carried 3123 /// and defines the use on the next iteration. 3124 /// v1 = phi(v2, v3) 3125 /// (Def) v3 = op v1 3126 /// (MO) = v1 3127 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3128 /// register. 3129 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3130 MachineInstr *Def, 3131 MachineOperand &MO) const { 3132 if (!MO.isReg()) 3133 return false; 3134 if (Def->isPHI()) 3135 return false; 3136 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3137 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3138 return false; 3139 if (!isLoopCarried(SSD, *Phi)) 3140 return false; 3141 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3142 for (MachineOperand &DMO : Def->all_defs()) { 3143 if (DMO.getReg() == LoopReg) 3144 return true; 3145 } 3146 return false; 3147 } 3148 3149 /// Determine transitive dependences of unpipelineable instructions 3150 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3151 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3152 SmallSet<SUnit *, 8> DoNotPipeline; 3153 SmallVector<SUnit *, 8> Worklist; 3154 3155 for (auto &SU : SSD->SUnits) 3156 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3157 Worklist.push_back(&SU); 3158 3159 while (!Worklist.empty()) { 3160 auto SU = Worklist.pop_back_val(); 3161 if (DoNotPipeline.count(SU)) 3162 continue; 3163 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3164 DoNotPipeline.insert(SU); 3165 for (auto &Dep : SU->Preds) 3166 Worklist.push_back(Dep.getSUnit()); 3167 if (SU->getInstr()->isPHI()) 3168 for (auto &Dep : SU->Succs) 3169 if (Dep.getKind() == SDep::Anti) 3170 Worklist.push_back(Dep.getSUnit()); 3171 } 3172 return DoNotPipeline; 3173 } 3174 3175 // Determine all instructions upon which any unpipelineable instruction depends 3176 // and ensure that they are in stage 0. If unable to do so, return false. 3177 bool SMSchedule::normalizeNonPipelinedInstructions( 3178 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3179 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3180 3181 int NewLastCycle = INT_MIN; 3182 for (SUnit &SU : SSD->SUnits) { 3183 if (!SU.isInstr()) 3184 continue; 3185 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3186 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3187 continue; 3188 } 3189 3190 // Put the non-pipelined instruction as early as possible in the schedule 3191 int NewCycle = getFirstCycle(); 3192 for (auto &Dep : SU.Preds) 3193 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3194 3195 int OldCycle = InstrToCycle[&SU]; 3196 if (OldCycle != NewCycle) { 3197 InstrToCycle[&SU] = NewCycle; 3198 auto &OldS = getInstructions(OldCycle); 3199 llvm::erase(OldS, &SU); 3200 getInstructions(NewCycle).emplace_back(&SU); 3201 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3202 << ") is not pipelined; moving from cycle " << OldCycle 3203 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3204 } 3205 NewLastCycle = std::max(NewLastCycle, NewCycle); 3206 } 3207 LastCycle = NewLastCycle; 3208 return true; 3209 } 3210 3211 // Check if the generated schedule is valid. This function checks if 3212 // an instruction that uses a physical register is scheduled in a 3213 // different stage than the definition. The pipeliner does not handle 3214 // physical register values that may cross a basic block boundary. 3215 // Furthermore, if a physical def/use pair is assigned to the same 3216 // cycle, orderDependence does not guarantee def/use ordering, so that 3217 // case should be considered invalid. (The test checks for both 3218 // earlier and same-cycle use to be more robust.) 3219 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3220 for (SUnit &SU : SSD->SUnits) { 3221 if (!SU.hasPhysRegDefs) 3222 continue; 3223 int StageDef = stageScheduled(&SU); 3224 int CycleDef = InstrToCycle[&SU]; 3225 assert(StageDef != -1 && "Instruction should have been scheduled."); 3226 for (auto &SI : SU.Succs) 3227 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3228 if (Register::isPhysicalRegister(SI.getReg())) { 3229 if (stageScheduled(SI.getSUnit()) != StageDef) 3230 return false; 3231 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3232 return false; 3233 } 3234 } 3235 return true; 3236 } 3237 3238 /// A property of the node order in swing-modulo-scheduling is 3239 /// that for nodes outside circuits the following holds: 3240 /// none of them is scheduled after both a successor and a 3241 /// predecessor. 3242 /// The method below checks whether the property is met. 3243 /// If not, debug information is printed and statistics information updated. 3244 /// Note that we do not use an assert statement. 3245 /// The reason is that although an invalid node oder may prevent 3246 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3247 /// it does not lead to the generation of incorrect code. 3248 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3249 3250 // a sorted vector that maps each SUnit to its index in the NodeOrder 3251 typedef std::pair<SUnit *, unsigned> UnitIndex; 3252 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3253 3254 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3255 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3256 3257 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3258 return std::get<0>(i1) < std::get<0>(i2); 3259 }; 3260 3261 // sort, so that we can perform a binary search 3262 llvm::sort(Indices, CompareKey); 3263 3264 bool Valid = true; 3265 (void)Valid; 3266 // for each SUnit in the NodeOrder, check whether 3267 // it appears after both a successor and a predecessor 3268 // of the SUnit. If this is the case, and the SUnit 3269 // is not part of circuit, then the NodeOrder is not 3270 // valid. 3271 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3272 SUnit *SU = NodeOrder[i]; 3273 unsigned Index = i; 3274 3275 bool PredBefore = false; 3276 bool SuccBefore = false; 3277 3278 SUnit *Succ; 3279 SUnit *Pred; 3280 (void)Succ; 3281 (void)Pred; 3282 3283 for (SDep &PredEdge : SU->Preds) { 3284 SUnit *PredSU = PredEdge.getSUnit(); 3285 unsigned PredIndex = std::get<1>( 3286 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3287 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3288 PredBefore = true; 3289 Pred = PredSU; 3290 break; 3291 } 3292 } 3293 3294 for (SDep &SuccEdge : SU->Succs) { 3295 SUnit *SuccSU = SuccEdge.getSUnit(); 3296 // Do not process a boundary node, it was not included in NodeOrder, 3297 // hence not in Indices either, call to std::lower_bound() below will 3298 // return Indices.end(). 3299 if (SuccSU->isBoundaryNode()) 3300 continue; 3301 unsigned SuccIndex = std::get<1>( 3302 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3303 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3304 SuccBefore = true; 3305 Succ = SuccSU; 3306 break; 3307 } 3308 } 3309 3310 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3311 // instructions in circuits are allowed to be scheduled 3312 // after both a successor and predecessor. 3313 bool InCircuit = llvm::any_of( 3314 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3315 if (InCircuit) 3316 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3317 else { 3318 Valid = false; 3319 NumNodeOrderIssues++; 3320 LLVM_DEBUG(dbgs() << "Predecessor ";); 3321 } 3322 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3323 << " are scheduled before node " << SU->NodeNum 3324 << "\n";); 3325 } 3326 } 3327 3328 LLVM_DEBUG({ 3329 if (!Valid) 3330 dbgs() << "Invalid node order found!\n"; 3331 }); 3332 } 3333 3334 /// Attempt to fix the degenerate cases when the instruction serialization 3335 /// causes the register lifetimes to overlap. For example, 3336 /// p' = store_pi(p, b) 3337 /// = load p, offset 3338 /// In this case p and p' overlap, which means that two registers are needed. 3339 /// Instead, this function changes the load to use p' and updates the offset. 3340 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3341 unsigned OverlapReg = 0; 3342 unsigned NewBaseReg = 0; 3343 for (SUnit *SU : Instrs) { 3344 MachineInstr *MI = SU->getInstr(); 3345 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3346 const MachineOperand &MO = MI->getOperand(i); 3347 // Look for an instruction that uses p. The instruction occurs in the 3348 // same cycle but occurs later in the serialized order. 3349 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3350 // Check that the instruction appears in the InstrChanges structure, 3351 // which contains instructions that can have the offset updated. 3352 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3353 InstrChanges.find(SU); 3354 if (It != InstrChanges.end()) { 3355 unsigned BasePos, OffsetPos; 3356 // Update the base register and adjust the offset. 3357 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3358 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3359 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3360 int64_t NewOffset = 3361 MI->getOperand(OffsetPos).getImm() - It->second.second; 3362 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3363 SU->setInstr(NewMI); 3364 MISUnitMap[NewMI] = SU; 3365 NewMIs[MI] = NewMI; 3366 } 3367 } 3368 OverlapReg = 0; 3369 NewBaseReg = 0; 3370 break; 3371 } 3372 // Look for an instruction of the form p' = op(p), which uses and defines 3373 // two virtual registers that get allocated to the same physical register. 3374 unsigned TiedUseIdx = 0; 3375 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3376 // OverlapReg is p in the example above. 3377 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3378 // NewBaseReg is p' in the example above. 3379 NewBaseReg = MI->getOperand(i).getReg(); 3380 break; 3381 } 3382 } 3383 } 3384 } 3385 3386 std::deque<SUnit *> 3387 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3388 const std::deque<SUnit *> &Instrs) const { 3389 std::deque<SUnit *> NewOrderPhi; 3390 for (SUnit *SU : Instrs) { 3391 if (SU->getInstr()->isPHI()) 3392 NewOrderPhi.push_back(SU); 3393 } 3394 std::deque<SUnit *> NewOrderI; 3395 for (SUnit *SU : Instrs) { 3396 if (!SU->getInstr()->isPHI()) 3397 orderDependence(SSD, SU, NewOrderI); 3398 } 3399 llvm::append_range(NewOrderPhi, NewOrderI); 3400 return NewOrderPhi; 3401 } 3402 3403 /// After the schedule has been formed, call this function to combine 3404 /// the instructions from the different stages/cycles. That is, this 3405 /// function creates a schedule that represents a single iteration. 3406 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3407 // Move all instructions to the first stage from later stages. 3408 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3409 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3410 ++stage) { 3411 std::deque<SUnit *> &cycleInstrs = 3412 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3413 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3414 ScheduledInstrs[cycle].push_front(SU); 3415 } 3416 } 3417 3418 // Erase all the elements in the later stages. Only one iteration should 3419 // remain in the scheduled list, and it contains all the instructions. 3420 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3421 ScheduledInstrs.erase(cycle); 3422 3423 // Change the registers in instruction as specified in the InstrChanges 3424 // map. We need to use the new registers to create the correct order. 3425 for (const SUnit &SU : SSD->SUnits) 3426 SSD->applyInstrChange(SU.getInstr(), *this); 3427 3428 // Reorder the instructions in each cycle to fix and improve the 3429 // generated code. 3430 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3431 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3432 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3433 SSD->fixupRegisterOverlaps(cycleInstrs); 3434 } 3435 3436 LLVM_DEBUG(dump();); 3437 } 3438 3439 void NodeSet::print(raw_ostream &os) const { 3440 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3441 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3442 for (const auto &I : Nodes) 3443 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3444 os << "\n"; 3445 } 3446 3447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3448 /// Print the schedule information to the given output. 3449 void SMSchedule::print(raw_ostream &os) const { 3450 // Iterate over each cycle. 3451 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3452 // Iterate over each instruction in the cycle. 3453 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3454 for (SUnit *CI : cycleInstrs->second) { 3455 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3456 os << "(" << CI->NodeNum << ") "; 3457 CI->getInstr()->print(os); 3458 os << "\n"; 3459 } 3460 } 3461 } 3462 3463 /// Utility function used for debugging to print the schedule. 3464 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3465 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3466 3467 void ResourceManager::dumpMRT() const { 3468 LLVM_DEBUG({ 3469 if (UseDFA) 3470 return; 3471 std::stringstream SS; 3472 SS << "MRT:\n"; 3473 SS << std::setw(4) << "Slot"; 3474 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3475 SS << std::setw(3) << I; 3476 SS << std::setw(7) << "#Mops" 3477 << "\n"; 3478 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3479 SS << std::setw(4) << Slot; 3480 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3481 SS << std::setw(3) << MRT[Slot][I]; 3482 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3483 } 3484 dbgs() << SS.str(); 3485 }); 3486 } 3487 #endif 3488 3489 void ResourceManager::initProcResourceVectors( 3490 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3491 unsigned ProcResourceID = 0; 3492 3493 // We currently limit the resource kinds to 64 and below so that we can use 3494 // uint64_t for Masks 3495 assert(SM.getNumProcResourceKinds() < 64 && 3496 "Too many kinds of resources, unsupported"); 3497 // Create a unique bitmask for every processor resource unit. 3498 // Skip resource at index 0, since it always references 'InvalidUnit'. 3499 Masks.resize(SM.getNumProcResourceKinds()); 3500 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3501 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3502 if (Desc.SubUnitsIdxBegin) 3503 continue; 3504 Masks[I] = 1ULL << ProcResourceID; 3505 ProcResourceID++; 3506 } 3507 // Create a unique bitmask for every processor resource group. 3508 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3509 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3510 if (!Desc.SubUnitsIdxBegin) 3511 continue; 3512 Masks[I] = 1ULL << ProcResourceID; 3513 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3514 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3515 ProcResourceID++; 3516 } 3517 LLVM_DEBUG({ 3518 if (SwpShowResMask) { 3519 dbgs() << "ProcResourceDesc:\n"; 3520 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3521 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3522 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3523 ProcResource->Name, I, Masks[I], 3524 ProcResource->NumUnits); 3525 } 3526 dbgs() << " -----------------\n"; 3527 } 3528 }); 3529 } 3530 3531 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3532 LLVM_DEBUG({ 3533 if (SwpDebugResource) 3534 dbgs() << "canReserveResources:\n"; 3535 }); 3536 if (UseDFA) 3537 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3538 ->canReserveResources(&SU.getInstr()->getDesc()); 3539 3540 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3541 if (!SCDesc->isValid()) { 3542 LLVM_DEBUG({ 3543 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3544 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3545 }); 3546 return true; 3547 } 3548 3549 reserveResources(SCDesc, Cycle); 3550 bool Result = !isOverbooked(); 3551 unreserveResources(SCDesc, Cycle); 3552 3553 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3554 return Result; 3555 } 3556 3557 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3558 LLVM_DEBUG({ 3559 if (SwpDebugResource) 3560 dbgs() << "reserveResources:\n"; 3561 }); 3562 if (UseDFA) 3563 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3564 ->reserveResources(&SU.getInstr()->getDesc()); 3565 3566 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3567 if (!SCDesc->isValid()) { 3568 LLVM_DEBUG({ 3569 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3570 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3571 }); 3572 return; 3573 } 3574 3575 reserveResources(SCDesc, Cycle); 3576 3577 LLVM_DEBUG({ 3578 if (SwpDebugResource) { 3579 dumpMRT(); 3580 dbgs() << "reserveResources: done!\n\n"; 3581 } 3582 }); 3583 } 3584 3585 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3586 int Cycle) { 3587 assert(!UseDFA); 3588 for (const MCWriteProcResEntry &PRE : make_range( 3589 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3590 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3591 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3592 3593 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3594 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3595 } 3596 3597 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3598 int Cycle) { 3599 assert(!UseDFA); 3600 for (const MCWriteProcResEntry &PRE : make_range( 3601 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3602 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3603 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3604 3605 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3606 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3607 } 3608 3609 bool ResourceManager::isOverbooked() const { 3610 assert(!UseDFA); 3611 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3612 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3613 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3614 if (MRT[Slot][I] > Desc->NumUnits) 3615 return true; 3616 } 3617 if (NumScheduledMops[Slot] > IssueWidth) 3618 return true; 3619 } 3620 return false; 3621 } 3622 3623 int ResourceManager::calculateResMIIDFA() const { 3624 assert(UseDFA); 3625 3626 // Sort the instructions by the number of available choices for scheduling, 3627 // least to most. Use the number of critical resources as the tie breaker. 3628 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3629 for (SUnit &SU : DAG->SUnits) 3630 FUS.calcCriticalResources(*SU.getInstr()); 3631 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3632 FuncUnitOrder(FUS); 3633 3634 for (SUnit &SU : DAG->SUnits) 3635 FuncUnitOrder.push(SU.getInstr()); 3636 3637 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3638 Resources.push_back( 3639 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3640 3641 while (!FuncUnitOrder.empty()) { 3642 MachineInstr *MI = FuncUnitOrder.top(); 3643 FuncUnitOrder.pop(); 3644 if (TII->isZeroCost(MI->getOpcode())) 3645 continue; 3646 3647 // Attempt to reserve the instruction in an existing DFA. At least one 3648 // DFA is needed for each cycle. 3649 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3650 unsigned ReservedCycles = 0; 3651 auto *RI = Resources.begin(); 3652 auto *RE = Resources.end(); 3653 LLVM_DEBUG({ 3654 dbgs() << "Trying to reserve resource for " << NumCycles 3655 << " cycles for \n"; 3656 MI->dump(); 3657 }); 3658 for (unsigned C = 0; C < NumCycles; ++C) 3659 while (RI != RE) { 3660 if ((*RI)->canReserveResources(*MI)) { 3661 (*RI)->reserveResources(*MI); 3662 ++ReservedCycles; 3663 break; 3664 } 3665 RI++; 3666 } 3667 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3668 << ", NumCycles:" << NumCycles << "\n"); 3669 // Add new DFAs, if needed, to reserve resources. 3670 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3671 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3672 << "NewResource created to reserve resources" 3673 << "\n"); 3674 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3675 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3676 NewResource->reserveResources(*MI); 3677 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3678 } 3679 } 3680 3681 int Resmii = Resources.size(); 3682 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3683 return Resmii; 3684 } 3685 3686 int ResourceManager::calculateResMII() const { 3687 if (UseDFA) 3688 return calculateResMIIDFA(); 3689 3690 // Count each resource consumption and divide it by the number of units. 3691 // ResMII is the max value among them. 3692 3693 int NumMops = 0; 3694 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3695 for (SUnit &SU : DAG->SUnits) { 3696 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3697 continue; 3698 3699 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3700 if (!SCDesc->isValid()) 3701 continue; 3702 3703 LLVM_DEBUG({ 3704 if (SwpDebugResource) { 3705 DAG->dumpNode(SU); 3706 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3707 << " WriteProcRes: "; 3708 } 3709 }); 3710 NumMops += SCDesc->NumMicroOps; 3711 for (const MCWriteProcResEntry &PRE : 3712 make_range(STI->getWriteProcResBegin(SCDesc), 3713 STI->getWriteProcResEnd(SCDesc))) { 3714 LLVM_DEBUG({ 3715 if (SwpDebugResource) { 3716 const MCProcResourceDesc *Desc = 3717 SM.getProcResource(PRE.ProcResourceIdx); 3718 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3719 } 3720 }); 3721 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3722 } 3723 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3724 } 3725 3726 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3727 LLVM_DEBUG({ 3728 if (SwpDebugResource) 3729 dbgs() << "#Mops: " << NumMops << ", " 3730 << "IssueWidth: " << IssueWidth << ", " 3731 << "Cycles: " << Result << "\n"; 3732 }); 3733 3734 LLVM_DEBUG({ 3735 if (SwpDebugResource) { 3736 std::stringstream SS; 3737 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3738 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3739 << "\n"; 3740 dbgs() << SS.str(); 3741 } 3742 }); 3743 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3744 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3745 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3746 LLVM_DEBUG({ 3747 if (SwpDebugResource) { 3748 std::stringstream SS; 3749 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3750 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3751 << std::setw(10) << Cycles << "\n"; 3752 dbgs() << SS.str(); 3753 } 3754 }); 3755 if (Cycles > Result) 3756 Result = Cycles; 3757 } 3758 return Result; 3759 } 3760 3761 void ResourceManager::init(int II) { 3762 InitiationInterval = II; 3763 DFAResources.clear(); 3764 DFAResources.resize(II); 3765 for (auto &I : DFAResources) 3766 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3767 MRT.clear(); 3768 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3769 NumScheduledMops.clear(); 3770 NumScheduledMops.resize(II); 3771 } 3772