xref: /llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision 9e6494c0fb29dfb5d4d2b7bf3ed7af261efee034)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SetOperations.h"
40 #include "llvm/ADT/SetVector.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/iterator_range.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/CodeGen/DFAPacketizer.h"
51 #include "llvm/CodeGen/LiveIntervals.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineDominators.h"
54 #include "llvm/CodeGen/MachineFunction.h"
55 #include "llvm/CodeGen/MachineFunctionPass.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineLoopInfo.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/ModuloSchedule.h"
63 #include "llvm/CodeGen/Register.h"
64 #include "llvm/CodeGen/RegisterClassInfo.h"
65 #include "llvm/CodeGen/RegisterPressure.h"
66 #include "llvm/CodeGen/ScheduleDAG.h"
67 #include "llvm/CodeGen/ScheduleDAGMutation.h"
68 #include "llvm/CodeGen/TargetInstrInfo.h"
69 #include "llvm/CodeGen/TargetOpcodes.h"
70 #include "llvm/CodeGen/TargetPassConfig.h"
71 #include "llvm/CodeGen/TargetRegisterInfo.h"
72 #include "llvm/CodeGen/TargetSubtargetInfo.h"
73 #include "llvm/Config/llvm-config.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/MC/LaneBitmask.h"
77 #include "llvm/MC/MCInstrDesc.h"
78 #include "llvm/MC/MCInstrItineraries.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <climits>
87 #include <cstdint>
88 #include <deque>
89 #include <functional>
90 #include <iomanip>
91 #include <iterator>
92 #include <map>
93 #include <memory>
94 #include <sstream>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 
101 #define DEBUG_TYPE "pipeliner"
102 
103 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
104 STATISTIC(NumPipelined, "Number of loops software pipelined");
105 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
106 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
107 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
108 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
109 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
110 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
111 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
112 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
113 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
114 
115 /// A command line option to turn software pipelining on or off.
116 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
117                                cl::desc("Enable Software Pipelining"));
118 
119 /// A command line option to enable SWP at -Os.
120 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
121                                       cl::desc("Enable SWP at Os."), cl::Hidden,
122                                       cl::init(false));
123 
124 /// A command line argument to limit minimum initial interval for pipelining.
125 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
126                               cl::desc("Size limit for the MII."),
127                               cl::Hidden, cl::init(27));
128 
129 /// A command line argument to force pipeliner to use specified initial
130 /// interval.
131 static cl::opt<int> SwpForceII("pipeliner-force-ii",
132                                cl::desc("Force pipeliner to use specified II."),
133                                cl::Hidden, cl::init(-1));
134 
135 /// A command line argument to limit the number of stages in the pipeline.
136 static cl::opt<int>
137     SwpMaxStages("pipeliner-max-stages",
138                  cl::desc("Maximum stages allowed in the generated scheduled."),
139                  cl::Hidden, cl::init(3));
140 
141 /// A command line option to disable the pruning of chain dependences due to
142 /// an unrelated Phi.
143 static cl::opt<bool>
144     SwpPruneDeps("pipeliner-prune-deps",
145                  cl::desc("Prune dependences between unrelated Phi nodes."),
146                  cl::Hidden, cl::init(true));
147 
148 /// A command line option to disable the pruning of loop carried order
149 /// dependences.
150 static cl::opt<bool>
151     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
152                         cl::desc("Prune loop carried order dependences."),
153                         cl::Hidden, cl::init(true));
154 
155 #ifndef NDEBUG
156 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
157 #endif
158 
159 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
160                                      cl::ReallyHidden,
161                                      cl::desc("Ignore RecMII"));
162 
163 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
164                                     cl::init(false));
165 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
166                                       cl::init(false));
167 
168 static cl::opt<bool> EmitTestAnnotations(
169     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
170     cl::desc("Instead of emitting the pipelined code, annotate instructions "
171              "with the generated schedule for feeding into the "
172              "-modulo-schedule-test pass"));
173 
174 static cl::opt<bool> ExperimentalCodeGen(
175     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
176     cl::desc(
177         "Use the experimental peeling code generator for software pipelining"));
178 
179 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range",
180                                      cl::desc("Range to search for II"),
181                                      cl::Hidden, cl::init(10));
182 
183 static cl::opt<bool>
184     LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false),
185                      cl::desc("Limit register pressure of scheduled loop"));
186 
187 static cl::opt<int>
188     RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden,
189                       cl::init(5),
190                       cl::desc("Margin representing the unused percentage of "
191                                "the register pressure limit"));
192 
193 static cl::opt<bool>
194     MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false),
195                cl::desc("Use the MVE code generator for software pipelining"));
196 
197 namespace llvm {
198 
199 // A command line option to enable the CopyToPhi DAG mutation.
200 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
201                                  cl::init(true),
202                                  cl::desc("Enable CopyToPhi DAG Mutation"));
203 
204 /// A command line argument to force pipeliner to use specified issue
205 /// width.
206 cl::opt<int> SwpForceIssueWidth(
207     "pipeliner-force-issue-width",
208     cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
209     cl::init(-1));
210 
211 /// A command line argument to set the window scheduling option.
212 cl::opt<WindowSchedulingFlag> WindowSchedulingOption(
213     "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On),
214     cl::desc("Set how to use window scheduling algorithm."),
215     cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off",
216                           "Turn off window algorithm."),
217                clEnumValN(WindowSchedulingFlag::WS_On, "on",
218                           "Use window algorithm after SMS algorithm fails."),
219                clEnumValN(WindowSchedulingFlag::WS_Force, "force",
220                           "Use window algorithm instead of SMS algorithm.")));
221 
222 } // end namespace llvm
223 
224 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
225 char MachinePipeliner::ID = 0;
226 #ifndef NDEBUG
227 int MachinePipeliner::NumTries = 0;
228 #endif
229 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
230 
231 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
232                       "Modulo Software Pipelining", false, false)
233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
234 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
235 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
236 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
237 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
238                     "Modulo Software Pipelining", false, false)
239 
240 /// The "main" function for implementing Swing Modulo Scheduling.
241 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
242   if (skipFunction(mf.getFunction()))
243     return false;
244 
245   if (!EnableSWP)
246     return false;
247 
248   if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
249       !EnableSWPOptSize.getPosition())
250     return false;
251 
252   if (!mf.getSubtarget().enableMachinePipeliner())
253     return false;
254 
255   // Cannot pipeline loops without instruction itineraries if we are using
256   // DFA for the pipeliner.
257   if (mf.getSubtarget().useDFAforSMS() &&
258       (!mf.getSubtarget().getInstrItineraryData() ||
259        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
260     return false;
261 
262   MF = &mf;
263   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
264   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
265   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
266   TII = MF->getSubtarget().getInstrInfo();
267   RegClassInfo.runOnMachineFunction(*MF);
268 
269   for (const auto &L : *MLI)
270     scheduleLoop(*L);
271 
272   return false;
273 }
274 
275 /// Attempt to perform the SMS algorithm on the specified loop. This function is
276 /// the main entry point for the algorithm.  The function identifies candidate
277 /// loops, calculates the minimum initiation interval, and attempts to schedule
278 /// the loop.
279 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
280   bool Changed = false;
281   for (const auto &InnerLoop : L)
282     Changed |= scheduleLoop(*InnerLoop);
283 
284 #ifndef NDEBUG
285   // Stop trying after reaching the limit (if any).
286   int Limit = SwpLoopLimit;
287   if (Limit >= 0) {
288     if (NumTries >= SwpLoopLimit)
289       return Changed;
290     NumTries++;
291   }
292 #endif
293 
294   setPragmaPipelineOptions(L);
295   if (!canPipelineLoop(L)) {
296     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
297     ORE->emit([&]() {
298       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
299                                              L.getStartLoc(), L.getHeader())
300              << "Failed to pipeline loop";
301     });
302 
303     LI.LoopPipelinerInfo.reset();
304     return Changed;
305   }
306 
307   ++NumTrytoPipeline;
308   if (useSwingModuloScheduler())
309     Changed = swingModuloScheduler(L);
310 
311   if (useWindowScheduler(Changed))
312     Changed = runWindowScheduler(L);
313 
314   LI.LoopPipelinerInfo.reset();
315   return Changed;
316 }
317 
318 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
319   // Reset the pragma for the next loop in iteration.
320   disabledByPragma = false;
321   II_setByPragma = 0;
322 
323   MachineBasicBlock *LBLK = L.getTopBlock();
324 
325   if (LBLK == nullptr)
326     return;
327 
328   const BasicBlock *BBLK = LBLK->getBasicBlock();
329   if (BBLK == nullptr)
330     return;
331 
332   const Instruction *TI = BBLK->getTerminator();
333   if (TI == nullptr)
334     return;
335 
336   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
337   if (LoopID == nullptr)
338     return;
339 
340   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
341   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
342 
343   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
344     MDNode *MD = dyn_cast<MDNode>(MDO);
345 
346     if (MD == nullptr)
347       continue;
348 
349     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
350 
351     if (S == nullptr)
352       continue;
353 
354     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
355       assert(MD->getNumOperands() == 2 &&
356              "Pipeline initiation interval hint metadata should have two operands.");
357       II_setByPragma =
358           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
359       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
360     } else if (S->getString() == "llvm.loop.pipeline.disable") {
361       disabledByPragma = true;
362     }
363   }
364 }
365 
366 /// Return true if the loop can be software pipelined.  The algorithm is
367 /// restricted to loops with a single basic block.  Make sure that the
368 /// branch in the loop can be analyzed.
369 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
370   if (L.getNumBlocks() != 1) {
371     ORE->emit([&]() {
372       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
373                                                L.getStartLoc(), L.getHeader())
374              << "Not a single basic block: "
375              << ore::NV("NumBlocks", L.getNumBlocks());
376     });
377     return false;
378   }
379 
380   if (disabledByPragma) {
381     ORE->emit([&]() {
382       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
383                                                L.getStartLoc(), L.getHeader())
384              << "Disabled by Pragma.";
385     });
386     return false;
387   }
388 
389   // Check if the branch can't be understood because we can't do pipelining
390   // if that's the case.
391   LI.TBB = nullptr;
392   LI.FBB = nullptr;
393   LI.BrCond.clear();
394   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
395     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
396     NumFailBranch++;
397     ORE->emit([&]() {
398       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
399                                                L.getStartLoc(), L.getHeader())
400              << "The branch can't be understood";
401     });
402     return false;
403   }
404 
405   LI.LoopInductionVar = nullptr;
406   LI.LoopCompare = nullptr;
407   LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
408   if (!LI.LoopPipelinerInfo) {
409     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
410     NumFailLoop++;
411     ORE->emit([&]() {
412       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
413                                                L.getStartLoc(), L.getHeader())
414              << "The loop structure is not supported";
415     });
416     return false;
417   }
418 
419   if (!L.getLoopPreheader()) {
420     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
421     NumFailPreheader++;
422     ORE->emit([&]() {
423       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
424                                                L.getStartLoc(), L.getHeader())
425              << "No loop preheader found";
426     });
427     return false;
428   }
429 
430   // Remove any subregisters from inputs to phi nodes.
431   preprocessPhiNodes(*L.getHeader());
432   return true;
433 }
434 
435 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
436   MachineRegisterInfo &MRI = MF->getRegInfo();
437   SlotIndexes &Slots =
438       *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes();
439 
440   for (MachineInstr &PI : B.phis()) {
441     MachineOperand &DefOp = PI.getOperand(0);
442     assert(DefOp.getSubReg() == 0);
443     auto *RC = MRI.getRegClass(DefOp.getReg());
444 
445     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
446       MachineOperand &RegOp = PI.getOperand(i);
447       if (RegOp.getSubReg() == 0)
448         continue;
449 
450       // If the operand uses a subregister, replace it with a new register
451       // without subregisters, and generate a copy to the new register.
452       Register NewReg = MRI.createVirtualRegister(RC);
453       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
454       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
455       const DebugLoc &DL = PredB.findDebugLoc(At);
456       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
457                     .addReg(RegOp.getReg(), getRegState(RegOp),
458                             RegOp.getSubReg());
459       Slots.insertMachineInstrInMaps(*Copy);
460       RegOp.setReg(NewReg);
461       RegOp.setSubReg(0);
462     }
463   }
464 }
465 
466 /// The SMS algorithm consists of the following main steps:
467 /// 1. Computation and analysis of the dependence graph.
468 /// 2. Ordering of the nodes (instructions).
469 /// 3. Attempt to Schedule the loop.
470 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
471   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
472 
473   SwingSchedulerDAG SMS(
474       *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo,
475       II_setByPragma, LI.LoopPipelinerInfo.get());
476 
477   MachineBasicBlock *MBB = L.getHeader();
478   // The kernel should not include any terminator instructions.  These
479   // will be added back later.
480   SMS.startBlock(MBB);
481 
482   // Compute the number of 'real' instructions in the basic block by
483   // ignoring terminators.
484   unsigned size = MBB->size();
485   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
486                                    E = MBB->instr_end();
487        I != E; ++I, --size)
488     ;
489 
490   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
491   SMS.schedule();
492   SMS.exitRegion();
493 
494   SMS.finishBlock();
495   return SMS.hasNewSchedule();
496 }
497 
498 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
499   AU.addRequired<AAResultsWrapperPass>();
500   AU.addPreserved<AAResultsWrapperPass>();
501   AU.addRequired<MachineLoopInfoWrapperPass>();
502   AU.addRequired<MachineDominatorTreeWrapperPass>();
503   AU.addRequired<LiveIntervalsWrapperPass>();
504   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
505   AU.addRequired<TargetPassConfig>();
506   MachineFunctionPass::getAnalysisUsage(AU);
507 }
508 
509 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) {
510   MachineSchedContext Context;
511   Context.MF = MF;
512   Context.MLI = MLI;
513   Context.MDT = MDT;
514   Context.PassConfig = &getAnalysis<TargetPassConfig>();
515   Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
516   Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
517   Context.RegClassInfo->runOnMachineFunction(*MF);
518   WindowScheduler WS(&Context, L);
519   return WS.run();
520 }
521 
522 bool MachinePipeliner::useSwingModuloScheduler() {
523   // SwingModuloScheduler does not work when WindowScheduler is forced.
524   return WindowSchedulingOption != WindowSchedulingFlag::WS_Force;
525 }
526 
527 bool MachinePipeliner::useWindowScheduler(bool Changed) {
528   // WindowScheduler does not work for following cases:
529   // 1. when it is off.
530   // 2. when SwingModuloScheduler is successfully scheduled.
531   // 3. when pragma II is enabled.
532   if (II_setByPragma) {
533     LLVM_DEBUG(dbgs() << "Window scheduling is disabled when "
534                          "llvm.loop.pipeline.initiationinterval is set.\n");
535     return false;
536   }
537 
538   return WindowSchedulingOption == WindowSchedulingFlag::WS_Force ||
539          (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed);
540 }
541 
542 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
543   if (SwpForceII > 0)
544     MII = SwpForceII;
545   else if (II_setByPragma > 0)
546     MII = II_setByPragma;
547   else
548     MII = std::max(ResMII, RecMII);
549 }
550 
551 void SwingSchedulerDAG::setMAX_II() {
552   if (SwpForceII > 0)
553     MAX_II = SwpForceII;
554   else if (II_setByPragma > 0)
555     MAX_II = II_setByPragma;
556   else
557     MAX_II = MII + SwpIISearchRange;
558 }
559 
560 /// We override the schedule function in ScheduleDAGInstrs to implement the
561 /// scheduling part of the Swing Modulo Scheduling algorithm.
562 void SwingSchedulerDAG::schedule() {
563   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
564   buildSchedGraph(AA);
565   addLoopCarriedDependences(AA);
566   updatePhiDependences();
567   Topo.InitDAGTopologicalSorting();
568   changeDependences();
569   postProcessDAG();
570   DDG = std::make_unique<SwingSchedulerDDG>(SUnits, &EntrySU, &ExitSU);
571   LLVM_DEBUG(dump());
572 
573   NodeSetType NodeSets;
574   findCircuits(NodeSets);
575   NodeSetType Circuits = NodeSets;
576 
577   // Calculate the MII.
578   unsigned ResMII = calculateResMII();
579   unsigned RecMII = calculateRecMII(NodeSets);
580 
581   fuseRecs(NodeSets);
582 
583   // This flag is used for testing and can cause correctness problems.
584   if (SwpIgnoreRecMII)
585     RecMII = 0;
586 
587   setMII(ResMII, RecMII);
588   setMAX_II();
589 
590   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
591                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
592 
593   // Can't schedule a loop without a valid MII.
594   if (MII == 0) {
595     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
596     NumFailZeroMII++;
597     Pass.ORE->emit([&]() {
598       return MachineOptimizationRemarkAnalysis(
599                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
600              << "Invalid Minimal Initiation Interval: 0";
601     });
602     return;
603   }
604 
605   // Don't pipeline large loops.
606   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
607     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
608                       << ", we don't pipeline large loops\n");
609     NumFailLargeMaxMII++;
610     Pass.ORE->emit([&]() {
611       return MachineOptimizationRemarkAnalysis(
612                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
613              << "Minimal Initiation Interval too large: "
614              << ore::NV("MII", (int)MII) << " > "
615              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
616              << "Refer to -pipeliner-max-mii.";
617     });
618     return;
619   }
620 
621   computeNodeFunctions(NodeSets);
622 
623   registerPressureFilter(NodeSets);
624 
625   colocateNodeSets(NodeSets);
626 
627   checkNodeSets(NodeSets);
628 
629   LLVM_DEBUG({
630     for (auto &I : NodeSets) {
631       dbgs() << "  Rec NodeSet ";
632       I.dump();
633     }
634   });
635 
636   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
637 
638   groupRemainingNodes(NodeSets);
639 
640   removeDuplicateNodes(NodeSets);
641 
642   LLVM_DEBUG({
643     for (auto &I : NodeSets) {
644       dbgs() << "  NodeSet ";
645       I.dump();
646     }
647   });
648 
649   computeNodeOrder(NodeSets);
650 
651   // check for node order issues
652   checkValidNodeOrder(Circuits);
653 
654   SMSchedule Schedule(Pass.MF, this);
655   Scheduled = schedulePipeline(Schedule);
656 
657   if (!Scheduled){
658     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
659     NumFailNoSchedule++;
660     Pass.ORE->emit([&]() {
661       return MachineOptimizationRemarkAnalysis(
662                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
663              << "Unable to find schedule";
664     });
665     return;
666   }
667 
668   unsigned numStages = Schedule.getMaxStageCount();
669   // No need to generate pipeline if there are no overlapped iterations.
670   if (numStages == 0) {
671     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
672     NumFailZeroStage++;
673     Pass.ORE->emit([&]() {
674       return MachineOptimizationRemarkAnalysis(
675                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
676              << "No need to pipeline - no overlapped iterations in schedule.";
677     });
678     return;
679   }
680   // Check that the maximum stage count is less than user-defined limit.
681   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
682     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
683                       << " : too many stages, abort\n");
684     NumFailLargeMaxStage++;
685     Pass.ORE->emit([&]() {
686       return MachineOptimizationRemarkAnalysis(
687                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
688              << "Too many stages in schedule: "
689              << ore::NV("numStages", (int)numStages) << " > "
690              << ore::NV("SwpMaxStages", SwpMaxStages)
691              << ". Refer to -pipeliner-max-stages.";
692     });
693     return;
694   }
695 
696   Pass.ORE->emit([&]() {
697     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
698                                      Loop.getHeader())
699            << "Pipelined succesfully!";
700   });
701 
702   // Generate the schedule as a ModuloSchedule.
703   DenseMap<MachineInstr *, int> Cycles, Stages;
704   std::vector<MachineInstr *> OrderedInsts;
705   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
706        ++Cycle) {
707     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
708       OrderedInsts.push_back(SU->getInstr());
709       Cycles[SU->getInstr()] = Cycle;
710       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
711     }
712   }
713   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
714   for (auto &KV : NewMIs) {
715     Cycles[KV.first] = Cycles[KV.second];
716     Stages[KV.first] = Stages[KV.second];
717     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
718   }
719 
720   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
721                     std::move(Stages));
722   if (EmitTestAnnotations) {
723     assert(NewInstrChanges.empty() &&
724            "Cannot serialize a schedule with InstrChanges!");
725     ModuloScheduleTestAnnotater MSTI(MF, MS);
726     MSTI.annotate();
727     return;
728   }
729   // The experimental code generator can't work if there are InstChanges.
730   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
731     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
732     MSE.expand();
733   } else if (MVECodeGen && NewInstrChanges.empty() &&
734              LoopPipelinerInfo->isMVEExpanderSupported() &&
735              ModuloScheduleExpanderMVE::canApply(Loop)) {
736     ModuloScheduleExpanderMVE MSE(MF, MS, LIS);
737     MSE.expand();
738   } else {
739     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
740     MSE.expand();
741     MSE.cleanup();
742   }
743   ++NumPipelined;
744 }
745 
746 /// Clean up after the software pipeliner runs.
747 void SwingSchedulerDAG::finishBlock() {
748   for (auto &KV : NewMIs)
749     MF.deleteMachineInstr(KV.second);
750   NewMIs.clear();
751 
752   // Call the superclass.
753   ScheduleDAGInstrs::finishBlock();
754 }
755 
756 /// Return the register values for  the operands of a Phi instruction.
757 /// This function assume the instruction is a Phi.
758 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
759                        unsigned &InitVal, unsigned &LoopVal) {
760   assert(Phi.isPHI() && "Expecting a Phi.");
761 
762   InitVal = 0;
763   LoopVal = 0;
764   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
765     if (Phi.getOperand(i + 1).getMBB() != Loop)
766       InitVal = Phi.getOperand(i).getReg();
767     else
768       LoopVal = Phi.getOperand(i).getReg();
769 
770   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
771 }
772 
773 /// Return the Phi register value that comes the loop block.
774 static unsigned getLoopPhiReg(const MachineInstr &Phi,
775                               const MachineBasicBlock *LoopBB) {
776   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
777     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
778       return Phi.getOperand(i).getReg();
779   return 0;
780 }
781 
782 /// Return true if SUb can be reached from SUa following the chain edges.
783 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
784   SmallPtrSet<SUnit *, 8> Visited;
785   SmallVector<SUnit *, 8> Worklist;
786   Worklist.push_back(SUa);
787   while (!Worklist.empty()) {
788     const SUnit *SU = Worklist.pop_back_val();
789     for (const auto &SI : SU->Succs) {
790       SUnit *SuccSU = SI.getSUnit();
791       if (SI.getKind() == SDep::Order) {
792         if (Visited.count(SuccSU))
793           continue;
794         if (SuccSU == SUb)
795           return true;
796         Worklist.push_back(SuccSU);
797         Visited.insert(SuccSU);
798       }
799     }
800   }
801   return false;
802 }
803 
804 /// Return true if the instruction causes a chain between memory
805 /// references before and after it.
806 static bool isDependenceBarrier(MachineInstr &MI) {
807   return MI.isCall() || MI.mayRaiseFPException() ||
808          MI.hasUnmodeledSideEffects() ||
809          (MI.hasOrderedMemoryRef() &&
810           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
811 }
812 
813 /// Return the underlying objects for the memory references of an instruction.
814 /// This function calls the code in ValueTracking, but first checks that the
815 /// instruction has a memory operand.
816 static void getUnderlyingObjects(const MachineInstr *MI,
817                                  SmallVectorImpl<const Value *> &Objs) {
818   if (!MI->hasOneMemOperand())
819     return;
820   MachineMemOperand *MM = *MI->memoperands_begin();
821   if (!MM->getValue())
822     return;
823   getUnderlyingObjects(MM->getValue(), Objs);
824   for (const Value *V : Objs) {
825     if (!isIdentifiedObject(V)) {
826       Objs.clear();
827       return;
828     }
829   }
830 }
831 
832 /// Add a chain edge between a load and store if the store can be an
833 /// alias of the load on a subsequent iteration, i.e., a loop carried
834 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
835 /// but that code doesn't create loop carried dependences.
836 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
837   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
838   Value *UnknownValue =
839     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
840   for (auto &SU : SUnits) {
841     MachineInstr &MI = *SU.getInstr();
842     if (isDependenceBarrier(MI))
843       PendingLoads.clear();
844     else if (MI.mayLoad()) {
845       SmallVector<const Value *, 4> Objs;
846       ::getUnderlyingObjects(&MI, Objs);
847       if (Objs.empty())
848         Objs.push_back(UnknownValue);
849       for (const auto *V : Objs) {
850         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
851         SUs.push_back(&SU);
852       }
853     } else if (MI.mayStore()) {
854       SmallVector<const Value *, 4> Objs;
855       ::getUnderlyingObjects(&MI, Objs);
856       if (Objs.empty())
857         Objs.push_back(UnknownValue);
858       for (const auto *V : Objs) {
859         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
860             PendingLoads.find(V);
861         if (I == PendingLoads.end())
862           continue;
863         for (auto *Load : I->second) {
864           if (isSuccOrder(Load, &SU))
865             continue;
866           MachineInstr &LdMI = *Load->getInstr();
867           // First, perform the cheaper check that compares the base register.
868           // If they are the same and the load offset is less than the store
869           // offset, then mark the dependence as loop carried potentially.
870           const MachineOperand *BaseOp1, *BaseOp2;
871           int64_t Offset1, Offset2;
872           bool Offset1IsScalable, Offset2IsScalable;
873           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
874                                            Offset1IsScalable, TRI) &&
875               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
876                                            Offset2IsScalable, TRI)) {
877             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
878                 Offset1IsScalable == Offset2IsScalable &&
879                 (int)Offset1 < (int)Offset2) {
880               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
881                      "What happened to the chain edge?");
882               SDep Dep(Load, SDep::Barrier);
883               Dep.setLatency(1);
884               SU.addPred(Dep);
885               continue;
886             }
887           }
888           // Second, the more expensive check that uses alias analysis on the
889           // base registers. If they alias, and the load offset is less than
890           // the store offset, the mark the dependence as loop carried.
891           if (!AA) {
892             SDep Dep(Load, SDep::Barrier);
893             Dep.setLatency(1);
894             SU.addPred(Dep);
895             continue;
896           }
897           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
898           MachineMemOperand *MMO2 = *MI.memoperands_begin();
899           if (!MMO1->getValue() || !MMO2->getValue()) {
900             SDep Dep(Load, SDep::Barrier);
901             Dep.setLatency(1);
902             SU.addPred(Dep);
903             continue;
904           }
905           if (MMO1->getValue() == MMO2->getValue() &&
906               MMO1->getOffset() <= MMO2->getOffset()) {
907             SDep Dep(Load, SDep::Barrier);
908             Dep.setLatency(1);
909             SU.addPred(Dep);
910             continue;
911           }
912           if (!AA->isNoAlias(
913                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
914                   MemoryLocation::getAfter(MMO2->getValue(),
915                                            MMO2->getAAInfo()))) {
916             SDep Dep(Load, SDep::Barrier);
917             Dep.setLatency(1);
918             SU.addPred(Dep);
919           }
920         }
921       }
922     }
923   }
924 }
925 
926 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
927 /// processes dependences for PHIs. This function adds true dependences
928 /// from a PHI to a use, and a loop carried dependence from the use to the
929 /// PHI. The loop carried dependence is represented as an anti dependence
930 /// edge. This function also removes chain dependences between unrelated
931 /// PHIs.
932 void SwingSchedulerDAG::updatePhiDependences() {
933   SmallVector<SDep, 4> RemoveDeps;
934   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
935 
936   // Iterate over each DAG node.
937   for (SUnit &I : SUnits) {
938     RemoveDeps.clear();
939     // Set to true if the instruction has an operand defined by a Phi.
940     unsigned HasPhiUse = 0;
941     unsigned HasPhiDef = 0;
942     MachineInstr *MI = I.getInstr();
943     // Iterate over each operand, and we process the definitions.
944     for (const MachineOperand &MO : MI->operands()) {
945       if (!MO.isReg())
946         continue;
947       Register Reg = MO.getReg();
948       if (MO.isDef()) {
949         // If the register is used by a Phi, then create an anti dependence.
950         for (MachineRegisterInfo::use_instr_iterator
951                  UI = MRI.use_instr_begin(Reg),
952                  UE = MRI.use_instr_end();
953              UI != UE; ++UI) {
954           MachineInstr *UseMI = &*UI;
955           SUnit *SU = getSUnit(UseMI);
956           if (SU != nullptr && UseMI->isPHI()) {
957             if (!MI->isPHI()) {
958               SDep Dep(SU, SDep::Anti, Reg);
959               Dep.setLatency(1);
960               I.addPred(Dep);
961             } else {
962               HasPhiDef = Reg;
963               // Add a chain edge to a dependent Phi that isn't an existing
964               // predecessor.
965               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
966                 I.addPred(SDep(SU, SDep::Barrier));
967             }
968           }
969         }
970       } else if (MO.isUse()) {
971         // If the register is defined by a Phi, then create a true dependence.
972         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
973         if (DefMI == nullptr)
974           continue;
975         SUnit *SU = getSUnit(DefMI);
976         if (SU != nullptr && DefMI->isPHI()) {
977           if (!MI->isPHI()) {
978             SDep Dep(SU, SDep::Data, Reg);
979             Dep.setLatency(0);
980             ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep,
981                                      &SchedModel);
982             I.addPred(Dep);
983           } else {
984             HasPhiUse = Reg;
985             // Add a chain edge to a dependent Phi that isn't an existing
986             // predecessor.
987             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
988               I.addPred(SDep(SU, SDep::Barrier));
989           }
990         }
991       }
992     }
993     // Remove order dependences from an unrelated Phi.
994     if (!SwpPruneDeps)
995       continue;
996     for (auto &PI : I.Preds) {
997       MachineInstr *PMI = PI.getSUnit()->getInstr();
998       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
999         if (I.getInstr()->isPHI()) {
1000           if (PMI->getOperand(0).getReg() == HasPhiUse)
1001             continue;
1002           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1003             continue;
1004         }
1005         RemoveDeps.push_back(PI);
1006       }
1007     }
1008     for (const SDep &D : RemoveDeps)
1009       I.removePred(D);
1010   }
1011 }
1012 
1013 /// Iterate over each DAG node and see if we can change any dependences
1014 /// in order to reduce the recurrence MII.
1015 void SwingSchedulerDAG::changeDependences() {
1016   // See if an instruction can use a value from the previous iteration.
1017   // If so, we update the base and offset of the instruction and change
1018   // the dependences.
1019   for (SUnit &I : SUnits) {
1020     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1021     int64_t NewOffset = 0;
1022     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1023                                NewOffset))
1024       continue;
1025 
1026     // Get the MI and SUnit for the instruction that defines the original base.
1027     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1028     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1029     if (!DefMI)
1030       continue;
1031     SUnit *DefSU = getSUnit(DefMI);
1032     if (!DefSU)
1033       continue;
1034     // Get the MI and SUnit for the instruction that defins the new base.
1035     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1036     if (!LastMI)
1037       continue;
1038     SUnit *LastSU = getSUnit(LastMI);
1039     if (!LastSU)
1040       continue;
1041 
1042     if (Topo.IsReachable(&I, LastSU))
1043       continue;
1044 
1045     // Remove the dependence. The value now depends on a prior iteration.
1046     SmallVector<SDep, 4> Deps;
1047     for (const SDep &P : I.Preds)
1048       if (P.getSUnit() == DefSU)
1049         Deps.push_back(P);
1050     for (const SDep &D : Deps) {
1051       Topo.RemovePred(&I, D.getSUnit());
1052       I.removePred(D);
1053     }
1054     // Remove the chain dependence between the instructions.
1055     Deps.clear();
1056     for (auto &P : LastSU->Preds)
1057       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1058         Deps.push_back(P);
1059     for (const SDep &D : Deps) {
1060       Topo.RemovePred(LastSU, D.getSUnit());
1061       LastSU->removePred(D);
1062     }
1063 
1064     // Add a dependence between the new instruction and the instruction
1065     // that defines the new base.
1066     SDep Dep(&I, SDep::Anti, NewBase);
1067     Topo.AddPred(LastSU, &I);
1068     LastSU->addPred(Dep);
1069 
1070     // Remember the base and offset information so that we can update the
1071     // instruction during code generation.
1072     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1073   }
1074 }
1075 
1076 /// Create an instruction stream that represents a single iteration and stage of
1077 /// each instruction. This function differs from SMSchedule::finalizeSchedule in
1078 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this
1079 /// function is an approximation of SMSchedule::finalizeSchedule with all
1080 /// non-const operations removed.
1081 static void computeScheduledInsts(const SwingSchedulerDAG *SSD,
1082                                   SMSchedule &Schedule,
1083                                   std::vector<MachineInstr *> &OrderedInsts,
1084                                   DenseMap<MachineInstr *, unsigned> &Stages) {
1085   DenseMap<int, std::deque<SUnit *>> Instrs;
1086 
1087   // Move all instructions to the first stage from the later stages.
1088   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1089        ++Cycle) {
1090     for (int Stage = 0, LastStage = Schedule.getMaxStageCount();
1091          Stage <= LastStage; ++Stage) {
1092       for (SUnit *SU : llvm::reverse(Schedule.getInstructions(
1093                Cycle + Stage * Schedule.getInitiationInterval()))) {
1094         Instrs[Cycle].push_front(SU);
1095       }
1096     }
1097   }
1098 
1099   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1100        ++Cycle) {
1101     std::deque<SUnit *> &CycleInstrs = Instrs[Cycle];
1102     CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs);
1103     for (SUnit *SU : CycleInstrs) {
1104       MachineInstr *MI = SU->getInstr();
1105       OrderedInsts.push_back(MI);
1106       Stages[MI] = Schedule.stageScheduled(SU);
1107     }
1108   }
1109 }
1110 
1111 namespace {
1112 
1113 // FuncUnitSorter - Comparison operator used to sort instructions by
1114 // the number of functional unit choices.
1115 struct FuncUnitSorter {
1116   const InstrItineraryData *InstrItins;
1117   const MCSubtargetInfo *STI;
1118   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1119 
1120   FuncUnitSorter(const TargetSubtargetInfo &TSI)
1121       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1122 
1123   // Compute the number of functional unit alternatives needed
1124   // at each stage, and take the minimum value. We prioritize the
1125   // instructions by the least number of choices first.
1126   unsigned minFuncUnits(const MachineInstr *Inst,
1127                         InstrStage::FuncUnits &F) const {
1128     unsigned SchedClass = Inst->getDesc().getSchedClass();
1129     unsigned min = UINT_MAX;
1130     if (InstrItins && !InstrItins->isEmpty()) {
1131       for (const InstrStage &IS :
1132            make_range(InstrItins->beginStage(SchedClass),
1133                       InstrItins->endStage(SchedClass))) {
1134         InstrStage::FuncUnits funcUnits = IS.getUnits();
1135         unsigned numAlternatives = llvm::popcount(funcUnits);
1136         if (numAlternatives < min) {
1137           min = numAlternatives;
1138           F = funcUnits;
1139         }
1140       }
1141       return min;
1142     }
1143     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1144       const MCSchedClassDesc *SCDesc =
1145           STI->getSchedModel().getSchedClassDesc(SchedClass);
1146       if (!SCDesc->isValid())
1147         // No valid Schedule Class Desc for schedClass, should be
1148         // Pseudo/PostRAPseudo
1149         return min;
1150 
1151       for (const MCWriteProcResEntry &PRE :
1152            make_range(STI->getWriteProcResBegin(SCDesc),
1153                       STI->getWriteProcResEnd(SCDesc))) {
1154         if (!PRE.ReleaseAtCycle)
1155           continue;
1156         const MCProcResourceDesc *ProcResource =
1157             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1158         unsigned NumUnits = ProcResource->NumUnits;
1159         if (NumUnits < min) {
1160           min = NumUnits;
1161           F = PRE.ProcResourceIdx;
1162         }
1163       }
1164       return min;
1165     }
1166     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1167   }
1168 
1169   // Compute the critical resources needed by the instruction. This
1170   // function records the functional units needed by instructions that
1171   // must use only one functional unit. We use this as a tie breaker
1172   // for computing the resource MII. The instrutions that require
1173   // the same, highly used, functional unit have high priority.
1174   void calcCriticalResources(MachineInstr &MI) {
1175     unsigned SchedClass = MI.getDesc().getSchedClass();
1176     if (InstrItins && !InstrItins->isEmpty()) {
1177       for (const InstrStage &IS :
1178            make_range(InstrItins->beginStage(SchedClass),
1179                       InstrItins->endStage(SchedClass))) {
1180         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1181         if (llvm::popcount(FuncUnits) == 1)
1182           Resources[FuncUnits]++;
1183       }
1184       return;
1185     }
1186     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1187       const MCSchedClassDesc *SCDesc =
1188           STI->getSchedModel().getSchedClassDesc(SchedClass);
1189       if (!SCDesc->isValid())
1190         // No valid Schedule Class Desc for schedClass, should be
1191         // Pseudo/PostRAPseudo
1192         return;
1193 
1194       for (const MCWriteProcResEntry &PRE :
1195            make_range(STI->getWriteProcResBegin(SCDesc),
1196                       STI->getWriteProcResEnd(SCDesc))) {
1197         if (!PRE.ReleaseAtCycle)
1198           continue;
1199         Resources[PRE.ProcResourceIdx]++;
1200       }
1201       return;
1202     }
1203     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1204   }
1205 
1206   /// Return true if IS1 has less priority than IS2.
1207   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1208     InstrStage::FuncUnits F1 = 0, F2 = 0;
1209     unsigned MFUs1 = minFuncUnits(IS1, F1);
1210     unsigned MFUs2 = minFuncUnits(IS2, F2);
1211     if (MFUs1 == MFUs2)
1212       return Resources.lookup(F1) < Resources.lookup(F2);
1213     return MFUs1 > MFUs2;
1214   }
1215 };
1216 
1217 /// Calculate the maximum register pressure of the scheduled instructions stream
1218 class HighRegisterPressureDetector {
1219   MachineBasicBlock *OrigMBB;
1220   const MachineRegisterInfo &MRI;
1221   const TargetRegisterInfo *TRI;
1222 
1223   const unsigned PSetNum;
1224 
1225   // Indexed by PSet ID
1226   // InitSetPressure takes into account the register pressure of live-in
1227   // registers. It's not depend on how the loop is scheduled, so it's enough to
1228   // calculate them once at the beginning.
1229   std::vector<unsigned> InitSetPressure;
1230 
1231   // Indexed by PSet ID
1232   // Upper limit for each register pressure set
1233   std::vector<unsigned> PressureSetLimit;
1234 
1235   DenseMap<MachineInstr *, RegisterOperands> ROMap;
1236 
1237   using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>;
1238 
1239 public:
1240   using OrderedInstsTy = std::vector<MachineInstr *>;
1241   using Instr2StageTy = DenseMap<MachineInstr *, unsigned>;
1242 
1243 private:
1244   static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) {
1245     if (Pressures.size() == 0) {
1246       dbgs() << "[]";
1247     } else {
1248       char Prefix = '[';
1249       for (unsigned P : Pressures) {
1250         dbgs() << Prefix << P;
1251         Prefix = ' ';
1252       }
1253       dbgs() << ']';
1254     }
1255   }
1256 
1257   void dumpPSet(Register Reg) const {
1258     dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet=";
1259     for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid();
1260          ++PSetIter) {
1261       dbgs() << *PSetIter << ' ';
1262     }
1263     dbgs() << '\n';
1264   }
1265 
1266   void increaseRegisterPressure(std::vector<unsigned> &Pressure,
1267                                 Register Reg) const {
1268     auto PSetIter = MRI.getPressureSets(Reg);
1269     unsigned Weight = PSetIter.getWeight();
1270     for (; PSetIter.isValid(); ++PSetIter)
1271       Pressure[*PSetIter] += Weight;
1272   }
1273 
1274   void decreaseRegisterPressure(std::vector<unsigned> &Pressure,
1275                                 Register Reg) const {
1276     auto PSetIter = MRI.getPressureSets(Reg);
1277     unsigned Weight = PSetIter.getWeight();
1278     for (; PSetIter.isValid(); ++PSetIter) {
1279       auto &P = Pressure[*PSetIter];
1280       assert(P >= Weight &&
1281              "register pressure must be greater than or equal weight");
1282       P -= Weight;
1283     }
1284   }
1285 
1286   // Return true if Reg is reserved one, for example, stack pointer
1287   bool isReservedRegister(Register Reg) const {
1288     return Reg.isPhysical() && MRI.isReserved(Reg.asMCReg());
1289   }
1290 
1291   bool isDefinedInThisLoop(Register Reg) const {
1292     return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB;
1293   }
1294 
1295   // Search for live-in variables. They are factored into the register pressure
1296   // from the begining. Live-in variables used by every iteration should be
1297   // considered as alive throughout the loop. For example, the variable `c` in
1298   // following code. \code
1299   //   int c = ...;
1300   //   for (int i = 0; i < n; i++)
1301   //     a[i] += b[i] + c;
1302   // \endcode
1303   void computeLiveIn() {
1304     DenseSet<Register> Used;
1305     for (auto &MI : *OrigMBB) {
1306       if (MI.isDebugInstr())
1307         continue;
1308       for (auto &Use : ROMap[&MI].Uses) {
1309         auto Reg = Use.RegUnit;
1310         // Ignore the variable that appears only on one side of phi instruction
1311         // because it's used only at the first iteration.
1312         if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB))
1313           continue;
1314         if (isReservedRegister(Reg))
1315           continue;
1316         if (isDefinedInThisLoop(Reg))
1317           continue;
1318         Used.insert(Reg);
1319       }
1320     }
1321 
1322     for (auto LiveIn : Used)
1323       increaseRegisterPressure(InitSetPressure, LiveIn);
1324   }
1325 
1326   // Calculate the upper limit of each pressure set
1327   void computePressureSetLimit(const RegisterClassInfo &RCI) {
1328     for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1329       PressureSetLimit[PSet] = RCI.getRegPressureSetLimit(PSet);
1330   }
1331 
1332   // There are two patterns of last-use.
1333   //   - by an instruction of the current iteration
1334   //   - by a phi instruction of the next iteration (loop carried value)
1335   //
1336   // Furthermore, following two groups of instructions are executed
1337   // simultaneously
1338   //   - next iteration's phi instructions in i-th stage
1339   //   - current iteration's instructions in i+1-th stage
1340   //
1341   // This function calculates the last-use of each register while taking into
1342   // account the above two patterns.
1343   Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts,
1344                                    Instr2StageTy &Stages) const {
1345     // We treat virtual registers that are defined and used in this loop.
1346     // Following virtual register will be ignored
1347     //   - live-in one
1348     //   - defined but not used in the loop (potentially live-out)
1349     DenseSet<Register> TargetRegs;
1350     const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) {
1351       if (isDefinedInThisLoop(Reg))
1352         TargetRegs.insert(Reg);
1353     };
1354     for (MachineInstr *MI : OrderedInsts) {
1355       if (MI->isPHI()) {
1356         Register Reg = getLoopPhiReg(*MI, OrigMBB);
1357         UpdateTargetRegs(Reg);
1358       } else {
1359         for (auto &Use : ROMap.find(MI)->getSecond().Uses)
1360           UpdateTargetRegs(Use.RegUnit);
1361       }
1362     }
1363 
1364     const auto InstrScore = [&Stages](MachineInstr *MI) {
1365       return Stages[MI] + MI->isPHI();
1366     };
1367 
1368     DenseMap<Register, MachineInstr *> LastUseMI;
1369     for (MachineInstr *MI : llvm::reverse(OrderedInsts)) {
1370       for (auto &Use : ROMap.find(MI)->getSecond().Uses) {
1371         auto Reg = Use.RegUnit;
1372         if (!TargetRegs.contains(Reg))
1373           continue;
1374         auto [Ite, Inserted] = LastUseMI.try_emplace(Reg, MI);
1375         if (!Inserted) {
1376           MachineInstr *Orig = Ite->second;
1377           MachineInstr *New = MI;
1378           if (InstrScore(Orig) < InstrScore(New))
1379             Ite->second = New;
1380         }
1381       }
1382     }
1383 
1384     Instr2LastUsesTy LastUses;
1385     for (auto &Entry : LastUseMI)
1386       LastUses[Entry.second].insert(Entry.first);
1387     return LastUses;
1388   }
1389 
1390   // Compute the maximum register pressure of the kernel. We'll simulate #Stage
1391   // iterations and check the register pressure at the point where all stages
1392   // overlapping.
1393   //
1394   // An example of unrolled loop where #Stage is 4..
1395   // Iter   i+0 i+1 i+2 i+3
1396   // ------------------------
1397   // Stage   0
1398   // Stage   1   0
1399   // Stage   2   1   0
1400   // Stage   3   2   1   0  <- All stages overlap
1401   //
1402   std::vector<unsigned>
1403   computeMaxSetPressure(const OrderedInstsTy &OrderedInsts,
1404                         Instr2StageTy &Stages,
1405                         const unsigned StageCount) const {
1406     using RegSetTy = SmallDenseSet<Register, 16>;
1407 
1408     // Indexed by #Iter. To treat "local" variables of each stage separately, we
1409     // manage the liveness of the registers independently by iterations.
1410     SmallVector<RegSetTy> LiveRegSets(StageCount);
1411 
1412     auto CurSetPressure = InitSetPressure;
1413     auto MaxSetPressure = InitSetPressure;
1414     auto LastUses = computeLastUses(OrderedInsts, Stages);
1415 
1416     LLVM_DEBUG({
1417       dbgs() << "Ordered instructions:\n";
1418       for (MachineInstr *MI : OrderedInsts) {
1419         dbgs() << "Stage " << Stages[MI] << ": ";
1420         MI->dump();
1421       }
1422     });
1423 
1424     const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet,
1425                                                    Register Reg) {
1426       if (!Reg.isValid() || isReservedRegister(Reg))
1427         return;
1428 
1429       bool Inserted = RegSet.insert(Reg).second;
1430       if (!Inserted)
1431         return;
1432 
1433       LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n");
1434       increaseRegisterPressure(CurSetPressure, Reg);
1435       LLVM_DEBUG(dumpPSet(Reg));
1436     };
1437 
1438     const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet,
1439                                                   Register Reg) {
1440       if (!Reg.isValid() || isReservedRegister(Reg))
1441         return;
1442 
1443       // live-in register
1444       if (!RegSet.contains(Reg))
1445         return;
1446 
1447       LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n");
1448       RegSet.erase(Reg);
1449       decreaseRegisterPressure(CurSetPressure, Reg);
1450       LLVM_DEBUG(dumpPSet(Reg));
1451     };
1452 
1453     for (unsigned I = 0; I < StageCount; I++) {
1454       for (MachineInstr *MI : OrderedInsts) {
1455         const auto Stage = Stages[MI];
1456         if (I < Stage)
1457           continue;
1458 
1459         const unsigned Iter = I - Stage;
1460 
1461         for (auto &Def : ROMap.find(MI)->getSecond().Defs)
1462           InsertReg(LiveRegSets[Iter], Def.RegUnit);
1463 
1464         for (auto LastUse : LastUses[MI]) {
1465           if (MI->isPHI()) {
1466             if (Iter != 0)
1467               EraseReg(LiveRegSets[Iter - 1], LastUse);
1468           } else {
1469             EraseReg(LiveRegSets[Iter], LastUse);
1470           }
1471         }
1472 
1473         for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1474           MaxSetPressure[PSet] =
1475               std::max(MaxSetPressure[PSet], CurSetPressure[PSet]);
1476 
1477         LLVM_DEBUG({
1478           dbgs() << "CurSetPressure=";
1479           dumpRegisterPressures(CurSetPressure);
1480           dbgs() << " iter=" << Iter << " stage=" << Stage << ":";
1481           MI->dump();
1482         });
1483       }
1484     }
1485 
1486     return MaxSetPressure;
1487   }
1488 
1489 public:
1490   HighRegisterPressureDetector(MachineBasicBlock *OrigMBB,
1491                                const MachineFunction &MF)
1492       : OrigMBB(OrigMBB), MRI(MF.getRegInfo()),
1493         TRI(MF.getSubtarget().getRegisterInfo()),
1494         PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0),
1495         PressureSetLimit(PSetNum, 0) {}
1496 
1497   // Used to calculate register pressure, which is independent of loop
1498   // scheduling.
1499   void init(const RegisterClassInfo &RCI) {
1500     for (MachineInstr &MI : *OrigMBB) {
1501       if (MI.isDebugInstr())
1502         continue;
1503       ROMap[&MI].collect(MI, *TRI, MRI, false, true);
1504     }
1505 
1506     computeLiveIn();
1507     computePressureSetLimit(RCI);
1508   }
1509 
1510   // Calculate the maximum register pressures of the loop and check if they
1511   // exceed the limit
1512   bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule,
1513               const unsigned MaxStage) const {
1514     assert(0 <= RegPressureMargin && RegPressureMargin <= 100 &&
1515            "the percentage of the margin must be between 0 to 100");
1516 
1517     OrderedInstsTy OrderedInsts;
1518     Instr2StageTy Stages;
1519     computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages);
1520     const auto MaxSetPressure =
1521         computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1);
1522 
1523     LLVM_DEBUG({
1524       dbgs() << "Dump MaxSetPressure:\n";
1525       for (unsigned I = 0; I < MaxSetPressure.size(); I++) {
1526         dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]);
1527       }
1528       dbgs() << '\n';
1529     });
1530 
1531     for (unsigned PSet = 0; PSet < PSetNum; PSet++) {
1532       unsigned Limit = PressureSetLimit[PSet];
1533       unsigned Margin = Limit * RegPressureMargin / 100;
1534       LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit
1535                         << " Margin=" << Margin << "\n");
1536       if (Limit < MaxSetPressure[PSet] + Margin) {
1537         LLVM_DEBUG(
1538             dbgs()
1539             << "Rejected the schedule because of too high register pressure\n");
1540         return true;
1541       }
1542     }
1543     return false;
1544   }
1545 };
1546 
1547 } // end anonymous namespace
1548 
1549 /// Calculate the resource constrained minimum initiation interval for the
1550 /// specified loop. We use the DFA to model the resources needed for
1551 /// each instruction, and we ignore dependences. A different DFA is created
1552 /// for each cycle that is required. When adding a new instruction, we attempt
1553 /// to add it to each existing DFA, until a legal space is found. If the
1554 /// instruction cannot be reserved in an existing DFA, we create a new one.
1555 unsigned SwingSchedulerDAG::calculateResMII() {
1556   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1557   ResourceManager RM(&MF.getSubtarget(), this);
1558   return RM.calculateResMII();
1559 }
1560 
1561 /// Calculate the recurrence-constrainted minimum initiation interval.
1562 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1563 /// for each circuit. The II needs to satisfy the inequality
1564 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1565 /// II that satisfies the inequality, and the RecMII is the maximum
1566 /// of those values.
1567 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1568   unsigned RecMII = 0;
1569 
1570   for (NodeSet &Nodes : NodeSets) {
1571     if (Nodes.empty())
1572       continue;
1573 
1574     unsigned Delay = Nodes.getLatency();
1575     unsigned Distance = 1;
1576 
1577     // ii = ceil(delay / distance)
1578     unsigned CurMII = (Delay + Distance - 1) / Distance;
1579     Nodes.setRecMII(CurMII);
1580     if (CurMII > RecMII)
1581       RecMII = CurMII;
1582   }
1583 
1584   return RecMII;
1585 }
1586 
1587 /// Create the adjacency structure of the nodes in the graph.
1588 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1589     SwingSchedulerDAG *DAG) {
1590   BitVector Added(SUnits.size());
1591   DenseMap<int, int> OutputDeps;
1592   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1593     Added.reset();
1594     // Add any successor to the adjacency matrix and exclude duplicates.
1595     for (auto &OE : DAG->DDG->getOutEdges(&SUnits[i])) {
1596       // Only create a back-edge on the first and last nodes of a dependence
1597       // chain. This records any chains and adds them later.
1598       if (OE.isOutputDep()) {
1599         int N = OE.getDst()->NodeNum;
1600         int BackEdge = i;
1601         auto Dep = OutputDeps.find(BackEdge);
1602         if (Dep != OutputDeps.end()) {
1603           BackEdge = Dep->second;
1604           OutputDeps.erase(Dep);
1605         }
1606         OutputDeps[N] = BackEdge;
1607       }
1608       // Do not process a boundary node, an artificial node.
1609       if (OE.getDst()->isBoundaryNode() || OE.isArtificial())
1610         continue;
1611 
1612       // This code is retained o preserve previous behavior and prevent
1613       // regression. This condition means that anti-dependnecies within an
1614       // iteration are ignored when searching circuits. Therefore it's natural
1615       // to consider this dependence as well.
1616       // FIXME: Remove this code if it doesn't have significant impact on
1617       // performance.
1618       if (OE.isAntiDep())
1619         continue;
1620 
1621       int N = OE.getDst()->NodeNum;
1622       if (!Added.test(N)) {
1623         AdjK[i].push_back(N);
1624         Added.set(N);
1625       }
1626     }
1627     // A chain edge between a store and a load is treated as a back-edge in the
1628     // adjacency matrix.
1629     for (auto &IE : DAG->DDG->getInEdges(&SUnits[i])) {
1630       SUnit *Src = IE.getSrc();
1631       SUnit *Dst = IE.getDst();
1632       if (!Dst->getInstr()->mayStore() || !DAG->isLoopCarriedDep(IE))
1633         continue;
1634       if (IE.isOrderDep() && Src->getInstr()->mayLoad()) {
1635         int N = Src->NodeNum;
1636         if (!Added.test(N)) {
1637           AdjK[i].push_back(N);
1638           Added.set(N);
1639         }
1640       }
1641     }
1642   }
1643   // Add back-edges in the adjacency matrix for the output dependences.
1644   for (auto &OD : OutputDeps)
1645     if (!Added.test(OD.second)) {
1646       AdjK[OD.first].push_back(OD.second);
1647       Added.set(OD.second);
1648     }
1649 }
1650 
1651 /// Identify an elementary circuit in the dependence graph starting at the
1652 /// specified node.
1653 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1654                                           const SwingSchedulerDAG *DAG,
1655                                           bool HasBackedge) {
1656   SUnit *SV = &SUnits[V];
1657   bool F = false;
1658   Stack.insert(SV);
1659   Blocked.set(V);
1660 
1661   for (auto W : AdjK[V]) {
1662     if (NumPaths > MaxPaths)
1663       break;
1664     if (W < S)
1665       continue;
1666     if (W == S) {
1667       if (!HasBackedge)
1668         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end(), DAG));
1669       F = true;
1670       ++NumPaths;
1671       break;
1672     }
1673     if (!Blocked.test(W)) {
1674       if (circuit(W, S, NodeSets, DAG,
1675                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1676         F = true;
1677     }
1678   }
1679 
1680   if (F)
1681     unblock(V);
1682   else {
1683     for (auto W : AdjK[V]) {
1684       if (W < S)
1685         continue;
1686       B[W].insert(SV);
1687     }
1688   }
1689   Stack.pop_back();
1690   return F;
1691 }
1692 
1693 /// Unblock a node in the circuit finding algorithm.
1694 void SwingSchedulerDAG::Circuits::unblock(int U) {
1695   Blocked.reset(U);
1696   SmallPtrSet<SUnit *, 4> &BU = B[U];
1697   while (!BU.empty()) {
1698     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1699     assert(SI != BU.end() && "Invalid B set.");
1700     SUnit *W = *SI;
1701     BU.erase(W);
1702     if (Blocked.test(W->NodeNum))
1703       unblock(W->NodeNum);
1704   }
1705 }
1706 
1707 /// Identify all the elementary circuits in the dependence graph using
1708 /// Johnson's circuit algorithm.
1709 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1710   Circuits Cir(SUnits, Topo);
1711   // Create the adjacency structure.
1712   Cir.createAdjacencyStructure(this);
1713   for (int I = 0, E = SUnits.size(); I != E; ++I) {
1714     Cir.reset();
1715     Cir.circuit(I, I, NodeSets, this);
1716   }
1717 }
1718 
1719 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1720 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1721 // additional copies that are needed across iterations. An artificial dependence
1722 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1723 
1724 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1725 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1726 // PHI-------True-Dep------> USEOfPhi
1727 
1728 // The mutation creates
1729 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1730 
1731 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1732 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1733 // late  to avoid additional copies across iterations. The possible scheduling
1734 // order would be
1735 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1736 
1737 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1738   for (SUnit &SU : DAG->SUnits) {
1739     // Find the COPY/REG_SEQUENCE instruction.
1740     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1741       continue;
1742 
1743     // Record the loop carried PHIs.
1744     SmallVector<SUnit *, 4> PHISUs;
1745     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1746     SmallVector<SUnit *, 4> SrcSUs;
1747 
1748     for (auto &Dep : SU.Preds) {
1749       SUnit *TmpSU = Dep.getSUnit();
1750       MachineInstr *TmpMI = TmpSU->getInstr();
1751       SDep::Kind DepKind = Dep.getKind();
1752       // Save the loop carried PHI.
1753       if (DepKind == SDep::Anti && TmpMI->isPHI())
1754         PHISUs.push_back(TmpSU);
1755       // Save the source of COPY/REG_SEQUENCE.
1756       // If the source has no pre-decessors, we will end up creating cycles.
1757       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1758         SrcSUs.push_back(TmpSU);
1759     }
1760 
1761     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1762       continue;
1763 
1764     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1765     // SUnit to the container.
1766     SmallVector<SUnit *, 8> UseSUs;
1767     // Do not use iterator based loop here as we are updating the container.
1768     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1769       for (auto &Dep : PHISUs[Index]->Succs) {
1770         if (Dep.getKind() != SDep::Data)
1771           continue;
1772 
1773         SUnit *TmpSU = Dep.getSUnit();
1774         MachineInstr *TmpMI = TmpSU->getInstr();
1775         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1776           PHISUs.push_back(TmpSU);
1777           continue;
1778         }
1779         UseSUs.push_back(TmpSU);
1780       }
1781     }
1782 
1783     if (UseSUs.size() == 0)
1784       continue;
1785 
1786     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1787     // Add the artificial dependencies if it does not form a cycle.
1788     for (auto *I : UseSUs) {
1789       for (auto *Src : SrcSUs) {
1790         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1791           Src->addPred(SDep(I, SDep::Artificial));
1792           SDAG->Topo.AddPred(Src, I);
1793         }
1794       }
1795     }
1796   }
1797 }
1798 
1799 /// Compute several functions need to order the nodes for scheduling.
1800 ///  ASAP - Earliest time to schedule a node.
1801 ///  ALAP - Latest time to schedule a node.
1802 ///  MOV - Mobility function, difference between ALAP and ASAP.
1803 ///  D - Depth of each node.
1804 ///  H - Height of each node.
1805 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1806   ScheduleInfo.resize(SUnits.size());
1807 
1808   LLVM_DEBUG({
1809     for (int I : Topo) {
1810       const SUnit &SU = SUnits[I];
1811       dumpNode(SU);
1812     }
1813   });
1814 
1815   int maxASAP = 0;
1816   // Compute ASAP and ZeroLatencyDepth.
1817   for (int I : Topo) {
1818     int asap = 0;
1819     int zeroLatencyDepth = 0;
1820     SUnit *SU = &SUnits[I];
1821     for (const auto &IE : DDG->getInEdges(SU)) {
1822       SUnit *Pred = IE.getSrc();
1823       if (IE.getLatency() == 0)
1824         zeroLatencyDepth =
1825             std::max(zeroLatencyDepth, getZeroLatencyDepth(Pred) + 1);
1826       if (IE.ignoreDependence(true))
1827         continue;
1828       asap = std::max(asap, (int)(getASAP(Pred) + IE.getLatency() -
1829                                   IE.getDistance() * MII));
1830     }
1831     maxASAP = std::max(maxASAP, asap);
1832     ScheduleInfo[I].ASAP = asap;
1833     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1834   }
1835 
1836   // Compute ALAP, ZeroLatencyHeight, and MOV.
1837   for (int I : llvm::reverse(Topo)) {
1838     int alap = maxASAP;
1839     int zeroLatencyHeight = 0;
1840     SUnit *SU = &SUnits[I];
1841     for (const auto &OE : DDG->getOutEdges(SU)) {
1842       SUnit *Succ = OE.getDst();
1843       if (Succ->isBoundaryNode())
1844         continue;
1845       if (OE.getLatency() == 0)
1846         zeroLatencyHeight =
1847             std::max(zeroLatencyHeight, getZeroLatencyHeight(Succ) + 1);
1848       if (OE.ignoreDependence(true))
1849         continue;
1850       alap = std::min(alap, (int)(getALAP(Succ) - OE.getLatency() +
1851                                   OE.getDistance() * MII));
1852     }
1853 
1854     ScheduleInfo[I].ALAP = alap;
1855     ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1856   }
1857 
1858   // After computing the node functions, compute the summary for each node set.
1859   for (NodeSet &I : NodeSets)
1860     I.computeNodeSetInfo(this);
1861 
1862   LLVM_DEBUG({
1863     for (unsigned i = 0; i < SUnits.size(); i++) {
1864       dbgs() << "\tNode " << i << ":\n";
1865       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1866       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1867       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1868       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1869       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1870       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1871       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1872     }
1873   });
1874 }
1875 
1876 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1877 /// as the predecessors of the elements of NodeOrder that are not also in
1878 /// NodeOrder.
1879 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1880                    SmallSetVector<SUnit *, 8> &Preds, SwingSchedulerDDG *DDG,
1881                    const NodeSet *S = nullptr) {
1882   Preds.clear();
1883 
1884   for (SUnit *SU : NodeOrder) {
1885     for (const auto &IE : DDG->getInEdges(SU)) {
1886       SUnit *PredSU = IE.getSrc();
1887       if (S && S->count(PredSU) == 0)
1888         continue;
1889       if (IE.ignoreDependence(true))
1890         continue;
1891       if (NodeOrder.count(PredSU) == 0)
1892         Preds.insert(PredSU);
1893     }
1894 
1895     // FIXME: The following loop-carried dependencies may also need to be
1896     // considered.
1897     //   - Physical register dependencies (true-dependence and WAW).
1898     //   - Memory dependencies.
1899     for (const auto &OE : DDG->getOutEdges(SU)) {
1900       SUnit *SuccSU = OE.getDst();
1901       if (!OE.isAntiDep())
1902         continue;
1903       if (S && S->count(SuccSU) == 0)
1904         continue;
1905       if (NodeOrder.count(SuccSU) == 0)
1906         Preds.insert(SuccSU);
1907     }
1908   }
1909   return !Preds.empty();
1910 }
1911 
1912 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1913 /// as the successors of the elements of NodeOrder that are not also in
1914 /// NodeOrder.
1915 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1916                    SmallSetVector<SUnit *, 8> &Succs, SwingSchedulerDDG *DDG,
1917                    const NodeSet *S = nullptr) {
1918   Succs.clear();
1919 
1920   for (SUnit *SU : NodeOrder) {
1921     for (const auto &OE : DDG->getOutEdges(SU)) {
1922       SUnit *SuccSU = OE.getDst();
1923       if (S && S->count(SuccSU) == 0)
1924         continue;
1925       if (OE.ignoreDependence(false))
1926         continue;
1927       if (NodeOrder.count(SuccSU) == 0)
1928         Succs.insert(SuccSU);
1929     }
1930 
1931     // FIXME: The following loop-carried dependencies may also need to be
1932     // considered.
1933     //   - Physical register dependnecies (true-dependnece and WAW).
1934     //   - Memory dependencies.
1935     for (const auto &IE : DDG->getInEdges(SU)) {
1936       SUnit *PredSU = IE.getSrc();
1937       if (!IE.isAntiDep())
1938         continue;
1939       if (S && S->count(PredSU) == 0)
1940         continue;
1941       if (NodeOrder.count(PredSU) == 0)
1942         Succs.insert(PredSU);
1943     }
1944   }
1945   return !Succs.empty();
1946 }
1947 
1948 /// Return true if there is a path from the specified node to any of the nodes
1949 /// in DestNodes. Keep track and return the nodes in any path.
1950 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1951                         SetVector<SUnit *> &DestNodes,
1952                         SetVector<SUnit *> &Exclude,
1953                         SmallPtrSet<SUnit *, 8> &Visited,
1954                         SwingSchedulerDDG *DDG) {
1955   if (Cur->isBoundaryNode())
1956     return false;
1957   if (Exclude.contains(Cur))
1958     return false;
1959   if (DestNodes.contains(Cur))
1960     return true;
1961   if (!Visited.insert(Cur).second)
1962     return Path.contains(Cur);
1963   bool FoundPath = false;
1964   for (const auto &OE : DDG->getOutEdges(Cur))
1965     if (!OE.ignoreDependence(false))
1966       FoundPath |=
1967           computePath(OE.getDst(), Path, DestNodes, Exclude, Visited, DDG);
1968   for (const auto &IE : DDG->getInEdges(Cur))
1969     if (IE.isAntiDep() && IE.getDistance() == 0)
1970       FoundPath |=
1971           computePath(IE.getSrc(), Path, DestNodes, Exclude, Visited, DDG);
1972   if (FoundPath)
1973     Path.insert(Cur);
1974   return FoundPath;
1975 }
1976 
1977 /// Compute the live-out registers for the instructions in a node-set.
1978 /// The live-out registers are those that are defined in the node-set,
1979 /// but not used. Except for use operands of Phis.
1980 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1981                             NodeSet &NS) {
1982   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1983   MachineRegisterInfo &MRI = MF.getRegInfo();
1984   SmallVector<VRegMaskOrUnit, 8> LiveOutRegs;
1985   SmallSet<unsigned, 4> Uses;
1986   for (SUnit *SU : NS) {
1987     const MachineInstr *MI = SU->getInstr();
1988     if (MI->isPHI())
1989       continue;
1990     for (const MachineOperand &MO : MI->all_uses()) {
1991       Register Reg = MO.getReg();
1992       if (Reg.isVirtual())
1993         Uses.insert(Reg);
1994       else if (MRI.isAllocatable(Reg))
1995         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
1996           Uses.insert(Unit);
1997     }
1998   }
1999   for (SUnit *SU : NS)
2000     for (const MachineOperand &MO : SU->getInstr()->all_defs())
2001       if (!MO.isDead()) {
2002         Register Reg = MO.getReg();
2003         if (Reg.isVirtual()) {
2004           if (!Uses.count(Reg))
2005             LiveOutRegs.emplace_back(Reg, LaneBitmask::getNone());
2006         } else if (MRI.isAllocatable(Reg)) {
2007           for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
2008             if (!Uses.count(Unit))
2009               LiveOutRegs.emplace_back(Unit, LaneBitmask::getNone());
2010         }
2011       }
2012   RPTracker.addLiveRegs(LiveOutRegs);
2013 }
2014 
2015 /// A heuristic to filter nodes in recurrent node-sets if the register
2016 /// pressure of a set is too high.
2017 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
2018   for (auto &NS : NodeSets) {
2019     // Skip small node-sets since they won't cause register pressure problems.
2020     if (NS.size() <= 2)
2021       continue;
2022     IntervalPressure RecRegPressure;
2023     RegPressureTracker RecRPTracker(RecRegPressure);
2024     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
2025     computeLiveOuts(MF, RecRPTracker, NS);
2026     RecRPTracker.closeBottom();
2027 
2028     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
2029     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
2030       return A->NodeNum > B->NodeNum;
2031     });
2032 
2033     for (auto &SU : SUnits) {
2034       // Since we're computing the register pressure for a subset of the
2035       // instructions in a block, we need to set the tracker for each
2036       // instruction in the node-set. The tracker is set to the instruction
2037       // just after the one we're interested in.
2038       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
2039       RecRPTracker.setPos(std::next(CurInstI));
2040 
2041       RegPressureDelta RPDelta;
2042       ArrayRef<PressureChange> CriticalPSets;
2043       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
2044                                              CriticalPSets,
2045                                              RecRegPressure.MaxSetPressure);
2046       if (RPDelta.Excess.isValid()) {
2047         LLVM_DEBUG(
2048             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
2049                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
2050                    << ":" << RPDelta.Excess.getUnitInc() << "\n");
2051         NS.setExceedPressure(SU);
2052         break;
2053       }
2054       RecRPTracker.recede();
2055     }
2056   }
2057 }
2058 
2059 /// A heuristic to colocate node sets that have the same set of
2060 /// successors.
2061 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
2062   unsigned Colocate = 0;
2063   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
2064     NodeSet &N1 = NodeSets[i];
2065     SmallSetVector<SUnit *, 8> S1;
2066     if (N1.empty() || !succ_L(N1, S1, DDG.get()))
2067       continue;
2068     for (int j = i + 1; j < e; ++j) {
2069       NodeSet &N2 = NodeSets[j];
2070       if (N1.compareRecMII(N2) != 0)
2071         continue;
2072       SmallSetVector<SUnit *, 8> S2;
2073       if (N2.empty() || !succ_L(N2, S2, DDG.get()))
2074         continue;
2075       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
2076         N1.setColocate(++Colocate);
2077         N2.setColocate(Colocate);
2078         break;
2079       }
2080     }
2081   }
2082 }
2083 
2084 /// Check if the existing node-sets are profitable. If not, then ignore the
2085 /// recurrent node-sets, and attempt to schedule all nodes together. This is
2086 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
2087 /// then it's best to try to schedule all instructions together instead of
2088 /// starting with the recurrent node-sets.
2089 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
2090   // Look for loops with a large MII.
2091   if (MII < 17)
2092     return;
2093   // Check if the node-set contains only a simple add recurrence.
2094   for (auto &NS : NodeSets) {
2095     if (NS.getRecMII() > 2)
2096       return;
2097     if (NS.getMaxDepth() > MII)
2098       return;
2099   }
2100   NodeSets.clear();
2101   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
2102 }
2103 
2104 /// Add the nodes that do not belong to a recurrence set into groups
2105 /// based upon connected components.
2106 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
2107   SetVector<SUnit *> NodesAdded;
2108   SmallPtrSet<SUnit *, 8> Visited;
2109   // Add the nodes that are on a path between the previous node sets and
2110   // the current node set.
2111   for (NodeSet &I : NodeSets) {
2112     SmallSetVector<SUnit *, 8> N;
2113     // Add the nodes from the current node set to the previous node set.
2114     if (succ_L(I, N, DDG.get())) {
2115       SetVector<SUnit *> Path;
2116       for (SUnit *NI : N) {
2117         Visited.clear();
2118         computePath(NI, Path, NodesAdded, I, Visited, DDG.get());
2119       }
2120       if (!Path.empty())
2121         I.insert(Path.begin(), Path.end());
2122     }
2123     // Add the nodes from the previous node set to the current node set.
2124     N.clear();
2125     if (succ_L(NodesAdded, N, DDG.get())) {
2126       SetVector<SUnit *> Path;
2127       for (SUnit *NI : N) {
2128         Visited.clear();
2129         computePath(NI, Path, I, NodesAdded, Visited, DDG.get());
2130       }
2131       if (!Path.empty())
2132         I.insert(Path.begin(), Path.end());
2133     }
2134     NodesAdded.insert(I.begin(), I.end());
2135   }
2136 
2137   // Create a new node set with the connected nodes of any successor of a node
2138   // in a recurrent set.
2139   NodeSet NewSet;
2140   SmallSetVector<SUnit *, 8> N;
2141   if (succ_L(NodesAdded, N, DDG.get()))
2142     for (SUnit *I : N)
2143       addConnectedNodes(I, NewSet, NodesAdded);
2144   if (!NewSet.empty())
2145     NodeSets.push_back(NewSet);
2146 
2147   // Create a new node set with the connected nodes of any predecessor of a node
2148   // in a recurrent set.
2149   NewSet.clear();
2150   if (pred_L(NodesAdded, N, DDG.get()))
2151     for (SUnit *I : N)
2152       addConnectedNodes(I, NewSet, NodesAdded);
2153   if (!NewSet.empty())
2154     NodeSets.push_back(NewSet);
2155 
2156   // Create new nodes sets with the connected nodes any remaining node that
2157   // has no predecessor.
2158   for (SUnit &SU : SUnits) {
2159     if (NodesAdded.count(&SU) == 0) {
2160       NewSet.clear();
2161       addConnectedNodes(&SU, NewSet, NodesAdded);
2162       if (!NewSet.empty())
2163         NodeSets.push_back(NewSet);
2164     }
2165   }
2166 }
2167 
2168 /// Add the node to the set, and add all of its connected nodes to the set.
2169 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2170                                           SetVector<SUnit *> &NodesAdded) {
2171   NewSet.insert(SU);
2172   NodesAdded.insert(SU);
2173   for (auto &OE : DDG->getOutEdges(SU)) {
2174     SUnit *Successor = OE.getDst();
2175     if (!OE.isArtificial() && !Successor->isBoundaryNode() &&
2176         NodesAdded.count(Successor) == 0)
2177       addConnectedNodes(Successor, NewSet, NodesAdded);
2178   }
2179   for (auto &IE : DDG->getInEdges(SU)) {
2180     SUnit *Predecessor = IE.getSrc();
2181     if (!IE.isArtificial() && NodesAdded.count(Predecessor) == 0)
2182       addConnectedNodes(Predecessor, NewSet, NodesAdded);
2183   }
2184 }
2185 
2186 /// Return true if Set1 contains elements in Set2. The elements in common
2187 /// are returned in a different container.
2188 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2189                         SmallSetVector<SUnit *, 8> &Result) {
2190   Result.clear();
2191   for (SUnit *SU : Set1) {
2192     if (Set2.count(SU) != 0)
2193       Result.insert(SU);
2194   }
2195   return !Result.empty();
2196 }
2197 
2198 /// Merge the recurrence node sets that have the same initial node.
2199 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2200   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2201        ++I) {
2202     NodeSet &NI = *I;
2203     for (NodeSetType::iterator J = I + 1; J != E;) {
2204       NodeSet &NJ = *J;
2205       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2206         if (NJ.compareRecMII(NI) > 0)
2207           NI.setRecMII(NJ.getRecMII());
2208         for (SUnit *SU : *J)
2209           I->insert(SU);
2210         NodeSets.erase(J);
2211         E = NodeSets.end();
2212       } else {
2213         ++J;
2214       }
2215     }
2216   }
2217 }
2218 
2219 /// Remove nodes that have been scheduled in previous NodeSets.
2220 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2221   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2222        ++I)
2223     for (NodeSetType::iterator J = I + 1; J != E;) {
2224       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2225 
2226       if (J->empty()) {
2227         NodeSets.erase(J);
2228         E = NodeSets.end();
2229       } else {
2230         ++J;
2231       }
2232     }
2233 }
2234 
2235 /// Compute an ordered list of the dependence graph nodes, which
2236 /// indicates the order that the nodes will be scheduled.  This is a
2237 /// two-level algorithm. First, a partial order is created, which
2238 /// consists of a list of sets ordered from highest to lowest priority.
2239 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2240   SmallSetVector<SUnit *, 8> R;
2241   NodeOrder.clear();
2242 
2243   for (auto &Nodes : NodeSets) {
2244     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2245     OrderKind Order;
2246     SmallSetVector<SUnit *, 8> N;
2247     if (pred_L(NodeOrder, N, DDG.get()) && llvm::set_is_subset(N, Nodes)) {
2248       R.insert(N.begin(), N.end());
2249       Order = BottomUp;
2250       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
2251     } else if (succ_L(NodeOrder, N, DDG.get()) &&
2252                llvm::set_is_subset(N, Nodes)) {
2253       R.insert(N.begin(), N.end());
2254       Order = TopDown;
2255       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
2256     } else if (isIntersect(N, Nodes, R)) {
2257       // If some of the successors are in the existing node-set, then use the
2258       // top-down ordering.
2259       Order = TopDown;
2260       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
2261     } else if (NodeSets.size() == 1) {
2262       for (const auto &N : Nodes)
2263         if (N->Succs.size() == 0)
2264           R.insert(N);
2265       Order = BottomUp;
2266       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
2267     } else {
2268       // Find the node with the highest ASAP.
2269       SUnit *maxASAP = nullptr;
2270       for (SUnit *SU : Nodes) {
2271         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2272             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
2273           maxASAP = SU;
2274       }
2275       R.insert(maxASAP);
2276       Order = BottomUp;
2277       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
2278     }
2279 
2280     while (!R.empty()) {
2281       if (Order == TopDown) {
2282         // Choose the node with the maximum height.  If more than one, choose
2283         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
2284         // choose the node with the lowest MOV.
2285         while (!R.empty()) {
2286           SUnit *maxHeight = nullptr;
2287           for (SUnit *I : R) {
2288             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
2289               maxHeight = I;
2290             else if (getHeight(I) == getHeight(maxHeight) &&
2291                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
2292               maxHeight = I;
2293             else if (getHeight(I) == getHeight(maxHeight) &&
2294                      getZeroLatencyHeight(I) ==
2295                          getZeroLatencyHeight(maxHeight) &&
2296                      getMOV(I) < getMOV(maxHeight))
2297               maxHeight = I;
2298           }
2299           NodeOrder.insert(maxHeight);
2300           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
2301           R.remove(maxHeight);
2302           for (const auto &OE : DDG->getOutEdges(maxHeight)) {
2303             SUnit *SU = OE.getDst();
2304             if (Nodes.count(SU) == 0)
2305               continue;
2306             if (NodeOrder.contains(SU))
2307               continue;
2308             if (OE.ignoreDependence(false))
2309               continue;
2310             R.insert(SU);
2311           }
2312 
2313           // FIXME: The following loop-carried dependencies may also need to be
2314           // considered.
2315           //   - Physical register dependnecies (true-dependnece and WAW).
2316           //   - Memory dependencies.
2317           for (const auto &IE : DDG->getInEdges(maxHeight)) {
2318             SUnit *SU = IE.getSrc();
2319             if (!IE.isAntiDep())
2320               continue;
2321             if (Nodes.count(SU) == 0)
2322               continue;
2323             if (NodeOrder.contains(SU))
2324               continue;
2325             R.insert(SU);
2326           }
2327         }
2328         Order = BottomUp;
2329         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
2330         SmallSetVector<SUnit *, 8> N;
2331         if (pred_L(NodeOrder, N, DDG.get(), &Nodes))
2332           R.insert(N.begin(), N.end());
2333       } else {
2334         // Choose the node with the maximum depth.  If more than one, choose
2335         // the node with the maximum ZeroLatencyDepth. If still more than one,
2336         // choose the node with the lowest MOV.
2337         while (!R.empty()) {
2338           SUnit *maxDepth = nullptr;
2339           for (SUnit *I : R) {
2340             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
2341               maxDepth = I;
2342             else if (getDepth(I) == getDepth(maxDepth) &&
2343                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
2344               maxDepth = I;
2345             else if (getDepth(I) == getDepth(maxDepth) &&
2346                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2347                      getMOV(I) < getMOV(maxDepth))
2348               maxDepth = I;
2349           }
2350           NodeOrder.insert(maxDepth);
2351           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2352           R.remove(maxDepth);
2353           if (Nodes.isExceedSU(maxDepth)) {
2354             Order = TopDown;
2355             R.clear();
2356             R.insert(Nodes.getNode(0));
2357             break;
2358           }
2359           for (const auto &IE : DDG->getInEdges(maxDepth)) {
2360             SUnit *SU = IE.getSrc();
2361             if (Nodes.count(SU) == 0)
2362               continue;
2363             if (NodeOrder.contains(SU))
2364               continue;
2365             R.insert(SU);
2366           }
2367 
2368           // FIXME: The following loop-carried dependencies may also need to be
2369           // considered.
2370           //   - Physical register dependnecies (true-dependnece and WAW).
2371           //   - Memory dependencies.
2372           for (const auto &OE : DDG->getOutEdges(maxDepth)) {
2373             SUnit *SU = OE.getDst();
2374             if (!OE.isAntiDep())
2375               continue;
2376             if (Nodes.count(SU) == 0)
2377               continue;
2378             if (NodeOrder.contains(SU))
2379               continue;
2380             R.insert(SU);
2381           }
2382         }
2383         Order = TopDown;
2384         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2385         SmallSetVector<SUnit *, 8> N;
2386         if (succ_L(NodeOrder, N, DDG.get(), &Nodes))
2387           R.insert(N.begin(), N.end());
2388       }
2389     }
2390     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2391   }
2392 
2393   LLVM_DEBUG({
2394     dbgs() << "Node order: ";
2395     for (SUnit *I : NodeOrder)
2396       dbgs() << " " << I->NodeNum << " ";
2397     dbgs() << "\n";
2398   });
2399 }
2400 
2401 /// Process the nodes in the computed order and create the pipelined schedule
2402 /// of the instructions, if possible. Return true if a schedule is found.
2403 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2404 
2405   if (NodeOrder.empty()){
2406     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2407     return false;
2408   }
2409 
2410   bool scheduleFound = false;
2411   std::unique_ptr<HighRegisterPressureDetector> HRPDetector;
2412   if (LimitRegPressure) {
2413     HRPDetector =
2414         std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF);
2415     HRPDetector->init(RegClassInfo);
2416   }
2417   // Keep increasing II until a valid schedule is found.
2418   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2419     Schedule.reset();
2420     Schedule.setInitiationInterval(II);
2421     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2422 
2423     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2424     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2425     do {
2426       SUnit *SU = *NI;
2427 
2428       // Compute the schedule time for the instruction, which is based
2429       // upon the scheduled time for any predecessors/successors.
2430       int EarlyStart = INT_MIN;
2431       int LateStart = INT_MAX;
2432       Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this);
2433       LLVM_DEBUG({
2434         dbgs() << "\n";
2435         dbgs() << "Inst (" << SU->NodeNum << ") ";
2436         SU->getInstr()->dump();
2437         dbgs() << "\n";
2438       });
2439       LLVM_DEBUG(
2440           dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart));
2441 
2442       if (EarlyStart > LateStart)
2443         scheduleFound = false;
2444       else if (EarlyStart != INT_MIN && LateStart == INT_MAX)
2445         scheduleFound =
2446             Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II);
2447       else if (EarlyStart == INT_MIN && LateStart != INT_MAX)
2448         scheduleFound =
2449             Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II);
2450       else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2451         LateStart = std::min(LateStart, EarlyStart + (int)II - 1);
2452         // When scheduling a Phi it is better to start at the late cycle and
2453         // go backwards. The default order may insert the Phi too far away
2454         // from its first dependence.
2455         // Also, do backward search when all scheduled predecessors are
2456         // loop-carried output/order dependencies. Empirically, there are also
2457         // cases where scheduling becomes possible with backward search.
2458         if (SU->getInstr()->isPHI() ||
2459             Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this->getDDG()))
2460           scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II);
2461         else
2462           scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II);
2463       } else {
2464         int FirstCycle = Schedule.getFirstCycle();
2465         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2466                                         FirstCycle + getASAP(SU) + II - 1, II);
2467       }
2468 
2469       // Even if we find a schedule, make sure the schedule doesn't exceed the
2470       // allowable number of stages. We keep trying if this happens.
2471       if (scheduleFound)
2472         if (SwpMaxStages > -1 &&
2473             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2474           scheduleFound = false;
2475 
2476       LLVM_DEBUG({
2477         if (!scheduleFound)
2478           dbgs() << "\tCan't schedule\n";
2479       });
2480     } while (++NI != NE && scheduleFound);
2481 
2482     // If a schedule is found, ensure non-pipelined instructions are in stage 0
2483     if (scheduleFound)
2484       scheduleFound =
2485           Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2486 
2487     // If a schedule is found, check if it is a valid schedule too.
2488     if (scheduleFound)
2489       scheduleFound = Schedule.isValidSchedule(this);
2490 
2491     // If a schedule was found and the option is enabled, check if the schedule
2492     // might generate additional register spills/fills.
2493     if (scheduleFound && LimitRegPressure)
2494       scheduleFound =
2495           !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount());
2496   }
2497 
2498   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2499                     << " (II=" << Schedule.getInitiationInterval()
2500                     << ")\n");
2501 
2502   if (scheduleFound) {
2503     scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2504     if (!scheduleFound)
2505       LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2506   }
2507 
2508   if (scheduleFound) {
2509     Schedule.finalizeSchedule(this);
2510     Pass.ORE->emit([&]() {
2511       return MachineOptimizationRemarkAnalysis(
2512                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2513              << "Schedule found with Initiation Interval: "
2514              << ore::NV("II", Schedule.getInitiationInterval())
2515              << ", MaxStageCount: "
2516              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2517     });
2518   } else
2519     Schedule.reset();
2520 
2521   return scheduleFound && Schedule.getMaxStageCount() > 0;
2522 }
2523 
2524 /// Return true if we can compute the amount the instruction changes
2525 /// during each iteration. Set Delta to the amount of the change.
2526 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) const {
2527   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2528   const MachineOperand *BaseOp;
2529   int64_t Offset;
2530   bool OffsetIsScalable;
2531   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2532     return false;
2533 
2534   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2535   if (OffsetIsScalable)
2536     return false;
2537 
2538   if (!BaseOp->isReg())
2539     return false;
2540 
2541   Register BaseReg = BaseOp->getReg();
2542 
2543   MachineRegisterInfo &MRI = MF.getRegInfo();
2544   // Check if there is a Phi. If so, get the definition in the loop.
2545   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2546   if (BaseDef && BaseDef->isPHI()) {
2547     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2548     BaseDef = MRI.getVRegDef(BaseReg);
2549   }
2550   if (!BaseDef)
2551     return false;
2552 
2553   int D = 0;
2554   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2555     return false;
2556 
2557   Delta = D;
2558   return true;
2559 }
2560 
2561 /// Check if we can change the instruction to use an offset value from the
2562 /// previous iteration. If so, return true and set the base and offset values
2563 /// so that we can rewrite the load, if necessary.
2564 ///   v1 = Phi(v0, v3)
2565 ///   v2 = load v1, 0
2566 ///   v3 = post_store v1, 4, x
2567 /// This function enables the load to be rewritten as v2 = load v3, 4.
2568 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2569                                               unsigned &BasePos,
2570                                               unsigned &OffsetPos,
2571                                               unsigned &NewBase,
2572                                               int64_t &Offset) {
2573   // Get the load instruction.
2574   if (TII->isPostIncrement(*MI))
2575     return false;
2576   unsigned BasePosLd, OffsetPosLd;
2577   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2578     return false;
2579   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2580 
2581   // Look for the Phi instruction.
2582   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2583   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2584   if (!Phi || !Phi->isPHI())
2585     return false;
2586   // Get the register defined in the loop block.
2587   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2588   if (!PrevReg)
2589     return false;
2590 
2591   // Check for the post-increment load/store instruction.
2592   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2593   if (!PrevDef || PrevDef == MI)
2594     return false;
2595 
2596   if (!TII->isPostIncrement(*PrevDef))
2597     return false;
2598 
2599   unsigned BasePos1 = 0, OffsetPos1 = 0;
2600   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2601     return false;
2602 
2603   // Make sure that the instructions do not access the same memory location in
2604   // the next iteration.
2605   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2606   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2607   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2608   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2609   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2610   MF.deleteMachineInstr(NewMI);
2611   if (!Disjoint)
2612     return false;
2613 
2614   // Set the return value once we determine that we return true.
2615   BasePos = BasePosLd;
2616   OffsetPos = OffsetPosLd;
2617   NewBase = PrevReg;
2618   Offset = StoreOffset;
2619   return true;
2620 }
2621 
2622 /// Apply changes to the instruction if needed. The changes are need
2623 /// to improve the scheduling and depend up on the final schedule.
2624 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2625                                          SMSchedule &Schedule) {
2626   SUnit *SU = getSUnit(MI);
2627   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2628       InstrChanges.find(SU);
2629   if (It != InstrChanges.end()) {
2630     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2631     unsigned BasePos, OffsetPos;
2632     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2633       return;
2634     Register BaseReg = MI->getOperand(BasePos).getReg();
2635     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2636     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2637     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2638     int BaseStageNum = Schedule.stageScheduled(SU);
2639     int BaseCycleNum = Schedule.cycleScheduled(SU);
2640     if (BaseStageNum < DefStageNum) {
2641       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2642       int OffsetDiff = DefStageNum - BaseStageNum;
2643       if (DefCycleNum < BaseCycleNum) {
2644         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2645         if (OffsetDiff > 0)
2646           --OffsetDiff;
2647       }
2648       int64_t NewOffset =
2649           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2650       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2651       SU->setInstr(NewMI);
2652       MISUnitMap[NewMI] = SU;
2653       NewMIs[MI] = NewMI;
2654     }
2655   }
2656 }
2657 
2658 /// Return the instruction in the loop that defines the register.
2659 /// If the definition is a Phi, then follow the Phi operand to
2660 /// the instruction in the loop.
2661 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2662   SmallPtrSet<MachineInstr *, 8> Visited;
2663   MachineInstr *Def = MRI.getVRegDef(Reg);
2664   while (Def->isPHI()) {
2665     if (!Visited.insert(Def).second)
2666       break;
2667     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2668       if (Def->getOperand(i + 1).getMBB() == BB) {
2669         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2670         break;
2671       }
2672   }
2673   return Def;
2674 }
2675 
2676 /// Return true for an order or output dependence that is loop carried
2677 /// potentially. A dependence is loop carried if the destination defines a value
2678 /// that may be used or defined by the source in a subsequent iteration.
2679 bool SwingSchedulerDAG::isLoopCarriedDep(
2680     const SwingSchedulerDDGEdge &Edge) const {
2681   if ((!Edge.isOrderDep() && !Edge.isOutputDep()) || Edge.isArtificial() ||
2682       Edge.getDst()->isBoundaryNode())
2683     return false;
2684 
2685   if (!SwpPruneLoopCarried)
2686     return true;
2687 
2688   if (Edge.isOutputDep())
2689     return true;
2690 
2691   MachineInstr *SI = Edge.getSrc()->getInstr();
2692   MachineInstr *DI = Edge.getDst()->getInstr();
2693   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2694 
2695   // Assume ordered loads and stores may have a loop carried dependence.
2696   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2697       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2698       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2699     return true;
2700 
2701   if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore())
2702     return false;
2703 
2704   // The conservative assumption is that a dependence between memory operations
2705   // may be loop carried. The following code checks when it can be proved that
2706   // there is no loop carried dependence.
2707   unsigned DeltaS, DeltaD;
2708   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2709     return true;
2710 
2711   const MachineOperand *BaseOpS, *BaseOpD;
2712   int64_t OffsetS, OffsetD;
2713   bool OffsetSIsScalable, OffsetDIsScalable;
2714   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2715   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2716                                     TRI) ||
2717       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2718                                     TRI))
2719     return true;
2720 
2721   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2722          "Expected offsets to be byte offsets");
2723 
2724   MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2725   MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2726   if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2727     return true;
2728 
2729   unsigned InitValS = 0;
2730   unsigned LoopValS = 0;
2731   unsigned InitValD = 0;
2732   unsigned LoopValD = 0;
2733   getPhiRegs(*DefS, BB, InitValS, LoopValS);
2734   getPhiRegs(*DefD, BB, InitValD, LoopValD);
2735   MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2736   MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2737 
2738   if (!InitDefS->isIdenticalTo(*InitDefD))
2739     return true;
2740 
2741   // Check that the base register is incremented by a constant value for each
2742   // iteration.
2743   MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2744   int D = 0;
2745   if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2746     return true;
2747 
2748   LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize();
2749   LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize();
2750 
2751   // This is the main test, which checks the offset values and the loop
2752   // increment value to determine if the accesses may be loop carried.
2753   if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue())
2754     return true;
2755 
2756   if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() ||
2757       DeltaD < AccessSizeD.getValue())
2758     return true;
2759 
2760   return (OffsetS + (int64_t)AccessSizeS.getValue() <
2761           OffsetD + (int64_t)AccessSizeD.getValue());
2762 }
2763 
2764 void SwingSchedulerDAG::postProcessDAG() {
2765   for (auto &M : Mutations)
2766     M->apply(this);
2767 }
2768 
2769 /// Try to schedule the node at the specified StartCycle and continue
2770 /// until the node is schedule or the EndCycle is reached.  This function
2771 /// returns true if the node is scheduled.  This routine may search either
2772 /// forward or backward for a place to insert the instruction based upon
2773 /// the relative values of StartCycle and EndCycle.
2774 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2775   bool forward = true;
2776   LLVM_DEBUG({
2777     dbgs() << "Trying to insert node between " << StartCycle << " and "
2778            << EndCycle << " II: " << II << "\n";
2779   });
2780   if (StartCycle > EndCycle)
2781     forward = false;
2782 
2783   // The terminating condition depends on the direction.
2784   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2785   for (int curCycle = StartCycle; curCycle != termCycle;
2786        forward ? ++curCycle : --curCycle) {
2787 
2788     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2789         ProcItinResources.canReserveResources(*SU, curCycle)) {
2790       LLVM_DEBUG({
2791         dbgs() << "\tinsert at cycle " << curCycle << " ";
2792         SU->getInstr()->dump();
2793       });
2794 
2795       if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2796         ProcItinResources.reserveResources(*SU, curCycle);
2797       ScheduledInstrs[curCycle].push_back(SU);
2798       InstrToCycle.insert(std::make_pair(SU, curCycle));
2799       if (curCycle > LastCycle)
2800         LastCycle = curCycle;
2801       if (curCycle < FirstCycle)
2802         FirstCycle = curCycle;
2803       return true;
2804     }
2805     LLVM_DEBUG({
2806       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2807       SU->getInstr()->dump();
2808     });
2809   }
2810   return false;
2811 }
2812 
2813 // Return the cycle of the earliest scheduled instruction in the chain.
2814 int SMSchedule::earliestCycleInChain(const SwingSchedulerDDGEdge &Dep,
2815                                      const SwingSchedulerDDG *DDG) {
2816   SmallPtrSet<SUnit *, 8> Visited;
2817   SmallVector<SwingSchedulerDDGEdge, 8> Worklist;
2818   Worklist.push_back(Dep);
2819   int EarlyCycle = INT_MAX;
2820   while (!Worklist.empty()) {
2821     const SwingSchedulerDDGEdge &Cur = Worklist.pop_back_val();
2822     SUnit *PrevSU = Cur.getSrc();
2823     if (Visited.count(PrevSU))
2824       continue;
2825     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2826     if (it == InstrToCycle.end())
2827       continue;
2828     EarlyCycle = std::min(EarlyCycle, it->second);
2829     for (const auto &IE : DDG->getInEdges(PrevSU))
2830       if (IE.isOrderDep() || IE.isOutputDep())
2831         Worklist.push_back(IE);
2832     Visited.insert(PrevSU);
2833   }
2834   return EarlyCycle;
2835 }
2836 
2837 // Return the cycle of the latest scheduled instruction in the chain.
2838 int SMSchedule::latestCycleInChain(const SwingSchedulerDDGEdge &Dep,
2839                                    const SwingSchedulerDDG *DDG) {
2840   SmallPtrSet<SUnit *, 8> Visited;
2841   SmallVector<SwingSchedulerDDGEdge, 8> Worklist;
2842   Worklist.push_back(Dep);
2843   int LateCycle = INT_MIN;
2844   while (!Worklist.empty()) {
2845     const SwingSchedulerDDGEdge &Cur = Worklist.pop_back_val();
2846     SUnit *SuccSU = Cur.getDst();
2847     if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2848       continue;
2849     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2850     if (it == InstrToCycle.end())
2851       continue;
2852     LateCycle = std::max(LateCycle, it->second);
2853     for (const auto &OE : DDG->getOutEdges(SuccSU))
2854       if (OE.isOrderDep() || OE.isOutputDep())
2855         Worklist.push_back(OE);
2856     Visited.insert(SuccSU);
2857   }
2858   return LateCycle;
2859 }
2860 
2861 /// If an instruction has a use that spans multiple iterations, then
2862 /// return true. These instructions are characterized by having a back-ege
2863 /// to a Phi, which contains a reference to another Phi.
2864 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2865   for (auto &P : SU->Preds)
2866     if (P.getKind() == SDep::Anti && P.getSUnit()->getInstr()->isPHI())
2867       for (auto &S : P.getSUnit()->Succs)
2868         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2869           return P.getSUnit();
2870   return nullptr;
2871 }
2872 
2873 /// Compute the scheduling start slot for the instruction.  The start slot
2874 /// depends on any predecessor or successor nodes scheduled already.
2875 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2876                               int II, SwingSchedulerDAG *DAG) {
2877   const SwingSchedulerDDG *DDG = DAG->getDDG();
2878 
2879   // Iterate over each instruction that has been scheduled already.  The start
2880   // slot computation depends on whether the previously scheduled instruction
2881   // is a predecessor or successor of the specified instruction.
2882   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2883     for (SUnit *I : getInstructions(cycle)) {
2884       for (const auto &IE : DDG->getInEdges(SU)) {
2885         if (IE.getSrc() == I) {
2886           // FIXME: Add reverse edge to `DDG` instead of calling
2887           // `isLoopCarriedDep`
2888           if (DAG->isLoopCarriedDep(IE)) {
2889             int End = earliestCycleInChain(IE, DDG) + (II - 1);
2890             *MinLateStart = std::min(*MinLateStart, End);
2891           }
2892           int EarlyStart = cycle + IE.getLatency() - IE.getDistance() * II;
2893           *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2894         }
2895       }
2896 
2897       for (const auto &OE : DDG->getOutEdges(SU)) {
2898         if (OE.getDst() == I) {
2899           // FIXME: Add reverse edge to `DDG` instead of calling
2900           // `isLoopCarriedDep`
2901           if (DAG->isLoopCarriedDep(OE)) {
2902             int Start = latestCycleInChain(OE, DDG) + 1 - II;
2903             *MaxEarlyStart = std::max(*MaxEarlyStart, Start);
2904           }
2905           int LateStart = cycle - OE.getLatency() + OE.getDistance() * II;
2906           *MinLateStart = std::min(*MinLateStart, LateStart);
2907         }
2908       }
2909 
2910       SUnit *BE = multipleIterations(I, DAG);
2911       for (const auto &Dep : SU->Preds) {
2912         // For instruction that requires multiple iterations, make sure that
2913         // the dependent instruction is not scheduled past the definition.
2914         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2915             !SU->isPred(I))
2916           *MinLateStart = std::min(*MinLateStart, cycle);
2917       }
2918     }
2919   }
2920 }
2921 
2922 /// Order the instructions within a cycle so that the definitions occur
2923 /// before the uses. Returns true if the instruction is added to the start
2924 /// of the list, or false if added to the end.
2925 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU,
2926                                  std::deque<SUnit *> &Insts) const {
2927   MachineInstr *MI = SU->getInstr();
2928   bool OrderBeforeUse = false;
2929   bool OrderAfterDef = false;
2930   bool OrderBeforeDef = false;
2931   unsigned MoveDef = 0;
2932   unsigned MoveUse = 0;
2933   int StageInst1 = stageScheduled(SU);
2934   const SwingSchedulerDDG *DDG = SSD->getDDG();
2935 
2936   unsigned Pos = 0;
2937   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2938        ++I, ++Pos) {
2939     for (MachineOperand &MO : MI->operands()) {
2940       if (!MO.isReg() || !MO.getReg().isVirtual())
2941         continue;
2942 
2943       Register Reg = MO.getReg();
2944       unsigned BasePos, OffsetPos;
2945       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2946         if (MI->getOperand(BasePos).getReg() == Reg)
2947           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2948             Reg = NewReg;
2949       bool Reads, Writes;
2950       std::tie(Reads, Writes) =
2951           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2952       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2953         OrderBeforeUse = true;
2954         if (MoveUse == 0)
2955           MoveUse = Pos;
2956       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2957         // Add the instruction after the scheduled instruction.
2958         OrderAfterDef = true;
2959         MoveDef = Pos;
2960       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2961         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2962           OrderBeforeUse = true;
2963           if (MoveUse == 0)
2964             MoveUse = Pos;
2965         } else {
2966           OrderAfterDef = true;
2967           MoveDef = Pos;
2968         }
2969       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2970         OrderBeforeUse = true;
2971         if (MoveUse == 0)
2972           MoveUse = Pos;
2973         if (MoveUse != 0) {
2974           OrderAfterDef = true;
2975           MoveDef = Pos - 1;
2976         }
2977       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2978         // Add the instruction before the scheduled instruction.
2979         OrderBeforeUse = true;
2980         if (MoveUse == 0)
2981           MoveUse = Pos;
2982       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2983                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2984         if (MoveUse == 0) {
2985           OrderBeforeDef = true;
2986           MoveUse = Pos;
2987         }
2988       }
2989     }
2990     // Check for order dependences between instructions. Make sure the source
2991     // is ordered before the destination.
2992     for (auto &OE : DDG->getOutEdges(SU)) {
2993       if (OE.getDst() != *I)
2994         continue;
2995       if (OE.isOrderDep() && stageScheduled(*I) == StageInst1) {
2996         OrderBeforeUse = true;
2997         if (Pos < MoveUse)
2998           MoveUse = Pos;
2999       }
3000       // We did not handle HW dependences in previous for loop,
3001       // and we normally set Latency = 0 for Anti/Output deps,
3002       // so may have nodes in same cycle with Anti/Output dependent on HW regs.
3003       else if ((OE.isAntiDep() || OE.isOutputDep()) &&
3004                stageScheduled(*I) == StageInst1) {
3005         OrderBeforeUse = true;
3006         if ((MoveUse == 0) || (Pos < MoveUse))
3007           MoveUse = Pos;
3008       }
3009     }
3010     for (auto &IE : DDG->getInEdges(SU)) {
3011       if (IE.getSrc() != *I)
3012         continue;
3013       if ((IE.isAntiDep() || IE.isOutputDep() || IE.isOrderDep()) &&
3014           stageScheduled(*I) == StageInst1) {
3015         OrderAfterDef = true;
3016         MoveDef = Pos;
3017       }
3018     }
3019   }
3020 
3021   // A circular dependence.
3022   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3023     OrderBeforeUse = false;
3024 
3025   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3026   // to a loop-carried dependence.
3027   if (OrderBeforeDef)
3028     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3029 
3030   // The uncommon case when the instruction order needs to be updated because
3031   // there is both a use and def.
3032   if (OrderBeforeUse && OrderAfterDef) {
3033     SUnit *UseSU = Insts.at(MoveUse);
3034     SUnit *DefSU = Insts.at(MoveDef);
3035     if (MoveUse > MoveDef) {
3036       Insts.erase(Insts.begin() + MoveUse);
3037       Insts.erase(Insts.begin() + MoveDef);
3038     } else {
3039       Insts.erase(Insts.begin() + MoveDef);
3040       Insts.erase(Insts.begin() + MoveUse);
3041     }
3042     orderDependence(SSD, UseSU, Insts);
3043     orderDependence(SSD, SU, Insts);
3044     orderDependence(SSD, DefSU, Insts);
3045     return;
3046   }
3047   // Put the new instruction first if there is a use in the list. Otherwise,
3048   // put it at the end of the list.
3049   if (OrderBeforeUse)
3050     Insts.push_front(SU);
3051   else
3052     Insts.push_back(SU);
3053 }
3054 
3055 /// Return true if the scheduled Phi has a loop carried operand.
3056 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD,
3057                                MachineInstr &Phi) const {
3058   if (!Phi.isPHI())
3059     return false;
3060   assert(Phi.isPHI() && "Expecting a Phi.");
3061   SUnit *DefSU = SSD->getSUnit(&Phi);
3062   unsigned DefCycle = cycleScheduled(DefSU);
3063   int DefStage = stageScheduled(DefSU);
3064 
3065   unsigned InitVal = 0;
3066   unsigned LoopVal = 0;
3067   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3068   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3069   if (!UseSU)
3070     return true;
3071   if (UseSU->getInstr()->isPHI())
3072     return true;
3073   unsigned LoopCycle = cycleScheduled(UseSU);
3074   int LoopStage = stageScheduled(UseSU);
3075   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3076 }
3077 
3078 /// Return true if the instruction is a definition that is loop carried
3079 /// and defines the use on the next iteration.
3080 ///        v1 = phi(v2, v3)
3081 ///  (Def) v3 = op v1
3082 ///  (MO)   = v1
3083 /// If MO appears before Def, then v1 and v3 may get assigned to the same
3084 /// register.
3085 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD,
3086                                        MachineInstr *Def,
3087                                        MachineOperand &MO) const {
3088   if (!MO.isReg())
3089     return false;
3090   if (Def->isPHI())
3091     return false;
3092   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3093   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3094     return false;
3095   if (!isLoopCarried(SSD, *Phi))
3096     return false;
3097   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3098   for (MachineOperand &DMO : Def->all_defs()) {
3099     if (DMO.getReg() == LoopReg)
3100       return true;
3101   }
3102   return false;
3103 }
3104 
3105 /// Return true if all scheduled predecessors are loop-carried output/order
3106 /// dependencies.
3107 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds(
3108     SUnit *SU, const SwingSchedulerDDG *DDG) const {
3109   for (const auto &IE : DDG->getInEdges(SU))
3110     if (InstrToCycle.count(IE.getSrc()))
3111       return false;
3112   return true;
3113 }
3114 
3115 /// Determine transitive dependences of unpipelineable instructions
3116 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
3117     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3118   SmallSet<SUnit *, 8> DoNotPipeline;
3119   SmallVector<SUnit *, 8> Worklist;
3120 
3121   for (auto &SU : SSD->SUnits)
3122     if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
3123       Worklist.push_back(&SU);
3124 
3125   const SwingSchedulerDDG *DDG = SSD->getDDG();
3126   while (!Worklist.empty()) {
3127     auto SU = Worklist.pop_back_val();
3128     if (DoNotPipeline.count(SU))
3129       continue;
3130     LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
3131     DoNotPipeline.insert(SU);
3132     for (const auto &IE : DDG->getInEdges(SU))
3133       Worklist.push_back(IE.getSrc());
3134 
3135     // To preserve previous behavior and prevent regression
3136     // FIXME: Remove if this doesn't have significant impact on
3137     for (const auto &OE : DDG->getOutEdges(SU))
3138       if (OE.getDistance() == 1)
3139         Worklist.push_back(OE.getDst());
3140   }
3141   return DoNotPipeline;
3142 }
3143 
3144 // Determine all instructions upon which any unpipelineable instruction depends
3145 // and ensure that they are in stage 0.  If unable to do so, return false.
3146 bool SMSchedule::normalizeNonPipelinedInstructions(
3147     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3148   SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
3149 
3150   int NewLastCycle = INT_MIN;
3151   for (SUnit &SU : SSD->SUnits) {
3152     if (!SU.isInstr())
3153       continue;
3154     if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
3155       NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
3156       continue;
3157     }
3158 
3159     // Put the non-pipelined instruction as early as possible in the schedule
3160     int NewCycle = getFirstCycle();
3161     for (const auto &IE : SSD->getDDG()->getInEdges(&SU))
3162       if (IE.getDistance() == 0)
3163         NewCycle = std::max(InstrToCycle[IE.getSrc()], NewCycle);
3164 
3165     // To preserve previous behavior and prevent regression
3166     // FIXME: Remove if this doesn't have significant impact on performance
3167     for (auto &OE : SSD->getDDG()->getOutEdges(&SU))
3168       if (OE.getDistance() == 1)
3169         NewCycle = std::max(InstrToCycle[OE.getDst()], NewCycle);
3170 
3171     int OldCycle = InstrToCycle[&SU];
3172     if (OldCycle != NewCycle) {
3173       InstrToCycle[&SU] = NewCycle;
3174       auto &OldS = getInstructions(OldCycle);
3175       llvm::erase(OldS, &SU);
3176       getInstructions(NewCycle).emplace_back(&SU);
3177       LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
3178                         << ") is not pipelined; moving from cycle " << OldCycle
3179                         << " to " << NewCycle << " Instr:" << *SU.getInstr());
3180     }
3181     NewLastCycle = std::max(NewLastCycle, NewCycle);
3182   }
3183   LastCycle = NewLastCycle;
3184   return true;
3185 }
3186 
3187 // Check if the generated schedule is valid. This function checks if
3188 // an instruction that uses a physical register is scheduled in a
3189 // different stage than the definition. The pipeliner does not handle
3190 // physical register values that may cross a basic block boundary.
3191 // Furthermore, if a physical def/use pair is assigned to the same
3192 // cycle, orderDependence does not guarantee def/use ordering, so that
3193 // case should be considered invalid.  (The test checks for both
3194 // earlier and same-cycle use to be more robust.)
3195 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3196   for (SUnit &SU : SSD->SUnits) {
3197     if (!SU.hasPhysRegDefs)
3198       continue;
3199     int StageDef = stageScheduled(&SU);
3200     int CycleDef = InstrToCycle[&SU];
3201     assert(StageDef != -1 && "Instruction should have been scheduled.");
3202     for (auto &OE : SSD->getDDG()->getOutEdges(&SU)) {
3203       SUnit *Dst = OE.getDst();
3204       if (OE.isAssignedRegDep() && !Dst->isBoundaryNode())
3205         if (OE.getReg().isPhysical()) {
3206           if (stageScheduled(Dst) != StageDef)
3207             return false;
3208           if (InstrToCycle[Dst] <= CycleDef)
3209             return false;
3210         }
3211     }
3212   }
3213   return true;
3214 }
3215 
3216 /// A property of the node order in swing-modulo-scheduling is
3217 /// that for nodes outside circuits the following holds:
3218 /// none of them is scheduled after both a successor and a
3219 /// predecessor.
3220 /// The method below checks whether the property is met.
3221 /// If not, debug information is printed and statistics information updated.
3222 /// Note that we do not use an assert statement.
3223 /// The reason is that although an invalid node order may prevent
3224 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3225 /// it does not lead to the generation of incorrect code.
3226 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3227 
3228   // a sorted vector that maps each SUnit to its index in the NodeOrder
3229   typedef std::pair<SUnit *, unsigned> UnitIndex;
3230   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3231 
3232   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3233     Indices.push_back(std::make_pair(NodeOrder[i], i));
3234 
3235   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3236     return std::get<0>(i1) < std::get<0>(i2);
3237   };
3238 
3239   // sort, so that we can perform a binary search
3240   llvm::sort(Indices, CompareKey);
3241 
3242   bool Valid = true;
3243   (void)Valid;
3244   // for each SUnit in the NodeOrder, check whether
3245   // it appears after both a successor and a predecessor
3246   // of the SUnit. If this is the case, and the SUnit
3247   // is not part of circuit, then the NodeOrder is not
3248   // valid.
3249   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3250     SUnit *SU = NodeOrder[i];
3251     unsigned Index = i;
3252 
3253     bool PredBefore = false;
3254     bool SuccBefore = false;
3255 
3256     SUnit *Succ;
3257     SUnit *Pred;
3258     (void)Succ;
3259     (void)Pred;
3260 
3261     for (const auto &IE : DDG->getInEdges(SU)) {
3262       SUnit *PredSU = IE.getSrc();
3263       unsigned PredIndex = std::get<1>(
3264           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
3265       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3266         PredBefore = true;
3267         Pred = PredSU;
3268         break;
3269       }
3270     }
3271 
3272     for (const auto &OE : DDG->getOutEdges(SU)) {
3273       SUnit *SuccSU = OE.getDst();
3274       // Do not process a boundary node, it was not included in NodeOrder,
3275       // hence not in Indices either, call to std::lower_bound() below will
3276       // return Indices.end().
3277       if (SuccSU->isBoundaryNode())
3278         continue;
3279       unsigned SuccIndex = std::get<1>(
3280           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
3281       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3282         SuccBefore = true;
3283         Succ = SuccSU;
3284         break;
3285       }
3286     }
3287 
3288     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3289       // instructions in circuits are allowed to be scheduled
3290       // after both a successor and predecessor.
3291       bool InCircuit = llvm::any_of(
3292           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3293       if (InCircuit)
3294         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ");
3295       else {
3296         Valid = false;
3297         NumNodeOrderIssues++;
3298         LLVM_DEBUG(dbgs() << "Predecessor ");
3299       }
3300       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3301                         << " are scheduled before node " << SU->NodeNum
3302                         << "\n");
3303     }
3304   }
3305 
3306   LLVM_DEBUG({
3307     if (!Valid)
3308       dbgs() << "Invalid node order found!\n";
3309   });
3310 }
3311 
3312 /// Attempt to fix the degenerate cases when the instruction serialization
3313 /// causes the register lifetimes to overlap. For example,
3314 ///   p' = store_pi(p, b)
3315 ///      = load p, offset
3316 /// In this case p and p' overlap, which means that two registers are needed.
3317 /// Instead, this function changes the load to use p' and updates the offset.
3318 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3319   unsigned OverlapReg = 0;
3320   unsigned NewBaseReg = 0;
3321   for (SUnit *SU : Instrs) {
3322     MachineInstr *MI = SU->getInstr();
3323     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3324       const MachineOperand &MO = MI->getOperand(i);
3325       // Look for an instruction that uses p. The instruction occurs in the
3326       // same cycle but occurs later in the serialized order.
3327       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3328         // Check that the instruction appears in the InstrChanges structure,
3329         // which contains instructions that can have the offset updated.
3330         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3331           InstrChanges.find(SU);
3332         if (It != InstrChanges.end()) {
3333           unsigned BasePos, OffsetPos;
3334           // Update the base register and adjust the offset.
3335           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3336             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3337             NewMI->getOperand(BasePos).setReg(NewBaseReg);
3338             int64_t NewOffset =
3339                 MI->getOperand(OffsetPos).getImm() - It->second.second;
3340             NewMI->getOperand(OffsetPos).setImm(NewOffset);
3341             SU->setInstr(NewMI);
3342             MISUnitMap[NewMI] = SU;
3343             NewMIs[MI] = NewMI;
3344           }
3345         }
3346         OverlapReg = 0;
3347         NewBaseReg = 0;
3348         break;
3349       }
3350       // Look for an instruction of the form p' = op(p), which uses and defines
3351       // two virtual registers that get allocated to the same physical register.
3352       unsigned TiedUseIdx = 0;
3353       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3354         // OverlapReg is p in the example above.
3355         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3356         // NewBaseReg is p' in the example above.
3357         NewBaseReg = MI->getOperand(i).getReg();
3358         break;
3359       }
3360     }
3361   }
3362 }
3363 
3364 std::deque<SUnit *>
3365 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD,
3366                                 const std::deque<SUnit *> &Instrs) const {
3367   std::deque<SUnit *> NewOrderPhi;
3368   for (SUnit *SU : Instrs) {
3369     if (SU->getInstr()->isPHI())
3370       NewOrderPhi.push_back(SU);
3371   }
3372   std::deque<SUnit *> NewOrderI;
3373   for (SUnit *SU : Instrs) {
3374     if (!SU->getInstr()->isPHI())
3375       orderDependence(SSD, SU, NewOrderI);
3376   }
3377   llvm::append_range(NewOrderPhi, NewOrderI);
3378   return NewOrderPhi;
3379 }
3380 
3381 /// After the schedule has been formed, call this function to combine
3382 /// the instructions from the different stages/cycles.  That is, this
3383 /// function creates a schedule that represents a single iteration.
3384 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3385   // Move all instructions to the first stage from later stages.
3386   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3387     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3388          ++stage) {
3389       std::deque<SUnit *> &cycleInstrs =
3390           ScheduledInstrs[cycle + (stage * InitiationInterval)];
3391       for (SUnit *SU : llvm::reverse(cycleInstrs))
3392         ScheduledInstrs[cycle].push_front(SU);
3393     }
3394   }
3395 
3396   // Erase all the elements in the later stages. Only one iteration should
3397   // remain in the scheduled list, and it contains all the instructions.
3398   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3399     ScheduledInstrs.erase(cycle);
3400 
3401   // Change the registers in instruction as specified in the InstrChanges
3402   // map. We need to use the new registers to create the correct order.
3403   for (const SUnit &SU : SSD->SUnits)
3404     SSD->applyInstrChange(SU.getInstr(), *this);
3405 
3406   // Reorder the instructions in each cycle to fix and improve the
3407   // generated code.
3408   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3409     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3410     cycleInstrs = reorderInstructions(SSD, cycleInstrs);
3411     SSD->fixupRegisterOverlaps(cycleInstrs);
3412   }
3413 
3414   LLVM_DEBUG(dump(););
3415 }
3416 
3417 void NodeSet::print(raw_ostream &os) const {
3418   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3419      << " depth " << MaxDepth << " col " << Colocate << "\n";
3420   for (const auto &I : Nodes)
3421     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
3422   os << "\n";
3423 }
3424 
3425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3426 /// Print the schedule information to the given output.
3427 void SMSchedule::print(raw_ostream &os) const {
3428   // Iterate over each cycle.
3429   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3430     // Iterate over each instruction in the cycle.
3431     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3432     for (SUnit *CI : cycleInstrs->second) {
3433       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3434       os << "(" << CI->NodeNum << ") ";
3435       CI->getInstr()->print(os);
3436       os << "\n";
3437     }
3438   }
3439 }
3440 
3441 /// Utility function used for debugging to print the schedule.
3442 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3443 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3444 
3445 void ResourceManager::dumpMRT() const {
3446   LLVM_DEBUG({
3447     if (UseDFA)
3448       return;
3449     std::stringstream SS;
3450     SS << "MRT:\n";
3451     SS << std::setw(4) << "Slot";
3452     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3453       SS << std::setw(3) << I;
3454     SS << std::setw(7) << "#Mops"
3455        << "\n";
3456     for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3457       SS << std::setw(4) << Slot;
3458       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3459         SS << std::setw(3) << MRT[Slot][I];
3460       SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
3461     }
3462     dbgs() << SS.str();
3463   });
3464 }
3465 #endif
3466 
3467 void ResourceManager::initProcResourceVectors(
3468     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3469   unsigned ProcResourceID = 0;
3470 
3471   // We currently limit the resource kinds to 64 and below so that we can use
3472   // uint64_t for Masks
3473   assert(SM.getNumProcResourceKinds() < 64 &&
3474          "Too many kinds of resources, unsupported");
3475   // Create a unique bitmask for every processor resource unit.
3476   // Skip resource at index 0, since it always references 'InvalidUnit'.
3477   Masks.resize(SM.getNumProcResourceKinds());
3478   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3479     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3480     if (Desc.SubUnitsIdxBegin)
3481       continue;
3482     Masks[I] = 1ULL << ProcResourceID;
3483     ProcResourceID++;
3484   }
3485   // Create a unique bitmask for every processor resource group.
3486   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3487     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3488     if (!Desc.SubUnitsIdxBegin)
3489       continue;
3490     Masks[I] = 1ULL << ProcResourceID;
3491     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3492       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3493     ProcResourceID++;
3494   }
3495   LLVM_DEBUG({
3496     if (SwpShowResMask) {
3497       dbgs() << "ProcResourceDesc:\n";
3498       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3499         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3500         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3501                          ProcResource->Name, I, Masks[I],
3502                          ProcResource->NumUnits);
3503       }
3504       dbgs() << " -----------------\n";
3505     }
3506   });
3507 }
3508 
3509 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3510   LLVM_DEBUG({
3511     if (SwpDebugResource)
3512       dbgs() << "canReserveResources:\n";
3513   });
3514   if (UseDFA)
3515     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3516         ->canReserveResources(&SU.getInstr()->getDesc());
3517 
3518   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3519   if (!SCDesc->isValid()) {
3520     LLVM_DEBUG({
3521       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3522       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3523     });
3524     return true;
3525   }
3526 
3527   reserveResources(SCDesc, Cycle);
3528   bool Result = !isOverbooked();
3529   unreserveResources(SCDesc, Cycle);
3530 
3531   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n");
3532   return Result;
3533 }
3534 
3535 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3536   LLVM_DEBUG({
3537     if (SwpDebugResource)
3538       dbgs() << "reserveResources:\n";
3539   });
3540   if (UseDFA)
3541     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3542         ->reserveResources(&SU.getInstr()->getDesc());
3543 
3544   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3545   if (!SCDesc->isValid()) {
3546     LLVM_DEBUG({
3547       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3548       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3549     });
3550     return;
3551   }
3552 
3553   reserveResources(SCDesc, Cycle);
3554 
3555   LLVM_DEBUG({
3556     if (SwpDebugResource) {
3557       dumpMRT();
3558       dbgs() << "reserveResources: done!\n\n";
3559     }
3560   });
3561 }
3562 
3563 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3564                                        int Cycle) {
3565   assert(!UseDFA);
3566   for (const MCWriteProcResEntry &PRE : make_range(
3567            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3568     for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3569       ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3570 
3571   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3572     ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3573 }
3574 
3575 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3576                                          int Cycle) {
3577   assert(!UseDFA);
3578   for (const MCWriteProcResEntry &PRE : make_range(
3579            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3580     for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3581       --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3582 
3583   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3584     --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3585 }
3586 
3587 bool ResourceManager::isOverbooked() const {
3588   assert(!UseDFA);
3589   for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3590     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3591       const MCProcResourceDesc *Desc = SM.getProcResource(I);
3592       if (MRT[Slot][I] > Desc->NumUnits)
3593         return true;
3594     }
3595     if (NumScheduledMops[Slot] > IssueWidth)
3596       return true;
3597   }
3598   return false;
3599 }
3600 
3601 int ResourceManager::calculateResMIIDFA() const {
3602   assert(UseDFA);
3603 
3604   // Sort the instructions by the number of available choices for scheduling,
3605   // least to most. Use the number of critical resources as the tie breaker.
3606   FuncUnitSorter FUS = FuncUnitSorter(*ST);
3607   for (SUnit &SU : DAG->SUnits)
3608     FUS.calcCriticalResources(*SU.getInstr());
3609   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3610       FuncUnitOrder(FUS);
3611 
3612   for (SUnit &SU : DAG->SUnits)
3613     FuncUnitOrder.push(SU.getInstr());
3614 
3615   SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3616   Resources.push_back(
3617       std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3618 
3619   while (!FuncUnitOrder.empty()) {
3620     MachineInstr *MI = FuncUnitOrder.top();
3621     FuncUnitOrder.pop();
3622     if (TII->isZeroCost(MI->getOpcode()))
3623       continue;
3624 
3625     // Attempt to reserve the instruction in an existing DFA. At least one
3626     // DFA is needed for each cycle.
3627     unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3628     unsigned ReservedCycles = 0;
3629     auto *RI = Resources.begin();
3630     auto *RE = Resources.end();
3631     LLVM_DEBUG({
3632       dbgs() << "Trying to reserve resource for " << NumCycles
3633              << " cycles for \n";
3634       MI->dump();
3635     });
3636     for (unsigned C = 0; C < NumCycles; ++C)
3637       while (RI != RE) {
3638         if ((*RI)->canReserveResources(*MI)) {
3639           (*RI)->reserveResources(*MI);
3640           ++ReservedCycles;
3641           break;
3642         }
3643         RI++;
3644       }
3645     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3646                       << ", NumCycles:" << NumCycles << "\n");
3647     // Add new DFAs, if needed, to reserve resources.
3648     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3649       LLVM_DEBUG(if (SwpDebugResource) dbgs()
3650                  << "NewResource created to reserve resources"
3651                  << "\n");
3652       auto *NewResource = TII->CreateTargetScheduleState(*ST);
3653       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3654       NewResource->reserveResources(*MI);
3655       Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3656     }
3657   }
3658 
3659   int Resmii = Resources.size();
3660   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3661   return Resmii;
3662 }
3663 
3664 int ResourceManager::calculateResMII() const {
3665   if (UseDFA)
3666     return calculateResMIIDFA();
3667 
3668   // Count each resource consumption and divide it by the number of units.
3669   // ResMII is the max value among them.
3670 
3671   int NumMops = 0;
3672   SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3673   for (SUnit &SU : DAG->SUnits) {
3674     if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3675       continue;
3676 
3677     const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3678     if (!SCDesc->isValid())
3679       continue;
3680 
3681     LLVM_DEBUG({
3682       if (SwpDebugResource) {
3683         DAG->dumpNode(SU);
3684         dbgs() << "  #Mops: " << SCDesc->NumMicroOps << "\n"
3685                << "  WriteProcRes: ";
3686       }
3687     });
3688     NumMops += SCDesc->NumMicroOps;
3689     for (const MCWriteProcResEntry &PRE :
3690          make_range(STI->getWriteProcResBegin(SCDesc),
3691                     STI->getWriteProcResEnd(SCDesc))) {
3692       LLVM_DEBUG({
3693         if (SwpDebugResource) {
3694           const MCProcResourceDesc *Desc =
3695               SM.getProcResource(PRE.ProcResourceIdx);
3696           dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", ";
3697         }
3698       });
3699       ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle;
3700     }
3701     LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3702   }
3703 
3704   int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3705   LLVM_DEBUG({
3706     if (SwpDebugResource)
3707       dbgs() << "#Mops: " << NumMops << ", "
3708              << "IssueWidth: " << IssueWidth << ", "
3709              << "Cycles: " << Result << "\n";
3710   });
3711 
3712   LLVM_DEBUG({
3713     if (SwpDebugResource) {
3714       std::stringstream SS;
3715       SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3716          << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3717          << "\n";
3718       dbgs() << SS.str();
3719     }
3720   });
3721   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3722     const MCProcResourceDesc *Desc = SM.getProcResource(I);
3723     int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3724     LLVM_DEBUG({
3725       if (SwpDebugResource) {
3726         std::stringstream SS;
3727         SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3728            << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3729            << std::setw(10) << Cycles << "\n";
3730         dbgs() << SS.str();
3731       }
3732     });
3733     if (Cycles > Result)
3734       Result = Cycles;
3735   }
3736   return Result;
3737 }
3738 
3739 void ResourceManager::init(int II) {
3740   InitiationInterval = II;
3741   DFAResources.clear();
3742   DFAResources.resize(II);
3743   for (auto &I : DFAResources)
3744     I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3745   MRT.clear();
3746   MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3747   NumScheduledMops.clear();
3748   NumScheduledMops.resize(II);
3749 }
3750 
3751 bool SwingSchedulerDDGEdge::ignoreDependence(bool IgnoreAnti) const {
3752   if (Pred.isArtificial() || Dst->isBoundaryNode())
3753     return true;
3754   // Currently, dependence that is an anti-dependences but not a loop-carried is
3755   // also ignored. This behavior is preserved to prevent regression.
3756   // FIXME: Remove if this doesn't have significant impact on performance
3757   return IgnoreAnti && (Pred.getKind() == SDep::Kind::Anti || Distance != 0);
3758 }
3759 
3760 SwingSchedulerDDG::SwingSchedulerDDGEdges &
3761 SwingSchedulerDDG::getEdges(const SUnit *SU) {
3762   if (SU == EntrySU)
3763     return EntrySUEdges;
3764   if (SU == ExitSU)
3765     return ExitSUEdges;
3766   return EdgesVec[SU->NodeNum];
3767 }
3768 
3769 const SwingSchedulerDDG::SwingSchedulerDDGEdges &
3770 SwingSchedulerDDG::getEdges(const SUnit *SU) const {
3771   if (SU == EntrySU)
3772     return EntrySUEdges;
3773   if (SU == ExitSU)
3774     return ExitSUEdges;
3775   return EdgesVec[SU->NodeNum];
3776 }
3777 
3778 void SwingSchedulerDDG::addEdge(const SUnit *SU,
3779                                 const SwingSchedulerDDGEdge &Edge) {
3780   auto &Edges = getEdges(SU);
3781   if (Edge.getSrc() == SU)
3782     Edges.Succs.push_back(Edge);
3783   else
3784     Edges.Preds.push_back(Edge);
3785 }
3786 
3787 void SwingSchedulerDDG::initEdges(SUnit *SU) {
3788   for (const auto &PI : SU->Preds) {
3789     SwingSchedulerDDGEdge Edge(SU, PI, false);
3790     addEdge(SU, Edge);
3791   }
3792 
3793   for (const auto &SI : SU->Succs) {
3794     SwingSchedulerDDGEdge Edge(SU, SI, true);
3795     addEdge(SU, Edge);
3796   }
3797 }
3798 
3799 SwingSchedulerDDG::SwingSchedulerDDG(std::vector<SUnit> &SUnits, SUnit *EntrySU,
3800                                      SUnit *ExitSU)
3801     : EntrySU(EntrySU), ExitSU(ExitSU) {
3802   EdgesVec.resize(SUnits.size());
3803 
3804   initEdges(EntrySU);
3805   initEdges(ExitSU);
3806   for (auto &SU : SUnits)
3807     initEdges(&SU);
3808 }
3809 
3810 const SwingSchedulerDDG::EdgesType &
3811 SwingSchedulerDDG::getInEdges(const SUnit *SU) const {
3812   return getEdges(SU).Preds;
3813 }
3814 
3815 const SwingSchedulerDDG::EdgesType &
3816 SwingSchedulerDDG::getOutEdges(const SUnit *SU) const {
3817   return getEdges(SU).Succs;
3818 }
3819