1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/CodeGen/DFAPacketizer.h" 51 #include "llvm/CodeGen/LiveIntervals.h" 52 #include "llvm/CodeGen/MachineBasicBlock.h" 53 #include "llvm/CodeGen/MachineDominators.h" 54 #include "llvm/CodeGen/MachineFunction.h" 55 #include "llvm/CodeGen/MachineFunctionPass.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineLoopInfo.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/ModuloSchedule.h" 63 #include "llvm/CodeGen/Register.h" 64 #include "llvm/CodeGen/RegisterClassInfo.h" 65 #include "llvm/CodeGen/RegisterPressure.h" 66 #include "llvm/CodeGen/ScheduleDAG.h" 67 #include "llvm/CodeGen/ScheduleDAGMutation.h" 68 #include "llvm/CodeGen/TargetInstrInfo.h" 69 #include "llvm/CodeGen/TargetOpcodes.h" 70 #include "llvm/CodeGen/TargetPassConfig.h" 71 #include "llvm/CodeGen/TargetRegisterInfo.h" 72 #include "llvm/CodeGen/TargetSubtargetInfo.h" 73 #include "llvm/Config/llvm-config.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/LaneBitmask.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCInstrItineraries.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <climits> 87 #include <cstdint> 88 #include <deque> 89 #include <functional> 90 #include <iomanip> 91 #include <iterator> 92 #include <map> 93 #include <memory> 94 #include <sstream> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "pipeliner" 102 103 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 104 STATISTIC(NumPipelined, "Number of loops software pipelined"); 105 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 106 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 107 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 108 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 109 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 110 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 111 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 112 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 113 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 114 115 /// A command line option to turn software pipelining on or off. 116 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 117 cl::desc("Enable Software Pipelining")); 118 119 /// A command line option to enable SWP at -Os. 120 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 121 cl::desc("Enable SWP at Os."), cl::Hidden, 122 cl::init(false)); 123 124 /// A command line argument to limit minimum initial interval for pipelining. 125 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 126 cl::desc("Size limit for the MII."), 127 cl::Hidden, cl::init(27)); 128 129 /// A command line argument to force pipeliner to use specified initial 130 /// interval. 131 static cl::opt<int> SwpForceII("pipeliner-force-ii", 132 cl::desc("Force pipeliner to use specified II."), 133 cl::Hidden, cl::init(-1)); 134 135 /// A command line argument to limit the number of stages in the pipeline. 136 static cl::opt<int> 137 SwpMaxStages("pipeliner-max-stages", 138 cl::desc("Maximum stages allowed in the generated scheduled."), 139 cl::Hidden, cl::init(3)); 140 141 /// A command line option to disable the pruning of chain dependences due to 142 /// an unrelated Phi. 143 static cl::opt<bool> 144 SwpPruneDeps("pipeliner-prune-deps", 145 cl::desc("Prune dependences between unrelated Phi nodes."), 146 cl::Hidden, cl::init(true)); 147 148 /// A command line option to disable the pruning of loop carried order 149 /// dependences. 150 static cl::opt<bool> 151 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 152 cl::desc("Prune loop carried order dependences."), 153 cl::Hidden, cl::init(true)); 154 155 #ifndef NDEBUG 156 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 157 #endif 158 159 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 160 cl::ReallyHidden, 161 cl::desc("Ignore RecMII")); 162 163 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 164 cl::init(false)); 165 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 166 cl::init(false)); 167 168 static cl::opt<bool> EmitTestAnnotations( 169 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 170 cl::desc("Instead of emitting the pipelined code, annotate instructions " 171 "with the generated schedule for feeding into the " 172 "-modulo-schedule-test pass")); 173 174 static cl::opt<bool> ExperimentalCodeGen( 175 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 176 cl::desc( 177 "Use the experimental peeling code generator for software pipelining")); 178 179 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 180 cl::desc("Range to search for II"), 181 cl::Hidden, cl::init(10)); 182 183 static cl::opt<bool> 184 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 185 cl::desc("Limit register pressure of scheduled loop")); 186 187 static cl::opt<int> 188 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 189 cl::init(5), 190 cl::desc("Margin representing the unused percentage of " 191 "the register pressure limit")); 192 193 static cl::opt<bool> 194 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 195 cl::desc("Use the MVE code generator for software pipelining")); 196 197 namespace llvm { 198 199 // A command line option to enable the CopyToPhi DAG mutation. 200 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 201 cl::init(true), 202 cl::desc("Enable CopyToPhi DAG Mutation")); 203 204 /// A command line argument to force pipeliner to use specified issue 205 /// width. 206 cl::opt<int> SwpForceIssueWidth( 207 "pipeliner-force-issue-width", 208 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 209 cl::init(-1)); 210 211 /// A command line argument to set the window scheduling option. 212 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 213 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 214 cl::desc("Set how to use window scheduling algorithm."), 215 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 216 "Turn off window algorithm."), 217 clEnumValN(WindowSchedulingFlag::WS_On, "on", 218 "Use window algorithm after SMS algorithm fails."), 219 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 220 "Use window algorithm instead of SMS algorithm."))); 221 222 } // end namespace llvm 223 224 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 225 char MachinePipeliner::ID = 0; 226 #ifndef NDEBUG 227 int MachinePipeliner::NumTries = 0; 228 #endif 229 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 230 231 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 232 "Modulo Software Pipelining", false, false) 233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 235 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 236 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 237 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 238 "Modulo Software Pipelining", false, false) 239 240 /// The "main" function for implementing Swing Modulo Scheduling. 241 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 242 if (skipFunction(mf.getFunction())) 243 return false; 244 245 if (!EnableSWP) 246 return false; 247 248 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 249 !EnableSWPOptSize.getPosition()) 250 return false; 251 252 if (!mf.getSubtarget().enableMachinePipeliner()) 253 return false; 254 255 // Cannot pipeline loops without instruction itineraries if we are using 256 // DFA for the pipeliner. 257 if (mf.getSubtarget().useDFAforSMS() && 258 (!mf.getSubtarget().getInstrItineraryData() || 259 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 260 return false; 261 262 MF = &mf; 263 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 264 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 265 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 266 TII = MF->getSubtarget().getInstrInfo(); 267 RegClassInfo.runOnMachineFunction(*MF); 268 269 for (const auto &L : *MLI) 270 scheduleLoop(*L); 271 272 return false; 273 } 274 275 /// Attempt to perform the SMS algorithm on the specified loop. This function is 276 /// the main entry point for the algorithm. The function identifies candidate 277 /// loops, calculates the minimum initiation interval, and attempts to schedule 278 /// the loop. 279 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 280 bool Changed = false; 281 for (const auto &InnerLoop : L) 282 Changed |= scheduleLoop(*InnerLoop); 283 284 #ifndef NDEBUG 285 // Stop trying after reaching the limit (if any). 286 int Limit = SwpLoopLimit; 287 if (Limit >= 0) { 288 if (NumTries >= SwpLoopLimit) 289 return Changed; 290 NumTries++; 291 } 292 #endif 293 294 setPragmaPipelineOptions(L); 295 if (!canPipelineLoop(L)) { 296 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 297 ORE->emit([&]() { 298 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 299 L.getStartLoc(), L.getHeader()) 300 << "Failed to pipeline loop"; 301 }); 302 303 LI.LoopPipelinerInfo.reset(); 304 return Changed; 305 } 306 307 ++NumTrytoPipeline; 308 if (useSwingModuloScheduler()) 309 Changed = swingModuloScheduler(L); 310 311 if (useWindowScheduler(Changed)) 312 Changed = runWindowScheduler(L); 313 314 LI.LoopPipelinerInfo.reset(); 315 return Changed; 316 } 317 318 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 319 // Reset the pragma for the next loop in iteration. 320 disabledByPragma = false; 321 II_setByPragma = 0; 322 323 MachineBasicBlock *LBLK = L.getTopBlock(); 324 325 if (LBLK == nullptr) 326 return; 327 328 const BasicBlock *BBLK = LBLK->getBasicBlock(); 329 if (BBLK == nullptr) 330 return; 331 332 const Instruction *TI = BBLK->getTerminator(); 333 if (TI == nullptr) 334 return; 335 336 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 337 if (LoopID == nullptr) 338 return; 339 340 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 341 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 342 343 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 344 MDNode *MD = dyn_cast<MDNode>(MDO); 345 346 if (MD == nullptr) 347 continue; 348 349 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 350 351 if (S == nullptr) 352 continue; 353 354 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 355 assert(MD->getNumOperands() == 2 && 356 "Pipeline initiation interval hint metadata should have two operands."); 357 II_setByPragma = 358 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 359 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 360 } else if (S->getString() == "llvm.loop.pipeline.disable") { 361 disabledByPragma = true; 362 } 363 } 364 } 365 366 /// Return true if the loop can be software pipelined. The algorithm is 367 /// restricted to loops with a single basic block. Make sure that the 368 /// branch in the loop can be analyzed. 369 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 370 if (L.getNumBlocks() != 1) { 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "Not a single basic block: " 375 << ore::NV("NumBlocks", L.getNumBlocks()); 376 }); 377 return false; 378 } 379 380 if (disabledByPragma) { 381 ORE->emit([&]() { 382 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 383 L.getStartLoc(), L.getHeader()) 384 << "Disabled by Pragma."; 385 }); 386 return false; 387 } 388 389 // Check if the branch can't be understood because we can't do pipelining 390 // if that's the case. 391 LI.TBB = nullptr; 392 LI.FBB = nullptr; 393 LI.BrCond.clear(); 394 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 395 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 396 NumFailBranch++; 397 ORE->emit([&]() { 398 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 399 L.getStartLoc(), L.getHeader()) 400 << "The branch can't be understood"; 401 }); 402 return false; 403 } 404 405 LI.LoopInductionVar = nullptr; 406 LI.LoopCompare = nullptr; 407 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 408 if (!LI.LoopPipelinerInfo) { 409 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 410 NumFailLoop++; 411 ORE->emit([&]() { 412 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 413 L.getStartLoc(), L.getHeader()) 414 << "The loop structure is not supported"; 415 }); 416 return false; 417 } 418 419 if (!L.getLoopPreheader()) { 420 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 421 NumFailPreheader++; 422 ORE->emit([&]() { 423 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 424 L.getStartLoc(), L.getHeader()) 425 << "No loop preheader found"; 426 }); 427 return false; 428 } 429 430 // Remove any subregisters from inputs to phi nodes. 431 preprocessPhiNodes(*L.getHeader()); 432 return true; 433 } 434 435 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 436 MachineRegisterInfo &MRI = MF->getRegInfo(); 437 SlotIndexes &Slots = 438 *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 439 440 for (MachineInstr &PI : B.phis()) { 441 MachineOperand &DefOp = PI.getOperand(0); 442 assert(DefOp.getSubReg() == 0); 443 auto *RC = MRI.getRegClass(DefOp.getReg()); 444 445 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 446 MachineOperand &RegOp = PI.getOperand(i); 447 if (RegOp.getSubReg() == 0) 448 continue; 449 450 // If the operand uses a subregister, replace it with a new register 451 // without subregisters, and generate a copy to the new register. 452 Register NewReg = MRI.createVirtualRegister(RC); 453 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 454 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 455 const DebugLoc &DL = PredB.findDebugLoc(At); 456 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 457 .addReg(RegOp.getReg(), getRegState(RegOp), 458 RegOp.getSubReg()); 459 Slots.insertMachineInstrInMaps(*Copy); 460 RegOp.setReg(NewReg); 461 RegOp.setSubReg(0); 462 } 463 } 464 } 465 466 /// The SMS algorithm consists of the following main steps: 467 /// 1. Computation and analysis of the dependence graph. 468 /// 2. Ordering of the nodes (instructions). 469 /// 3. Attempt to Schedule the loop. 470 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 471 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 472 473 SwingSchedulerDAG SMS( 474 *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 475 II_setByPragma, LI.LoopPipelinerInfo.get()); 476 477 MachineBasicBlock *MBB = L.getHeader(); 478 // The kernel should not include any terminator instructions. These 479 // will be added back later. 480 SMS.startBlock(MBB); 481 482 // Compute the number of 'real' instructions in the basic block by 483 // ignoring terminators. 484 unsigned size = MBB->size(); 485 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 486 E = MBB->instr_end(); 487 I != E; ++I, --size) 488 ; 489 490 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 491 SMS.schedule(); 492 SMS.exitRegion(); 493 494 SMS.finishBlock(); 495 return SMS.hasNewSchedule(); 496 } 497 498 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 499 AU.addRequired<AAResultsWrapperPass>(); 500 AU.addPreserved<AAResultsWrapperPass>(); 501 AU.addRequired<MachineLoopInfoWrapperPass>(); 502 AU.addRequired<MachineDominatorTreeWrapperPass>(); 503 AU.addRequired<LiveIntervalsWrapperPass>(); 504 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 505 AU.addRequired<TargetPassConfig>(); 506 MachineFunctionPass::getAnalysisUsage(AU); 507 } 508 509 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 510 MachineSchedContext Context; 511 Context.MF = MF; 512 Context.MLI = MLI; 513 Context.MDT = MDT; 514 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 515 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 516 Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 517 Context.RegClassInfo->runOnMachineFunction(*MF); 518 WindowScheduler WS(&Context, L); 519 return WS.run(); 520 } 521 522 bool MachinePipeliner::useSwingModuloScheduler() { 523 // SwingModuloScheduler does not work when WindowScheduler is forced. 524 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 525 } 526 527 bool MachinePipeliner::useWindowScheduler(bool Changed) { 528 // WindowScheduler does not work for following cases: 529 // 1. when it is off. 530 // 2. when SwingModuloScheduler is successfully scheduled. 531 // 3. when pragma II is enabled. 532 if (II_setByPragma) { 533 LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 534 "llvm.loop.pipeline.initiationinterval is set.\n"); 535 return false; 536 } 537 538 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 539 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 540 } 541 542 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 543 if (SwpForceII > 0) 544 MII = SwpForceII; 545 else if (II_setByPragma > 0) 546 MII = II_setByPragma; 547 else 548 MII = std::max(ResMII, RecMII); 549 } 550 551 void SwingSchedulerDAG::setMAX_II() { 552 if (SwpForceII > 0) 553 MAX_II = SwpForceII; 554 else if (II_setByPragma > 0) 555 MAX_II = II_setByPragma; 556 else 557 MAX_II = MII + SwpIISearchRange; 558 } 559 560 /// We override the schedule function in ScheduleDAGInstrs to implement the 561 /// scheduling part of the Swing Modulo Scheduling algorithm. 562 void SwingSchedulerDAG::schedule() { 563 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 564 buildSchedGraph(AA); 565 addLoopCarriedDependences(AA); 566 updatePhiDependences(); 567 Topo.InitDAGTopologicalSorting(); 568 changeDependences(); 569 postProcessDAG(); 570 LLVM_DEBUG(dump()); 571 572 NodeSetType NodeSets; 573 findCircuits(NodeSets); 574 NodeSetType Circuits = NodeSets; 575 576 // Calculate the MII. 577 unsigned ResMII = calculateResMII(); 578 unsigned RecMII = calculateRecMII(NodeSets); 579 580 fuseRecs(NodeSets); 581 582 // This flag is used for testing and can cause correctness problems. 583 if (SwpIgnoreRecMII) 584 RecMII = 0; 585 586 setMII(ResMII, RecMII); 587 setMAX_II(); 588 589 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 590 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 591 592 // Can't schedule a loop without a valid MII. 593 if (MII == 0) { 594 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 595 NumFailZeroMII++; 596 Pass.ORE->emit([&]() { 597 return MachineOptimizationRemarkAnalysis( 598 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 599 << "Invalid Minimal Initiation Interval: 0"; 600 }); 601 return; 602 } 603 604 // Don't pipeline large loops. 605 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 606 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 607 << ", we don't pipeline large loops\n"); 608 NumFailLargeMaxMII++; 609 Pass.ORE->emit([&]() { 610 return MachineOptimizationRemarkAnalysis( 611 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 612 << "Minimal Initiation Interval too large: " 613 << ore::NV("MII", (int)MII) << " > " 614 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 615 << "Refer to -pipeliner-max-mii."; 616 }); 617 return; 618 } 619 620 computeNodeFunctions(NodeSets); 621 622 registerPressureFilter(NodeSets); 623 624 colocateNodeSets(NodeSets); 625 626 checkNodeSets(NodeSets); 627 628 LLVM_DEBUG({ 629 for (auto &I : NodeSets) { 630 dbgs() << " Rec NodeSet "; 631 I.dump(); 632 } 633 }); 634 635 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 636 637 groupRemainingNodes(NodeSets); 638 639 removeDuplicateNodes(NodeSets); 640 641 LLVM_DEBUG({ 642 for (auto &I : NodeSets) { 643 dbgs() << " NodeSet "; 644 I.dump(); 645 } 646 }); 647 648 computeNodeOrder(NodeSets); 649 650 // check for node order issues 651 checkValidNodeOrder(Circuits); 652 653 SMSchedule Schedule(Pass.MF, this); 654 Scheduled = schedulePipeline(Schedule); 655 656 if (!Scheduled){ 657 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 658 NumFailNoSchedule++; 659 Pass.ORE->emit([&]() { 660 return MachineOptimizationRemarkAnalysis( 661 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 662 << "Unable to find schedule"; 663 }); 664 return; 665 } 666 667 unsigned numStages = Schedule.getMaxStageCount(); 668 // No need to generate pipeline if there are no overlapped iterations. 669 if (numStages == 0) { 670 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 671 NumFailZeroStage++; 672 Pass.ORE->emit([&]() { 673 return MachineOptimizationRemarkAnalysis( 674 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 675 << "No need to pipeline - no overlapped iterations in schedule."; 676 }); 677 return; 678 } 679 // Check that the maximum stage count is less than user-defined limit. 680 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 681 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 682 << " : too many stages, abort\n"); 683 NumFailLargeMaxStage++; 684 Pass.ORE->emit([&]() { 685 return MachineOptimizationRemarkAnalysis( 686 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 687 << "Too many stages in schedule: " 688 << ore::NV("numStages", (int)numStages) << " > " 689 << ore::NV("SwpMaxStages", SwpMaxStages) 690 << ". Refer to -pipeliner-max-stages."; 691 }); 692 return; 693 } 694 695 Pass.ORE->emit([&]() { 696 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 697 Loop.getHeader()) 698 << "Pipelined succesfully!"; 699 }); 700 701 // Generate the schedule as a ModuloSchedule. 702 DenseMap<MachineInstr *, int> Cycles, Stages; 703 std::vector<MachineInstr *> OrderedInsts; 704 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 705 ++Cycle) { 706 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 707 OrderedInsts.push_back(SU->getInstr()); 708 Cycles[SU->getInstr()] = Cycle; 709 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 710 } 711 } 712 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 713 for (auto &KV : NewMIs) { 714 Cycles[KV.first] = Cycles[KV.second]; 715 Stages[KV.first] = Stages[KV.second]; 716 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 717 } 718 719 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 720 std::move(Stages)); 721 if (EmitTestAnnotations) { 722 assert(NewInstrChanges.empty() && 723 "Cannot serialize a schedule with InstrChanges!"); 724 ModuloScheduleTestAnnotater MSTI(MF, MS); 725 MSTI.annotate(); 726 return; 727 } 728 // The experimental code generator can't work if there are InstChanges. 729 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 730 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 731 MSE.expand(); 732 } else if (MVECodeGen && NewInstrChanges.empty() && 733 LoopPipelinerInfo->isMVEExpanderSupported() && 734 ModuloScheduleExpanderMVE::canApply(Loop)) { 735 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 736 MSE.expand(); 737 } else { 738 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 739 MSE.expand(); 740 MSE.cleanup(); 741 } 742 ++NumPipelined; 743 } 744 745 /// Clean up after the software pipeliner runs. 746 void SwingSchedulerDAG::finishBlock() { 747 for (auto &KV : NewMIs) 748 MF.deleteMachineInstr(KV.second); 749 NewMIs.clear(); 750 751 // Call the superclass. 752 ScheduleDAGInstrs::finishBlock(); 753 } 754 755 /// Return the register values for the operands of a Phi instruction. 756 /// This function assume the instruction is a Phi. 757 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 758 unsigned &InitVal, unsigned &LoopVal) { 759 assert(Phi.isPHI() && "Expecting a Phi."); 760 761 InitVal = 0; 762 LoopVal = 0; 763 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 764 if (Phi.getOperand(i + 1).getMBB() != Loop) 765 InitVal = Phi.getOperand(i).getReg(); 766 else 767 LoopVal = Phi.getOperand(i).getReg(); 768 769 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 770 } 771 772 /// Return the Phi register value that comes the loop block. 773 static unsigned getLoopPhiReg(const MachineInstr &Phi, 774 const MachineBasicBlock *LoopBB) { 775 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 776 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 777 return Phi.getOperand(i).getReg(); 778 return 0; 779 } 780 781 /// Return true if SUb can be reached from SUa following the chain edges. 782 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 783 SmallPtrSet<SUnit *, 8> Visited; 784 SmallVector<SUnit *, 8> Worklist; 785 Worklist.push_back(SUa); 786 while (!Worklist.empty()) { 787 const SUnit *SU = Worklist.pop_back_val(); 788 for (const auto &SI : SU->Succs) { 789 SUnit *SuccSU = SI.getSUnit(); 790 if (SI.getKind() == SDep::Order) { 791 if (Visited.count(SuccSU)) 792 continue; 793 if (SuccSU == SUb) 794 return true; 795 Worklist.push_back(SuccSU); 796 Visited.insert(SuccSU); 797 } 798 } 799 } 800 return false; 801 } 802 803 /// Return true if the instruction causes a chain between memory 804 /// references before and after it. 805 static bool isDependenceBarrier(MachineInstr &MI) { 806 return MI.isCall() || MI.mayRaiseFPException() || 807 MI.hasUnmodeledSideEffects() || 808 (MI.hasOrderedMemoryRef() && 809 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 810 } 811 812 /// Return the underlying objects for the memory references of an instruction. 813 /// This function calls the code in ValueTracking, but first checks that the 814 /// instruction has a memory operand. 815 static void getUnderlyingObjects(const MachineInstr *MI, 816 SmallVectorImpl<const Value *> &Objs) { 817 if (!MI->hasOneMemOperand()) 818 return; 819 MachineMemOperand *MM = *MI->memoperands_begin(); 820 if (!MM->getValue()) 821 return; 822 getUnderlyingObjects(MM->getValue(), Objs); 823 for (const Value *V : Objs) { 824 if (!isIdentifiedObject(V)) { 825 Objs.clear(); 826 return; 827 } 828 } 829 } 830 831 /// Add a chain edge between a load and store if the store can be an 832 /// alias of the load on a subsequent iteration, i.e., a loop carried 833 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 834 /// but that code doesn't create loop carried dependences. 835 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 836 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 837 Value *UnknownValue = 838 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 839 for (auto &SU : SUnits) { 840 MachineInstr &MI = *SU.getInstr(); 841 if (isDependenceBarrier(MI)) 842 PendingLoads.clear(); 843 else if (MI.mayLoad()) { 844 SmallVector<const Value *, 4> Objs; 845 ::getUnderlyingObjects(&MI, Objs); 846 if (Objs.empty()) 847 Objs.push_back(UnknownValue); 848 for (const auto *V : Objs) { 849 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 850 SUs.push_back(&SU); 851 } 852 } else if (MI.mayStore()) { 853 SmallVector<const Value *, 4> Objs; 854 ::getUnderlyingObjects(&MI, Objs); 855 if (Objs.empty()) 856 Objs.push_back(UnknownValue); 857 for (const auto *V : Objs) { 858 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 859 PendingLoads.find(V); 860 if (I == PendingLoads.end()) 861 continue; 862 for (auto *Load : I->second) { 863 if (isSuccOrder(Load, &SU)) 864 continue; 865 MachineInstr &LdMI = *Load->getInstr(); 866 // First, perform the cheaper check that compares the base register. 867 // If they are the same and the load offset is less than the store 868 // offset, then mark the dependence as loop carried potentially. 869 const MachineOperand *BaseOp1, *BaseOp2; 870 int64_t Offset1, Offset2; 871 bool Offset1IsScalable, Offset2IsScalable; 872 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 873 Offset1IsScalable, TRI) && 874 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 875 Offset2IsScalable, TRI)) { 876 if (BaseOp1->isIdenticalTo(*BaseOp2) && 877 Offset1IsScalable == Offset2IsScalable && 878 (int)Offset1 < (int)Offset2) { 879 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 880 "What happened to the chain edge?"); 881 SDep Dep(Load, SDep::Barrier); 882 Dep.setLatency(1); 883 SU.addPred(Dep); 884 continue; 885 } 886 } 887 // Second, the more expensive check that uses alias analysis on the 888 // base registers. If they alias, and the load offset is less than 889 // the store offset, the mark the dependence as loop carried. 890 if (!AA) { 891 SDep Dep(Load, SDep::Barrier); 892 Dep.setLatency(1); 893 SU.addPred(Dep); 894 continue; 895 } 896 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 897 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 898 if (!MMO1->getValue() || !MMO2->getValue()) { 899 SDep Dep(Load, SDep::Barrier); 900 Dep.setLatency(1); 901 SU.addPred(Dep); 902 continue; 903 } 904 if (MMO1->getValue() == MMO2->getValue() && 905 MMO1->getOffset() <= MMO2->getOffset()) { 906 SDep Dep(Load, SDep::Barrier); 907 Dep.setLatency(1); 908 SU.addPred(Dep); 909 continue; 910 } 911 if (!AA->isNoAlias( 912 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 913 MemoryLocation::getAfter(MMO2->getValue(), 914 MMO2->getAAInfo()))) { 915 SDep Dep(Load, SDep::Barrier); 916 Dep.setLatency(1); 917 SU.addPred(Dep); 918 } 919 } 920 } 921 } 922 } 923 } 924 925 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 926 /// processes dependences for PHIs. This function adds true dependences 927 /// from a PHI to a use, and a loop carried dependence from the use to the 928 /// PHI. The loop carried dependence is represented as an anti dependence 929 /// edge. This function also removes chain dependences between unrelated 930 /// PHIs. 931 void SwingSchedulerDAG::updatePhiDependences() { 932 SmallVector<SDep, 4> RemoveDeps; 933 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 934 935 // Iterate over each DAG node. 936 for (SUnit &I : SUnits) { 937 RemoveDeps.clear(); 938 // Set to true if the instruction has an operand defined by a Phi. 939 unsigned HasPhiUse = 0; 940 unsigned HasPhiDef = 0; 941 MachineInstr *MI = I.getInstr(); 942 // Iterate over each operand, and we process the definitions. 943 for (const MachineOperand &MO : MI->operands()) { 944 if (!MO.isReg()) 945 continue; 946 Register Reg = MO.getReg(); 947 if (MO.isDef()) { 948 // If the register is used by a Phi, then create an anti dependence. 949 for (MachineRegisterInfo::use_instr_iterator 950 UI = MRI.use_instr_begin(Reg), 951 UE = MRI.use_instr_end(); 952 UI != UE; ++UI) { 953 MachineInstr *UseMI = &*UI; 954 SUnit *SU = getSUnit(UseMI); 955 if (SU != nullptr && UseMI->isPHI()) { 956 if (!MI->isPHI()) { 957 SDep Dep(SU, SDep::Anti, Reg); 958 Dep.setLatency(1); 959 I.addPred(Dep); 960 } else { 961 HasPhiDef = Reg; 962 // Add a chain edge to a dependent Phi that isn't an existing 963 // predecessor. 964 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 965 I.addPred(SDep(SU, SDep::Barrier)); 966 } 967 } 968 } 969 } else if (MO.isUse()) { 970 // If the register is defined by a Phi, then create a true dependence. 971 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 972 if (DefMI == nullptr) 973 continue; 974 SUnit *SU = getSUnit(DefMI); 975 if (SU != nullptr && DefMI->isPHI()) { 976 if (!MI->isPHI()) { 977 SDep Dep(SU, SDep::Data, Reg); 978 Dep.setLatency(0); 979 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 980 &SchedModel); 981 I.addPred(Dep); 982 } else { 983 HasPhiUse = Reg; 984 // Add a chain edge to a dependent Phi that isn't an existing 985 // predecessor. 986 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 987 I.addPred(SDep(SU, SDep::Barrier)); 988 } 989 } 990 } 991 } 992 // Remove order dependences from an unrelated Phi. 993 if (!SwpPruneDeps) 994 continue; 995 for (auto &PI : I.Preds) { 996 MachineInstr *PMI = PI.getSUnit()->getInstr(); 997 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 998 if (I.getInstr()->isPHI()) { 999 if (PMI->getOperand(0).getReg() == HasPhiUse) 1000 continue; 1001 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1002 continue; 1003 } 1004 RemoveDeps.push_back(PI); 1005 } 1006 } 1007 for (const SDep &D : RemoveDeps) 1008 I.removePred(D); 1009 } 1010 } 1011 1012 /// Iterate over each DAG node and see if we can change any dependences 1013 /// in order to reduce the recurrence MII. 1014 void SwingSchedulerDAG::changeDependences() { 1015 // See if an instruction can use a value from the previous iteration. 1016 // If so, we update the base and offset of the instruction and change 1017 // the dependences. 1018 for (SUnit &I : SUnits) { 1019 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1020 int64_t NewOffset = 0; 1021 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1022 NewOffset)) 1023 continue; 1024 1025 // Get the MI and SUnit for the instruction that defines the original base. 1026 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1027 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1028 if (!DefMI) 1029 continue; 1030 SUnit *DefSU = getSUnit(DefMI); 1031 if (!DefSU) 1032 continue; 1033 // Get the MI and SUnit for the instruction that defins the new base. 1034 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1035 if (!LastMI) 1036 continue; 1037 SUnit *LastSU = getSUnit(LastMI); 1038 if (!LastSU) 1039 continue; 1040 1041 if (Topo.IsReachable(&I, LastSU)) 1042 continue; 1043 1044 // Remove the dependence. The value now depends on a prior iteration. 1045 SmallVector<SDep, 4> Deps; 1046 for (const SDep &P : I.Preds) 1047 if (P.getSUnit() == DefSU) 1048 Deps.push_back(P); 1049 for (const SDep &D : Deps) { 1050 Topo.RemovePred(&I, D.getSUnit()); 1051 I.removePred(D); 1052 } 1053 // Remove the chain dependence between the instructions. 1054 Deps.clear(); 1055 for (auto &P : LastSU->Preds) 1056 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1057 Deps.push_back(P); 1058 for (const SDep &D : Deps) { 1059 Topo.RemovePred(LastSU, D.getSUnit()); 1060 LastSU->removePred(D); 1061 } 1062 1063 // Add a dependence between the new instruction and the instruction 1064 // that defines the new base. 1065 SDep Dep(&I, SDep::Anti, NewBase); 1066 Topo.AddPred(LastSU, &I); 1067 LastSU->addPred(Dep); 1068 1069 // Remember the base and offset information so that we can update the 1070 // instruction during code generation. 1071 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1072 } 1073 } 1074 1075 /// Create an instruction stream that represents a single iteration and stage of 1076 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1077 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1078 /// function is an approximation of SMSchedule::finalizeSchedule with all 1079 /// non-const operations removed. 1080 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1081 SMSchedule &Schedule, 1082 std::vector<MachineInstr *> &OrderedInsts, 1083 DenseMap<MachineInstr *, unsigned> &Stages) { 1084 DenseMap<int, std::deque<SUnit *>> Instrs; 1085 1086 // Move all instructions to the first stage from the later stages. 1087 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1088 ++Cycle) { 1089 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1090 Stage <= LastStage; ++Stage) { 1091 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1092 Cycle + Stage * Schedule.getInitiationInterval()))) { 1093 Instrs[Cycle].push_front(SU); 1094 } 1095 } 1096 } 1097 1098 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1099 ++Cycle) { 1100 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1101 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1102 for (SUnit *SU : CycleInstrs) { 1103 MachineInstr *MI = SU->getInstr(); 1104 OrderedInsts.push_back(MI); 1105 Stages[MI] = Schedule.stageScheduled(SU); 1106 } 1107 } 1108 } 1109 1110 namespace { 1111 1112 // FuncUnitSorter - Comparison operator used to sort instructions by 1113 // the number of functional unit choices. 1114 struct FuncUnitSorter { 1115 const InstrItineraryData *InstrItins; 1116 const MCSubtargetInfo *STI; 1117 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1118 1119 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1120 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1121 1122 // Compute the number of functional unit alternatives needed 1123 // at each stage, and take the minimum value. We prioritize the 1124 // instructions by the least number of choices first. 1125 unsigned minFuncUnits(const MachineInstr *Inst, 1126 InstrStage::FuncUnits &F) const { 1127 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1128 unsigned min = UINT_MAX; 1129 if (InstrItins && !InstrItins->isEmpty()) { 1130 for (const InstrStage &IS : 1131 make_range(InstrItins->beginStage(SchedClass), 1132 InstrItins->endStage(SchedClass))) { 1133 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1134 unsigned numAlternatives = llvm::popcount(funcUnits); 1135 if (numAlternatives < min) { 1136 min = numAlternatives; 1137 F = funcUnits; 1138 } 1139 } 1140 return min; 1141 } 1142 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1143 const MCSchedClassDesc *SCDesc = 1144 STI->getSchedModel().getSchedClassDesc(SchedClass); 1145 if (!SCDesc->isValid()) 1146 // No valid Schedule Class Desc for schedClass, should be 1147 // Pseudo/PostRAPseudo 1148 return min; 1149 1150 for (const MCWriteProcResEntry &PRE : 1151 make_range(STI->getWriteProcResBegin(SCDesc), 1152 STI->getWriteProcResEnd(SCDesc))) { 1153 if (!PRE.ReleaseAtCycle) 1154 continue; 1155 const MCProcResourceDesc *ProcResource = 1156 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1157 unsigned NumUnits = ProcResource->NumUnits; 1158 if (NumUnits < min) { 1159 min = NumUnits; 1160 F = PRE.ProcResourceIdx; 1161 } 1162 } 1163 return min; 1164 } 1165 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1166 } 1167 1168 // Compute the critical resources needed by the instruction. This 1169 // function records the functional units needed by instructions that 1170 // must use only one functional unit. We use this as a tie breaker 1171 // for computing the resource MII. The instrutions that require 1172 // the same, highly used, functional unit have high priority. 1173 void calcCriticalResources(MachineInstr &MI) { 1174 unsigned SchedClass = MI.getDesc().getSchedClass(); 1175 if (InstrItins && !InstrItins->isEmpty()) { 1176 for (const InstrStage &IS : 1177 make_range(InstrItins->beginStage(SchedClass), 1178 InstrItins->endStage(SchedClass))) { 1179 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1180 if (llvm::popcount(FuncUnits) == 1) 1181 Resources[FuncUnits]++; 1182 } 1183 return; 1184 } 1185 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1186 const MCSchedClassDesc *SCDesc = 1187 STI->getSchedModel().getSchedClassDesc(SchedClass); 1188 if (!SCDesc->isValid()) 1189 // No valid Schedule Class Desc for schedClass, should be 1190 // Pseudo/PostRAPseudo 1191 return; 1192 1193 for (const MCWriteProcResEntry &PRE : 1194 make_range(STI->getWriteProcResBegin(SCDesc), 1195 STI->getWriteProcResEnd(SCDesc))) { 1196 if (!PRE.ReleaseAtCycle) 1197 continue; 1198 Resources[PRE.ProcResourceIdx]++; 1199 } 1200 return; 1201 } 1202 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1203 } 1204 1205 /// Return true if IS1 has less priority than IS2. 1206 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1207 InstrStage::FuncUnits F1 = 0, F2 = 0; 1208 unsigned MFUs1 = minFuncUnits(IS1, F1); 1209 unsigned MFUs2 = minFuncUnits(IS2, F2); 1210 if (MFUs1 == MFUs2) 1211 return Resources.lookup(F1) < Resources.lookup(F2); 1212 return MFUs1 > MFUs2; 1213 } 1214 }; 1215 1216 /// Calculate the maximum register pressure of the scheduled instructions stream 1217 class HighRegisterPressureDetector { 1218 MachineBasicBlock *OrigMBB; 1219 const MachineFunction &MF; 1220 const MachineRegisterInfo &MRI; 1221 const TargetRegisterInfo *TRI; 1222 1223 const unsigned PSetNum; 1224 1225 // Indexed by PSet ID 1226 // InitSetPressure takes into account the register pressure of live-in 1227 // registers. It's not depend on how the loop is scheduled, so it's enough to 1228 // calculate them once at the beginning. 1229 std::vector<unsigned> InitSetPressure; 1230 1231 // Indexed by PSet ID 1232 // Upper limit for each register pressure set 1233 std::vector<unsigned> PressureSetLimit; 1234 1235 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1236 1237 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1238 1239 public: 1240 using OrderedInstsTy = std::vector<MachineInstr *>; 1241 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1242 1243 private: 1244 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1245 if (Pressures.size() == 0) { 1246 dbgs() << "[]"; 1247 } else { 1248 char Prefix = '['; 1249 for (unsigned P : Pressures) { 1250 dbgs() << Prefix << P; 1251 Prefix = ' '; 1252 } 1253 dbgs() << ']'; 1254 } 1255 } 1256 1257 void dumpPSet(Register Reg) const { 1258 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1259 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1260 ++PSetIter) { 1261 dbgs() << *PSetIter << ' '; 1262 } 1263 dbgs() << '\n'; 1264 } 1265 1266 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1267 Register Reg) const { 1268 auto PSetIter = MRI.getPressureSets(Reg); 1269 unsigned Weight = PSetIter.getWeight(); 1270 for (; PSetIter.isValid(); ++PSetIter) 1271 Pressure[*PSetIter] += Weight; 1272 } 1273 1274 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1275 Register Reg) const { 1276 auto PSetIter = MRI.getPressureSets(Reg); 1277 unsigned Weight = PSetIter.getWeight(); 1278 for (; PSetIter.isValid(); ++PSetIter) { 1279 auto &P = Pressure[*PSetIter]; 1280 assert(P >= Weight && 1281 "register pressure must be greater than or equal weight"); 1282 P -= Weight; 1283 } 1284 } 1285 1286 // Return true if Reg is reserved one, for example, stack pointer 1287 bool isReservedRegister(Register Reg) const { 1288 return Reg.isPhysical() && MRI.isReserved(Reg.asMCReg()); 1289 } 1290 1291 bool isDefinedInThisLoop(Register Reg) const { 1292 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1293 } 1294 1295 // Search for live-in variables. They are factored into the register pressure 1296 // from the begining. Live-in variables used by every iteration should be 1297 // considered as alive throughout the loop. For example, the variable `c` in 1298 // following code. \code 1299 // int c = ...; 1300 // for (int i = 0; i < n; i++) 1301 // a[i] += b[i] + c; 1302 // \endcode 1303 void computeLiveIn() { 1304 DenseSet<Register> Used; 1305 for (auto &MI : *OrigMBB) { 1306 if (MI.isDebugInstr()) 1307 continue; 1308 for (auto &Use : ROMap[&MI].Uses) { 1309 auto Reg = Use.RegUnit; 1310 // Ignore the variable that appears only on one side of phi instruction 1311 // because it's used only at the first iteration. 1312 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1313 continue; 1314 if (isReservedRegister(Reg)) 1315 continue; 1316 if (isDefinedInThisLoop(Reg)) 1317 continue; 1318 Used.insert(Reg); 1319 } 1320 } 1321 1322 for (auto LiveIn : Used) 1323 increaseRegisterPressure(InitSetPressure, LiveIn); 1324 } 1325 1326 // Calculate the upper limit of each pressure set 1327 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1328 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1329 PressureSetLimit[PSet] = RCI.getRegPressureSetLimit(PSet); 1330 } 1331 1332 // There are two patterns of last-use. 1333 // - by an instruction of the current iteration 1334 // - by a phi instruction of the next iteration (loop carried value) 1335 // 1336 // Furthermore, following two groups of instructions are executed 1337 // simultaneously 1338 // - next iteration's phi instructions in i-th stage 1339 // - current iteration's instructions in i+1-th stage 1340 // 1341 // This function calculates the last-use of each register while taking into 1342 // account the above two patterns. 1343 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1344 Instr2StageTy &Stages) const { 1345 // We treat virtual registers that are defined and used in this loop. 1346 // Following virtual register will be ignored 1347 // - live-in one 1348 // - defined but not used in the loop (potentially live-out) 1349 DenseSet<Register> TargetRegs; 1350 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1351 if (isDefinedInThisLoop(Reg)) 1352 TargetRegs.insert(Reg); 1353 }; 1354 for (MachineInstr *MI : OrderedInsts) { 1355 if (MI->isPHI()) { 1356 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1357 UpdateTargetRegs(Reg); 1358 } else { 1359 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1360 UpdateTargetRegs(Use.RegUnit); 1361 } 1362 } 1363 1364 const auto InstrScore = [&Stages](MachineInstr *MI) { 1365 return Stages[MI] + MI->isPHI(); 1366 }; 1367 1368 DenseMap<Register, MachineInstr *> LastUseMI; 1369 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1370 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1371 auto Reg = Use.RegUnit; 1372 if (!TargetRegs.contains(Reg)) 1373 continue; 1374 auto [Ite, Inserted] = LastUseMI.try_emplace(Reg, MI); 1375 if (!Inserted) { 1376 MachineInstr *Orig = Ite->second; 1377 MachineInstr *New = MI; 1378 if (InstrScore(Orig) < InstrScore(New)) 1379 Ite->second = New; 1380 } 1381 } 1382 } 1383 1384 Instr2LastUsesTy LastUses; 1385 for (auto &Entry : LastUseMI) 1386 LastUses[Entry.second].insert(Entry.first); 1387 return LastUses; 1388 } 1389 1390 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1391 // iterations and check the register pressure at the point where all stages 1392 // overlapping. 1393 // 1394 // An example of unrolled loop where #Stage is 4.. 1395 // Iter i+0 i+1 i+2 i+3 1396 // ------------------------ 1397 // Stage 0 1398 // Stage 1 0 1399 // Stage 2 1 0 1400 // Stage 3 2 1 0 <- All stages overlap 1401 // 1402 std::vector<unsigned> 1403 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1404 Instr2StageTy &Stages, 1405 const unsigned StageCount) const { 1406 using RegSetTy = SmallDenseSet<Register, 16>; 1407 1408 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1409 // manage the liveness of the registers independently by iterations. 1410 SmallVector<RegSetTy> LiveRegSets(StageCount); 1411 1412 auto CurSetPressure = InitSetPressure; 1413 auto MaxSetPressure = InitSetPressure; 1414 auto LastUses = computeLastUses(OrderedInsts, Stages); 1415 1416 LLVM_DEBUG({ 1417 dbgs() << "Ordered instructions:\n"; 1418 for (MachineInstr *MI : OrderedInsts) { 1419 dbgs() << "Stage " << Stages[MI] << ": "; 1420 MI->dump(); 1421 } 1422 }); 1423 1424 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1425 Register Reg) { 1426 if (!Reg.isValid() || isReservedRegister(Reg)) 1427 return; 1428 1429 bool Inserted = RegSet.insert(Reg).second; 1430 if (!Inserted) 1431 return; 1432 1433 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1434 increaseRegisterPressure(CurSetPressure, Reg); 1435 LLVM_DEBUG(dumpPSet(Reg)); 1436 }; 1437 1438 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1439 Register Reg) { 1440 if (!Reg.isValid() || isReservedRegister(Reg)) 1441 return; 1442 1443 // live-in register 1444 if (!RegSet.contains(Reg)) 1445 return; 1446 1447 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1448 RegSet.erase(Reg); 1449 decreaseRegisterPressure(CurSetPressure, Reg); 1450 LLVM_DEBUG(dumpPSet(Reg)); 1451 }; 1452 1453 for (unsigned I = 0; I < StageCount; I++) { 1454 for (MachineInstr *MI : OrderedInsts) { 1455 const auto Stage = Stages[MI]; 1456 if (I < Stage) 1457 continue; 1458 1459 const unsigned Iter = I - Stage; 1460 1461 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1462 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1463 1464 for (auto LastUse : LastUses[MI]) { 1465 if (MI->isPHI()) { 1466 if (Iter != 0) 1467 EraseReg(LiveRegSets[Iter - 1], LastUse); 1468 } else { 1469 EraseReg(LiveRegSets[Iter], LastUse); 1470 } 1471 } 1472 1473 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1474 MaxSetPressure[PSet] = 1475 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1476 1477 LLVM_DEBUG({ 1478 dbgs() << "CurSetPressure="; 1479 dumpRegisterPressures(CurSetPressure); 1480 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1481 MI->dump(); 1482 }); 1483 } 1484 } 1485 1486 return MaxSetPressure; 1487 } 1488 1489 public: 1490 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1491 const MachineFunction &MF) 1492 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1493 TRI(MF.getSubtarget().getRegisterInfo()), 1494 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1495 PressureSetLimit(PSetNum, 0) {} 1496 1497 // Used to calculate register pressure, which is independent of loop 1498 // scheduling. 1499 void init(const RegisterClassInfo &RCI) { 1500 for (MachineInstr &MI : *OrigMBB) { 1501 if (MI.isDebugInstr()) 1502 continue; 1503 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1504 } 1505 1506 computeLiveIn(); 1507 computePressureSetLimit(RCI); 1508 } 1509 1510 // Calculate the maximum register pressures of the loop and check if they 1511 // exceed the limit 1512 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1513 const unsigned MaxStage) const { 1514 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1515 "the percentage of the margin must be between 0 to 100"); 1516 1517 OrderedInstsTy OrderedInsts; 1518 Instr2StageTy Stages; 1519 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1520 const auto MaxSetPressure = 1521 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1522 1523 LLVM_DEBUG({ 1524 dbgs() << "Dump MaxSetPressure:\n"; 1525 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1526 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1527 } 1528 dbgs() << '\n'; 1529 }); 1530 1531 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1532 unsigned Limit = PressureSetLimit[PSet]; 1533 unsigned Margin = Limit * RegPressureMargin / 100; 1534 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1535 << " Margin=" << Margin << "\n"); 1536 if (Limit < MaxSetPressure[PSet] + Margin) { 1537 LLVM_DEBUG( 1538 dbgs() 1539 << "Rejected the schedule because of too high register pressure\n"); 1540 return true; 1541 } 1542 } 1543 return false; 1544 } 1545 }; 1546 1547 } // end anonymous namespace 1548 1549 /// Calculate the resource constrained minimum initiation interval for the 1550 /// specified loop. We use the DFA to model the resources needed for 1551 /// each instruction, and we ignore dependences. A different DFA is created 1552 /// for each cycle that is required. When adding a new instruction, we attempt 1553 /// to add it to each existing DFA, until a legal space is found. If the 1554 /// instruction cannot be reserved in an existing DFA, we create a new one. 1555 unsigned SwingSchedulerDAG::calculateResMII() { 1556 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1557 ResourceManager RM(&MF.getSubtarget(), this); 1558 return RM.calculateResMII(); 1559 } 1560 1561 /// Calculate the recurrence-constrainted minimum initiation interval. 1562 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1563 /// for each circuit. The II needs to satisfy the inequality 1564 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1565 /// II that satisfies the inequality, and the RecMII is the maximum 1566 /// of those values. 1567 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1568 unsigned RecMII = 0; 1569 1570 for (NodeSet &Nodes : NodeSets) { 1571 if (Nodes.empty()) 1572 continue; 1573 1574 unsigned Delay = Nodes.getLatency(); 1575 unsigned Distance = 1; 1576 1577 // ii = ceil(delay / distance) 1578 unsigned CurMII = (Delay + Distance - 1) / Distance; 1579 Nodes.setRecMII(CurMII); 1580 if (CurMII > RecMII) 1581 RecMII = CurMII; 1582 } 1583 1584 return RecMII; 1585 } 1586 1587 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1588 /// but we do this to find the circuits, and then change them back. 1589 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1590 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1591 for (SUnit &SU : SUnits) { 1592 for (SDep &Pred : SU.Preds) 1593 if (Pred.getKind() == SDep::Anti) 1594 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1595 } 1596 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1597 // Remove this anti dependency and add one in the reverse direction. 1598 SUnit *SU = P.first; 1599 SDep &D = P.second; 1600 SUnit *TargetSU = D.getSUnit(); 1601 unsigned Reg = D.getReg(); 1602 unsigned Lat = D.getLatency(); 1603 SU->removePred(D); 1604 SDep Dep(SU, SDep::Anti, Reg); 1605 Dep.setLatency(Lat); 1606 TargetSU->addPred(Dep); 1607 } 1608 } 1609 1610 /// Create the adjacency structure of the nodes in the graph. 1611 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1612 SwingSchedulerDAG *DAG) { 1613 BitVector Added(SUnits.size()); 1614 DenseMap<int, int> OutputDeps; 1615 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1616 Added.reset(); 1617 // Add any successor to the adjacency matrix and exclude duplicates. 1618 for (auto &SI : SUnits[i].Succs) { 1619 // Only create a back-edge on the first and last nodes of a dependence 1620 // chain. This records any chains and adds them later. 1621 if (SI.getKind() == SDep::Output) { 1622 int N = SI.getSUnit()->NodeNum; 1623 int BackEdge = i; 1624 auto Dep = OutputDeps.find(BackEdge); 1625 if (Dep != OutputDeps.end()) { 1626 BackEdge = Dep->second; 1627 OutputDeps.erase(Dep); 1628 } 1629 OutputDeps[N] = BackEdge; 1630 } 1631 // Do not process a boundary node, an artificial node. 1632 // A back-edge is processed only if it goes to a Phi. 1633 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1634 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1635 continue; 1636 int N = SI.getSUnit()->NodeNum; 1637 if (!Added.test(N)) { 1638 AdjK[i].push_back(N); 1639 Added.set(N); 1640 } 1641 } 1642 // A chain edge between a store and a load is treated as a back-edge in the 1643 // adjacency matrix. 1644 for (auto &PI : SUnits[i].Preds) { 1645 if (!SUnits[i].getInstr()->mayStore() || 1646 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1647 continue; 1648 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1649 int N = PI.getSUnit()->NodeNum; 1650 if (!Added.test(N)) { 1651 AdjK[i].push_back(N); 1652 Added.set(N); 1653 } 1654 } 1655 } 1656 } 1657 // Add back-edges in the adjacency matrix for the output dependences. 1658 for (auto &OD : OutputDeps) 1659 if (!Added.test(OD.second)) { 1660 AdjK[OD.first].push_back(OD.second); 1661 Added.set(OD.second); 1662 } 1663 } 1664 1665 /// Identify an elementary circuit in the dependence graph starting at the 1666 /// specified node. 1667 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1668 const SwingSchedulerDAG *DAG, 1669 bool HasBackedge) { 1670 SUnit *SV = &SUnits[V]; 1671 bool F = false; 1672 Stack.insert(SV); 1673 Blocked.set(V); 1674 1675 for (auto W : AdjK[V]) { 1676 if (NumPaths > MaxPaths) 1677 break; 1678 if (W < S) 1679 continue; 1680 if (W == S) { 1681 if (!HasBackedge) 1682 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end(), DAG)); 1683 F = true; 1684 ++NumPaths; 1685 break; 1686 } 1687 if (!Blocked.test(W)) { 1688 if (circuit(W, S, NodeSets, DAG, 1689 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1690 F = true; 1691 } 1692 } 1693 1694 if (F) 1695 unblock(V); 1696 else { 1697 for (auto W : AdjK[V]) { 1698 if (W < S) 1699 continue; 1700 B[W].insert(SV); 1701 } 1702 } 1703 Stack.pop_back(); 1704 return F; 1705 } 1706 1707 /// Unblock a node in the circuit finding algorithm. 1708 void SwingSchedulerDAG::Circuits::unblock(int U) { 1709 Blocked.reset(U); 1710 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1711 while (!BU.empty()) { 1712 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1713 assert(SI != BU.end() && "Invalid B set."); 1714 SUnit *W = *SI; 1715 BU.erase(W); 1716 if (Blocked.test(W->NodeNum)) 1717 unblock(W->NodeNum); 1718 } 1719 } 1720 1721 /// Identify all the elementary circuits in the dependence graph using 1722 /// Johnson's circuit algorithm. 1723 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1724 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1725 // but we do this to find the circuits, and then change them back. 1726 swapAntiDependences(SUnits); 1727 1728 Circuits Cir(SUnits, Topo); 1729 // Create the adjacency structure. 1730 Cir.createAdjacencyStructure(this); 1731 for (int I = 0, E = SUnits.size(); I != E; ++I) { 1732 Cir.reset(); 1733 Cir.circuit(I, I, NodeSets, this); 1734 } 1735 1736 // Change the dependences back so that we've created a DAG again. 1737 swapAntiDependences(SUnits); 1738 } 1739 1740 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1741 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1742 // additional copies that are needed across iterations. An artificial dependence 1743 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1744 1745 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1746 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1747 // PHI-------True-Dep------> USEOfPhi 1748 1749 // The mutation creates 1750 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1751 1752 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1753 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1754 // late to avoid additional copies across iterations. The possible scheduling 1755 // order would be 1756 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1757 1758 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1759 for (SUnit &SU : DAG->SUnits) { 1760 // Find the COPY/REG_SEQUENCE instruction. 1761 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1762 continue; 1763 1764 // Record the loop carried PHIs. 1765 SmallVector<SUnit *, 4> PHISUs; 1766 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1767 SmallVector<SUnit *, 4> SrcSUs; 1768 1769 for (auto &Dep : SU.Preds) { 1770 SUnit *TmpSU = Dep.getSUnit(); 1771 MachineInstr *TmpMI = TmpSU->getInstr(); 1772 SDep::Kind DepKind = Dep.getKind(); 1773 // Save the loop carried PHI. 1774 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1775 PHISUs.push_back(TmpSU); 1776 // Save the source of COPY/REG_SEQUENCE. 1777 // If the source has no pre-decessors, we will end up creating cycles. 1778 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1779 SrcSUs.push_back(TmpSU); 1780 } 1781 1782 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1783 continue; 1784 1785 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1786 // SUnit to the container. 1787 SmallVector<SUnit *, 8> UseSUs; 1788 // Do not use iterator based loop here as we are updating the container. 1789 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1790 for (auto &Dep : PHISUs[Index]->Succs) { 1791 if (Dep.getKind() != SDep::Data) 1792 continue; 1793 1794 SUnit *TmpSU = Dep.getSUnit(); 1795 MachineInstr *TmpMI = TmpSU->getInstr(); 1796 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1797 PHISUs.push_back(TmpSU); 1798 continue; 1799 } 1800 UseSUs.push_back(TmpSU); 1801 } 1802 } 1803 1804 if (UseSUs.size() == 0) 1805 continue; 1806 1807 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1808 // Add the artificial dependencies if it does not form a cycle. 1809 for (auto *I : UseSUs) { 1810 for (auto *Src : SrcSUs) { 1811 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1812 Src->addPred(SDep(I, SDep::Artificial)); 1813 SDAG->Topo.AddPred(Src, I); 1814 } 1815 } 1816 } 1817 } 1818 } 1819 1820 /// Return true for DAG nodes that we ignore when computing the cost functions. 1821 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1822 /// in the calculation of the ASAP, ALAP, etc functions. 1823 static bool ignoreDependence(const SDep &D, bool isPred) { 1824 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1825 return true; 1826 return D.getKind() == SDep::Anti && isPred; 1827 } 1828 1829 /// Compute several functions need to order the nodes for scheduling. 1830 /// ASAP - Earliest time to schedule a node. 1831 /// ALAP - Latest time to schedule a node. 1832 /// MOV - Mobility function, difference between ALAP and ASAP. 1833 /// D - Depth of each node. 1834 /// H - Height of each node. 1835 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1836 ScheduleInfo.resize(SUnits.size()); 1837 1838 LLVM_DEBUG({ 1839 for (int I : Topo) { 1840 const SUnit &SU = SUnits[I]; 1841 dumpNode(SU); 1842 } 1843 }); 1844 1845 int maxASAP = 0; 1846 // Compute ASAP and ZeroLatencyDepth. 1847 for (int I : Topo) { 1848 int asap = 0; 1849 int zeroLatencyDepth = 0; 1850 SUnit *SU = &SUnits[I]; 1851 for (const SDep &P : SU->Preds) { 1852 SUnit *pred = P.getSUnit(); 1853 if (P.getLatency() == 0) 1854 zeroLatencyDepth = 1855 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1856 if (ignoreDependence(P, true)) 1857 continue; 1858 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1859 getDistance(pred, SU, P) * MII)); 1860 } 1861 maxASAP = std::max(maxASAP, asap); 1862 ScheduleInfo[I].ASAP = asap; 1863 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1864 } 1865 1866 // Compute ALAP, ZeroLatencyHeight, and MOV. 1867 for (int I : llvm::reverse(Topo)) { 1868 int alap = maxASAP; 1869 int zeroLatencyHeight = 0; 1870 SUnit *SU = &SUnits[I]; 1871 for (const SDep &S : SU->Succs) { 1872 SUnit *succ = S.getSUnit(); 1873 if (succ->isBoundaryNode()) 1874 continue; 1875 if (S.getLatency() == 0) 1876 zeroLatencyHeight = 1877 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1878 if (ignoreDependence(S, true)) 1879 continue; 1880 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1881 getDistance(SU, succ, S) * MII)); 1882 } 1883 1884 ScheduleInfo[I].ALAP = alap; 1885 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1886 } 1887 1888 // After computing the node functions, compute the summary for each node set. 1889 for (NodeSet &I : NodeSets) 1890 I.computeNodeSetInfo(this); 1891 1892 LLVM_DEBUG({ 1893 for (unsigned i = 0; i < SUnits.size(); i++) { 1894 dbgs() << "\tNode " << i << ":\n"; 1895 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1896 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1897 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1898 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1899 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1900 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1901 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1902 } 1903 }); 1904 } 1905 1906 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1907 /// as the predecessors of the elements of NodeOrder that are not also in 1908 /// NodeOrder. 1909 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1910 SmallSetVector<SUnit *, 8> &Preds, 1911 const NodeSet *S = nullptr) { 1912 Preds.clear(); 1913 for (const SUnit *SU : NodeOrder) { 1914 for (const SDep &Pred : SU->Preds) { 1915 if (S && S->count(Pred.getSUnit()) == 0) 1916 continue; 1917 if (ignoreDependence(Pred, true)) 1918 continue; 1919 if (NodeOrder.count(Pred.getSUnit()) == 0) 1920 Preds.insert(Pred.getSUnit()); 1921 } 1922 // Back-edges are predecessors with an anti-dependence. 1923 for (const SDep &Succ : SU->Succs) { 1924 if (Succ.getKind() != SDep::Anti) 1925 continue; 1926 if (S && S->count(Succ.getSUnit()) == 0) 1927 continue; 1928 if (NodeOrder.count(Succ.getSUnit()) == 0) 1929 Preds.insert(Succ.getSUnit()); 1930 } 1931 } 1932 return !Preds.empty(); 1933 } 1934 1935 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1936 /// as the successors of the elements of NodeOrder that are not also in 1937 /// NodeOrder. 1938 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1939 SmallSetVector<SUnit *, 8> &Succs, 1940 const NodeSet *S = nullptr) { 1941 Succs.clear(); 1942 for (const SUnit *SU : NodeOrder) { 1943 for (const SDep &Succ : SU->Succs) { 1944 if (S && S->count(Succ.getSUnit()) == 0) 1945 continue; 1946 if (ignoreDependence(Succ, false)) 1947 continue; 1948 if (NodeOrder.count(Succ.getSUnit()) == 0) 1949 Succs.insert(Succ.getSUnit()); 1950 } 1951 for (const SDep &Pred : SU->Preds) { 1952 if (Pred.getKind() != SDep::Anti) 1953 continue; 1954 if (S && S->count(Pred.getSUnit()) == 0) 1955 continue; 1956 if (NodeOrder.count(Pred.getSUnit()) == 0) 1957 Succs.insert(Pred.getSUnit()); 1958 } 1959 } 1960 return !Succs.empty(); 1961 } 1962 1963 /// Return true if there is a path from the specified node to any of the nodes 1964 /// in DestNodes. Keep track and return the nodes in any path. 1965 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1966 SetVector<SUnit *> &DestNodes, 1967 SetVector<SUnit *> &Exclude, 1968 SmallPtrSet<SUnit *, 8> &Visited) { 1969 if (Cur->isBoundaryNode()) 1970 return false; 1971 if (Exclude.contains(Cur)) 1972 return false; 1973 if (DestNodes.contains(Cur)) 1974 return true; 1975 if (!Visited.insert(Cur).second) 1976 return Path.contains(Cur); 1977 bool FoundPath = false; 1978 for (auto &SI : Cur->Succs) 1979 if (!ignoreDependence(SI, false)) 1980 FoundPath |= 1981 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1982 for (auto &PI : Cur->Preds) 1983 if (PI.getKind() == SDep::Anti) 1984 FoundPath |= 1985 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1986 if (FoundPath) 1987 Path.insert(Cur); 1988 return FoundPath; 1989 } 1990 1991 /// Compute the live-out registers for the instructions in a node-set. 1992 /// The live-out registers are those that are defined in the node-set, 1993 /// but not used. Except for use operands of Phis. 1994 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1995 NodeSet &NS) { 1996 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1997 MachineRegisterInfo &MRI = MF.getRegInfo(); 1998 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1999 SmallSet<unsigned, 4> Uses; 2000 for (SUnit *SU : NS) { 2001 const MachineInstr *MI = SU->getInstr(); 2002 if (MI->isPHI()) 2003 continue; 2004 for (const MachineOperand &MO : MI->all_uses()) { 2005 Register Reg = MO.getReg(); 2006 if (Reg.isVirtual()) 2007 Uses.insert(Reg); 2008 else if (MRI.isAllocatable(Reg)) 2009 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2010 Uses.insert(Unit); 2011 } 2012 } 2013 for (SUnit *SU : NS) 2014 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2015 if (!MO.isDead()) { 2016 Register Reg = MO.getReg(); 2017 if (Reg.isVirtual()) { 2018 if (!Uses.count(Reg)) 2019 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2020 LaneBitmask::getNone())); 2021 } else if (MRI.isAllocatable(Reg)) { 2022 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2023 if (!Uses.count(Unit)) 2024 LiveOutRegs.push_back( 2025 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2026 } 2027 } 2028 RPTracker.addLiveRegs(LiveOutRegs); 2029 } 2030 2031 /// A heuristic to filter nodes in recurrent node-sets if the register 2032 /// pressure of a set is too high. 2033 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2034 for (auto &NS : NodeSets) { 2035 // Skip small node-sets since they won't cause register pressure problems. 2036 if (NS.size() <= 2) 2037 continue; 2038 IntervalPressure RecRegPressure; 2039 RegPressureTracker RecRPTracker(RecRegPressure); 2040 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2041 computeLiveOuts(MF, RecRPTracker, NS); 2042 RecRPTracker.closeBottom(); 2043 2044 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2045 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2046 return A->NodeNum > B->NodeNum; 2047 }); 2048 2049 for (auto &SU : SUnits) { 2050 // Since we're computing the register pressure for a subset of the 2051 // instructions in a block, we need to set the tracker for each 2052 // instruction in the node-set. The tracker is set to the instruction 2053 // just after the one we're interested in. 2054 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2055 RecRPTracker.setPos(std::next(CurInstI)); 2056 2057 RegPressureDelta RPDelta; 2058 ArrayRef<PressureChange> CriticalPSets; 2059 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2060 CriticalPSets, 2061 RecRegPressure.MaxSetPressure); 2062 if (RPDelta.Excess.isValid()) { 2063 LLVM_DEBUG( 2064 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2065 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2066 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2067 NS.setExceedPressure(SU); 2068 break; 2069 } 2070 RecRPTracker.recede(); 2071 } 2072 } 2073 } 2074 2075 /// A heuristic to colocate node sets that have the same set of 2076 /// successors. 2077 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2078 unsigned Colocate = 0; 2079 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2080 NodeSet &N1 = NodeSets[i]; 2081 SmallSetVector<SUnit *, 8> S1; 2082 if (N1.empty() || !succ_L(N1, S1)) 2083 continue; 2084 for (int j = i + 1; j < e; ++j) { 2085 NodeSet &N2 = NodeSets[j]; 2086 if (N1.compareRecMII(N2) != 0) 2087 continue; 2088 SmallSetVector<SUnit *, 8> S2; 2089 if (N2.empty() || !succ_L(N2, S2)) 2090 continue; 2091 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2092 N1.setColocate(++Colocate); 2093 N2.setColocate(Colocate); 2094 break; 2095 } 2096 } 2097 } 2098 } 2099 2100 /// Check if the existing node-sets are profitable. If not, then ignore the 2101 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2102 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2103 /// then it's best to try to schedule all instructions together instead of 2104 /// starting with the recurrent node-sets. 2105 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2106 // Look for loops with a large MII. 2107 if (MII < 17) 2108 return; 2109 // Check if the node-set contains only a simple add recurrence. 2110 for (auto &NS : NodeSets) { 2111 if (NS.getRecMII() > 2) 2112 return; 2113 if (NS.getMaxDepth() > MII) 2114 return; 2115 } 2116 NodeSets.clear(); 2117 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2118 } 2119 2120 /// Add the nodes that do not belong to a recurrence set into groups 2121 /// based upon connected components. 2122 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2123 SetVector<SUnit *> NodesAdded; 2124 SmallPtrSet<SUnit *, 8> Visited; 2125 // Add the nodes that are on a path between the previous node sets and 2126 // the current node set. 2127 for (NodeSet &I : NodeSets) { 2128 SmallSetVector<SUnit *, 8> N; 2129 // Add the nodes from the current node set to the previous node set. 2130 if (succ_L(I, N)) { 2131 SetVector<SUnit *> Path; 2132 for (SUnit *NI : N) { 2133 Visited.clear(); 2134 computePath(NI, Path, NodesAdded, I, Visited); 2135 } 2136 if (!Path.empty()) 2137 I.insert(Path.begin(), Path.end()); 2138 } 2139 // Add the nodes from the previous node set to the current node set. 2140 N.clear(); 2141 if (succ_L(NodesAdded, N)) { 2142 SetVector<SUnit *> Path; 2143 for (SUnit *NI : N) { 2144 Visited.clear(); 2145 computePath(NI, Path, I, NodesAdded, Visited); 2146 } 2147 if (!Path.empty()) 2148 I.insert(Path.begin(), Path.end()); 2149 } 2150 NodesAdded.insert(I.begin(), I.end()); 2151 } 2152 2153 // Create a new node set with the connected nodes of any successor of a node 2154 // in a recurrent set. 2155 NodeSet NewSet; 2156 SmallSetVector<SUnit *, 8> N; 2157 if (succ_L(NodesAdded, N)) 2158 for (SUnit *I : N) 2159 addConnectedNodes(I, NewSet, NodesAdded); 2160 if (!NewSet.empty()) 2161 NodeSets.push_back(NewSet); 2162 2163 // Create a new node set with the connected nodes of any predecessor of a node 2164 // in a recurrent set. 2165 NewSet.clear(); 2166 if (pred_L(NodesAdded, N)) 2167 for (SUnit *I : N) 2168 addConnectedNodes(I, NewSet, NodesAdded); 2169 if (!NewSet.empty()) 2170 NodeSets.push_back(NewSet); 2171 2172 // Create new nodes sets with the connected nodes any remaining node that 2173 // has no predecessor. 2174 for (SUnit &SU : SUnits) { 2175 if (NodesAdded.count(&SU) == 0) { 2176 NewSet.clear(); 2177 addConnectedNodes(&SU, NewSet, NodesAdded); 2178 if (!NewSet.empty()) 2179 NodeSets.push_back(NewSet); 2180 } 2181 } 2182 } 2183 2184 /// Add the node to the set, and add all of its connected nodes to the set. 2185 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2186 SetVector<SUnit *> &NodesAdded) { 2187 NewSet.insert(SU); 2188 NodesAdded.insert(SU); 2189 for (auto &SI : SU->Succs) { 2190 SUnit *Successor = SI.getSUnit(); 2191 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2192 NodesAdded.count(Successor) == 0) 2193 addConnectedNodes(Successor, NewSet, NodesAdded); 2194 } 2195 for (auto &PI : SU->Preds) { 2196 SUnit *Predecessor = PI.getSUnit(); 2197 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2198 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2199 } 2200 } 2201 2202 /// Return true if Set1 contains elements in Set2. The elements in common 2203 /// are returned in a different container. 2204 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2205 SmallSetVector<SUnit *, 8> &Result) { 2206 Result.clear(); 2207 for (SUnit *SU : Set1) { 2208 if (Set2.count(SU) != 0) 2209 Result.insert(SU); 2210 } 2211 return !Result.empty(); 2212 } 2213 2214 /// Merge the recurrence node sets that have the same initial node. 2215 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2216 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2217 ++I) { 2218 NodeSet &NI = *I; 2219 for (NodeSetType::iterator J = I + 1; J != E;) { 2220 NodeSet &NJ = *J; 2221 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2222 if (NJ.compareRecMII(NI) > 0) 2223 NI.setRecMII(NJ.getRecMII()); 2224 for (SUnit *SU : *J) 2225 I->insert(SU); 2226 NodeSets.erase(J); 2227 E = NodeSets.end(); 2228 } else { 2229 ++J; 2230 } 2231 } 2232 } 2233 } 2234 2235 /// Remove nodes that have been scheduled in previous NodeSets. 2236 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2237 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2238 ++I) 2239 for (NodeSetType::iterator J = I + 1; J != E;) { 2240 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2241 2242 if (J->empty()) { 2243 NodeSets.erase(J); 2244 E = NodeSets.end(); 2245 } else { 2246 ++J; 2247 } 2248 } 2249 } 2250 2251 /// Compute an ordered list of the dependence graph nodes, which 2252 /// indicates the order that the nodes will be scheduled. This is a 2253 /// two-level algorithm. First, a partial order is created, which 2254 /// consists of a list of sets ordered from highest to lowest priority. 2255 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2256 SmallSetVector<SUnit *, 8> R; 2257 NodeOrder.clear(); 2258 2259 for (auto &Nodes : NodeSets) { 2260 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2261 OrderKind Order; 2262 SmallSetVector<SUnit *, 8> N; 2263 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2264 R.insert(N.begin(), N.end()); 2265 Order = BottomUp; 2266 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2267 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2268 R.insert(N.begin(), N.end()); 2269 Order = TopDown; 2270 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2271 } else if (isIntersect(N, Nodes, R)) { 2272 // If some of the successors are in the existing node-set, then use the 2273 // top-down ordering. 2274 Order = TopDown; 2275 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2276 } else if (NodeSets.size() == 1) { 2277 for (const auto &N : Nodes) 2278 if (N->Succs.size() == 0) 2279 R.insert(N); 2280 Order = BottomUp; 2281 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2282 } else { 2283 // Find the node with the highest ASAP. 2284 SUnit *maxASAP = nullptr; 2285 for (SUnit *SU : Nodes) { 2286 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2287 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2288 maxASAP = SU; 2289 } 2290 R.insert(maxASAP); 2291 Order = BottomUp; 2292 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2293 } 2294 2295 while (!R.empty()) { 2296 if (Order == TopDown) { 2297 // Choose the node with the maximum height. If more than one, choose 2298 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2299 // choose the node with the lowest MOV. 2300 while (!R.empty()) { 2301 SUnit *maxHeight = nullptr; 2302 for (SUnit *I : R) { 2303 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2304 maxHeight = I; 2305 else if (getHeight(I) == getHeight(maxHeight) && 2306 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2307 maxHeight = I; 2308 else if (getHeight(I) == getHeight(maxHeight) && 2309 getZeroLatencyHeight(I) == 2310 getZeroLatencyHeight(maxHeight) && 2311 getMOV(I) < getMOV(maxHeight)) 2312 maxHeight = I; 2313 } 2314 NodeOrder.insert(maxHeight); 2315 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2316 R.remove(maxHeight); 2317 for (const auto &I : maxHeight->Succs) { 2318 if (Nodes.count(I.getSUnit()) == 0) 2319 continue; 2320 if (NodeOrder.contains(I.getSUnit())) 2321 continue; 2322 if (ignoreDependence(I, false)) 2323 continue; 2324 R.insert(I.getSUnit()); 2325 } 2326 // Back-edges are predecessors with an anti-dependence. 2327 for (const auto &I : maxHeight->Preds) { 2328 if (I.getKind() != SDep::Anti) 2329 continue; 2330 if (Nodes.count(I.getSUnit()) == 0) 2331 continue; 2332 if (NodeOrder.contains(I.getSUnit())) 2333 continue; 2334 R.insert(I.getSUnit()); 2335 } 2336 } 2337 Order = BottomUp; 2338 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2339 SmallSetVector<SUnit *, 8> N; 2340 if (pred_L(NodeOrder, N, &Nodes)) 2341 R.insert(N.begin(), N.end()); 2342 } else { 2343 // Choose the node with the maximum depth. If more than one, choose 2344 // the node with the maximum ZeroLatencyDepth. If still more than one, 2345 // choose the node with the lowest MOV. 2346 while (!R.empty()) { 2347 SUnit *maxDepth = nullptr; 2348 for (SUnit *I : R) { 2349 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2350 maxDepth = I; 2351 else if (getDepth(I) == getDepth(maxDepth) && 2352 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2353 maxDepth = I; 2354 else if (getDepth(I) == getDepth(maxDepth) && 2355 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2356 getMOV(I) < getMOV(maxDepth)) 2357 maxDepth = I; 2358 } 2359 NodeOrder.insert(maxDepth); 2360 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2361 R.remove(maxDepth); 2362 if (Nodes.isExceedSU(maxDepth)) { 2363 Order = TopDown; 2364 R.clear(); 2365 R.insert(Nodes.getNode(0)); 2366 break; 2367 } 2368 for (const auto &I : maxDepth->Preds) { 2369 if (Nodes.count(I.getSUnit()) == 0) 2370 continue; 2371 if (NodeOrder.contains(I.getSUnit())) 2372 continue; 2373 R.insert(I.getSUnit()); 2374 } 2375 // Back-edges are predecessors with an anti-dependence. 2376 for (const auto &I : maxDepth->Succs) { 2377 if (I.getKind() != SDep::Anti) 2378 continue; 2379 if (Nodes.count(I.getSUnit()) == 0) 2380 continue; 2381 if (NodeOrder.contains(I.getSUnit())) 2382 continue; 2383 R.insert(I.getSUnit()); 2384 } 2385 } 2386 Order = TopDown; 2387 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2388 SmallSetVector<SUnit *, 8> N; 2389 if (succ_L(NodeOrder, N, &Nodes)) 2390 R.insert(N.begin(), N.end()); 2391 } 2392 } 2393 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2394 } 2395 2396 LLVM_DEBUG({ 2397 dbgs() << "Node order: "; 2398 for (SUnit *I : NodeOrder) 2399 dbgs() << " " << I->NodeNum << " "; 2400 dbgs() << "\n"; 2401 }); 2402 } 2403 2404 /// Process the nodes in the computed order and create the pipelined schedule 2405 /// of the instructions, if possible. Return true if a schedule is found. 2406 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2407 2408 if (NodeOrder.empty()){ 2409 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2410 return false; 2411 } 2412 2413 bool scheduleFound = false; 2414 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2415 if (LimitRegPressure) { 2416 HRPDetector = 2417 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2418 HRPDetector->init(RegClassInfo); 2419 } 2420 // Keep increasing II until a valid schedule is found. 2421 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2422 Schedule.reset(); 2423 Schedule.setInitiationInterval(II); 2424 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2425 2426 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2427 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2428 do { 2429 SUnit *SU = *NI; 2430 2431 // Compute the schedule time for the instruction, which is based 2432 // upon the scheduled time for any predecessors/successors. 2433 int EarlyStart = INT_MIN; 2434 int LateStart = INT_MAX; 2435 Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 2436 LLVM_DEBUG({ 2437 dbgs() << "\n"; 2438 dbgs() << "Inst (" << SU->NodeNum << ") "; 2439 SU->getInstr()->dump(); 2440 dbgs() << "\n"; 2441 }); 2442 LLVM_DEBUG( 2443 dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 2444 2445 if (EarlyStart > LateStart) 2446 scheduleFound = false; 2447 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 2448 scheduleFound = 2449 Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 2450 else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 2451 scheduleFound = 2452 Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 2453 else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2454 LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 2455 // When scheduling a Phi it is better to start at the late cycle and 2456 // go backwards. The default order may insert the Phi too far away 2457 // from its first dependence. 2458 // Also, do backward search when all scheduled predecessors are 2459 // loop-carried output/order dependencies. Empirically, there are also 2460 // cases where scheduling becomes possible with backward search. 2461 if (SU->getInstr()->isPHI() || 2462 Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) 2463 scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 2464 else 2465 scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 2466 } else { 2467 int FirstCycle = Schedule.getFirstCycle(); 2468 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2469 FirstCycle + getASAP(SU) + II - 1, II); 2470 } 2471 2472 // Even if we find a schedule, make sure the schedule doesn't exceed the 2473 // allowable number of stages. We keep trying if this happens. 2474 if (scheduleFound) 2475 if (SwpMaxStages > -1 && 2476 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2477 scheduleFound = false; 2478 2479 LLVM_DEBUG({ 2480 if (!scheduleFound) 2481 dbgs() << "\tCan't schedule\n"; 2482 }); 2483 } while (++NI != NE && scheduleFound); 2484 2485 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2486 if (scheduleFound) 2487 scheduleFound = 2488 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2489 2490 // If a schedule is found, check if it is a valid schedule too. 2491 if (scheduleFound) 2492 scheduleFound = Schedule.isValidSchedule(this); 2493 2494 // If a schedule was found and the option is enabled, check if the schedule 2495 // might generate additional register spills/fills. 2496 if (scheduleFound && LimitRegPressure) 2497 scheduleFound = 2498 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2499 } 2500 2501 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2502 << " (II=" << Schedule.getInitiationInterval() 2503 << ")\n"); 2504 2505 if (scheduleFound) { 2506 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2507 if (!scheduleFound) 2508 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2509 } 2510 2511 if (scheduleFound) { 2512 Schedule.finalizeSchedule(this); 2513 Pass.ORE->emit([&]() { 2514 return MachineOptimizationRemarkAnalysis( 2515 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2516 << "Schedule found with Initiation Interval: " 2517 << ore::NV("II", Schedule.getInitiationInterval()) 2518 << ", MaxStageCount: " 2519 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2520 }); 2521 } else 2522 Schedule.reset(); 2523 2524 return scheduleFound && Schedule.getMaxStageCount() > 0; 2525 } 2526 2527 /// Return true if we can compute the amount the instruction changes 2528 /// during each iteration. Set Delta to the amount of the change. 2529 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) const { 2530 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2531 const MachineOperand *BaseOp; 2532 int64_t Offset; 2533 bool OffsetIsScalable; 2534 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2535 return false; 2536 2537 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2538 if (OffsetIsScalable) 2539 return false; 2540 2541 if (!BaseOp->isReg()) 2542 return false; 2543 2544 Register BaseReg = BaseOp->getReg(); 2545 2546 MachineRegisterInfo &MRI = MF.getRegInfo(); 2547 // Check if there is a Phi. If so, get the definition in the loop. 2548 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2549 if (BaseDef && BaseDef->isPHI()) { 2550 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2551 BaseDef = MRI.getVRegDef(BaseReg); 2552 } 2553 if (!BaseDef) 2554 return false; 2555 2556 int D = 0; 2557 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2558 return false; 2559 2560 Delta = D; 2561 return true; 2562 } 2563 2564 /// Check if we can change the instruction to use an offset value from the 2565 /// previous iteration. If so, return true and set the base and offset values 2566 /// so that we can rewrite the load, if necessary. 2567 /// v1 = Phi(v0, v3) 2568 /// v2 = load v1, 0 2569 /// v3 = post_store v1, 4, x 2570 /// This function enables the load to be rewritten as v2 = load v3, 4. 2571 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2572 unsigned &BasePos, 2573 unsigned &OffsetPos, 2574 unsigned &NewBase, 2575 int64_t &Offset) { 2576 // Get the load instruction. 2577 if (TII->isPostIncrement(*MI)) 2578 return false; 2579 unsigned BasePosLd, OffsetPosLd; 2580 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2581 return false; 2582 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2583 2584 // Look for the Phi instruction. 2585 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2586 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2587 if (!Phi || !Phi->isPHI()) 2588 return false; 2589 // Get the register defined in the loop block. 2590 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2591 if (!PrevReg) 2592 return false; 2593 2594 // Check for the post-increment load/store instruction. 2595 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2596 if (!PrevDef || PrevDef == MI) 2597 return false; 2598 2599 if (!TII->isPostIncrement(*PrevDef)) 2600 return false; 2601 2602 unsigned BasePos1 = 0, OffsetPos1 = 0; 2603 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2604 return false; 2605 2606 // Make sure that the instructions do not access the same memory location in 2607 // the next iteration. 2608 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2609 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2610 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2611 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2612 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2613 MF.deleteMachineInstr(NewMI); 2614 if (!Disjoint) 2615 return false; 2616 2617 // Set the return value once we determine that we return true. 2618 BasePos = BasePosLd; 2619 OffsetPos = OffsetPosLd; 2620 NewBase = PrevReg; 2621 Offset = StoreOffset; 2622 return true; 2623 } 2624 2625 /// Apply changes to the instruction if needed. The changes are need 2626 /// to improve the scheduling and depend up on the final schedule. 2627 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2628 SMSchedule &Schedule) { 2629 SUnit *SU = getSUnit(MI); 2630 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2631 InstrChanges.find(SU); 2632 if (It != InstrChanges.end()) { 2633 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2634 unsigned BasePos, OffsetPos; 2635 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2636 return; 2637 Register BaseReg = MI->getOperand(BasePos).getReg(); 2638 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2639 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2640 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2641 int BaseStageNum = Schedule.stageScheduled(SU); 2642 int BaseCycleNum = Schedule.cycleScheduled(SU); 2643 if (BaseStageNum < DefStageNum) { 2644 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2645 int OffsetDiff = DefStageNum - BaseStageNum; 2646 if (DefCycleNum < BaseCycleNum) { 2647 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2648 if (OffsetDiff > 0) 2649 --OffsetDiff; 2650 } 2651 int64_t NewOffset = 2652 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2653 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2654 SU->setInstr(NewMI); 2655 MISUnitMap[NewMI] = SU; 2656 NewMIs[MI] = NewMI; 2657 } 2658 } 2659 } 2660 2661 /// Return the instruction in the loop that defines the register. 2662 /// If the definition is a Phi, then follow the Phi operand to 2663 /// the instruction in the loop. 2664 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2665 SmallPtrSet<MachineInstr *, 8> Visited; 2666 MachineInstr *Def = MRI.getVRegDef(Reg); 2667 while (Def->isPHI()) { 2668 if (!Visited.insert(Def).second) 2669 break; 2670 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2671 if (Def->getOperand(i + 1).getMBB() == BB) { 2672 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2673 break; 2674 } 2675 } 2676 return Def; 2677 } 2678 2679 /// Return true for an order or output dependence that is loop carried 2680 /// potentially. A dependence is loop carried if the destination defines a value 2681 /// that may be used or defined by the source in a subsequent iteration. 2682 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2683 bool isSucc) const { 2684 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2685 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2686 return false; 2687 2688 if (!SwpPruneLoopCarried) 2689 return true; 2690 2691 if (Dep.getKind() == SDep::Output) 2692 return true; 2693 2694 MachineInstr *SI = Source->getInstr(); 2695 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2696 if (!isSucc) 2697 std::swap(SI, DI); 2698 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2699 2700 // Assume ordered loads and stores may have a loop carried dependence. 2701 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2702 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2703 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2704 return true; 2705 2706 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2707 return false; 2708 2709 // The conservative assumption is that a dependence between memory operations 2710 // may be loop carried. The following code checks when it can be proved that 2711 // there is no loop carried dependence. 2712 unsigned DeltaS, DeltaD; 2713 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2714 return true; 2715 2716 const MachineOperand *BaseOpS, *BaseOpD; 2717 int64_t OffsetS, OffsetD; 2718 bool OffsetSIsScalable, OffsetDIsScalable; 2719 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2720 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2721 TRI) || 2722 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2723 TRI)) 2724 return true; 2725 2726 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2727 "Expected offsets to be byte offsets"); 2728 2729 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2730 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2731 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2732 return true; 2733 2734 unsigned InitValS = 0; 2735 unsigned LoopValS = 0; 2736 unsigned InitValD = 0; 2737 unsigned LoopValD = 0; 2738 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2739 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2740 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2741 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2742 2743 if (!InitDefS->isIdenticalTo(*InitDefD)) 2744 return true; 2745 2746 // Check that the base register is incremented by a constant value for each 2747 // iteration. 2748 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2749 int D = 0; 2750 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2751 return true; 2752 2753 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2754 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2755 2756 // This is the main test, which checks the offset values and the loop 2757 // increment value to determine if the accesses may be loop carried. 2758 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2759 return true; 2760 2761 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2762 DeltaD < AccessSizeD.getValue()) 2763 return true; 2764 2765 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2766 OffsetD + (int64_t)AccessSizeD.getValue()); 2767 } 2768 2769 void SwingSchedulerDAG::postProcessDAG() { 2770 for (auto &M : Mutations) 2771 M->apply(this); 2772 } 2773 2774 /// Try to schedule the node at the specified StartCycle and continue 2775 /// until the node is schedule or the EndCycle is reached. This function 2776 /// returns true if the node is scheduled. This routine may search either 2777 /// forward or backward for a place to insert the instruction based upon 2778 /// the relative values of StartCycle and EndCycle. 2779 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2780 bool forward = true; 2781 LLVM_DEBUG({ 2782 dbgs() << "Trying to insert node between " << StartCycle << " and " 2783 << EndCycle << " II: " << II << "\n"; 2784 }); 2785 if (StartCycle > EndCycle) 2786 forward = false; 2787 2788 // The terminating condition depends on the direction. 2789 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2790 for (int curCycle = StartCycle; curCycle != termCycle; 2791 forward ? ++curCycle : --curCycle) { 2792 2793 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2794 ProcItinResources.canReserveResources(*SU, curCycle)) { 2795 LLVM_DEBUG({ 2796 dbgs() << "\tinsert at cycle " << curCycle << " "; 2797 SU->getInstr()->dump(); 2798 }); 2799 2800 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2801 ProcItinResources.reserveResources(*SU, curCycle); 2802 ScheduledInstrs[curCycle].push_back(SU); 2803 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2804 if (curCycle > LastCycle) 2805 LastCycle = curCycle; 2806 if (curCycle < FirstCycle) 2807 FirstCycle = curCycle; 2808 return true; 2809 } 2810 LLVM_DEBUG({ 2811 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2812 SU->getInstr()->dump(); 2813 }); 2814 } 2815 return false; 2816 } 2817 2818 // Return the cycle of the earliest scheduled instruction in the chain. 2819 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2820 SmallPtrSet<SUnit *, 8> Visited; 2821 SmallVector<SDep, 8> Worklist; 2822 Worklist.push_back(Dep); 2823 int EarlyCycle = INT_MAX; 2824 while (!Worklist.empty()) { 2825 const SDep &Cur = Worklist.pop_back_val(); 2826 SUnit *PrevSU = Cur.getSUnit(); 2827 if (Visited.count(PrevSU)) 2828 continue; 2829 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2830 if (it == InstrToCycle.end()) 2831 continue; 2832 EarlyCycle = std::min(EarlyCycle, it->second); 2833 for (const auto &PI : PrevSU->Preds) 2834 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2835 Worklist.push_back(PI); 2836 Visited.insert(PrevSU); 2837 } 2838 return EarlyCycle; 2839 } 2840 2841 // Return the cycle of the latest scheduled instruction in the chain. 2842 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2843 SmallPtrSet<SUnit *, 8> Visited; 2844 SmallVector<SDep, 8> Worklist; 2845 Worklist.push_back(Dep); 2846 int LateCycle = INT_MIN; 2847 while (!Worklist.empty()) { 2848 const SDep &Cur = Worklist.pop_back_val(); 2849 SUnit *SuccSU = Cur.getSUnit(); 2850 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2851 continue; 2852 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2853 if (it == InstrToCycle.end()) 2854 continue; 2855 LateCycle = std::max(LateCycle, it->second); 2856 for (const auto &SI : SuccSU->Succs) 2857 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2858 Worklist.push_back(SI); 2859 Visited.insert(SuccSU); 2860 } 2861 return LateCycle; 2862 } 2863 2864 /// If an instruction has a use that spans multiple iterations, then 2865 /// return true. These instructions are characterized by having a back-ege 2866 /// to a Phi, which contains a reference to another Phi. 2867 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2868 for (auto &P : SU->Preds) 2869 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2870 for (auto &S : P.getSUnit()->Succs) 2871 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2872 return P.getSUnit(); 2873 return nullptr; 2874 } 2875 2876 /// Compute the scheduling start slot for the instruction. The start slot 2877 /// depends on any predecessor or successor nodes scheduled already. 2878 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2879 int II, SwingSchedulerDAG *DAG) { 2880 // Iterate over each instruction that has been scheduled already. The start 2881 // slot computation depends on whether the previously scheduled instruction 2882 // is a predecessor or successor of the specified instruction. 2883 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2884 2885 // Iterate over each instruction in the current cycle. 2886 for (SUnit *I : getInstructions(cycle)) { 2887 // Because we're processing a DAG for the dependences, we recognize 2888 // the back-edge in recurrences by anti dependences. 2889 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2890 const SDep &Dep = SU->Preds[i]; 2891 if (Dep.getSUnit() == I) { 2892 if (!DAG->isBackedge(SU, Dep)) { 2893 int EarlyStart = cycle + Dep.getLatency() - 2894 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2895 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2896 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2897 int End = earliestCycleInChain(Dep) + (II - 1); 2898 *MinLateStart = std::min(*MinLateStart, End); 2899 } 2900 } else { 2901 int LateStart = cycle - Dep.getLatency() + 2902 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2903 *MinLateStart = std::min(*MinLateStart, LateStart); 2904 } 2905 } 2906 // For instruction that requires multiple iterations, make sure that 2907 // the dependent instruction is not scheduled past the definition. 2908 SUnit *BE = multipleIterations(I, DAG); 2909 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2910 !SU->isPred(I)) 2911 *MinLateStart = std::min(*MinLateStart, cycle); 2912 } 2913 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2914 if (SU->Succs[i].getSUnit() == I) { 2915 const SDep &Dep = SU->Succs[i]; 2916 if (!DAG->isBackedge(SU, Dep)) { 2917 int LateStart = cycle - Dep.getLatency() + 2918 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2919 *MinLateStart = std::min(*MinLateStart, LateStart); 2920 if (DAG->isLoopCarriedDep(SU, Dep)) { 2921 int Start = latestCycleInChain(Dep) + 1 - II; 2922 *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 2923 } 2924 } else { 2925 int EarlyStart = cycle + Dep.getLatency() - 2926 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2927 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2928 } 2929 } 2930 } 2931 } 2932 } 2933 } 2934 2935 /// Order the instructions within a cycle so that the definitions occur 2936 /// before the uses. Returns true if the instruction is added to the start 2937 /// of the list, or false if added to the end. 2938 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2939 std::deque<SUnit *> &Insts) const { 2940 MachineInstr *MI = SU->getInstr(); 2941 bool OrderBeforeUse = false; 2942 bool OrderAfterDef = false; 2943 bool OrderBeforeDef = false; 2944 unsigned MoveDef = 0; 2945 unsigned MoveUse = 0; 2946 int StageInst1 = stageScheduled(SU); 2947 2948 unsigned Pos = 0; 2949 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2950 ++I, ++Pos) { 2951 for (MachineOperand &MO : MI->operands()) { 2952 if (!MO.isReg() || !MO.getReg().isVirtual()) 2953 continue; 2954 2955 Register Reg = MO.getReg(); 2956 unsigned BasePos, OffsetPos; 2957 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2958 if (MI->getOperand(BasePos).getReg() == Reg) 2959 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2960 Reg = NewReg; 2961 bool Reads, Writes; 2962 std::tie(Reads, Writes) = 2963 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2964 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2965 OrderBeforeUse = true; 2966 if (MoveUse == 0) 2967 MoveUse = Pos; 2968 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2969 // Add the instruction after the scheduled instruction. 2970 OrderAfterDef = true; 2971 MoveDef = Pos; 2972 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2973 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2974 OrderBeforeUse = true; 2975 if (MoveUse == 0) 2976 MoveUse = Pos; 2977 } else { 2978 OrderAfterDef = true; 2979 MoveDef = Pos; 2980 } 2981 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2982 OrderBeforeUse = true; 2983 if (MoveUse == 0) 2984 MoveUse = Pos; 2985 if (MoveUse != 0) { 2986 OrderAfterDef = true; 2987 MoveDef = Pos - 1; 2988 } 2989 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2990 // Add the instruction before the scheduled instruction. 2991 OrderBeforeUse = true; 2992 if (MoveUse == 0) 2993 MoveUse = Pos; 2994 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2995 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2996 if (MoveUse == 0) { 2997 OrderBeforeDef = true; 2998 MoveUse = Pos; 2999 } 3000 } 3001 } 3002 // Check for order dependences between instructions. Make sure the source 3003 // is ordered before the destination. 3004 for (auto &S : SU->Succs) { 3005 if (S.getSUnit() != *I) 3006 continue; 3007 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3008 OrderBeforeUse = true; 3009 if (Pos < MoveUse) 3010 MoveUse = Pos; 3011 } 3012 // We did not handle HW dependences in previous for loop, 3013 // and we normally set Latency = 0 for Anti/Output deps, 3014 // so may have nodes in same cycle with Anti/Output dependent on HW regs. 3015 else if ((S.getKind() == SDep::Anti || S.getKind() == SDep::Output) && 3016 stageScheduled(*I) == StageInst1) { 3017 OrderBeforeUse = true; 3018 if ((MoveUse == 0) || (Pos < MoveUse)) 3019 MoveUse = Pos; 3020 } 3021 } 3022 for (auto &P : SU->Preds) { 3023 if (P.getSUnit() != *I) 3024 continue; 3025 if ((P.getKind() == SDep::Order || P.getKind() == SDep::Anti || 3026 P.getKind() == SDep::Output) && 3027 stageScheduled(*I) == StageInst1) { 3028 OrderAfterDef = true; 3029 MoveDef = Pos; 3030 } 3031 } 3032 } 3033 3034 // A circular dependence. 3035 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3036 OrderBeforeUse = false; 3037 3038 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3039 // to a loop-carried dependence. 3040 if (OrderBeforeDef) 3041 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3042 3043 // The uncommon case when the instruction order needs to be updated because 3044 // there is both a use and def. 3045 if (OrderBeforeUse && OrderAfterDef) { 3046 SUnit *UseSU = Insts.at(MoveUse); 3047 SUnit *DefSU = Insts.at(MoveDef); 3048 if (MoveUse > MoveDef) { 3049 Insts.erase(Insts.begin() + MoveUse); 3050 Insts.erase(Insts.begin() + MoveDef); 3051 } else { 3052 Insts.erase(Insts.begin() + MoveDef); 3053 Insts.erase(Insts.begin() + MoveUse); 3054 } 3055 orderDependence(SSD, UseSU, Insts); 3056 orderDependence(SSD, SU, Insts); 3057 orderDependence(SSD, DefSU, Insts); 3058 return; 3059 } 3060 // Put the new instruction first if there is a use in the list. Otherwise, 3061 // put it at the end of the list. 3062 if (OrderBeforeUse) 3063 Insts.push_front(SU); 3064 else 3065 Insts.push_back(SU); 3066 } 3067 3068 /// Return true if the scheduled Phi has a loop carried operand. 3069 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3070 MachineInstr &Phi) const { 3071 if (!Phi.isPHI()) 3072 return false; 3073 assert(Phi.isPHI() && "Expecting a Phi."); 3074 SUnit *DefSU = SSD->getSUnit(&Phi); 3075 unsigned DefCycle = cycleScheduled(DefSU); 3076 int DefStage = stageScheduled(DefSU); 3077 3078 unsigned InitVal = 0; 3079 unsigned LoopVal = 0; 3080 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3081 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3082 if (!UseSU) 3083 return true; 3084 if (UseSU->getInstr()->isPHI()) 3085 return true; 3086 unsigned LoopCycle = cycleScheduled(UseSU); 3087 int LoopStage = stageScheduled(UseSU); 3088 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3089 } 3090 3091 /// Return true if the instruction is a definition that is loop carried 3092 /// and defines the use on the next iteration. 3093 /// v1 = phi(v2, v3) 3094 /// (Def) v3 = op v1 3095 /// (MO) = v1 3096 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3097 /// register. 3098 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3099 MachineInstr *Def, 3100 MachineOperand &MO) const { 3101 if (!MO.isReg()) 3102 return false; 3103 if (Def->isPHI()) 3104 return false; 3105 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3106 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3107 return false; 3108 if (!isLoopCarried(SSD, *Phi)) 3109 return false; 3110 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3111 for (MachineOperand &DMO : Def->all_defs()) { 3112 if (DMO.getReg() == LoopReg) 3113 return true; 3114 } 3115 return false; 3116 } 3117 3118 /// Return true if all scheduled predecessors are loop-carried output/order 3119 /// dependencies. 3120 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 3121 SUnit *SU, SwingSchedulerDAG *DAG) const { 3122 for (const SDep &Pred : SU->Preds) 3123 if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) 3124 return false; 3125 for (const SDep &Succ : SU->Succs) 3126 if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) 3127 return false; 3128 return true; 3129 } 3130 3131 /// Determine transitive dependences of unpipelineable instructions 3132 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3133 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3134 SmallSet<SUnit *, 8> DoNotPipeline; 3135 SmallVector<SUnit *, 8> Worklist; 3136 3137 for (auto &SU : SSD->SUnits) 3138 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3139 Worklist.push_back(&SU); 3140 3141 while (!Worklist.empty()) { 3142 auto SU = Worklist.pop_back_val(); 3143 if (DoNotPipeline.count(SU)) 3144 continue; 3145 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3146 DoNotPipeline.insert(SU); 3147 for (auto &Dep : SU->Preds) 3148 Worklist.push_back(Dep.getSUnit()); 3149 if (SU->getInstr()->isPHI()) 3150 for (auto &Dep : SU->Succs) 3151 if (Dep.getKind() == SDep::Anti) 3152 Worklist.push_back(Dep.getSUnit()); 3153 } 3154 return DoNotPipeline; 3155 } 3156 3157 // Determine all instructions upon which any unpipelineable instruction depends 3158 // and ensure that they are in stage 0. If unable to do so, return false. 3159 bool SMSchedule::normalizeNonPipelinedInstructions( 3160 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3161 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3162 3163 int NewLastCycle = INT_MIN; 3164 for (SUnit &SU : SSD->SUnits) { 3165 if (!SU.isInstr()) 3166 continue; 3167 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3168 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3169 continue; 3170 } 3171 3172 // Put the non-pipelined instruction as early as possible in the schedule 3173 int NewCycle = getFirstCycle(); 3174 for (auto &Dep : SU.Preds) 3175 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3176 3177 int OldCycle = InstrToCycle[&SU]; 3178 if (OldCycle != NewCycle) { 3179 InstrToCycle[&SU] = NewCycle; 3180 auto &OldS = getInstructions(OldCycle); 3181 llvm::erase(OldS, &SU); 3182 getInstructions(NewCycle).emplace_back(&SU); 3183 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3184 << ") is not pipelined; moving from cycle " << OldCycle 3185 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3186 } 3187 NewLastCycle = std::max(NewLastCycle, NewCycle); 3188 } 3189 LastCycle = NewLastCycle; 3190 return true; 3191 } 3192 3193 // Check if the generated schedule is valid. This function checks if 3194 // an instruction that uses a physical register is scheduled in a 3195 // different stage than the definition. The pipeliner does not handle 3196 // physical register values that may cross a basic block boundary. 3197 // Furthermore, if a physical def/use pair is assigned to the same 3198 // cycle, orderDependence does not guarantee def/use ordering, so that 3199 // case should be considered invalid. (The test checks for both 3200 // earlier and same-cycle use to be more robust.) 3201 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3202 for (SUnit &SU : SSD->SUnits) { 3203 if (!SU.hasPhysRegDefs) 3204 continue; 3205 int StageDef = stageScheduled(&SU); 3206 int CycleDef = InstrToCycle[&SU]; 3207 assert(StageDef != -1 && "Instruction should have been scheduled."); 3208 for (auto &SI : SU.Succs) 3209 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3210 if (Register::isPhysicalRegister(SI.getReg())) { 3211 if (stageScheduled(SI.getSUnit()) != StageDef) 3212 return false; 3213 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3214 return false; 3215 } 3216 } 3217 return true; 3218 } 3219 3220 /// A property of the node order in swing-modulo-scheduling is 3221 /// that for nodes outside circuits the following holds: 3222 /// none of them is scheduled after both a successor and a 3223 /// predecessor. 3224 /// The method below checks whether the property is met. 3225 /// If not, debug information is printed and statistics information updated. 3226 /// Note that we do not use an assert statement. 3227 /// The reason is that although an invalid node oder may prevent 3228 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3229 /// it does not lead to the generation of incorrect code. 3230 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3231 3232 // a sorted vector that maps each SUnit to its index in the NodeOrder 3233 typedef std::pair<SUnit *, unsigned> UnitIndex; 3234 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3235 3236 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3237 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3238 3239 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3240 return std::get<0>(i1) < std::get<0>(i2); 3241 }; 3242 3243 // sort, so that we can perform a binary search 3244 llvm::sort(Indices, CompareKey); 3245 3246 bool Valid = true; 3247 (void)Valid; 3248 // for each SUnit in the NodeOrder, check whether 3249 // it appears after both a successor and a predecessor 3250 // of the SUnit. If this is the case, and the SUnit 3251 // is not part of circuit, then the NodeOrder is not 3252 // valid. 3253 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3254 SUnit *SU = NodeOrder[i]; 3255 unsigned Index = i; 3256 3257 bool PredBefore = false; 3258 bool SuccBefore = false; 3259 3260 SUnit *Succ; 3261 SUnit *Pred; 3262 (void)Succ; 3263 (void)Pred; 3264 3265 for (SDep &PredEdge : SU->Preds) { 3266 SUnit *PredSU = PredEdge.getSUnit(); 3267 unsigned PredIndex = std::get<1>( 3268 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3269 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3270 PredBefore = true; 3271 Pred = PredSU; 3272 break; 3273 } 3274 } 3275 3276 for (SDep &SuccEdge : SU->Succs) { 3277 SUnit *SuccSU = SuccEdge.getSUnit(); 3278 // Do not process a boundary node, it was not included in NodeOrder, 3279 // hence not in Indices either, call to std::lower_bound() below will 3280 // return Indices.end(). 3281 if (SuccSU->isBoundaryNode()) 3282 continue; 3283 unsigned SuccIndex = std::get<1>( 3284 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3285 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3286 SuccBefore = true; 3287 Succ = SuccSU; 3288 break; 3289 } 3290 } 3291 3292 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3293 // instructions in circuits are allowed to be scheduled 3294 // after both a successor and predecessor. 3295 bool InCircuit = llvm::any_of( 3296 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3297 if (InCircuit) 3298 LLVM_DEBUG(dbgs() << "In a circuit, predecessor "); 3299 else { 3300 Valid = false; 3301 NumNodeOrderIssues++; 3302 LLVM_DEBUG(dbgs() << "Predecessor "); 3303 } 3304 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3305 << " are scheduled before node " << SU->NodeNum 3306 << "\n"); 3307 } 3308 } 3309 3310 LLVM_DEBUG({ 3311 if (!Valid) 3312 dbgs() << "Invalid node order found!\n"; 3313 }); 3314 } 3315 3316 /// Attempt to fix the degenerate cases when the instruction serialization 3317 /// causes the register lifetimes to overlap. For example, 3318 /// p' = store_pi(p, b) 3319 /// = load p, offset 3320 /// In this case p and p' overlap, which means that two registers are needed. 3321 /// Instead, this function changes the load to use p' and updates the offset. 3322 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3323 unsigned OverlapReg = 0; 3324 unsigned NewBaseReg = 0; 3325 for (SUnit *SU : Instrs) { 3326 MachineInstr *MI = SU->getInstr(); 3327 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3328 const MachineOperand &MO = MI->getOperand(i); 3329 // Look for an instruction that uses p. The instruction occurs in the 3330 // same cycle but occurs later in the serialized order. 3331 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3332 // Check that the instruction appears in the InstrChanges structure, 3333 // which contains instructions that can have the offset updated. 3334 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3335 InstrChanges.find(SU); 3336 if (It != InstrChanges.end()) { 3337 unsigned BasePos, OffsetPos; 3338 // Update the base register and adjust the offset. 3339 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3340 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3341 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3342 int64_t NewOffset = 3343 MI->getOperand(OffsetPos).getImm() - It->second.second; 3344 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3345 SU->setInstr(NewMI); 3346 MISUnitMap[NewMI] = SU; 3347 NewMIs[MI] = NewMI; 3348 } 3349 } 3350 OverlapReg = 0; 3351 NewBaseReg = 0; 3352 break; 3353 } 3354 // Look for an instruction of the form p' = op(p), which uses and defines 3355 // two virtual registers that get allocated to the same physical register. 3356 unsigned TiedUseIdx = 0; 3357 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3358 // OverlapReg is p in the example above. 3359 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3360 // NewBaseReg is p' in the example above. 3361 NewBaseReg = MI->getOperand(i).getReg(); 3362 break; 3363 } 3364 } 3365 } 3366 } 3367 3368 std::deque<SUnit *> 3369 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3370 const std::deque<SUnit *> &Instrs) const { 3371 std::deque<SUnit *> NewOrderPhi; 3372 for (SUnit *SU : Instrs) { 3373 if (SU->getInstr()->isPHI()) 3374 NewOrderPhi.push_back(SU); 3375 } 3376 std::deque<SUnit *> NewOrderI; 3377 for (SUnit *SU : Instrs) { 3378 if (!SU->getInstr()->isPHI()) 3379 orderDependence(SSD, SU, NewOrderI); 3380 } 3381 llvm::append_range(NewOrderPhi, NewOrderI); 3382 return NewOrderPhi; 3383 } 3384 3385 /// After the schedule has been formed, call this function to combine 3386 /// the instructions from the different stages/cycles. That is, this 3387 /// function creates a schedule that represents a single iteration. 3388 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3389 // Move all instructions to the first stage from later stages. 3390 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3391 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3392 ++stage) { 3393 std::deque<SUnit *> &cycleInstrs = 3394 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3395 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3396 ScheduledInstrs[cycle].push_front(SU); 3397 } 3398 } 3399 3400 // Erase all the elements in the later stages. Only one iteration should 3401 // remain in the scheduled list, and it contains all the instructions. 3402 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3403 ScheduledInstrs.erase(cycle); 3404 3405 // Change the registers in instruction as specified in the InstrChanges 3406 // map. We need to use the new registers to create the correct order. 3407 for (const SUnit &SU : SSD->SUnits) 3408 SSD->applyInstrChange(SU.getInstr(), *this); 3409 3410 // Reorder the instructions in each cycle to fix and improve the 3411 // generated code. 3412 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3413 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3414 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3415 SSD->fixupRegisterOverlaps(cycleInstrs); 3416 } 3417 3418 LLVM_DEBUG(dump();); 3419 } 3420 3421 void NodeSet::print(raw_ostream &os) const { 3422 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3423 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3424 for (const auto &I : Nodes) 3425 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3426 os << "\n"; 3427 } 3428 3429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3430 /// Print the schedule information to the given output. 3431 void SMSchedule::print(raw_ostream &os) const { 3432 // Iterate over each cycle. 3433 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3434 // Iterate over each instruction in the cycle. 3435 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3436 for (SUnit *CI : cycleInstrs->second) { 3437 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3438 os << "(" << CI->NodeNum << ") "; 3439 CI->getInstr()->print(os); 3440 os << "\n"; 3441 } 3442 } 3443 } 3444 3445 /// Utility function used for debugging to print the schedule. 3446 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3447 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3448 3449 void ResourceManager::dumpMRT() const { 3450 LLVM_DEBUG({ 3451 if (UseDFA) 3452 return; 3453 std::stringstream SS; 3454 SS << "MRT:\n"; 3455 SS << std::setw(4) << "Slot"; 3456 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3457 SS << std::setw(3) << I; 3458 SS << std::setw(7) << "#Mops" 3459 << "\n"; 3460 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3461 SS << std::setw(4) << Slot; 3462 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3463 SS << std::setw(3) << MRT[Slot][I]; 3464 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3465 } 3466 dbgs() << SS.str(); 3467 }); 3468 } 3469 #endif 3470 3471 void ResourceManager::initProcResourceVectors( 3472 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3473 unsigned ProcResourceID = 0; 3474 3475 // We currently limit the resource kinds to 64 and below so that we can use 3476 // uint64_t for Masks 3477 assert(SM.getNumProcResourceKinds() < 64 && 3478 "Too many kinds of resources, unsupported"); 3479 // Create a unique bitmask for every processor resource unit. 3480 // Skip resource at index 0, since it always references 'InvalidUnit'. 3481 Masks.resize(SM.getNumProcResourceKinds()); 3482 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3483 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3484 if (Desc.SubUnitsIdxBegin) 3485 continue; 3486 Masks[I] = 1ULL << ProcResourceID; 3487 ProcResourceID++; 3488 } 3489 // Create a unique bitmask for every processor resource group. 3490 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3491 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3492 if (!Desc.SubUnitsIdxBegin) 3493 continue; 3494 Masks[I] = 1ULL << ProcResourceID; 3495 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3496 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3497 ProcResourceID++; 3498 } 3499 LLVM_DEBUG({ 3500 if (SwpShowResMask) { 3501 dbgs() << "ProcResourceDesc:\n"; 3502 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3503 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3504 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3505 ProcResource->Name, I, Masks[I], 3506 ProcResource->NumUnits); 3507 } 3508 dbgs() << " -----------------\n"; 3509 } 3510 }); 3511 } 3512 3513 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3514 LLVM_DEBUG({ 3515 if (SwpDebugResource) 3516 dbgs() << "canReserveResources:\n"; 3517 }); 3518 if (UseDFA) 3519 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3520 ->canReserveResources(&SU.getInstr()->getDesc()); 3521 3522 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3523 if (!SCDesc->isValid()) { 3524 LLVM_DEBUG({ 3525 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3526 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3527 }); 3528 return true; 3529 } 3530 3531 reserveResources(SCDesc, Cycle); 3532 bool Result = !isOverbooked(); 3533 unreserveResources(SCDesc, Cycle); 3534 3535 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n"); 3536 return Result; 3537 } 3538 3539 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3540 LLVM_DEBUG({ 3541 if (SwpDebugResource) 3542 dbgs() << "reserveResources:\n"; 3543 }); 3544 if (UseDFA) 3545 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3546 ->reserveResources(&SU.getInstr()->getDesc()); 3547 3548 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3549 if (!SCDesc->isValid()) { 3550 LLVM_DEBUG({ 3551 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3552 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3553 }); 3554 return; 3555 } 3556 3557 reserveResources(SCDesc, Cycle); 3558 3559 LLVM_DEBUG({ 3560 if (SwpDebugResource) { 3561 dumpMRT(); 3562 dbgs() << "reserveResources: done!\n\n"; 3563 } 3564 }); 3565 } 3566 3567 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3568 int Cycle) { 3569 assert(!UseDFA); 3570 for (const MCWriteProcResEntry &PRE : make_range( 3571 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3572 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3573 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3574 3575 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3576 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3577 } 3578 3579 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3580 int Cycle) { 3581 assert(!UseDFA); 3582 for (const MCWriteProcResEntry &PRE : make_range( 3583 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3584 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3585 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3586 3587 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3588 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3589 } 3590 3591 bool ResourceManager::isOverbooked() const { 3592 assert(!UseDFA); 3593 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3594 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3595 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3596 if (MRT[Slot][I] > Desc->NumUnits) 3597 return true; 3598 } 3599 if (NumScheduledMops[Slot] > IssueWidth) 3600 return true; 3601 } 3602 return false; 3603 } 3604 3605 int ResourceManager::calculateResMIIDFA() const { 3606 assert(UseDFA); 3607 3608 // Sort the instructions by the number of available choices for scheduling, 3609 // least to most. Use the number of critical resources as the tie breaker. 3610 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3611 for (SUnit &SU : DAG->SUnits) 3612 FUS.calcCriticalResources(*SU.getInstr()); 3613 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3614 FuncUnitOrder(FUS); 3615 3616 for (SUnit &SU : DAG->SUnits) 3617 FuncUnitOrder.push(SU.getInstr()); 3618 3619 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3620 Resources.push_back( 3621 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3622 3623 while (!FuncUnitOrder.empty()) { 3624 MachineInstr *MI = FuncUnitOrder.top(); 3625 FuncUnitOrder.pop(); 3626 if (TII->isZeroCost(MI->getOpcode())) 3627 continue; 3628 3629 // Attempt to reserve the instruction in an existing DFA. At least one 3630 // DFA is needed for each cycle. 3631 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3632 unsigned ReservedCycles = 0; 3633 auto *RI = Resources.begin(); 3634 auto *RE = Resources.end(); 3635 LLVM_DEBUG({ 3636 dbgs() << "Trying to reserve resource for " << NumCycles 3637 << " cycles for \n"; 3638 MI->dump(); 3639 }); 3640 for (unsigned C = 0; C < NumCycles; ++C) 3641 while (RI != RE) { 3642 if ((*RI)->canReserveResources(*MI)) { 3643 (*RI)->reserveResources(*MI); 3644 ++ReservedCycles; 3645 break; 3646 } 3647 RI++; 3648 } 3649 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3650 << ", NumCycles:" << NumCycles << "\n"); 3651 // Add new DFAs, if needed, to reserve resources. 3652 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3653 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3654 << "NewResource created to reserve resources" 3655 << "\n"); 3656 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3657 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3658 NewResource->reserveResources(*MI); 3659 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3660 } 3661 } 3662 3663 int Resmii = Resources.size(); 3664 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3665 return Resmii; 3666 } 3667 3668 int ResourceManager::calculateResMII() const { 3669 if (UseDFA) 3670 return calculateResMIIDFA(); 3671 3672 // Count each resource consumption and divide it by the number of units. 3673 // ResMII is the max value among them. 3674 3675 int NumMops = 0; 3676 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3677 for (SUnit &SU : DAG->SUnits) { 3678 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3679 continue; 3680 3681 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3682 if (!SCDesc->isValid()) 3683 continue; 3684 3685 LLVM_DEBUG({ 3686 if (SwpDebugResource) { 3687 DAG->dumpNode(SU); 3688 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3689 << " WriteProcRes: "; 3690 } 3691 }); 3692 NumMops += SCDesc->NumMicroOps; 3693 for (const MCWriteProcResEntry &PRE : 3694 make_range(STI->getWriteProcResBegin(SCDesc), 3695 STI->getWriteProcResEnd(SCDesc))) { 3696 LLVM_DEBUG({ 3697 if (SwpDebugResource) { 3698 const MCProcResourceDesc *Desc = 3699 SM.getProcResource(PRE.ProcResourceIdx); 3700 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3701 } 3702 }); 3703 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3704 } 3705 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3706 } 3707 3708 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3709 LLVM_DEBUG({ 3710 if (SwpDebugResource) 3711 dbgs() << "#Mops: " << NumMops << ", " 3712 << "IssueWidth: " << IssueWidth << ", " 3713 << "Cycles: " << Result << "\n"; 3714 }); 3715 3716 LLVM_DEBUG({ 3717 if (SwpDebugResource) { 3718 std::stringstream SS; 3719 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3720 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3721 << "\n"; 3722 dbgs() << SS.str(); 3723 } 3724 }); 3725 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3726 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3727 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3728 LLVM_DEBUG({ 3729 if (SwpDebugResource) { 3730 std::stringstream SS; 3731 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3732 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3733 << std::setw(10) << Cycles << "\n"; 3734 dbgs() << SS.str(); 3735 } 3736 }); 3737 if (Cycles > Result) 3738 Result = Cycles; 3739 } 3740 return Result; 3741 } 3742 3743 void ResourceManager::init(int II) { 3744 InitiationInterval = II; 3745 DFAResources.clear(); 3746 DFAResources.resize(II); 3747 for (auto &I : DFAResources) 3748 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3749 MRT.clear(); 3750 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3751 NumScheduledMops.clear(); 3752 NumScheduledMops.resize(II); 3753 } 3754