1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/CycleAnalysis.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/CodeGen/DFAPacketizer.h" 52 #include "llvm/CodeGen/LiveIntervals.h" 53 #include "llvm/CodeGen/MachineBasicBlock.h" 54 #include "llvm/CodeGen/MachineDominators.h" 55 #include "llvm/CodeGen/MachineFunction.h" 56 #include "llvm/CodeGen/MachineFunctionPass.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineLoopInfo.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/ModuloSchedule.h" 64 #include "llvm/CodeGen/Register.h" 65 #include "llvm/CodeGen/RegisterClassInfo.h" 66 #include "llvm/CodeGen/RegisterPressure.h" 67 #include "llvm/CodeGen/ScheduleDAG.h" 68 #include "llvm/CodeGen/ScheduleDAGMutation.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetOpcodes.h" 71 #include "llvm/CodeGen/TargetPassConfig.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/Config/llvm-config.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/MC/LaneBitmask.h" 78 #include "llvm/MC/MCInstrDesc.h" 79 #include "llvm/MC/MCInstrItineraries.h" 80 #include "llvm/MC/MCRegisterInfo.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <algorithm> 88 #include <cassert> 89 #include <climits> 90 #include <cstdint> 91 #include <deque> 92 #include <functional> 93 #include <iomanip> 94 #include <iterator> 95 #include <map> 96 #include <memory> 97 #include <sstream> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "pipeliner" 105 106 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 107 STATISTIC(NumPipelined, "Number of loops software pipelined"); 108 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 109 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 110 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 111 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 112 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 113 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 114 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 115 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 116 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 117 118 /// A command line option to turn software pipelining on or off. 119 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 120 cl::desc("Enable Software Pipelining")); 121 122 /// A command line option to enable SWP at -Os. 123 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 124 cl::desc("Enable SWP at Os."), cl::Hidden, 125 cl::init(false)); 126 127 /// A command line argument to limit minimum initial interval for pipelining. 128 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 129 cl::desc("Size limit for the MII."), 130 cl::Hidden, cl::init(27)); 131 132 /// A command line argument to force pipeliner to use specified initial 133 /// interval. 134 static cl::opt<int> SwpForceII("pipeliner-force-ii", 135 cl::desc("Force pipeliner to use specified II."), 136 cl::Hidden, cl::init(-1)); 137 138 /// A command line argument to limit the number of stages in the pipeline. 139 static cl::opt<int> 140 SwpMaxStages("pipeliner-max-stages", 141 cl::desc("Maximum stages allowed in the generated scheduled."), 142 cl::Hidden, cl::init(3)); 143 144 /// A command line option to disable the pruning of chain dependences due to 145 /// an unrelated Phi. 146 static cl::opt<bool> 147 SwpPruneDeps("pipeliner-prune-deps", 148 cl::desc("Prune dependences between unrelated Phi nodes."), 149 cl::Hidden, cl::init(true)); 150 151 /// A command line option to disable the pruning of loop carried order 152 /// dependences. 153 static cl::opt<bool> 154 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 155 cl::desc("Prune loop carried order dependences."), 156 cl::Hidden, cl::init(true)); 157 158 #ifndef NDEBUG 159 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 160 #endif 161 162 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 163 cl::ReallyHidden, 164 cl::desc("Ignore RecMII")); 165 166 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 167 cl::init(false)); 168 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 169 cl::init(false)); 170 171 static cl::opt<bool> EmitTestAnnotations( 172 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 173 cl::desc("Instead of emitting the pipelined code, annotate instructions " 174 "with the generated schedule for feeding into the " 175 "-modulo-schedule-test pass")); 176 177 static cl::opt<bool> ExperimentalCodeGen( 178 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 179 cl::desc( 180 "Use the experimental peeling code generator for software pipelining")); 181 182 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 183 cl::desc("Range to search for II"), 184 cl::Hidden, cl::init(10)); 185 186 static cl::opt<bool> 187 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 188 cl::desc("Limit register pressure of scheduled loop")); 189 190 static cl::opt<int> 191 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 192 cl::init(5), 193 cl::desc("Margin representing the unused percentage of " 194 "the register pressure limit")); 195 196 static cl::opt<bool> 197 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 198 cl::desc("Use the MVE code generator for software pipelining")); 199 200 namespace llvm { 201 202 // A command line option to enable the CopyToPhi DAG mutation. 203 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 204 cl::init(true), 205 cl::desc("Enable CopyToPhi DAG Mutation")); 206 207 /// A command line argument to force pipeliner to use specified issue 208 /// width. 209 cl::opt<int> SwpForceIssueWidth( 210 "pipeliner-force-issue-width", 211 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 212 cl::init(-1)); 213 214 /// A command line argument to set the window scheduling option. 215 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 216 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 217 cl::desc("Set how to use window scheduling algorithm."), 218 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 219 "Turn off window algorithm."), 220 clEnumValN(WindowSchedulingFlag::WS_On, "on", 221 "Use window algorithm after SMS algorithm fails."), 222 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 223 "Use window algorithm instead of SMS algorithm."))); 224 225 } // end namespace llvm 226 227 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 228 char MachinePipeliner::ID = 0; 229 #ifndef NDEBUG 230 int MachinePipeliner::NumTries = 0; 231 #endif 232 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 233 234 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 235 "Modulo Software Pipelining", false, false) 236 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 237 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 240 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 241 "Modulo Software Pipelining", false, false) 242 243 /// The "main" function for implementing Swing Modulo Scheduling. 244 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 245 if (skipFunction(mf.getFunction())) 246 return false; 247 248 if (!EnableSWP) 249 return false; 250 251 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 252 !EnableSWPOptSize.getPosition()) 253 return false; 254 255 if (!mf.getSubtarget().enableMachinePipeliner()) 256 return false; 257 258 // Cannot pipeline loops without instruction itineraries if we are using 259 // DFA for the pipeliner. 260 if (mf.getSubtarget().useDFAforSMS() && 261 (!mf.getSubtarget().getInstrItineraryData() || 262 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 263 return false; 264 265 MF = &mf; 266 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 267 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 268 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 269 TII = MF->getSubtarget().getInstrInfo(); 270 RegClassInfo.runOnMachineFunction(*MF); 271 272 for (const auto &L : *MLI) 273 scheduleLoop(*L); 274 275 return false; 276 } 277 278 /// Attempt to perform the SMS algorithm on the specified loop. This function is 279 /// the main entry point for the algorithm. The function identifies candidate 280 /// loops, calculates the minimum initiation interval, and attempts to schedule 281 /// the loop. 282 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 283 bool Changed = false; 284 for (const auto &InnerLoop : L) 285 Changed |= scheduleLoop(*InnerLoop); 286 287 #ifndef NDEBUG 288 // Stop trying after reaching the limit (if any). 289 int Limit = SwpLoopLimit; 290 if (Limit >= 0) { 291 if (NumTries >= SwpLoopLimit) 292 return Changed; 293 NumTries++; 294 } 295 #endif 296 297 setPragmaPipelineOptions(L); 298 if (!canPipelineLoop(L)) { 299 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 300 ORE->emit([&]() { 301 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 302 L.getStartLoc(), L.getHeader()) 303 << "Failed to pipeline loop"; 304 }); 305 306 LI.LoopPipelinerInfo.reset(); 307 return Changed; 308 } 309 310 ++NumTrytoPipeline; 311 if (useSwingModuloScheduler()) 312 Changed = swingModuloScheduler(L); 313 314 if (useWindowScheduler(Changed)) 315 Changed = runWindowScheduler(L); 316 317 LI.LoopPipelinerInfo.reset(); 318 return Changed; 319 } 320 321 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 322 // Reset the pragma for the next loop in iteration. 323 disabledByPragma = false; 324 II_setByPragma = 0; 325 326 MachineBasicBlock *LBLK = L.getTopBlock(); 327 328 if (LBLK == nullptr) 329 return; 330 331 const BasicBlock *BBLK = LBLK->getBasicBlock(); 332 if (BBLK == nullptr) 333 return; 334 335 const Instruction *TI = BBLK->getTerminator(); 336 if (TI == nullptr) 337 return; 338 339 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 340 if (LoopID == nullptr) 341 return; 342 343 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 344 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 345 346 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 347 MDNode *MD = dyn_cast<MDNode>(MDO); 348 349 if (MD == nullptr) 350 continue; 351 352 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 353 354 if (S == nullptr) 355 continue; 356 357 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 358 assert(MD->getNumOperands() == 2 && 359 "Pipeline initiation interval hint metadata should have two operands."); 360 II_setByPragma = 361 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 362 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 363 } else if (S->getString() == "llvm.loop.pipeline.disable") { 364 disabledByPragma = true; 365 } 366 } 367 } 368 369 /// Return true if the loop can be software pipelined. The algorithm is 370 /// restricted to loops with a single basic block. Make sure that the 371 /// branch in the loop can be analyzed. 372 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 373 if (L.getNumBlocks() != 1) { 374 ORE->emit([&]() { 375 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 376 L.getStartLoc(), L.getHeader()) 377 << "Not a single basic block: " 378 << ore::NV("NumBlocks", L.getNumBlocks()); 379 }); 380 return false; 381 } 382 383 if (disabledByPragma) { 384 ORE->emit([&]() { 385 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 386 L.getStartLoc(), L.getHeader()) 387 << "Disabled by Pragma."; 388 }); 389 return false; 390 } 391 392 // Check if the branch can't be understood because we can't do pipelining 393 // if that's the case. 394 LI.TBB = nullptr; 395 LI.FBB = nullptr; 396 LI.BrCond.clear(); 397 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 398 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 399 NumFailBranch++; 400 ORE->emit([&]() { 401 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 402 L.getStartLoc(), L.getHeader()) 403 << "The branch can't be understood"; 404 }); 405 return false; 406 } 407 408 LI.LoopInductionVar = nullptr; 409 LI.LoopCompare = nullptr; 410 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 411 if (!LI.LoopPipelinerInfo) { 412 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 413 NumFailLoop++; 414 ORE->emit([&]() { 415 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 416 L.getStartLoc(), L.getHeader()) 417 << "The loop structure is not supported"; 418 }); 419 return false; 420 } 421 422 if (!L.getLoopPreheader()) { 423 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 424 NumFailPreheader++; 425 ORE->emit([&]() { 426 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 427 L.getStartLoc(), L.getHeader()) 428 << "No loop preheader found"; 429 }); 430 return false; 431 } 432 433 // Remove any subregisters from inputs to phi nodes. 434 preprocessPhiNodes(*L.getHeader()); 435 return true; 436 } 437 438 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 439 MachineRegisterInfo &MRI = MF->getRegInfo(); 440 SlotIndexes &Slots = 441 *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 442 443 for (MachineInstr &PI : B.phis()) { 444 MachineOperand &DefOp = PI.getOperand(0); 445 assert(DefOp.getSubReg() == 0); 446 auto *RC = MRI.getRegClass(DefOp.getReg()); 447 448 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 449 MachineOperand &RegOp = PI.getOperand(i); 450 if (RegOp.getSubReg() == 0) 451 continue; 452 453 // If the operand uses a subregister, replace it with a new register 454 // without subregisters, and generate a copy to the new register. 455 Register NewReg = MRI.createVirtualRegister(RC); 456 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 457 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 458 const DebugLoc &DL = PredB.findDebugLoc(At); 459 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 460 .addReg(RegOp.getReg(), getRegState(RegOp), 461 RegOp.getSubReg()); 462 Slots.insertMachineInstrInMaps(*Copy); 463 RegOp.setReg(NewReg); 464 RegOp.setSubReg(0); 465 } 466 } 467 } 468 469 /// The SMS algorithm consists of the following main steps: 470 /// 1. Computation and analysis of the dependence graph. 471 /// 2. Ordering of the nodes (instructions). 472 /// 3. Attempt to Schedule the loop. 473 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 474 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 475 476 SwingSchedulerDAG SMS( 477 *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 478 II_setByPragma, LI.LoopPipelinerInfo.get()); 479 480 MachineBasicBlock *MBB = L.getHeader(); 481 // The kernel should not include any terminator instructions. These 482 // will be added back later. 483 SMS.startBlock(MBB); 484 485 // Compute the number of 'real' instructions in the basic block by 486 // ignoring terminators. 487 unsigned size = MBB->size(); 488 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 489 E = MBB->instr_end(); 490 I != E; ++I, --size) 491 ; 492 493 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 494 SMS.schedule(); 495 SMS.exitRegion(); 496 497 SMS.finishBlock(); 498 return SMS.hasNewSchedule(); 499 } 500 501 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 502 AU.addRequired<AAResultsWrapperPass>(); 503 AU.addPreserved<AAResultsWrapperPass>(); 504 AU.addRequired<MachineLoopInfoWrapperPass>(); 505 AU.addRequired<MachineDominatorTreeWrapperPass>(); 506 AU.addRequired<LiveIntervalsWrapperPass>(); 507 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 508 AU.addRequired<TargetPassConfig>(); 509 MachineFunctionPass::getAnalysisUsage(AU); 510 } 511 512 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 513 MachineSchedContext Context; 514 Context.MF = MF; 515 Context.MLI = MLI; 516 Context.MDT = MDT; 517 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 518 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 519 Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 520 Context.RegClassInfo->runOnMachineFunction(*MF); 521 WindowScheduler WS(&Context, L); 522 return WS.run(); 523 } 524 525 bool MachinePipeliner::useSwingModuloScheduler() { 526 // SwingModuloScheduler does not work when WindowScheduler is forced. 527 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 528 } 529 530 bool MachinePipeliner::useWindowScheduler(bool Changed) { 531 // WindowScheduler does not work for following cases: 532 // 1. when it is off. 533 // 2. when SwingModuloScheduler is successfully scheduled. 534 // 3. when pragma II is enabled. 535 if (II_setByPragma) { 536 LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 537 "llvm.loop.pipeline.initiationinterval is set.\n"); 538 return false; 539 } 540 541 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 542 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 543 } 544 545 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 546 if (SwpForceII > 0) 547 MII = SwpForceII; 548 else if (II_setByPragma > 0) 549 MII = II_setByPragma; 550 else 551 MII = std::max(ResMII, RecMII); 552 } 553 554 void SwingSchedulerDAG::setMAX_II() { 555 if (SwpForceII > 0) 556 MAX_II = SwpForceII; 557 else if (II_setByPragma > 0) 558 MAX_II = II_setByPragma; 559 else 560 MAX_II = MII + SwpIISearchRange; 561 } 562 563 /// We override the schedule function in ScheduleDAGInstrs to implement the 564 /// scheduling part of the Swing Modulo Scheduling algorithm. 565 void SwingSchedulerDAG::schedule() { 566 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 567 buildSchedGraph(AA); 568 addLoopCarriedDependences(AA); 569 updatePhiDependences(); 570 Topo.InitDAGTopologicalSorting(); 571 changeDependences(); 572 postProcessDAG(); 573 LLVM_DEBUG(dump()); 574 575 NodeSetType NodeSets; 576 findCircuits(NodeSets); 577 NodeSetType Circuits = NodeSets; 578 579 // Calculate the MII. 580 unsigned ResMII = calculateResMII(); 581 unsigned RecMII = calculateRecMII(NodeSets); 582 583 fuseRecs(NodeSets); 584 585 // This flag is used for testing and can cause correctness problems. 586 if (SwpIgnoreRecMII) 587 RecMII = 0; 588 589 setMII(ResMII, RecMII); 590 setMAX_II(); 591 592 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 593 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 594 595 // Can't schedule a loop without a valid MII. 596 if (MII == 0) { 597 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 598 NumFailZeroMII++; 599 Pass.ORE->emit([&]() { 600 return MachineOptimizationRemarkAnalysis( 601 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 602 << "Invalid Minimal Initiation Interval: 0"; 603 }); 604 return; 605 } 606 607 // Don't pipeline large loops. 608 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 609 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 610 << ", we don't pipeline large loops\n"); 611 NumFailLargeMaxMII++; 612 Pass.ORE->emit([&]() { 613 return MachineOptimizationRemarkAnalysis( 614 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 615 << "Minimal Initiation Interval too large: " 616 << ore::NV("MII", (int)MII) << " > " 617 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 618 << "Refer to -pipeliner-max-mii."; 619 }); 620 return; 621 } 622 623 computeNodeFunctions(NodeSets); 624 625 registerPressureFilter(NodeSets); 626 627 colocateNodeSets(NodeSets); 628 629 checkNodeSets(NodeSets); 630 631 LLVM_DEBUG({ 632 for (auto &I : NodeSets) { 633 dbgs() << " Rec NodeSet "; 634 I.dump(); 635 } 636 }); 637 638 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 639 640 groupRemainingNodes(NodeSets); 641 642 removeDuplicateNodes(NodeSets); 643 644 LLVM_DEBUG({ 645 for (auto &I : NodeSets) { 646 dbgs() << " NodeSet "; 647 I.dump(); 648 } 649 }); 650 651 computeNodeOrder(NodeSets); 652 653 // check for node order issues 654 checkValidNodeOrder(Circuits); 655 656 SMSchedule Schedule(Pass.MF, this); 657 Scheduled = schedulePipeline(Schedule); 658 659 if (!Scheduled){ 660 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 661 NumFailNoSchedule++; 662 Pass.ORE->emit([&]() { 663 return MachineOptimizationRemarkAnalysis( 664 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 665 << "Unable to find schedule"; 666 }); 667 return; 668 } 669 670 unsigned numStages = Schedule.getMaxStageCount(); 671 // No need to generate pipeline if there are no overlapped iterations. 672 if (numStages == 0) { 673 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 674 NumFailZeroStage++; 675 Pass.ORE->emit([&]() { 676 return MachineOptimizationRemarkAnalysis( 677 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 678 << "No need to pipeline - no overlapped iterations in schedule."; 679 }); 680 return; 681 } 682 // Check that the maximum stage count is less than user-defined limit. 683 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 684 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 685 << " : too many stages, abort\n"); 686 NumFailLargeMaxStage++; 687 Pass.ORE->emit([&]() { 688 return MachineOptimizationRemarkAnalysis( 689 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 690 << "Too many stages in schedule: " 691 << ore::NV("numStages", (int)numStages) << " > " 692 << ore::NV("SwpMaxStages", SwpMaxStages) 693 << ". Refer to -pipeliner-max-stages."; 694 }); 695 return; 696 } 697 698 Pass.ORE->emit([&]() { 699 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 700 Loop.getHeader()) 701 << "Pipelined succesfully!"; 702 }); 703 704 // Generate the schedule as a ModuloSchedule. 705 DenseMap<MachineInstr *, int> Cycles, Stages; 706 std::vector<MachineInstr *> OrderedInsts; 707 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 708 ++Cycle) { 709 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 710 OrderedInsts.push_back(SU->getInstr()); 711 Cycles[SU->getInstr()] = Cycle; 712 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 713 } 714 } 715 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 716 for (auto &KV : NewMIs) { 717 Cycles[KV.first] = Cycles[KV.second]; 718 Stages[KV.first] = Stages[KV.second]; 719 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 720 } 721 722 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 723 std::move(Stages)); 724 if (EmitTestAnnotations) { 725 assert(NewInstrChanges.empty() && 726 "Cannot serialize a schedule with InstrChanges!"); 727 ModuloScheduleTestAnnotater MSTI(MF, MS); 728 MSTI.annotate(); 729 return; 730 } 731 // The experimental code generator can't work if there are InstChanges. 732 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 733 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 734 MSE.expand(); 735 } else if (MVECodeGen && NewInstrChanges.empty() && 736 LoopPipelinerInfo->isMVEExpanderSupported() && 737 ModuloScheduleExpanderMVE::canApply(Loop)) { 738 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 739 MSE.expand(); 740 } else { 741 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 742 MSE.expand(); 743 MSE.cleanup(); 744 } 745 ++NumPipelined; 746 } 747 748 /// Clean up after the software pipeliner runs. 749 void SwingSchedulerDAG::finishBlock() { 750 for (auto &KV : NewMIs) 751 MF.deleteMachineInstr(KV.second); 752 NewMIs.clear(); 753 754 // Call the superclass. 755 ScheduleDAGInstrs::finishBlock(); 756 } 757 758 /// Return the register values for the operands of a Phi instruction. 759 /// This function assume the instruction is a Phi. 760 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 761 unsigned &InitVal, unsigned &LoopVal) { 762 assert(Phi.isPHI() && "Expecting a Phi."); 763 764 InitVal = 0; 765 LoopVal = 0; 766 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 767 if (Phi.getOperand(i + 1).getMBB() != Loop) 768 InitVal = Phi.getOperand(i).getReg(); 769 else 770 LoopVal = Phi.getOperand(i).getReg(); 771 772 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 773 } 774 775 /// Return the Phi register value that comes the loop block. 776 static unsigned getLoopPhiReg(const MachineInstr &Phi, 777 const MachineBasicBlock *LoopBB) { 778 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 779 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 780 return Phi.getOperand(i).getReg(); 781 return 0; 782 } 783 784 /// Return true if SUb can be reached from SUa following the chain edges. 785 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 786 SmallPtrSet<SUnit *, 8> Visited; 787 SmallVector<SUnit *, 8> Worklist; 788 Worklist.push_back(SUa); 789 while (!Worklist.empty()) { 790 const SUnit *SU = Worklist.pop_back_val(); 791 for (const auto &SI : SU->Succs) { 792 SUnit *SuccSU = SI.getSUnit(); 793 if (SI.getKind() == SDep::Order) { 794 if (Visited.count(SuccSU)) 795 continue; 796 if (SuccSU == SUb) 797 return true; 798 Worklist.push_back(SuccSU); 799 Visited.insert(SuccSU); 800 } 801 } 802 } 803 return false; 804 } 805 806 /// Return true if the instruction causes a chain between memory 807 /// references before and after it. 808 static bool isDependenceBarrier(MachineInstr &MI) { 809 return MI.isCall() || MI.mayRaiseFPException() || 810 MI.hasUnmodeledSideEffects() || 811 (MI.hasOrderedMemoryRef() && 812 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 813 } 814 815 /// Return the underlying objects for the memory references of an instruction. 816 /// This function calls the code in ValueTracking, but first checks that the 817 /// instruction has a memory operand. 818 static void getUnderlyingObjects(const MachineInstr *MI, 819 SmallVectorImpl<const Value *> &Objs) { 820 if (!MI->hasOneMemOperand()) 821 return; 822 MachineMemOperand *MM = *MI->memoperands_begin(); 823 if (!MM->getValue()) 824 return; 825 getUnderlyingObjects(MM->getValue(), Objs); 826 for (const Value *V : Objs) { 827 if (!isIdentifiedObject(V)) { 828 Objs.clear(); 829 return; 830 } 831 } 832 } 833 834 /// Add a chain edge between a load and store if the store can be an 835 /// alias of the load on a subsequent iteration, i.e., a loop carried 836 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 837 /// but that code doesn't create loop carried dependences. 838 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 839 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 840 Value *UnknownValue = 841 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 842 for (auto &SU : SUnits) { 843 MachineInstr &MI = *SU.getInstr(); 844 if (isDependenceBarrier(MI)) 845 PendingLoads.clear(); 846 else if (MI.mayLoad()) { 847 SmallVector<const Value *, 4> Objs; 848 ::getUnderlyingObjects(&MI, Objs); 849 if (Objs.empty()) 850 Objs.push_back(UnknownValue); 851 for (const auto *V : Objs) { 852 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 853 SUs.push_back(&SU); 854 } 855 } else if (MI.mayStore()) { 856 SmallVector<const Value *, 4> Objs; 857 ::getUnderlyingObjects(&MI, Objs); 858 if (Objs.empty()) 859 Objs.push_back(UnknownValue); 860 for (const auto *V : Objs) { 861 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 862 PendingLoads.find(V); 863 if (I == PendingLoads.end()) 864 continue; 865 for (auto *Load : I->second) { 866 if (isSuccOrder(Load, &SU)) 867 continue; 868 MachineInstr &LdMI = *Load->getInstr(); 869 // First, perform the cheaper check that compares the base register. 870 // If they are the same and the load offset is less than the store 871 // offset, then mark the dependence as loop carried potentially. 872 const MachineOperand *BaseOp1, *BaseOp2; 873 int64_t Offset1, Offset2; 874 bool Offset1IsScalable, Offset2IsScalable; 875 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 876 Offset1IsScalable, TRI) && 877 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 878 Offset2IsScalable, TRI)) { 879 if (BaseOp1->isIdenticalTo(*BaseOp2) && 880 Offset1IsScalable == Offset2IsScalable && 881 (int)Offset1 < (int)Offset2) { 882 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 883 "What happened to the chain edge?"); 884 SDep Dep(Load, SDep::Barrier); 885 Dep.setLatency(1); 886 SU.addPred(Dep); 887 continue; 888 } 889 } 890 // Second, the more expensive check that uses alias analysis on the 891 // base registers. If they alias, and the load offset is less than 892 // the store offset, the mark the dependence as loop carried. 893 if (!AA) { 894 SDep Dep(Load, SDep::Barrier); 895 Dep.setLatency(1); 896 SU.addPred(Dep); 897 continue; 898 } 899 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 900 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 901 if (!MMO1->getValue() || !MMO2->getValue()) { 902 SDep Dep(Load, SDep::Barrier); 903 Dep.setLatency(1); 904 SU.addPred(Dep); 905 continue; 906 } 907 if (MMO1->getValue() == MMO2->getValue() && 908 MMO1->getOffset() <= MMO2->getOffset()) { 909 SDep Dep(Load, SDep::Barrier); 910 Dep.setLatency(1); 911 SU.addPred(Dep); 912 continue; 913 } 914 if (!AA->isNoAlias( 915 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 916 MemoryLocation::getAfter(MMO2->getValue(), 917 MMO2->getAAInfo()))) { 918 SDep Dep(Load, SDep::Barrier); 919 Dep.setLatency(1); 920 SU.addPred(Dep); 921 } 922 } 923 } 924 } 925 } 926 } 927 928 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 929 /// processes dependences for PHIs. This function adds true dependences 930 /// from a PHI to a use, and a loop carried dependence from the use to the 931 /// PHI. The loop carried dependence is represented as an anti dependence 932 /// edge. This function also removes chain dependences between unrelated 933 /// PHIs. 934 void SwingSchedulerDAG::updatePhiDependences() { 935 SmallVector<SDep, 4> RemoveDeps; 936 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 937 938 // Iterate over each DAG node. 939 for (SUnit &I : SUnits) { 940 RemoveDeps.clear(); 941 // Set to true if the instruction has an operand defined by a Phi. 942 unsigned HasPhiUse = 0; 943 unsigned HasPhiDef = 0; 944 MachineInstr *MI = I.getInstr(); 945 // Iterate over each operand, and we process the definitions. 946 for (const MachineOperand &MO : MI->operands()) { 947 if (!MO.isReg()) 948 continue; 949 Register Reg = MO.getReg(); 950 if (MO.isDef()) { 951 // If the register is used by a Phi, then create an anti dependence. 952 for (MachineRegisterInfo::use_instr_iterator 953 UI = MRI.use_instr_begin(Reg), 954 UE = MRI.use_instr_end(); 955 UI != UE; ++UI) { 956 MachineInstr *UseMI = &*UI; 957 SUnit *SU = getSUnit(UseMI); 958 if (SU != nullptr && UseMI->isPHI()) { 959 if (!MI->isPHI()) { 960 SDep Dep(SU, SDep::Anti, Reg); 961 Dep.setLatency(1); 962 I.addPred(Dep); 963 } else { 964 HasPhiDef = Reg; 965 // Add a chain edge to a dependent Phi that isn't an existing 966 // predecessor. 967 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 968 I.addPred(SDep(SU, SDep::Barrier)); 969 } 970 } 971 } 972 } else if (MO.isUse()) { 973 // If the register is defined by a Phi, then create a true dependence. 974 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 975 if (DefMI == nullptr) 976 continue; 977 SUnit *SU = getSUnit(DefMI); 978 if (SU != nullptr && DefMI->isPHI()) { 979 if (!MI->isPHI()) { 980 SDep Dep(SU, SDep::Data, Reg); 981 Dep.setLatency(0); 982 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 983 &SchedModel); 984 I.addPred(Dep); 985 } else { 986 HasPhiUse = Reg; 987 // Add a chain edge to a dependent Phi that isn't an existing 988 // predecessor. 989 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 990 I.addPred(SDep(SU, SDep::Barrier)); 991 } 992 } 993 } 994 } 995 // Remove order dependences from an unrelated Phi. 996 if (!SwpPruneDeps) 997 continue; 998 for (auto &PI : I.Preds) { 999 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1000 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1001 if (I.getInstr()->isPHI()) { 1002 if (PMI->getOperand(0).getReg() == HasPhiUse) 1003 continue; 1004 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1005 continue; 1006 } 1007 RemoveDeps.push_back(PI); 1008 } 1009 } 1010 for (const SDep &D : RemoveDeps) 1011 I.removePred(D); 1012 } 1013 } 1014 1015 /// Iterate over each DAG node and see if we can change any dependences 1016 /// in order to reduce the recurrence MII. 1017 void SwingSchedulerDAG::changeDependences() { 1018 // See if an instruction can use a value from the previous iteration. 1019 // If so, we update the base and offset of the instruction and change 1020 // the dependences. 1021 for (SUnit &I : SUnits) { 1022 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1023 int64_t NewOffset = 0; 1024 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1025 NewOffset)) 1026 continue; 1027 1028 // Get the MI and SUnit for the instruction that defines the original base. 1029 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1030 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1031 if (!DefMI) 1032 continue; 1033 SUnit *DefSU = getSUnit(DefMI); 1034 if (!DefSU) 1035 continue; 1036 // Get the MI and SUnit for the instruction that defins the new base. 1037 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1038 if (!LastMI) 1039 continue; 1040 SUnit *LastSU = getSUnit(LastMI); 1041 if (!LastSU) 1042 continue; 1043 1044 if (Topo.IsReachable(&I, LastSU)) 1045 continue; 1046 1047 // Remove the dependence. The value now depends on a prior iteration. 1048 SmallVector<SDep, 4> Deps; 1049 for (const SDep &P : I.Preds) 1050 if (P.getSUnit() == DefSU) 1051 Deps.push_back(P); 1052 for (const SDep &D : Deps) { 1053 Topo.RemovePred(&I, D.getSUnit()); 1054 I.removePred(D); 1055 } 1056 // Remove the chain dependence between the instructions. 1057 Deps.clear(); 1058 for (auto &P : LastSU->Preds) 1059 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1060 Deps.push_back(P); 1061 for (const SDep &D : Deps) { 1062 Topo.RemovePred(LastSU, D.getSUnit()); 1063 LastSU->removePred(D); 1064 } 1065 1066 // Add a dependence between the new instruction and the instruction 1067 // that defines the new base. 1068 SDep Dep(&I, SDep::Anti, NewBase); 1069 Topo.AddPred(LastSU, &I); 1070 LastSU->addPred(Dep); 1071 1072 // Remember the base and offset information so that we can update the 1073 // instruction during code generation. 1074 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1075 } 1076 } 1077 1078 /// Create an instruction stream that represents a single iteration and stage of 1079 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1080 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1081 /// function is an approximation of SMSchedule::finalizeSchedule with all 1082 /// non-const operations removed. 1083 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1084 SMSchedule &Schedule, 1085 std::vector<MachineInstr *> &OrderedInsts, 1086 DenseMap<MachineInstr *, unsigned> &Stages) { 1087 DenseMap<int, std::deque<SUnit *>> Instrs; 1088 1089 // Move all instructions to the first stage from the later stages. 1090 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1091 ++Cycle) { 1092 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1093 Stage <= LastStage; ++Stage) { 1094 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1095 Cycle + Stage * Schedule.getInitiationInterval()))) { 1096 Instrs[Cycle].push_front(SU); 1097 } 1098 } 1099 } 1100 1101 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1102 ++Cycle) { 1103 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1104 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1105 for (SUnit *SU : CycleInstrs) { 1106 MachineInstr *MI = SU->getInstr(); 1107 OrderedInsts.push_back(MI); 1108 Stages[MI] = Schedule.stageScheduled(SU); 1109 } 1110 } 1111 } 1112 1113 namespace { 1114 1115 // FuncUnitSorter - Comparison operator used to sort instructions by 1116 // the number of functional unit choices. 1117 struct FuncUnitSorter { 1118 const InstrItineraryData *InstrItins; 1119 const MCSubtargetInfo *STI; 1120 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1121 1122 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1123 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1124 1125 // Compute the number of functional unit alternatives needed 1126 // at each stage, and take the minimum value. We prioritize the 1127 // instructions by the least number of choices first. 1128 unsigned minFuncUnits(const MachineInstr *Inst, 1129 InstrStage::FuncUnits &F) const { 1130 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1131 unsigned min = UINT_MAX; 1132 if (InstrItins && !InstrItins->isEmpty()) { 1133 for (const InstrStage &IS : 1134 make_range(InstrItins->beginStage(SchedClass), 1135 InstrItins->endStage(SchedClass))) { 1136 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1137 unsigned numAlternatives = llvm::popcount(funcUnits); 1138 if (numAlternatives < min) { 1139 min = numAlternatives; 1140 F = funcUnits; 1141 } 1142 } 1143 return min; 1144 } 1145 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1146 const MCSchedClassDesc *SCDesc = 1147 STI->getSchedModel().getSchedClassDesc(SchedClass); 1148 if (!SCDesc->isValid()) 1149 // No valid Schedule Class Desc for schedClass, should be 1150 // Pseudo/PostRAPseudo 1151 return min; 1152 1153 for (const MCWriteProcResEntry &PRE : 1154 make_range(STI->getWriteProcResBegin(SCDesc), 1155 STI->getWriteProcResEnd(SCDesc))) { 1156 if (!PRE.ReleaseAtCycle) 1157 continue; 1158 const MCProcResourceDesc *ProcResource = 1159 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1160 unsigned NumUnits = ProcResource->NumUnits; 1161 if (NumUnits < min) { 1162 min = NumUnits; 1163 F = PRE.ProcResourceIdx; 1164 } 1165 } 1166 return min; 1167 } 1168 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1169 } 1170 1171 // Compute the critical resources needed by the instruction. This 1172 // function records the functional units needed by instructions that 1173 // must use only one functional unit. We use this as a tie breaker 1174 // for computing the resource MII. The instrutions that require 1175 // the same, highly used, functional unit have high priority. 1176 void calcCriticalResources(MachineInstr &MI) { 1177 unsigned SchedClass = MI.getDesc().getSchedClass(); 1178 if (InstrItins && !InstrItins->isEmpty()) { 1179 for (const InstrStage &IS : 1180 make_range(InstrItins->beginStage(SchedClass), 1181 InstrItins->endStage(SchedClass))) { 1182 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1183 if (llvm::popcount(FuncUnits) == 1) 1184 Resources[FuncUnits]++; 1185 } 1186 return; 1187 } 1188 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1189 const MCSchedClassDesc *SCDesc = 1190 STI->getSchedModel().getSchedClassDesc(SchedClass); 1191 if (!SCDesc->isValid()) 1192 // No valid Schedule Class Desc for schedClass, should be 1193 // Pseudo/PostRAPseudo 1194 return; 1195 1196 for (const MCWriteProcResEntry &PRE : 1197 make_range(STI->getWriteProcResBegin(SCDesc), 1198 STI->getWriteProcResEnd(SCDesc))) { 1199 if (!PRE.ReleaseAtCycle) 1200 continue; 1201 Resources[PRE.ProcResourceIdx]++; 1202 } 1203 return; 1204 } 1205 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1206 } 1207 1208 /// Return true if IS1 has less priority than IS2. 1209 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1210 InstrStage::FuncUnits F1 = 0, F2 = 0; 1211 unsigned MFUs1 = minFuncUnits(IS1, F1); 1212 unsigned MFUs2 = minFuncUnits(IS2, F2); 1213 if (MFUs1 == MFUs2) 1214 return Resources.lookup(F1) < Resources.lookup(F2); 1215 return MFUs1 > MFUs2; 1216 } 1217 }; 1218 1219 /// Calculate the maximum register pressure of the scheduled instructions stream 1220 class HighRegisterPressureDetector { 1221 MachineBasicBlock *OrigMBB; 1222 const MachineFunction &MF; 1223 const MachineRegisterInfo &MRI; 1224 const TargetRegisterInfo *TRI; 1225 1226 const unsigned PSetNum; 1227 1228 // Indexed by PSet ID 1229 // InitSetPressure takes into account the register pressure of live-in 1230 // registers. It's not depend on how the loop is scheduled, so it's enough to 1231 // calculate them once at the beginning. 1232 std::vector<unsigned> InitSetPressure; 1233 1234 // Indexed by PSet ID 1235 // Upper limit for each register pressure set 1236 std::vector<unsigned> PressureSetLimit; 1237 1238 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1239 1240 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1241 1242 public: 1243 using OrderedInstsTy = std::vector<MachineInstr *>; 1244 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1245 1246 private: 1247 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1248 if (Pressures.size() == 0) { 1249 dbgs() << "[]"; 1250 } else { 1251 char Prefix = '['; 1252 for (unsigned P : Pressures) { 1253 dbgs() << Prefix << P; 1254 Prefix = ' '; 1255 } 1256 dbgs() << ']'; 1257 } 1258 } 1259 1260 void dumpPSet(Register Reg) const { 1261 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1262 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1263 ++PSetIter) { 1264 dbgs() << *PSetIter << ' '; 1265 } 1266 dbgs() << '\n'; 1267 } 1268 1269 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1270 Register Reg) const { 1271 auto PSetIter = MRI.getPressureSets(Reg); 1272 unsigned Weight = PSetIter.getWeight(); 1273 for (; PSetIter.isValid(); ++PSetIter) 1274 Pressure[*PSetIter] += Weight; 1275 } 1276 1277 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1278 Register Reg) const { 1279 auto PSetIter = MRI.getPressureSets(Reg); 1280 unsigned Weight = PSetIter.getWeight(); 1281 for (; PSetIter.isValid(); ++PSetIter) { 1282 auto &P = Pressure[*PSetIter]; 1283 assert(P >= Weight && 1284 "register pressure must be greater than or equal weight"); 1285 P -= Weight; 1286 } 1287 } 1288 1289 // Return true if Reg is fixed one, for example, stack pointer 1290 bool isFixedRegister(Register Reg) const { 1291 return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 1292 } 1293 1294 bool isDefinedInThisLoop(Register Reg) const { 1295 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1296 } 1297 1298 // Search for live-in variables. They are factored into the register pressure 1299 // from the begining. Live-in variables used by every iteration should be 1300 // considered as alive throughout the loop. For example, the variable `c` in 1301 // following code. \code 1302 // int c = ...; 1303 // for (int i = 0; i < n; i++) 1304 // a[i] += b[i] + c; 1305 // \endcode 1306 void computeLiveIn() { 1307 DenseSet<Register> Used; 1308 for (auto &MI : *OrigMBB) { 1309 if (MI.isDebugInstr()) 1310 continue; 1311 for (auto &Use : ROMap[&MI].Uses) { 1312 auto Reg = Use.RegUnit; 1313 // Ignore the variable that appears only on one side of phi instruction 1314 // because it's used only at the first iteration. 1315 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1316 continue; 1317 if (isFixedRegister(Reg)) 1318 continue; 1319 if (isDefinedInThisLoop(Reg)) 1320 continue; 1321 Used.insert(Reg); 1322 } 1323 } 1324 1325 for (auto LiveIn : Used) 1326 increaseRegisterPressure(InitSetPressure, LiveIn); 1327 } 1328 1329 // Calculate the upper limit of each pressure set 1330 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1331 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1332 PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); 1333 1334 // We assume fixed registers, such as stack pointer, are already in use. 1335 // Therefore subtracting the weight of the fixed registers from the limit of 1336 // each pressure set in advance. 1337 SmallDenseSet<Register, 8> FixedRegs; 1338 for (const TargetRegisterClass *TRC : TRI->regclasses()) { 1339 for (const MCPhysReg Reg : *TRC) 1340 if (isFixedRegister(Reg)) 1341 FixedRegs.insert(Reg); 1342 } 1343 1344 LLVM_DEBUG({ 1345 for (auto Reg : FixedRegs) { 1346 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 1347 for (MCRegUnit Unit : TRI->regunits(Reg)) { 1348 const int *Sets = TRI->getRegUnitPressureSets(Unit); 1349 for (; *Sets != -1; Sets++) { 1350 dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 1351 } 1352 } 1353 dbgs() << "]\n"; 1354 } 1355 }); 1356 1357 for (auto Reg : FixedRegs) { 1358 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 1359 << "\n"); 1360 for (MCRegUnit Unit : TRI->regunits(Reg)) { 1361 auto PSetIter = MRI.getPressureSets(Unit); 1362 unsigned Weight = PSetIter.getWeight(); 1363 for (; PSetIter.isValid(); ++PSetIter) { 1364 unsigned &Limit = PressureSetLimit[*PSetIter]; 1365 assert( 1366 Limit >= Weight && 1367 "register pressure limit must be greater than or equal weight"); 1368 Limit -= Weight; 1369 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 1370 << " (decreased by " << Weight << ")\n"); 1371 } 1372 } 1373 } 1374 } 1375 1376 // There are two patterns of last-use. 1377 // - by an instruction of the current iteration 1378 // - by a phi instruction of the next iteration (loop carried value) 1379 // 1380 // Furthermore, following two groups of instructions are executed 1381 // simultaneously 1382 // - next iteration's phi instructions in i-th stage 1383 // - current iteration's instructions in i+1-th stage 1384 // 1385 // This function calculates the last-use of each register while taking into 1386 // account the above two patterns. 1387 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1388 Instr2StageTy &Stages) const { 1389 // We treat virtual registers that are defined and used in this loop. 1390 // Following virtual register will be ignored 1391 // - live-in one 1392 // - defined but not used in the loop (potentially live-out) 1393 DenseSet<Register> TargetRegs; 1394 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1395 if (isDefinedInThisLoop(Reg)) 1396 TargetRegs.insert(Reg); 1397 }; 1398 for (MachineInstr *MI : OrderedInsts) { 1399 if (MI->isPHI()) { 1400 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1401 UpdateTargetRegs(Reg); 1402 } else { 1403 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1404 UpdateTargetRegs(Use.RegUnit); 1405 } 1406 } 1407 1408 const auto InstrScore = [&Stages](MachineInstr *MI) { 1409 return Stages[MI] + MI->isPHI(); 1410 }; 1411 1412 DenseMap<Register, MachineInstr *> LastUseMI; 1413 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1414 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1415 auto Reg = Use.RegUnit; 1416 if (!TargetRegs.contains(Reg)) 1417 continue; 1418 auto Ite = LastUseMI.find(Reg); 1419 if (Ite == LastUseMI.end()) { 1420 LastUseMI[Reg] = MI; 1421 } else { 1422 MachineInstr *Orig = Ite->second; 1423 MachineInstr *New = MI; 1424 if (InstrScore(Orig) < InstrScore(New)) 1425 LastUseMI[Reg] = New; 1426 } 1427 } 1428 } 1429 1430 Instr2LastUsesTy LastUses; 1431 for (auto &Entry : LastUseMI) 1432 LastUses[Entry.second].insert(Entry.first); 1433 return LastUses; 1434 } 1435 1436 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1437 // iterations and check the register pressure at the point where all stages 1438 // overlapping. 1439 // 1440 // An example of unrolled loop where #Stage is 4.. 1441 // Iter i+0 i+1 i+2 i+3 1442 // ------------------------ 1443 // Stage 0 1444 // Stage 1 0 1445 // Stage 2 1 0 1446 // Stage 3 2 1 0 <- All stages overlap 1447 // 1448 std::vector<unsigned> 1449 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1450 Instr2StageTy &Stages, 1451 const unsigned StageCount) const { 1452 using RegSetTy = SmallDenseSet<Register, 16>; 1453 1454 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1455 // manage the liveness of the registers independently by iterations. 1456 SmallVector<RegSetTy> LiveRegSets(StageCount); 1457 1458 auto CurSetPressure = InitSetPressure; 1459 auto MaxSetPressure = InitSetPressure; 1460 auto LastUses = computeLastUses(OrderedInsts, Stages); 1461 1462 LLVM_DEBUG({ 1463 dbgs() << "Ordered instructions:\n"; 1464 for (MachineInstr *MI : OrderedInsts) { 1465 dbgs() << "Stage " << Stages[MI] << ": "; 1466 MI->dump(); 1467 } 1468 }); 1469 1470 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1471 Register Reg) { 1472 if (!Reg.isValid() || isFixedRegister(Reg)) 1473 return; 1474 1475 bool Inserted = RegSet.insert(Reg).second; 1476 if (!Inserted) 1477 return; 1478 1479 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1480 increaseRegisterPressure(CurSetPressure, Reg); 1481 LLVM_DEBUG(dumpPSet(Reg)); 1482 }; 1483 1484 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1485 Register Reg) { 1486 if (!Reg.isValid() || isFixedRegister(Reg)) 1487 return; 1488 1489 // live-in register 1490 if (!RegSet.contains(Reg)) 1491 return; 1492 1493 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1494 RegSet.erase(Reg); 1495 decreaseRegisterPressure(CurSetPressure, Reg); 1496 LLVM_DEBUG(dumpPSet(Reg)); 1497 }; 1498 1499 for (unsigned I = 0; I < StageCount; I++) { 1500 for (MachineInstr *MI : OrderedInsts) { 1501 const auto Stage = Stages[MI]; 1502 if (I < Stage) 1503 continue; 1504 1505 const unsigned Iter = I - Stage; 1506 1507 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1508 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1509 1510 for (auto LastUse : LastUses[MI]) { 1511 if (MI->isPHI()) { 1512 if (Iter != 0) 1513 EraseReg(LiveRegSets[Iter - 1], LastUse); 1514 } else { 1515 EraseReg(LiveRegSets[Iter], LastUse); 1516 } 1517 } 1518 1519 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1520 MaxSetPressure[PSet] = 1521 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1522 1523 LLVM_DEBUG({ 1524 dbgs() << "CurSetPressure="; 1525 dumpRegisterPressures(CurSetPressure); 1526 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1527 MI->dump(); 1528 }); 1529 } 1530 } 1531 1532 return MaxSetPressure; 1533 } 1534 1535 public: 1536 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1537 const MachineFunction &MF) 1538 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1539 TRI(MF.getSubtarget().getRegisterInfo()), 1540 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1541 PressureSetLimit(PSetNum, 0) {} 1542 1543 // Used to calculate register pressure, which is independent of loop 1544 // scheduling. 1545 void init(const RegisterClassInfo &RCI) { 1546 for (MachineInstr &MI : *OrigMBB) { 1547 if (MI.isDebugInstr()) 1548 continue; 1549 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1550 } 1551 1552 computeLiveIn(); 1553 computePressureSetLimit(RCI); 1554 } 1555 1556 // Calculate the maximum register pressures of the loop and check if they 1557 // exceed the limit 1558 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1559 const unsigned MaxStage) const { 1560 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1561 "the percentage of the margin must be between 0 to 100"); 1562 1563 OrderedInstsTy OrderedInsts; 1564 Instr2StageTy Stages; 1565 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1566 const auto MaxSetPressure = 1567 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1568 1569 LLVM_DEBUG({ 1570 dbgs() << "Dump MaxSetPressure:\n"; 1571 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1572 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1573 } 1574 dbgs() << '\n'; 1575 }); 1576 1577 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1578 unsigned Limit = PressureSetLimit[PSet]; 1579 unsigned Margin = Limit * RegPressureMargin / 100; 1580 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1581 << " Margin=" << Margin << "\n"); 1582 if (Limit < MaxSetPressure[PSet] + Margin) { 1583 LLVM_DEBUG( 1584 dbgs() 1585 << "Rejected the schedule because of too high register pressure\n"); 1586 return true; 1587 } 1588 } 1589 return false; 1590 } 1591 }; 1592 1593 } // end anonymous namespace 1594 1595 /// Calculate the resource constrained minimum initiation interval for the 1596 /// specified loop. We use the DFA to model the resources needed for 1597 /// each instruction, and we ignore dependences. A different DFA is created 1598 /// for each cycle that is required. When adding a new instruction, we attempt 1599 /// to add it to each existing DFA, until a legal space is found. If the 1600 /// instruction cannot be reserved in an existing DFA, we create a new one. 1601 unsigned SwingSchedulerDAG::calculateResMII() { 1602 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1603 ResourceManager RM(&MF.getSubtarget(), this); 1604 return RM.calculateResMII(); 1605 } 1606 1607 /// Calculate the recurrence-constrainted minimum initiation interval. 1608 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1609 /// for each circuit. The II needs to satisfy the inequality 1610 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1611 /// II that satisfies the inequality, and the RecMII is the maximum 1612 /// of those values. 1613 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1614 unsigned RecMII = 0; 1615 1616 for (NodeSet &Nodes : NodeSets) { 1617 if (Nodes.empty()) 1618 continue; 1619 1620 unsigned Delay = Nodes.getLatency(); 1621 unsigned Distance = 1; 1622 1623 // ii = ceil(delay / distance) 1624 unsigned CurMII = (Delay + Distance - 1) / Distance; 1625 Nodes.setRecMII(CurMII); 1626 if (CurMII > RecMII) 1627 RecMII = CurMII; 1628 } 1629 1630 return RecMII; 1631 } 1632 1633 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1634 /// but we do this to find the circuits, and then change them back. 1635 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1636 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1637 for (SUnit &SU : SUnits) { 1638 for (SDep &Pred : SU.Preds) 1639 if (Pred.getKind() == SDep::Anti) 1640 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1641 } 1642 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1643 // Remove this anti dependency and add one in the reverse direction. 1644 SUnit *SU = P.first; 1645 SDep &D = P.second; 1646 SUnit *TargetSU = D.getSUnit(); 1647 unsigned Reg = D.getReg(); 1648 unsigned Lat = D.getLatency(); 1649 SU->removePred(D); 1650 SDep Dep(SU, SDep::Anti, Reg); 1651 Dep.setLatency(Lat); 1652 TargetSU->addPred(Dep); 1653 } 1654 } 1655 1656 /// Create the adjacency structure of the nodes in the graph. 1657 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1658 SwingSchedulerDAG *DAG) { 1659 BitVector Added(SUnits.size()); 1660 DenseMap<int, int> OutputDeps; 1661 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1662 Added.reset(); 1663 // Add any successor to the adjacency matrix and exclude duplicates. 1664 for (auto &SI : SUnits[i].Succs) { 1665 // Only create a back-edge on the first and last nodes of a dependence 1666 // chain. This records any chains and adds them later. 1667 if (SI.getKind() == SDep::Output) { 1668 int N = SI.getSUnit()->NodeNum; 1669 int BackEdge = i; 1670 auto Dep = OutputDeps.find(BackEdge); 1671 if (Dep != OutputDeps.end()) { 1672 BackEdge = Dep->second; 1673 OutputDeps.erase(Dep); 1674 } 1675 OutputDeps[N] = BackEdge; 1676 } 1677 // Do not process a boundary node, an artificial node. 1678 // A back-edge is processed only if it goes to a Phi. 1679 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1680 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1681 continue; 1682 int N = SI.getSUnit()->NodeNum; 1683 if (!Added.test(N)) { 1684 AdjK[i].push_back(N); 1685 Added.set(N); 1686 } 1687 } 1688 // A chain edge between a store and a load is treated as a back-edge in the 1689 // adjacency matrix. 1690 for (auto &PI : SUnits[i].Preds) { 1691 if (!SUnits[i].getInstr()->mayStore() || 1692 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1693 continue; 1694 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1695 int N = PI.getSUnit()->NodeNum; 1696 if (!Added.test(N)) { 1697 AdjK[i].push_back(N); 1698 Added.set(N); 1699 } 1700 } 1701 } 1702 } 1703 // Add back-edges in the adjacency matrix for the output dependences. 1704 for (auto &OD : OutputDeps) 1705 if (!Added.test(OD.second)) { 1706 AdjK[OD.first].push_back(OD.second); 1707 Added.set(OD.second); 1708 } 1709 } 1710 1711 /// Identify an elementary circuit in the dependence graph starting at the 1712 /// specified node. 1713 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1714 const SwingSchedulerDAG *DAG, 1715 bool HasBackedge) { 1716 SUnit *SV = &SUnits[V]; 1717 bool F = false; 1718 Stack.insert(SV); 1719 Blocked.set(V); 1720 1721 for (auto W : AdjK[V]) { 1722 if (NumPaths > MaxPaths) 1723 break; 1724 if (W < S) 1725 continue; 1726 if (W == S) { 1727 if (!HasBackedge) 1728 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end(), DAG)); 1729 F = true; 1730 ++NumPaths; 1731 break; 1732 } 1733 if (!Blocked.test(W)) { 1734 if (circuit(W, S, NodeSets, DAG, 1735 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1736 F = true; 1737 } 1738 } 1739 1740 if (F) 1741 unblock(V); 1742 else { 1743 for (auto W : AdjK[V]) { 1744 if (W < S) 1745 continue; 1746 B[W].insert(SV); 1747 } 1748 } 1749 Stack.pop_back(); 1750 return F; 1751 } 1752 1753 /// Unblock a node in the circuit finding algorithm. 1754 void SwingSchedulerDAG::Circuits::unblock(int U) { 1755 Blocked.reset(U); 1756 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1757 while (!BU.empty()) { 1758 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1759 assert(SI != BU.end() && "Invalid B set."); 1760 SUnit *W = *SI; 1761 BU.erase(W); 1762 if (Blocked.test(W->NodeNum)) 1763 unblock(W->NodeNum); 1764 } 1765 } 1766 1767 /// Identify all the elementary circuits in the dependence graph using 1768 /// Johnson's circuit algorithm. 1769 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1770 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1771 // but we do this to find the circuits, and then change them back. 1772 swapAntiDependences(SUnits); 1773 1774 Circuits Cir(SUnits, Topo); 1775 // Create the adjacency structure. 1776 Cir.createAdjacencyStructure(this); 1777 for (int I = 0, E = SUnits.size(); I != E; ++I) { 1778 Cir.reset(); 1779 Cir.circuit(I, I, NodeSets, this); 1780 } 1781 1782 // Change the dependences back so that we've created a DAG again. 1783 swapAntiDependences(SUnits); 1784 } 1785 1786 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1787 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1788 // additional copies that are needed across iterations. An artificial dependence 1789 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1790 1791 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1792 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1793 // PHI-------True-Dep------> USEOfPhi 1794 1795 // The mutation creates 1796 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1797 1798 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1799 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1800 // late to avoid additional copies across iterations. The possible scheduling 1801 // order would be 1802 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1803 1804 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1805 for (SUnit &SU : DAG->SUnits) { 1806 // Find the COPY/REG_SEQUENCE instruction. 1807 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1808 continue; 1809 1810 // Record the loop carried PHIs. 1811 SmallVector<SUnit *, 4> PHISUs; 1812 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1813 SmallVector<SUnit *, 4> SrcSUs; 1814 1815 for (auto &Dep : SU.Preds) { 1816 SUnit *TmpSU = Dep.getSUnit(); 1817 MachineInstr *TmpMI = TmpSU->getInstr(); 1818 SDep::Kind DepKind = Dep.getKind(); 1819 // Save the loop carried PHI. 1820 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1821 PHISUs.push_back(TmpSU); 1822 // Save the source of COPY/REG_SEQUENCE. 1823 // If the source has no pre-decessors, we will end up creating cycles. 1824 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1825 SrcSUs.push_back(TmpSU); 1826 } 1827 1828 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1829 continue; 1830 1831 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1832 // SUnit to the container. 1833 SmallVector<SUnit *, 8> UseSUs; 1834 // Do not use iterator based loop here as we are updating the container. 1835 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1836 for (auto &Dep : PHISUs[Index]->Succs) { 1837 if (Dep.getKind() != SDep::Data) 1838 continue; 1839 1840 SUnit *TmpSU = Dep.getSUnit(); 1841 MachineInstr *TmpMI = TmpSU->getInstr(); 1842 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1843 PHISUs.push_back(TmpSU); 1844 continue; 1845 } 1846 UseSUs.push_back(TmpSU); 1847 } 1848 } 1849 1850 if (UseSUs.size() == 0) 1851 continue; 1852 1853 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1854 // Add the artificial dependencies if it does not form a cycle. 1855 for (auto *I : UseSUs) { 1856 for (auto *Src : SrcSUs) { 1857 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1858 Src->addPred(SDep(I, SDep::Artificial)); 1859 SDAG->Topo.AddPred(Src, I); 1860 } 1861 } 1862 } 1863 } 1864 } 1865 1866 /// Return true for DAG nodes that we ignore when computing the cost functions. 1867 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1868 /// in the calculation of the ASAP, ALAP, etc functions. 1869 static bool ignoreDependence(const SDep &D, bool isPred) { 1870 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1871 return true; 1872 return D.getKind() == SDep::Anti && isPred; 1873 } 1874 1875 /// Compute several functions need to order the nodes for scheduling. 1876 /// ASAP - Earliest time to schedule a node. 1877 /// ALAP - Latest time to schedule a node. 1878 /// MOV - Mobility function, difference between ALAP and ASAP. 1879 /// D - Depth of each node. 1880 /// H - Height of each node. 1881 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1882 ScheduleInfo.resize(SUnits.size()); 1883 1884 LLVM_DEBUG({ 1885 for (int I : Topo) { 1886 const SUnit &SU = SUnits[I]; 1887 dumpNode(SU); 1888 } 1889 }); 1890 1891 int maxASAP = 0; 1892 // Compute ASAP and ZeroLatencyDepth. 1893 for (int I : Topo) { 1894 int asap = 0; 1895 int zeroLatencyDepth = 0; 1896 SUnit *SU = &SUnits[I]; 1897 for (const SDep &P : SU->Preds) { 1898 SUnit *pred = P.getSUnit(); 1899 if (P.getLatency() == 0) 1900 zeroLatencyDepth = 1901 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1902 if (ignoreDependence(P, true)) 1903 continue; 1904 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1905 getDistance(pred, SU, P) * MII)); 1906 } 1907 maxASAP = std::max(maxASAP, asap); 1908 ScheduleInfo[I].ASAP = asap; 1909 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1910 } 1911 1912 // Compute ALAP, ZeroLatencyHeight, and MOV. 1913 for (int I : llvm::reverse(Topo)) { 1914 int alap = maxASAP; 1915 int zeroLatencyHeight = 0; 1916 SUnit *SU = &SUnits[I]; 1917 for (const SDep &S : SU->Succs) { 1918 SUnit *succ = S.getSUnit(); 1919 if (succ->isBoundaryNode()) 1920 continue; 1921 if (S.getLatency() == 0) 1922 zeroLatencyHeight = 1923 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1924 if (ignoreDependence(S, true)) 1925 continue; 1926 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1927 getDistance(SU, succ, S) * MII)); 1928 } 1929 1930 ScheduleInfo[I].ALAP = alap; 1931 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1932 } 1933 1934 // After computing the node functions, compute the summary for each node set. 1935 for (NodeSet &I : NodeSets) 1936 I.computeNodeSetInfo(this); 1937 1938 LLVM_DEBUG({ 1939 for (unsigned i = 0; i < SUnits.size(); i++) { 1940 dbgs() << "\tNode " << i << ":\n"; 1941 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1942 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1943 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1944 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1945 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1946 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1947 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1948 } 1949 }); 1950 } 1951 1952 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1953 /// as the predecessors of the elements of NodeOrder that are not also in 1954 /// NodeOrder. 1955 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1956 SmallSetVector<SUnit *, 8> &Preds, 1957 const NodeSet *S = nullptr) { 1958 Preds.clear(); 1959 for (const SUnit *SU : NodeOrder) { 1960 for (const SDep &Pred : SU->Preds) { 1961 if (S && S->count(Pred.getSUnit()) == 0) 1962 continue; 1963 if (ignoreDependence(Pred, true)) 1964 continue; 1965 if (NodeOrder.count(Pred.getSUnit()) == 0) 1966 Preds.insert(Pred.getSUnit()); 1967 } 1968 // Back-edges are predecessors with an anti-dependence. 1969 for (const SDep &Succ : SU->Succs) { 1970 if (Succ.getKind() != SDep::Anti) 1971 continue; 1972 if (S && S->count(Succ.getSUnit()) == 0) 1973 continue; 1974 if (NodeOrder.count(Succ.getSUnit()) == 0) 1975 Preds.insert(Succ.getSUnit()); 1976 } 1977 } 1978 return !Preds.empty(); 1979 } 1980 1981 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1982 /// as the successors of the elements of NodeOrder that are not also in 1983 /// NodeOrder. 1984 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1985 SmallSetVector<SUnit *, 8> &Succs, 1986 const NodeSet *S = nullptr) { 1987 Succs.clear(); 1988 for (const SUnit *SU : NodeOrder) { 1989 for (const SDep &Succ : SU->Succs) { 1990 if (S && S->count(Succ.getSUnit()) == 0) 1991 continue; 1992 if (ignoreDependence(Succ, false)) 1993 continue; 1994 if (NodeOrder.count(Succ.getSUnit()) == 0) 1995 Succs.insert(Succ.getSUnit()); 1996 } 1997 for (const SDep &Pred : SU->Preds) { 1998 if (Pred.getKind() != SDep::Anti) 1999 continue; 2000 if (S && S->count(Pred.getSUnit()) == 0) 2001 continue; 2002 if (NodeOrder.count(Pred.getSUnit()) == 0) 2003 Succs.insert(Pred.getSUnit()); 2004 } 2005 } 2006 return !Succs.empty(); 2007 } 2008 2009 /// Return true if there is a path from the specified node to any of the nodes 2010 /// in DestNodes. Keep track and return the nodes in any path. 2011 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 2012 SetVector<SUnit *> &DestNodes, 2013 SetVector<SUnit *> &Exclude, 2014 SmallPtrSet<SUnit *, 8> &Visited) { 2015 if (Cur->isBoundaryNode()) 2016 return false; 2017 if (Exclude.contains(Cur)) 2018 return false; 2019 if (DestNodes.contains(Cur)) 2020 return true; 2021 if (!Visited.insert(Cur).second) 2022 return Path.contains(Cur); 2023 bool FoundPath = false; 2024 for (auto &SI : Cur->Succs) 2025 if (!ignoreDependence(SI, false)) 2026 FoundPath |= 2027 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 2028 for (auto &PI : Cur->Preds) 2029 if (PI.getKind() == SDep::Anti) 2030 FoundPath |= 2031 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 2032 if (FoundPath) 2033 Path.insert(Cur); 2034 return FoundPath; 2035 } 2036 2037 /// Compute the live-out registers for the instructions in a node-set. 2038 /// The live-out registers are those that are defined in the node-set, 2039 /// but not used. Except for use operands of Phis. 2040 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 2041 NodeSet &NS) { 2042 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2043 MachineRegisterInfo &MRI = MF.getRegInfo(); 2044 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 2045 SmallSet<unsigned, 4> Uses; 2046 for (SUnit *SU : NS) { 2047 const MachineInstr *MI = SU->getInstr(); 2048 if (MI->isPHI()) 2049 continue; 2050 for (const MachineOperand &MO : MI->all_uses()) { 2051 Register Reg = MO.getReg(); 2052 if (Reg.isVirtual()) 2053 Uses.insert(Reg); 2054 else if (MRI.isAllocatable(Reg)) 2055 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2056 Uses.insert(Unit); 2057 } 2058 } 2059 for (SUnit *SU : NS) 2060 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2061 if (!MO.isDead()) { 2062 Register Reg = MO.getReg(); 2063 if (Reg.isVirtual()) { 2064 if (!Uses.count(Reg)) 2065 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2066 LaneBitmask::getNone())); 2067 } else if (MRI.isAllocatable(Reg)) { 2068 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2069 if (!Uses.count(Unit)) 2070 LiveOutRegs.push_back( 2071 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2072 } 2073 } 2074 RPTracker.addLiveRegs(LiveOutRegs); 2075 } 2076 2077 /// A heuristic to filter nodes in recurrent node-sets if the register 2078 /// pressure of a set is too high. 2079 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2080 for (auto &NS : NodeSets) { 2081 // Skip small node-sets since they won't cause register pressure problems. 2082 if (NS.size() <= 2) 2083 continue; 2084 IntervalPressure RecRegPressure; 2085 RegPressureTracker RecRPTracker(RecRegPressure); 2086 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2087 computeLiveOuts(MF, RecRPTracker, NS); 2088 RecRPTracker.closeBottom(); 2089 2090 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2091 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2092 return A->NodeNum > B->NodeNum; 2093 }); 2094 2095 for (auto &SU : SUnits) { 2096 // Since we're computing the register pressure for a subset of the 2097 // instructions in a block, we need to set the tracker for each 2098 // instruction in the node-set. The tracker is set to the instruction 2099 // just after the one we're interested in. 2100 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2101 RecRPTracker.setPos(std::next(CurInstI)); 2102 2103 RegPressureDelta RPDelta; 2104 ArrayRef<PressureChange> CriticalPSets; 2105 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2106 CriticalPSets, 2107 RecRegPressure.MaxSetPressure); 2108 if (RPDelta.Excess.isValid()) { 2109 LLVM_DEBUG( 2110 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2111 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2112 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2113 NS.setExceedPressure(SU); 2114 break; 2115 } 2116 RecRPTracker.recede(); 2117 } 2118 } 2119 } 2120 2121 /// A heuristic to colocate node sets that have the same set of 2122 /// successors. 2123 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2124 unsigned Colocate = 0; 2125 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2126 NodeSet &N1 = NodeSets[i]; 2127 SmallSetVector<SUnit *, 8> S1; 2128 if (N1.empty() || !succ_L(N1, S1)) 2129 continue; 2130 for (int j = i + 1; j < e; ++j) { 2131 NodeSet &N2 = NodeSets[j]; 2132 if (N1.compareRecMII(N2) != 0) 2133 continue; 2134 SmallSetVector<SUnit *, 8> S2; 2135 if (N2.empty() || !succ_L(N2, S2)) 2136 continue; 2137 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2138 N1.setColocate(++Colocate); 2139 N2.setColocate(Colocate); 2140 break; 2141 } 2142 } 2143 } 2144 } 2145 2146 /// Check if the existing node-sets are profitable. If not, then ignore the 2147 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2148 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2149 /// then it's best to try to schedule all instructions together instead of 2150 /// starting with the recurrent node-sets. 2151 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2152 // Look for loops with a large MII. 2153 if (MII < 17) 2154 return; 2155 // Check if the node-set contains only a simple add recurrence. 2156 for (auto &NS : NodeSets) { 2157 if (NS.getRecMII() > 2) 2158 return; 2159 if (NS.getMaxDepth() > MII) 2160 return; 2161 } 2162 NodeSets.clear(); 2163 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2164 } 2165 2166 /// Add the nodes that do not belong to a recurrence set into groups 2167 /// based upon connected components. 2168 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2169 SetVector<SUnit *> NodesAdded; 2170 SmallPtrSet<SUnit *, 8> Visited; 2171 // Add the nodes that are on a path between the previous node sets and 2172 // the current node set. 2173 for (NodeSet &I : NodeSets) { 2174 SmallSetVector<SUnit *, 8> N; 2175 // Add the nodes from the current node set to the previous node set. 2176 if (succ_L(I, N)) { 2177 SetVector<SUnit *> Path; 2178 for (SUnit *NI : N) { 2179 Visited.clear(); 2180 computePath(NI, Path, NodesAdded, I, Visited); 2181 } 2182 if (!Path.empty()) 2183 I.insert(Path.begin(), Path.end()); 2184 } 2185 // Add the nodes from the previous node set to the current node set. 2186 N.clear(); 2187 if (succ_L(NodesAdded, N)) { 2188 SetVector<SUnit *> Path; 2189 for (SUnit *NI : N) { 2190 Visited.clear(); 2191 computePath(NI, Path, I, NodesAdded, Visited); 2192 } 2193 if (!Path.empty()) 2194 I.insert(Path.begin(), Path.end()); 2195 } 2196 NodesAdded.insert(I.begin(), I.end()); 2197 } 2198 2199 // Create a new node set with the connected nodes of any successor of a node 2200 // in a recurrent set. 2201 NodeSet NewSet; 2202 SmallSetVector<SUnit *, 8> N; 2203 if (succ_L(NodesAdded, N)) 2204 for (SUnit *I : N) 2205 addConnectedNodes(I, NewSet, NodesAdded); 2206 if (!NewSet.empty()) 2207 NodeSets.push_back(NewSet); 2208 2209 // Create a new node set with the connected nodes of any predecessor of a node 2210 // in a recurrent set. 2211 NewSet.clear(); 2212 if (pred_L(NodesAdded, N)) 2213 for (SUnit *I : N) 2214 addConnectedNodes(I, NewSet, NodesAdded); 2215 if (!NewSet.empty()) 2216 NodeSets.push_back(NewSet); 2217 2218 // Create new nodes sets with the connected nodes any remaining node that 2219 // has no predecessor. 2220 for (SUnit &SU : SUnits) { 2221 if (NodesAdded.count(&SU) == 0) { 2222 NewSet.clear(); 2223 addConnectedNodes(&SU, NewSet, NodesAdded); 2224 if (!NewSet.empty()) 2225 NodeSets.push_back(NewSet); 2226 } 2227 } 2228 } 2229 2230 /// Add the node to the set, and add all of its connected nodes to the set. 2231 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2232 SetVector<SUnit *> &NodesAdded) { 2233 NewSet.insert(SU); 2234 NodesAdded.insert(SU); 2235 for (auto &SI : SU->Succs) { 2236 SUnit *Successor = SI.getSUnit(); 2237 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2238 NodesAdded.count(Successor) == 0) 2239 addConnectedNodes(Successor, NewSet, NodesAdded); 2240 } 2241 for (auto &PI : SU->Preds) { 2242 SUnit *Predecessor = PI.getSUnit(); 2243 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2244 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2245 } 2246 } 2247 2248 /// Return true if Set1 contains elements in Set2. The elements in common 2249 /// are returned in a different container. 2250 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2251 SmallSetVector<SUnit *, 8> &Result) { 2252 Result.clear(); 2253 for (SUnit *SU : Set1) { 2254 if (Set2.count(SU) != 0) 2255 Result.insert(SU); 2256 } 2257 return !Result.empty(); 2258 } 2259 2260 /// Merge the recurrence node sets that have the same initial node. 2261 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2262 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2263 ++I) { 2264 NodeSet &NI = *I; 2265 for (NodeSetType::iterator J = I + 1; J != E;) { 2266 NodeSet &NJ = *J; 2267 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2268 if (NJ.compareRecMII(NI) > 0) 2269 NI.setRecMII(NJ.getRecMII()); 2270 for (SUnit *SU : *J) 2271 I->insert(SU); 2272 NodeSets.erase(J); 2273 E = NodeSets.end(); 2274 } else { 2275 ++J; 2276 } 2277 } 2278 } 2279 } 2280 2281 /// Remove nodes that have been scheduled in previous NodeSets. 2282 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2283 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2284 ++I) 2285 for (NodeSetType::iterator J = I + 1; J != E;) { 2286 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2287 2288 if (J->empty()) { 2289 NodeSets.erase(J); 2290 E = NodeSets.end(); 2291 } else { 2292 ++J; 2293 } 2294 } 2295 } 2296 2297 /// Compute an ordered list of the dependence graph nodes, which 2298 /// indicates the order that the nodes will be scheduled. This is a 2299 /// two-level algorithm. First, a partial order is created, which 2300 /// consists of a list of sets ordered from highest to lowest priority. 2301 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2302 SmallSetVector<SUnit *, 8> R; 2303 NodeOrder.clear(); 2304 2305 for (auto &Nodes : NodeSets) { 2306 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2307 OrderKind Order; 2308 SmallSetVector<SUnit *, 8> N; 2309 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2310 R.insert(N.begin(), N.end()); 2311 Order = BottomUp; 2312 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2313 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2314 R.insert(N.begin(), N.end()); 2315 Order = TopDown; 2316 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2317 } else if (isIntersect(N, Nodes, R)) { 2318 // If some of the successors are in the existing node-set, then use the 2319 // top-down ordering. 2320 Order = TopDown; 2321 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2322 } else if (NodeSets.size() == 1) { 2323 for (const auto &N : Nodes) 2324 if (N->Succs.size() == 0) 2325 R.insert(N); 2326 Order = BottomUp; 2327 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2328 } else { 2329 // Find the node with the highest ASAP. 2330 SUnit *maxASAP = nullptr; 2331 for (SUnit *SU : Nodes) { 2332 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2333 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2334 maxASAP = SU; 2335 } 2336 R.insert(maxASAP); 2337 Order = BottomUp; 2338 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2339 } 2340 2341 while (!R.empty()) { 2342 if (Order == TopDown) { 2343 // Choose the node with the maximum height. If more than one, choose 2344 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2345 // choose the node with the lowest MOV. 2346 while (!R.empty()) { 2347 SUnit *maxHeight = nullptr; 2348 for (SUnit *I : R) { 2349 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2350 maxHeight = I; 2351 else if (getHeight(I) == getHeight(maxHeight) && 2352 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2353 maxHeight = I; 2354 else if (getHeight(I) == getHeight(maxHeight) && 2355 getZeroLatencyHeight(I) == 2356 getZeroLatencyHeight(maxHeight) && 2357 getMOV(I) < getMOV(maxHeight)) 2358 maxHeight = I; 2359 } 2360 NodeOrder.insert(maxHeight); 2361 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2362 R.remove(maxHeight); 2363 for (const auto &I : maxHeight->Succs) { 2364 if (Nodes.count(I.getSUnit()) == 0) 2365 continue; 2366 if (NodeOrder.contains(I.getSUnit())) 2367 continue; 2368 if (ignoreDependence(I, false)) 2369 continue; 2370 R.insert(I.getSUnit()); 2371 } 2372 // Back-edges are predecessors with an anti-dependence. 2373 for (const auto &I : maxHeight->Preds) { 2374 if (I.getKind() != SDep::Anti) 2375 continue; 2376 if (Nodes.count(I.getSUnit()) == 0) 2377 continue; 2378 if (NodeOrder.contains(I.getSUnit())) 2379 continue; 2380 R.insert(I.getSUnit()); 2381 } 2382 } 2383 Order = BottomUp; 2384 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2385 SmallSetVector<SUnit *, 8> N; 2386 if (pred_L(NodeOrder, N, &Nodes)) 2387 R.insert(N.begin(), N.end()); 2388 } else { 2389 // Choose the node with the maximum depth. If more than one, choose 2390 // the node with the maximum ZeroLatencyDepth. If still more than one, 2391 // choose the node with the lowest MOV. 2392 while (!R.empty()) { 2393 SUnit *maxDepth = nullptr; 2394 for (SUnit *I : R) { 2395 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2396 maxDepth = I; 2397 else if (getDepth(I) == getDepth(maxDepth) && 2398 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2399 maxDepth = I; 2400 else if (getDepth(I) == getDepth(maxDepth) && 2401 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2402 getMOV(I) < getMOV(maxDepth)) 2403 maxDepth = I; 2404 } 2405 NodeOrder.insert(maxDepth); 2406 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2407 R.remove(maxDepth); 2408 if (Nodes.isExceedSU(maxDepth)) { 2409 Order = TopDown; 2410 R.clear(); 2411 R.insert(Nodes.getNode(0)); 2412 break; 2413 } 2414 for (const auto &I : maxDepth->Preds) { 2415 if (Nodes.count(I.getSUnit()) == 0) 2416 continue; 2417 if (NodeOrder.contains(I.getSUnit())) 2418 continue; 2419 R.insert(I.getSUnit()); 2420 } 2421 // Back-edges are predecessors with an anti-dependence. 2422 for (const auto &I : maxDepth->Succs) { 2423 if (I.getKind() != SDep::Anti) 2424 continue; 2425 if (Nodes.count(I.getSUnit()) == 0) 2426 continue; 2427 if (NodeOrder.contains(I.getSUnit())) 2428 continue; 2429 R.insert(I.getSUnit()); 2430 } 2431 } 2432 Order = TopDown; 2433 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2434 SmallSetVector<SUnit *, 8> N; 2435 if (succ_L(NodeOrder, N, &Nodes)) 2436 R.insert(N.begin(), N.end()); 2437 } 2438 } 2439 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2440 } 2441 2442 LLVM_DEBUG({ 2443 dbgs() << "Node order: "; 2444 for (SUnit *I : NodeOrder) 2445 dbgs() << " " << I->NodeNum << " "; 2446 dbgs() << "\n"; 2447 }); 2448 } 2449 2450 /// Process the nodes in the computed order and create the pipelined schedule 2451 /// of the instructions, if possible. Return true if a schedule is found. 2452 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2453 2454 if (NodeOrder.empty()){ 2455 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2456 return false; 2457 } 2458 2459 bool scheduleFound = false; 2460 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2461 if (LimitRegPressure) { 2462 HRPDetector = 2463 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2464 HRPDetector->init(RegClassInfo); 2465 } 2466 // Keep increasing II until a valid schedule is found. 2467 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2468 Schedule.reset(); 2469 Schedule.setInitiationInterval(II); 2470 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2471 2472 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2473 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2474 do { 2475 SUnit *SU = *NI; 2476 2477 // Compute the schedule time for the instruction, which is based 2478 // upon the scheduled time for any predecessors/successors. 2479 int EarlyStart = INT_MIN; 2480 int LateStart = INT_MAX; 2481 Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 2482 LLVM_DEBUG({ 2483 dbgs() << "\n"; 2484 dbgs() << "Inst (" << SU->NodeNum << ") "; 2485 SU->getInstr()->dump(); 2486 dbgs() << "\n"; 2487 }); 2488 LLVM_DEBUG( 2489 dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 2490 2491 if (EarlyStart > LateStart) 2492 scheduleFound = false; 2493 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 2494 scheduleFound = 2495 Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 2496 else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 2497 scheduleFound = 2498 Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 2499 else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2500 LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 2501 // When scheduling a Phi it is better to start at the late cycle and 2502 // go backwards. The default order may insert the Phi too far away 2503 // from its first dependence. 2504 // Also, do backward search when all scheduled predecessors are 2505 // loop-carried output/order dependencies. Empirically, there are also 2506 // cases where scheduling becomes possible with backward search. 2507 if (SU->getInstr()->isPHI() || 2508 Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) 2509 scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 2510 else 2511 scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 2512 } else { 2513 int FirstCycle = Schedule.getFirstCycle(); 2514 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2515 FirstCycle + getASAP(SU) + II - 1, II); 2516 } 2517 2518 // Even if we find a schedule, make sure the schedule doesn't exceed the 2519 // allowable number of stages. We keep trying if this happens. 2520 if (scheduleFound) 2521 if (SwpMaxStages > -1 && 2522 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2523 scheduleFound = false; 2524 2525 LLVM_DEBUG({ 2526 if (!scheduleFound) 2527 dbgs() << "\tCan't schedule\n"; 2528 }); 2529 } while (++NI != NE && scheduleFound); 2530 2531 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2532 if (scheduleFound) 2533 scheduleFound = 2534 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2535 2536 // If a schedule is found, check if it is a valid schedule too. 2537 if (scheduleFound) 2538 scheduleFound = Schedule.isValidSchedule(this); 2539 2540 // If a schedule was found and the option is enabled, check if the schedule 2541 // might generate additional register spills/fills. 2542 if (scheduleFound && LimitRegPressure) 2543 scheduleFound = 2544 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2545 } 2546 2547 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2548 << " (II=" << Schedule.getInitiationInterval() 2549 << ")\n"); 2550 2551 if (scheduleFound) { 2552 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2553 if (!scheduleFound) 2554 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2555 } 2556 2557 if (scheduleFound) { 2558 Schedule.finalizeSchedule(this); 2559 Pass.ORE->emit([&]() { 2560 return MachineOptimizationRemarkAnalysis( 2561 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2562 << "Schedule found with Initiation Interval: " 2563 << ore::NV("II", Schedule.getInitiationInterval()) 2564 << ", MaxStageCount: " 2565 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2566 }); 2567 } else 2568 Schedule.reset(); 2569 2570 return scheduleFound && Schedule.getMaxStageCount() > 0; 2571 } 2572 2573 /// Return true if we can compute the amount the instruction changes 2574 /// during each iteration. Set Delta to the amount of the change. 2575 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) const { 2576 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2577 const MachineOperand *BaseOp; 2578 int64_t Offset; 2579 bool OffsetIsScalable; 2580 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2581 return false; 2582 2583 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2584 if (OffsetIsScalable) 2585 return false; 2586 2587 if (!BaseOp->isReg()) 2588 return false; 2589 2590 Register BaseReg = BaseOp->getReg(); 2591 2592 MachineRegisterInfo &MRI = MF.getRegInfo(); 2593 // Check if there is a Phi. If so, get the definition in the loop. 2594 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2595 if (BaseDef && BaseDef->isPHI()) { 2596 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2597 BaseDef = MRI.getVRegDef(BaseReg); 2598 } 2599 if (!BaseDef) 2600 return false; 2601 2602 int D = 0; 2603 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2604 return false; 2605 2606 Delta = D; 2607 return true; 2608 } 2609 2610 /// Check if we can change the instruction to use an offset value from the 2611 /// previous iteration. If so, return true and set the base and offset values 2612 /// so that we can rewrite the load, if necessary. 2613 /// v1 = Phi(v0, v3) 2614 /// v2 = load v1, 0 2615 /// v3 = post_store v1, 4, x 2616 /// This function enables the load to be rewritten as v2 = load v3, 4. 2617 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2618 unsigned &BasePos, 2619 unsigned &OffsetPos, 2620 unsigned &NewBase, 2621 int64_t &Offset) { 2622 // Get the load instruction. 2623 if (TII->isPostIncrement(*MI)) 2624 return false; 2625 unsigned BasePosLd, OffsetPosLd; 2626 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2627 return false; 2628 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2629 2630 // Look for the Phi instruction. 2631 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2632 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2633 if (!Phi || !Phi->isPHI()) 2634 return false; 2635 // Get the register defined in the loop block. 2636 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2637 if (!PrevReg) 2638 return false; 2639 2640 // Check for the post-increment load/store instruction. 2641 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2642 if (!PrevDef || PrevDef == MI) 2643 return false; 2644 2645 if (!TII->isPostIncrement(*PrevDef)) 2646 return false; 2647 2648 unsigned BasePos1 = 0, OffsetPos1 = 0; 2649 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2650 return false; 2651 2652 // Make sure that the instructions do not access the same memory location in 2653 // the next iteration. 2654 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2655 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2656 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2657 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2658 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2659 MF.deleteMachineInstr(NewMI); 2660 if (!Disjoint) 2661 return false; 2662 2663 // Set the return value once we determine that we return true. 2664 BasePos = BasePosLd; 2665 OffsetPos = OffsetPosLd; 2666 NewBase = PrevReg; 2667 Offset = StoreOffset; 2668 return true; 2669 } 2670 2671 /// Apply changes to the instruction if needed. The changes are need 2672 /// to improve the scheduling and depend up on the final schedule. 2673 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2674 SMSchedule &Schedule) { 2675 SUnit *SU = getSUnit(MI); 2676 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2677 InstrChanges.find(SU); 2678 if (It != InstrChanges.end()) { 2679 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2680 unsigned BasePos, OffsetPos; 2681 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2682 return; 2683 Register BaseReg = MI->getOperand(BasePos).getReg(); 2684 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2685 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2686 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2687 int BaseStageNum = Schedule.stageScheduled(SU); 2688 int BaseCycleNum = Schedule.cycleScheduled(SU); 2689 if (BaseStageNum < DefStageNum) { 2690 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2691 int OffsetDiff = DefStageNum - BaseStageNum; 2692 if (DefCycleNum < BaseCycleNum) { 2693 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2694 if (OffsetDiff > 0) 2695 --OffsetDiff; 2696 } 2697 int64_t NewOffset = 2698 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2699 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2700 SU->setInstr(NewMI); 2701 MISUnitMap[NewMI] = SU; 2702 NewMIs[MI] = NewMI; 2703 } 2704 } 2705 } 2706 2707 /// Return the instruction in the loop that defines the register. 2708 /// If the definition is a Phi, then follow the Phi operand to 2709 /// the instruction in the loop. 2710 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2711 SmallPtrSet<MachineInstr *, 8> Visited; 2712 MachineInstr *Def = MRI.getVRegDef(Reg); 2713 while (Def->isPHI()) { 2714 if (!Visited.insert(Def).second) 2715 break; 2716 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2717 if (Def->getOperand(i + 1).getMBB() == BB) { 2718 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2719 break; 2720 } 2721 } 2722 return Def; 2723 } 2724 2725 /// Return true for an order or output dependence that is loop carried 2726 /// potentially. A dependence is loop carried if the destination defines a value 2727 /// that may be used or defined by the source in a subsequent iteration. 2728 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2729 bool isSucc) const { 2730 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2731 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2732 return false; 2733 2734 if (!SwpPruneLoopCarried) 2735 return true; 2736 2737 if (Dep.getKind() == SDep::Output) 2738 return true; 2739 2740 MachineInstr *SI = Source->getInstr(); 2741 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2742 if (!isSucc) 2743 std::swap(SI, DI); 2744 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2745 2746 // Assume ordered loads and stores may have a loop carried dependence. 2747 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2748 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2749 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2750 return true; 2751 2752 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2753 return false; 2754 2755 // The conservative assumption is that a dependence between memory operations 2756 // may be loop carried. The following code checks when it can be proved that 2757 // there is no loop carried dependence. 2758 unsigned DeltaS, DeltaD; 2759 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2760 return true; 2761 2762 const MachineOperand *BaseOpS, *BaseOpD; 2763 int64_t OffsetS, OffsetD; 2764 bool OffsetSIsScalable, OffsetDIsScalable; 2765 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2766 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2767 TRI) || 2768 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2769 TRI)) 2770 return true; 2771 2772 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2773 "Expected offsets to be byte offsets"); 2774 2775 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2776 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2777 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2778 return true; 2779 2780 unsigned InitValS = 0; 2781 unsigned LoopValS = 0; 2782 unsigned InitValD = 0; 2783 unsigned LoopValD = 0; 2784 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2785 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2786 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2787 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2788 2789 if (!InitDefS->isIdenticalTo(*InitDefD)) 2790 return true; 2791 2792 // Check that the base register is incremented by a constant value for each 2793 // iteration. 2794 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2795 int D = 0; 2796 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2797 return true; 2798 2799 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2800 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2801 2802 // This is the main test, which checks the offset values and the loop 2803 // increment value to determine if the accesses may be loop carried. 2804 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2805 return true; 2806 2807 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2808 DeltaD < AccessSizeD.getValue()) 2809 return true; 2810 2811 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2812 OffsetD + (int64_t)AccessSizeD.getValue()); 2813 } 2814 2815 void SwingSchedulerDAG::postProcessDAG() { 2816 for (auto &M : Mutations) 2817 M->apply(this); 2818 } 2819 2820 /// Try to schedule the node at the specified StartCycle and continue 2821 /// until the node is schedule or the EndCycle is reached. This function 2822 /// returns true if the node is scheduled. This routine may search either 2823 /// forward or backward for a place to insert the instruction based upon 2824 /// the relative values of StartCycle and EndCycle. 2825 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2826 bool forward = true; 2827 LLVM_DEBUG({ 2828 dbgs() << "Trying to insert node between " << StartCycle << " and " 2829 << EndCycle << " II: " << II << "\n"; 2830 }); 2831 if (StartCycle > EndCycle) 2832 forward = false; 2833 2834 // The terminating condition depends on the direction. 2835 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2836 for (int curCycle = StartCycle; curCycle != termCycle; 2837 forward ? ++curCycle : --curCycle) { 2838 2839 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2840 ProcItinResources.canReserveResources(*SU, curCycle)) { 2841 LLVM_DEBUG({ 2842 dbgs() << "\tinsert at cycle " << curCycle << " "; 2843 SU->getInstr()->dump(); 2844 }); 2845 2846 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2847 ProcItinResources.reserveResources(*SU, curCycle); 2848 ScheduledInstrs[curCycle].push_back(SU); 2849 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2850 if (curCycle > LastCycle) 2851 LastCycle = curCycle; 2852 if (curCycle < FirstCycle) 2853 FirstCycle = curCycle; 2854 return true; 2855 } 2856 LLVM_DEBUG({ 2857 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2858 SU->getInstr()->dump(); 2859 }); 2860 } 2861 return false; 2862 } 2863 2864 // Return the cycle of the earliest scheduled instruction in the chain. 2865 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2866 SmallPtrSet<SUnit *, 8> Visited; 2867 SmallVector<SDep, 8> Worklist; 2868 Worklist.push_back(Dep); 2869 int EarlyCycle = INT_MAX; 2870 while (!Worklist.empty()) { 2871 const SDep &Cur = Worklist.pop_back_val(); 2872 SUnit *PrevSU = Cur.getSUnit(); 2873 if (Visited.count(PrevSU)) 2874 continue; 2875 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2876 if (it == InstrToCycle.end()) 2877 continue; 2878 EarlyCycle = std::min(EarlyCycle, it->second); 2879 for (const auto &PI : PrevSU->Preds) 2880 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2881 Worklist.push_back(PI); 2882 Visited.insert(PrevSU); 2883 } 2884 return EarlyCycle; 2885 } 2886 2887 // Return the cycle of the latest scheduled instruction in the chain. 2888 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2889 SmallPtrSet<SUnit *, 8> Visited; 2890 SmallVector<SDep, 8> Worklist; 2891 Worklist.push_back(Dep); 2892 int LateCycle = INT_MIN; 2893 while (!Worklist.empty()) { 2894 const SDep &Cur = Worklist.pop_back_val(); 2895 SUnit *SuccSU = Cur.getSUnit(); 2896 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2897 continue; 2898 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2899 if (it == InstrToCycle.end()) 2900 continue; 2901 LateCycle = std::max(LateCycle, it->second); 2902 for (const auto &SI : SuccSU->Succs) 2903 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2904 Worklist.push_back(SI); 2905 Visited.insert(SuccSU); 2906 } 2907 return LateCycle; 2908 } 2909 2910 /// If an instruction has a use that spans multiple iterations, then 2911 /// return true. These instructions are characterized by having a back-ege 2912 /// to a Phi, which contains a reference to another Phi. 2913 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2914 for (auto &P : SU->Preds) 2915 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2916 for (auto &S : P.getSUnit()->Succs) 2917 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2918 return P.getSUnit(); 2919 return nullptr; 2920 } 2921 2922 /// Compute the scheduling start slot for the instruction. The start slot 2923 /// depends on any predecessor or successor nodes scheduled already. 2924 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2925 int II, SwingSchedulerDAG *DAG) { 2926 // Iterate over each instruction that has been scheduled already. The start 2927 // slot computation depends on whether the previously scheduled instruction 2928 // is a predecessor or successor of the specified instruction. 2929 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2930 2931 // Iterate over each instruction in the current cycle. 2932 for (SUnit *I : getInstructions(cycle)) { 2933 // Because we're processing a DAG for the dependences, we recognize 2934 // the back-edge in recurrences by anti dependences. 2935 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2936 const SDep &Dep = SU->Preds[i]; 2937 if (Dep.getSUnit() == I) { 2938 if (!DAG->isBackedge(SU, Dep)) { 2939 int EarlyStart = cycle + Dep.getLatency() - 2940 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2941 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2942 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2943 int End = earliestCycleInChain(Dep) + (II - 1); 2944 *MinLateStart = std::min(*MinLateStart, End); 2945 } 2946 } else { 2947 int LateStart = cycle - Dep.getLatency() + 2948 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2949 *MinLateStart = std::min(*MinLateStart, LateStart); 2950 } 2951 } 2952 // For instruction that requires multiple iterations, make sure that 2953 // the dependent instruction is not scheduled past the definition. 2954 SUnit *BE = multipleIterations(I, DAG); 2955 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2956 !SU->isPred(I)) 2957 *MinLateStart = std::min(*MinLateStart, cycle); 2958 } 2959 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2960 if (SU->Succs[i].getSUnit() == I) { 2961 const SDep &Dep = SU->Succs[i]; 2962 if (!DAG->isBackedge(SU, Dep)) { 2963 int LateStart = cycle - Dep.getLatency() + 2964 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2965 *MinLateStart = std::min(*MinLateStart, LateStart); 2966 if (DAG->isLoopCarriedDep(SU, Dep)) { 2967 int Start = latestCycleInChain(Dep) + 1 - II; 2968 *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 2969 } 2970 } else { 2971 int EarlyStart = cycle + Dep.getLatency() - 2972 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2973 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2974 } 2975 } 2976 } 2977 } 2978 } 2979 } 2980 2981 /// Order the instructions within a cycle so that the definitions occur 2982 /// before the uses. Returns true if the instruction is added to the start 2983 /// of the list, or false if added to the end. 2984 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2985 std::deque<SUnit *> &Insts) const { 2986 MachineInstr *MI = SU->getInstr(); 2987 bool OrderBeforeUse = false; 2988 bool OrderAfterDef = false; 2989 bool OrderBeforeDef = false; 2990 unsigned MoveDef = 0; 2991 unsigned MoveUse = 0; 2992 int StageInst1 = stageScheduled(SU); 2993 2994 unsigned Pos = 0; 2995 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2996 ++I, ++Pos) { 2997 for (MachineOperand &MO : MI->operands()) { 2998 if (!MO.isReg() || !MO.getReg().isVirtual()) 2999 continue; 3000 3001 Register Reg = MO.getReg(); 3002 unsigned BasePos, OffsetPos; 3003 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3004 if (MI->getOperand(BasePos).getReg() == Reg) 3005 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3006 Reg = NewReg; 3007 bool Reads, Writes; 3008 std::tie(Reads, Writes) = 3009 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3010 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3011 OrderBeforeUse = true; 3012 if (MoveUse == 0) 3013 MoveUse = Pos; 3014 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3015 // Add the instruction after the scheduled instruction. 3016 OrderAfterDef = true; 3017 MoveDef = Pos; 3018 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3019 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3020 OrderBeforeUse = true; 3021 if (MoveUse == 0) 3022 MoveUse = Pos; 3023 } else { 3024 OrderAfterDef = true; 3025 MoveDef = Pos; 3026 } 3027 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3028 OrderBeforeUse = true; 3029 if (MoveUse == 0) 3030 MoveUse = Pos; 3031 if (MoveUse != 0) { 3032 OrderAfterDef = true; 3033 MoveDef = Pos - 1; 3034 } 3035 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3036 // Add the instruction before the scheduled instruction. 3037 OrderBeforeUse = true; 3038 if (MoveUse == 0) 3039 MoveUse = Pos; 3040 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3041 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3042 if (MoveUse == 0) { 3043 OrderBeforeDef = true; 3044 MoveUse = Pos; 3045 } 3046 } 3047 } 3048 // Check for order dependences between instructions. Make sure the source 3049 // is ordered before the destination. 3050 for (auto &S : SU->Succs) { 3051 if (S.getSUnit() != *I) 3052 continue; 3053 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3054 OrderBeforeUse = true; 3055 if (Pos < MoveUse) 3056 MoveUse = Pos; 3057 } 3058 // We did not handle HW dependences in previous for loop, 3059 // and we normally set Latency = 0 for Anti/Output deps, 3060 // so may have nodes in same cycle with Anti/Output dependent on HW regs. 3061 else if ((S.getKind() == SDep::Anti || S.getKind() == SDep::Output) && 3062 stageScheduled(*I) == StageInst1) { 3063 OrderBeforeUse = true; 3064 if ((MoveUse == 0) || (Pos < MoveUse)) 3065 MoveUse = Pos; 3066 } 3067 } 3068 for (auto &P : SU->Preds) { 3069 if (P.getSUnit() != *I) 3070 continue; 3071 if ((P.getKind() == SDep::Order || P.getKind() == SDep::Anti || 3072 P.getKind() == SDep::Output) && 3073 stageScheduled(*I) == StageInst1) { 3074 OrderAfterDef = true; 3075 MoveDef = Pos; 3076 } 3077 } 3078 } 3079 3080 // A circular dependence. 3081 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3082 OrderBeforeUse = false; 3083 3084 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3085 // to a loop-carried dependence. 3086 if (OrderBeforeDef) 3087 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3088 3089 // The uncommon case when the instruction order needs to be updated because 3090 // there is both a use and def. 3091 if (OrderBeforeUse && OrderAfterDef) { 3092 SUnit *UseSU = Insts.at(MoveUse); 3093 SUnit *DefSU = Insts.at(MoveDef); 3094 if (MoveUse > MoveDef) { 3095 Insts.erase(Insts.begin() + MoveUse); 3096 Insts.erase(Insts.begin() + MoveDef); 3097 } else { 3098 Insts.erase(Insts.begin() + MoveDef); 3099 Insts.erase(Insts.begin() + MoveUse); 3100 } 3101 orderDependence(SSD, UseSU, Insts); 3102 orderDependence(SSD, SU, Insts); 3103 orderDependence(SSD, DefSU, Insts); 3104 return; 3105 } 3106 // Put the new instruction first if there is a use in the list. Otherwise, 3107 // put it at the end of the list. 3108 if (OrderBeforeUse) 3109 Insts.push_front(SU); 3110 else 3111 Insts.push_back(SU); 3112 } 3113 3114 /// Return true if the scheduled Phi has a loop carried operand. 3115 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3116 MachineInstr &Phi) const { 3117 if (!Phi.isPHI()) 3118 return false; 3119 assert(Phi.isPHI() && "Expecting a Phi."); 3120 SUnit *DefSU = SSD->getSUnit(&Phi); 3121 unsigned DefCycle = cycleScheduled(DefSU); 3122 int DefStage = stageScheduled(DefSU); 3123 3124 unsigned InitVal = 0; 3125 unsigned LoopVal = 0; 3126 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3127 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3128 if (!UseSU) 3129 return true; 3130 if (UseSU->getInstr()->isPHI()) 3131 return true; 3132 unsigned LoopCycle = cycleScheduled(UseSU); 3133 int LoopStage = stageScheduled(UseSU); 3134 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3135 } 3136 3137 /// Return true if the instruction is a definition that is loop carried 3138 /// and defines the use on the next iteration. 3139 /// v1 = phi(v2, v3) 3140 /// (Def) v3 = op v1 3141 /// (MO) = v1 3142 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3143 /// register. 3144 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3145 MachineInstr *Def, 3146 MachineOperand &MO) const { 3147 if (!MO.isReg()) 3148 return false; 3149 if (Def->isPHI()) 3150 return false; 3151 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3152 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3153 return false; 3154 if (!isLoopCarried(SSD, *Phi)) 3155 return false; 3156 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3157 for (MachineOperand &DMO : Def->all_defs()) { 3158 if (DMO.getReg() == LoopReg) 3159 return true; 3160 } 3161 return false; 3162 } 3163 3164 /// Return true if all scheduled predecessors are loop-carried output/order 3165 /// dependencies. 3166 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 3167 SUnit *SU, SwingSchedulerDAG *DAG) const { 3168 for (const SDep &Pred : SU->Preds) 3169 if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) 3170 return false; 3171 for (const SDep &Succ : SU->Succs) 3172 if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) 3173 return false; 3174 return true; 3175 } 3176 3177 /// Determine transitive dependences of unpipelineable instructions 3178 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3179 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3180 SmallSet<SUnit *, 8> DoNotPipeline; 3181 SmallVector<SUnit *, 8> Worklist; 3182 3183 for (auto &SU : SSD->SUnits) 3184 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3185 Worklist.push_back(&SU); 3186 3187 while (!Worklist.empty()) { 3188 auto SU = Worklist.pop_back_val(); 3189 if (DoNotPipeline.count(SU)) 3190 continue; 3191 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3192 DoNotPipeline.insert(SU); 3193 for (auto &Dep : SU->Preds) 3194 Worklist.push_back(Dep.getSUnit()); 3195 if (SU->getInstr()->isPHI()) 3196 for (auto &Dep : SU->Succs) 3197 if (Dep.getKind() == SDep::Anti) 3198 Worklist.push_back(Dep.getSUnit()); 3199 } 3200 return DoNotPipeline; 3201 } 3202 3203 // Determine all instructions upon which any unpipelineable instruction depends 3204 // and ensure that they are in stage 0. If unable to do so, return false. 3205 bool SMSchedule::normalizeNonPipelinedInstructions( 3206 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3207 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3208 3209 int NewLastCycle = INT_MIN; 3210 for (SUnit &SU : SSD->SUnits) { 3211 if (!SU.isInstr()) 3212 continue; 3213 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3214 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3215 continue; 3216 } 3217 3218 // Put the non-pipelined instruction as early as possible in the schedule 3219 int NewCycle = getFirstCycle(); 3220 for (auto &Dep : SU.Preds) 3221 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3222 3223 int OldCycle = InstrToCycle[&SU]; 3224 if (OldCycle != NewCycle) { 3225 InstrToCycle[&SU] = NewCycle; 3226 auto &OldS = getInstructions(OldCycle); 3227 llvm::erase(OldS, &SU); 3228 getInstructions(NewCycle).emplace_back(&SU); 3229 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3230 << ") is not pipelined; moving from cycle " << OldCycle 3231 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3232 } 3233 NewLastCycle = std::max(NewLastCycle, NewCycle); 3234 } 3235 LastCycle = NewLastCycle; 3236 return true; 3237 } 3238 3239 // Check if the generated schedule is valid. This function checks if 3240 // an instruction that uses a physical register is scheduled in a 3241 // different stage than the definition. The pipeliner does not handle 3242 // physical register values that may cross a basic block boundary. 3243 // Furthermore, if a physical def/use pair is assigned to the same 3244 // cycle, orderDependence does not guarantee def/use ordering, so that 3245 // case should be considered invalid. (The test checks for both 3246 // earlier and same-cycle use to be more robust.) 3247 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3248 for (SUnit &SU : SSD->SUnits) { 3249 if (!SU.hasPhysRegDefs) 3250 continue; 3251 int StageDef = stageScheduled(&SU); 3252 int CycleDef = InstrToCycle[&SU]; 3253 assert(StageDef != -1 && "Instruction should have been scheduled."); 3254 for (auto &SI : SU.Succs) 3255 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3256 if (Register::isPhysicalRegister(SI.getReg())) { 3257 if (stageScheduled(SI.getSUnit()) != StageDef) 3258 return false; 3259 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3260 return false; 3261 } 3262 } 3263 return true; 3264 } 3265 3266 /// A property of the node order in swing-modulo-scheduling is 3267 /// that for nodes outside circuits the following holds: 3268 /// none of them is scheduled after both a successor and a 3269 /// predecessor. 3270 /// The method below checks whether the property is met. 3271 /// If not, debug information is printed and statistics information updated. 3272 /// Note that we do not use an assert statement. 3273 /// The reason is that although an invalid node oder may prevent 3274 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3275 /// it does not lead to the generation of incorrect code. 3276 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3277 3278 // a sorted vector that maps each SUnit to its index in the NodeOrder 3279 typedef std::pair<SUnit *, unsigned> UnitIndex; 3280 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3281 3282 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3283 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3284 3285 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3286 return std::get<0>(i1) < std::get<0>(i2); 3287 }; 3288 3289 // sort, so that we can perform a binary search 3290 llvm::sort(Indices, CompareKey); 3291 3292 bool Valid = true; 3293 (void)Valid; 3294 // for each SUnit in the NodeOrder, check whether 3295 // it appears after both a successor and a predecessor 3296 // of the SUnit. If this is the case, and the SUnit 3297 // is not part of circuit, then the NodeOrder is not 3298 // valid. 3299 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3300 SUnit *SU = NodeOrder[i]; 3301 unsigned Index = i; 3302 3303 bool PredBefore = false; 3304 bool SuccBefore = false; 3305 3306 SUnit *Succ; 3307 SUnit *Pred; 3308 (void)Succ; 3309 (void)Pred; 3310 3311 for (SDep &PredEdge : SU->Preds) { 3312 SUnit *PredSU = PredEdge.getSUnit(); 3313 unsigned PredIndex = std::get<1>( 3314 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3315 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3316 PredBefore = true; 3317 Pred = PredSU; 3318 break; 3319 } 3320 } 3321 3322 for (SDep &SuccEdge : SU->Succs) { 3323 SUnit *SuccSU = SuccEdge.getSUnit(); 3324 // Do not process a boundary node, it was not included in NodeOrder, 3325 // hence not in Indices either, call to std::lower_bound() below will 3326 // return Indices.end(). 3327 if (SuccSU->isBoundaryNode()) 3328 continue; 3329 unsigned SuccIndex = std::get<1>( 3330 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3331 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3332 SuccBefore = true; 3333 Succ = SuccSU; 3334 break; 3335 } 3336 } 3337 3338 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3339 // instructions in circuits are allowed to be scheduled 3340 // after both a successor and predecessor. 3341 bool InCircuit = llvm::any_of( 3342 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3343 if (InCircuit) 3344 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3345 else { 3346 Valid = false; 3347 NumNodeOrderIssues++; 3348 LLVM_DEBUG(dbgs() << "Predecessor ";); 3349 } 3350 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3351 << " are scheduled before node " << SU->NodeNum 3352 << "\n";); 3353 } 3354 } 3355 3356 LLVM_DEBUG({ 3357 if (!Valid) 3358 dbgs() << "Invalid node order found!\n"; 3359 }); 3360 } 3361 3362 /// Attempt to fix the degenerate cases when the instruction serialization 3363 /// causes the register lifetimes to overlap. For example, 3364 /// p' = store_pi(p, b) 3365 /// = load p, offset 3366 /// In this case p and p' overlap, which means that two registers are needed. 3367 /// Instead, this function changes the load to use p' and updates the offset. 3368 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3369 unsigned OverlapReg = 0; 3370 unsigned NewBaseReg = 0; 3371 for (SUnit *SU : Instrs) { 3372 MachineInstr *MI = SU->getInstr(); 3373 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3374 const MachineOperand &MO = MI->getOperand(i); 3375 // Look for an instruction that uses p. The instruction occurs in the 3376 // same cycle but occurs later in the serialized order. 3377 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3378 // Check that the instruction appears in the InstrChanges structure, 3379 // which contains instructions that can have the offset updated. 3380 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3381 InstrChanges.find(SU); 3382 if (It != InstrChanges.end()) { 3383 unsigned BasePos, OffsetPos; 3384 // Update the base register and adjust the offset. 3385 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3386 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3387 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3388 int64_t NewOffset = 3389 MI->getOperand(OffsetPos).getImm() - It->second.second; 3390 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3391 SU->setInstr(NewMI); 3392 MISUnitMap[NewMI] = SU; 3393 NewMIs[MI] = NewMI; 3394 } 3395 } 3396 OverlapReg = 0; 3397 NewBaseReg = 0; 3398 break; 3399 } 3400 // Look for an instruction of the form p' = op(p), which uses and defines 3401 // two virtual registers that get allocated to the same physical register. 3402 unsigned TiedUseIdx = 0; 3403 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3404 // OverlapReg is p in the example above. 3405 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3406 // NewBaseReg is p' in the example above. 3407 NewBaseReg = MI->getOperand(i).getReg(); 3408 break; 3409 } 3410 } 3411 } 3412 } 3413 3414 std::deque<SUnit *> 3415 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3416 const std::deque<SUnit *> &Instrs) const { 3417 std::deque<SUnit *> NewOrderPhi; 3418 for (SUnit *SU : Instrs) { 3419 if (SU->getInstr()->isPHI()) 3420 NewOrderPhi.push_back(SU); 3421 } 3422 std::deque<SUnit *> NewOrderI; 3423 for (SUnit *SU : Instrs) { 3424 if (!SU->getInstr()->isPHI()) 3425 orderDependence(SSD, SU, NewOrderI); 3426 } 3427 llvm::append_range(NewOrderPhi, NewOrderI); 3428 return NewOrderPhi; 3429 } 3430 3431 /// After the schedule has been formed, call this function to combine 3432 /// the instructions from the different stages/cycles. That is, this 3433 /// function creates a schedule that represents a single iteration. 3434 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3435 // Move all instructions to the first stage from later stages. 3436 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3437 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3438 ++stage) { 3439 std::deque<SUnit *> &cycleInstrs = 3440 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3441 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3442 ScheduledInstrs[cycle].push_front(SU); 3443 } 3444 } 3445 3446 // Erase all the elements in the later stages. Only one iteration should 3447 // remain in the scheduled list, and it contains all the instructions. 3448 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3449 ScheduledInstrs.erase(cycle); 3450 3451 // Change the registers in instruction as specified in the InstrChanges 3452 // map. We need to use the new registers to create the correct order. 3453 for (const SUnit &SU : SSD->SUnits) 3454 SSD->applyInstrChange(SU.getInstr(), *this); 3455 3456 // Reorder the instructions in each cycle to fix and improve the 3457 // generated code. 3458 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3459 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3460 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3461 SSD->fixupRegisterOverlaps(cycleInstrs); 3462 } 3463 3464 LLVM_DEBUG(dump();); 3465 } 3466 3467 void NodeSet::print(raw_ostream &os) const { 3468 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3469 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3470 for (const auto &I : Nodes) 3471 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3472 os << "\n"; 3473 } 3474 3475 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3476 /// Print the schedule information to the given output. 3477 void SMSchedule::print(raw_ostream &os) const { 3478 // Iterate over each cycle. 3479 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3480 // Iterate over each instruction in the cycle. 3481 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3482 for (SUnit *CI : cycleInstrs->second) { 3483 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3484 os << "(" << CI->NodeNum << ") "; 3485 CI->getInstr()->print(os); 3486 os << "\n"; 3487 } 3488 } 3489 } 3490 3491 /// Utility function used for debugging to print the schedule. 3492 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3493 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3494 3495 void ResourceManager::dumpMRT() const { 3496 LLVM_DEBUG({ 3497 if (UseDFA) 3498 return; 3499 std::stringstream SS; 3500 SS << "MRT:\n"; 3501 SS << std::setw(4) << "Slot"; 3502 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3503 SS << std::setw(3) << I; 3504 SS << std::setw(7) << "#Mops" 3505 << "\n"; 3506 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3507 SS << std::setw(4) << Slot; 3508 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3509 SS << std::setw(3) << MRT[Slot][I]; 3510 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3511 } 3512 dbgs() << SS.str(); 3513 }); 3514 } 3515 #endif 3516 3517 void ResourceManager::initProcResourceVectors( 3518 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3519 unsigned ProcResourceID = 0; 3520 3521 // We currently limit the resource kinds to 64 and below so that we can use 3522 // uint64_t for Masks 3523 assert(SM.getNumProcResourceKinds() < 64 && 3524 "Too many kinds of resources, unsupported"); 3525 // Create a unique bitmask for every processor resource unit. 3526 // Skip resource at index 0, since it always references 'InvalidUnit'. 3527 Masks.resize(SM.getNumProcResourceKinds()); 3528 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3529 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3530 if (Desc.SubUnitsIdxBegin) 3531 continue; 3532 Masks[I] = 1ULL << ProcResourceID; 3533 ProcResourceID++; 3534 } 3535 // Create a unique bitmask for every processor resource group. 3536 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3537 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3538 if (!Desc.SubUnitsIdxBegin) 3539 continue; 3540 Masks[I] = 1ULL << ProcResourceID; 3541 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3542 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3543 ProcResourceID++; 3544 } 3545 LLVM_DEBUG({ 3546 if (SwpShowResMask) { 3547 dbgs() << "ProcResourceDesc:\n"; 3548 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3549 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3550 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3551 ProcResource->Name, I, Masks[I], 3552 ProcResource->NumUnits); 3553 } 3554 dbgs() << " -----------------\n"; 3555 } 3556 }); 3557 } 3558 3559 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3560 LLVM_DEBUG({ 3561 if (SwpDebugResource) 3562 dbgs() << "canReserveResources:\n"; 3563 }); 3564 if (UseDFA) 3565 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3566 ->canReserveResources(&SU.getInstr()->getDesc()); 3567 3568 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3569 if (!SCDesc->isValid()) { 3570 LLVM_DEBUG({ 3571 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3572 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3573 }); 3574 return true; 3575 } 3576 3577 reserveResources(SCDesc, Cycle); 3578 bool Result = !isOverbooked(); 3579 unreserveResources(SCDesc, Cycle); 3580 3581 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3582 return Result; 3583 } 3584 3585 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3586 LLVM_DEBUG({ 3587 if (SwpDebugResource) 3588 dbgs() << "reserveResources:\n"; 3589 }); 3590 if (UseDFA) 3591 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3592 ->reserveResources(&SU.getInstr()->getDesc()); 3593 3594 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3595 if (!SCDesc->isValid()) { 3596 LLVM_DEBUG({ 3597 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3598 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3599 }); 3600 return; 3601 } 3602 3603 reserveResources(SCDesc, Cycle); 3604 3605 LLVM_DEBUG({ 3606 if (SwpDebugResource) { 3607 dumpMRT(); 3608 dbgs() << "reserveResources: done!\n\n"; 3609 } 3610 }); 3611 } 3612 3613 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3614 int Cycle) { 3615 assert(!UseDFA); 3616 for (const MCWriteProcResEntry &PRE : make_range( 3617 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3618 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3619 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3620 3621 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3622 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3623 } 3624 3625 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3626 int Cycle) { 3627 assert(!UseDFA); 3628 for (const MCWriteProcResEntry &PRE : make_range( 3629 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3630 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3631 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3632 3633 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3634 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3635 } 3636 3637 bool ResourceManager::isOverbooked() const { 3638 assert(!UseDFA); 3639 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3640 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3641 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3642 if (MRT[Slot][I] > Desc->NumUnits) 3643 return true; 3644 } 3645 if (NumScheduledMops[Slot] > IssueWidth) 3646 return true; 3647 } 3648 return false; 3649 } 3650 3651 int ResourceManager::calculateResMIIDFA() const { 3652 assert(UseDFA); 3653 3654 // Sort the instructions by the number of available choices for scheduling, 3655 // least to most. Use the number of critical resources as the tie breaker. 3656 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3657 for (SUnit &SU : DAG->SUnits) 3658 FUS.calcCriticalResources(*SU.getInstr()); 3659 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3660 FuncUnitOrder(FUS); 3661 3662 for (SUnit &SU : DAG->SUnits) 3663 FuncUnitOrder.push(SU.getInstr()); 3664 3665 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3666 Resources.push_back( 3667 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3668 3669 while (!FuncUnitOrder.empty()) { 3670 MachineInstr *MI = FuncUnitOrder.top(); 3671 FuncUnitOrder.pop(); 3672 if (TII->isZeroCost(MI->getOpcode())) 3673 continue; 3674 3675 // Attempt to reserve the instruction in an existing DFA. At least one 3676 // DFA is needed for each cycle. 3677 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3678 unsigned ReservedCycles = 0; 3679 auto *RI = Resources.begin(); 3680 auto *RE = Resources.end(); 3681 LLVM_DEBUG({ 3682 dbgs() << "Trying to reserve resource for " << NumCycles 3683 << " cycles for \n"; 3684 MI->dump(); 3685 }); 3686 for (unsigned C = 0; C < NumCycles; ++C) 3687 while (RI != RE) { 3688 if ((*RI)->canReserveResources(*MI)) { 3689 (*RI)->reserveResources(*MI); 3690 ++ReservedCycles; 3691 break; 3692 } 3693 RI++; 3694 } 3695 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3696 << ", NumCycles:" << NumCycles << "\n"); 3697 // Add new DFAs, if needed, to reserve resources. 3698 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3699 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3700 << "NewResource created to reserve resources" 3701 << "\n"); 3702 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3703 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3704 NewResource->reserveResources(*MI); 3705 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3706 } 3707 } 3708 3709 int Resmii = Resources.size(); 3710 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3711 return Resmii; 3712 } 3713 3714 int ResourceManager::calculateResMII() const { 3715 if (UseDFA) 3716 return calculateResMIIDFA(); 3717 3718 // Count each resource consumption and divide it by the number of units. 3719 // ResMII is the max value among them. 3720 3721 int NumMops = 0; 3722 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3723 for (SUnit &SU : DAG->SUnits) { 3724 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3725 continue; 3726 3727 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3728 if (!SCDesc->isValid()) 3729 continue; 3730 3731 LLVM_DEBUG({ 3732 if (SwpDebugResource) { 3733 DAG->dumpNode(SU); 3734 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3735 << " WriteProcRes: "; 3736 } 3737 }); 3738 NumMops += SCDesc->NumMicroOps; 3739 for (const MCWriteProcResEntry &PRE : 3740 make_range(STI->getWriteProcResBegin(SCDesc), 3741 STI->getWriteProcResEnd(SCDesc))) { 3742 LLVM_DEBUG({ 3743 if (SwpDebugResource) { 3744 const MCProcResourceDesc *Desc = 3745 SM.getProcResource(PRE.ProcResourceIdx); 3746 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3747 } 3748 }); 3749 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3750 } 3751 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3752 } 3753 3754 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3755 LLVM_DEBUG({ 3756 if (SwpDebugResource) 3757 dbgs() << "#Mops: " << NumMops << ", " 3758 << "IssueWidth: " << IssueWidth << ", " 3759 << "Cycles: " << Result << "\n"; 3760 }); 3761 3762 LLVM_DEBUG({ 3763 if (SwpDebugResource) { 3764 std::stringstream SS; 3765 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3766 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3767 << "\n"; 3768 dbgs() << SS.str(); 3769 } 3770 }); 3771 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3772 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3773 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3774 LLVM_DEBUG({ 3775 if (SwpDebugResource) { 3776 std::stringstream SS; 3777 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3778 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3779 << std::setw(10) << Cycles << "\n"; 3780 dbgs() << SS.str(); 3781 } 3782 }); 3783 if (Cycles > Result) 3784 Result = Cycles; 3785 } 3786 return Result; 3787 } 3788 3789 void ResourceManager::init(int II) { 3790 InitiationInterval = II; 3791 DFAResources.clear(); 3792 DFAResources.resize(II); 3793 for (auto &I : DFAResources) 3794 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3795 MRT.clear(); 3796 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3797 NumScheduledMops.clear(); 3798 NumScheduledMops.resize(II); 3799 } 3800