1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/CodeGen/DFAPacketizer.h" 51 #include "llvm/CodeGen/LiveIntervals.h" 52 #include "llvm/CodeGen/MachineBasicBlock.h" 53 #include "llvm/CodeGen/MachineDominators.h" 54 #include "llvm/CodeGen/MachineFunction.h" 55 #include "llvm/CodeGen/MachineFunctionPass.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineLoopInfo.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/ModuloSchedule.h" 63 #include "llvm/CodeGen/Register.h" 64 #include "llvm/CodeGen/RegisterClassInfo.h" 65 #include "llvm/CodeGen/RegisterPressure.h" 66 #include "llvm/CodeGen/ScheduleDAG.h" 67 #include "llvm/CodeGen/ScheduleDAGMutation.h" 68 #include "llvm/CodeGen/TargetInstrInfo.h" 69 #include "llvm/CodeGen/TargetOpcodes.h" 70 #include "llvm/CodeGen/TargetPassConfig.h" 71 #include "llvm/CodeGen/TargetRegisterInfo.h" 72 #include "llvm/CodeGen/TargetSubtargetInfo.h" 73 #include "llvm/Config/llvm-config.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/LaneBitmask.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCInstrItineraries.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <climits> 87 #include <cstdint> 88 #include <deque> 89 #include <functional> 90 #include <iomanip> 91 #include <iterator> 92 #include <map> 93 #include <memory> 94 #include <sstream> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "pipeliner" 102 103 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 104 STATISTIC(NumPipelined, "Number of loops software pipelined"); 105 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 106 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 107 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 108 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 109 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 110 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 111 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 112 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 113 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 114 115 /// A command line option to turn software pipelining on or off. 116 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 117 cl::desc("Enable Software Pipelining")); 118 119 /// A command line option to enable SWP at -Os. 120 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 121 cl::desc("Enable SWP at Os."), cl::Hidden, 122 cl::init(false)); 123 124 /// A command line argument to limit minimum initial interval for pipelining. 125 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 126 cl::desc("Size limit for the MII."), 127 cl::Hidden, cl::init(27)); 128 129 /// A command line argument to force pipeliner to use specified initial 130 /// interval. 131 static cl::opt<int> SwpForceII("pipeliner-force-ii", 132 cl::desc("Force pipeliner to use specified II."), 133 cl::Hidden, cl::init(-1)); 134 135 /// A command line argument to limit the number of stages in the pipeline. 136 static cl::opt<int> 137 SwpMaxStages("pipeliner-max-stages", 138 cl::desc("Maximum stages allowed in the generated scheduled."), 139 cl::Hidden, cl::init(3)); 140 141 /// A command line option to disable the pruning of chain dependences due to 142 /// an unrelated Phi. 143 static cl::opt<bool> 144 SwpPruneDeps("pipeliner-prune-deps", 145 cl::desc("Prune dependences between unrelated Phi nodes."), 146 cl::Hidden, cl::init(true)); 147 148 /// A command line option to disable the pruning of loop carried order 149 /// dependences. 150 static cl::opt<bool> 151 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 152 cl::desc("Prune loop carried order dependences."), 153 cl::Hidden, cl::init(true)); 154 155 #ifndef NDEBUG 156 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 157 #endif 158 159 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 160 cl::ReallyHidden, 161 cl::desc("Ignore RecMII")); 162 163 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 164 cl::init(false)); 165 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 166 cl::init(false)); 167 168 static cl::opt<bool> EmitTestAnnotations( 169 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 170 cl::desc("Instead of emitting the pipelined code, annotate instructions " 171 "with the generated schedule for feeding into the " 172 "-modulo-schedule-test pass")); 173 174 static cl::opt<bool> ExperimentalCodeGen( 175 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 176 cl::desc( 177 "Use the experimental peeling code generator for software pipelining")); 178 179 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 180 cl::desc("Range to search for II"), 181 cl::Hidden, cl::init(10)); 182 183 static cl::opt<bool> 184 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 185 cl::desc("Limit register pressure of scheduled loop")); 186 187 static cl::opt<int> 188 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 189 cl::init(5), 190 cl::desc("Margin representing the unused percentage of " 191 "the register pressure limit")); 192 193 static cl::opt<bool> 194 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 195 cl::desc("Use the MVE code generator for software pipelining")); 196 197 namespace llvm { 198 199 // A command line option to enable the CopyToPhi DAG mutation. 200 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 201 cl::init(true), 202 cl::desc("Enable CopyToPhi DAG Mutation")); 203 204 /// A command line argument to force pipeliner to use specified issue 205 /// width. 206 cl::opt<int> SwpForceIssueWidth( 207 "pipeliner-force-issue-width", 208 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 209 cl::init(-1)); 210 211 /// A command line argument to set the window scheduling option. 212 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 213 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 214 cl::desc("Set how to use window scheduling algorithm."), 215 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 216 "Turn off window algorithm."), 217 clEnumValN(WindowSchedulingFlag::WS_On, "on", 218 "Use window algorithm after SMS algorithm fails."), 219 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 220 "Use window algorithm instead of SMS algorithm."))); 221 222 } // end namespace llvm 223 224 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 225 char MachinePipeliner::ID = 0; 226 #ifndef NDEBUG 227 int MachinePipeliner::NumTries = 0; 228 #endif 229 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 230 231 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 232 "Modulo Software Pipelining", false, false) 233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 235 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 236 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 237 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 238 "Modulo Software Pipelining", false, false) 239 240 /// The "main" function for implementing Swing Modulo Scheduling. 241 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 242 if (skipFunction(mf.getFunction())) 243 return false; 244 245 if (!EnableSWP) 246 return false; 247 248 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 249 !EnableSWPOptSize.getPosition()) 250 return false; 251 252 if (!mf.getSubtarget().enableMachinePipeliner()) 253 return false; 254 255 // Cannot pipeline loops without instruction itineraries if we are using 256 // DFA for the pipeliner. 257 if (mf.getSubtarget().useDFAforSMS() && 258 (!mf.getSubtarget().getInstrItineraryData() || 259 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 260 return false; 261 262 MF = &mf; 263 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 264 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 265 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 266 TII = MF->getSubtarget().getInstrInfo(); 267 RegClassInfo.runOnMachineFunction(*MF); 268 269 for (const auto &L : *MLI) 270 scheduleLoop(*L); 271 272 return false; 273 } 274 275 /// Attempt to perform the SMS algorithm on the specified loop. This function is 276 /// the main entry point for the algorithm. The function identifies candidate 277 /// loops, calculates the minimum initiation interval, and attempts to schedule 278 /// the loop. 279 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 280 bool Changed = false; 281 for (const auto &InnerLoop : L) 282 Changed |= scheduleLoop(*InnerLoop); 283 284 #ifndef NDEBUG 285 // Stop trying after reaching the limit (if any). 286 int Limit = SwpLoopLimit; 287 if (Limit >= 0) { 288 if (NumTries >= SwpLoopLimit) 289 return Changed; 290 NumTries++; 291 } 292 #endif 293 294 setPragmaPipelineOptions(L); 295 if (!canPipelineLoop(L)) { 296 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 297 ORE->emit([&]() { 298 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 299 L.getStartLoc(), L.getHeader()) 300 << "Failed to pipeline loop"; 301 }); 302 303 LI.LoopPipelinerInfo.reset(); 304 return Changed; 305 } 306 307 ++NumTrytoPipeline; 308 if (useSwingModuloScheduler()) 309 Changed = swingModuloScheduler(L); 310 311 if (useWindowScheduler(Changed)) 312 Changed = runWindowScheduler(L); 313 314 LI.LoopPipelinerInfo.reset(); 315 return Changed; 316 } 317 318 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 319 // Reset the pragma for the next loop in iteration. 320 disabledByPragma = false; 321 II_setByPragma = 0; 322 323 MachineBasicBlock *LBLK = L.getTopBlock(); 324 325 if (LBLK == nullptr) 326 return; 327 328 const BasicBlock *BBLK = LBLK->getBasicBlock(); 329 if (BBLK == nullptr) 330 return; 331 332 const Instruction *TI = BBLK->getTerminator(); 333 if (TI == nullptr) 334 return; 335 336 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 337 if (LoopID == nullptr) 338 return; 339 340 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 341 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 342 343 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 344 MDNode *MD = dyn_cast<MDNode>(MDO); 345 346 if (MD == nullptr) 347 continue; 348 349 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 350 351 if (S == nullptr) 352 continue; 353 354 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 355 assert(MD->getNumOperands() == 2 && 356 "Pipeline initiation interval hint metadata should have two operands."); 357 II_setByPragma = 358 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 359 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 360 } else if (S->getString() == "llvm.loop.pipeline.disable") { 361 disabledByPragma = true; 362 } 363 } 364 } 365 366 /// Return true if the loop can be software pipelined. The algorithm is 367 /// restricted to loops with a single basic block. Make sure that the 368 /// branch in the loop can be analyzed. 369 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 370 if (L.getNumBlocks() != 1) { 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "Not a single basic block: " 375 << ore::NV("NumBlocks", L.getNumBlocks()); 376 }); 377 return false; 378 } 379 380 if (disabledByPragma) { 381 ORE->emit([&]() { 382 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 383 L.getStartLoc(), L.getHeader()) 384 << "Disabled by Pragma."; 385 }); 386 return false; 387 } 388 389 // Check if the branch can't be understood because we can't do pipelining 390 // if that's the case. 391 LI.TBB = nullptr; 392 LI.FBB = nullptr; 393 LI.BrCond.clear(); 394 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 395 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 396 NumFailBranch++; 397 ORE->emit([&]() { 398 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 399 L.getStartLoc(), L.getHeader()) 400 << "The branch can't be understood"; 401 }); 402 return false; 403 } 404 405 LI.LoopInductionVar = nullptr; 406 LI.LoopCompare = nullptr; 407 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 408 if (!LI.LoopPipelinerInfo) { 409 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 410 NumFailLoop++; 411 ORE->emit([&]() { 412 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 413 L.getStartLoc(), L.getHeader()) 414 << "The loop structure is not supported"; 415 }); 416 return false; 417 } 418 419 if (!L.getLoopPreheader()) { 420 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 421 NumFailPreheader++; 422 ORE->emit([&]() { 423 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 424 L.getStartLoc(), L.getHeader()) 425 << "No loop preheader found"; 426 }); 427 return false; 428 } 429 430 // Remove any subregisters from inputs to phi nodes. 431 preprocessPhiNodes(*L.getHeader()); 432 return true; 433 } 434 435 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 436 MachineRegisterInfo &MRI = MF->getRegInfo(); 437 SlotIndexes &Slots = 438 *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 439 440 for (MachineInstr &PI : B.phis()) { 441 MachineOperand &DefOp = PI.getOperand(0); 442 assert(DefOp.getSubReg() == 0); 443 auto *RC = MRI.getRegClass(DefOp.getReg()); 444 445 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 446 MachineOperand &RegOp = PI.getOperand(i); 447 if (RegOp.getSubReg() == 0) 448 continue; 449 450 // If the operand uses a subregister, replace it with a new register 451 // without subregisters, and generate a copy to the new register. 452 Register NewReg = MRI.createVirtualRegister(RC); 453 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 454 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 455 const DebugLoc &DL = PredB.findDebugLoc(At); 456 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 457 .addReg(RegOp.getReg(), getRegState(RegOp), 458 RegOp.getSubReg()); 459 Slots.insertMachineInstrInMaps(*Copy); 460 RegOp.setReg(NewReg); 461 RegOp.setSubReg(0); 462 } 463 } 464 } 465 466 /// The SMS algorithm consists of the following main steps: 467 /// 1. Computation and analysis of the dependence graph. 468 /// 2. Ordering of the nodes (instructions). 469 /// 3. Attempt to Schedule the loop. 470 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 471 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 472 473 SwingSchedulerDAG SMS( 474 *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 475 II_setByPragma, LI.LoopPipelinerInfo.get()); 476 477 MachineBasicBlock *MBB = L.getHeader(); 478 // The kernel should not include any terminator instructions. These 479 // will be added back later. 480 SMS.startBlock(MBB); 481 482 // Compute the number of 'real' instructions in the basic block by 483 // ignoring terminators. 484 unsigned size = MBB->size(); 485 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 486 E = MBB->instr_end(); 487 I != E; ++I, --size) 488 ; 489 490 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 491 SMS.schedule(); 492 SMS.exitRegion(); 493 494 SMS.finishBlock(); 495 return SMS.hasNewSchedule(); 496 } 497 498 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 499 AU.addRequired<AAResultsWrapperPass>(); 500 AU.addPreserved<AAResultsWrapperPass>(); 501 AU.addRequired<MachineLoopInfoWrapperPass>(); 502 AU.addRequired<MachineDominatorTreeWrapperPass>(); 503 AU.addRequired<LiveIntervalsWrapperPass>(); 504 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 505 AU.addRequired<TargetPassConfig>(); 506 MachineFunctionPass::getAnalysisUsage(AU); 507 } 508 509 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 510 MachineSchedContext Context; 511 Context.MF = MF; 512 Context.MLI = MLI; 513 Context.MDT = MDT; 514 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 515 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 516 Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 517 Context.RegClassInfo->runOnMachineFunction(*MF); 518 WindowScheduler WS(&Context, L); 519 return WS.run(); 520 } 521 522 bool MachinePipeliner::useSwingModuloScheduler() { 523 // SwingModuloScheduler does not work when WindowScheduler is forced. 524 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 525 } 526 527 bool MachinePipeliner::useWindowScheduler(bool Changed) { 528 // WindowScheduler does not work for following cases: 529 // 1. when it is off. 530 // 2. when SwingModuloScheduler is successfully scheduled. 531 // 3. when pragma II is enabled. 532 if (II_setByPragma) { 533 LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 534 "llvm.loop.pipeline.initiationinterval is set.\n"); 535 return false; 536 } 537 538 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 539 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 540 } 541 542 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 543 if (SwpForceII > 0) 544 MII = SwpForceII; 545 else if (II_setByPragma > 0) 546 MII = II_setByPragma; 547 else 548 MII = std::max(ResMII, RecMII); 549 } 550 551 void SwingSchedulerDAG::setMAX_II() { 552 if (SwpForceII > 0) 553 MAX_II = SwpForceII; 554 else if (II_setByPragma > 0) 555 MAX_II = II_setByPragma; 556 else 557 MAX_II = MII + SwpIISearchRange; 558 } 559 560 /// We override the schedule function in ScheduleDAGInstrs to implement the 561 /// scheduling part of the Swing Modulo Scheduling algorithm. 562 void SwingSchedulerDAG::schedule() { 563 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 564 buildSchedGraph(AA); 565 addLoopCarriedDependences(AA); 566 updatePhiDependences(); 567 Topo.InitDAGTopologicalSorting(); 568 changeDependences(); 569 postProcessDAG(); 570 LLVM_DEBUG(dump()); 571 572 NodeSetType NodeSets; 573 findCircuits(NodeSets); 574 NodeSetType Circuits = NodeSets; 575 576 // Calculate the MII. 577 unsigned ResMII = calculateResMII(); 578 unsigned RecMII = calculateRecMII(NodeSets); 579 580 fuseRecs(NodeSets); 581 582 // This flag is used for testing and can cause correctness problems. 583 if (SwpIgnoreRecMII) 584 RecMII = 0; 585 586 setMII(ResMII, RecMII); 587 setMAX_II(); 588 589 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 590 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 591 592 // Can't schedule a loop without a valid MII. 593 if (MII == 0) { 594 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 595 NumFailZeroMII++; 596 Pass.ORE->emit([&]() { 597 return MachineOptimizationRemarkAnalysis( 598 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 599 << "Invalid Minimal Initiation Interval: 0"; 600 }); 601 return; 602 } 603 604 // Don't pipeline large loops. 605 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 606 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 607 << ", we don't pipeline large loops\n"); 608 NumFailLargeMaxMII++; 609 Pass.ORE->emit([&]() { 610 return MachineOptimizationRemarkAnalysis( 611 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 612 << "Minimal Initiation Interval too large: " 613 << ore::NV("MII", (int)MII) << " > " 614 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 615 << "Refer to -pipeliner-max-mii."; 616 }); 617 return; 618 } 619 620 computeNodeFunctions(NodeSets); 621 622 registerPressureFilter(NodeSets); 623 624 colocateNodeSets(NodeSets); 625 626 checkNodeSets(NodeSets); 627 628 LLVM_DEBUG({ 629 for (auto &I : NodeSets) { 630 dbgs() << " Rec NodeSet "; 631 I.dump(); 632 } 633 }); 634 635 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 636 637 groupRemainingNodes(NodeSets); 638 639 removeDuplicateNodes(NodeSets); 640 641 LLVM_DEBUG({ 642 for (auto &I : NodeSets) { 643 dbgs() << " NodeSet "; 644 I.dump(); 645 } 646 }); 647 648 computeNodeOrder(NodeSets); 649 650 // check for node order issues 651 checkValidNodeOrder(Circuits); 652 653 SMSchedule Schedule(Pass.MF, this); 654 Scheduled = schedulePipeline(Schedule); 655 656 if (!Scheduled){ 657 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 658 NumFailNoSchedule++; 659 Pass.ORE->emit([&]() { 660 return MachineOptimizationRemarkAnalysis( 661 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 662 << "Unable to find schedule"; 663 }); 664 return; 665 } 666 667 unsigned numStages = Schedule.getMaxStageCount(); 668 // No need to generate pipeline if there are no overlapped iterations. 669 if (numStages == 0) { 670 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 671 NumFailZeroStage++; 672 Pass.ORE->emit([&]() { 673 return MachineOptimizationRemarkAnalysis( 674 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 675 << "No need to pipeline - no overlapped iterations in schedule."; 676 }); 677 return; 678 } 679 // Check that the maximum stage count is less than user-defined limit. 680 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 681 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 682 << " : too many stages, abort\n"); 683 NumFailLargeMaxStage++; 684 Pass.ORE->emit([&]() { 685 return MachineOptimizationRemarkAnalysis( 686 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 687 << "Too many stages in schedule: " 688 << ore::NV("numStages", (int)numStages) << " > " 689 << ore::NV("SwpMaxStages", SwpMaxStages) 690 << ". Refer to -pipeliner-max-stages."; 691 }); 692 return; 693 } 694 695 Pass.ORE->emit([&]() { 696 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 697 Loop.getHeader()) 698 << "Pipelined succesfully!"; 699 }); 700 701 // Generate the schedule as a ModuloSchedule. 702 DenseMap<MachineInstr *, int> Cycles, Stages; 703 std::vector<MachineInstr *> OrderedInsts; 704 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 705 ++Cycle) { 706 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 707 OrderedInsts.push_back(SU->getInstr()); 708 Cycles[SU->getInstr()] = Cycle; 709 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 710 } 711 } 712 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 713 for (auto &KV : NewMIs) { 714 Cycles[KV.first] = Cycles[KV.second]; 715 Stages[KV.first] = Stages[KV.second]; 716 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 717 } 718 719 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 720 std::move(Stages)); 721 if (EmitTestAnnotations) { 722 assert(NewInstrChanges.empty() && 723 "Cannot serialize a schedule with InstrChanges!"); 724 ModuloScheduleTestAnnotater MSTI(MF, MS); 725 MSTI.annotate(); 726 return; 727 } 728 // The experimental code generator can't work if there are InstChanges. 729 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 730 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 731 MSE.expand(); 732 } else if (MVECodeGen && NewInstrChanges.empty() && 733 LoopPipelinerInfo->isMVEExpanderSupported() && 734 ModuloScheduleExpanderMVE::canApply(Loop)) { 735 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 736 MSE.expand(); 737 } else { 738 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 739 MSE.expand(); 740 MSE.cleanup(); 741 } 742 ++NumPipelined; 743 } 744 745 /// Clean up after the software pipeliner runs. 746 void SwingSchedulerDAG::finishBlock() { 747 for (auto &KV : NewMIs) 748 MF.deleteMachineInstr(KV.second); 749 NewMIs.clear(); 750 751 // Call the superclass. 752 ScheduleDAGInstrs::finishBlock(); 753 } 754 755 /// Return the register values for the operands of a Phi instruction. 756 /// This function assume the instruction is a Phi. 757 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 758 unsigned &InitVal, unsigned &LoopVal) { 759 assert(Phi.isPHI() && "Expecting a Phi."); 760 761 InitVal = 0; 762 LoopVal = 0; 763 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 764 if (Phi.getOperand(i + 1).getMBB() != Loop) 765 InitVal = Phi.getOperand(i).getReg(); 766 else 767 LoopVal = Phi.getOperand(i).getReg(); 768 769 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 770 } 771 772 /// Return the Phi register value that comes the loop block. 773 static unsigned getLoopPhiReg(const MachineInstr &Phi, 774 const MachineBasicBlock *LoopBB) { 775 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 776 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 777 return Phi.getOperand(i).getReg(); 778 return 0; 779 } 780 781 /// Return true if SUb can be reached from SUa following the chain edges. 782 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 783 SmallPtrSet<SUnit *, 8> Visited; 784 SmallVector<SUnit *, 8> Worklist; 785 Worklist.push_back(SUa); 786 while (!Worklist.empty()) { 787 const SUnit *SU = Worklist.pop_back_val(); 788 for (const auto &SI : SU->Succs) { 789 SUnit *SuccSU = SI.getSUnit(); 790 if (SI.getKind() == SDep::Order) { 791 if (Visited.count(SuccSU)) 792 continue; 793 if (SuccSU == SUb) 794 return true; 795 Worklist.push_back(SuccSU); 796 Visited.insert(SuccSU); 797 } 798 } 799 } 800 return false; 801 } 802 803 /// Return true if the instruction causes a chain between memory 804 /// references before and after it. 805 static bool isDependenceBarrier(MachineInstr &MI) { 806 return MI.isCall() || MI.mayRaiseFPException() || 807 MI.hasUnmodeledSideEffects() || 808 (MI.hasOrderedMemoryRef() && 809 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 810 } 811 812 /// Return the underlying objects for the memory references of an instruction. 813 /// This function calls the code in ValueTracking, but first checks that the 814 /// instruction has a memory operand. 815 static void getUnderlyingObjects(const MachineInstr *MI, 816 SmallVectorImpl<const Value *> &Objs) { 817 if (!MI->hasOneMemOperand()) 818 return; 819 MachineMemOperand *MM = *MI->memoperands_begin(); 820 if (!MM->getValue()) 821 return; 822 getUnderlyingObjects(MM->getValue(), Objs); 823 for (const Value *V : Objs) { 824 if (!isIdentifiedObject(V)) { 825 Objs.clear(); 826 return; 827 } 828 } 829 } 830 831 /// Add a chain edge between a load and store if the store can be an 832 /// alias of the load on a subsequent iteration, i.e., a loop carried 833 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 834 /// but that code doesn't create loop carried dependences. 835 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 836 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 837 Value *UnknownValue = 838 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 839 for (auto &SU : SUnits) { 840 MachineInstr &MI = *SU.getInstr(); 841 if (isDependenceBarrier(MI)) 842 PendingLoads.clear(); 843 else if (MI.mayLoad()) { 844 SmallVector<const Value *, 4> Objs; 845 ::getUnderlyingObjects(&MI, Objs); 846 if (Objs.empty()) 847 Objs.push_back(UnknownValue); 848 for (const auto *V : Objs) { 849 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 850 SUs.push_back(&SU); 851 } 852 } else if (MI.mayStore()) { 853 SmallVector<const Value *, 4> Objs; 854 ::getUnderlyingObjects(&MI, Objs); 855 if (Objs.empty()) 856 Objs.push_back(UnknownValue); 857 for (const auto *V : Objs) { 858 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 859 PendingLoads.find(V); 860 if (I == PendingLoads.end()) 861 continue; 862 for (auto *Load : I->second) { 863 if (isSuccOrder(Load, &SU)) 864 continue; 865 MachineInstr &LdMI = *Load->getInstr(); 866 // First, perform the cheaper check that compares the base register. 867 // If they are the same and the load offset is less than the store 868 // offset, then mark the dependence as loop carried potentially. 869 const MachineOperand *BaseOp1, *BaseOp2; 870 int64_t Offset1, Offset2; 871 bool Offset1IsScalable, Offset2IsScalable; 872 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 873 Offset1IsScalable, TRI) && 874 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 875 Offset2IsScalable, TRI)) { 876 if (BaseOp1->isIdenticalTo(*BaseOp2) && 877 Offset1IsScalable == Offset2IsScalable && 878 (int)Offset1 < (int)Offset2) { 879 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 880 "What happened to the chain edge?"); 881 SDep Dep(Load, SDep::Barrier); 882 Dep.setLatency(1); 883 SU.addPred(Dep); 884 continue; 885 } 886 } 887 // Second, the more expensive check that uses alias analysis on the 888 // base registers. If they alias, and the load offset is less than 889 // the store offset, the mark the dependence as loop carried. 890 if (!AA) { 891 SDep Dep(Load, SDep::Barrier); 892 Dep.setLatency(1); 893 SU.addPred(Dep); 894 continue; 895 } 896 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 897 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 898 if (!MMO1->getValue() || !MMO2->getValue()) { 899 SDep Dep(Load, SDep::Barrier); 900 Dep.setLatency(1); 901 SU.addPred(Dep); 902 continue; 903 } 904 if (MMO1->getValue() == MMO2->getValue() && 905 MMO1->getOffset() <= MMO2->getOffset()) { 906 SDep Dep(Load, SDep::Barrier); 907 Dep.setLatency(1); 908 SU.addPred(Dep); 909 continue; 910 } 911 if (!AA->isNoAlias( 912 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 913 MemoryLocation::getAfter(MMO2->getValue(), 914 MMO2->getAAInfo()))) { 915 SDep Dep(Load, SDep::Barrier); 916 Dep.setLatency(1); 917 SU.addPred(Dep); 918 } 919 } 920 } 921 } 922 } 923 } 924 925 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 926 /// processes dependences for PHIs. This function adds true dependences 927 /// from a PHI to a use, and a loop carried dependence from the use to the 928 /// PHI. The loop carried dependence is represented as an anti dependence 929 /// edge. This function also removes chain dependences between unrelated 930 /// PHIs. 931 void SwingSchedulerDAG::updatePhiDependences() { 932 SmallVector<SDep, 4> RemoveDeps; 933 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 934 935 // Iterate over each DAG node. 936 for (SUnit &I : SUnits) { 937 RemoveDeps.clear(); 938 // Set to true if the instruction has an operand defined by a Phi. 939 unsigned HasPhiUse = 0; 940 unsigned HasPhiDef = 0; 941 MachineInstr *MI = I.getInstr(); 942 // Iterate over each operand, and we process the definitions. 943 for (const MachineOperand &MO : MI->operands()) { 944 if (!MO.isReg()) 945 continue; 946 Register Reg = MO.getReg(); 947 if (MO.isDef()) { 948 // If the register is used by a Phi, then create an anti dependence. 949 for (MachineRegisterInfo::use_instr_iterator 950 UI = MRI.use_instr_begin(Reg), 951 UE = MRI.use_instr_end(); 952 UI != UE; ++UI) { 953 MachineInstr *UseMI = &*UI; 954 SUnit *SU = getSUnit(UseMI); 955 if (SU != nullptr && UseMI->isPHI()) { 956 if (!MI->isPHI()) { 957 SDep Dep(SU, SDep::Anti, Reg); 958 Dep.setLatency(1); 959 I.addPred(Dep); 960 } else { 961 HasPhiDef = Reg; 962 // Add a chain edge to a dependent Phi that isn't an existing 963 // predecessor. 964 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 965 I.addPred(SDep(SU, SDep::Barrier)); 966 } 967 } 968 } 969 } else if (MO.isUse()) { 970 // If the register is defined by a Phi, then create a true dependence. 971 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 972 if (DefMI == nullptr) 973 continue; 974 SUnit *SU = getSUnit(DefMI); 975 if (SU != nullptr && DefMI->isPHI()) { 976 if (!MI->isPHI()) { 977 SDep Dep(SU, SDep::Data, Reg); 978 Dep.setLatency(0); 979 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 980 &SchedModel); 981 I.addPred(Dep); 982 } else { 983 HasPhiUse = Reg; 984 // Add a chain edge to a dependent Phi that isn't an existing 985 // predecessor. 986 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 987 I.addPred(SDep(SU, SDep::Barrier)); 988 } 989 } 990 } 991 } 992 // Remove order dependences from an unrelated Phi. 993 if (!SwpPruneDeps) 994 continue; 995 for (auto &PI : I.Preds) { 996 MachineInstr *PMI = PI.getSUnit()->getInstr(); 997 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 998 if (I.getInstr()->isPHI()) { 999 if (PMI->getOperand(0).getReg() == HasPhiUse) 1000 continue; 1001 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1002 continue; 1003 } 1004 RemoveDeps.push_back(PI); 1005 } 1006 } 1007 for (const SDep &D : RemoveDeps) 1008 I.removePred(D); 1009 } 1010 } 1011 1012 /// Iterate over each DAG node and see if we can change any dependences 1013 /// in order to reduce the recurrence MII. 1014 void SwingSchedulerDAG::changeDependences() { 1015 // See if an instruction can use a value from the previous iteration. 1016 // If so, we update the base and offset of the instruction and change 1017 // the dependences. 1018 for (SUnit &I : SUnits) { 1019 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1020 int64_t NewOffset = 0; 1021 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1022 NewOffset)) 1023 continue; 1024 1025 // Get the MI and SUnit for the instruction that defines the original base. 1026 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1027 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1028 if (!DefMI) 1029 continue; 1030 SUnit *DefSU = getSUnit(DefMI); 1031 if (!DefSU) 1032 continue; 1033 // Get the MI and SUnit for the instruction that defins the new base. 1034 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1035 if (!LastMI) 1036 continue; 1037 SUnit *LastSU = getSUnit(LastMI); 1038 if (!LastSU) 1039 continue; 1040 1041 if (Topo.IsReachable(&I, LastSU)) 1042 continue; 1043 1044 // Remove the dependence. The value now depends on a prior iteration. 1045 SmallVector<SDep, 4> Deps; 1046 for (const SDep &P : I.Preds) 1047 if (P.getSUnit() == DefSU) 1048 Deps.push_back(P); 1049 for (const SDep &D : Deps) { 1050 Topo.RemovePred(&I, D.getSUnit()); 1051 I.removePred(D); 1052 } 1053 // Remove the chain dependence between the instructions. 1054 Deps.clear(); 1055 for (auto &P : LastSU->Preds) 1056 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1057 Deps.push_back(P); 1058 for (const SDep &D : Deps) { 1059 Topo.RemovePred(LastSU, D.getSUnit()); 1060 LastSU->removePred(D); 1061 } 1062 1063 // Add a dependence between the new instruction and the instruction 1064 // that defines the new base. 1065 SDep Dep(&I, SDep::Anti, NewBase); 1066 Topo.AddPred(LastSU, &I); 1067 LastSU->addPred(Dep); 1068 1069 // Remember the base and offset information so that we can update the 1070 // instruction during code generation. 1071 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1072 } 1073 } 1074 1075 /// Create an instruction stream that represents a single iteration and stage of 1076 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1077 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1078 /// function is an approximation of SMSchedule::finalizeSchedule with all 1079 /// non-const operations removed. 1080 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1081 SMSchedule &Schedule, 1082 std::vector<MachineInstr *> &OrderedInsts, 1083 DenseMap<MachineInstr *, unsigned> &Stages) { 1084 DenseMap<int, std::deque<SUnit *>> Instrs; 1085 1086 // Move all instructions to the first stage from the later stages. 1087 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1088 ++Cycle) { 1089 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1090 Stage <= LastStage; ++Stage) { 1091 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1092 Cycle + Stage * Schedule.getInitiationInterval()))) { 1093 Instrs[Cycle].push_front(SU); 1094 } 1095 } 1096 } 1097 1098 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1099 ++Cycle) { 1100 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1101 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1102 for (SUnit *SU : CycleInstrs) { 1103 MachineInstr *MI = SU->getInstr(); 1104 OrderedInsts.push_back(MI); 1105 Stages[MI] = Schedule.stageScheduled(SU); 1106 } 1107 } 1108 } 1109 1110 namespace { 1111 1112 // FuncUnitSorter - Comparison operator used to sort instructions by 1113 // the number of functional unit choices. 1114 struct FuncUnitSorter { 1115 const InstrItineraryData *InstrItins; 1116 const MCSubtargetInfo *STI; 1117 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1118 1119 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1120 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1121 1122 // Compute the number of functional unit alternatives needed 1123 // at each stage, and take the minimum value. We prioritize the 1124 // instructions by the least number of choices first. 1125 unsigned minFuncUnits(const MachineInstr *Inst, 1126 InstrStage::FuncUnits &F) const { 1127 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1128 unsigned min = UINT_MAX; 1129 if (InstrItins && !InstrItins->isEmpty()) { 1130 for (const InstrStage &IS : 1131 make_range(InstrItins->beginStage(SchedClass), 1132 InstrItins->endStage(SchedClass))) { 1133 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1134 unsigned numAlternatives = llvm::popcount(funcUnits); 1135 if (numAlternatives < min) { 1136 min = numAlternatives; 1137 F = funcUnits; 1138 } 1139 } 1140 return min; 1141 } 1142 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1143 const MCSchedClassDesc *SCDesc = 1144 STI->getSchedModel().getSchedClassDesc(SchedClass); 1145 if (!SCDesc->isValid()) 1146 // No valid Schedule Class Desc for schedClass, should be 1147 // Pseudo/PostRAPseudo 1148 return min; 1149 1150 for (const MCWriteProcResEntry &PRE : 1151 make_range(STI->getWriteProcResBegin(SCDesc), 1152 STI->getWriteProcResEnd(SCDesc))) { 1153 if (!PRE.ReleaseAtCycle) 1154 continue; 1155 const MCProcResourceDesc *ProcResource = 1156 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1157 unsigned NumUnits = ProcResource->NumUnits; 1158 if (NumUnits < min) { 1159 min = NumUnits; 1160 F = PRE.ProcResourceIdx; 1161 } 1162 } 1163 return min; 1164 } 1165 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1166 } 1167 1168 // Compute the critical resources needed by the instruction. This 1169 // function records the functional units needed by instructions that 1170 // must use only one functional unit. We use this as a tie breaker 1171 // for computing the resource MII. The instrutions that require 1172 // the same, highly used, functional unit have high priority. 1173 void calcCriticalResources(MachineInstr &MI) { 1174 unsigned SchedClass = MI.getDesc().getSchedClass(); 1175 if (InstrItins && !InstrItins->isEmpty()) { 1176 for (const InstrStage &IS : 1177 make_range(InstrItins->beginStage(SchedClass), 1178 InstrItins->endStage(SchedClass))) { 1179 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1180 if (llvm::popcount(FuncUnits) == 1) 1181 Resources[FuncUnits]++; 1182 } 1183 return; 1184 } 1185 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1186 const MCSchedClassDesc *SCDesc = 1187 STI->getSchedModel().getSchedClassDesc(SchedClass); 1188 if (!SCDesc->isValid()) 1189 // No valid Schedule Class Desc for schedClass, should be 1190 // Pseudo/PostRAPseudo 1191 return; 1192 1193 for (const MCWriteProcResEntry &PRE : 1194 make_range(STI->getWriteProcResBegin(SCDesc), 1195 STI->getWriteProcResEnd(SCDesc))) { 1196 if (!PRE.ReleaseAtCycle) 1197 continue; 1198 Resources[PRE.ProcResourceIdx]++; 1199 } 1200 return; 1201 } 1202 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1203 } 1204 1205 /// Return true if IS1 has less priority than IS2. 1206 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1207 InstrStage::FuncUnits F1 = 0, F2 = 0; 1208 unsigned MFUs1 = minFuncUnits(IS1, F1); 1209 unsigned MFUs2 = minFuncUnits(IS2, F2); 1210 if (MFUs1 == MFUs2) 1211 return Resources.lookup(F1) < Resources.lookup(F2); 1212 return MFUs1 > MFUs2; 1213 } 1214 }; 1215 1216 /// Calculate the maximum register pressure of the scheduled instructions stream 1217 class HighRegisterPressureDetector { 1218 MachineBasicBlock *OrigMBB; 1219 const MachineFunction &MF; 1220 const MachineRegisterInfo &MRI; 1221 const TargetRegisterInfo *TRI; 1222 1223 const unsigned PSetNum; 1224 1225 // Indexed by PSet ID 1226 // InitSetPressure takes into account the register pressure of live-in 1227 // registers. It's not depend on how the loop is scheduled, so it's enough to 1228 // calculate them once at the beginning. 1229 std::vector<unsigned> InitSetPressure; 1230 1231 // Indexed by PSet ID 1232 // Upper limit for each register pressure set 1233 std::vector<unsigned> PressureSetLimit; 1234 1235 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1236 1237 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1238 1239 public: 1240 using OrderedInstsTy = std::vector<MachineInstr *>; 1241 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1242 1243 private: 1244 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1245 if (Pressures.size() == 0) { 1246 dbgs() << "[]"; 1247 } else { 1248 char Prefix = '['; 1249 for (unsigned P : Pressures) { 1250 dbgs() << Prefix << P; 1251 Prefix = ' '; 1252 } 1253 dbgs() << ']'; 1254 } 1255 } 1256 1257 void dumpPSet(Register Reg) const { 1258 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1259 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1260 ++PSetIter) { 1261 dbgs() << *PSetIter << ' '; 1262 } 1263 dbgs() << '\n'; 1264 } 1265 1266 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1267 Register Reg) const { 1268 auto PSetIter = MRI.getPressureSets(Reg); 1269 unsigned Weight = PSetIter.getWeight(); 1270 for (; PSetIter.isValid(); ++PSetIter) 1271 Pressure[*PSetIter] += Weight; 1272 } 1273 1274 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1275 Register Reg) const { 1276 auto PSetIter = MRI.getPressureSets(Reg); 1277 unsigned Weight = PSetIter.getWeight(); 1278 for (; PSetIter.isValid(); ++PSetIter) { 1279 auto &P = Pressure[*PSetIter]; 1280 assert(P >= Weight && 1281 "register pressure must be greater than or equal weight"); 1282 P -= Weight; 1283 } 1284 } 1285 1286 // Return true if Reg is fixed one, for example, stack pointer 1287 bool isFixedRegister(Register Reg) const { 1288 return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 1289 } 1290 1291 bool isDefinedInThisLoop(Register Reg) const { 1292 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1293 } 1294 1295 // Search for live-in variables. They are factored into the register pressure 1296 // from the begining. Live-in variables used by every iteration should be 1297 // considered as alive throughout the loop. For example, the variable `c` in 1298 // following code. \code 1299 // int c = ...; 1300 // for (int i = 0; i < n; i++) 1301 // a[i] += b[i] + c; 1302 // \endcode 1303 void computeLiveIn() { 1304 DenseSet<Register> Used; 1305 for (auto &MI : *OrigMBB) { 1306 if (MI.isDebugInstr()) 1307 continue; 1308 for (auto &Use : ROMap[&MI].Uses) { 1309 auto Reg = Use.RegUnit; 1310 // Ignore the variable that appears only on one side of phi instruction 1311 // because it's used only at the first iteration. 1312 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1313 continue; 1314 if (isFixedRegister(Reg)) 1315 continue; 1316 if (isDefinedInThisLoop(Reg)) 1317 continue; 1318 Used.insert(Reg); 1319 } 1320 } 1321 1322 for (auto LiveIn : Used) 1323 increaseRegisterPressure(InitSetPressure, LiveIn); 1324 } 1325 1326 // Calculate the upper limit of each pressure set 1327 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1328 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1329 PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); 1330 1331 // We assume fixed registers, such as stack pointer, are already in use. 1332 // Therefore subtracting the weight of the fixed registers from the limit of 1333 // each pressure set in advance. 1334 SmallDenseSet<Register, 8> FixedRegs; 1335 for (const TargetRegisterClass *TRC : TRI->regclasses()) { 1336 for (const MCPhysReg Reg : *TRC) 1337 if (isFixedRegister(Reg)) 1338 FixedRegs.insert(Reg); 1339 } 1340 1341 LLVM_DEBUG({ 1342 for (auto Reg : FixedRegs) { 1343 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 1344 for (MCRegUnit Unit : TRI->regunits(Reg)) { 1345 const int *Sets = TRI->getRegUnitPressureSets(Unit); 1346 for (; *Sets != -1; Sets++) { 1347 dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 1348 } 1349 } 1350 dbgs() << "]\n"; 1351 } 1352 }); 1353 1354 for (auto Reg : FixedRegs) { 1355 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 1356 << "\n"); 1357 for (MCRegUnit Unit : TRI->regunits(Reg)) { 1358 auto PSetIter = MRI.getPressureSets(Unit); 1359 unsigned Weight = PSetIter.getWeight(); 1360 for (; PSetIter.isValid(); ++PSetIter) { 1361 unsigned &Limit = PressureSetLimit[*PSetIter]; 1362 assert( 1363 Limit >= Weight && 1364 "register pressure limit must be greater than or equal weight"); 1365 Limit -= Weight; 1366 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 1367 << " (decreased by " << Weight << ")\n"); 1368 } 1369 } 1370 } 1371 } 1372 1373 // There are two patterns of last-use. 1374 // - by an instruction of the current iteration 1375 // - by a phi instruction of the next iteration (loop carried value) 1376 // 1377 // Furthermore, following two groups of instructions are executed 1378 // simultaneously 1379 // - next iteration's phi instructions in i-th stage 1380 // - current iteration's instructions in i+1-th stage 1381 // 1382 // This function calculates the last-use of each register while taking into 1383 // account the above two patterns. 1384 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1385 Instr2StageTy &Stages) const { 1386 // We treat virtual registers that are defined and used in this loop. 1387 // Following virtual register will be ignored 1388 // - live-in one 1389 // - defined but not used in the loop (potentially live-out) 1390 DenseSet<Register> TargetRegs; 1391 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1392 if (isDefinedInThisLoop(Reg)) 1393 TargetRegs.insert(Reg); 1394 }; 1395 for (MachineInstr *MI : OrderedInsts) { 1396 if (MI->isPHI()) { 1397 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1398 UpdateTargetRegs(Reg); 1399 } else { 1400 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1401 UpdateTargetRegs(Use.RegUnit); 1402 } 1403 } 1404 1405 const auto InstrScore = [&Stages](MachineInstr *MI) { 1406 return Stages[MI] + MI->isPHI(); 1407 }; 1408 1409 DenseMap<Register, MachineInstr *> LastUseMI; 1410 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1411 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1412 auto Reg = Use.RegUnit; 1413 if (!TargetRegs.contains(Reg)) 1414 continue; 1415 auto [Ite, Inserted] = LastUseMI.try_emplace(Reg, MI); 1416 if (!Inserted) { 1417 MachineInstr *Orig = Ite->second; 1418 MachineInstr *New = MI; 1419 if (InstrScore(Orig) < InstrScore(New)) 1420 Ite->second = New; 1421 } 1422 } 1423 } 1424 1425 Instr2LastUsesTy LastUses; 1426 for (auto &Entry : LastUseMI) 1427 LastUses[Entry.second].insert(Entry.first); 1428 return LastUses; 1429 } 1430 1431 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1432 // iterations and check the register pressure at the point where all stages 1433 // overlapping. 1434 // 1435 // An example of unrolled loop where #Stage is 4.. 1436 // Iter i+0 i+1 i+2 i+3 1437 // ------------------------ 1438 // Stage 0 1439 // Stage 1 0 1440 // Stage 2 1 0 1441 // Stage 3 2 1 0 <- All stages overlap 1442 // 1443 std::vector<unsigned> 1444 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1445 Instr2StageTy &Stages, 1446 const unsigned StageCount) const { 1447 using RegSetTy = SmallDenseSet<Register, 16>; 1448 1449 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1450 // manage the liveness of the registers independently by iterations. 1451 SmallVector<RegSetTy> LiveRegSets(StageCount); 1452 1453 auto CurSetPressure = InitSetPressure; 1454 auto MaxSetPressure = InitSetPressure; 1455 auto LastUses = computeLastUses(OrderedInsts, Stages); 1456 1457 LLVM_DEBUG({ 1458 dbgs() << "Ordered instructions:\n"; 1459 for (MachineInstr *MI : OrderedInsts) { 1460 dbgs() << "Stage " << Stages[MI] << ": "; 1461 MI->dump(); 1462 } 1463 }); 1464 1465 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1466 Register Reg) { 1467 if (!Reg.isValid() || isFixedRegister(Reg)) 1468 return; 1469 1470 bool Inserted = RegSet.insert(Reg).second; 1471 if (!Inserted) 1472 return; 1473 1474 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1475 increaseRegisterPressure(CurSetPressure, Reg); 1476 LLVM_DEBUG(dumpPSet(Reg)); 1477 }; 1478 1479 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1480 Register Reg) { 1481 if (!Reg.isValid() || isFixedRegister(Reg)) 1482 return; 1483 1484 // live-in register 1485 if (!RegSet.contains(Reg)) 1486 return; 1487 1488 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1489 RegSet.erase(Reg); 1490 decreaseRegisterPressure(CurSetPressure, Reg); 1491 LLVM_DEBUG(dumpPSet(Reg)); 1492 }; 1493 1494 for (unsigned I = 0; I < StageCount; I++) { 1495 for (MachineInstr *MI : OrderedInsts) { 1496 const auto Stage = Stages[MI]; 1497 if (I < Stage) 1498 continue; 1499 1500 const unsigned Iter = I - Stage; 1501 1502 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1503 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1504 1505 for (auto LastUse : LastUses[MI]) { 1506 if (MI->isPHI()) { 1507 if (Iter != 0) 1508 EraseReg(LiveRegSets[Iter - 1], LastUse); 1509 } else { 1510 EraseReg(LiveRegSets[Iter], LastUse); 1511 } 1512 } 1513 1514 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1515 MaxSetPressure[PSet] = 1516 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1517 1518 LLVM_DEBUG({ 1519 dbgs() << "CurSetPressure="; 1520 dumpRegisterPressures(CurSetPressure); 1521 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1522 MI->dump(); 1523 }); 1524 } 1525 } 1526 1527 return MaxSetPressure; 1528 } 1529 1530 public: 1531 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1532 const MachineFunction &MF) 1533 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1534 TRI(MF.getSubtarget().getRegisterInfo()), 1535 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1536 PressureSetLimit(PSetNum, 0) {} 1537 1538 // Used to calculate register pressure, which is independent of loop 1539 // scheduling. 1540 void init(const RegisterClassInfo &RCI) { 1541 for (MachineInstr &MI : *OrigMBB) { 1542 if (MI.isDebugInstr()) 1543 continue; 1544 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1545 } 1546 1547 computeLiveIn(); 1548 computePressureSetLimit(RCI); 1549 } 1550 1551 // Calculate the maximum register pressures of the loop and check if they 1552 // exceed the limit 1553 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1554 const unsigned MaxStage) const { 1555 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1556 "the percentage of the margin must be between 0 to 100"); 1557 1558 OrderedInstsTy OrderedInsts; 1559 Instr2StageTy Stages; 1560 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1561 const auto MaxSetPressure = 1562 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1563 1564 LLVM_DEBUG({ 1565 dbgs() << "Dump MaxSetPressure:\n"; 1566 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1567 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1568 } 1569 dbgs() << '\n'; 1570 }); 1571 1572 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1573 unsigned Limit = PressureSetLimit[PSet]; 1574 unsigned Margin = Limit * RegPressureMargin / 100; 1575 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1576 << " Margin=" << Margin << "\n"); 1577 if (Limit < MaxSetPressure[PSet] + Margin) { 1578 LLVM_DEBUG( 1579 dbgs() 1580 << "Rejected the schedule because of too high register pressure\n"); 1581 return true; 1582 } 1583 } 1584 return false; 1585 } 1586 }; 1587 1588 } // end anonymous namespace 1589 1590 /// Calculate the resource constrained minimum initiation interval for the 1591 /// specified loop. We use the DFA to model the resources needed for 1592 /// each instruction, and we ignore dependences. A different DFA is created 1593 /// for each cycle that is required. When adding a new instruction, we attempt 1594 /// to add it to each existing DFA, until a legal space is found. If the 1595 /// instruction cannot be reserved in an existing DFA, we create a new one. 1596 unsigned SwingSchedulerDAG::calculateResMII() { 1597 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1598 ResourceManager RM(&MF.getSubtarget(), this); 1599 return RM.calculateResMII(); 1600 } 1601 1602 /// Calculate the recurrence-constrainted minimum initiation interval. 1603 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1604 /// for each circuit. The II needs to satisfy the inequality 1605 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1606 /// II that satisfies the inequality, and the RecMII is the maximum 1607 /// of those values. 1608 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1609 unsigned RecMII = 0; 1610 1611 for (NodeSet &Nodes : NodeSets) { 1612 if (Nodes.empty()) 1613 continue; 1614 1615 unsigned Delay = Nodes.getLatency(); 1616 unsigned Distance = 1; 1617 1618 // ii = ceil(delay / distance) 1619 unsigned CurMII = (Delay + Distance - 1) / Distance; 1620 Nodes.setRecMII(CurMII); 1621 if (CurMII > RecMII) 1622 RecMII = CurMII; 1623 } 1624 1625 return RecMII; 1626 } 1627 1628 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1629 /// but we do this to find the circuits, and then change them back. 1630 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1631 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1632 for (SUnit &SU : SUnits) { 1633 for (SDep &Pred : SU.Preds) 1634 if (Pred.getKind() == SDep::Anti) 1635 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1636 } 1637 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1638 // Remove this anti dependency and add one in the reverse direction. 1639 SUnit *SU = P.first; 1640 SDep &D = P.second; 1641 SUnit *TargetSU = D.getSUnit(); 1642 unsigned Reg = D.getReg(); 1643 unsigned Lat = D.getLatency(); 1644 SU->removePred(D); 1645 SDep Dep(SU, SDep::Anti, Reg); 1646 Dep.setLatency(Lat); 1647 TargetSU->addPred(Dep); 1648 } 1649 } 1650 1651 /// Create the adjacency structure of the nodes in the graph. 1652 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1653 SwingSchedulerDAG *DAG) { 1654 BitVector Added(SUnits.size()); 1655 DenseMap<int, int> OutputDeps; 1656 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1657 Added.reset(); 1658 // Add any successor to the adjacency matrix and exclude duplicates. 1659 for (auto &SI : SUnits[i].Succs) { 1660 // Only create a back-edge on the first and last nodes of a dependence 1661 // chain. This records any chains and adds them later. 1662 if (SI.getKind() == SDep::Output) { 1663 int N = SI.getSUnit()->NodeNum; 1664 int BackEdge = i; 1665 auto Dep = OutputDeps.find(BackEdge); 1666 if (Dep != OutputDeps.end()) { 1667 BackEdge = Dep->second; 1668 OutputDeps.erase(Dep); 1669 } 1670 OutputDeps[N] = BackEdge; 1671 } 1672 // Do not process a boundary node, an artificial node. 1673 // A back-edge is processed only if it goes to a Phi. 1674 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1675 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1676 continue; 1677 int N = SI.getSUnit()->NodeNum; 1678 if (!Added.test(N)) { 1679 AdjK[i].push_back(N); 1680 Added.set(N); 1681 } 1682 } 1683 // A chain edge between a store and a load is treated as a back-edge in the 1684 // adjacency matrix. 1685 for (auto &PI : SUnits[i].Preds) { 1686 if (!SUnits[i].getInstr()->mayStore() || 1687 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1688 continue; 1689 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1690 int N = PI.getSUnit()->NodeNum; 1691 if (!Added.test(N)) { 1692 AdjK[i].push_back(N); 1693 Added.set(N); 1694 } 1695 } 1696 } 1697 } 1698 // Add back-edges in the adjacency matrix for the output dependences. 1699 for (auto &OD : OutputDeps) 1700 if (!Added.test(OD.second)) { 1701 AdjK[OD.first].push_back(OD.second); 1702 Added.set(OD.second); 1703 } 1704 } 1705 1706 /// Identify an elementary circuit in the dependence graph starting at the 1707 /// specified node. 1708 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1709 const SwingSchedulerDAG *DAG, 1710 bool HasBackedge) { 1711 SUnit *SV = &SUnits[V]; 1712 bool F = false; 1713 Stack.insert(SV); 1714 Blocked.set(V); 1715 1716 for (auto W : AdjK[V]) { 1717 if (NumPaths > MaxPaths) 1718 break; 1719 if (W < S) 1720 continue; 1721 if (W == S) { 1722 if (!HasBackedge) 1723 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end(), DAG)); 1724 F = true; 1725 ++NumPaths; 1726 break; 1727 } 1728 if (!Blocked.test(W)) { 1729 if (circuit(W, S, NodeSets, DAG, 1730 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1731 F = true; 1732 } 1733 } 1734 1735 if (F) 1736 unblock(V); 1737 else { 1738 for (auto W : AdjK[V]) { 1739 if (W < S) 1740 continue; 1741 B[W].insert(SV); 1742 } 1743 } 1744 Stack.pop_back(); 1745 return F; 1746 } 1747 1748 /// Unblock a node in the circuit finding algorithm. 1749 void SwingSchedulerDAG::Circuits::unblock(int U) { 1750 Blocked.reset(U); 1751 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1752 while (!BU.empty()) { 1753 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1754 assert(SI != BU.end() && "Invalid B set."); 1755 SUnit *W = *SI; 1756 BU.erase(W); 1757 if (Blocked.test(W->NodeNum)) 1758 unblock(W->NodeNum); 1759 } 1760 } 1761 1762 /// Identify all the elementary circuits in the dependence graph using 1763 /// Johnson's circuit algorithm. 1764 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1765 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1766 // but we do this to find the circuits, and then change them back. 1767 swapAntiDependences(SUnits); 1768 1769 Circuits Cir(SUnits, Topo); 1770 // Create the adjacency structure. 1771 Cir.createAdjacencyStructure(this); 1772 for (int I = 0, E = SUnits.size(); I != E; ++I) { 1773 Cir.reset(); 1774 Cir.circuit(I, I, NodeSets, this); 1775 } 1776 1777 // Change the dependences back so that we've created a DAG again. 1778 swapAntiDependences(SUnits); 1779 } 1780 1781 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1782 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1783 // additional copies that are needed across iterations. An artificial dependence 1784 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1785 1786 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1787 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1788 // PHI-------True-Dep------> USEOfPhi 1789 1790 // The mutation creates 1791 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1792 1793 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1794 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1795 // late to avoid additional copies across iterations. The possible scheduling 1796 // order would be 1797 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1798 1799 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1800 for (SUnit &SU : DAG->SUnits) { 1801 // Find the COPY/REG_SEQUENCE instruction. 1802 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1803 continue; 1804 1805 // Record the loop carried PHIs. 1806 SmallVector<SUnit *, 4> PHISUs; 1807 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1808 SmallVector<SUnit *, 4> SrcSUs; 1809 1810 for (auto &Dep : SU.Preds) { 1811 SUnit *TmpSU = Dep.getSUnit(); 1812 MachineInstr *TmpMI = TmpSU->getInstr(); 1813 SDep::Kind DepKind = Dep.getKind(); 1814 // Save the loop carried PHI. 1815 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1816 PHISUs.push_back(TmpSU); 1817 // Save the source of COPY/REG_SEQUENCE. 1818 // If the source has no pre-decessors, we will end up creating cycles. 1819 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1820 SrcSUs.push_back(TmpSU); 1821 } 1822 1823 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1824 continue; 1825 1826 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1827 // SUnit to the container. 1828 SmallVector<SUnit *, 8> UseSUs; 1829 // Do not use iterator based loop here as we are updating the container. 1830 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1831 for (auto &Dep : PHISUs[Index]->Succs) { 1832 if (Dep.getKind() != SDep::Data) 1833 continue; 1834 1835 SUnit *TmpSU = Dep.getSUnit(); 1836 MachineInstr *TmpMI = TmpSU->getInstr(); 1837 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1838 PHISUs.push_back(TmpSU); 1839 continue; 1840 } 1841 UseSUs.push_back(TmpSU); 1842 } 1843 } 1844 1845 if (UseSUs.size() == 0) 1846 continue; 1847 1848 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1849 // Add the artificial dependencies if it does not form a cycle. 1850 for (auto *I : UseSUs) { 1851 for (auto *Src : SrcSUs) { 1852 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1853 Src->addPred(SDep(I, SDep::Artificial)); 1854 SDAG->Topo.AddPred(Src, I); 1855 } 1856 } 1857 } 1858 } 1859 } 1860 1861 /// Return true for DAG nodes that we ignore when computing the cost functions. 1862 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1863 /// in the calculation of the ASAP, ALAP, etc functions. 1864 static bool ignoreDependence(const SDep &D, bool isPred) { 1865 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1866 return true; 1867 return D.getKind() == SDep::Anti && isPred; 1868 } 1869 1870 /// Compute several functions need to order the nodes for scheduling. 1871 /// ASAP - Earliest time to schedule a node. 1872 /// ALAP - Latest time to schedule a node. 1873 /// MOV - Mobility function, difference between ALAP and ASAP. 1874 /// D - Depth of each node. 1875 /// H - Height of each node. 1876 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1877 ScheduleInfo.resize(SUnits.size()); 1878 1879 LLVM_DEBUG({ 1880 for (int I : Topo) { 1881 const SUnit &SU = SUnits[I]; 1882 dumpNode(SU); 1883 } 1884 }); 1885 1886 int maxASAP = 0; 1887 // Compute ASAP and ZeroLatencyDepth. 1888 for (int I : Topo) { 1889 int asap = 0; 1890 int zeroLatencyDepth = 0; 1891 SUnit *SU = &SUnits[I]; 1892 for (const SDep &P : SU->Preds) { 1893 SUnit *pred = P.getSUnit(); 1894 if (P.getLatency() == 0) 1895 zeroLatencyDepth = 1896 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1897 if (ignoreDependence(P, true)) 1898 continue; 1899 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1900 getDistance(pred, SU, P) * MII)); 1901 } 1902 maxASAP = std::max(maxASAP, asap); 1903 ScheduleInfo[I].ASAP = asap; 1904 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1905 } 1906 1907 // Compute ALAP, ZeroLatencyHeight, and MOV. 1908 for (int I : llvm::reverse(Topo)) { 1909 int alap = maxASAP; 1910 int zeroLatencyHeight = 0; 1911 SUnit *SU = &SUnits[I]; 1912 for (const SDep &S : SU->Succs) { 1913 SUnit *succ = S.getSUnit(); 1914 if (succ->isBoundaryNode()) 1915 continue; 1916 if (S.getLatency() == 0) 1917 zeroLatencyHeight = 1918 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1919 if (ignoreDependence(S, true)) 1920 continue; 1921 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1922 getDistance(SU, succ, S) * MII)); 1923 } 1924 1925 ScheduleInfo[I].ALAP = alap; 1926 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1927 } 1928 1929 // After computing the node functions, compute the summary for each node set. 1930 for (NodeSet &I : NodeSets) 1931 I.computeNodeSetInfo(this); 1932 1933 LLVM_DEBUG({ 1934 for (unsigned i = 0; i < SUnits.size(); i++) { 1935 dbgs() << "\tNode " << i << ":\n"; 1936 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1937 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1938 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1939 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1940 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1941 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1942 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1943 } 1944 }); 1945 } 1946 1947 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1948 /// as the predecessors of the elements of NodeOrder that are not also in 1949 /// NodeOrder. 1950 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1951 SmallSetVector<SUnit *, 8> &Preds, 1952 const NodeSet *S = nullptr) { 1953 Preds.clear(); 1954 for (const SUnit *SU : NodeOrder) { 1955 for (const SDep &Pred : SU->Preds) { 1956 if (S && S->count(Pred.getSUnit()) == 0) 1957 continue; 1958 if (ignoreDependence(Pred, true)) 1959 continue; 1960 if (NodeOrder.count(Pred.getSUnit()) == 0) 1961 Preds.insert(Pred.getSUnit()); 1962 } 1963 // Back-edges are predecessors with an anti-dependence. 1964 for (const SDep &Succ : SU->Succs) { 1965 if (Succ.getKind() != SDep::Anti) 1966 continue; 1967 if (S && S->count(Succ.getSUnit()) == 0) 1968 continue; 1969 if (NodeOrder.count(Succ.getSUnit()) == 0) 1970 Preds.insert(Succ.getSUnit()); 1971 } 1972 } 1973 return !Preds.empty(); 1974 } 1975 1976 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1977 /// as the successors of the elements of NodeOrder that are not also in 1978 /// NodeOrder. 1979 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1980 SmallSetVector<SUnit *, 8> &Succs, 1981 const NodeSet *S = nullptr) { 1982 Succs.clear(); 1983 for (const SUnit *SU : NodeOrder) { 1984 for (const SDep &Succ : SU->Succs) { 1985 if (S && S->count(Succ.getSUnit()) == 0) 1986 continue; 1987 if (ignoreDependence(Succ, false)) 1988 continue; 1989 if (NodeOrder.count(Succ.getSUnit()) == 0) 1990 Succs.insert(Succ.getSUnit()); 1991 } 1992 for (const SDep &Pred : SU->Preds) { 1993 if (Pred.getKind() != SDep::Anti) 1994 continue; 1995 if (S && S->count(Pred.getSUnit()) == 0) 1996 continue; 1997 if (NodeOrder.count(Pred.getSUnit()) == 0) 1998 Succs.insert(Pred.getSUnit()); 1999 } 2000 } 2001 return !Succs.empty(); 2002 } 2003 2004 /// Return true if there is a path from the specified node to any of the nodes 2005 /// in DestNodes. Keep track and return the nodes in any path. 2006 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 2007 SetVector<SUnit *> &DestNodes, 2008 SetVector<SUnit *> &Exclude, 2009 SmallPtrSet<SUnit *, 8> &Visited) { 2010 if (Cur->isBoundaryNode()) 2011 return false; 2012 if (Exclude.contains(Cur)) 2013 return false; 2014 if (DestNodes.contains(Cur)) 2015 return true; 2016 if (!Visited.insert(Cur).second) 2017 return Path.contains(Cur); 2018 bool FoundPath = false; 2019 for (auto &SI : Cur->Succs) 2020 if (!ignoreDependence(SI, false)) 2021 FoundPath |= 2022 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 2023 for (auto &PI : Cur->Preds) 2024 if (PI.getKind() == SDep::Anti) 2025 FoundPath |= 2026 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 2027 if (FoundPath) 2028 Path.insert(Cur); 2029 return FoundPath; 2030 } 2031 2032 /// Compute the live-out registers for the instructions in a node-set. 2033 /// The live-out registers are those that are defined in the node-set, 2034 /// but not used. Except for use operands of Phis. 2035 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 2036 NodeSet &NS) { 2037 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2038 MachineRegisterInfo &MRI = MF.getRegInfo(); 2039 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 2040 SmallSet<unsigned, 4> Uses; 2041 for (SUnit *SU : NS) { 2042 const MachineInstr *MI = SU->getInstr(); 2043 if (MI->isPHI()) 2044 continue; 2045 for (const MachineOperand &MO : MI->all_uses()) { 2046 Register Reg = MO.getReg(); 2047 if (Reg.isVirtual()) 2048 Uses.insert(Reg); 2049 else if (MRI.isAllocatable(Reg)) 2050 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2051 Uses.insert(Unit); 2052 } 2053 } 2054 for (SUnit *SU : NS) 2055 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2056 if (!MO.isDead()) { 2057 Register Reg = MO.getReg(); 2058 if (Reg.isVirtual()) { 2059 if (!Uses.count(Reg)) 2060 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2061 LaneBitmask::getNone())); 2062 } else if (MRI.isAllocatable(Reg)) { 2063 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2064 if (!Uses.count(Unit)) 2065 LiveOutRegs.push_back( 2066 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2067 } 2068 } 2069 RPTracker.addLiveRegs(LiveOutRegs); 2070 } 2071 2072 /// A heuristic to filter nodes in recurrent node-sets if the register 2073 /// pressure of a set is too high. 2074 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2075 for (auto &NS : NodeSets) { 2076 // Skip small node-sets since they won't cause register pressure problems. 2077 if (NS.size() <= 2) 2078 continue; 2079 IntervalPressure RecRegPressure; 2080 RegPressureTracker RecRPTracker(RecRegPressure); 2081 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2082 computeLiveOuts(MF, RecRPTracker, NS); 2083 RecRPTracker.closeBottom(); 2084 2085 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2086 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2087 return A->NodeNum > B->NodeNum; 2088 }); 2089 2090 for (auto &SU : SUnits) { 2091 // Since we're computing the register pressure for a subset of the 2092 // instructions in a block, we need to set the tracker for each 2093 // instruction in the node-set. The tracker is set to the instruction 2094 // just after the one we're interested in. 2095 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2096 RecRPTracker.setPos(std::next(CurInstI)); 2097 2098 RegPressureDelta RPDelta; 2099 ArrayRef<PressureChange> CriticalPSets; 2100 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2101 CriticalPSets, 2102 RecRegPressure.MaxSetPressure); 2103 if (RPDelta.Excess.isValid()) { 2104 LLVM_DEBUG( 2105 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2106 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2107 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2108 NS.setExceedPressure(SU); 2109 break; 2110 } 2111 RecRPTracker.recede(); 2112 } 2113 } 2114 } 2115 2116 /// A heuristic to colocate node sets that have the same set of 2117 /// successors. 2118 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2119 unsigned Colocate = 0; 2120 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2121 NodeSet &N1 = NodeSets[i]; 2122 SmallSetVector<SUnit *, 8> S1; 2123 if (N1.empty() || !succ_L(N1, S1)) 2124 continue; 2125 for (int j = i + 1; j < e; ++j) { 2126 NodeSet &N2 = NodeSets[j]; 2127 if (N1.compareRecMII(N2) != 0) 2128 continue; 2129 SmallSetVector<SUnit *, 8> S2; 2130 if (N2.empty() || !succ_L(N2, S2)) 2131 continue; 2132 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2133 N1.setColocate(++Colocate); 2134 N2.setColocate(Colocate); 2135 break; 2136 } 2137 } 2138 } 2139 } 2140 2141 /// Check if the existing node-sets are profitable. If not, then ignore the 2142 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2143 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2144 /// then it's best to try to schedule all instructions together instead of 2145 /// starting with the recurrent node-sets. 2146 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2147 // Look for loops with a large MII. 2148 if (MII < 17) 2149 return; 2150 // Check if the node-set contains only a simple add recurrence. 2151 for (auto &NS : NodeSets) { 2152 if (NS.getRecMII() > 2) 2153 return; 2154 if (NS.getMaxDepth() > MII) 2155 return; 2156 } 2157 NodeSets.clear(); 2158 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2159 } 2160 2161 /// Add the nodes that do not belong to a recurrence set into groups 2162 /// based upon connected components. 2163 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2164 SetVector<SUnit *> NodesAdded; 2165 SmallPtrSet<SUnit *, 8> Visited; 2166 // Add the nodes that are on a path between the previous node sets and 2167 // the current node set. 2168 for (NodeSet &I : NodeSets) { 2169 SmallSetVector<SUnit *, 8> N; 2170 // Add the nodes from the current node set to the previous node set. 2171 if (succ_L(I, N)) { 2172 SetVector<SUnit *> Path; 2173 for (SUnit *NI : N) { 2174 Visited.clear(); 2175 computePath(NI, Path, NodesAdded, I, Visited); 2176 } 2177 if (!Path.empty()) 2178 I.insert(Path.begin(), Path.end()); 2179 } 2180 // Add the nodes from the previous node set to the current node set. 2181 N.clear(); 2182 if (succ_L(NodesAdded, N)) { 2183 SetVector<SUnit *> Path; 2184 for (SUnit *NI : N) { 2185 Visited.clear(); 2186 computePath(NI, Path, I, NodesAdded, Visited); 2187 } 2188 if (!Path.empty()) 2189 I.insert(Path.begin(), Path.end()); 2190 } 2191 NodesAdded.insert(I.begin(), I.end()); 2192 } 2193 2194 // Create a new node set with the connected nodes of any successor of a node 2195 // in a recurrent set. 2196 NodeSet NewSet; 2197 SmallSetVector<SUnit *, 8> N; 2198 if (succ_L(NodesAdded, N)) 2199 for (SUnit *I : N) 2200 addConnectedNodes(I, NewSet, NodesAdded); 2201 if (!NewSet.empty()) 2202 NodeSets.push_back(NewSet); 2203 2204 // Create a new node set with the connected nodes of any predecessor of a node 2205 // in a recurrent set. 2206 NewSet.clear(); 2207 if (pred_L(NodesAdded, N)) 2208 for (SUnit *I : N) 2209 addConnectedNodes(I, NewSet, NodesAdded); 2210 if (!NewSet.empty()) 2211 NodeSets.push_back(NewSet); 2212 2213 // Create new nodes sets with the connected nodes any remaining node that 2214 // has no predecessor. 2215 for (SUnit &SU : SUnits) { 2216 if (NodesAdded.count(&SU) == 0) { 2217 NewSet.clear(); 2218 addConnectedNodes(&SU, NewSet, NodesAdded); 2219 if (!NewSet.empty()) 2220 NodeSets.push_back(NewSet); 2221 } 2222 } 2223 } 2224 2225 /// Add the node to the set, and add all of its connected nodes to the set. 2226 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2227 SetVector<SUnit *> &NodesAdded) { 2228 NewSet.insert(SU); 2229 NodesAdded.insert(SU); 2230 for (auto &SI : SU->Succs) { 2231 SUnit *Successor = SI.getSUnit(); 2232 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2233 NodesAdded.count(Successor) == 0) 2234 addConnectedNodes(Successor, NewSet, NodesAdded); 2235 } 2236 for (auto &PI : SU->Preds) { 2237 SUnit *Predecessor = PI.getSUnit(); 2238 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2239 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2240 } 2241 } 2242 2243 /// Return true if Set1 contains elements in Set2. The elements in common 2244 /// are returned in a different container. 2245 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2246 SmallSetVector<SUnit *, 8> &Result) { 2247 Result.clear(); 2248 for (SUnit *SU : Set1) { 2249 if (Set2.count(SU) != 0) 2250 Result.insert(SU); 2251 } 2252 return !Result.empty(); 2253 } 2254 2255 /// Merge the recurrence node sets that have the same initial node. 2256 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2257 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2258 ++I) { 2259 NodeSet &NI = *I; 2260 for (NodeSetType::iterator J = I + 1; J != E;) { 2261 NodeSet &NJ = *J; 2262 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2263 if (NJ.compareRecMII(NI) > 0) 2264 NI.setRecMII(NJ.getRecMII()); 2265 for (SUnit *SU : *J) 2266 I->insert(SU); 2267 NodeSets.erase(J); 2268 E = NodeSets.end(); 2269 } else { 2270 ++J; 2271 } 2272 } 2273 } 2274 } 2275 2276 /// Remove nodes that have been scheduled in previous NodeSets. 2277 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2278 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2279 ++I) 2280 for (NodeSetType::iterator J = I + 1; J != E;) { 2281 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2282 2283 if (J->empty()) { 2284 NodeSets.erase(J); 2285 E = NodeSets.end(); 2286 } else { 2287 ++J; 2288 } 2289 } 2290 } 2291 2292 /// Compute an ordered list of the dependence graph nodes, which 2293 /// indicates the order that the nodes will be scheduled. This is a 2294 /// two-level algorithm. First, a partial order is created, which 2295 /// consists of a list of sets ordered from highest to lowest priority. 2296 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2297 SmallSetVector<SUnit *, 8> R; 2298 NodeOrder.clear(); 2299 2300 for (auto &Nodes : NodeSets) { 2301 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2302 OrderKind Order; 2303 SmallSetVector<SUnit *, 8> N; 2304 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2305 R.insert(N.begin(), N.end()); 2306 Order = BottomUp; 2307 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2308 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2309 R.insert(N.begin(), N.end()); 2310 Order = TopDown; 2311 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2312 } else if (isIntersect(N, Nodes, R)) { 2313 // If some of the successors are in the existing node-set, then use the 2314 // top-down ordering. 2315 Order = TopDown; 2316 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2317 } else if (NodeSets.size() == 1) { 2318 for (const auto &N : Nodes) 2319 if (N->Succs.size() == 0) 2320 R.insert(N); 2321 Order = BottomUp; 2322 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2323 } else { 2324 // Find the node with the highest ASAP. 2325 SUnit *maxASAP = nullptr; 2326 for (SUnit *SU : Nodes) { 2327 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2328 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2329 maxASAP = SU; 2330 } 2331 R.insert(maxASAP); 2332 Order = BottomUp; 2333 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2334 } 2335 2336 while (!R.empty()) { 2337 if (Order == TopDown) { 2338 // Choose the node with the maximum height. If more than one, choose 2339 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2340 // choose the node with the lowest MOV. 2341 while (!R.empty()) { 2342 SUnit *maxHeight = nullptr; 2343 for (SUnit *I : R) { 2344 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2345 maxHeight = I; 2346 else if (getHeight(I) == getHeight(maxHeight) && 2347 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2348 maxHeight = I; 2349 else if (getHeight(I) == getHeight(maxHeight) && 2350 getZeroLatencyHeight(I) == 2351 getZeroLatencyHeight(maxHeight) && 2352 getMOV(I) < getMOV(maxHeight)) 2353 maxHeight = I; 2354 } 2355 NodeOrder.insert(maxHeight); 2356 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2357 R.remove(maxHeight); 2358 for (const auto &I : maxHeight->Succs) { 2359 if (Nodes.count(I.getSUnit()) == 0) 2360 continue; 2361 if (NodeOrder.contains(I.getSUnit())) 2362 continue; 2363 if (ignoreDependence(I, false)) 2364 continue; 2365 R.insert(I.getSUnit()); 2366 } 2367 // Back-edges are predecessors with an anti-dependence. 2368 for (const auto &I : maxHeight->Preds) { 2369 if (I.getKind() != SDep::Anti) 2370 continue; 2371 if (Nodes.count(I.getSUnit()) == 0) 2372 continue; 2373 if (NodeOrder.contains(I.getSUnit())) 2374 continue; 2375 R.insert(I.getSUnit()); 2376 } 2377 } 2378 Order = BottomUp; 2379 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2380 SmallSetVector<SUnit *, 8> N; 2381 if (pred_L(NodeOrder, N, &Nodes)) 2382 R.insert(N.begin(), N.end()); 2383 } else { 2384 // Choose the node with the maximum depth. If more than one, choose 2385 // the node with the maximum ZeroLatencyDepth. If still more than one, 2386 // choose the node with the lowest MOV. 2387 while (!R.empty()) { 2388 SUnit *maxDepth = nullptr; 2389 for (SUnit *I : R) { 2390 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2391 maxDepth = I; 2392 else if (getDepth(I) == getDepth(maxDepth) && 2393 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2394 maxDepth = I; 2395 else if (getDepth(I) == getDepth(maxDepth) && 2396 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2397 getMOV(I) < getMOV(maxDepth)) 2398 maxDepth = I; 2399 } 2400 NodeOrder.insert(maxDepth); 2401 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2402 R.remove(maxDepth); 2403 if (Nodes.isExceedSU(maxDepth)) { 2404 Order = TopDown; 2405 R.clear(); 2406 R.insert(Nodes.getNode(0)); 2407 break; 2408 } 2409 for (const auto &I : maxDepth->Preds) { 2410 if (Nodes.count(I.getSUnit()) == 0) 2411 continue; 2412 if (NodeOrder.contains(I.getSUnit())) 2413 continue; 2414 R.insert(I.getSUnit()); 2415 } 2416 // Back-edges are predecessors with an anti-dependence. 2417 for (const auto &I : maxDepth->Succs) { 2418 if (I.getKind() != SDep::Anti) 2419 continue; 2420 if (Nodes.count(I.getSUnit()) == 0) 2421 continue; 2422 if (NodeOrder.contains(I.getSUnit())) 2423 continue; 2424 R.insert(I.getSUnit()); 2425 } 2426 } 2427 Order = TopDown; 2428 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2429 SmallSetVector<SUnit *, 8> N; 2430 if (succ_L(NodeOrder, N, &Nodes)) 2431 R.insert(N.begin(), N.end()); 2432 } 2433 } 2434 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2435 } 2436 2437 LLVM_DEBUG({ 2438 dbgs() << "Node order: "; 2439 for (SUnit *I : NodeOrder) 2440 dbgs() << " " << I->NodeNum << " "; 2441 dbgs() << "\n"; 2442 }); 2443 } 2444 2445 /// Process the nodes in the computed order and create the pipelined schedule 2446 /// of the instructions, if possible. Return true if a schedule is found. 2447 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2448 2449 if (NodeOrder.empty()){ 2450 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2451 return false; 2452 } 2453 2454 bool scheduleFound = false; 2455 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2456 if (LimitRegPressure) { 2457 HRPDetector = 2458 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2459 HRPDetector->init(RegClassInfo); 2460 } 2461 // Keep increasing II until a valid schedule is found. 2462 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2463 Schedule.reset(); 2464 Schedule.setInitiationInterval(II); 2465 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2466 2467 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2468 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2469 do { 2470 SUnit *SU = *NI; 2471 2472 // Compute the schedule time for the instruction, which is based 2473 // upon the scheduled time for any predecessors/successors. 2474 int EarlyStart = INT_MIN; 2475 int LateStart = INT_MAX; 2476 Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 2477 LLVM_DEBUG({ 2478 dbgs() << "\n"; 2479 dbgs() << "Inst (" << SU->NodeNum << ") "; 2480 SU->getInstr()->dump(); 2481 dbgs() << "\n"; 2482 }); 2483 LLVM_DEBUG( 2484 dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 2485 2486 if (EarlyStart > LateStart) 2487 scheduleFound = false; 2488 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 2489 scheduleFound = 2490 Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 2491 else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 2492 scheduleFound = 2493 Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 2494 else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2495 LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 2496 // When scheduling a Phi it is better to start at the late cycle and 2497 // go backwards. The default order may insert the Phi too far away 2498 // from its first dependence. 2499 // Also, do backward search when all scheduled predecessors are 2500 // loop-carried output/order dependencies. Empirically, there are also 2501 // cases where scheduling becomes possible with backward search. 2502 if (SU->getInstr()->isPHI() || 2503 Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) 2504 scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 2505 else 2506 scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 2507 } else { 2508 int FirstCycle = Schedule.getFirstCycle(); 2509 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2510 FirstCycle + getASAP(SU) + II - 1, II); 2511 } 2512 2513 // Even if we find a schedule, make sure the schedule doesn't exceed the 2514 // allowable number of stages. We keep trying if this happens. 2515 if (scheduleFound) 2516 if (SwpMaxStages > -1 && 2517 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2518 scheduleFound = false; 2519 2520 LLVM_DEBUG({ 2521 if (!scheduleFound) 2522 dbgs() << "\tCan't schedule\n"; 2523 }); 2524 } while (++NI != NE && scheduleFound); 2525 2526 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2527 if (scheduleFound) 2528 scheduleFound = 2529 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2530 2531 // If a schedule is found, check if it is a valid schedule too. 2532 if (scheduleFound) 2533 scheduleFound = Schedule.isValidSchedule(this); 2534 2535 // If a schedule was found and the option is enabled, check if the schedule 2536 // might generate additional register spills/fills. 2537 if (scheduleFound && LimitRegPressure) 2538 scheduleFound = 2539 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2540 } 2541 2542 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2543 << " (II=" << Schedule.getInitiationInterval() 2544 << ")\n"); 2545 2546 if (scheduleFound) { 2547 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2548 if (!scheduleFound) 2549 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2550 } 2551 2552 if (scheduleFound) { 2553 Schedule.finalizeSchedule(this); 2554 Pass.ORE->emit([&]() { 2555 return MachineOptimizationRemarkAnalysis( 2556 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2557 << "Schedule found with Initiation Interval: " 2558 << ore::NV("II", Schedule.getInitiationInterval()) 2559 << ", MaxStageCount: " 2560 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2561 }); 2562 } else 2563 Schedule.reset(); 2564 2565 return scheduleFound && Schedule.getMaxStageCount() > 0; 2566 } 2567 2568 /// Return true if we can compute the amount the instruction changes 2569 /// during each iteration. Set Delta to the amount of the change. 2570 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) const { 2571 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2572 const MachineOperand *BaseOp; 2573 int64_t Offset; 2574 bool OffsetIsScalable; 2575 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2576 return false; 2577 2578 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2579 if (OffsetIsScalable) 2580 return false; 2581 2582 if (!BaseOp->isReg()) 2583 return false; 2584 2585 Register BaseReg = BaseOp->getReg(); 2586 2587 MachineRegisterInfo &MRI = MF.getRegInfo(); 2588 // Check if there is a Phi. If so, get the definition in the loop. 2589 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2590 if (BaseDef && BaseDef->isPHI()) { 2591 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2592 BaseDef = MRI.getVRegDef(BaseReg); 2593 } 2594 if (!BaseDef) 2595 return false; 2596 2597 int D = 0; 2598 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2599 return false; 2600 2601 Delta = D; 2602 return true; 2603 } 2604 2605 /// Check if we can change the instruction to use an offset value from the 2606 /// previous iteration. If so, return true and set the base and offset values 2607 /// so that we can rewrite the load, if necessary. 2608 /// v1 = Phi(v0, v3) 2609 /// v2 = load v1, 0 2610 /// v3 = post_store v1, 4, x 2611 /// This function enables the load to be rewritten as v2 = load v3, 4. 2612 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2613 unsigned &BasePos, 2614 unsigned &OffsetPos, 2615 unsigned &NewBase, 2616 int64_t &Offset) { 2617 // Get the load instruction. 2618 if (TII->isPostIncrement(*MI)) 2619 return false; 2620 unsigned BasePosLd, OffsetPosLd; 2621 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2622 return false; 2623 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2624 2625 // Look for the Phi instruction. 2626 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2627 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2628 if (!Phi || !Phi->isPHI()) 2629 return false; 2630 // Get the register defined in the loop block. 2631 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2632 if (!PrevReg) 2633 return false; 2634 2635 // Check for the post-increment load/store instruction. 2636 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2637 if (!PrevDef || PrevDef == MI) 2638 return false; 2639 2640 if (!TII->isPostIncrement(*PrevDef)) 2641 return false; 2642 2643 unsigned BasePos1 = 0, OffsetPos1 = 0; 2644 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2645 return false; 2646 2647 // Make sure that the instructions do not access the same memory location in 2648 // the next iteration. 2649 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2650 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2651 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2652 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2653 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2654 MF.deleteMachineInstr(NewMI); 2655 if (!Disjoint) 2656 return false; 2657 2658 // Set the return value once we determine that we return true. 2659 BasePos = BasePosLd; 2660 OffsetPos = OffsetPosLd; 2661 NewBase = PrevReg; 2662 Offset = StoreOffset; 2663 return true; 2664 } 2665 2666 /// Apply changes to the instruction if needed. The changes are need 2667 /// to improve the scheduling and depend up on the final schedule. 2668 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2669 SMSchedule &Schedule) { 2670 SUnit *SU = getSUnit(MI); 2671 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2672 InstrChanges.find(SU); 2673 if (It != InstrChanges.end()) { 2674 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2675 unsigned BasePos, OffsetPos; 2676 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2677 return; 2678 Register BaseReg = MI->getOperand(BasePos).getReg(); 2679 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2680 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2681 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2682 int BaseStageNum = Schedule.stageScheduled(SU); 2683 int BaseCycleNum = Schedule.cycleScheduled(SU); 2684 if (BaseStageNum < DefStageNum) { 2685 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2686 int OffsetDiff = DefStageNum - BaseStageNum; 2687 if (DefCycleNum < BaseCycleNum) { 2688 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2689 if (OffsetDiff > 0) 2690 --OffsetDiff; 2691 } 2692 int64_t NewOffset = 2693 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2694 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2695 SU->setInstr(NewMI); 2696 MISUnitMap[NewMI] = SU; 2697 NewMIs[MI] = NewMI; 2698 } 2699 } 2700 } 2701 2702 /// Return the instruction in the loop that defines the register. 2703 /// If the definition is a Phi, then follow the Phi operand to 2704 /// the instruction in the loop. 2705 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2706 SmallPtrSet<MachineInstr *, 8> Visited; 2707 MachineInstr *Def = MRI.getVRegDef(Reg); 2708 while (Def->isPHI()) { 2709 if (!Visited.insert(Def).second) 2710 break; 2711 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2712 if (Def->getOperand(i + 1).getMBB() == BB) { 2713 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2714 break; 2715 } 2716 } 2717 return Def; 2718 } 2719 2720 /// Return true for an order or output dependence that is loop carried 2721 /// potentially. A dependence is loop carried if the destination defines a value 2722 /// that may be used or defined by the source in a subsequent iteration. 2723 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2724 bool isSucc) const { 2725 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2726 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2727 return false; 2728 2729 if (!SwpPruneLoopCarried) 2730 return true; 2731 2732 if (Dep.getKind() == SDep::Output) 2733 return true; 2734 2735 MachineInstr *SI = Source->getInstr(); 2736 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2737 if (!isSucc) 2738 std::swap(SI, DI); 2739 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2740 2741 // Assume ordered loads and stores may have a loop carried dependence. 2742 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2743 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2744 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2745 return true; 2746 2747 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2748 return false; 2749 2750 // The conservative assumption is that a dependence between memory operations 2751 // may be loop carried. The following code checks when it can be proved that 2752 // there is no loop carried dependence. 2753 unsigned DeltaS, DeltaD; 2754 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2755 return true; 2756 2757 const MachineOperand *BaseOpS, *BaseOpD; 2758 int64_t OffsetS, OffsetD; 2759 bool OffsetSIsScalable, OffsetDIsScalable; 2760 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2761 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2762 TRI) || 2763 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2764 TRI)) 2765 return true; 2766 2767 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2768 "Expected offsets to be byte offsets"); 2769 2770 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2771 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2772 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2773 return true; 2774 2775 unsigned InitValS = 0; 2776 unsigned LoopValS = 0; 2777 unsigned InitValD = 0; 2778 unsigned LoopValD = 0; 2779 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2780 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2781 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2782 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2783 2784 if (!InitDefS->isIdenticalTo(*InitDefD)) 2785 return true; 2786 2787 // Check that the base register is incremented by a constant value for each 2788 // iteration. 2789 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2790 int D = 0; 2791 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2792 return true; 2793 2794 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2795 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2796 2797 // This is the main test, which checks the offset values and the loop 2798 // increment value to determine if the accesses may be loop carried. 2799 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2800 return true; 2801 2802 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2803 DeltaD < AccessSizeD.getValue()) 2804 return true; 2805 2806 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2807 OffsetD + (int64_t)AccessSizeD.getValue()); 2808 } 2809 2810 void SwingSchedulerDAG::postProcessDAG() { 2811 for (auto &M : Mutations) 2812 M->apply(this); 2813 } 2814 2815 /// Try to schedule the node at the specified StartCycle and continue 2816 /// until the node is schedule or the EndCycle is reached. This function 2817 /// returns true if the node is scheduled. This routine may search either 2818 /// forward or backward for a place to insert the instruction based upon 2819 /// the relative values of StartCycle and EndCycle. 2820 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2821 bool forward = true; 2822 LLVM_DEBUG({ 2823 dbgs() << "Trying to insert node between " << StartCycle << " and " 2824 << EndCycle << " II: " << II << "\n"; 2825 }); 2826 if (StartCycle > EndCycle) 2827 forward = false; 2828 2829 // The terminating condition depends on the direction. 2830 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2831 for (int curCycle = StartCycle; curCycle != termCycle; 2832 forward ? ++curCycle : --curCycle) { 2833 2834 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2835 ProcItinResources.canReserveResources(*SU, curCycle)) { 2836 LLVM_DEBUG({ 2837 dbgs() << "\tinsert at cycle " << curCycle << " "; 2838 SU->getInstr()->dump(); 2839 }); 2840 2841 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2842 ProcItinResources.reserveResources(*SU, curCycle); 2843 ScheduledInstrs[curCycle].push_back(SU); 2844 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2845 if (curCycle > LastCycle) 2846 LastCycle = curCycle; 2847 if (curCycle < FirstCycle) 2848 FirstCycle = curCycle; 2849 return true; 2850 } 2851 LLVM_DEBUG({ 2852 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2853 SU->getInstr()->dump(); 2854 }); 2855 } 2856 return false; 2857 } 2858 2859 // Return the cycle of the earliest scheduled instruction in the chain. 2860 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2861 SmallPtrSet<SUnit *, 8> Visited; 2862 SmallVector<SDep, 8> Worklist; 2863 Worklist.push_back(Dep); 2864 int EarlyCycle = INT_MAX; 2865 while (!Worklist.empty()) { 2866 const SDep &Cur = Worklist.pop_back_val(); 2867 SUnit *PrevSU = Cur.getSUnit(); 2868 if (Visited.count(PrevSU)) 2869 continue; 2870 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2871 if (it == InstrToCycle.end()) 2872 continue; 2873 EarlyCycle = std::min(EarlyCycle, it->second); 2874 for (const auto &PI : PrevSU->Preds) 2875 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2876 Worklist.push_back(PI); 2877 Visited.insert(PrevSU); 2878 } 2879 return EarlyCycle; 2880 } 2881 2882 // Return the cycle of the latest scheduled instruction in the chain. 2883 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2884 SmallPtrSet<SUnit *, 8> Visited; 2885 SmallVector<SDep, 8> Worklist; 2886 Worklist.push_back(Dep); 2887 int LateCycle = INT_MIN; 2888 while (!Worklist.empty()) { 2889 const SDep &Cur = Worklist.pop_back_val(); 2890 SUnit *SuccSU = Cur.getSUnit(); 2891 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2892 continue; 2893 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2894 if (it == InstrToCycle.end()) 2895 continue; 2896 LateCycle = std::max(LateCycle, it->second); 2897 for (const auto &SI : SuccSU->Succs) 2898 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2899 Worklist.push_back(SI); 2900 Visited.insert(SuccSU); 2901 } 2902 return LateCycle; 2903 } 2904 2905 /// If an instruction has a use that spans multiple iterations, then 2906 /// return true. These instructions are characterized by having a back-ege 2907 /// to a Phi, which contains a reference to another Phi. 2908 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2909 for (auto &P : SU->Preds) 2910 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2911 for (auto &S : P.getSUnit()->Succs) 2912 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2913 return P.getSUnit(); 2914 return nullptr; 2915 } 2916 2917 /// Compute the scheduling start slot for the instruction. The start slot 2918 /// depends on any predecessor or successor nodes scheduled already. 2919 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2920 int II, SwingSchedulerDAG *DAG) { 2921 // Iterate over each instruction that has been scheduled already. The start 2922 // slot computation depends on whether the previously scheduled instruction 2923 // is a predecessor or successor of the specified instruction. 2924 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2925 2926 // Iterate over each instruction in the current cycle. 2927 for (SUnit *I : getInstructions(cycle)) { 2928 // Because we're processing a DAG for the dependences, we recognize 2929 // the back-edge in recurrences by anti dependences. 2930 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2931 const SDep &Dep = SU->Preds[i]; 2932 if (Dep.getSUnit() == I) { 2933 if (!DAG->isBackedge(SU, Dep)) { 2934 int EarlyStart = cycle + Dep.getLatency() - 2935 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2936 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2937 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2938 int End = earliestCycleInChain(Dep) + (II - 1); 2939 *MinLateStart = std::min(*MinLateStart, End); 2940 } 2941 } else { 2942 int LateStart = cycle - Dep.getLatency() + 2943 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2944 *MinLateStart = std::min(*MinLateStart, LateStart); 2945 } 2946 } 2947 // For instruction that requires multiple iterations, make sure that 2948 // the dependent instruction is not scheduled past the definition. 2949 SUnit *BE = multipleIterations(I, DAG); 2950 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2951 !SU->isPred(I)) 2952 *MinLateStart = std::min(*MinLateStart, cycle); 2953 } 2954 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2955 if (SU->Succs[i].getSUnit() == I) { 2956 const SDep &Dep = SU->Succs[i]; 2957 if (!DAG->isBackedge(SU, Dep)) { 2958 int LateStart = cycle - Dep.getLatency() + 2959 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2960 *MinLateStart = std::min(*MinLateStart, LateStart); 2961 if (DAG->isLoopCarriedDep(SU, Dep)) { 2962 int Start = latestCycleInChain(Dep) + 1 - II; 2963 *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 2964 } 2965 } else { 2966 int EarlyStart = cycle + Dep.getLatency() - 2967 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2968 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2969 } 2970 } 2971 } 2972 } 2973 } 2974 } 2975 2976 /// Order the instructions within a cycle so that the definitions occur 2977 /// before the uses. Returns true if the instruction is added to the start 2978 /// of the list, or false if added to the end. 2979 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2980 std::deque<SUnit *> &Insts) const { 2981 MachineInstr *MI = SU->getInstr(); 2982 bool OrderBeforeUse = false; 2983 bool OrderAfterDef = false; 2984 bool OrderBeforeDef = false; 2985 unsigned MoveDef = 0; 2986 unsigned MoveUse = 0; 2987 int StageInst1 = stageScheduled(SU); 2988 2989 unsigned Pos = 0; 2990 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2991 ++I, ++Pos) { 2992 for (MachineOperand &MO : MI->operands()) { 2993 if (!MO.isReg() || !MO.getReg().isVirtual()) 2994 continue; 2995 2996 Register Reg = MO.getReg(); 2997 unsigned BasePos, OffsetPos; 2998 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2999 if (MI->getOperand(BasePos).getReg() == Reg) 3000 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3001 Reg = NewReg; 3002 bool Reads, Writes; 3003 std::tie(Reads, Writes) = 3004 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3005 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3006 OrderBeforeUse = true; 3007 if (MoveUse == 0) 3008 MoveUse = Pos; 3009 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3010 // Add the instruction after the scheduled instruction. 3011 OrderAfterDef = true; 3012 MoveDef = Pos; 3013 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3014 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3015 OrderBeforeUse = true; 3016 if (MoveUse == 0) 3017 MoveUse = Pos; 3018 } else { 3019 OrderAfterDef = true; 3020 MoveDef = Pos; 3021 } 3022 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3023 OrderBeforeUse = true; 3024 if (MoveUse == 0) 3025 MoveUse = Pos; 3026 if (MoveUse != 0) { 3027 OrderAfterDef = true; 3028 MoveDef = Pos - 1; 3029 } 3030 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3031 // Add the instruction before the scheduled instruction. 3032 OrderBeforeUse = true; 3033 if (MoveUse == 0) 3034 MoveUse = Pos; 3035 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3036 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3037 if (MoveUse == 0) { 3038 OrderBeforeDef = true; 3039 MoveUse = Pos; 3040 } 3041 } 3042 } 3043 // Check for order dependences between instructions. Make sure the source 3044 // is ordered before the destination. 3045 for (auto &S : SU->Succs) { 3046 if (S.getSUnit() != *I) 3047 continue; 3048 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3049 OrderBeforeUse = true; 3050 if (Pos < MoveUse) 3051 MoveUse = Pos; 3052 } 3053 // We did not handle HW dependences in previous for loop, 3054 // and we normally set Latency = 0 for Anti/Output deps, 3055 // so may have nodes in same cycle with Anti/Output dependent on HW regs. 3056 else if ((S.getKind() == SDep::Anti || S.getKind() == SDep::Output) && 3057 stageScheduled(*I) == StageInst1) { 3058 OrderBeforeUse = true; 3059 if ((MoveUse == 0) || (Pos < MoveUse)) 3060 MoveUse = Pos; 3061 } 3062 } 3063 for (auto &P : SU->Preds) { 3064 if (P.getSUnit() != *I) 3065 continue; 3066 if ((P.getKind() == SDep::Order || P.getKind() == SDep::Anti || 3067 P.getKind() == SDep::Output) && 3068 stageScheduled(*I) == StageInst1) { 3069 OrderAfterDef = true; 3070 MoveDef = Pos; 3071 } 3072 } 3073 } 3074 3075 // A circular dependence. 3076 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3077 OrderBeforeUse = false; 3078 3079 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3080 // to a loop-carried dependence. 3081 if (OrderBeforeDef) 3082 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3083 3084 // The uncommon case when the instruction order needs to be updated because 3085 // there is both a use and def. 3086 if (OrderBeforeUse && OrderAfterDef) { 3087 SUnit *UseSU = Insts.at(MoveUse); 3088 SUnit *DefSU = Insts.at(MoveDef); 3089 if (MoveUse > MoveDef) { 3090 Insts.erase(Insts.begin() + MoveUse); 3091 Insts.erase(Insts.begin() + MoveDef); 3092 } else { 3093 Insts.erase(Insts.begin() + MoveDef); 3094 Insts.erase(Insts.begin() + MoveUse); 3095 } 3096 orderDependence(SSD, UseSU, Insts); 3097 orderDependence(SSD, SU, Insts); 3098 orderDependence(SSD, DefSU, Insts); 3099 return; 3100 } 3101 // Put the new instruction first if there is a use in the list. Otherwise, 3102 // put it at the end of the list. 3103 if (OrderBeforeUse) 3104 Insts.push_front(SU); 3105 else 3106 Insts.push_back(SU); 3107 } 3108 3109 /// Return true if the scheduled Phi has a loop carried operand. 3110 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3111 MachineInstr &Phi) const { 3112 if (!Phi.isPHI()) 3113 return false; 3114 assert(Phi.isPHI() && "Expecting a Phi."); 3115 SUnit *DefSU = SSD->getSUnit(&Phi); 3116 unsigned DefCycle = cycleScheduled(DefSU); 3117 int DefStage = stageScheduled(DefSU); 3118 3119 unsigned InitVal = 0; 3120 unsigned LoopVal = 0; 3121 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3122 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3123 if (!UseSU) 3124 return true; 3125 if (UseSU->getInstr()->isPHI()) 3126 return true; 3127 unsigned LoopCycle = cycleScheduled(UseSU); 3128 int LoopStage = stageScheduled(UseSU); 3129 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3130 } 3131 3132 /// Return true if the instruction is a definition that is loop carried 3133 /// and defines the use on the next iteration. 3134 /// v1 = phi(v2, v3) 3135 /// (Def) v3 = op v1 3136 /// (MO) = v1 3137 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3138 /// register. 3139 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3140 MachineInstr *Def, 3141 MachineOperand &MO) const { 3142 if (!MO.isReg()) 3143 return false; 3144 if (Def->isPHI()) 3145 return false; 3146 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3147 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3148 return false; 3149 if (!isLoopCarried(SSD, *Phi)) 3150 return false; 3151 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3152 for (MachineOperand &DMO : Def->all_defs()) { 3153 if (DMO.getReg() == LoopReg) 3154 return true; 3155 } 3156 return false; 3157 } 3158 3159 /// Return true if all scheduled predecessors are loop-carried output/order 3160 /// dependencies. 3161 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 3162 SUnit *SU, SwingSchedulerDAG *DAG) const { 3163 for (const SDep &Pred : SU->Preds) 3164 if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) 3165 return false; 3166 for (const SDep &Succ : SU->Succs) 3167 if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) 3168 return false; 3169 return true; 3170 } 3171 3172 /// Determine transitive dependences of unpipelineable instructions 3173 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3174 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3175 SmallSet<SUnit *, 8> DoNotPipeline; 3176 SmallVector<SUnit *, 8> Worklist; 3177 3178 for (auto &SU : SSD->SUnits) 3179 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3180 Worklist.push_back(&SU); 3181 3182 while (!Worklist.empty()) { 3183 auto SU = Worklist.pop_back_val(); 3184 if (DoNotPipeline.count(SU)) 3185 continue; 3186 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3187 DoNotPipeline.insert(SU); 3188 for (auto &Dep : SU->Preds) 3189 Worklist.push_back(Dep.getSUnit()); 3190 if (SU->getInstr()->isPHI()) 3191 for (auto &Dep : SU->Succs) 3192 if (Dep.getKind() == SDep::Anti) 3193 Worklist.push_back(Dep.getSUnit()); 3194 } 3195 return DoNotPipeline; 3196 } 3197 3198 // Determine all instructions upon which any unpipelineable instruction depends 3199 // and ensure that they are in stage 0. If unable to do so, return false. 3200 bool SMSchedule::normalizeNonPipelinedInstructions( 3201 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3202 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3203 3204 int NewLastCycle = INT_MIN; 3205 for (SUnit &SU : SSD->SUnits) { 3206 if (!SU.isInstr()) 3207 continue; 3208 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3209 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3210 continue; 3211 } 3212 3213 // Put the non-pipelined instruction as early as possible in the schedule 3214 int NewCycle = getFirstCycle(); 3215 for (auto &Dep : SU.Preds) 3216 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3217 3218 int OldCycle = InstrToCycle[&SU]; 3219 if (OldCycle != NewCycle) { 3220 InstrToCycle[&SU] = NewCycle; 3221 auto &OldS = getInstructions(OldCycle); 3222 llvm::erase(OldS, &SU); 3223 getInstructions(NewCycle).emplace_back(&SU); 3224 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3225 << ") is not pipelined; moving from cycle " << OldCycle 3226 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3227 } 3228 NewLastCycle = std::max(NewLastCycle, NewCycle); 3229 } 3230 LastCycle = NewLastCycle; 3231 return true; 3232 } 3233 3234 // Check if the generated schedule is valid. This function checks if 3235 // an instruction that uses a physical register is scheduled in a 3236 // different stage than the definition. The pipeliner does not handle 3237 // physical register values that may cross a basic block boundary. 3238 // Furthermore, if a physical def/use pair is assigned to the same 3239 // cycle, orderDependence does not guarantee def/use ordering, so that 3240 // case should be considered invalid. (The test checks for both 3241 // earlier and same-cycle use to be more robust.) 3242 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3243 for (SUnit &SU : SSD->SUnits) { 3244 if (!SU.hasPhysRegDefs) 3245 continue; 3246 int StageDef = stageScheduled(&SU); 3247 int CycleDef = InstrToCycle[&SU]; 3248 assert(StageDef != -1 && "Instruction should have been scheduled."); 3249 for (auto &SI : SU.Succs) 3250 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3251 if (Register::isPhysicalRegister(SI.getReg())) { 3252 if (stageScheduled(SI.getSUnit()) != StageDef) 3253 return false; 3254 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3255 return false; 3256 } 3257 } 3258 return true; 3259 } 3260 3261 /// A property of the node order in swing-modulo-scheduling is 3262 /// that for nodes outside circuits the following holds: 3263 /// none of them is scheduled after both a successor and a 3264 /// predecessor. 3265 /// The method below checks whether the property is met. 3266 /// If not, debug information is printed and statistics information updated. 3267 /// Note that we do not use an assert statement. 3268 /// The reason is that although an invalid node oder may prevent 3269 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3270 /// it does not lead to the generation of incorrect code. 3271 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3272 3273 // a sorted vector that maps each SUnit to its index in the NodeOrder 3274 typedef std::pair<SUnit *, unsigned> UnitIndex; 3275 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3276 3277 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3278 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3279 3280 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3281 return std::get<0>(i1) < std::get<0>(i2); 3282 }; 3283 3284 // sort, so that we can perform a binary search 3285 llvm::sort(Indices, CompareKey); 3286 3287 bool Valid = true; 3288 (void)Valid; 3289 // for each SUnit in the NodeOrder, check whether 3290 // it appears after both a successor and a predecessor 3291 // of the SUnit. If this is the case, and the SUnit 3292 // is not part of circuit, then the NodeOrder is not 3293 // valid. 3294 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3295 SUnit *SU = NodeOrder[i]; 3296 unsigned Index = i; 3297 3298 bool PredBefore = false; 3299 bool SuccBefore = false; 3300 3301 SUnit *Succ; 3302 SUnit *Pred; 3303 (void)Succ; 3304 (void)Pred; 3305 3306 for (SDep &PredEdge : SU->Preds) { 3307 SUnit *PredSU = PredEdge.getSUnit(); 3308 unsigned PredIndex = std::get<1>( 3309 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3310 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3311 PredBefore = true; 3312 Pred = PredSU; 3313 break; 3314 } 3315 } 3316 3317 for (SDep &SuccEdge : SU->Succs) { 3318 SUnit *SuccSU = SuccEdge.getSUnit(); 3319 // Do not process a boundary node, it was not included in NodeOrder, 3320 // hence not in Indices either, call to std::lower_bound() below will 3321 // return Indices.end(). 3322 if (SuccSU->isBoundaryNode()) 3323 continue; 3324 unsigned SuccIndex = std::get<1>( 3325 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3326 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3327 SuccBefore = true; 3328 Succ = SuccSU; 3329 break; 3330 } 3331 } 3332 3333 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3334 // instructions in circuits are allowed to be scheduled 3335 // after both a successor and predecessor. 3336 bool InCircuit = llvm::any_of( 3337 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3338 if (InCircuit) 3339 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3340 else { 3341 Valid = false; 3342 NumNodeOrderIssues++; 3343 LLVM_DEBUG(dbgs() << "Predecessor ";); 3344 } 3345 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3346 << " are scheduled before node " << SU->NodeNum 3347 << "\n";); 3348 } 3349 } 3350 3351 LLVM_DEBUG({ 3352 if (!Valid) 3353 dbgs() << "Invalid node order found!\n"; 3354 }); 3355 } 3356 3357 /// Attempt to fix the degenerate cases when the instruction serialization 3358 /// causes the register lifetimes to overlap. For example, 3359 /// p' = store_pi(p, b) 3360 /// = load p, offset 3361 /// In this case p and p' overlap, which means that two registers are needed. 3362 /// Instead, this function changes the load to use p' and updates the offset. 3363 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3364 unsigned OverlapReg = 0; 3365 unsigned NewBaseReg = 0; 3366 for (SUnit *SU : Instrs) { 3367 MachineInstr *MI = SU->getInstr(); 3368 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3369 const MachineOperand &MO = MI->getOperand(i); 3370 // Look for an instruction that uses p. The instruction occurs in the 3371 // same cycle but occurs later in the serialized order. 3372 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3373 // Check that the instruction appears in the InstrChanges structure, 3374 // which contains instructions that can have the offset updated. 3375 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3376 InstrChanges.find(SU); 3377 if (It != InstrChanges.end()) { 3378 unsigned BasePos, OffsetPos; 3379 // Update the base register and adjust the offset. 3380 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3381 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3382 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3383 int64_t NewOffset = 3384 MI->getOperand(OffsetPos).getImm() - It->second.second; 3385 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3386 SU->setInstr(NewMI); 3387 MISUnitMap[NewMI] = SU; 3388 NewMIs[MI] = NewMI; 3389 } 3390 } 3391 OverlapReg = 0; 3392 NewBaseReg = 0; 3393 break; 3394 } 3395 // Look for an instruction of the form p' = op(p), which uses and defines 3396 // two virtual registers that get allocated to the same physical register. 3397 unsigned TiedUseIdx = 0; 3398 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3399 // OverlapReg is p in the example above. 3400 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3401 // NewBaseReg is p' in the example above. 3402 NewBaseReg = MI->getOperand(i).getReg(); 3403 break; 3404 } 3405 } 3406 } 3407 } 3408 3409 std::deque<SUnit *> 3410 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3411 const std::deque<SUnit *> &Instrs) const { 3412 std::deque<SUnit *> NewOrderPhi; 3413 for (SUnit *SU : Instrs) { 3414 if (SU->getInstr()->isPHI()) 3415 NewOrderPhi.push_back(SU); 3416 } 3417 std::deque<SUnit *> NewOrderI; 3418 for (SUnit *SU : Instrs) { 3419 if (!SU->getInstr()->isPHI()) 3420 orderDependence(SSD, SU, NewOrderI); 3421 } 3422 llvm::append_range(NewOrderPhi, NewOrderI); 3423 return NewOrderPhi; 3424 } 3425 3426 /// After the schedule has been formed, call this function to combine 3427 /// the instructions from the different stages/cycles. That is, this 3428 /// function creates a schedule that represents a single iteration. 3429 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3430 // Move all instructions to the first stage from later stages. 3431 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3432 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3433 ++stage) { 3434 std::deque<SUnit *> &cycleInstrs = 3435 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3436 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3437 ScheduledInstrs[cycle].push_front(SU); 3438 } 3439 } 3440 3441 // Erase all the elements in the later stages. Only one iteration should 3442 // remain in the scheduled list, and it contains all the instructions. 3443 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3444 ScheduledInstrs.erase(cycle); 3445 3446 // Change the registers in instruction as specified in the InstrChanges 3447 // map. We need to use the new registers to create the correct order. 3448 for (const SUnit &SU : SSD->SUnits) 3449 SSD->applyInstrChange(SU.getInstr(), *this); 3450 3451 // Reorder the instructions in each cycle to fix and improve the 3452 // generated code. 3453 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3454 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3455 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3456 SSD->fixupRegisterOverlaps(cycleInstrs); 3457 } 3458 3459 LLVM_DEBUG(dump();); 3460 } 3461 3462 void NodeSet::print(raw_ostream &os) const { 3463 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3464 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3465 for (const auto &I : Nodes) 3466 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3467 os << "\n"; 3468 } 3469 3470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3471 /// Print the schedule information to the given output. 3472 void SMSchedule::print(raw_ostream &os) const { 3473 // Iterate over each cycle. 3474 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3475 // Iterate over each instruction in the cycle. 3476 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3477 for (SUnit *CI : cycleInstrs->second) { 3478 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3479 os << "(" << CI->NodeNum << ") "; 3480 CI->getInstr()->print(os); 3481 os << "\n"; 3482 } 3483 } 3484 } 3485 3486 /// Utility function used for debugging to print the schedule. 3487 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3488 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3489 3490 void ResourceManager::dumpMRT() const { 3491 LLVM_DEBUG({ 3492 if (UseDFA) 3493 return; 3494 std::stringstream SS; 3495 SS << "MRT:\n"; 3496 SS << std::setw(4) << "Slot"; 3497 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3498 SS << std::setw(3) << I; 3499 SS << std::setw(7) << "#Mops" 3500 << "\n"; 3501 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3502 SS << std::setw(4) << Slot; 3503 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3504 SS << std::setw(3) << MRT[Slot][I]; 3505 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3506 } 3507 dbgs() << SS.str(); 3508 }); 3509 } 3510 #endif 3511 3512 void ResourceManager::initProcResourceVectors( 3513 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3514 unsigned ProcResourceID = 0; 3515 3516 // We currently limit the resource kinds to 64 and below so that we can use 3517 // uint64_t for Masks 3518 assert(SM.getNumProcResourceKinds() < 64 && 3519 "Too many kinds of resources, unsupported"); 3520 // Create a unique bitmask for every processor resource unit. 3521 // Skip resource at index 0, since it always references 'InvalidUnit'. 3522 Masks.resize(SM.getNumProcResourceKinds()); 3523 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3524 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3525 if (Desc.SubUnitsIdxBegin) 3526 continue; 3527 Masks[I] = 1ULL << ProcResourceID; 3528 ProcResourceID++; 3529 } 3530 // Create a unique bitmask for every processor resource group. 3531 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3532 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3533 if (!Desc.SubUnitsIdxBegin) 3534 continue; 3535 Masks[I] = 1ULL << ProcResourceID; 3536 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3537 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3538 ProcResourceID++; 3539 } 3540 LLVM_DEBUG({ 3541 if (SwpShowResMask) { 3542 dbgs() << "ProcResourceDesc:\n"; 3543 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3544 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3545 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3546 ProcResource->Name, I, Masks[I], 3547 ProcResource->NumUnits); 3548 } 3549 dbgs() << " -----------------\n"; 3550 } 3551 }); 3552 } 3553 3554 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3555 LLVM_DEBUG({ 3556 if (SwpDebugResource) 3557 dbgs() << "canReserveResources:\n"; 3558 }); 3559 if (UseDFA) 3560 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3561 ->canReserveResources(&SU.getInstr()->getDesc()); 3562 3563 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3564 if (!SCDesc->isValid()) { 3565 LLVM_DEBUG({ 3566 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3567 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3568 }); 3569 return true; 3570 } 3571 3572 reserveResources(SCDesc, Cycle); 3573 bool Result = !isOverbooked(); 3574 unreserveResources(SCDesc, Cycle); 3575 3576 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3577 return Result; 3578 } 3579 3580 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3581 LLVM_DEBUG({ 3582 if (SwpDebugResource) 3583 dbgs() << "reserveResources:\n"; 3584 }); 3585 if (UseDFA) 3586 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3587 ->reserveResources(&SU.getInstr()->getDesc()); 3588 3589 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3590 if (!SCDesc->isValid()) { 3591 LLVM_DEBUG({ 3592 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3593 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3594 }); 3595 return; 3596 } 3597 3598 reserveResources(SCDesc, Cycle); 3599 3600 LLVM_DEBUG({ 3601 if (SwpDebugResource) { 3602 dumpMRT(); 3603 dbgs() << "reserveResources: done!\n\n"; 3604 } 3605 }); 3606 } 3607 3608 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3609 int Cycle) { 3610 assert(!UseDFA); 3611 for (const MCWriteProcResEntry &PRE : make_range( 3612 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3613 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3614 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3615 3616 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3617 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3618 } 3619 3620 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3621 int Cycle) { 3622 assert(!UseDFA); 3623 for (const MCWriteProcResEntry &PRE : make_range( 3624 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3625 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3626 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3627 3628 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3629 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3630 } 3631 3632 bool ResourceManager::isOverbooked() const { 3633 assert(!UseDFA); 3634 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3635 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3636 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3637 if (MRT[Slot][I] > Desc->NumUnits) 3638 return true; 3639 } 3640 if (NumScheduledMops[Slot] > IssueWidth) 3641 return true; 3642 } 3643 return false; 3644 } 3645 3646 int ResourceManager::calculateResMIIDFA() const { 3647 assert(UseDFA); 3648 3649 // Sort the instructions by the number of available choices for scheduling, 3650 // least to most. Use the number of critical resources as the tie breaker. 3651 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3652 for (SUnit &SU : DAG->SUnits) 3653 FUS.calcCriticalResources(*SU.getInstr()); 3654 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3655 FuncUnitOrder(FUS); 3656 3657 for (SUnit &SU : DAG->SUnits) 3658 FuncUnitOrder.push(SU.getInstr()); 3659 3660 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3661 Resources.push_back( 3662 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3663 3664 while (!FuncUnitOrder.empty()) { 3665 MachineInstr *MI = FuncUnitOrder.top(); 3666 FuncUnitOrder.pop(); 3667 if (TII->isZeroCost(MI->getOpcode())) 3668 continue; 3669 3670 // Attempt to reserve the instruction in an existing DFA. At least one 3671 // DFA is needed for each cycle. 3672 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3673 unsigned ReservedCycles = 0; 3674 auto *RI = Resources.begin(); 3675 auto *RE = Resources.end(); 3676 LLVM_DEBUG({ 3677 dbgs() << "Trying to reserve resource for " << NumCycles 3678 << " cycles for \n"; 3679 MI->dump(); 3680 }); 3681 for (unsigned C = 0; C < NumCycles; ++C) 3682 while (RI != RE) { 3683 if ((*RI)->canReserveResources(*MI)) { 3684 (*RI)->reserveResources(*MI); 3685 ++ReservedCycles; 3686 break; 3687 } 3688 RI++; 3689 } 3690 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3691 << ", NumCycles:" << NumCycles << "\n"); 3692 // Add new DFAs, if needed, to reserve resources. 3693 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3694 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3695 << "NewResource created to reserve resources" 3696 << "\n"); 3697 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3698 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3699 NewResource->reserveResources(*MI); 3700 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3701 } 3702 } 3703 3704 int Resmii = Resources.size(); 3705 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3706 return Resmii; 3707 } 3708 3709 int ResourceManager::calculateResMII() const { 3710 if (UseDFA) 3711 return calculateResMIIDFA(); 3712 3713 // Count each resource consumption and divide it by the number of units. 3714 // ResMII is the max value among them. 3715 3716 int NumMops = 0; 3717 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3718 for (SUnit &SU : DAG->SUnits) { 3719 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3720 continue; 3721 3722 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3723 if (!SCDesc->isValid()) 3724 continue; 3725 3726 LLVM_DEBUG({ 3727 if (SwpDebugResource) { 3728 DAG->dumpNode(SU); 3729 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3730 << " WriteProcRes: "; 3731 } 3732 }); 3733 NumMops += SCDesc->NumMicroOps; 3734 for (const MCWriteProcResEntry &PRE : 3735 make_range(STI->getWriteProcResBegin(SCDesc), 3736 STI->getWriteProcResEnd(SCDesc))) { 3737 LLVM_DEBUG({ 3738 if (SwpDebugResource) { 3739 const MCProcResourceDesc *Desc = 3740 SM.getProcResource(PRE.ProcResourceIdx); 3741 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3742 } 3743 }); 3744 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3745 } 3746 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3747 } 3748 3749 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3750 LLVM_DEBUG({ 3751 if (SwpDebugResource) 3752 dbgs() << "#Mops: " << NumMops << ", " 3753 << "IssueWidth: " << IssueWidth << ", " 3754 << "Cycles: " << Result << "\n"; 3755 }); 3756 3757 LLVM_DEBUG({ 3758 if (SwpDebugResource) { 3759 std::stringstream SS; 3760 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3761 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3762 << "\n"; 3763 dbgs() << SS.str(); 3764 } 3765 }); 3766 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3767 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3768 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3769 LLVM_DEBUG({ 3770 if (SwpDebugResource) { 3771 std::stringstream SS; 3772 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3773 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3774 << std::setw(10) << Cycles << "\n"; 3775 dbgs() << SS.str(); 3776 } 3777 }); 3778 if (Cycles > Result) 3779 Result = Cycles; 3780 } 3781 return Result; 3782 } 3783 3784 void ResourceManager::init(int II) { 3785 InitiationInterval = II; 3786 DFAResources.clear(); 3787 DFAResources.resize(II); 3788 for (auto &I : DFAResources) 3789 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3790 MRT.clear(); 3791 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3792 NumScheduledMops.clear(); 3793 NumScheduledMops.resize(II); 3794 } 3795