1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/CodeGen/DFAPacketizer.h" 51 #include "llvm/CodeGen/LiveIntervals.h" 52 #include "llvm/CodeGen/MachineBasicBlock.h" 53 #include "llvm/CodeGen/MachineDominators.h" 54 #include "llvm/CodeGen/MachineFunction.h" 55 #include "llvm/CodeGen/MachineFunctionPass.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineLoopInfo.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/ModuloSchedule.h" 63 #include "llvm/CodeGen/Register.h" 64 #include "llvm/CodeGen/RegisterClassInfo.h" 65 #include "llvm/CodeGen/RegisterPressure.h" 66 #include "llvm/CodeGen/ScheduleDAG.h" 67 #include "llvm/CodeGen/ScheduleDAGMutation.h" 68 #include "llvm/CodeGen/TargetInstrInfo.h" 69 #include "llvm/CodeGen/TargetOpcodes.h" 70 #include "llvm/CodeGen/TargetPassConfig.h" 71 #include "llvm/CodeGen/TargetRegisterInfo.h" 72 #include "llvm/CodeGen/TargetSubtargetInfo.h" 73 #include "llvm/Config/llvm-config.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/LaneBitmask.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCInstrItineraries.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <climits> 87 #include <cstdint> 88 #include <deque> 89 #include <functional> 90 #include <iomanip> 91 #include <iterator> 92 #include <map> 93 #include <memory> 94 #include <sstream> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "pipeliner" 102 103 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 104 STATISTIC(NumPipelined, "Number of loops software pipelined"); 105 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 106 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 107 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 108 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 109 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 110 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 111 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 112 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 113 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 114 115 /// A command line option to turn software pipelining on or off. 116 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 117 cl::desc("Enable Software Pipelining")); 118 119 /// A command line option to enable SWP at -Os. 120 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 121 cl::desc("Enable SWP at Os."), cl::Hidden, 122 cl::init(false)); 123 124 /// A command line argument to limit minimum initial interval for pipelining. 125 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 126 cl::desc("Size limit for the MII."), 127 cl::Hidden, cl::init(27)); 128 129 /// A command line argument to force pipeliner to use specified initial 130 /// interval. 131 static cl::opt<int> SwpForceII("pipeliner-force-ii", 132 cl::desc("Force pipeliner to use specified II."), 133 cl::Hidden, cl::init(-1)); 134 135 /// A command line argument to limit the number of stages in the pipeline. 136 static cl::opt<int> 137 SwpMaxStages("pipeliner-max-stages", 138 cl::desc("Maximum stages allowed in the generated scheduled."), 139 cl::Hidden, cl::init(3)); 140 141 /// A command line option to disable the pruning of chain dependences due to 142 /// an unrelated Phi. 143 static cl::opt<bool> 144 SwpPruneDeps("pipeliner-prune-deps", 145 cl::desc("Prune dependences between unrelated Phi nodes."), 146 cl::Hidden, cl::init(true)); 147 148 /// A command line option to disable the pruning of loop carried order 149 /// dependences. 150 static cl::opt<bool> 151 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 152 cl::desc("Prune loop carried order dependences."), 153 cl::Hidden, cl::init(true)); 154 155 #ifndef NDEBUG 156 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 157 #endif 158 159 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 160 cl::ReallyHidden, 161 cl::desc("Ignore RecMII")); 162 163 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 164 cl::init(false)); 165 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 166 cl::init(false)); 167 168 static cl::opt<bool> EmitTestAnnotations( 169 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 170 cl::desc("Instead of emitting the pipelined code, annotate instructions " 171 "with the generated schedule for feeding into the " 172 "-modulo-schedule-test pass")); 173 174 static cl::opt<bool> ExperimentalCodeGen( 175 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 176 cl::desc( 177 "Use the experimental peeling code generator for software pipelining")); 178 179 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 180 cl::desc("Range to search for II"), 181 cl::Hidden, cl::init(10)); 182 183 static cl::opt<bool> 184 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 185 cl::desc("Limit register pressure of scheduled loop")); 186 187 static cl::opt<int> 188 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 189 cl::init(5), 190 cl::desc("Margin representing the unused percentage of " 191 "the register pressure limit")); 192 193 static cl::opt<bool> 194 MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 195 cl::desc("Use the MVE code generator for software pipelining")); 196 197 namespace llvm { 198 199 // A command line option to enable the CopyToPhi DAG mutation. 200 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 201 cl::init(true), 202 cl::desc("Enable CopyToPhi DAG Mutation")); 203 204 /// A command line argument to force pipeliner to use specified issue 205 /// width. 206 cl::opt<int> SwpForceIssueWidth( 207 "pipeliner-force-issue-width", 208 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 209 cl::init(-1)); 210 211 /// A command line argument to set the window scheduling option. 212 cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 213 "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 214 cl::desc("Set how to use window scheduling algorithm."), 215 cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 216 "Turn off window algorithm."), 217 clEnumValN(WindowSchedulingFlag::WS_On, "on", 218 "Use window algorithm after SMS algorithm fails."), 219 clEnumValN(WindowSchedulingFlag::WS_Force, "force", 220 "Use window algorithm instead of SMS algorithm."))); 221 222 } // end namespace llvm 223 224 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 225 char MachinePipeliner::ID = 0; 226 #ifndef NDEBUG 227 int MachinePipeliner::NumTries = 0; 228 #endif 229 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 230 231 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 232 "Modulo Software Pipelining", false, false) 233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 235 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 236 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 237 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 238 "Modulo Software Pipelining", false, false) 239 240 /// The "main" function for implementing Swing Modulo Scheduling. 241 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 242 if (skipFunction(mf.getFunction())) 243 return false; 244 245 if (!EnableSWP) 246 return false; 247 248 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 249 !EnableSWPOptSize.getPosition()) 250 return false; 251 252 if (!mf.getSubtarget().enableMachinePipeliner()) 253 return false; 254 255 // Cannot pipeline loops without instruction itineraries if we are using 256 // DFA for the pipeliner. 257 if (mf.getSubtarget().useDFAforSMS() && 258 (!mf.getSubtarget().getInstrItineraryData() || 259 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 260 return false; 261 262 MF = &mf; 263 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 264 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 265 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 266 TII = MF->getSubtarget().getInstrInfo(); 267 RegClassInfo.runOnMachineFunction(*MF); 268 269 for (const auto &L : *MLI) 270 scheduleLoop(*L); 271 272 return false; 273 } 274 275 /// Attempt to perform the SMS algorithm on the specified loop. This function is 276 /// the main entry point for the algorithm. The function identifies candidate 277 /// loops, calculates the minimum initiation interval, and attempts to schedule 278 /// the loop. 279 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 280 bool Changed = false; 281 for (const auto &InnerLoop : L) 282 Changed |= scheduleLoop(*InnerLoop); 283 284 #ifndef NDEBUG 285 // Stop trying after reaching the limit (if any). 286 int Limit = SwpLoopLimit; 287 if (Limit >= 0) { 288 if (NumTries >= SwpLoopLimit) 289 return Changed; 290 NumTries++; 291 } 292 #endif 293 294 setPragmaPipelineOptions(L); 295 if (!canPipelineLoop(L)) { 296 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 297 ORE->emit([&]() { 298 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 299 L.getStartLoc(), L.getHeader()) 300 << "Failed to pipeline loop"; 301 }); 302 303 LI.LoopPipelinerInfo.reset(); 304 return Changed; 305 } 306 307 ++NumTrytoPipeline; 308 if (useSwingModuloScheduler()) 309 Changed = swingModuloScheduler(L); 310 311 if (useWindowScheduler(Changed)) 312 Changed = runWindowScheduler(L); 313 314 LI.LoopPipelinerInfo.reset(); 315 return Changed; 316 } 317 318 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 319 // Reset the pragma for the next loop in iteration. 320 disabledByPragma = false; 321 II_setByPragma = 0; 322 323 MachineBasicBlock *LBLK = L.getTopBlock(); 324 325 if (LBLK == nullptr) 326 return; 327 328 const BasicBlock *BBLK = LBLK->getBasicBlock(); 329 if (BBLK == nullptr) 330 return; 331 332 const Instruction *TI = BBLK->getTerminator(); 333 if (TI == nullptr) 334 return; 335 336 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 337 if (LoopID == nullptr) 338 return; 339 340 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 341 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 342 343 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 344 MDNode *MD = dyn_cast<MDNode>(MDO); 345 346 if (MD == nullptr) 347 continue; 348 349 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 350 351 if (S == nullptr) 352 continue; 353 354 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 355 assert(MD->getNumOperands() == 2 && 356 "Pipeline initiation interval hint metadata should have two operands."); 357 II_setByPragma = 358 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 359 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 360 } else if (S->getString() == "llvm.loop.pipeline.disable") { 361 disabledByPragma = true; 362 } 363 } 364 } 365 366 /// Return true if the loop can be software pipelined. The algorithm is 367 /// restricted to loops with a single basic block. Make sure that the 368 /// branch in the loop can be analyzed. 369 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 370 if (L.getNumBlocks() != 1) { 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "Not a single basic block: " 375 << ore::NV("NumBlocks", L.getNumBlocks()); 376 }); 377 return false; 378 } 379 380 if (disabledByPragma) { 381 ORE->emit([&]() { 382 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 383 L.getStartLoc(), L.getHeader()) 384 << "Disabled by Pragma."; 385 }); 386 return false; 387 } 388 389 // Check if the branch can't be understood because we can't do pipelining 390 // if that's the case. 391 LI.TBB = nullptr; 392 LI.FBB = nullptr; 393 LI.BrCond.clear(); 394 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 395 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 396 NumFailBranch++; 397 ORE->emit([&]() { 398 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 399 L.getStartLoc(), L.getHeader()) 400 << "The branch can't be understood"; 401 }); 402 return false; 403 } 404 405 LI.LoopInductionVar = nullptr; 406 LI.LoopCompare = nullptr; 407 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 408 if (!LI.LoopPipelinerInfo) { 409 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 410 NumFailLoop++; 411 ORE->emit([&]() { 412 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 413 L.getStartLoc(), L.getHeader()) 414 << "The loop structure is not supported"; 415 }); 416 return false; 417 } 418 419 if (!L.getLoopPreheader()) { 420 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 421 NumFailPreheader++; 422 ORE->emit([&]() { 423 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 424 L.getStartLoc(), L.getHeader()) 425 << "No loop preheader found"; 426 }); 427 return false; 428 } 429 430 // Remove any subregisters from inputs to phi nodes. 431 preprocessPhiNodes(*L.getHeader()); 432 return true; 433 } 434 435 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 436 MachineRegisterInfo &MRI = MF->getRegInfo(); 437 SlotIndexes &Slots = 438 *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 439 440 for (MachineInstr &PI : B.phis()) { 441 MachineOperand &DefOp = PI.getOperand(0); 442 assert(DefOp.getSubReg() == 0); 443 auto *RC = MRI.getRegClass(DefOp.getReg()); 444 445 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 446 MachineOperand &RegOp = PI.getOperand(i); 447 if (RegOp.getSubReg() == 0) 448 continue; 449 450 // If the operand uses a subregister, replace it with a new register 451 // without subregisters, and generate a copy to the new register. 452 Register NewReg = MRI.createVirtualRegister(RC); 453 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 454 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 455 const DebugLoc &DL = PredB.findDebugLoc(At); 456 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 457 .addReg(RegOp.getReg(), getRegState(RegOp), 458 RegOp.getSubReg()); 459 Slots.insertMachineInstrInMaps(*Copy); 460 RegOp.setReg(NewReg); 461 RegOp.setSubReg(0); 462 } 463 } 464 } 465 466 /// The SMS algorithm consists of the following main steps: 467 /// 1. Computation and analysis of the dependence graph. 468 /// 2. Ordering of the nodes (instructions). 469 /// 3. Attempt to Schedule the loop. 470 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 471 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 472 473 SwingSchedulerDAG SMS( 474 *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 475 II_setByPragma, LI.LoopPipelinerInfo.get()); 476 477 MachineBasicBlock *MBB = L.getHeader(); 478 // The kernel should not include any terminator instructions. These 479 // will be added back later. 480 SMS.startBlock(MBB); 481 482 // Compute the number of 'real' instructions in the basic block by 483 // ignoring terminators. 484 unsigned size = MBB->size(); 485 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 486 E = MBB->instr_end(); 487 I != E; ++I, --size) 488 ; 489 490 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 491 SMS.schedule(); 492 SMS.exitRegion(); 493 494 SMS.finishBlock(); 495 return SMS.hasNewSchedule(); 496 } 497 498 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 499 AU.addRequired<AAResultsWrapperPass>(); 500 AU.addPreserved<AAResultsWrapperPass>(); 501 AU.addRequired<MachineLoopInfoWrapperPass>(); 502 AU.addRequired<MachineDominatorTreeWrapperPass>(); 503 AU.addRequired<LiveIntervalsWrapperPass>(); 504 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 505 AU.addRequired<TargetPassConfig>(); 506 MachineFunctionPass::getAnalysisUsage(AU); 507 } 508 509 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 510 MachineSchedContext Context; 511 Context.MF = MF; 512 Context.MLI = MLI; 513 Context.MDT = MDT; 514 Context.PassConfig = &getAnalysis<TargetPassConfig>(); 515 Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 516 Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 517 Context.RegClassInfo->runOnMachineFunction(*MF); 518 WindowScheduler WS(&Context, L); 519 return WS.run(); 520 } 521 522 bool MachinePipeliner::useSwingModuloScheduler() { 523 // SwingModuloScheduler does not work when WindowScheduler is forced. 524 return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 525 } 526 527 bool MachinePipeliner::useWindowScheduler(bool Changed) { 528 // WindowScheduler does not work for following cases: 529 // 1. when it is off. 530 // 2. when SwingModuloScheduler is successfully scheduled. 531 // 3. when pragma II is enabled. 532 if (II_setByPragma) { 533 LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 534 "llvm.loop.pipeline.initiationinterval is set.\n"); 535 return false; 536 } 537 538 return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 539 (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 540 } 541 542 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 543 if (SwpForceII > 0) 544 MII = SwpForceII; 545 else if (II_setByPragma > 0) 546 MII = II_setByPragma; 547 else 548 MII = std::max(ResMII, RecMII); 549 } 550 551 void SwingSchedulerDAG::setMAX_II() { 552 if (SwpForceII > 0) 553 MAX_II = SwpForceII; 554 else if (II_setByPragma > 0) 555 MAX_II = II_setByPragma; 556 else 557 MAX_II = MII + SwpIISearchRange; 558 } 559 560 /// We override the schedule function in ScheduleDAGInstrs to implement the 561 /// scheduling part of the Swing Modulo Scheduling algorithm. 562 void SwingSchedulerDAG::schedule() { 563 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 564 buildSchedGraph(AA); 565 addLoopCarriedDependences(AA); 566 updatePhiDependences(); 567 Topo.InitDAGTopologicalSorting(); 568 changeDependences(); 569 postProcessDAG(); 570 DDG = std::make_unique<SwingSchedulerDDG>(SUnits, &EntrySU, &ExitSU); 571 LLVM_DEBUG(dump()); 572 573 NodeSetType NodeSets; 574 findCircuits(NodeSets); 575 NodeSetType Circuits = NodeSets; 576 577 // Calculate the MII. 578 unsigned ResMII = calculateResMII(); 579 unsigned RecMII = calculateRecMII(NodeSets); 580 581 fuseRecs(NodeSets); 582 583 // This flag is used for testing and can cause correctness problems. 584 if (SwpIgnoreRecMII) 585 RecMII = 0; 586 587 setMII(ResMII, RecMII); 588 setMAX_II(); 589 590 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 591 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 592 593 // Can't schedule a loop without a valid MII. 594 if (MII == 0) { 595 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 596 NumFailZeroMII++; 597 Pass.ORE->emit([&]() { 598 return MachineOptimizationRemarkAnalysis( 599 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 600 << "Invalid Minimal Initiation Interval: 0"; 601 }); 602 return; 603 } 604 605 // Don't pipeline large loops. 606 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 607 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 608 << ", we don't pipeline large loops\n"); 609 NumFailLargeMaxMII++; 610 Pass.ORE->emit([&]() { 611 return MachineOptimizationRemarkAnalysis( 612 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 613 << "Minimal Initiation Interval too large: " 614 << ore::NV("MII", (int)MII) << " > " 615 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 616 << "Refer to -pipeliner-max-mii."; 617 }); 618 return; 619 } 620 621 computeNodeFunctions(NodeSets); 622 623 registerPressureFilter(NodeSets); 624 625 colocateNodeSets(NodeSets); 626 627 checkNodeSets(NodeSets); 628 629 LLVM_DEBUG({ 630 for (auto &I : NodeSets) { 631 dbgs() << " Rec NodeSet "; 632 I.dump(); 633 } 634 }); 635 636 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 637 638 groupRemainingNodes(NodeSets); 639 640 removeDuplicateNodes(NodeSets); 641 642 LLVM_DEBUG({ 643 for (auto &I : NodeSets) { 644 dbgs() << " NodeSet "; 645 I.dump(); 646 } 647 }); 648 649 computeNodeOrder(NodeSets); 650 651 // check for node order issues 652 checkValidNodeOrder(Circuits); 653 654 SMSchedule Schedule(Pass.MF, this); 655 Scheduled = schedulePipeline(Schedule); 656 657 if (!Scheduled){ 658 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 659 NumFailNoSchedule++; 660 Pass.ORE->emit([&]() { 661 return MachineOptimizationRemarkAnalysis( 662 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 663 << "Unable to find schedule"; 664 }); 665 return; 666 } 667 668 unsigned numStages = Schedule.getMaxStageCount(); 669 // No need to generate pipeline if there are no overlapped iterations. 670 if (numStages == 0) { 671 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 672 NumFailZeroStage++; 673 Pass.ORE->emit([&]() { 674 return MachineOptimizationRemarkAnalysis( 675 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 676 << "No need to pipeline - no overlapped iterations in schedule."; 677 }); 678 return; 679 } 680 // Check that the maximum stage count is less than user-defined limit. 681 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 682 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 683 << " : too many stages, abort\n"); 684 NumFailLargeMaxStage++; 685 Pass.ORE->emit([&]() { 686 return MachineOptimizationRemarkAnalysis( 687 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 688 << "Too many stages in schedule: " 689 << ore::NV("numStages", (int)numStages) << " > " 690 << ore::NV("SwpMaxStages", SwpMaxStages) 691 << ". Refer to -pipeliner-max-stages."; 692 }); 693 return; 694 } 695 696 Pass.ORE->emit([&]() { 697 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 698 Loop.getHeader()) 699 << "Pipelined succesfully!"; 700 }); 701 702 // Generate the schedule as a ModuloSchedule. 703 DenseMap<MachineInstr *, int> Cycles, Stages; 704 std::vector<MachineInstr *> OrderedInsts; 705 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 706 ++Cycle) { 707 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 708 OrderedInsts.push_back(SU->getInstr()); 709 Cycles[SU->getInstr()] = Cycle; 710 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 711 } 712 } 713 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 714 for (auto &KV : NewMIs) { 715 Cycles[KV.first] = Cycles[KV.second]; 716 Stages[KV.first] = Stages[KV.second]; 717 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 718 } 719 720 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 721 std::move(Stages)); 722 if (EmitTestAnnotations) { 723 assert(NewInstrChanges.empty() && 724 "Cannot serialize a schedule with InstrChanges!"); 725 ModuloScheduleTestAnnotater MSTI(MF, MS); 726 MSTI.annotate(); 727 return; 728 } 729 // The experimental code generator can't work if there are InstChanges. 730 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 731 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 732 MSE.expand(); 733 } else if (MVECodeGen && NewInstrChanges.empty() && 734 LoopPipelinerInfo->isMVEExpanderSupported() && 735 ModuloScheduleExpanderMVE::canApply(Loop)) { 736 ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 737 MSE.expand(); 738 } else { 739 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 740 MSE.expand(); 741 MSE.cleanup(); 742 } 743 ++NumPipelined; 744 } 745 746 /// Clean up after the software pipeliner runs. 747 void SwingSchedulerDAG::finishBlock() { 748 for (auto &KV : NewMIs) 749 MF.deleteMachineInstr(KV.second); 750 NewMIs.clear(); 751 752 // Call the superclass. 753 ScheduleDAGInstrs::finishBlock(); 754 } 755 756 /// Return the register values for the operands of a Phi instruction. 757 /// This function assume the instruction is a Phi. 758 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 759 unsigned &InitVal, unsigned &LoopVal) { 760 assert(Phi.isPHI() && "Expecting a Phi."); 761 762 InitVal = 0; 763 LoopVal = 0; 764 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 765 if (Phi.getOperand(i + 1).getMBB() != Loop) 766 InitVal = Phi.getOperand(i).getReg(); 767 else 768 LoopVal = Phi.getOperand(i).getReg(); 769 770 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 771 } 772 773 /// Return the Phi register value that comes the loop block. 774 static unsigned getLoopPhiReg(const MachineInstr &Phi, 775 const MachineBasicBlock *LoopBB) { 776 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 777 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 778 return Phi.getOperand(i).getReg(); 779 return 0; 780 } 781 782 /// Return true if SUb can be reached from SUa following the chain edges. 783 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 784 SmallPtrSet<SUnit *, 8> Visited; 785 SmallVector<SUnit *, 8> Worklist; 786 Worklist.push_back(SUa); 787 while (!Worklist.empty()) { 788 const SUnit *SU = Worklist.pop_back_val(); 789 for (const auto &SI : SU->Succs) { 790 SUnit *SuccSU = SI.getSUnit(); 791 if (SI.getKind() == SDep::Order) { 792 if (Visited.count(SuccSU)) 793 continue; 794 if (SuccSU == SUb) 795 return true; 796 Worklist.push_back(SuccSU); 797 Visited.insert(SuccSU); 798 } 799 } 800 } 801 return false; 802 } 803 804 /// Return true if the instruction causes a chain between memory 805 /// references before and after it. 806 static bool isDependenceBarrier(MachineInstr &MI) { 807 return MI.isCall() || MI.mayRaiseFPException() || 808 MI.hasUnmodeledSideEffects() || 809 (MI.hasOrderedMemoryRef() && 810 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 811 } 812 813 /// Return the underlying objects for the memory references of an instruction. 814 /// This function calls the code in ValueTracking, but first checks that the 815 /// instruction has a memory operand. 816 static void getUnderlyingObjects(const MachineInstr *MI, 817 SmallVectorImpl<const Value *> &Objs) { 818 if (!MI->hasOneMemOperand()) 819 return; 820 MachineMemOperand *MM = *MI->memoperands_begin(); 821 if (!MM->getValue()) 822 return; 823 getUnderlyingObjects(MM->getValue(), Objs); 824 for (const Value *V : Objs) { 825 if (!isIdentifiedObject(V)) { 826 Objs.clear(); 827 return; 828 } 829 } 830 } 831 832 /// Add a chain edge between a load and store if the store can be an 833 /// alias of the load on a subsequent iteration, i.e., a loop carried 834 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 835 /// but that code doesn't create loop carried dependences. 836 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 837 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 838 Value *UnknownValue = 839 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 840 for (auto &SU : SUnits) { 841 MachineInstr &MI = *SU.getInstr(); 842 if (isDependenceBarrier(MI)) 843 PendingLoads.clear(); 844 else if (MI.mayLoad()) { 845 SmallVector<const Value *, 4> Objs; 846 ::getUnderlyingObjects(&MI, Objs); 847 if (Objs.empty()) 848 Objs.push_back(UnknownValue); 849 for (const auto *V : Objs) { 850 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 851 SUs.push_back(&SU); 852 } 853 } else if (MI.mayStore()) { 854 SmallVector<const Value *, 4> Objs; 855 ::getUnderlyingObjects(&MI, Objs); 856 if (Objs.empty()) 857 Objs.push_back(UnknownValue); 858 for (const auto *V : Objs) { 859 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 860 PendingLoads.find(V); 861 if (I == PendingLoads.end()) 862 continue; 863 for (auto *Load : I->second) { 864 if (isSuccOrder(Load, &SU)) 865 continue; 866 MachineInstr &LdMI = *Load->getInstr(); 867 // First, perform the cheaper check that compares the base register. 868 // If they are the same and the load offset is less than the store 869 // offset, then mark the dependence as loop carried potentially. 870 const MachineOperand *BaseOp1, *BaseOp2; 871 int64_t Offset1, Offset2; 872 bool Offset1IsScalable, Offset2IsScalable; 873 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 874 Offset1IsScalable, TRI) && 875 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 876 Offset2IsScalable, TRI)) { 877 if (BaseOp1->isIdenticalTo(*BaseOp2) && 878 Offset1IsScalable == Offset2IsScalable && 879 (int)Offset1 < (int)Offset2) { 880 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 881 "What happened to the chain edge?"); 882 SDep Dep(Load, SDep::Barrier); 883 Dep.setLatency(1); 884 SU.addPred(Dep); 885 continue; 886 } 887 } 888 // Second, the more expensive check that uses alias analysis on the 889 // base registers. If they alias, and the load offset is less than 890 // the store offset, the mark the dependence as loop carried. 891 if (!AA) { 892 SDep Dep(Load, SDep::Barrier); 893 Dep.setLatency(1); 894 SU.addPred(Dep); 895 continue; 896 } 897 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 898 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 899 if (!MMO1->getValue() || !MMO2->getValue()) { 900 SDep Dep(Load, SDep::Barrier); 901 Dep.setLatency(1); 902 SU.addPred(Dep); 903 continue; 904 } 905 if (MMO1->getValue() == MMO2->getValue() && 906 MMO1->getOffset() <= MMO2->getOffset()) { 907 SDep Dep(Load, SDep::Barrier); 908 Dep.setLatency(1); 909 SU.addPred(Dep); 910 continue; 911 } 912 if (!AA->isNoAlias( 913 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 914 MemoryLocation::getAfter(MMO2->getValue(), 915 MMO2->getAAInfo()))) { 916 SDep Dep(Load, SDep::Barrier); 917 Dep.setLatency(1); 918 SU.addPred(Dep); 919 } 920 } 921 } 922 } 923 } 924 } 925 926 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 927 /// processes dependences for PHIs. This function adds true dependences 928 /// from a PHI to a use, and a loop carried dependence from the use to the 929 /// PHI. The loop carried dependence is represented as an anti dependence 930 /// edge. This function also removes chain dependences between unrelated 931 /// PHIs. 932 void SwingSchedulerDAG::updatePhiDependences() { 933 SmallVector<SDep, 4> RemoveDeps; 934 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 935 936 // Iterate over each DAG node. 937 for (SUnit &I : SUnits) { 938 RemoveDeps.clear(); 939 // Set to true if the instruction has an operand defined by a Phi. 940 unsigned HasPhiUse = 0; 941 unsigned HasPhiDef = 0; 942 MachineInstr *MI = I.getInstr(); 943 // Iterate over each operand, and we process the definitions. 944 for (const MachineOperand &MO : MI->operands()) { 945 if (!MO.isReg()) 946 continue; 947 Register Reg = MO.getReg(); 948 if (MO.isDef()) { 949 // If the register is used by a Phi, then create an anti dependence. 950 for (MachineRegisterInfo::use_instr_iterator 951 UI = MRI.use_instr_begin(Reg), 952 UE = MRI.use_instr_end(); 953 UI != UE; ++UI) { 954 MachineInstr *UseMI = &*UI; 955 SUnit *SU = getSUnit(UseMI); 956 if (SU != nullptr && UseMI->isPHI()) { 957 if (!MI->isPHI()) { 958 SDep Dep(SU, SDep::Anti, Reg); 959 Dep.setLatency(1); 960 I.addPred(Dep); 961 } else { 962 HasPhiDef = Reg; 963 // Add a chain edge to a dependent Phi that isn't an existing 964 // predecessor. 965 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 966 I.addPred(SDep(SU, SDep::Barrier)); 967 } 968 } 969 } 970 } else if (MO.isUse()) { 971 // If the register is defined by a Phi, then create a true dependence. 972 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 973 if (DefMI == nullptr) 974 continue; 975 SUnit *SU = getSUnit(DefMI); 976 if (SU != nullptr && DefMI->isPHI()) { 977 if (!MI->isPHI()) { 978 SDep Dep(SU, SDep::Data, Reg); 979 Dep.setLatency(0); 980 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 981 &SchedModel); 982 I.addPred(Dep); 983 } else { 984 HasPhiUse = Reg; 985 // Add a chain edge to a dependent Phi that isn't an existing 986 // predecessor. 987 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 988 I.addPred(SDep(SU, SDep::Barrier)); 989 } 990 } 991 } 992 } 993 // Remove order dependences from an unrelated Phi. 994 if (!SwpPruneDeps) 995 continue; 996 for (auto &PI : I.Preds) { 997 MachineInstr *PMI = PI.getSUnit()->getInstr(); 998 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 999 if (I.getInstr()->isPHI()) { 1000 if (PMI->getOperand(0).getReg() == HasPhiUse) 1001 continue; 1002 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1003 continue; 1004 } 1005 RemoveDeps.push_back(PI); 1006 } 1007 } 1008 for (const SDep &D : RemoveDeps) 1009 I.removePred(D); 1010 } 1011 } 1012 1013 /// Iterate over each DAG node and see if we can change any dependences 1014 /// in order to reduce the recurrence MII. 1015 void SwingSchedulerDAG::changeDependences() { 1016 // See if an instruction can use a value from the previous iteration. 1017 // If so, we update the base and offset of the instruction and change 1018 // the dependences. 1019 for (SUnit &I : SUnits) { 1020 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1021 int64_t NewOffset = 0; 1022 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1023 NewOffset)) 1024 continue; 1025 1026 // Get the MI and SUnit for the instruction that defines the original base. 1027 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1028 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1029 if (!DefMI) 1030 continue; 1031 SUnit *DefSU = getSUnit(DefMI); 1032 if (!DefSU) 1033 continue; 1034 // Get the MI and SUnit for the instruction that defins the new base. 1035 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1036 if (!LastMI) 1037 continue; 1038 SUnit *LastSU = getSUnit(LastMI); 1039 if (!LastSU) 1040 continue; 1041 1042 if (Topo.IsReachable(&I, LastSU)) 1043 continue; 1044 1045 // Remove the dependence. The value now depends on a prior iteration. 1046 SmallVector<SDep, 4> Deps; 1047 for (const SDep &P : I.Preds) 1048 if (P.getSUnit() == DefSU) 1049 Deps.push_back(P); 1050 for (const SDep &D : Deps) { 1051 Topo.RemovePred(&I, D.getSUnit()); 1052 I.removePred(D); 1053 } 1054 // Remove the chain dependence between the instructions. 1055 Deps.clear(); 1056 for (auto &P : LastSU->Preds) 1057 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1058 Deps.push_back(P); 1059 for (const SDep &D : Deps) { 1060 Topo.RemovePred(LastSU, D.getSUnit()); 1061 LastSU->removePred(D); 1062 } 1063 1064 // Add a dependence between the new instruction and the instruction 1065 // that defines the new base. 1066 SDep Dep(&I, SDep::Anti, NewBase); 1067 Topo.AddPred(LastSU, &I); 1068 LastSU->addPred(Dep); 1069 1070 // Remember the base and offset information so that we can update the 1071 // instruction during code generation. 1072 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1073 } 1074 } 1075 1076 /// Create an instruction stream that represents a single iteration and stage of 1077 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1078 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1079 /// function is an approximation of SMSchedule::finalizeSchedule with all 1080 /// non-const operations removed. 1081 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1082 SMSchedule &Schedule, 1083 std::vector<MachineInstr *> &OrderedInsts, 1084 DenseMap<MachineInstr *, unsigned> &Stages) { 1085 DenseMap<int, std::deque<SUnit *>> Instrs; 1086 1087 // Move all instructions to the first stage from the later stages. 1088 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1089 ++Cycle) { 1090 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1091 Stage <= LastStage; ++Stage) { 1092 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1093 Cycle + Stage * Schedule.getInitiationInterval()))) { 1094 Instrs[Cycle].push_front(SU); 1095 } 1096 } 1097 } 1098 1099 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1100 ++Cycle) { 1101 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1102 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1103 for (SUnit *SU : CycleInstrs) { 1104 MachineInstr *MI = SU->getInstr(); 1105 OrderedInsts.push_back(MI); 1106 Stages[MI] = Schedule.stageScheduled(SU); 1107 } 1108 } 1109 } 1110 1111 namespace { 1112 1113 // FuncUnitSorter - Comparison operator used to sort instructions by 1114 // the number of functional unit choices. 1115 struct FuncUnitSorter { 1116 const InstrItineraryData *InstrItins; 1117 const MCSubtargetInfo *STI; 1118 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1119 1120 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1121 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1122 1123 // Compute the number of functional unit alternatives needed 1124 // at each stage, and take the minimum value. We prioritize the 1125 // instructions by the least number of choices first. 1126 unsigned minFuncUnits(const MachineInstr *Inst, 1127 InstrStage::FuncUnits &F) const { 1128 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1129 unsigned min = UINT_MAX; 1130 if (InstrItins && !InstrItins->isEmpty()) { 1131 for (const InstrStage &IS : 1132 make_range(InstrItins->beginStage(SchedClass), 1133 InstrItins->endStage(SchedClass))) { 1134 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1135 unsigned numAlternatives = llvm::popcount(funcUnits); 1136 if (numAlternatives < min) { 1137 min = numAlternatives; 1138 F = funcUnits; 1139 } 1140 } 1141 return min; 1142 } 1143 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1144 const MCSchedClassDesc *SCDesc = 1145 STI->getSchedModel().getSchedClassDesc(SchedClass); 1146 if (!SCDesc->isValid()) 1147 // No valid Schedule Class Desc for schedClass, should be 1148 // Pseudo/PostRAPseudo 1149 return min; 1150 1151 for (const MCWriteProcResEntry &PRE : 1152 make_range(STI->getWriteProcResBegin(SCDesc), 1153 STI->getWriteProcResEnd(SCDesc))) { 1154 if (!PRE.ReleaseAtCycle) 1155 continue; 1156 const MCProcResourceDesc *ProcResource = 1157 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1158 unsigned NumUnits = ProcResource->NumUnits; 1159 if (NumUnits < min) { 1160 min = NumUnits; 1161 F = PRE.ProcResourceIdx; 1162 } 1163 } 1164 return min; 1165 } 1166 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1167 } 1168 1169 // Compute the critical resources needed by the instruction. This 1170 // function records the functional units needed by instructions that 1171 // must use only one functional unit. We use this as a tie breaker 1172 // for computing the resource MII. The instrutions that require 1173 // the same, highly used, functional unit have high priority. 1174 void calcCriticalResources(MachineInstr &MI) { 1175 unsigned SchedClass = MI.getDesc().getSchedClass(); 1176 if (InstrItins && !InstrItins->isEmpty()) { 1177 for (const InstrStage &IS : 1178 make_range(InstrItins->beginStage(SchedClass), 1179 InstrItins->endStage(SchedClass))) { 1180 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1181 if (llvm::popcount(FuncUnits) == 1) 1182 Resources[FuncUnits]++; 1183 } 1184 return; 1185 } 1186 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1187 const MCSchedClassDesc *SCDesc = 1188 STI->getSchedModel().getSchedClassDesc(SchedClass); 1189 if (!SCDesc->isValid()) 1190 // No valid Schedule Class Desc for schedClass, should be 1191 // Pseudo/PostRAPseudo 1192 return; 1193 1194 for (const MCWriteProcResEntry &PRE : 1195 make_range(STI->getWriteProcResBegin(SCDesc), 1196 STI->getWriteProcResEnd(SCDesc))) { 1197 if (!PRE.ReleaseAtCycle) 1198 continue; 1199 Resources[PRE.ProcResourceIdx]++; 1200 } 1201 return; 1202 } 1203 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1204 } 1205 1206 /// Return true if IS1 has less priority than IS2. 1207 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1208 InstrStage::FuncUnits F1 = 0, F2 = 0; 1209 unsigned MFUs1 = minFuncUnits(IS1, F1); 1210 unsigned MFUs2 = minFuncUnits(IS2, F2); 1211 if (MFUs1 == MFUs2) 1212 return Resources.lookup(F1) < Resources.lookup(F2); 1213 return MFUs1 > MFUs2; 1214 } 1215 }; 1216 1217 /// Calculate the maximum register pressure of the scheduled instructions stream 1218 class HighRegisterPressureDetector { 1219 MachineBasicBlock *OrigMBB; 1220 const MachineRegisterInfo &MRI; 1221 const TargetRegisterInfo *TRI; 1222 1223 const unsigned PSetNum; 1224 1225 // Indexed by PSet ID 1226 // InitSetPressure takes into account the register pressure of live-in 1227 // registers. It's not depend on how the loop is scheduled, so it's enough to 1228 // calculate them once at the beginning. 1229 std::vector<unsigned> InitSetPressure; 1230 1231 // Indexed by PSet ID 1232 // Upper limit for each register pressure set 1233 std::vector<unsigned> PressureSetLimit; 1234 1235 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1236 1237 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1238 1239 public: 1240 using OrderedInstsTy = std::vector<MachineInstr *>; 1241 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1242 1243 private: 1244 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1245 if (Pressures.size() == 0) { 1246 dbgs() << "[]"; 1247 } else { 1248 char Prefix = '['; 1249 for (unsigned P : Pressures) { 1250 dbgs() << Prefix << P; 1251 Prefix = ' '; 1252 } 1253 dbgs() << ']'; 1254 } 1255 } 1256 1257 void dumpPSet(Register Reg) const { 1258 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1259 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1260 ++PSetIter) { 1261 dbgs() << *PSetIter << ' '; 1262 } 1263 dbgs() << '\n'; 1264 } 1265 1266 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1267 Register Reg) const { 1268 auto PSetIter = MRI.getPressureSets(Reg); 1269 unsigned Weight = PSetIter.getWeight(); 1270 for (; PSetIter.isValid(); ++PSetIter) 1271 Pressure[*PSetIter] += Weight; 1272 } 1273 1274 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1275 Register Reg) const { 1276 auto PSetIter = MRI.getPressureSets(Reg); 1277 unsigned Weight = PSetIter.getWeight(); 1278 for (; PSetIter.isValid(); ++PSetIter) { 1279 auto &P = Pressure[*PSetIter]; 1280 assert(P >= Weight && 1281 "register pressure must be greater than or equal weight"); 1282 P -= Weight; 1283 } 1284 } 1285 1286 // Return true if Reg is reserved one, for example, stack pointer 1287 bool isReservedRegister(Register Reg) const { 1288 return Reg.isPhysical() && MRI.isReserved(Reg.asMCReg()); 1289 } 1290 1291 bool isDefinedInThisLoop(Register Reg) const { 1292 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1293 } 1294 1295 // Search for live-in variables. They are factored into the register pressure 1296 // from the begining. Live-in variables used by every iteration should be 1297 // considered as alive throughout the loop. For example, the variable `c` in 1298 // following code. \code 1299 // int c = ...; 1300 // for (int i = 0; i < n; i++) 1301 // a[i] += b[i] + c; 1302 // \endcode 1303 void computeLiveIn() { 1304 DenseSet<Register> Used; 1305 for (auto &MI : *OrigMBB) { 1306 if (MI.isDebugInstr()) 1307 continue; 1308 for (auto &Use : ROMap[&MI].Uses) { 1309 auto Reg = Use.RegUnit; 1310 // Ignore the variable that appears only on one side of phi instruction 1311 // because it's used only at the first iteration. 1312 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1313 continue; 1314 if (isReservedRegister(Reg)) 1315 continue; 1316 if (isDefinedInThisLoop(Reg)) 1317 continue; 1318 Used.insert(Reg); 1319 } 1320 } 1321 1322 for (auto LiveIn : Used) 1323 increaseRegisterPressure(InitSetPressure, LiveIn); 1324 } 1325 1326 // Calculate the upper limit of each pressure set 1327 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1328 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1329 PressureSetLimit[PSet] = RCI.getRegPressureSetLimit(PSet); 1330 } 1331 1332 // There are two patterns of last-use. 1333 // - by an instruction of the current iteration 1334 // - by a phi instruction of the next iteration (loop carried value) 1335 // 1336 // Furthermore, following two groups of instructions are executed 1337 // simultaneously 1338 // - next iteration's phi instructions in i-th stage 1339 // - current iteration's instructions in i+1-th stage 1340 // 1341 // This function calculates the last-use of each register while taking into 1342 // account the above two patterns. 1343 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1344 Instr2StageTy &Stages) const { 1345 // We treat virtual registers that are defined and used in this loop. 1346 // Following virtual register will be ignored 1347 // - live-in one 1348 // - defined but not used in the loop (potentially live-out) 1349 DenseSet<Register> TargetRegs; 1350 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1351 if (isDefinedInThisLoop(Reg)) 1352 TargetRegs.insert(Reg); 1353 }; 1354 for (MachineInstr *MI : OrderedInsts) { 1355 if (MI->isPHI()) { 1356 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1357 UpdateTargetRegs(Reg); 1358 } else { 1359 for (auto &Use : ROMap.find(MI)->getSecond().Uses) 1360 UpdateTargetRegs(Use.RegUnit); 1361 } 1362 } 1363 1364 const auto InstrScore = [&Stages](MachineInstr *MI) { 1365 return Stages[MI] + MI->isPHI(); 1366 }; 1367 1368 DenseMap<Register, MachineInstr *> LastUseMI; 1369 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1370 for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 1371 auto Reg = Use.RegUnit; 1372 if (!TargetRegs.contains(Reg)) 1373 continue; 1374 auto [Ite, Inserted] = LastUseMI.try_emplace(Reg, MI); 1375 if (!Inserted) { 1376 MachineInstr *Orig = Ite->second; 1377 MachineInstr *New = MI; 1378 if (InstrScore(Orig) < InstrScore(New)) 1379 Ite->second = New; 1380 } 1381 } 1382 } 1383 1384 Instr2LastUsesTy LastUses; 1385 for (auto &Entry : LastUseMI) 1386 LastUses[Entry.second].insert(Entry.first); 1387 return LastUses; 1388 } 1389 1390 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1391 // iterations and check the register pressure at the point where all stages 1392 // overlapping. 1393 // 1394 // An example of unrolled loop where #Stage is 4.. 1395 // Iter i+0 i+1 i+2 i+3 1396 // ------------------------ 1397 // Stage 0 1398 // Stage 1 0 1399 // Stage 2 1 0 1400 // Stage 3 2 1 0 <- All stages overlap 1401 // 1402 std::vector<unsigned> 1403 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1404 Instr2StageTy &Stages, 1405 const unsigned StageCount) const { 1406 using RegSetTy = SmallDenseSet<Register, 16>; 1407 1408 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1409 // manage the liveness of the registers independently by iterations. 1410 SmallVector<RegSetTy> LiveRegSets(StageCount); 1411 1412 auto CurSetPressure = InitSetPressure; 1413 auto MaxSetPressure = InitSetPressure; 1414 auto LastUses = computeLastUses(OrderedInsts, Stages); 1415 1416 LLVM_DEBUG({ 1417 dbgs() << "Ordered instructions:\n"; 1418 for (MachineInstr *MI : OrderedInsts) { 1419 dbgs() << "Stage " << Stages[MI] << ": "; 1420 MI->dump(); 1421 } 1422 }); 1423 1424 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1425 Register Reg) { 1426 if (!Reg.isValid() || isReservedRegister(Reg)) 1427 return; 1428 1429 bool Inserted = RegSet.insert(Reg).second; 1430 if (!Inserted) 1431 return; 1432 1433 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1434 increaseRegisterPressure(CurSetPressure, Reg); 1435 LLVM_DEBUG(dumpPSet(Reg)); 1436 }; 1437 1438 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1439 Register Reg) { 1440 if (!Reg.isValid() || isReservedRegister(Reg)) 1441 return; 1442 1443 // live-in register 1444 if (!RegSet.contains(Reg)) 1445 return; 1446 1447 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1448 RegSet.erase(Reg); 1449 decreaseRegisterPressure(CurSetPressure, Reg); 1450 LLVM_DEBUG(dumpPSet(Reg)); 1451 }; 1452 1453 for (unsigned I = 0; I < StageCount; I++) { 1454 for (MachineInstr *MI : OrderedInsts) { 1455 const auto Stage = Stages[MI]; 1456 if (I < Stage) 1457 continue; 1458 1459 const unsigned Iter = I - Stage; 1460 1461 for (auto &Def : ROMap.find(MI)->getSecond().Defs) 1462 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1463 1464 for (auto LastUse : LastUses[MI]) { 1465 if (MI->isPHI()) { 1466 if (Iter != 0) 1467 EraseReg(LiveRegSets[Iter - 1], LastUse); 1468 } else { 1469 EraseReg(LiveRegSets[Iter], LastUse); 1470 } 1471 } 1472 1473 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1474 MaxSetPressure[PSet] = 1475 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1476 1477 LLVM_DEBUG({ 1478 dbgs() << "CurSetPressure="; 1479 dumpRegisterPressures(CurSetPressure); 1480 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1481 MI->dump(); 1482 }); 1483 } 1484 } 1485 1486 return MaxSetPressure; 1487 } 1488 1489 public: 1490 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1491 const MachineFunction &MF) 1492 : OrigMBB(OrigMBB), MRI(MF.getRegInfo()), 1493 TRI(MF.getSubtarget().getRegisterInfo()), 1494 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1495 PressureSetLimit(PSetNum, 0) {} 1496 1497 // Used to calculate register pressure, which is independent of loop 1498 // scheduling. 1499 void init(const RegisterClassInfo &RCI) { 1500 for (MachineInstr &MI : *OrigMBB) { 1501 if (MI.isDebugInstr()) 1502 continue; 1503 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1504 } 1505 1506 computeLiveIn(); 1507 computePressureSetLimit(RCI); 1508 } 1509 1510 // Calculate the maximum register pressures of the loop and check if they 1511 // exceed the limit 1512 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1513 const unsigned MaxStage) const { 1514 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1515 "the percentage of the margin must be between 0 to 100"); 1516 1517 OrderedInstsTy OrderedInsts; 1518 Instr2StageTy Stages; 1519 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1520 const auto MaxSetPressure = 1521 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1522 1523 LLVM_DEBUG({ 1524 dbgs() << "Dump MaxSetPressure:\n"; 1525 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1526 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1527 } 1528 dbgs() << '\n'; 1529 }); 1530 1531 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1532 unsigned Limit = PressureSetLimit[PSet]; 1533 unsigned Margin = Limit * RegPressureMargin / 100; 1534 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1535 << " Margin=" << Margin << "\n"); 1536 if (Limit < MaxSetPressure[PSet] + Margin) { 1537 LLVM_DEBUG( 1538 dbgs() 1539 << "Rejected the schedule because of too high register pressure\n"); 1540 return true; 1541 } 1542 } 1543 return false; 1544 } 1545 }; 1546 1547 } // end anonymous namespace 1548 1549 /// Calculate the resource constrained minimum initiation interval for the 1550 /// specified loop. We use the DFA to model the resources needed for 1551 /// each instruction, and we ignore dependences. A different DFA is created 1552 /// for each cycle that is required. When adding a new instruction, we attempt 1553 /// to add it to each existing DFA, until a legal space is found. If the 1554 /// instruction cannot be reserved in an existing DFA, we create a new one. 1555 unsigned SwingSchedulerDAG::calculateResMII() { 1556 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1557 ResourceManager RM(&MF.getSubtarget(), this); 1558 return RM.calculateResMII(); 1559 } 1560 1561 /// Calculate the recurrence-constrainted minimum initiation interval. 1562 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1563 /// for each circuit. The II needs to satisfy the inequality 1564 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1565 /// II that satisfies the inequality, and the RecMII is the maximum 1566 /// of those values. 1567 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1568 unsigned RecMII = 0; 1569 1570 for (NodeSet &Nodes : NodeSets) { 1571 if (Nodes.empty()) 1572 continue; 1573 1574 unsigned Delay = Nodes.getLatency(); 1575 unsigned Distance = 1; 1576 1577 // ii = ceil(delay / distance) 1578 unsigned CurMII = (Delay + Distance - 1) / Distance; 1579 Nodes.setRecMII(CurMII); 1580 if (CurMII > RecMII) 1581 RecMII = CurMII; 1582 } 1583 1584 return RecMII; 1585 } 1586 1587 /// Create the adjacency structure of the nodes in the graph. 1588 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1589 SwingSchedulerDAG *DAG) { 1590 BitVector Added(SUnits.size()); 1591 DenseMap<int, int> OutputDeps; 1592 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1593 Added.reset(); 1594 // Add any successor to the adjacency matrix and exclude duplicates. 1595 for (auto &OE : DAG->DDG->getOutEdges(&SUnits[i])) { 1596 // Only create a back-edge on the first and last nodes of a dependence 1597 // chain. This records any chains and adds them later. 1598 if (OE.isOutputDep()) { 1599 int N = OE.getDst()->NodeNum; 1600 int BackEdge = i; 1601 auto Dep = OutputDeps.find(BackEdge); 1602 if (Dep != OutputDeps.end()) { 1603 BackEdge = Dep->second; 1604 OutputDeps.erase(Dep); 1605 } 1606 OutputDeps[N] = BackEdge; 1607 } 1608 // Do not process a boundary node, an artificial node. 1609 if (OE.getDst()->isBoundaryNode() || OE.isArtificial()) 1610 continue; 1611 1612 // This code is retained o preserve previous behavior and prevent 1613 // regression. This condition means that anti-dependnecies within an 1614 // iteration are ignored when searching circuits. Therefore it's natural 1615 // to consider this dependence as well. 1616 // FIXME: Remove this code if it doesn't have significant impact on 1617 // performance. 1618 if (OE.isAntiDep()) 1619 continue; 1620 1621 int N = OE.getDst()->NodeNum; 1622 if (!Added.test(N)) { 1623 AdjK[i].push_back(N); 1624 Added.set(N); 1625 } 1626 } 1627 // A chain edge between a store and a load is treated as a back-edge in the 1628 // adjacency matrix. 1629 for (auto &IE : DAG->DDG->getInEdges(&SUnits[i])) { 1630 SUnit *Src = IE.getSrc(); 1631 SUnit *Dst = IE.getDst(); 1632 if (!Dst->getInstr()->mayStore() || !DAG->isLoopCarriedDep(IE)) 1633 continue; 1634 if (IE.isOrderDep() && Src->getInstr()->mayLoad()) { 1635 int N = Src->NodeNum; 1636 if (!Added.test(N)) { 1637 AdjK[i].push_back(N); 1638 Added.set(N); 1639 } 1640 } 1641 } 1642 } 1643 // Add back-edges in the adjacency matrix for the output dependences. 1644 for (auto &OD : OutputDeps) 1645 if (!Added.test(OD.second)) { 1646 AdjK[OD.first].push_back(OD.second); 1647 Added.set(OD.second); 1648 } 1649 } 1650 1651 /// Identify an elementary circuit in the dependence graph starting at the 1652 /// specified node. 1653 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1654 const SwingSchedulerDAG *DAG, 1655 bool HasBackedge) { 1656 SUnit *SV = &SUnits[V]; 1657 bool F = false; 1658 Stack.insert(SV); 1659 Blocked.set(V); 1660 1661 for (auto W : AdjK[V]) { 1662 if (NumPaths > MaxPaths) 1663 break; 1664 if (W < S) 1665 continue; 1666 if (W == S) { 1667 if (!HasBackedge) 1668 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end(), DAG)); 1669 F = true; 1670 ++NumPaths; 1671 break; 1672 } 1673 if (!Blocked.test(W)) { 1674 if (circuit(W, S, NodeSets, DAG, 1675 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1676 F = true; 1677 } 1678 } 1679 1680 if (F) 1681 unblock(V); 1682 else { 1683 for (auto W : AdjK[V]) { 1684 if (W < S) 1685 continue; 1686 B[W].insert(SV); 1687 } 1688 } 1689 Stack.pop_back(); 1690 return F; 1691 } 1692 1693 /// Unblock a node in the circuit finding algorithm. 1694 void SwingSchedulerDAG::Circuits::unblock(int U) { 1695 Blocked.reset(U); 1696 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1697 while (!BU.empty()) { 1698 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1699 assert(SI != BU.end() && "Invalid B set."); 1700 SUnit *W = *SI; 1701 BU.erase(W); 1702 if (Blocked.test(W->NodeNum)) 1703 unblock(W->NodeNum); 1704 } 1705 } 1706 1707 /// Identify all the elementary circuits in the dependence graph using 1708 /// Johnson's circuit algorithm. 1709 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1710 Circuits Cir(SUnits, Topo); 1711 // Create the adjacency structure. 1712 Cir.createAdjacencyStructure(this); 1713 for (int I = 0, E = SUnits.size(); I != E; ++I) { 1714 Cir.reset(); 1715 Cir.circuit(I, I, NodeSets, this); 1716 } 1717 } 1718 1719 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1720 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1721 // additional copies that are needed across iterations. An artificial dependence 1722 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1723 1724 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1725 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1726 // PHI-------True-Dep------> USEOfPhi 1727 1728 // The mutation creates 1729 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1730 1731 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1732 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1733 // late to avoid additional copies across iterations. The possible scheduling 1734 // order would be 1735 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1736 1737 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1738 for (SUnit &SU : DAG->SUnits) { 1739 // Find the COPY/REG_SEQUENCE instruction. 1740 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1741 continue; 1742 1743 // Record the loop carried PHIs. 1744 SmallVector<SUnit *, 4> PHISUs; 1745 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1746 SmallVector<SUnit *, 4> SrcSUs; 1747 1748 for (auto &Dep : SU.Preds) { 1749 SUnit *TmpSU = Dep.getSUnit(); 1750 MachineInstr *TmpMI = TmpSU->getInstr(); 1751 SDep::Kind DepKind = Dep.getKind(); 1752 // Save the loop carried PHI. 1753 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1754 PHISUs.push_back(TmpSU); 1755 // Save the source of COPY/REG_SEQUENCE. 1756 // If the source has no pre-decessors, we will end up creating cycles. 1757 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1758 SrcSUs.push_back(TmpSU); 1759 } 1760 1761 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1762 continue; 1763 1764 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1765 // SUnit to the container. 1766 SmallVector<SUnit *, 8> UseSUs; 1767 // Do not use iterator based loop here as we are updating the container. 1768 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1769 for (auto &Dep : PHISUs[Index]->Succs) { 1770 if (Dep.getKind() != SDep::Data) 1771 continue; 1772 1773 SUnit *TmpSU = Dep.getSUnit(); 1774 MachineInstr *TmpMI = TmpSU->getInstr(); 1775 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1776 PHISUs.push_back(TmpSU); 1777 continue; 1778 } 1779 UseSUs.push_back(TmpSU); 1780 } 1781 } 1782 1783 if (UseSUs.size() == 0) 1784 continue; 1785 1786 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1787 // Add the artificial dependencies if it does not form a cycle. 1788 for (auto *I : UseSUs) { 1789 for (auto *Src : SrcSUs) { 1790 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1791 Src->addPred(SDep(I, SDep::Artificial)); 1792 SDAG->Topo.AddPred(Src, I); 1793 } 1794 } 1795 } 1796 } 1797 } 1798 1799 /// Compute several functions need to order the nodes for scheduling. 1800 /// ASAP - Earliest time to schedule a node. 1801 /// ALAP - Latest time to schedule a node. 1802 /// MOV - Mobility function, difference between ALAP and ASAP. 1803 /// D - Depth of each node. 1804 /// H - Height of each node. 1805 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1806 ScheduleInfo.resize(SUnits.size()); 1807 1808 LLVM_DEBUG({ 1809 for (int I : Topo) { 1810 const SUnit &SU = SUnits[I]; 1811 dumpNode(SU); 1812 } 1813 }); 1814 1815 int maxASAP = 0; 1816 // Compute ASAP and ZeroLatencyDepth. 1817 for (int I : Topo) { 1818 int asap = 0; 1819 int zeroLatencyDepth = 0; 1820 SUnit *SU = &SUnits[I]; 1821 for (const auto &IE : DDG->getInEdges(SU)) { 1822 SUnit *Pred = IE.getSrc(); 1823 if (IE.getLatency() == 0) 1824 zeroLatencyDepth = 1825 std::max(zeroLatencyDepth, getZeroLatencyDepth(Pred) + 1); 1826 if (IE.ignoreDependence(true)) 1827 continue; 1828 asap = std::max(asap, (int)(getASAP(Pred) + IE.getLatency() - 1829 IE.getDistance() * MII)); 1830 } 1831 maxASAP = std::max(maxASAP, asap); 1832 ScheduleInfo[I].ASAP = asap; 1833 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1834 } 1835 1836 // Compute ALAP, ZeroLatencyHeight, and MOV. 1837 for (int I : llvm::reverse(Topo)) { 1838 int alap = maxASAP; 1839 int zeroLatencyHeight = 0; 1840 SUnit *SU = &SUnits[I]; 1841 for (const auto &OE : DDG->getOutEdges(SU)) { 1842 SUnit *Succ = OE.getDst(); 1843 if (Succ->isBoundaryNode()) 1844 continue; 1845 if (OE.getLatency() == 0) 1846 zeroLatencyHeight = 1847 std::max(zeroLatencyHeight, getZeroLatencyHeight(Succ) + 1); 1848 if (OE.ignoreDependence(true)) 1849 continue; 1850 alap = std::min(alap, (int)(getALAP(Succ) - OE.getLatency() + 1851 OE.getDistance() * MII)); 1852 } 1853 1854 ScheduleInfo[I].ALAP = alap; 1855 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1856 } 1857 1858 // After computing the node functions, compute the summary for each node set. 1859 for (NodeSet &I : NodeSets) 1860 I.computeNodeSetInfo(this); 1861 1862 LLVM_DEBUG({ 1863 for (unsigned i = 0; i < SUnits.size(); i++) { 1864 dbgs() << "\tNode " << i << ":\n"; 1865 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1866 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1867 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1868 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1869 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1870 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1871 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1872 } 1873 }); 1874 } 1875 1876 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1877 /// as the predecessors of the elements of NodeOrder that are not also in 1878 /// NodeOrder. 1879 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1880 SmallSetVector<SUnit *, 8> &Preds, SwingSchedulerDDG *DDG, 1881 const NodeSet *S = nullptr) { 1882 Preds.clear(); 1883 1884 for (SUnit *SU : NodeOrder) { 1885 for (const auto &IE : DDG->getInEdges(SU)) { 1886 SUnit *PredSU = IE.getSrc(); 1887 if (S && S->count(PredSU) == 0) 1888 continue; 1889 if (IE.ignoreDependence(true)) 1890 continue; 1891 if (NodeOrder.count(PredSU) == 0) 1892 Preds.insert(PredSU); 1893 } 1894 1895 // FIXME: The following loop-carried dependencies may also need to be 1896 // considered. 1897 // - Physical register dependencies (true-dependence and WAW). 1898 // - Memory dependencies. 1899 for (const auto &OE : DDG->getOutEdges(SU)) { 1900 SUnit *SuccSU = OE.getDst(); 1901 if (!OE.isAntiDep()) 1902 continue; 1903 if (S && S->count(SuccSU) == 0) 1904 continue; 1905 if (NodeOrder.count(SuccSU) == 0) 1906 Preds.insert(SuccSU); 1907 } 1908 } 1909 return !Preds.empty(); 1910 } 1911 1912 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1913 /// as the successors of the elements of NodeOrder that are not also in 1914 /// NodeOrder. 1915 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1916 SmallSetVector<SUnit *, 8> &Succs, SwingSchedulerDDG *DDG, 1917 const NodeSet *S = nullptr) { 1918 Succs.clear(); 1919 1920 for (SUnit *SU : NodeOrder) { 1921 for (const auto &OE : DDG->getOutEdges(SU)) { 1922 SUnit *SuccSU = OE.getDst(); 1923 if (S && S->count(SuccSU) == 0) 1924 continue; 1925 if (OE.ignoreDependence(false)) 1926 continue; 1927 if (NodeOrder.count(SuccSU) == 0) 1928 Succs.insert(SuccSU); 1929 } 1930 1931 // FIXME: The following loop-carried dependencies may also need to be 1932 // considered. 1933 // - Physical register dependnecies (true-dependnece and WAW). 1934 // - Memory dependencies. 1935 for (const auto &IE : DDG->getInEdges(SU)) { 1936 SUnit *PredSU = IE.getSrc(); 1937 if (!IE.isAntiDep()) 1938 continue; 1939 if (S && S->count(PredSU) == 0) 1940 continue; 1941 if (NodeOrder.count(PredSU) == 0) 1942 Succs.insert(PredSU); 1943 } 1944 } 1945 return !Succs.empty(); 1946 } 1947 1948 /// Return true if there is a path from the specified node to any of the nodes 1949 /// in DestNodes. Keep track and return the nodes in any path. 1950 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1951 SetVector<SUnit *> &DestNodes, 1952 SetVector<SUnit *> &Exclude, 1953 SmallPtrSet<SUnit *, 8> &Visited, 1954 SwingSchedulerDDG *DDG) { 1955 if (Cur->isBoundaryNode()) 1956 return false; 1957 if (Exclude.contains(Cur)) 1958 return false; 1959 if (DestNodes.contains(Cur)) 1960 return true; 1961 if (!Visited.insert(Cur).second) 1962 return Path.contains(Cur); 1963 bool FoundPath = false; 1964 for (const auto &OE : DDG->getOutEdges(Cur)) 1965 if (!OE.ignoreDependence(false)) 1966 FoundPath |= 1967 computePath(OE.getDst(), Path, DestNodes, Exclude, Visited, DDG); 1968 for (const auto &IE : DDG->getInEdges(Cur)) 1969 if (IE.isAntiDep() && IE.getDistance() == 0) 1970 FoundPath |= 1971 computePath(IE.getSrc(), Path, DestNodes, Exclude, Visited, DDG); 1972 if (FoundPath) 1973 Path.insert(Cur); 1974 return FoundPath; 1975 } 1976 1977 /// Compute the live-out registers for the instructions in a node-set. 1978 /// The live-out registers are those that are defined in the node-set, 1979 /// but not used. Except for use operands of Phis. 1980 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1981 NodeSet &NS) { 1982 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1983 MachineRegisterInfo &MRI = MF.getRegInfo(); 1984 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1985 SmallSet<unsigned, 4> Uses; 1986 for (SUnit *SU : NS) { 1987 const MachineInstr *MI = SU->getInstr(); 1988 if (MI->isPHI()) 1989 continue; 1990 for (const MachineOperand &MO : MI->all_uses()) { 1991 Register Reg = MO.getReg(); 1992 if (Reg.isVirtual()) 1993 Uses.insert(Reg); 1994 else if (MRI.isAllocatable(Reg)) 1995 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 1996 Uses.insert(Unit); 1997 } 1998 } 1999 for (SUnit *SU : NS) 2000 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 2001 if (!MO.isDead()) { 2002 Register Reg = MO.getReg(); 2003 if (Reg.isVirtual()) { 2004 if (!Uses.count(Reg)) 2005 LiveOutRegs.push_back(RegisterMaskPair(Reg, 2006 LaneBitmask::getNone())); 2007 } else if (MRI.isAllocatable(Reg)) { 2008 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2009 if (!Uses.count(Unit)) 2010 LiveOutRegs.push_back( 2011 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2012 } 2013 } 2014 RPTracker.addLiveRegs(LiveOutRegs); 2015 } 2016 2017 /// A heuristic to filter nodes in recurrent node-sets if the register 2018 /// pressure of a set is too high. 2019 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2020 for (auto &NS : NodeSets) { 2021 // Skip small node-sets since they won't cause register pressure problems. 2022 if (NS.size() <= 2) 2023 continue; 2024 IntervalPressure RecRegPressure; 2025 RegPressureTracker RecRPTracker(RecRegPressure); 2026 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2027 computeLiveOuts(MF, RecRPTracker, NS); 2028 RecRPTracker.closeBottom(); 2029 2030 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2031 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2032 return A->NodeNum > B->NodeNum; 2033 }); 2034 2035 for (auto &SU : SUnits) { 2036 // Since we're computing the register pressure for a subset of the 2037 // instructions in a block, we need to set the tracker for each 2038 // instruction in the node-set. The tracker is set to the instruction 2039 // just after the one we're interested in. 2040 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2041 RecRPTracker.setPos(std::next(CurInstI)); 2042 2043 RegPressureDelta RPDelta; 2044 ArrayRef<PressureChange> CriticalPSets; 2045 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2046 CriticalPSets, 2047 RecRegPressure.MaxSetPressure); 2048 if (RPDelta.Excess.isValid()) { 2049 LLVM_DEBUG( 2050 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2051 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2052 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2053 NS.setExceedPressure(SU); 2054 break; 2055 } 2056 RecRPTracker.recede(); 2057 } 2058 } 2059 } 2060 2061 /// A heuristic to colocate node sets that have the same set of 2062 /// successors. 2063 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2064 unsigned Colocate = 0; 2065 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2066 NodeSet &N1 = NodeSets[i]; 2067 SmallSetVector<SUnit *, 8> S1; 2068 if (N1.empty() || !succ_L(N1, S1, DDG.get())) 2069 continue; 2070 for (int j = i + 1; j < e; ++j) { 2071 NodeSet &N2 = NodeSets[j]; 2072 if (N1.compareRecMII(N2) != 0) 2073 continue; 2074 SmallSetVector<SUnit *, 8> S2; 2075 if (N2.empty() || !succ_L(N2, S2, DDG.get())) 2076 continue; 2077 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2078 N1.setColocate(++Colocate); 2079 N2.setColocate(Colocate); 2080 break; 2081 } 2082 } 2083 } 2084 } 2085 2086 /// Check if the existing node-sets are profitable. If not, then ignore the 2087 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2088 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2089 /// then it's best to try to schedule all instructions together instead of 2090 /// starting with the recurrent node-sets. 2091 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2092 // Look for loops with a large MII. 2093 if (MII < 17) 2094 return; 2095 // Check if the node-set contains only a simple add recurrence. 2096 for (auto &NS : NodeSets) { 2097 if (NS.getRecMII() > 2) 2098 return; 2099 if (NS.getMaxDepth() > MII) 2100 return; 2101 } 2102 NodeSets.clear(); 2103 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2104 } 2105 2106 /// Add the nodes that do not belong to a recurrence set into groups 2107 /// based upon connected components. 2108 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2109 SetVector<SUnit *> NodesAdded; 2110 SmallPtrSet<SUnit *, 8> Visited; 2111 // Add the nodes that are on a path between the previous node sets and 2112 // the current node set. 2113 for (NodeSet &I : NodeSets) { 2114 SmallSetVector<SUnit *, 8> N; 2115 // Add the nodes from the current node set to the previous node set. 2116 if (succ_L(I, N, DDG.get())) { 2117 SetVector<SUnit *> Path; 2118 for (SUnit *NI : N) { 2119 Visited.clear(); 2120 computePath(NI, Path, NodesAdded, I, Visited, DDG.get()); 2121 } 2122 if (!Path.empty()) 2123 I.insert(Path.begin(), Path.end()); 2124 } 2125 // Add the nodes from the previous node set to the current node set. 2126 N.clear(); 2127 if (succ_L(NodesAdded, N, DDG.get())) { 2128 SetVector<SUnit *> Path; 2129 for (SUnit *NI : N) { 2130 Visited.clear(); 2131 computePath(NI, Path, I, NodesAdded, Visited, DDG.get()); 2132 } 2133 if (!Path.empty()) 2134 I.insert(Path.begin(), Path.end()); 2135 } 2136 NodesAdded.insert(I.begin(), I.end()); 2137 } 2138 2139 // Create a new node set with the connected nodes of any successor of a node 2140 // in a recurrent set. 2141 NodeSet NewSet; 2142 SmallSetVector<SUnit *, 8> N; 2143 if (succ_L(NodesAdded, N, DDG.get())) 2144 for (SUnit *I : N) 2145 addConnectedNodes(I, NewSet, NodesAdded); 2146 if (!NewSet.empty()) 2147 NodeSets.push_back(NewSet); 2148 2149 // Create a new node set with the connected nodes of any predecessor of a node 2150 // in a recurrent set. 2151 NewSet.clear(); 2152 if (pred_L(NodesAdded, N, DDG.get())) 2153 for (SUnit *I : N) 2154 addConnectedNodes(I, NewSet, NodesAdded); 2155 if (!NewSet.empty()) 2156 NodeSets.push_back(NewSet); 2157 2158 // Create new nodes sets with the connected nodes any remaining node that 2159 // has no predecessor. 2160 for (SUnit &SU : SUnits) { 2161 if (NodesAdded.count(&SU) == 0) { 2162 NewSet.clear(); 2163 addConnectedNodes(&SU, NewSet, NodesAdded); 2164 if (!NewSet.empty()) 2165 NodeSets.push_back(NewSet); 2166 } 2167 } 2168 } 2169 2170 /// Add the node to the set, and add all of its connected nodes to the set. 2171 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2172 SetVector<SUnit *> &NodesAdded) { 2173 NewSet.insert(SU); 2174 NodesAdded.insert(SU); 2175 for (auto &OE : DDG->getOutEdges(SU)) { 2176 SUnit *Successor = OE.getDst(); 2177 if (!OE.isArtificial() && !Successor->isBoundaryNode() && 2178 NodesAdded.count(Successor) == 0) 2179 addConnectedNodes(Successor, NewSet, NodesAdded); 2180 } 2181 for (auto &IE : DDG->getInEdges(SU)) { 2182 SUnit *Predecessor = IE.getSrc(); 2183 if (!IE.isArtificial() && NodesAdded.count(Predecessor) == 0) 2184 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2185 } 2186 } 2187 2188 /// Return true if Set1 contains elements in Set2. The elements in common 2189 /// are returned in a different container. 2190 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2191 SmallSetVector<SUnit *, 8> &Result) { 2192 Result.clear(); 2193 for (SUnit *SU : Set1) { 2194 if (Set2.count(SU) != 0) 2195 Result.insert(SU); 2196 } 2197 return !Result.empty(); 2198 } 2199 2200 /// Merge the recurrence node sets that have the same initial node. 2201 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2202 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2203 ++I) { 2204 NodeSet &NI = *I; 2205 for (NodeSetType::iterator J = I + 1; J != E;) { 2206 NodeSet &NJ = *J; 2207 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2208 if (NJ.compareRecMII(NI) > 0) 2209 NI.setRecMII(NJ.getRecMII()); 2210 for (SUnit *SU : *J) 2211 I->insert(SU); 2212 NodeSets.erase(J); 2213 E = NodeSets.end(); 2214 } else { 2215 ++J; 2216 } 2217 } 2218 } 2219 } 2220 2221 /// Remove nodes that have been scheduled in previous NodeSets. 2222 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2223 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2224 ++I) 2225 for (NodeSetType::iterator J = I + 1; J != E;) { 2226 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2227 2228 if (J->empty()) { 2229 NodeSets.erase(J); 2230 E = NodeSets.end(); 2231 } else { 2232 ++J; 2233 } 2234 } 2235 } 2236 2237 /// Compute an ordered list of the dependence graph nodes, which 2238 /// indicates the order that the nodes will be scheduled. This is a 2239 /// two-level algorithm. First, a partial order is created, which 2240 /// consists of a list of sets ordered from highest to lowest priority. 2241 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2242 SmallSetVector<SUnit *, 8> R; 2243 NodeOrder.clear(); 2244 2245 for (auto &Nodes : NodeSets) { 2246 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2247 OrderKind Order; 2248 SmallSetVector<SUnit *, 8> N; 2249 if (pred_L(NodeOrder, N, DDG.get()) && llvm::set_is_subset(N, Nodes)) { 2250 R.insert(N.begin(), N.end()); 2251 Order = BottomUp; 2252 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2253 } else if (succ_L(NodeOrder, N, DDG.get()) && 2254 llvm::set_is_subset(N, Nodes)) { 2255 R.insert(N.begin(), N.end()); 2256 Order = TopDown; 2257 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2258 } else if (isIntersect(N, Nodes, R)) { 2259 // If some of the successors are in the existing node-set, then use the 2260 // top-down ordering. 2261 Order = TopDown; 2262 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2263 } else if (NodeSets.size() == 1) { 2264 for (const auto &N : Nodes) 2265 if (N->Succs.size() == 0) 2266 R.insert(N); 2267 Order = BottomUp; 2268 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2269 } else { 2270 // Find the node with the highest ASAP. 2271 SUnit *maxASAP = nullptr; 2272 for (SUnit *SU : Nodes) { 2273 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2274 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2275 maxASAP = SU; 2276 } 2277 R.insert(maxASAP); 2278 Order = BottomUp; 2279 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2280 } 2281 2282 while (!R.empty()) { 2283 if (Order == TopDown) { 2284 // Choose the node with the maximum height. If more than one, choose 2285 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2286 // choose the node with the lowest MOV. 2287 while (!R.empty()) { 2288 SUnit *maxHeight = nullptr; 2289 for (SUnit *I : R) { 2290 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2291 maxHeight = I; 2292 else if (getHeight(I) == getHeight(maxHeight) && 2293 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2294 maxHeight = I; 2295 else if (getHeight(I) == getHeight(maxHeight) && 2296 getZeroLatencyHeight(I) == 2297 getZeroLatencyHeight(maxHeight) && 2298 getMOV(I) < getMOV(maxHeight)) 2299 maxHeight = I; 2300 } 2301 NodeOrder.insert(maxHeight); 2302 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2303 R.remove(maxHeight); 2304 for (const auto &OE : DDG->getOutEdges(maxHeight)) { 2305 SUnit *SU = OE.getDst(); 2306 if (Nodes.count(SU) == 0) 2307 continue; 2308 if (NodeOrder.contains(SU)) 2309 continue; 2310 if (OE.ignoreDependence(false)) 2311 continue; 2312 R.insert(SU); 2313 } 2314 2315 // FIXME: The following loop-carried dependencies may also need to be 2316 // considered. 2317 // - Physical register dependnecies (true-dependnece and WAW). 2318 // - Memory dependencies. 2319 for (const auto &IE : DDG->getInEdges(maxHeight)) { 2320 SUnit *SU = IE.getSrc(); 2321 if (!IE.isAntiDep()) 2322 continue; 2323 if (Nodes.count(SU) == 0) 2324 continue; 2325 if (NodeOrder.contains(SU)) 2326 continue; 2327 R.insert(SU); 2328 } 2329 } 2330 Order = BottomUp; 2331 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2332 SmallSetVector<SUnit *, 8> N; 2333 if (pred_L(NodeOrder, N, DDG.get(), &Nodes)) 2334 R.insert(N.begin(), N.end()); 2335 } else { 2336 // Choose the node with the maximum depth. If more than one, choose 2337 // the node with the maximum ZeroLatencyDepth. If still more than one, 2338 // choose the node with the lowest MOV. 2339 while (!R.empty()) { 2340 SUnit *maxDepth = nullptr; 2341 for (SUnit *I : R) { 2342 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2343 maxDepth = I; 2344 else if (getDepth(I) == getDepth(maxDepth) && 2345 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2346 maxDepth = I; 2347 else if (getDepth(I) == getDepth(maxDepth) && 2348 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2349 getMOV(I) < getMOV(maxDepth)) 2350 maxDepth = I; 2351 } 2352 NodeOrder.insert(maxDepth); 2353 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2354 R.remove(maxDepth); 2355 if (Nodes.isExceedSU(maxDepth)) { 2356 Order = TopDown; 2357 R.clear(); 2358 R.insert(Nodes.getNode(0)); 2359 break; 2360 } 2361 for (const auto &IE : DDG->getInEdges(maxDepth)) { 2362 SUnit *SU = IE.getSrc(); 2363 if (Nodes.count(SU) == 0) 2364 continue; 2365 if (NodeOrder.contains(SU)) 2366 continue; 2367 R.insert(SU); 2368 } 2369 2370 // FIXME: The following loop-carried dependencies may also need to be 2371 // considered. 2372 // - Physical register dependnecies (true-dependnece and WAW). 2373 // - Memory dependencies. 2374 for (const auto &OE : DDG->getOutEdges(maxDepth)) { 2375 SUnit *SU = OE.getDst(); 2376 if (!OE.isAntiDep()) 2377 continue; 2378 if (Nodes.count(SU) == 0) 2379 continue; 2380 if (NodeOrder.contains(SU)) 2381 continue; 2382 R.insert(SU); 2383 } 2384 } 2385 Order = TopDown; 2386 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2387 SmallSetVector<SUnit *, 8> N; 2388 if (succ_L(NodeOrder, N, DDG.get(), &Nodes)) 2389 R.insert(N.begin(), N.end()); 2390 } 2391 } 2392 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2393 } 2394 2395 LLVM_DEBUG({ 2396 dbgs() << "Node order: "; 2397 for (SUnit *I : NodeOrder) 2398 dbgs() << " " << I->NodeNum << " "; 2399 dbgs() << "\n"; 2400 }); 2401 } 2402 2403 /// Process the nodes in the computed order and create the pipelined schedule 2404 /// of the instructions, if possible. Return true if a schedule is found. 2405 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2406 2407 if (NodeOrder.empty()){ 2408 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2409 return false; 2410 } 2411 2412 bool scheduleFound = false; 2413 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2414 if (LimitRegPressure) { 2415 HRPDetector = 2416 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2417 HRPDetector->init(RegClassInfo); 2418 } 2419 // Keep increasing II until a valid schedule is found. 2420 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2421 Schedule.reset(); 2422 Schedule.setInitiationInterval(II); 2423 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2424 2425 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2426 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2427 do { 2428 SUnit *SU = *NI; 2429 2430 // Compute the schedule time for the instruction, which is based 2431 // upon the scheduled time for any predecessors/successors. 2432 int EarlyStart = INT_MIN; 2433 int LateStart = INT_MAX; 2434 Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 2435 LLVM_DEBUG({ 2436 dbgs() << "\n"; 2437 dbgs() << "Inst (" << SU->NodeNum << ") "; 2438 SU->getInstr()->dump(); 2439 dbgs() << "\n"; 2440 }); 2441 LLVM_DEBUG( 2442 dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 2443 2444 if (EarlyStart > LateStart) 2445 scheduleFound = false; 2446 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 2447 scheduleFound = 2448 Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 2449 else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 2450 scheduleFound = 2451 Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 2452 else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2453 LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 2454 // When scheduling a Phi it is better to start at the late cycle and 2455 // go backwards. The default order may insert the Phi too far away 2456 // from its first dependence. 2457 // Also, do backward search when all scheduled predecessors are 2458 // loop-carried output/order dependencies. Empirically, there are also 2459 // cases where scheduling becomes possible with backward search. 2460 if (SU->getInstr()->isPHI() || 2461 Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this->getDDG())) 2462 scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 2463 else 2464 scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 2465 } else { 2466 int FirstCycle = Schedule.getFirstCycle(); 2467 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2468 FirstCycle + getASAP(SU) + II - 1, II); 2469 } 2470 2471 // Even if we find a schedule, make sure the schedule doesn't exceed the 2472 // allowable number of stages. We keep trying if this happens. 2473 if (scheduleFound) 2474 if (SwpMaxStages > -1 && 2475 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2476 scheduleFound = false; 2477 2478 LLVM_DEBUG({ 2479 if (!scheduleFound) 2480 dbgs() << "\tCan't schedule\n"; 2481 }); 2482 } while (++NI != NE && scheduleFound); 2483 2484 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2485 if (scheduleFound) 2486 scheduleFound = 2487 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2488 2489 // If a schedule is found, check if it is a valid schedule too. 2490 if (scheduleFound) 2491 scheduleFound = Schedule.isValidSchedule(this); 2492 2493 // If a schedule was found and the option is enabled, check if the schedule 2494 // might generate additional register spills/fills. 2495 if (scheduleFound && LimitRegPressure) 2496 scheduleFound = 2497 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2498 } 2499 2500 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2501 << " (II=" << Schedule.getInitiationInterval() 2502 << ")\n"); 2503 2504 if (scheduleFound) { 2505 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2506 if (!scheduleFound) 2507 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2508 } 2509 2510 if (scheduleFound) { 2511 Schedule.finalizeSchedule(this); 2512 Pass.ORE->emit([&]() { 2513 return MachineOptimizationRemarkAnalysis( 2514 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2515 << "Schedule found with Initiation Interval: " 2516 << ore::NV("II", Schedule.getInitiationInterval()) 2517 << ", MaxStageCount: " 2518 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2519 }); 2520 } else 2521 Schedule.reset(); 2522 2523 return scheduleFound && Schedule.getMaxStageCount() > 0; 2524 } 2525 2526 /// Return true if we can compute the amount the instruction changes 2527 /// during each iteration. Set Delta to the amount of the change. 2528 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) const { 2529 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2530 const MachineOperand *BaseOp; 2531 int64_t Offset; 2532 bool OffsetIsScalable; 2533 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2534 return false; 2535 2536 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2537 if (OffsetIsScalable) 2538 return false; 2539 2540 if (!BaseOp->isReg()) 2541 return false; 2542 2543 Register BaseReg = BaseOp->getReg(); 2544 2545 MachineRegisterInfo &MRI = MF.getRegInfo(); 2546 // Check if there is a Phi. If so, get the definition in the loop. 2547 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2548 if (BaseDef && BaseDef->isPHI()) { 2549 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2550 BaseDef = MRI.getVRegDef(BaseReg); 2551 } 2552 if (!BaseDef) 2553 return false; 2554 2555 int D = 0; 2556 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2557 return false; 2558 2559 Delta = D; 2560 return true; 2561 } 2562 2563 /// Check if we can change the instruction to use an offset value from the 2564 /// previous iteration. If so, return true and set the base and offset values 2565 /// so that we can rewrite the load, if necessary. 2566 /// v1 = Phi(v0, v3) 2567 /// v2 = load v1, 0 2568 /// v3 = post_store v1, 4, x 2569 /// This function enables the load to be rewritten as v2 = load v3, 4. 2570 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2571 unsigned &BasePos, 2572 unsigned &OffsetPos, 2573 unsigned &NewBase, 2574 int64_t &Offset) { 2575 // Get the load instruction. 2576 if (TII->isPostIncrement(*MI)) 2577 return false; 2578 unsigned BasePosLd, OffsetPosLd; 2579 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2580 return false; 2581 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2582 2583 // Look for the Phi instruction. 2584 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2585 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2586 if (!Phi || !Phi->isPHI()) 2587 return false; 2588 // Get the register defined in the loop block. 2589 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2590 if (!PrevReg) 2591 return false; 2592 2593 // Check for the post-increment load/store instruction. 2594 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2595 if (!PrevDef || PrevDef == MI) 2596 return false; 2597 2598 if (!TII->isPostIncrement(*PrevDef)) 2599 return false; 2600 2601 unsigned BasePos1 = 0, OffsetPos1 = 0; 2602 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2603 return false; 2604 2605 // Make sure that the instructions do not access the same memory location in 2606 // the next iteration. 2607 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2608 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2609 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2610 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2611 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2612 MF.deleteMachineInstr(NewMI); 2613 if (!Disjoint) 2614 return false; 2615 2616 // Set the return value once we determine that we return true. 2617 BasePos = BasePosLd; 2618 OffsetPos = OffsetPosLd; 2619 NewBase = PrevReg; 2620 Offset = StoreOffset; 2621 return true; 2622 } 2623 2624 /// Apply changes to the instruction if needed. The changes are need 2625 /// to improve the scheduling and depend up on the final schedule. 2626 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2627 SMSchedule &Schedule) { 2628 SUnit *SU = getSUnit(MI); 2629 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2630 InstrChanges.find(SU); 2631 if (It != InstrChanges.end()) { 2632 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2633 unsigned BasePos, OffsetPos; 2634 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2635 return; 2636 Register BaseReg = MI->getOperand(BasePos).getReg(); 2637 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2638 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2639 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2640 int BaseStageNum = Schedule.stageScheduled(SU); 2641 int BaseCycleNum = Schedule.cycleScheduled(SU); 2642 if (BaseStageNum < DefStageNum) { 2643 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2644 int OffsetDiff = DefStageNum - BaseStageNum; 2645 if (DefCycleNum < BaseCycleNum) { 2646 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2647 if (OffsetDiff > 0) 2648 --OffsetDiff; 2649 } 2650 int64_t NewOffset = 2651 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2652 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2653 SU->setInstr(NewMI); 2654 MISUnitMap[NewMI] = SU; 2655 NewMIs[MI] = NewMI; 2656 } 2657 } 2658 } 2659 2660 /// Return the instruction in the loop that defines the register. 2661 /// If the definition is a Phi, then follow the Phi operand to 2662 /// the instruction in the loop. 2663 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2664 SmallPtrSet<MachineInstr *, 8> Visited; 2665 MachineInstr *Def = MRI.getVRegDef(Reg); 2666 while (Def->isPHI()) { 2667 if (!Visited.insert(Def).second) 2668 break; 2669 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2670 if (Def->getOperand(i + 1).getMBB() == BB) { 2671 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2672 break; 2673 } 2674 } 2675 return Def; 2676 } 2677 2678 /// Return true for an order or output dependence that is loop carried 2679 /// potentially. A dependence is loop carried if the destination defines a value 2680 /// that may be used or defined by the source in a subsequent iteration. 2681 bool SwingSchedulerDAG::isLoopCarriedDep( 2682 const SwingSchedulerDDGEdge &Edge) const { 2683 if ((!Edge.isOrderDep() && !Edge.isOutputDep()) || Edge.isArtificial() || 2684 Edge.getDst()->isBoundaryNode()) 2685 return false; 2686 2687 if (!SwpPruneLoopCarried) 2688 return true; 2689 2690 if (Edge.isOutputDep()) 2691 return true; 2692 2693 MachineInstr *SI = Edge.getSrc()->getInstr(); 2694 MachineInstr *DI = Edge.getDst()->getInstr(); 2695 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2696 2697 // Assume ordered loads and stores may have a loop carried dependence. 2698 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2699 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2700 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2701 return true; 2702 2703 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2704 return false; 2705 2706 // The conservative assumption is that a dependence between memory operations 2707 // may be loop carried. The following code checks when it can be proved that 2708 // there is no loop carried dependence. 2709 unsigned DeltaS, DeltaD; 2710 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2711 return true; 2712 2713 const MachineOperand *BaseOpS, *BaseOpD; 2714 int64_t OffsetS, OffsetD; 2715 bool OffsetSIsScalable, OffsetDIsScalable; 2716 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2717 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2718 TRI) || 2719 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2720 TRI)) 2721 return true; 2722 2723 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2724 "Expected offsets to be byte offsets"); 2725 2726 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2727 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2728 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2729 return true; 2730 2731 unsigned InitValS = 0; 2732 unsigned LoopValS = 0; 2733 unsigned InitValD = 0; 2734 unsigned LoopValD = 0; 2735 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2736 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2737 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2738 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2739 2740 if (!InitDefS->isIdenticalTo(*InitDefD)) 2741 return true; 2742 2743 // Check that the base register is incremented by a constant value for each 2744 // iteration. 2745 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2746 int D = 0; 2747 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2748 return true; 2749 2750 LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 2751 LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 2752 2753 // This is the main test, which checks the offset values and the loop 2754 // increment value to determine if the accesses may be loop carried. 2755 if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 2756 return true; 2757 2758 if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 2759 DeltaD < AccessSizeD.getValue()) 2760 return true; 2761 2762 return (OffsetS + (int64_t)AccessSizeS.getValue() < 2763 OffsetD + (int64_t)AccessSizeD.getValue()); 2764 } 2765 2766 void SwingSchedulerDAG::postProcessDAG() { 2767 for (auto &M : Mutations) 2768 M->apply(this); 2769 } 2770 2771 /// Try to schedule the node at the specified StartCycle and continue 2772 /// until the node is schedule or the EndCycle is reached. This function 2773 /// returns true if the node is scheduled. This routine may search either 2774 /// forward or backward for a place to insert the instruction based upon 2775 /// the relative values of StartCycle and EndCycle. 2776 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2777 bool forward = true; 2778 LLVM_DEBUG({ 2779 dbgs() << "Trying to insert node between " << StartCycle << " and " 2780 << EndCycle << " II: " << II << "\n"; 2781 }); 2782 if (StartCycle > EndCycle) 2783 forward = false; 2784 2785 // The terminating condition depends on the direction. 2786 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2787 for (int curCycle = StartCycle; curCycle != termCycle; 2788 forward ? ++curCycle : --curCycle) { 2789 2790 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2791 ProcItinResources.canReserveResources(*SU, curCycle)) { 2792 LLVM_DEBUG({ 2793 dbgs() << "\tinsert at cycle " << curCycle << " "; 2794 SU->getInstr()->dump(); 2795 }); 2796 2797 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2798 ProcItinResources.reserveResources(*SU, curCycle); 2799 ScheduledInstrs[curCycle].push_back(SU); 2800 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2801 if (curCycle > LastCycle) 2802 LastCycle = curCycle; 2803 if (curCycle < FirstCycle) 2804 FirstCycle = curCycle; 2805 return true; 2806 } 2807 LLVM_DEBUG({ 2808 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2809 SU->getInstr()->dump(); 2810 }); 2811 } 2812 return false; 2813 } 2814 2815 // Return the cycle of the earliest scheduled instruction in the chain. 2816 int SMSchedule::earliestCycleInChain(const SwingSchedulerDDGEdge &Dep, 2817 const SwingSchedulerDDG *DDG) { 2818 SmallPtrSet<SUnit *, 8> Visited; 2819 SmallVector<SwingSchedulerDDGEdge, 8> Worklist; 2820 Worklist.push_back(Dep); 2821 int EarlyCycle = INT_MAX; 2822 while (!Worklist.empty()) { 2823 const SwingSchedulerDDGEdge &Cur = Worklist.pop_back_val(); 2824 SUnit *PrevSU = Cur.getSrc(); 2825 if (Visited.count(PrevSU)) 2826 continue; 2827 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2828 if (it == InstrToCycle.end()) 2829 continue; 2830 EarlyCycle = std::min(EarlyCycle, it->second); 2831 for (const auto &IE : DDG->getInEdges(PrevSU)) 2832 if (IE.isOrderDep() || IE.isOutputDep()) 2833 Worklist.push_back(IE); 2834 Visited.insert(PrevSU); 2835 } 2836 return EarlyCycle; 2837 } 2838 2839 // Return the cycle of the latest scheduled instruction in the chain. 2840 int SMSchedule::latestCycleInChain(const SwingSchedulerDDGEdge &Dep, 2841 const SwingSchedulerDDG *DDG) { 2842 SmallPtrSet<SUnit *, 8> Visited; 2843 SmallVector<SwingSchedulerDDGEdge, 8> Worklist; 2844 Worklist.push_back(Dep); 2845 int LateCycle = INT_MIN; 2846 while (!Worklist.empty()) { 2847 const SwingSchedulerDDGEdge &Cur = Worklist.pop_back_val(); 2848 SUnit *SuccSU = Cur.getDst(); 2849 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2850 continue; 2851 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2852 if (it == InstrToCycle.end()) 2853 continue; 2854 LateCycle = std::max(LateCycle, it->second); 2855 for (const auto &OE : DDG->getOutEdges(SuccSU)) 2856 if (OE.isOrderDep() || OE.isOutputDep()) 2857 Worklist.push_back(OE); 2858 Visited.insert(SuccSU); 2859 } 2860 return LateCycle; 2861 } 2862 2863 /// If an instruction has a use that spans multiple iterations, then 2864 /// return true. These instructions are characterized by having a back-ege 2865 /// to a Phi, which contains a reference to another Phi. 2866 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2867 for (auto &P : SU->Preds) 2868 if (P.getKind() == SDep::Anti && P.getSUnit()->getInstr()->isPHI()) 2869 for (auto &S : P.getSUnit()->Succs) 2870 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2871 return P.getSUnit(); 2872 return nullptr; 2873 } 2874 2875 /// Compute the scheduling start slot for the instruction. The start slot 2876 /// depends on any predecessor or successor nodes scheduled already. 2877 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2878 int II, SwingSchedulerDAG *DAG) { 2879 const SwingSchedulerDDG *DDG = DAG->getDDG(); 2880 2881 // Iterate over each instruction that has been scheduled already. The start 2882 // slot computation depends on whether the previously scheduled instruction 2883 // is a predecessor or successor of the specified instruction. 2884 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2885 for (SUnit *I : getInstructions(cycle)) { 2886 for (const auto &IE : DDG->getInEdges(SU)) { 2887 if (IE.getSrc() == I) { 2888 // FIXME: Add reverse edge to `DDG` instead of calling 2889 // `isLoopCarriedDep` 2890 if (DAG->isLoopCarriedDep(IE)) { 2891 int End = earliestCycleInChain(IE, DDG) + (II - 1); 2892 *MinLateStart = std::min(*MinLateStart, End); 2893 } 2894 int EarlyStart = cycle + IE.getLatency() - IE.getDistance() * II; 2895 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2896 } 2897 } 2898 2899 for (const auto &OE : DDG->getOutEdges(SU)) { 2900 if (OE.getDst() == I) { 2901 // FIXME: Add reverse edge to `DDG` instead of calling 2902 // `isLoopCarriedDep` 2903 if (DAG->isLoopCarriedDep(OE)) { 2904 int Start = latestCycleInChain(OE, DDG) + 1 - II; 2905 *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 2906 } 2907 int LateStart = cycle - OE.getLatency() + OE.getDistance() * II; 2908 *MinLateStart = std::min(*MinLateStart, LateStart); 2909 } 2910 } 2911 2912 SUnit *BE = multipleIterations(I, DAG); 2913 for (const auto &Dep : SU->Preds) { 2914 // For instruction that requires multiple iterations, make sure that 2915 // the dependent instruction is not scheduled past the definition. 2916 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2917 !SU->isPred(I)) 2918 *MinLateStart = std::min(*MinLateStart, cycle); 2919 } 2920 } 2921 } 2922 } 2923 2924 /// Order the instructions within a cycle so that the definitions occur 2925 /// before the uses. Returns true if the instruction is added to the start 2926 /// of the list, or false if added to the end. 2927 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2928 std::deque<SUnit *> &Insts) const { 2929 MachineInstr *MI = SU->getInstr(); 2930 bool OrderBeforeUse = false; 2931 bool OrderAfterDef = false; 2932 bool OrderBeforeDef = false; 2933 unsigned MoveDef = 0; 2934 unsigned MoveUse = 0; 2935 int StageInst1 = stageScheduled(SU); 2936 const SwingSchedulerDDG *DDG = SSD->getDDG(); 2937 2938 unsigned Pos = 0; 2939 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2940 ++I, ++Pos) { 2941 for (MachineOperand &MO : MI->operands()) { 2942 if (!MO.isReg() || !MO.getReg().isVirtual()) 2943 continue; 2944 2945 Register Reg = MO.getReg(); 2946 unsigned BasePos, OffsetPos; 2947 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2948 if (MI->getOperand(BasePos).getReg() == Reg) 2949 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2950 Reg = NewReg; 2951 bool Reads, Writes; 2952 std::tie(Reads, Writes) = 2953 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2954 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2955 OrderBeforeUse = true; 2956 if (MoveUse == 0) 2957 MoveUse = Pos; 2958 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2959 // Add the instruction after the scheduled instruction. 2960 OrderAfterDef = true; 2961 MoveDef = Pos; 2962 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2963 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2964 OrderBeforeUse = true; 2965 if (MoveUse == 0) 2966 MoveUse = Pos; 2967 } else { 2968 OrderAfterDef = true; 2969 MoveDef = Pos; 2970 } 2971 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2972 OrderBeforeUse = true; 2973 if (MoveUse == 0) 2974 MoveUse = Pos; 2975 if (MoveUse != 0) { 2976 OrderAfterDef = true; 2977 MoveDef = Pos - 1; 2978 } 2979 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2980 // Add the instruction before the scheduled instruction. 2981 OrderBeforeUse = true; 2982 if (MoveUse == 0) 2983 MoveUse = Pos; 2984 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2985 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2986 if (MoveUse == 0) { 2987 OrderBeforeDef = true; 2988 MoveUse = Pos; 2989 } 2990 } 2991 } 2992 // Check for order dependences between instructions. Make sure the source 2993 // is ordered before the destination. 2994 for (auto &OE : DDG->getOutEdges(SU)) { 2995 if (OE.getDst() != *I) 2996 continue; 2997 if (OE.isOrderDep() && stageScheduled(*I) == StageInst1) { 2998 OrderBeforeUse = true; 2999 if (Pos < MoveUse) 3000 MoveUse = Pos; 3001 } 3002 // We did not handle HW dependences in previous for loop, 3003 // and we normally set Latency = 0 for Anti/Output deps, 3004 // so may have nodes in same cycle with Anti/Output dependent on HW regs. 3005 else if ((OE.isAntiDep() || OE.isOutputDep()) && 3006 stageScheduled(*I) == StageInst1) { 3007 OrderBeforeUse = true; 3008 if ((MoveUse == 0) || (Pos < MoveUse)) 3009 MoveUse = Pos; 3010 } 3011 } 3012 for (auto &IE : DDG->getInEdges(SU)) { 3013 if (IE.getSrc() != *I) 3014 continue; 3015 if ((IE.isAntiDep() || IE.isOutputDep() || IE.isOrderDep()) && 3016 stageScheduled(*I) == StageInst1) { 3017 OrderAfterDef = true; 3018 MoveDef = Pos; 3019 } 3020 } 3021 } 3022 3023 // A circular dependence. 3024 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3025 OrderBeforeUse = false; 3026 3027 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3028 // to a loop-carried dependence. 3029 if (OrderBeforeDef) 3030 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3031 3032 // The uncommon case when the instruction order needs to be updated because 3033 // there is both a use and def. 3034 if (OrderBeforeUse && OrderAfterDef) { 3035 SUnit *UseSU = Insts.at(MoveUse); 3036 SUnit *DefSU = Insts.at(MoveDef); 3037 if (MoveUse > MoveDef) { 3038 Insts.erase(Insts.begin() + MoveUse); 3039 Insts.erase(Insts.begin() + MoveDef); 3040 } else { 3041 Insts.erase(Insts.begin() + MoveDef); 3042 Insts.erase(Insts.begin() + MoveUse); 3043 } 3044 orderDependence(SSD, UseSU, Insts); 3045 orderDependence(SSD, SU, Insts); 3046 orderDependence(SSD, DefSU, Insts); 3047 return; 3048 } 3049 // Put the new instruction first if there is a use in the list. Otherwise, 3050 // put it at the end of the list. 3051 if (OrderBeforeUse) 3052 Insts.push_front(SU); 3053 else 3054 Insts.push_back(SU); 3055 } 3056 3057 /// Return true if the scheduled Phi has a loop carried operand. 3058 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3059 MachineInstr &Phi) const { 3060 if (!Phi.isPHI()) 3061 return false; 3062 assert(Phi.isPHI() && "Expecting a Phi."); 3063 SUnit *DefSU = SSD->getSUnit(&Phi); 3064 unsigned DefCycle = cycleScheduled(DefSU); 3065 int DefStage = stageScheduled(DefSU); 3066 3067 unsigned InitVal = 0; 3068 unsigned LoopVal = 0; 3069 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3070 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3071 if (!UseSU) 3072 return true; 3073 if (UseSU->getInstr()->isPHI()) 3074 return true; 3075 unsigned LoopCycle = cycleScheduled(UseSU); 3076 int LoopStage = stageScheduled(UseSU); 3077 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3078 } 3079 3080 /// Return true if the instruction is a definition that is loop carried 3081 /// and defines the use on the next iteration. 3082 /// v1 = phi(v2, v3) 3083 /// (Def) v3 = op v1 3084 /// (MO) = v1 3085 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3086 /// register. 3087 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3088 MachineInstr *Def, 3089 MachineOperand &MO) const { 3090 if (!MO.isReg()) 3091 return false; 3092 if (Def->isPHI()) 3093 return false; 3094 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3095 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3096 return false; 3097 if (!isLoopCarried(SSD, *Phi)) 3098 return false; 3099 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3100 for (MachineOperand &DMO : Def->all_defs()) { 3101 if (DMO.getReg() == LoopReg) 3102 return true; 3103 } 3104 return false; 3105 } 3106 3107 /// Return true if all scheduled predecessors are loop-carried output/order 3108 /// dependencies. 3109 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 3110 SUnit *SU, const SwingSchedulerDDG *DDG) const { 3111 for (const auto &IE : DDG->getInEdges(SU)) 3112 if (InstrToCycle.count(IE.getSrc())) 3113 return false; 3114 return true; 3115 } 3116 3117 /// Determine transitive dependences of unpipelineable instructions 3118 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3119 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3120 SmallSet<SUnit *, 8> DoNotPipeline; 3121 SmallVector<SUnit *, 8> Worklist; 3122 3123 for (auto &SU : SSD->SUnits) 3124 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3125 Worklist.push_back(&SU); 3126 3127 const SwingSchedulerDDG *DDG = SSD->getDDG(); 3128 while (!Worklist.empty()) { 3129 auto SU = Worklist.pop_back_val(); 3130 if (DoNotPipeline.count(SU)) 3131 continue; 3132 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3133 DoNotPipeline.insert(SU); 3134 for (const auto &IE : DDG->getInEdges(SU)) 3135 Worklist.push_back(IE.getSrc()); 3136 3137 // To preserve previous behavior and prevent regression 3138 // FIXME: Remove if this doesn't have significant impact on 3139 for (const auto &OE : DDG->getOutEdges(SU)) 3140 if (OE.getDistance() == 1) 3141 Worklist.push_back(OE.getDst()); 3142 } 3143 return DoNotPipeline; 3144 } 3145 3146 // Determine all instructions upon which any unpipelineable instruction depends 3147 // and ensure that they are in stage 0. If unable to do so, return false. 3148 bool SMSchedule::normalizeNonPipelinedInstructions( 3149 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3150 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3151 3152 int NewLastCycle = INT_MIN; 3153 for (SUnit &SU : SSD->SUnits) { 3154 if (!SU.isInstr()) 3155 continue; 3156 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3157 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3158 continue; 3159 } 3160 3161 // Put the non-pipelined instruction as early as possible in the schedule 3162 int NewCycle = getFirstCycle(); 3163 for (const auto &IE : SSD->getDDG()->getInEdges(&SU)) 3164 if (IE.getDistance() == 0) 3165 NewCycle = std::max(InstrToCycle[IE.getSrc()], NewCycle); 3166 3167 // To preserve previous behavior and prevent regression 3168 // FIXME: Remove if this doesn't have significant impact on performance 3169 for (auto &OE : SSD->getDDG()->getOutEdges(&SU)) 3170 if (OE.getDistance() == 1) 3171 NewCycle = std::max(InstrToCycle[OE.getDst()], NewCycle); 3172 3173 int OldCycle = InstrToCycle[&SU]; 3174 if (OldCycle != NewCycle) { 3175 InstrToCycle[&SU] = NewCycle; 3176 auto &OldS = getInstructions(OldCycle); 3177 llvm::erase(OldS, &SU); 3178 getInstructions(NewCycle).emplace_back(&SU); 3179 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3180 << ") is not pipelined; moving from cycle " << OldCycle 3181 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3182 } 3183 NewLastCycle = std::max(NewLastCycle, NewCycle); 3184 } 3185 LastCycle = NewLastCycle; 3186 return true; 3187 } 3188 3189 // Check if the generated schedule is valid. This function checks if 3190 // an instruction that uses a physical register is scheduled in a 3191 // different stage than the definition. The pipeliner does not handle 3192 // physical register values that may cross a basic block boundary. 3193 // Furthermore, if a physical def/use pair is assigned to the same 3194 // cycle, orderDependence does not guarantee def/use ordering, so that 3195 // case should be considered invalid. (The test checks for both 3196 // earlier and same-cycle use to be more robust.) 3197 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3198 for (SUnit &SU : SSD->SUnits) { 3199 if (!SU.hasPhysRegDefs) 3200 continue; 3201 int StageDef = stageScheduled(&SU); 3202 int CycleDef = InstrToCycle[&SU]; 3203 assert(StageDef != -1 && "Instruction should have been scheduled."); 3204 for (auto &OE : SSD->getDDG()->getOutEdges(&SU)) { 3205 SUnit *Dst = OE.getDst(); 3206 if (OE.isAssignedRegDep() && !Dst->isBoundaryNode()) 3207 if (Register::isPhysicalRegister(OE.getReg())) { 3208 if (stageScheduled(Dst) != StageDef) 3209 return false; 3210 if (InstrToCycle[Dst] <= CycleDef) 3211 return false; 3212 } 3213 } 3214 } 3215 return true; 3216 } 3217 3218 /// A property of the node order in swing-modulo-scheduling is 3219 /// that for nodes outside circuits the following holds: 3220 /// none of them is scheduled after both a successor and a 3221 /// predecessor. 3222 /// The method below checks whether the property is met. 3223 /// If not, debug information is printed and statistics information updated. 3224 /// Note that we do not use an assert statement. 3225 /// The reason is that although an invalid node order may prevent 3226 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3227 /// it does not lead to the generation of incorrect code. 3228 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3229 3230 // a sorted vector that maps each SUnit to its index in the NodeOrder 3231 typedef std::pair<SUnit *, unsigned> UnitIndex; 3232 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3233 3234 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3235 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3236 3237 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3238 return std::get<0>(i1) < std::get<0>(i2); 3239 }; 3240 3241 // sort, so that we can perform a binary search 3242 llvm::sort(Indices, CompareKey); 3243 3244 bool Valid = true; 3245 (void)Valid; 3246 // for each SUnit in the NodeOrder, check whether 3247 // it appears after both a successor and a predecessor 3248 // of the SUnit. If this is the case, and the SUnit 3249 // is not part of circuit, then the NodeOrder is not 3250 // valid. 3251 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3252 SUnit *SU = NodeOrder[i]; 3253 unsigned Index = i; 3254 3255 bool PredBefore = false; 3256 bool SuccBefore = false; 3257 3258 SUnit *Succ; 3259 SUnit *Pred; 3260 (void)Succ; 3261 (void)Pred; 3262 3263 for (const auto &IE : DDG->getInEdges(SU)) { 3264 SUnit *PredSU = IE.getSrc(); 3265 unsigned PredIndex = std::get<1>( 3266 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3267 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3268 PredBefore = true; 3269 Pred = PredSU; 3270 break; 3271 } 3272 } 3273 3274 for (const auto &OE : DDG->getOutEdges(SU)) { 3275 SUnit *SuccSU = OE.getDst(); 3276 // Do not process a boundary node, it was not included in NodeOrder, 3277 // hence not in Indices either, call to std::lower_bound() below will 3278 // return Indices.end(). 3279 if (SuccSU->isBoundaryNode()) 3280 continue; 3281 unsigned SuccIndex = std::get<1>( 3282 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3283 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3284 SuccBefore = true; 3285 Succ = SuccSU; 3286 break; 3287 } 3288 } 3289 3290 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3291 // instructions in circuits are allowed to be scheduled 3292 // after both a successor and predecessor. 3293 bool InCircuit = llvm::any_of( 3294 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3295 if (InCircuit) 3296 LLVM_DEBUG(dbgs() << "In a circuit, predecessor "); 3297 else { 3298 Valid = false; 3299 NumNodeOrderIssues++; 3300 LLVM_DEBUG(dbgs() << "Predecessor "); 3301 } 3302 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3303 << " are scheduled before node " << SU->NodeNum 3304 << "\n"); 3305 } 3306 } 3307 3308 LLVM_DEBUG({ 3309 if (!Valid) 3310 dbgs() << "Invalid node order found!\n"; 3311 }); 3312 } 3313 3314 /// Attempt to fix the degenerate cases when the instruction serialization 3315 /// causes the register lifetimes to overlap. For example, 3316 /// p' = store_pi(p, b) 3317 /// = load p, offset 3318 /// In this case p and p' overlap, which means that two registers are needed. 3319 /// Instead, this function changes the load to use p' and updates the offset. 3320 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3321 unsigned OverlapReg = 0; 3322 unsigned NewBaseReg = 0; 3323 for (SUnit *SU : Instrs) { 3324 MachineInstr *MI = SU->getInstr(); 3325 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3326 const MachineOperand &MO = MI->getOperand(i); 3327 // Look for an instruction that uses p. The instruction occurs in the 3328 // same cycle but occurs later in the serialized order. 3329 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3330 // Check that the instruction appears in the InstrChanges structure, 3331 // which contains instructions that can have the offset updated. 3332 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3333 InstrChanges.find(SU); 3334 if (It != InstrChanges.end()) { 3335 unsigned BasePos, OffsetPos; 3336 // Update the base register and adjust the offset. 3337 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3338 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3339 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3340 int64_t NewOffset = 3341 MI->getOperand(OffsetPos).getImm() - It->second.second; 3342 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3343 SU->setInstr(NewMI); 3344 MISUnitMap[NewMI] = SU; 3345 NewMIs[MI] = NewMI; 3346 } 3347 } 3348 OverlapReg = 0; 3349 NewBaseReg = 0; 3350 break; 3351 } 3352 // Look for an instruction of the form p' = op(p), which uses and defines 3353 // two virtual registers that get allocated to the same physical register. 3354 unsigned TiedUseIdx = 0; 3355 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3356 // OverlapReg is p in the example above. 3357 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3358 // NewBaseReg is p' in the example above. 3359 NewBaseReg = MI->getOperand(i).getReg(); 3360 break; 3361 } 3362 } 3363 } 3364 } 3365 3366 std::deque<SUnit *> 3367 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3368 const std::deque<SUnit *> &Instrs) const { 3369 std::deque<SUnit *> NewOrderPhi; 3370 for (SUnit *SU : Instrs) { 3371 if (SU->getInstr()->isPHI()) 3372 NewOrderPhi.push_back(SU); 3373 } 3374 std::deque<SUnit *> NewOrderI; 3375 for (SUnit *SU : Instrs) { 3376 if (!SU->getInstr()->isPHI()) 3377 orderDependence(SSD, SU, NewOrderI); 3378 } 3379 llvm::append_range(NewOrderPhi, NewOrderI); 3380 return NewOrderPhi; 3381 } 3382 3383 /// After the schedule has been formed, call this function to combine 3384 /// the instructions from the different stages/cycles. That is, this 3385 /// function creates a schedule that represents a single iteration. 3386 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3387 // Move all instructions to the first stage from later stages. 3388 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3389 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3390 ++stage) { 3391 std::deque<SUnit *> &cycleInstrs = 3392 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3393 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3394 ScheduledInstrs[cycle].push_front(SU); 3395 } 3396 } 3397 3398 // Erase all the elements in the later stages. Only one iteration should 3399 // remain in the scheduled list, and it contains all the instructions. 3400 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3401 ScheduledInstrs.erase(cycle); 3402 3403 // Change the registers in instruction as specified in the InstrChanges 3404 // map. We need to use the new registers to create the correct order. 3405 for (const SUnit &SU : SSD->SUnits) 3406 SSD->applyInstrChange(SU.getInstr(), *this); 3407 3408 // Reorder the instructions in each cycle to fix and improve the 3409 // generated code. 3410 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3411 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3412 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3413 SSD->fixupRegisterOverlaps(cycleInstrs); 3414 } 3415 3416 LLVM_DEBUG(dump();); 3417 } 3418 3419 void NodeSet::print(raw_ostream &os) const { 3420 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3421 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3422 for (const auto &I : Nodes) 3423 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3424 os << "\n"; 3425 } 3426 3427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3428 /// Print the schedule information to the given output. 3429 void SMSchedule::print(raw_ostream &os) const { 3430 // Iterate over each cycle. 3431 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3432 // Iterate over each instruction in the cycle. 3433 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3434 for (SUnit *CI : cycleInstrs->second) { 3435 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3436 os << "(" << CI->NodeNum << ") "; 3437 CI->getInstr()->print(os); 3438 os << "\n"; 3439 } 3440 } 3441 } 3442 3443 /// Utility function used for debugging to print the schedule. 3444 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3445 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3446 3447 void ResourceManager::dumpMRT() const { 3448 LLVM_DEBUG({ 3449 if (UseDFA) 3450 return; 3451 std::stringstream SS; 3452 SS << "MRT:\n"; 3453 SS << std::setw(4) << "Slot"; 3454 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3455 SS << std::setw(3) << I; 3456 SS << std::setw(7) << "#Mops" 3457 << "\n"; 3458 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3459 SS << std::setw(4) << Slot; 3460 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3461 SS << std::setw(3) << MRT[Slot][I]; 3462 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3463 } 3464 dbgs() << SS.str(); 3465 }); 3466 } 3467 #endif 3468 3469 void ResourceManager::initProcResourceVectors( 3470 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3471 unsigned ProcResourceID = 0; 3472 3473 // We currently limit the resource kinds to 64 and below so that we can use 3474 // uint64_t for Masks 3475 assert(SM.getNumProcResourceKinds() < 64 && 3476 "Too many kinds of resources, unsupported"); 3477 // Create a unique bitmask for every processor resource unit. 3478 // Skip resource at index 0, since it always references 'InvalidUnit'. 3479 Masks.resize(SM.getNumProcResourceKinds()); 3480 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3481 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3482 if (Desc.SubUnitsIdxBegin) 3483 continue; 3484 Masks[I] = 1ULL << ProcResourceID; 3485 ProcResourceID++; 3486 } 3487 // Create a unique bitmask for every processor resource group. 3488 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3489 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3490 if (!Desc.SubUnitsIdxBegin) 3491 continue; 3492 Masks[I] = 1ULL << ProcResourceID; 3493 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3494 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3495 ProcResourceID++; 3496 } 3497 LLVM_DEBUG({ 3498 if (SwpShowResMask) { 3499 dbgs() << "ProcResourceDesc:\n"; 3500 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3501 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3502 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3503 ProcResource->Name, I, Masks[I], 3504 ProcResource->NumUnits); 3505 } 3506 dbgs() << " -----------------\n"; 3507 } 3508 }); 3509 } 3510 3511 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3512 LLVM_DEBUG({ 3513 if (SwpDebugResource) 3514 dbgs() << "canReserveResources:\n"; 3515 }); 3516 if (UseDFA) 3517 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3518 ->canReserveResources(&SU.getInstr()->getDesc()); 3519 3520 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3521 if (!SCDesc->isValid()) { 3522 LLVM_DEBUG({ 3523 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3524 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3525 }); 3526 return true; 3527 } 3528 3529 reserveResources(SCDesc, Cycle); 3530 bool Result = !isOverbooked(); 3531 unreserveResources(SCDesc, Cycle); 3532 3533 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n"); 3534 return Result; 3535 } 3536 3537 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3538 LLVM_DEBUG({ 3539 if (SwpDebugResource) 3540 dbgs() << "reserveResources:\n"; 3541 }); 3542 if (UseDFA) 3543 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3544 ->reserveResources(&SU.getInstr()->getDesc()); 3545 3546 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3547 if (!SCDesc->isValid()) { 3548 LLVM_DEBUG({ 3549 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3550 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3551 }); 3552 return; 3553 } 3554 3555 reserveResources(SCDesc, Cycle); 3556 3557 LLVM_DEBUG({ 3558 if (SwpDebugResource) { 3559 dumpMRT(); 3560 dbgs() << "reserveResources: done!\n\n"; 3561 } 3562 }); 3563 } 3564 3565 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3566 int Cycle) { 3567 assert(!UseDFA); 3568 for (const MCWriteProcResEntry &PRE : make_range( 3569 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3570 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3571 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3572 3573 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3574 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3575 } 3576 3577 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3578 int Cycle) { 3579 assert(!UseDFA); 3580 for (const MCWriteProcResEntry &PRE : make_range( 3581 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3582 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3583 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3584 3585 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3586 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3587 } 3588 3589 bool ResourceManager::isOverbooked() const { 3590 assert(!UseDFA); 3591 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3592 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3593 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3594 if (MRT[Slot][I] > Desc->NumUnits) 3595 return true; 3596 } 3597 if (NumScheduledMops[Slot] > IssueWidth) 3598 return true; 3599 } 3600 return false; 3601 } 3602 3603 int ResourceManager::calculateResMIIDFA() const { 3604 assert(UseDFA); 3605 3606 // Sort the instructions by the number of available choices for scheduling, 3607 // least to most. Use the number of critical resources as the tie breaker. 3608 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3609 for (SUnit &SU : DAG->SUnits) 3610 FUS.calcCriticalResources(*SU.getInstr()); 3611 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3612 FuncUnitOrder(FUS); 3613 3614 for (SUnit &SU : DAG->SUnits) 3615 FuncUnitOrder.push(SU.getInstr()); 3616 3617 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3618 Resources.push_back( 3619 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3620 3621 while (!FuncUnitOrder.empty()) { 3622 MachineInstr *MI = FuncUnitOrder.top(); 3623 FuncUnitOrder.pop(); 3624 if (TII->isZeroCost(MI->getOpcode())) 3625 continue; 3626 3627 // Attempt to reserve the instruction in an existing DFA. At least one 3628 // DFA is needed for each cycle. 3629 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3630 unsigned ReservedCycles = 0; 3631 auto *RI = Resources.begin(); 3632 auto *RE = Resources.end(); 3633 LLVM_DEBUG({ 3634 dbgs() << "Trying to reserve resource for " << NumCycles 3635 << " cycles for \n"; 3636 MI->dump(); 3637 }); 3638 for (unsigned C = 0; C < NumCycles; ++C) 3639 while (RI != RE) { 3640 if ((*RI)->canReserveResources(*MI)) { 3641 (*RI)->reserveResources(*MI); 3642 ++ReservedCycles; 3643 break; 3644 } 3645 RI++; 3646 } 3647 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3648 << ", NumCycles:" << NumCycles << "\n"); 3649 // Add new DFAs, if needed, to reserve resources. 3650 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3651 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3652 << "NewResource created to reserve resources" 3653 << "\n"); 3654 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3655 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3656 NewResource->reserveResources(*MI); 3657 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3658 } 3659 } 3660 3661 int Resmii = Resources.size(); 3662 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3663 return Resmii; 3664 } 3665 3666 int ResourceManager::calculateResMII() const { 3667 if (UseDFA) 3668 return calculateResMIIDFA(); 3669 3670 // Count each resource consumption and divide it by the number of units. 3671 // ResMII is the max value among them. 3672 3673 int NumMops = 0; 3674 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3675 for (SUnit &SU : DAG->SUnits) { 3676 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3677 continue; 3678 3679 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3680 if (!SCDesc->isValid()) 3681 continue; 3682 3683 LLVM_DEBUG({ 3684 if (SwpDebugResource) { 3685 DAG->dumpNode(SU); 3686 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3687 << " WriteProcRes: "; 3688 } 3689 }); 3690 NumMops += SCDesc->NumMicroOps; 3691 for (const MCWriteProcResEntry &PRE : 3692 make_range(STI->getWriteProcResBegin(SCDesc), 3693 STI->getWriteProcResEnd(SCDesc))) { 3694 LLVM_DEBUG({ 3695 if (SwpDebugResource) { 3696 const MCProcResourceDesc *Desc = 3697 SM.getProcResource(PRE.ProcResourceIdx); 3698 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3699 } 3700 }); 3701 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3702 } 3703 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3704 } 3705 3706 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3707 LLVM_DEBUG({ 3708 if (SwpDebugResource) 3709 dbgs() << "#Mops: " << NumMops << ", " 3710 << "IssueWidth: " << IssueWidth << ", " 3711 << "Cycles: " << Result << "\n"; 3712 }); 3713 3714 LLVM_DEBUG({ 3715 if (SwpDebugResource) { 3716 std::stringstream SS; 3717 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3718 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3719 << "\n"; 3720 dbgs() << SS.str(); 3721 } 3722 }); 3723 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3724 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3725 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3726 LLVM_DEBUG({ 3727 if (SwpDebugResource) { 3728 std::stringstream SS; 3729 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3730 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3731 << std::setw(10) << Cycles << "\n"; 3732 dbgs() << SS.str(); 3733 } 3734 }); 3735 if (Cycles > Result) 3736 Result = Cycles; 3737 } 3738 return Result; 3739 } 3740 3741 void ResourceManager::init(int II) { 3742 InitiationInterval = II; 3743 DFAResources.clear(); 3744 DFAResources.resize(II); 3745 for (auto &I : DFAResources) 3746 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3747 MRT.clear(); 3748 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3749 NumScheduledMops.clear(); 3750 NumScheduledMops.resize(II); 3751 } 3752 3753 bool SwingSchedulerDDGEdge::ignoreDependence(bool IgnoreAnti) const { 3754 if (Pred.isArtificial() || Dst->isBoundaryNode()) 3755 return true; 3756 // Currently, dependence that is an anti-dependences but not a loop-carried is 3757 // also ignored. This behavior is preserved to prevent regression. 3758 // FIXME: Remove if this doesn't have significant impact on performance 3759 return IgnoreAnti && (Pred.getKind() == SDep::Kind::Anti || Distance != 0); 3760 } 3761 3762 SwingSchedulerDDG::SwingSchedulerDDGEdges & 3763 SwingSchedulerDDG::getEdges(const SUnit *SU) { 3764 if (SU == EntrySU) 3765 return EntrySUEdges; 3766 if (SU == ExitSU) 3767 return ExitSUEdges; 3768 return EdgesVec[SU->NodeNum]; 3769 } 3770 3771 const SwingSchedulerDDG::SwingSchedulerDDGEdges & 3772 SwingSchedulerDDG::getEdges(const SUnit *SU) const { 3773 if (SU == EntrySU) 3774 return EntrySUEdges; 3775 if (SU == ExitSU) 3776 return ExitSUEdges; 3777 return EdgesVec[SU->NodeNum]; 3778 } 3779 3780 void SwingSchedulerDDG::addEdge(const SUnit *SU, 3781 const SwingSchedulerDDGEdge &Edge) { 3782 auto &Edges = getEdges(SU); 3783 if (Edge.getSrc() == SU) 3784 Edges.Succs.push_back(Edge); 3785 else 3786 Edges.Preds.push_back(Edge); 3787 } 3788 3789 void SwingSchedulerDDG::initEdges(SUnit *SU) { 3790 for (const auto &PI : SU->Preds) { 3791 SwingSchedulerDDGEdge Edge(SU, PI, false); 3792 addEdge(SU, Edge); 3793 } 3794 3795 for (const auto &SI : SU->Succs) { 3796 SwingSchedulerDDGEdge Edge(SU, SI, true); 3797 addEdge(SU, Edge); 3798 } 3799 } 3800 3801 SwingSchedulerDDG::SwingSchedulerDDG(std::vector<SUnit> &SUnits, SUnit *EntrySU, 3802 SUnit *ExitSU) 3803 : EntrySU(EntrySU), ExitSU(ExitSU) { 3804 EdgesVec.resize(SUnits.size()); 3805 3806 initEdges(EntrySU); 3807 initEdges(ExitSU); 3808 for (auto &SU : SUnits) 3809 initEdges(&SU); 3810 } 3811 3812 const SwingSchedulerDDG::EdgesType & 3813 SwingSchedulerDDG::getInEdges(const SUnit *SU) const { 3814 return getEdges(SU).Preds; 3815 } 3816 3817 const SwingSchedulerDDG::EdgesType & 3818 SwingSchedulerDDG::getOutEdges(const SUnit *SU) const { 3819 return getEdges(SU).Succs; 3820 } 3821