xref: /llvm-project/llvm/lib/CodeGen/MachineLateInstrsCleanup.cpp (revision cb57b7a770ffff0d5a978403c29231bfd50c2816)
1 //==--- MachineLateInstrsCleanup.cpp - Late Instructions Cleanup Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass removes any identical and redundant immediate or address
10 // loads to the same register. The immediate loads removed can originally be
11 // the result of rematerialization, while the addresses are redundant frame
12 // addressing anchor points created during Frame Indices elimination.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "machine-latecleanup"
36 
37 STATISTIC(NumRemoved, "Number of redundant instructions removed.");
38 
39 namespace {
40 
41 class MachineLateInstrsCleanup : public MachineFunctionPass {
42   const TargetRegisterInfo *TRI = nullptr;
43   const TargetInstrInfo *TII = nullptr;
44 
45   // Data structures to map regs to their definitions and kills per MBB.
46   struct Reg2MIMap : public SmallDenseMap<Register, MachineInstr *> {
47     MachineInstr *get(Register Reg) {
48       auto I = find(Reg);
49       return I != end() ? I->second : nullptr;
50     }
51 
52     bool hasIdentical(Register Reg, MachineInstr *ArgMI) {
53       MachineInstr *MI = get(Reg);
54       return MI && MI->isIdenticalTo(*ArgMI);
55     }
56   };
57 
58   std::vector<Reg2MIMap> RegDefs;
59   std::vector<Reg2MIMap> RegKills;
60 
61   // Walk through the instructions in MBB and remove any redundant
62   // instructions.
63   bool processBlock(MachineBasicBlock *MBB);
64 
65   void removeRedundantDef(MachineInstr *MI);
66   void clearKillsForDef(Register Reg, MachineBasicBlock *MBB,
67                         MachineBasicBlock::iterator I,
68                         BitVector &VisitedPreds);
69 
70 public:
71   static char ID; // Pass identification, replacement for typeid
72 
73   MachineLateInstrsCleanup() : MachineFunctionPass(ID) {
74     initializeMachineLateInstrsCleanupPass(*PassRegistry::getPassRegistry());
75   }
76 
77   void getAnalysisUsage(AnalysisUsage &AU) const override {
78     AU.setPreservesCFG();
79     MachineFunctionPass::getAnalysisUsage(AU);
80   }
81 
82   bool runOnMachineFunction(MachineFunction &MF) override;
83 
84   MachineFunctionProperties getRequiredProperties() const override {
85     return MachineFunctionProperties().set(
86         MachineFunctionProperties::Property::NoVRegs);
87   }
88 };
89 
90 } // end anonymous namespace
91 
92 char MachineLateInstrsCleanup::ID = 0;
93 
94 char &llvm::MachineLateInstrsCleanupID = MachineLateInstrsCleanup::ID;
95 
96 INITIALIZE_PASS(MachineLateInstrsCleanup, DEBUG_TYPE,
97                 "Machine Late Instructions Cleanup Pass", false, false)
98 
99 bool MachineLateInstrsCleanup::runOnMachineFunction(MachineFunction &MF) {
100   if (skipFunction(MF.getFunction()))
101     return false;
102 
103   TRI = MF.getSubtarget().getRegisterInfo();
104   TII = MF.getSubtarget().getInstrInfo();
105 
106   RegDefs.clear();
107   RegDefs.resize(MF.getNumBlockIDs());
108   RegKills.clear();
109   RegKills.resize(MF.getNumBlockIDs());
110 
111   // Visit all MBBs in an order that maximises the reuse from predecessors.
112   bool Changed = false;
113   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
114   for (MachineBasicBlock *MBB : RPOT)
115     Changed |= processBlock(MBB);
116 
117   return Changed;
118 }
119 
120 // Clear any previous kill flag on Reg found before I in MBB. Walk backwards
121 // in MBB and if needed continue in predecessors until a use/def of Reg is
122 // encountered. This seems to be faster in practice than tracking kill flags
123 // in a map.
124 void MachineLateInstrsCleanup::
125 clearKillsForDef(Register Reg, MachineBasicBlock *MBB,
126                  MachineBasicBlock::iterator I,
127                  BitVector &VisitedPreds) {
128   VisitedPreds.set(MBB->getNumber());
129 
130   // Kill flag in MBB
131   if (MachineInstr *KillMI = RegKills[MBB->getNumber()].get(Reg)) {
132     KillMI->clearRegisterKills(Reg, TRI);
133     return;
134   }
135 
136   // Def in MBB (missing kill flag)
137   if (MachineInstr *DefMI = RegDefs[MBB->getNumber()].get(Reg))
138     if (DefMI->getParent() == MBB)
139       return;
140 
141   // If an earlier def is not in MBB, continue in predecessors.
142   if (!MBB->isLiveIn(Reg))
143     MBB->addLiveIn(Reg);
144   assert(!MBB->pred_empty() && "Predecessor def not found!");
145   for (MachineBasicBlock *Pred : MBB->predecessors())
146     if (!VisitedPreds.test(Pred->getNumber()))
147       clearKillsForDef(Reg, Pred, Pred->end(), VisitedPreds);
148 }
149 
150 void MachineLateInstrsCleanup::removeRedundantDef(MachineInstr *MI) {
151   Register Reg = MI->getOperand(0).getReg();
152   BitVector VisitedPreds(MI->getMF()->getNumBlockIDs());
153   clearKillsForDef(Reg, MI->getParent(), MI->getIterator(), VisitedPreds);
154   MI->eraseFromParent();
155   ++NumRemoved;
156 }
157 
158 // Return true if MI is a potential candidate for reuse/removal and if so
159 // also the register it defines in DefedReg.  A candidate is a simple
160 // instruction that does not touch memory, has only one register definition
161 // and the only reg it may use is FrameReg. Typically this is an immediate
162 // load or a load-address instruction.
163 static bool isCandidate(const MachineInstr *MI, Register &DefedReg,
164                         Register FrameReg) {
165   DefedReg = MCRegister::NoRegister;
166   bool SawStore = true;
167   if (!MI->isSafeToMove(nullptr, SawStore) || MI->isImplicitDef() ||
168       MI->isInlineAsm())
169     return false;
170   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
171     const MachineOperand &MO = MI->getOperand(i);
172     if (MO.isReg()) {
173       if (MO.isDef()) {
174         if (i == 0 && !MO.isImplicit() && !MO.isDead())
175           DefedReg = MO.getReg();
176         else
177           return false;
178       } else if (MO.getReg() && MO.getReg() != FrameReg)
179         return false;
180     } else if (!(MO.isImm() || MO.isCImm() || MO.isFPImm() || MO.isCPI() ||
181                  MO.isGlobal() || MO.isSymbol()))
182       return false;
183   }
184   return DefedReg.isValid();
185 }
186 
187 bool MachineLateInstrsCleanup::processBlock(MachineBasicBlock *MBB) {
188   bool Changed = false;
189   Reg2MIMap &MBBDefs = RegDefs[MBB->getNumber()];
190   Reg2MIMap &MBBKills = RegKills[MBB->getNumber()];
191 
192   // Find reusable definitions in the predecessor(s).
193   if (!MBB->pred_empty() && !MBB->isEHPad() &&
194       !MBB->isInlineAsmBrIndirectTarget()) {
195     MachineBasicBlock *FirstPred = *MBB->pred_begin();
196     for (auto [Reg, DefMI] : RegDefs[FirstPred->getNumber()])
197       if (llvm::all_of(
198               drop_begin(MBB->predecessors()),
199               [&, &Reg = Reg, &DefMI = DefMI](const MachineBasicBlock *Pred) {
200                 return RegDefs[Pred->getNumber()].hasIdentical(Reg, DefMI);
201               })) {
202         MBBDefs[Reg] = DefMI;
203         LLVM_DEBUG(dbgs() << "Reusable instruction from pred(s): in "
204                           << printMBBReference(*MBB) << ":  " << *DefMI;);
205       }
206   }
207 
208   // Process MBB.
209   MachineFunction *MF = MBB->getParent();
210   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
211   Register FrameReg = TRI->getFrameRegister(*MF);
212   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
213     // If FrameReg is modified, no previous load-address instructions (using
214     // it) are valid.
215     if (MI.modifiesRegister(FrameReg, TRI)) {
216       MBBDefs.clear();
217       MBBKills.clear();
218       continue;
219     }
220 
221     Register DefedReg;
222     bool IsCandidate = isCandidate(&MI, DefedReg, FrameReg);
223 
224     // Check for an earlier identical and reusable instruction.
225     if (IsCandidate && MBBDefs.hasIdentical(DefedReg, &MI)) {
226       LLVM_DEBUG(dbgs() << "Removing redundant instruction in "
227                         << printMBBReference(*MBB) << ":  " << MI;);
228       removeRedundantDef(&MI);
229       Changed = true;
230       continue;
231     }
232 
233     // Clear any entries in map that MI clobbers.
234     for (auto DefI : llvm::make_early_inc_range(MBBDefs)) {
235       Register Reg = DefI.first;
236       if (MI.modifiesRegister(Reg, TRI)) {
237         MBBDefs.erase(Reg);
238         MBBKills.erase(Reg);
239       } else if (MI.findRegisterUseOperandIdx(Reg, false /*isKill*/, TRI) != -1)
240         // Keep track of the last use seen so far.
241         MBBKills[Reg] = &MI;
242     }
243 
244     // Record this MI for potential later reuse.
245     if (IsCandidate) {
246       LLVM_DEBUG(dbgs() << "Found interesting instruction in "
247                         << printMBBReference(*MBB) << ":  " << MI;);
248       MBBDefs[DefedReg] = &MI;
249       assert(!MBBKills.count(DefedReg) && "Should already have been removed.");
250     }
251   }
252 
253   return Changed;
254 }
255