1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probabilistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 extern cl::opt<unsigned> ProfileLikelyProb; 129 130 namespace { 131 class BlockChain; 132 /// \brief Type for our function-wide basic block -> block chain mapping. 133 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 134 } 135 136 namespace { 137 /// \brief A chain of blocks which will be laid out contiguously. 138 /// 139 /// This is the datastructure representing a chain of consecutive blocks that 140 /// are profitable to layout together in order to maximize fallthrough 141 /// probabilities and code locality. We also can use a block chain to represent 142 /// a sequence of basic blocks which have some external (correctness) 143 /// requirement for sequential layout. 144 /// 145 /// Chains can be built around a single basic block and can be merged to grow 146 /// them. They participate in a block-to-chain mapping, which is updated 147 /// automatically as chains are merged together. 148 class BlockChain { 149 /// \brief The sequence of blocks belonging to this chain. 150 /// 151 /// This is the sequence of blocks for a particular chain. These will be laid 152 /// out in-order within the function. 153 SmallVector<MachineBasicBlock *, 4> Blocks; 154 155 /// \brief A handle to the function-wide basic block to block chain mapping. 156 /// 157 /// This is retained in each block chain to simplify the computation of child 158 /// block chains for SCC-formation and iteration. We store the edges to child 159 /// basic blocks, and map them back to their associated chains using this 160 /// structure. 161 BlockToChainMapType &BlockToChain; 162 163 public: 164 /// \brief Construct a new BlockChain. 165 /// 166 /// This builds a new block chain representing a single basic block in the 167 /// function. It also registers itself as the chain that block participates 168 /// in with the BlockToChain mapping. 169 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 170 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 171 assert(BB && "Cannot create a chain with a null basic block"); 172 BlockToChain[BB] = this; 173 } 174 175 /// \brief Iterator over blocks within the chain. 176 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 177 178 /// \brief Beginning of blocks within the chain. 179 iterator begin() { return Blocks.begin(); } 180 181 /// \brief End of blocks within the chain. 182 iterator end() { return Blocks.end(); } 183 184 /// \brief Merge a block chain into this one. 185 /// 186 /// This routine merges a block chain into this one. It takes care of forming 187 /// a contiguous sequence of basic blocks, updating the edge list, and 188 /// updating the block -> chain mapping. It does not free or tear down the 189 /// old chain, but the old chain's block list is no longer valid. 190 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 191 assert(BB); 192 assert(!Blocks.empty()); 193 194 // Fast path in case we don't have a chain already. 195 if (!Chain) { 196 assert(!BlockToChain[BB]); 197 Blocks.push_back(BB); 198 BlockToChain[BB] = this; 199 return; 200 } 201 202 assert(BB == *Chain->begin()); 203 assert(Chain->begin() != Chain->end()); 204 205 // Update the incoming blocks to point to this chain, and add them to the 206 // chain structure. 207 for (MachineBasicBlock *ChainBB : *Chain) { 208 Blocks.push_back(ChainBB); 209 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 210 BlockToChain[ChainBB] = this; 211 } 212 } 213 214 #ifndef NDEBUG 215 /// \brief Dump the blocks in this chain. 216 LLVM_DUMP_METHOD void dump() { 217 for (MachineBasicBlock *MBB : *this) 218 MBB->dump(); 219 } 220 #endif // NDEBUG 221 222 /// \brief Count of predecessors of any block within the chain which have not 223 /// yet been scheduled. In general, we will delay scheduling this chain 224 /// until those predecessors are scheduled (or we find a sufficiently good 225 /// reason to override this heuristic.) Note that when forming loop chains, 226 /// blocks outside the loop are ignored and treated as if they were already 227 /// scheduled. 228 /// 229 /// Note: This field is reinitialized multiple times - once for each loop, 230 /// and then once for the function as a whole. 231 unsigned UnscheduledPredecessors; 232 }; 233 } 234 235 namespace { 236 class MachineBlockPlacement : public MachineFunctionPass { 237 /// \brief A typedef for a block filter set. 238 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 239 240 /// \brief work lists of blocks that are ready to be laid out 241 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 242 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 243 244 /// \brief Machine Function 245 MachineFunction *F; 246 247 /// \brief A handle to the branch probability pass. 248 const MachineBranchProbabilityInfo *MBPI; 249 250 /// \brief A handle to the function-wide block frequency pass. 251 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 252 253 /// \brief A handle to the loop info. 254 MachineLoopInfo *MLI; 255 256 /// \brief A handle to the target's instruction info. 257 const TargetInstrInfo *TII; 258 259 /// \brief A handle to the target's lowering info. 260 const TargetLoweringBase *TLI; 261 262 /// \brief A handle to the post dominator tree. 263 MachineDominatorTree *MDT; 264 265 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 266 /// all terminators of the MachineFunction. 267 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 268 269 /// \brief Allocator and owner of BlockChain structures. 270 /// 271 /// We build BlockChains lazily while processing the loop structure of 272 /// a function. To reduce malloc traffic, we allocate them using this 273 /// slab-like allocator, and destroy them after the pass completes. An 274 /// important guarantee is that this allocator produces stable pointers to 275 /// the chains. 276 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 277 278 /// \brief Function wide BasicBlock to BlockChain mapping. 279 /// 280 /// This mapping allows efficiently moving from any given basic block to the 281 /// BlockChain it participates in, if any. We use it to, among other things, 282 /// allow implicitly defining edges between chains as the existing edges 283 /// between basic blocks. 284 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 285 286 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 287 const BlockFilterSet *BlockFilter = nullptr); 288 BranchProbability 289 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 290 const BlockFilterSet *BlockFilter, 291 SmallVector<MachineBasicBlock *, 4> &Successors); 292 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 293 BlockChain &Chain, 294 const BlockFilterSet *BlockFilter, 295 BranchProbability SuccProb, 296 BranchProbability HotProb); 297 bool 298 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 299 BlockChain &SuccChain, BranchProbability SuccProb, 300 BranchProbability RealSuccProb, BlockChain &Chain, 301 const BlockFilterSet *BlockFilter); 302 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 303 BlockChain &Chain, 304 const BlockFilterSet *BlockFilter); 305 MachineBasicBlock * 306 selectBestCandidateBlock(BlockChain &Chain, 307 SmallVectorImpl<MachineBasicBlock *> &WorkList); 308 MachineBasicBlock * 309 getFirstUnplacedBlock(const BlockChain &PlacedChain, 310 MachineFunction::iterator &PrevUnplacedBlockIt, 311 const BlockFilterSet *BlockFilter); 312 313 /// \brief Add a basic block to the work list if it is appropriate. 314 /// 315 /// If the optional parameter BlockFilter is provided, only MBB 316 /// present in the set will be added to the worklist. If nullptr 317 /// is provided, no filtering occurs. 318 void fillWorkLists(MachineBasicBlock *MBB, 319 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 320 const BlockFilterSet *BlockFilter); 321 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 322 const BlockFilterSet *BlockFilter = nullptr); 323 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 324 const BlockFilterSet &LoopBlockSet); 325 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 326 const BlockFilterSet &LoopBlockSet); 327 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 328 void buildLoopChains(MachineLoop &L); 329 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 330 const BlockFilterSet &LoopBlockSet); 331 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 332 const BlockFilterSet &LoopBlockSet); 333 void collectMustExecuteBBs(); 334 void buildCFGChains(); 335 void optimizeBranches(); 336 void alignBlocks(); 337 338 public: 339 static char ID; // Pass identification, replacement for typeid 340 MachineBlockPlacement() : MachineFunctionPass(ID) { 341 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 342 } 343 344 bool runOnMachineFunction(MachineFunction &F) override; 345 346 void getAnalysisUsage(AnalysisUsage &AU) const override { 347 AU.addRequired<MachineBranchProbabilityInfo>(); 348 AU.addRequired<MachineBlockFrequencyInfo>(); 349 AU.addRequired<MachineDominatorTree>(); 350 AU.addRequired<MachineLoopInfo>(); 351 AU.addRequired<TargetPassConfig>(); 352 MachineFunctionPass::getAnalysisUsage(AU); 353 } 354 }; 355 } 356 357 char MachineBlockPlacement::ID = 0; 358 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 359 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 360 "Branch Probability Basic Block Placement", false, false) 361 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 362 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 363 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 364 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 365 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 366 "Branch Probability Basic Block Placement", false, false) 367 368 #ifndef NDEBUG 369 /// \brief Helper to print the name of a MBB. 370 /// 371 /// Only used by debug logging. 372 static std::string getBlockName(MachineBasicBlock *BB) { 373 std::string Result; 374 raw_string_ostream OS(Result); 375 OS << "BB#" << BB->getNumber(); 376 OS << " ('" << BB->getName() << "')"; 377 OS.flush(); 378 return Result; 379 } 380 #endif 381 382 /// \brief Mark a chain's successors as having one fewer preds. 383 /// 384 /// When a chain is being merged into the "placed" chain, this routine will 385 /// quickly walk the successors of each block in the chain and mark them as 386 /// having one fewer active predecessor. It also adds any successors of this 387 /// chain which reach the zero-predecessor state to the worklist passed in. 388 void MachineBlockPlacement::markChainSuccessors( 389 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 390 const BlockFilterSet *BlockFilter) { 391 // Walk all the blocks in this chain, marking their successors as having 392 // a predecessor placed. 393 for (MachineBasicBlock *MBB : Chain) { 394 // Add any successors for which this is the only un-placed in-loop 395 // predecessor to the worklist as a viable candidate for CFG-neutral 396 // placement. No subsequent placement of this block will violate the CFG 397 // shape, so we get to use heuristics to choose a favorable placement. 398 for (MachineBasicBlock *Succ : MBB->successors()) { 399 if (BlockFilter && !BlockFilter->count(Succ)) 400 continue; 401 BlockChain &SuccChain = *BlockToChain[Succ]; 402 // Disregard edges within a fixed chain, or edges to the loop header. 403 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 404 continue; 405 406 // This is a cross-chain edge that is within the loop, so decrement the 407 // loop predecessor count of the destination chain. 408 if (SuccChain.UnscheduledPredecessors == 0 || 409 --SuccChain.UnscheduledPredecessors > 0) 410 continue; 411 412 auto *MBB = *SuccChain.begin(); 413 if (MBB->isEHPad()) 414 EHPadWorkList.push_back(MBB); 415 else 416 BlockWorkList.push_back(MBB); 417 } 418 } 419 } 420 421 /// This helper function collects the set of successors of block 422 /// \p BB that are allowed to be its layout successors, and return 423 /// the total branch probability of edges from \p BB to those 424 /// blocks. 425 BranchProbability MachineBlockPlacement::collectViableSuccessors( 426 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 427 SmallVector<MachineBasicBlock *, 4> &Successors) { 428 // Adjust edge probabilities by excluding edges pointing to blocks that is 429 // either not in BlockFilter or is already in the current chain. Consider the 430 // following CFG: 431 // 432 // --->A 433 // | / \ 434 // | B C 435 // | \ / \ 436 // ----D E 437 // 438 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 439 // A->C is chosen as a fall-through, D won't be selected as a successor of C 440 // due to CFG constraint (the probability of C->D is not greater than 441 // HotProb to break top-order). If we exclude E that is not in BlockFilter 442 // when calculating the probability of C->D, D will be selected and we 443 // will get A C D B as the layout of this loop. 444 auto AdjustedSumProb = BranchProbability::getOne(); 445 for (MachineBasicBlock *Succ : BB->successors()) { 446 bool SkipSucc = false; 447 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 448 SkipSucc = true; 449 } else { 450 BlockChain *SuccChain = BlockToChain[Succ]; 451 if (SuccChain == &Chain) { 452 SkipSucc = true; 453 } else if (Succ != *SuccChain->begin()) { 454 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 455 continue; 456 } 457 } 458 if (SkipSucc) 459 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 460 else 461 Successors.push_back(Succ); 462 } 463 464 return AdjustedSumProb; 465 } 466 467 /// The helper function returns the branch probability that is adjusted 468 /// or normalized over the new total \p AdjustedSumProb. 469 static BranchProbability 470 getAdjustedProbability(BranchProbability OrigProb, 471 BranchProbability AdjustedSumProb) { 472 BranchProbability SuccProb; 473 uint32_t SuccProbN = OrigProb.getNumerator(); 474 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 475 if (SuccProbN >= SuccProbD) 476 SuccProb = BranchProbability::getOne(); 477 else 478 SuccProb = BranchProbability(SuccProbN, SuccProbD); 479 480 return SuccProb; 481 } 482 483 /// When the option OutlineOptionalBranches is on, this method 484 /// checks if the fallthrough candidate block \p Succ (of block 485 /// \p BB) also has other unscheduled predecessor blocks which 486 /// are also successors of \p BB (forming triangular shape CFG). 487 /// If none of such predecessors are small, it returns true. 488 /// The caller can choose to select \p Succ as the layout successors 489 /// so that \p Succ's predecessors (optional branches) can be 490 /// outlined. 491 /// FIXME: fold this with more general layout cost analysis. 492 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 493 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 494 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 495 BranchProbability HotProb) { 496 if (!OutlineOptionalBranches) 497 return false; 498 // If we outline optional branches, look whether Succ is unavoidable, i.e. 499 // dominates all terminators of the MachineFunction. If it does, other 500 // successors must be optional. Don't do this for cold branches. 501 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 502 for (MachineBasicBlock *Pred : Succ->predecessors()) { 503 // Check whether there is an unplaced optional branch. 504 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 505 BlockToChain[Pred] == &Chain) 506 continue; 507 // Check whether the optional branch has exactly one BB. 508 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 509 continue; 510 // Check whether the optional branch is small. 511 if (Pred->size() < OutlineOptionalThreshold) 512 return false; 513 } 514 return true; 515 } else 516 return false; 517 } 518 519 // When profile is not present, return the StaticLikelyProb. 520 // When profile is available, we need to handle the triangle-shape CFG. 521 static BranchProbability getLayoutSuccessorProbThreshold( 522 MachineBasicBlock *BB) { 523 if (!BB->getParent()->getFunction()->getEntryCount()) 524 return BranchProbability(StaticLikelyProb, 100); 525 if (BB->succ_size() == 2) { 526 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 527 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 528 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 529 /* See case 1 below for the cost analysis. For BB->Succ to 530 * be taken with smaller cost, the following needs to hold: 531 * Prob(BB->Succ) > 2* Prob(BB->Pred) 532 * So the threshold T 533 * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, 534 * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified 535 * branch bias, we have 536 * T = (2/3)*(ProfileLikelyProb/50) 537 * = (2*ProfileLikelyProb)/150) 538 */ 539 return BranchProbability(2 * ProfileLikelyProb, 150); 540 } 541 } 542 return BranchProbability(ProfileLikelyProb, 100); 543 } 544 545 /// Checks to see if the layout candidate block \p Succ has a better layout 546 /// predecessor than \c BB. If yes, returns true. 547 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 548 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 549 BranchProbability SuccProb, BranchProbability RealSuccProb, 550 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 551 552 // There isn't a better layout when there are no unscheduled predecessors. 553 if (SuccChain.UnscheduledPredecessors == 0) 554 return false; 555 556 // There are two basic scenarios here: 557 // ------------------------------------- 558 // Case 1: triangular shape CFG (if-then): 559 // BB 560 // | \ 561 // | \ 562 // | Pred 563 // | / 564 // Succ 565 // In this case, we are evaluating whether to select edge -> Succ, e.g. 566 // set Succ as the layout successor of BB. Picking Succ as BB's 567 // successor breaks the CFG constraints (FIXME: define these constraints). 568 // With this layout, Pred BB 569 // is forced to be outlined, so the overall cost will be cost of the 570 // branch taken from BB to Pred, plus the cost of back taken branch 571 // from Pred to Succ, as well as the additional cost associated 572 // with the needed unconditional jump instruction from Pred To Succ. 573 574 // The cost of the topological order layout is the taken branch cost 575 // from BB to Succ, so to make BB->Succ a viable candidate, the following 576 // must hold: 577 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 578 // < freq(BB->Succ) * taken_branch_cost. 579 // Ignoring unconditional jump cost, we get 580 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 581 // prob(BB->Succ) > 2 * prob(BB->Pred) 582 // 583 // When real profile data is available, we can precisely compute the 584 // probability threshold that is needed for edge BB->Succ to be considered. 585 // Without profile data, the heuristic requires the branch bias to be 586 // a lot larger to make sure the signal is very strong (e.g. 80% default). 587 // ----------------------------------------------------------------- 588 // Case 2: diamond like CFG (if-then-else): 589 // S 590 // / \ 591 // | \ 592 // BB Pred 593 // \ / 594 // Succ 595 // .. 596 // 597 // The current block is BB and edge BB->Succ is now being evaluated. 598 // Note that edge S->BB was previously already selected because 599 // prob(S->BB) > prob(S->Pred). 600 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 601 // choose Pred, we will have a topological ordering as shown on the left 602 // in the picture below. If we choose Succ, we have the solution as shown 603 // on the right: 604 // 605 // topo-order: 606 // 607 // S----- ---S 608 // | | | | 609 // ---BB | | BB 610 // | | | | 611 // | pred-- | Succ-- 612 // | | | | 613 // ---succ ---pred-- 614 // 615 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 616 // = freq(S->Pred) + freq(S->BB) 617 // 618 // If we have profile data (i.e, branch probabilities can be trusted), the 619 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 620 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 621 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 622 // means the cost of topological order is greater. 623 // When profile data is not available, however, we need to be more 624 // conservative. If the branch prediction is wrong, breaking the topo-order 625 // will actually yield a layout with large cost. For this reason, we need 626 // strong biased branch at block S with Prob(S->BB) in order to select 627 // BB->Succ. This is equivalent to looking the CFG backward with backward 628 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 629 // profile data). 630 631 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 632 633 // Forward checking. For case 2, SuccProb will be 1. 634 if (SuccProb < HotProb) { 635 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 636 << " (prob) (CFG conflict)\n"); 637 return true; 638 } 639 640 // Make sure that a hot successor doesn't have a globally more 641 // important predecessor. 642 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 643 bool BadCFGConflict = false; 644 645 for (MachineBasicBlock *Pred : Succ->predecessors()) { 646 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 647 (BlockFilter && !BlockFilter->count(Pred)) || 648 BlockToChain[Pred] == &Chain) 649 continue; 650 // Do backward checking. For case 1, it is actually redundant check. For 651 // case 2 above, we need a backward checking to filter out edges that are 652 // not 'strongly' biased. With profile data available, the check is mostly 653 // redundant too (when threshold prob is set at 50%) unless S has more than 654 // two successors. 655 // BB Pred 656 // \ / 657 // Succ 658 // We select edge BB->Succ if 659 // freq(BB->Succ) > freq(Succ) * HotProb 660 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 661 // HotProb 662 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 663 BlockFrequency PredEdgeFreq = 664 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 665 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 666 BadCFGConflict = true; 667 break; 668 } 669 } 670 671 if (BadCFGConflict) { 672 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 673 << " (prob) (non-cold CFG conflict)\n"); 674 return true; 675 } 676 677 return false; 678 } 679 680 /// \brief Select the best successor for a block. 681 /// 682 /// This looks across all successors of a particular block and attempts to 683 /// select the "best" one to be the layout successor. It only considers direct 684 /// successors which also pass the block filter. It will attempt to avoid 685 /// breaking CFG structure, but cave and break such structures in the case of 686 /// very hot successor edges. 687 /// 688 /// \returns The best successor block found, or null if none are viable. 689 MachineBasicBlock * 690 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 691 BlockChain &Chain, 692 const BlockFilterSet *BlockFilter) { 693 const BranchProbability HotProb(StaticLikelyProb, 100); 694 695 MachineBasicBlock *BestSucc = nullptr; 696 auto BestProb = BranchProbability::getZero(); 697 698 SmallVector<MachineBasicBlock *, 4> Successors; 699 auto AdjustedSumProb = 700 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 701 702 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 703 for (MachineBasicBlock *Succ : Successors) { 704 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 705 BranchProbability SuccProb = 706 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 707 708 // This heuristic is off by default. 709 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 710 HotProb)) 711 return Succ; 712 713 BlockChain &SuccChain = *BlockToChain[Succ]; 714 // Skip the edge \c BB->Succ if block \c Succ has a better layout 715 // predecessor that yields lower global cost. 716 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 717 Chain, BlockFilter)) 718 continue; 719 720 DEBUG( 721 dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 722 << " (prob)" 723 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 724 << "\n"); 725 if (BestSucc && BestProb >= SuccProb) 726 continue; 727 BestSucc = Succ; 728 BestProb = SuccProb; 729 } 730 return BestSucc; 731 } 732 733 /// \brief Select the best block from a worklist. 734 /// 735 /// This looks through the provided worklist as a list of candidate basic 736 /// blocks and select the most profitable one to place. The definition of 737 /// profitable only really makes sense in the context of a loop. This returns 738 /// the most frequently visited block in the worklist, which in the case of 739 /// a loop, is the one most desirable to be physically close to the rest of the 740 /// loop body in order to improve i-cache behavior. 741 /// 742 /// \returns The best block found, or null if none are viable. 743 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 744 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 745 // Once we need to walk the worklist looking for a candidate, cleanup the 746 // worklist of already placed entries. 747 // FIXME: If this shows up on profiles, it could be folded (at the cost of 748 // some code complexity) into the loop below. 749 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 750 [&](MachineBasicBlock *BB) { 751 return BlockToChain.lookup(BB) == &Chain; 752 }), 753 WorkList.end()); 754 755 if (WorkList.empty()) 756 return nullptr; 757 758 bool IsEHPad = WorkList[0]->isEHPad(); 759 760 MachineBasicBlock *BestBlock = nullptr; 761 BlockFrequency BestFreq; 762 for (MachineBasicBlock *MBB : WorkList) { 763 assert(MBB->isEHPad() == IsEHPad); 764 765 BlockChain &SuccChain = *BlockToChain[MBB]; 766 if (&SuccChain == &Chain) 767 continue; 768 769 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 770 771 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 772 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 773 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 774 775 // For ehpad, we layout the least probable first as to avoid jumping back 776 // from least probable landingpads to more probable ones. 777 // 778 // FIXME: Using probability is probably (!) not the best way to achieve 779 // this. We should probably have a more principled approach to layout 780 // cleanup code. 781 // 782 // The goal is to get: 783 // 784 // +--------------------------+ 785 // | V 786 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 787 // 788 // Rather than: 789 // 790 // +-------------------------------------+ 791 // V | 792 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 793 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 794 continue; 795 796 BestBlock = MBB; 797 BestFreq = CandidateFreq; 798 } 799 800 return BestBlock; 801 } 802 803 /// \brief Retrieve the first unplaced basic block. 804 /// 805 /// This routine is called when we are unable to use the CFG to walk through 806 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 807 /// We walk through the function's blocks in order, starting from the 808 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 809 /// re-scanning the entire sequence on repeated calls to this routine. 810 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 811 const BlockChain &PlacedChain, 812 MachineFunction::iterator &PrevUnplacedBlockIt, 813 const BlockFilterSet *BlockFilter) { 814 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 815 ++I) { 816 if (BlockFilter && !BlockFilter->count(&*I)) 817 continue; 818 if (BlockToChain[&*I] != &PlacedChain) { 819 PrevUnplacedBlockIt = I; 820 // Now select the head of the chain to which the unplaced block belongs 821 // as the block to place. This will force the entire chain to be placed, 822 // and satisfies the requirements of merging chains. 823 return *BlockToChain[&*I]->begin(); 824 } 825 } 826 return nullptr; 827 } 828 829 void MachineBlockPlacement::fillWorkLists( 830 MachineBasicBlock *MBB, 831 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 832 const BlockFilterSet *BlockFilter = nullptr) { 833 BlockChain &Chain = *BlockToChain[MBB]; 834 if (!UpdatedPreds.insert(&Chain).second) 835 return; 836 837 assert(Chain.UnscheduledPredecessors == 0); 838 for (MachineBasicBlock *ChainBB : Chain) { 839 assert(BlockToChain[ChainBB] == &Chain); 840 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 841 if (BlockFilter && !BlockFilter->count(Pred)) 842 continue; 843 if (BlockToChain[Pred] == &Chain) 844 continue; 845 ++Chain.UnscheduledPredecessors; 846 } 847 } 848 849 if (Chain.UnscheduledPredecessors != 0) 850 return; 851 852 MBB = *Chain.begin(); 853 if (MBB->isEHPad()) 854 EHPadWorkList.push_back(MBB); 855 else 856 BlockWorkList.push_back(MBB); 857 } 858 859 void MachineBlockPlacement::buildChain( 860 MachineBasicBlock *BB, BlockChain &Chain, 861 const BlockFilterSet *BlockFilter) { 862 assert(BB && "BB must not be null.\n"); 863 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); 864 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 865 866 MachineBasicBlock *LoopHeaderBB = BB; 867 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 868 BB = *std::prev(Chain.end()); 869 for (;;) { 870 assert(BB && "null block found at end of chain in loop."); 871 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 872 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 873 874 875 // Look for the best viable successor if there is one to place immediately 876 // after this block. 877 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 878 879 // If an immediate successor isn't available, look for the best viable 880 // block among those we've identified as not violating the loop's CFG at 881 // this point. This won't be a fallthrough, but it will increase locality. 882 if (!BestSucc) 883 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 884 if (!BestSucc) 885 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 886 887 if (!BestSucc) { 888 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 889 if (!BestSucc) 890 break; 891 892 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 893 "layout successor until the CFG reduces\n"); 894 } 895 896 // Place this block, updating the datastructures to reflect its placement. 897 BlockChain &SuccChain = *BlockToChain[BestSucc]; 898 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 899 // we selected a successor that didn't fit naturally into the CFG. 900 SuccChain.UnscheduledPredecessors = 0; 901 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 902 << getBlockName(BestSucc) << "\n"); 903 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 904 Chain.merge(BestSucc, &SuccChain); 905 BB = *std::prev(Chain.end()); 906 } 907 908 DEBUG(dbgs() << "Finished forming chain for header block " 909 << getBlockName(*Chain.begin()) << "\n"); 910 } 911 912 /// \brief Find the best loop top block for layout. 913 /// 914 /// Look for a block which is strictly better than the loop header for laying 915 /// out at the top of the loop. This looks for one and only one pattern: 916 /// a latch block with no conditional exit. This block will cause a conditional 917 /// jump around it or will be the bottom of the loop if we lay it out in place, 918 /// but if it it doesn't end up at the bottom of the loop for any reason, 919 /// rotation alone won't fix it. Because such a block will always result in an 920 /// unconditional jump (for the backedge) rotating it in front of the loop 921 /// header is always profitable. 922 MachineBasicBlock * 923 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 924 const BlockFilterSet &LoopBlockSet) { 925 // Check that the header hasn't been fused with a preheader block due to 926 // crazy branches. If it has, we need to start with the header at the top to 927 // prevent pulling the preheader into the loop body. 928 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 929 if (!LoopBlockSet.count(*HeaderChain.begin())) 930 return L.getHeader(); 931 932 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 933 << "\n"); 934 935 BlockFrequency BestPredFreq; 936 MachineBasicBlock *BestPred = nullptr; 937 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 938 if (!LoopBlockSet.count(Pred)) 939 continue; 940 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 941 << Pred->succ_size() << " successors, "; 942 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 943 if (Pred->succ_size() > 1) 944 continue; 945 946 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 947 if (!BestPred || PredFreq > BestPredFreq || 948 (!(PredFreq < BestPredFreq) && 949 Pred->isLayoutSuccessor(L.getHeader()))) { 950 BestPred = Pred; 951 BestPredFreq = PredFreq; 952 } 953 } 954 955 // If no direct predecessor is fine, just use the loop header. 956 if (!BestPred) { 957 DEBUG(dbgs() << " final top unchanged\n"); 958 return L.getHeader(); 959 } 960 961 // Walk backwards through any straight line of predecessors. 962 while (BestPred->pred_size() == 1 && 963 (*BestPred->pred_begin())->succ_size() == 1 && 964 *BestPred->pred_begin() != L.getHeader()) 965 BestPred = *BestPred->pred_begin(); 966 967 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 968 return BestPred; 969 } 970 971 /// \brief Find the best loop exiting block for layout. 972 /// 973 /// This routine implements the logic to analyze the loop looking for the best 974 /// block to layout at the top of the loop. Typically this is done to maximize 975 /// fallthrough opportunities. 976 MachineBasicBlock * 977 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 978 const BlockFilterSet &LoopBlockSet) { 979 // We don't want to layout the loop linearly in all cases. If the loop header 980 // is just a normal basic block in the loop, we want to look for what block 981 // within the loop is the best one to layout at the top. However, if the loop 982 // header has be pre-merged into a chain due to predecessors not having 983 // analyzable branches, *and* the predecessor it is merged with is *not* part 984 // of the loop, rotating the header into the middle of the loop will create 985 // a non-contiguous range of blocks which is Very Bad. So start with the 986 // header and only rotate if safe. 987 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 988 if (!LoopBlockSet.count(*HeaderChain.begin())) 989 return nullptr; 990 991 BlockFrequency BestExitEdgeFreq; 992 unsigned BestExitLoopDepth = 0; 993 MachineBasicBlock *ExitingBB = nullptr; 994 // If there are exits to outer loops, loop rotation can severely limit 995 // fallthrough opportunities unless it selects such an exit. Keep a set of 996 // blocks where rotating to exit with that block will reach an outer loop. 997 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 998 999 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1000 << "\n"); 1001 for (MachineBasicBlock *MBB : L.getBlocks()) { 1002 BlockChain &Chain = *BlockToChain[MBB]; 1003 // Ensure that this block is at the end of a chain; otherwise it could be 1004 // mid-way through an inner loop or a successor of an unanalyzable branch. 1005 if (MBB != *std::prev(Chain.end())) 1006 continue; 1007 1008 // Now walk the successors. We need to establish whether this has a viable 1009 // exiting successor and whether it has a viable non-exiting successor. 1010 // We store the old exiting state and restore it if a viable looping 1011 // successor isn't found. 1012 MachineBasicBlock *OldExitingBB = ExitingBB; 1013 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1014 bool HasLoopingSucc = false; 1015 for (MachineBasicBlock *Succ : MBB->successors()) { 1016 if (Succ->isEHPad()) 1017 continue; 1018 if (Succ == MBB) 1019 continue; 1020 BlockChain &SuccChain = *BlockToChain[Succ]; 1021 // Don't split chains, either this chain or the successor's chain. 1022 if (&Chain == &SuccChain) { 1023 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1024 << getBlockName(Succ) << " (chain conflict)\n"); 1025 continue; 1026 } 1027 1028 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1029 if (LoopBlockSet.count(Succ)) { 1030 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1031 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1032 HasLoopingSucc = true; 1033 continue; 1034 } 1035 1036 unsigned SuccLoopDepth = 0; 1037 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1038 SuccLoopDepth = ExitLoop->getLoopDepth(); 1039 if (ExitLoop->contains(&L)) 1040 BlocksExitingToOuterLoop.insert(MBB); 1041 } 1042 1043 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1044 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1045 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1046 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1047 // Note that we bias this toward an existing layout successor to retain 1048 // incoming order in the absence of better information. The exit must have 1049 // a frequency higher than the current exit before we consider breaking 1050 // the layout. 1051 BranchProbability Bias(100 - ExitBlockBias, 100); 1052 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1053 ExitEdgeFreq > BestExitEdgeFreq || 1054 (MBB->isLayoutSuccessor(Succ) && 1055 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1056 BestExitEdgeFreq = ExitEdgeFreq; 1057 ExitingBB = MBB; 1058 } 1059 } 1060 1061 if (!HasLoopingSucc) { 1062 // Restore the old exiting state, no viable looping successor was found. 1063 ExitingBB = OldExitingBB; 1064 BestExitEdgeFreq = OldBestExitEdgeFreq; 1065 } 1066 } 1067 // Without a candidate exiting block or with only a single block in the 1068 // loop, just use the loop header to layout the loop. 1069 if (!ExitingBB || L.getNumBlocks() == 1) 1070 return nullptr; 1071 1072 // Also, if we have exit blocks which lead to outer loops but didn't select 1073 // one of them as the exiting block we are rotating toward, disable loop 1074 // rotation altogether. 1075 if (!BlocksExitingToOuterLoop.empty() && 1076 !BlocksExitingToOuterLoop.count(ExitingBB)) 1077 return nullptr; 1078 1079 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1080 return ExitingBB; 1081 } 1082 1083 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1084 /// 1085 /// Once we have built a chain, try to rotate it to line up the hot exit block 1086 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1087 /// branches. For example, if the loop has fallthrough into its header and out 1088 /// of its bottom already, don't rotate it. 1089 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1090 MachineBasicBlock *ExitingBB, 1091 const BlockFilterSet &LoopBlockSet) { 1092 if (!ExitingBB) 1093 return; 1094 1095 MachineBasicBlock *Top = *LoopChain.begin(); 1096 bool ViableTopFallthrough = false; 1097 for (MachineBasicBlock *Pred : Top->predecessors()) { 1098 BlockChain *PredChain = BlockToChain[Pred]; 1099 if (!LoopBlockSet.count(Pred) && 1100 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1101 ViableTopFallthrough = true; 1102 break; 1103 } 1104 } 1105 1106 // If the header has viable fallthrough, check whether the current loop 1107 // bottom is a viable exiting block. If so, bail out as rotating will 1108 // introduce an unnecessary branch. 1109 if (ViableTopFallthrough) { 1110 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1111 for (MachineBasicBlock *Succ : Bottom->successors()) { 1112 BlockChain *SuccChain = BlockToChain[Succ]; 1113 if (!LoopBlockSet.count(Succ) && 1114 (!SuccChain || Succ == *SuccChain->begin())) 1115 return; 1116 } 1117 } 1118 1119 BlockChain::iterator ExitIt = 1120 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 1121 if (ExitIt == LoopChain.end()) 1122 return; 1123 1124 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1125 } 1126 1127 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1128 /// 1129 /// With profile data, we can determine the cost in terms of missed fall through 1130 /// opportunities when rotating a loop chain and select the best rotation. 1131 /// Basically, there are three kinds of cost to consider for each rotation: 1132 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1133 /// the loop to the loop header. 1134 /// 2. The possibly missed fall through edges (if they exist) from the loop 1135 /// exits to BB out of the loop. 1136 /// 3. The missed fall through edge (if it exists) from the last BB to the 1137 /// first BB in the loop chain. 1138 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1139 /// We select the best rotation with the smallest cost. 1140 void MachineBlockPlacement::rotateLoopWithProfile( 1141 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1142 auto HeaderBB = L.getHeader(); 1143 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 1144 auto RotationPos = LoopChain.end(); 1145 1146 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1147 1148 // A utility lambda that scales up a block frequency by dividing it by a 1149 // branch probability which is the reciprocal of the scale. 1150 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1151 unsigned Scale) -> BlockFrequency { 1152 if (Scale == 0) 1153 return 0; 1154 // Use operator / between BlockFrequency and BranchProbability to implement 1155 // saturating multiplication. 1156 return Freq / BranchProbability(1, Scale); 1157 }; 1158 1159 // Compute the cost of the missed fall-through edge to the loop header if the 1160 // chain head is not the loop header. As we only consider natural loops with 1161 // single header, this computation can be done only once. 1162 BlockFrequency HeaderFallThroughCost(0); 1163 for (auto *Pred : HeaderBB->predecessors()) { 1164 BlockChain *PredChain = BlockToChain[Pred]; 1165 if (!LoopBlockSet.count(Pred) && 1166 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1167 auto EdgeFreq = 1168 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1169 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1170 // If the predecessor has only an unconditional jump to the header, we 1171 // need to consider the cost of this jump. 1172 if (Pred->succ_size() == 1) 1173 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1174 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1175 } 1176 } 1177 1178 // Here we collect all exit blocks in the loop, and for each exit we find out 1179 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1180 // as the sum of frequencies of exit edges we collect here, excluding the exit 1181 // edge from the tail of the loop chain. 1182 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1183 for (auto BB : LoopChain) { 1184 auto LargestExitEdgeProb = BranchProbability::getZero(); 1185 for (auto *Succ : BB->successors()) { 1186 BlockChain *SuccChain = BlockToChain[Succ]; 1187 if (!LoopBlockSet.count(Succ) && 1188 (!SuccChain || Succ == *SuccChain->begin())) { 1189 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1190 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1191 } 1192 } 1193 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1194 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1195 ExitsWithFreq.emplace_back(BB, ExitFreq); 1196 } 1197 } 1198 1199 // In this loop we iterate every block in the loop chain and calculate the 1200 // cost assuming the block is the head of the loop chain. When the loop ends, 1201 // we should have found the best candidate as the loop chain's head. 1202 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1203 EndIter = LoopChain.end(); 1204 Iter != EndIter; Iter++, TailIter++) { 1205 // TailIter is used to track the tail of the loop chain if the block we are 1206 // checking (pointed by Iter) is the head of the chain. 1207 if (TailIter == LoopChain.end()) 1208 TailIter = LoopChain.begin(); 1209 1210 auto TailBB = *TailIter; 1211 1212 // Calculate the cost by putting this BB to the top. 1213 BlockFrequency Cost = 0; 1214 1215 // If the current BB is the loop header, we need to take into account the 1216 // cost of the missed fall through edge from outside of the loop to the 1217 // header. 1218 if (Iter != HeaderIter) 1219 Cost += HeaderFallThroughCost; 1220 1221 // Collect the loop exit cost by summing up frequencies of all exit edges 1222 // except the one from the chain tail. 1223 for (auto &ExitWithFreq : ExitsWithFreq) 1224 if (TailBB != ExitWithFreq.first) 1225 Cost += ExitWithFreq.second; 1226 1227 // The cost of breaking the once fall-through edge from the tail to the top 1228 // of the loop chain. Here we need to consider three cases: 1229 // 1. If the tail node has only one successor, then we will get an 1230 // additional jmp instruction. So the cost here is (MisfetchCost + 1231 // JumpInstCost) * tail node frequency. 1232 // 2. If the tail node has two successors, then we may still get an 1233 // additional jmp instruction if the layout successor after the loop 1234 // chain is not its CFG successor. Note that the more frequently executed 1235 // jmp instruction will be put ahead of the other one. Assume the 1236 // frequency of those two branches are x and y, where x is the frequency 1237 // of the edge to the chain head, then the cost will be 1238 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1239 // 3. If the tail node has more than two successors (this rarely happens), 1240 // we won't consider any additional cost. 1241 if (TailBB->isSuccessor(*Iter)) { 1242 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1243 if (TailBB->succ_size() == 1) 1244 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1245 MisfetchCost + JumpInstCost); 1246 else if (TailBB->succ_size() == 2) { 1247 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1248 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1249 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1250 ? TailBBFreq * TailToHeadProb.getCompl() 1251 : TailToHeadFreq; 1252 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1253 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1254 } 1255 } 1256 1257 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1258 << " to the top: " << Cost.getFrequency() << "\n"); 1259 1260 if (Cost < SmallestRotationCost) { 1261 SmallestRotationCost = Cost; 1262 RotationPos = Iter; 1263 } 1264 } 1265 1266 if (RotationPos != LoopChain.end()) { 1267 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1268 << " to the top\n"); 1269 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1270 } 1271 } 1272 1273 /// \brief Collect blocks in the given loop that are to be placed. 1274 /// 1275 /// When profile data is available, exclude cold blocks from the returned set; 1276 /// otherwise, collect all blocks in the loop. 1277 MachineBlockPlacement::BlockFilterSet 1278 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1279 BlockFilterSet LoopBlockSet; 1280 1281 // Filter cold blocks off from LoopBlockSet when profile data is available. 1282 // Collect the sum of frequencies of incoming edges to the loop header from 1283 // outside. If we treat the loop as a super block, this is the frequency of 1284 // the loop. Then for each block in the loop, we calculate the ratio between 1285 // its frequency and the frequency of the loop block. When it is too small, 1286 // don't add it to the loop chain. If there are outer loops, then this block 1287 // will be merged into the first outer loop chain for which this block is not 1288 // cold anymore. This needs precise profile data and we only do this when 1289 // profile data is available. 1290 if (F->getFunction()->getEntryCount()) { 1291 BlockFrequency LoopFreq(0); 1292 for (auto LoopPred : L.getHeader()->predecessors()) 1293 if (!L.contains(LoopPred)) 1294 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1295 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1296 1297 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1298 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1299 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1300 continue; 1301 LoopBlockSet.insert(LoopBB); 1302 } 1303 } else 1304 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1305 1306 return LoopBlockSet; 1307 } 1308 1309 /// \brief Forms basic block chains from the natural loop structures. 1310 /// 1311 /// These chains are designed to preserve the existing *structure* of the code 1312 /// as much as possible. We can then stitch the chains together in a way which 1313 /// both preserves the topological structure and minimizes taken conditional 1314 /// branches. 1315 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1316 // First recurse through any nested loops, building chains for those inner 1317 // loops. 1318 for (MachineLoop *InnerLoop : L) 1319 buildLoopChains(*InnerLoop); 1320 1321 assert(BlockWorkList.empty()); 1322 assert(EHPadWorkList.empty()); 1323 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1324 1325 // Check if we have profile data for this function. If yes, we will rotate 1326 // this loop by modeling costs more precisely which requires the profile data 1327 // for better layout. 1328 bool RotateLoopWithProfile = 1329 ForcePreciseRotationCost || 1330 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1331 1332 // First check to see if there is an obviously preferable top block for the 1333 // loop. This will default to the header, but may end up as one of the 1334 // predecessors to the header if there is one which will result in strictly 1335 // fewer branches in the loop body. 1336 // When we use profile data to rotate the loop, this is unnecessary. 1337 MachineBasicBlock *LoopTop = 1338 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1339 1340 // If we selected just the header for the loop top, look for a potentially 1341 // profitable exit block in the event that rotating the loop can eliminate 1342 // branches by placing an exit edge at the bottom. 1343 MachineBasicBlock *ExitingBB = nullptr; 1344 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1345 ExitingBB = findBestLoopExit(L, LoopBlockSet); 1346 1347 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1348 1349 // FIXME: This is a really lame way of walking the chains in the loop: we 1350 // walk the blocks, and use a set to prevent visiting a particular chain 1351 // twice. 1352 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1353 assert(LoopChain.UnscheduledPredecessors == 0); 1354 UpdatedPreds.insert(&LoopChain); 1355 1356 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1357 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 1358 1359 buildChain(LoopTop, LoopChain, &LoopBlockSet); 1360 1361 if (RotateLoopWithProfile) 1362 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1363 else 1364 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1365 1366 DEBUG({ 1367 // Crash at the end so we get all of the debugging output first. 1368 bool BadLoop = false; 1369 if (LoopChain.UnscheduledPredecessors) { 1370 BadLoop = true; 1371 dbgs() << "Loop chain contains a block without its preds placed!\n" 1372 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1373 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1374 } 1375 for (MachineBasicBlock *ChainBB : LoopChain) { 1376 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1377 if (!LoopBlockSet.erase(ChainBB)) { 1378 // We don't mark the loop as bad here because there are real situations 1379 // where this can occur. For example, with an unanalyzable fallthrough 1380 // from a loop block to a non-loop block or vice versa. 1381 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1382 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1383 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1384 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1385 } 1386 } 1387 1388 if (!LoopBlockSet.empty()) { 1389 BadLoop = true; 1390 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1391 dbgs() << "Loop contains blocks never placed into a chain!\n" 1392 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1393 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1394 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1395 } 1396 assert(!BadLoop && "Detected problems with the placement of this loop."); 1397 }); 1398 1399 BlockWorkList.clear(); 1400 EHPadWorkList.clear(); 1401 } 1402 1403 /// When OutlineOpitonalBranches is on, this method collects BBs that 1404 /// dominates all terminator blocks of the function \p F. 1405 void MachineBlockPlacement::collectMustExecuteBBs() { 1406 if (OutlineOptionalBranches) { 1407 // Find the nearest common dominator of all of F's terminators. 1408 MachineBasicBlock *Terminator = nullptr; 1409 for (MachineBasicBlock &MBB : *F) { 1410 if (MBB.succ_size() == 0) { 1411 if (Terminator == nullptr) 1412 Terminator = &MBB; 1413 else 1414 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1415 } 1416 } 1417 1418 // MBBs dominating this common dominator are unavoidable. 1419 UnavoidableBlocks.clear(); 1420 for (MachineBasicBlock &MBB : *F) { 1421 if (MDT->dominates(&MBB, Terminator)) { 1422 UnavoidableBlocks.insert(&MBB); 1423 } 1424 } 1425 } 1426 } 1427 1428 void MachineBlockPlacement::buildCFGChains() { 1429 // Ensure that every BB in the function has an associated chain to simplify 1430 // the assumptions of the remaining algorithm. 1431 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1432 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1433 ++FI) { 1434 MachineBasicBlock *BB = &*FI; 1435 BlockChain *Chain = 1436 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1437 // Also, merge any blocks which we cannot reason about and must preserve 1438 // the exact fallthrough behavior for. 1439 for (;;) { 1440 Cond.clear(); 1441 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1442 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1443 break; 1444 1445 MachineFunction::iterator NextFI = std::next(FI); 1446 MachineBasicBlock *NextBB = &*NextFI; 1447 // Ensure that the layout successor is a viable block, as we know that 1448 // fallthrough is a possibility. 1449 assert(NextFI != FE && "Can't fallthrough past the last block."); 1450 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1451 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1452 << "\n"); 1453 Chain->merge(NextBB, nullptr); 1454 FI = NextFI; 1455 BB = NextBB; 1456 } 1457 } 1458 1459 // Turned on with OutlineOptionalBranches option 1460 collectMustExecuteBBs(); 1461 1462 // Build any loop-based chains. 1463 for (MachineLoop *L : *MLI) 1464 buildLoopChains(*L); 1465 1466 assert(BlockWorkList.empty()); 1467 assert(EHPadWorkList.empty()); 1468 1469 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1470 for (MachineBasicBlock &MBB : *F) 1471 fillWorkLists(&MBB, UpdatedPreds); 1472 1473 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1474 buildChain(&F->front(), FunctionChain); 1475 1476 #ifndef NDEBUG 1477 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1478 #endif 1479 DEBUG({ 1480 // Crash at the end so we get all of the debugging output first. 1481 bool BadFunc = false; 1482 FunctionBlockSetType FunctionBlockSet; 1483 for (MachineBasicBlock &MBB : *F) 1484 FunctionBlockSet.insert(&MBB); 1485 1486 for (MachineBasicBlock *ChainBB : FunctionChain) 1487 if (!FunctionBlockSet.erase(ChainBB)) { 1488 BadFunc = true; 1489 dbgs() << "Function chain contains a block not in the function!\n" 1490 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1491 } 1492 1493 if (!FunctionBlockSet.empty()) { 1494 BadFunc = true; 1495 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1496 dbgs() << "Function contains blocks never placed into a chain!\n" 1497 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1498 } 1499 assert(!BadFunc && "Detected problems with the block placement."); 1500 }); 1501 1502 // Splice the blocks into place. 1503 MachineFunction::iterator InsertPos = F->begin(); 1504 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 1505 for (MachineBasicBlock *ChainBB : FunctionChain) { 1506 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1507 : " ... ") 1508 << getBlockName(ChainBB) << "\n"); 1509 if (InsertPos != MachineFunction::iterator(ChainBB)) 1510 F->splice(InsertPos, ChainBB); 1511 else 1512 ++InsertPos; 1513 1514 // Update the terminator of the previous block. 1515 if (ChainBB == *FunctionChain.begin()) 1516 continue; 1517 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1518 1519 // FIXME: It would be awesome of updateTerminator would just return rather 1520 // than assert when the branch cannot be analyzed in order to remove this 1521 // boiler plate. 1522 Cond.clear(); 1523 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1524 1525 // The "PrevBB" is not yet updated to reflect current code layout, so, 1526 // o. it may fall-through to a block without explicit "goto" instruction 1527 // before layout, and no longer fall-through it after layout; or 1528 // o. just opposite. 1529 // 1530 // analyzeBranch() may return erroneous value for FBB when these two 1531 // situations take place. For the first scenario FBB is mistakenly set NULL; 1532 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1533 // mistakenly pointing to "*BI". 1534 // Thus, if the future change needs to use FBB before the layout is set, it 1535 // has to correct FBB first by using the code similar to the following: 1536 // 1537 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1538 // PrevBB->updateTerminator(); 1539 // Cond.clear(); 1540 // TBB = FBB = nullptr; 1541 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1542 // // FIXME: This should never take place. 1543 // TBB = FBB = nullptr; 1544 // } 1545 // } 1546 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 1547 PrevBB->updateTerminator(); 1548 } 1549 1550 // Fixup the last block. 1551 Cond.clear(); 1552 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1553 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 1554 F->back().updateTerminator(); 1555 1556 BlockWorkList.clear(); 1557 EHPadWorkList.clear(); 1558 } 1559 1560 void MachineBlockPlacement::optimizeBranches() { 1561 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1562 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1563 1564 // Now that all the basic blocks in the chain have the proper layout, 1565 // make a final call to AnalyzeBranch with AllowModify set. 1566 // Indeed, the target may be able to optimize the branches in a way we 1567 // cannot because all branches may not be analyzable. 1568 // E.g., the target may be able to remove an unconditional branch to 1569 // a fallthrough when it occurs after predicated terminators. 1570 for (MachineBasicBlock *ChainBB : FunctionChain) { 1571 Cond.clear(); 1572 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1573 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1574 // If PrevBB has a two-way branch, try to re-order the branches 1575 // such that we branch to the successor with higher probability first. 1576 if (TBB && !Cond.empty() && FBB && 1577 MBPI->getEdgeProbability(ChainBB, FBB) > 1578 MBPI->getEdgeProbability(ChainBB, TBB) && 1579 !TII->ReverseBranchCondition(Cond)) { 1580 DEBUG(dbgs() << "Reverse order of the two branches: " 1581 << getBlockName(ChainBB) << "\n"); 1582 DEBUG(dbgs() << " Edge probability: " 1583 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1584 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1585 DebugLoc dl; // FIXME: this is nowhere 1586 TII->RemoveBranch(*ChainBB); 1587 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1588 ChainBB->updateTerminator(); 1589 } 1590 } 1591 } 1592 } 1593 1594 void MachineBlockPlacement::alignBlocks() { 1595 // Walk through the backedges of the function now that we have fully laid out 1596 // the basic blocks and align the destination of each backedge. We don't rely 1597 // exclusively on the loop info here so that we can align backedges in 1598 // unnatural CFGs and backedges that were introduced purely because of the 1599 // loop rotations done during this layout pass. 1600 if (F->getFunction()->optForSize()) 1601 return; 1602 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1603 if (FunctionChain.begin() == FunctionChain.end()) 1604 return; // Empty chain. 1605 1606 const BranchProbability ColdProb(1, 5); // 20% 1607 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1608 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1609 for (MachineBasicBlock *ChainBB : FunctionChain) { 1610 if (ChainBB == *FunctionChain.begin()) 1611 continue; 1612 1613 // Don't align non-looping basic blocks. These are unlikely to execute 1614 // enough times to matter in practice. Note that we'll still handle 1615 // unnatural CFGs inside of a natural outer loop (the common case) and 1616 // rotated loops. 1617 MachineLoop *L = MLI->getLoopFor(ChainBB); 1618 if (!L) 1619 continue; 1620 1621 unsigned Align = TLI->getPrefLoopAlignment(L); 1622 if (!Align) 1623 continue; // Don't care about loop alignment. 1624 1625 // If the block is cold relative to the function entry don't waste space 1626 // aligning it. 1627 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1628 if (Freq < WeightedEntryFreq) 1629 continue; 1630 1631 // If the block is cold relative to its loop header, don't align it 1632 // regardless of what edges into the block exist. 1633 MachineBasicBlock *LoopHeader = L->getHeader(); 1634 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1635 if (Freq < (LoopHeaderFreq * ColdProb)) 1636 continue; 1637 1638 // Check for the existence of a non-layout predecessor which would benefit 1639 // from aligning this block. 1640 MachineBasicBlock *LayoutPred = 1641 &*std::prev(MachineFunction::iterator(ChainBB)); 1642 1643 // Force alignment if all the predecessors are jumps. We already checked 1644 // that the block isn't cold above. 1645 if (!LayoutPred->isSuccessor(ChainBB)) { 1646 ChainBB->setAlignment(Align); 1647 continue; 1648 } 1649 1650 // Align this block if the layout predecessor's edge into this block is 1651 // cold relative to the block. When this is true, other predecessors make up 1652 // all of the hot entries into the block and thus alignment is likely to be 1653 // important. 1654 BranchProbability LayoutProb = 1655 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1656 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1657 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1658 ChainBB->setAlignment(Align); 1659 } 1660 } 1661 1662 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 1663 if (skipFunction(*MF.getFunction())) 1664 return false; 1665 1666 // Check for single-block functions and skip them. 1667 if (std::next(MF.begin()) == MF.end()) 1668 return false; 1669 1670 F = &MF; 1671 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1672 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1673 getAnalysis<MachineBlockFrequencyInfo>()); 1674 MLI = &getAnalysis<MachineLoopInfo>(); 1675 TII = MF.getSubtarget().getInstrInfo(); 1676 TLI = MF.getSubtarget().getTargetLowering(); 1677 MDT = &getAnalysis<MachineDominatorTree>(); 1678 assert(BlockToChain.empty()); 1679 1680 buildCFGChains(); 1681 1682 // Changing the layout can create new tail merging opportunities. 1683 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1684 // TailMerge can create jump into if branches that make CFG irreducible for 1685 // HW that requires structured CFG. 1686 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 1687 PassConfig->getEnableTailMerge() && 1688 BranchFoldPlacement; 1689 // No tail merging opportunities if the block number is less than four. 1690 if (MF.size() > 3 && EnableTailMerge) { 1691 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1692 *MBPI); 1693 1694 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 1695 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1696 /*AfterBlockPlacement=*/true)) { 1697 // Redo the layout if tail merging creates/removes/moves blocks. 1698 BlockToChain.clear(); 1699 ChainAllocator.DestroyAll(); 1700 buildCFGChains(); 1701 } 1702 } 1703 1704 optimizeBranches(); 1705 alignBlocks(); 1706 1707 BlockToChain.clear(); 1708 ChainAllocator.DestroyAll(); 1709 1710 if (AlignAllBlock) 1711 // Align all of the blocks in the function to a specific alignment. 1712 for (MachineBasicBlock &MBB : MF) 1713 MBB.setAlignment(AlignAllBlock); 1714 else if (AlignAllNonFallThruBlocks) { 1715 // Align all of the blocks that have no fall-through predecessors to a 1716 // specific alignment. 1717 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 1718 auto LayoutPred = std::prev(MBI); 1719 if (!LayoutPred->isSuccessor(&*MBI)) 1720 MBI->setAlignment(AlignAllNonFallThruBlocks); 1721 } 1722 } 1723 1724 // We always return true as we have no way to track whether the final order 1725 // differs from the original order. 1726 return true; 1727 } 1728 1729 namespace { 1730 /// \brief A pass to compute block placement statistics. 1731 /// 1732 /// A separate pass to compute interesting statistics for evaluating block 1733 /// placement. This is separate from the actual placement pass so that they can 1734 /// be computed in the absence of any placement transformations or when using 1735 /// alternative placement strategies. 1736 class MachineBlockPlacementStats : public MachineFunctionPass { 1737 /// \brief A handle to the branch probability pass. 1738 const MachineBranchProbabilityInfo *MBPI; 1739 1740 /// \brief A handle to the function-wide block frequency pass. 1741 const MachineBlockFrequencyInfo *MBFI; 1742 1743 public: 1744 static char ID; // Pass identification, replacement for typeid 1745 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1746 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1747 } 1748 1749 bool runOnMachineFunction(MachineFunction &F) override; 1750 1751 void getAnalysisUsage(AnalysisUsage &AU) const override { 1752 AU.addRequired<MachineBranchProbabilityInfo>(); 1753 AU.addRequired<MachineBlockFrequencyInfo>(); 1754 AU.setPreservesAll(); 1755 MachineFunctionPass::getAnalysisUsage(AU); 1756 } 1757 }; 1758 } 1759 1760 char MachineBlockPlacementStats::ID = 0; 1761 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1762 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1763 "Basic Block Placement Stats", false, false) 1764 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1765 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1766 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1767 "Basic Block Placement Stats", false, false) 1768 1769 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1770 // Check for single-block functions and skip them. 1771 if (std::next(F.begin()) == F.end()) 1772 return false; 1773 1774 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1775 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1776 1777 for (MachineBasicBlock &MBB : F) { 1778 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1779 Statistic &NumBranches = 1780 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1781 Statistic &BranchTakenFreq = 1782 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1783 for (MachineBasicBlock *Succ : MBB.successors()) { 1784 // Skip if this successor is a fallthrough. 1785 if (MBB.isLayoutSuccessor(Succ)) 1786 continue; 1787 1788 BlockFrequency EdgeFreq = 1789 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1790 ++NumBranches; 1791 BranchTakenFreq += EdgeFreq.getFrequency(); 1792 } 1793 } 1794 1795 return false; 1796 } 1797