1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MBFIWrapper.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/PrintPasses.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Allocator.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Transforms/Utils/CodeLayout.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <memory> 71 #include <string> 72 #include <tuple> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "block-placement" 79 80 STATISTIC(NumCondBranches, "Number of conditional branches"); 81 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 82 STATISTIC(CondBranchTakenFreq, 83 "Potential frequency of taking conditional branches"); 84 STATISTIC(UncondBranchTakenFreq, 85 "Potential frequency of taking unconditional branches"); 86 87 static cl::opt<unsigned> AlignAllBlock( 88 "align-all-blocks", 89 cl::desc("Force the alignment of all blocks in the function in log2 format " 90 "(e.g 4 means align on 16B boundaries)."), 91 cl::init(0), cl::Hidden); 92 93 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 94 "align-all-nofallthru-blocks", 95 cl::desc("Force the alignment of all blocks that have no fall-through " 96 "predecessors (i.e. don't add nops that are executed). In log2 " 97 "format (e.g 4 means align on 16B boundaries)."), 98 cl::init(0), cl::Hidden); 99 100 static cl::opt<unsigned> MaxBytesForAlignmentOverride( 101 "max-bytes-for-alignment", 102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for " 103 "alignment"), 104 cl::init(0), cl::Hidden); 105 106 // FIXME: Find a good default for this flag and remove the flag. 107 static cl::opt<unsigned> ExitBlockBias( 108 "block-placement-exit-block-bias", 109 cl::desc("Block frequency percentage a loop exit block needs " 110 "over the original exit to be considered the new exit."), 111 cl::init(0), cl::Hidden); 112 113 // Definition: 114 // - Outlining: placement of a basic block outside the chain or hot path. 115 116 static cl::opt<unsigned> LoopToColdBlockRatio( 117 "loop-to-cold-block-ratio", 118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 119 "(frequency of block) is greater than this ratio"), 120 cl::init(5), cl::Hidden); 121 122 static cl::opt<bool> 123 ForceLoopColdBlock("force-loop-cold-block", 124 cl::desc("Force outlining cold blocks from loops."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<bool> 128 PreciseRotationCost("precise-rotation-cost", 129 cl::desc("Model the cost of loop rotation more " 130 "precisely by using profile data."), 131 cl::init(false), cl::Hidden); 132 133 static cl::opt<bool> 134 ForcePreciseRotationCost("force-precise-rotation-cost", 135 cl::desc("Force the use of precise cost " 136 "loop rotation strategy."), 137 cl::init(false), cl::Hidden); 138 139 static cl::opt<unsigned> MisfetchCost( 140 "misfetch-cost", 141 cl::desc("Cost that models the probabilistic risk of an instruction " 142 "misfetch due to a jump comparing to falling through, whose cost " 143 "is zero."), 144 cl::init(1), cl::Hidden); 145 146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 147 cl::desc("Cost of jump instructions."), 148 cl::init(1), cl::Hidden); 149 static cl::opt<bool> 150 TailDupPlacement("tail-dup-placement", 151 cl::desc("Perform tail duplication during placement. " 152 "Creates more fallthrough opportunities in " 153 "outline branches."), 154 cl::init(true), cl::Hidden); 155 156 static cl::opt<bool> 157 BranchFoldPlacement("branch-fold-placement", 158 cl::desc("Perform branch folding during placement. " 159 "Reduces code size."), 160 cl::init(true), cl::Hidden); 161 162 // Heuristic for tail duplication. 163 static cl::opt<unsigned> TailDupPlacementThreshold( 164 "tail-dup-placement-threshold", 165 cl::desc("Instruction cutoff for tail duplication during layout. " 166 "Tail merging during layout is forced to have a threshold " 167 "that won't conflict."), 168 cl::init(2), cl::Hidden); 169 170 // Heuristic for aggressive tail duplication. 171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 172 "tail-dup-placement-aggressive-threshold", 173 cl::desc("Instruction cutoff for aggressive tail duplication during " 174 "layout. Used at -O3. Tail merging during layout is forced to " 175 "have a threshold that won't conflict."), 176 cl::init(4), cl::Hidden); 177 178 // Heuristic for tail duplication. 179 static cl::opt<unsigned> TailDupPlacementPenalty( 180 "tail-dup-placement-penalty", 181 cl::desc( 182 "Cost penalty for blocks that can avoid breaking CFG by copying. " 183 "Copying can increase fallthrough, but it also increases icache " 184 "pressure. This parameter controls the penalty to account for that. " 185 "Percent as integer."), 186 cl::init(2), cl::Hidden); 187 188 // Heuristic for tail duplication if profile count is used in cost model. 189 static cl::opt<unsigned> TailDupProfilePercentThreshold( 190 "tail-dup-profile-percent-threshold", 191 cl::desc("If profile count information is used in tail duplication cost " 192 "model, the gained fall through number from tail duplication " 193 "should be at least this percent of hot count."), 194 cl::init(50), cl::Hidden); 195 196 // Heuristic for triangle chains. 197 static cl::opt<unsigned> TriangleChainCount( 198 "triangle-chain-count", 199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 200 "triangle tail duplication heuristic to kick in. 0 to disable."), 201 cl::init(2), cl::Hidden); 202 203 // Use case: When block layout is visualized after MBP pass, the basic blocks 204 // are labeled in layout order; meanwhile blocks could be numbered in a 205 // different order. It's hard to map between the graph and pass output. 206 // With this option on, the basic blocks are renumbered in function layout 207 // order. For debugging only. 208 static cl::opt<bool> RenumberBlocksBeforeView( 209 "renumber-blocks-before-view", 210 cl::desc( 211 "If true, basic blocks are re-numbered before MBP layout is printed " 212 "into a dot graph. Only used when a function is being printed."), 213 cl::init(false), cl::Hidden); 214 215 static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks( 216 "ext-tsp-block-placement-max-blocks", 217 cl::desc("Maximum number of basic blocks in a function to run ext-TSP " 218 "block placement."), 219 cl::init(UINT_MAX), cl::Hidden); 220 221 // Apply the ext-tsp algorithm minimizing the size of a binary. 222 static cl::opt<bool> 223 ApplyExtTspForSize("apply-ext-tsp-for-size", cl::init(false), cl::Hidden, 224 cl::desc("Use ext-tsp for size-aware block placement.")); 225 226 namespace llvm { 227 extern cl::opt<bool> EnableExtTspBlockPlacement; 228 extern cl::opt<bool> ApplyExtTspWithoutProfile; 229 extern cl::opt<unsigned> StaticLikelyProb; 230 extern cl::opt<unsigned> ProfileLikelyProb; 231 232 // Internal option used to control BFI display only after MBP pass. 233 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 234 // -view-block-layout-with-bfi= 235 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 236 237 // Command line option to specify the name of the function for CFG dump 238 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 239 extern cl::opt<std::string> ViewBlockFreqFuncName; 240 } // namespace llvm 241 242 namespace { 243 244 class BlockChain; 245 246 /// Type for our function-wide basic block -> block chain mapping. 247 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 248 249 /// A chain of blocks which will be laid out contiguously. 250 /// 251 /// This is the datastructure representing a chain of consecutive blocks that 252 /// are profitable to layout together in order to maximize fallthrough 253 /// probabilities and code locality. We also can use a block chain to represent 254 /// a sequence of basic blocks which have some external (correctness) 255 /// requirement for sequential layout. 256 /// 257 /// Chains can be built around a single basic block and can be merged to grow 258 /// them. They participate in a block-to-chain mapping, which is updated 259 /// automatically as chains are merged together. 260 class BlockChain { 261 /// The sequence of blocks belonging to this chain. 262 /// 263 /// This is the sequence of blocks for a particular chain. These will be laid 264 /// out in-order within the function. 265 SmallVector<MachineBasicBlock *, 4> Blocks; 266 267 /// A handle to the function-wide basic block to block chain mapping. 268 /// 269 /// This is retained in each block chain to simplify the computation of child 270 /// block chains for SCC-formation and iteration. We store the edges to child 271 /// basic blocks, and map them back to their associated chains using this 272 /// structure. 273 BlockToChainMapType &BlockToChain; 274 275 public: 276 /// Construct a new BlockChain. 277 /// 278 /// This builds a new block chain representing a single basic block in the 279 /// function. It also registers itself as the chain that block participates 280 /// in with the BlockToChain mapping. 281 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 282 : Blocks(1, BB), BlockToChain(BlockToChain) { 283 assert(BB && "Cannot create a chain with a null basic block"); 284 BlockToChain[BB] = this; 285 } 286 287 /// Iterator over blocks within the chain. 288 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 289 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 290 291 /// Beginning of blocks within the chain. 292 iterator begin() { return Blocks.begin(); } 293 const_iterator begin() const { return Blocks.begin(); } 294 295 /// End of blocks within the chain. 296 iterator end() { return Blocks.end(); } 297 const_iterator end() const { return Blocks.end(); } 298 299 bool remove(MachineBasicBlock *BB) { 300 for (iterator i = begin(); i != end(); ++i) { 301 if (*i == BB) { 302 Blocks.erase(i); 303 return true; 304 } 305 } 306 return false; 307 } 308 309 /// Merge a block chain into this one. 310 /// 311 /// This routine merges a block chain into this one. It takes care of forming 312 /// a contiguous sequence of basic blocks, updating the edge list, and 313 /// updating the block -> chain mapping. It does not free or tear down the 314 /// old chain, but the old chain's block list is no longer valid. 315 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 316 assert(BB && "Can't merge a null block."); 317 assert(!Blocks.empty() && "Can't merge into an empty chain."); 318 319 // Fast path in case we don't have a chain already. 320 if (!Chain) { 321 assert(!BlockToChain[BB] && 322 "Passed chain is null, but BB has entry in BlockToChain."); 323 Blocks.push_back(BB); 324 BlockToChain[BB] = this; 325 return; 326 } 327 328 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 329 assert(Chain->begin() != Chain->end()); 330 331 // Update the incoming blocks to point to this chain, and add them to the 332 // chain structure. 333 for (MachineBasicBlock *ChainBB : *Chain) { 334 Blocks.push_back(ChainBB); 335 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 336 BlockToChain[ChainBB] = this; 337 } 338 } 339 340 #ifndef NDEBUG 341 /// Dump the blocks in this chain. 342 LLVM_DUMP_METHOD void dump() { 343 for (MachineBasicBlock *MBB : *this) 344 MBB->dump(); 345 } 346 #endif // NDEBUG 347 348 /// Count of predecessors of any block within the chain which have not 349 /// yet been scheduled. In general, we will delay scheduling this chain 350 /// until those predecessors are scheduled (or we find a sufficiently good 351 /// reason to override this heuristic.) Note that when forming loop chains, 352 /// blocks outside the loop are ignored and treated as if they were already 353 /// scheduled. 354 /// 355 /// Note: This field is reinitialized multiple times - once for each loop, 356 /// and then once for the function as a whole. 357 unsigned UnscheduledPredecessors = 0; 358 }; 359 360 class MachineBlockPlacement : public MachineFunctionPass { 361 /// A type for a block filter set. 362 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 363 364 /// Pair struct containing basic block and taildup profitability 365 struct BlockAndTailDupResult { 366 MachineBasicBlock *BB = nullptr; 367 bool ShouldTailDup; 368 }; 369 370 /// Triple struct containing edge weight and the edge. 371 struct WeightedEdge { 372 BlockFrequency Weight; 373 MachineBasicBlock *Src = nullptr; 374 MachineBasicBlock *Dest = nullptr; 375 }; 376 377 /// work lists of blocks that are ready to be laid out 378 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 379 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 380 381 /// Edges that have already been computed as optimal. 382 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 383 384 /// Machine Function 385 MachineFunction *F = nullptr; 386 387 /// A handle to the branch probability pass. 388 const MachineBranchProbabilityInfo *MBPI = nullptr; 389 390 /// A handle to the function-wide block frequency pass. 391 std::unique_ptr<MBFIWrapper> MBFI; 392 393 /// A handle to the loop info. 394 MachineLoopInfo *MLI = nullptr; 395 396 /// Preferred loop exit. 397 /// Member variable for convenience. It may be removed by duplication deep 398 /// in the call stack. 399 MachineBasicBlock *PreferredLoopExit = nullptr; 400 401 /// A handle to the target's instruction info. 402 const TargetInstrInfo *TII = nullptr; 403 404 /// A handle to the target's lowering info. 405 const TargetLoweringBase *TLI = nullptr; 406 407 /// A handle to the post dominator tree. 408 MachinePostDominatorTree *MPDT = nullptr; 409 410 ProfileSummaryInfo *PSI = nullptr; 411 412 TargetPassConfig *PassConfig = nullptr; 413 414 /// Duplicator used to duplicate tails during placement. 415 /// 416 /// Placement decisions can open up new tail duplication opportunities, but 417 /// since tail duplication affects placement decisions of later blocks, it 418 /// must be done inline. 419 TailDuplicator TailDup; 420 421 /// Partial tail duplication threshold. 422 BlockFrequency DupThreshold; 423 424 unsigned TailDupSize; 425 426 /// True: use block profile count to compute tail duplication cost. 427 /// False: use block frequency to compute tail duplication cost. 428 bool UseProfileCount = false; 429 430 /// Allocator and owner of BlockChain structures. 431 /// 432 /// We build BlockChains lazily while processing the loop structure of 433 /// a function. To reduce malloc traffic, we allocate them using this 434 /// slab-like allocator, and destroy them after the pass completes. An 435 /// important guarantee is that this allocator produces stable pointers to 436 /// the chains. 437 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 438 439 /// Function wide BasicBlock to BlockChain mapping. 440 /// 441 /// This mapping allows efficiently moving from any given basic block to the 442 /// BlockChain it participates in, if any. We use it to, among other things, 443 /// allow implicitly defining edges between chains as the existing edges 444 /// between basic blocks. 445 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 446 447 #ifndef NDEBUG 448 /// The set of basic blocks that have terminators that cannot be fully 449 /// analyzed. These basic blocks cannot be re-ordered safely by 450 /// MachineBlockPlacement, and we must preserve physical layout of these 451 /// blocks and their successors through the pass. 452 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 453 #endif 454 455 /// Get block profile count or frequency according to UseProfileCount. 456 /// The return value is used to model tail duplication cost. 457 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 458 if (UseProfileCount) { 459 auto Count = MBFI->getBlockProfileCount(BB); 460 if (Count) 461 return BlockFrequency(*Count); 462 else 463 return BlockFrequency(0); 464 } else 465 return MBFI->getBlockFreq(BB); 466 } 467 468 /// Scale the DupThreshold according to basic block size. 469 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 470 void initTailDupThreshold(); 471 472 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 473 /// if the count goes to 0, add them to the appropriate work list. 474 void markChainSuccessors(const BlockChain &Chain, 475 const MachineBasicBlock *LoopHeaderBB, 476 const BlockFilterSet *BlockFilter = nullptr); 477 478 /// Decrease the UnscheduledPredecessors count for a single block, and 479 /// if the count goes to 0, add them to the appropriate work list. 480 void markBlockSuccessors(const BlockChain &Chain, const MachineBasicBlock *BB, 481 const MachineBasicBlock *LoopHeaderBB, 482 const BlockFilterSet *BlockFilter = nullptr); 483 484 BranchProbability 485 collectViableSuccessors(const MachineBasicBlock *BB, const BlockChain &Chain, 486 const BlockFilterSet *BlockFilter, 487 SmallVector<MachineBasicBlock *, 4> &Successors); 488 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 489 BlockFilterSet *BlockFilter); 490 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 491 MachineBasicBlock *BB, 492 BlockFilterSet *BlockFilter); 493 bool repeatedlyTailDuplicateBlock( 494 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 495 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 496 BlockFilterSet *BlockFilter, 497 MachineFunction::iterator &PrevUnplacedBlockIt, 498 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt); 499 bool 500 maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 501 BlockChain &Chain, BlockFilterSet *BlockFilter, 502 MachineFunction::iterator &PrevUnplacedBlockIt, 503 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 504 bool &DuplicatedToLPred); 505 bool hasBetterLayoutPredecessor(const MachineBasicBlock *BB, 506 const MachineBasicBlock *Succ, 507 const BlockChain &SuccChain, 508 BranchProbability SuccProb, 509 BranchProbability RealSuccProb, 510 const BlockChain &Chain, 511 const BlockFilterSet *BlockFilter); 512 BlockAndTailDupResult selectBestSuccessor(const MachineBasicBlock *BB, 513 const BlockChain &Chain, 514 const BlockFilterSet *BlockFilter); 515 MachineBasicBlock * 516 selectBestCandidateBlock(const BlockChain &Chain, 517 SmallVectorImpl<MachineBasicBlock *> &WorkList); 518 MachineBasicBlock * 519 getFirstUnplacedBlock(const BlockChain &PlacedChain, 520 MachineFunction::iterator &PrevUnplacedBlockIt); 521 MachineBasicBlock * 522 getFirstUnplacedBlock(const BlockChain &PlacedChain, 523 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 524 const BlockFilterSet *BlockFilter); 525 526 /// Add a basic block to the work list if it is appropriate. 527 /// 528 /// If the optional parameter BlockFilter is provided, only MBB 529 /// present in the set will be added to the worklist. If nullptr 530 /// is provided, no filtering occurs. 531 void fillWorkLists(const MachineBasicBlock *MBB, 532 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 533 const BlockFilterSet *BlockFilter); 534 535 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 536 BlockFilterSet *BlockFilter = nullptr); 537 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 538 const MachineBasicBlock *OldTop); 539 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 540 const BlockFilterSet &LoopBlockSet); 541 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 542 const BlockFilterSet &LoopBlockSet); 543 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 544 const MachineBasicBlock *OldTop, 545 const MachineBasicBlock *ExitBB, 546 const BlockFilterSet &LoopBlockSet); 547 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 548 const MachineLoop &L, 549 const BlockFilterSet &LoopBlockSet); 550 MachineBasicBlock *findBestLoopTop(const MachineLoop &L, 551 const BlockFilterSet &LoopBlockSet); 552 MachineBasicBlock *findBestLoopExit(const MachineLoop &L, 553 const BlockFilterSet &LoopBlockSet, 554 BlockFrequency &ExitFreq); 555 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 556 void buildLoopChains(const MachineLoop &L); 557 void rotateLoop(BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 558 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 559 void rotateLoopWithProfile(BlockChain &LoopChain, const MachineLoop &L, 560 const BlockFilterSet &LoopBlockSet); 561 void buildCFGChains(); 562 void optimizeBranches(); 563 void alignBlocks(); 564 /// Returns true if a block should be tail-duplicated to increase fallthrough 565 /// opportunities. 566 bool shouldTailDuplicate(MachineBasicBlock *BB); 567 /// Check the edge frequencies to see if tail duplication will increase 568 /// fallthroughs. 569 bool isProfitableToTailDup(const MachineBasicBlock *BB, 570 const MachineBasicBlock *Succ, 571 BranchProbability QProb, const BlockChain &Chain, 572 const BlockFilterSet *BlockFilter); 573 574 /// Check for a trellis layout. 575 bool isTrellis(const MachineBasicBlock *BB, 576 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 577 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 578 579 /// Get the best successor given a trellis layout. 580 BlockAndTailDupResult getBestTrellisSuccessor( 581 const MachineBasicBlock *BB, 582 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 583 BranchProbability AdjustedSumProb, const BlockChain &Chain, 584 const BlockFilterSet *BlockFilter); 585 586 /// Get the best pair of non-conflicting edges. 587 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 588 const MachineBasicBlock *BB, 589 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 590 591 /// Returns true if a block can tail duplicate into all unplaced 592 /// predecessors. Filters based on loop. 593 bool canTailDuplicateUnplacedPreds(const MachineBasicBlock *BB, 594 MachineBasicBlock *Succ, 595 const BlockChain &Chain, 596 const BlockFilterSet *BlockFilter); 597 598 /// Find chains of triangles to tail-duplicate where a global analysis works, 599 /// but a local analysis would not find them. 600 void precomputeTriangleChains(); 601 602 /// Apply a post-processing step optimizing block placement. 603 void applyExtTsp(bool OptForSize); 604 605 /// Modify the existing block placement in the function and adjust all jumps. 606 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); 607 608 /// Create a single CFG chain from the current block order. 609 void createCFGChainExtTsp(); 610 611 public: 612 static char ID; // Pass identification, replacement for typeid 613 614 MachineBlockPlacement() : MachineFunctionPass(ID) { 615 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 616 } 617 618 bool runOnMachineFunction(MachineFunction &F) override; 619 620 bool allowTailDupPlacement() const { 621 assert(F); 622 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 623 } 624 625 void getAnalysisUsage(AnalysisUsage &AU) const override { 626 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 627 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 628 if (TailDupPlacement) 629 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 630 AU.addRequired<MachineLoopInfoWrapperPass>(); 631 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 632 AU.addRequired<TargetPassConfig>(); 633 MachineFunctionPass::getAnalysisUsage(AU); 634 } 635 }; 636 637 } // end anonymous namespace 638 639 char MachineBlockPlacement::ID = 0; 640 641 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 642 643 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 644 "Branch Probability Basic Block Placement", false, false) 645 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 646 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 647 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 648 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 649 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 650 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 651 "Branch Probability Basic Block Placement", false, false) 652 653 #ifndef NDEBUG 654 /// Helper to print the name of a MBB. 655 /// 656 /// Only used by debug logging. 657 static std::string getBlockName(const MachineBasicBlock *BB) { 658 std::string Result; 659 raw_string_ostream OS(Result); 660 OS << printMBBReference(*BB); 661 OS << " ('" << BB->getName() << "')"; 662 OS.flush(); 663 return Result; 664 } 665 #endif 666 667 /// Mark a chain's successors as having one fewer preds. 668 /// 669 /// When a chain is being merged into the "placed" chain, this routine will 670 /// quickly walk the successors of each block in the chain and mark them as 671 /// having one fewer active predecessor. It also adds any successors of this 672 /// chain which reach the zero-predecessor state to the appropriate worklist. 673 void MachineBlockPlacement::markChainSuccessors( 674 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 675 const BlockFilterSet *BlockFilter) { 676 // Walk all the blocks in this chain, marking their successors as having 677 // a predecessor placed. 678 for (MachineBasicBlock *MBB : Chain) { 679 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 680 } 681 } 682 683 /// Mark a single block's successors as having one fewer preds. 684 /// 685 /// Under normal circumstances, this is only called by markChainSuccessors, 686 /// but if a block that was to be placed is completely tail-duplicated away, 687 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 688 /// for just that block. 689 void MachineBlockPlacement::markBlockSuccessors( 690 const BlockChain &Chain, const MachineBasicBlock *MBB, 691 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 692 // Add any successors for which this is the only un-placed in-loop 693 // predecessor to the worklist as a viable candidate for CFG-neutral 694 // placement. No subsequent placement of this block will violate the CFG 695 // shape, so we get to use heuristics to choose a favorable placement. 696 for (MachineBasicBlock *Succ : MBB->successors()) { 697 if (BlockFilter && !BlockFilter->count(Succ)) 698 continue; 699 BlockChain &SuccChain = *BlockToChain[Succ]; 700 // Disregard edges within a fixed chain, or edges to the loop header. 701 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 702 continue; 703 704 // This is a cross-chain edge that is within the loop, so decrement the 705 // loop predecessor count of the destination chain. 706 if (SuccChain.UnscheduledPredecessors == 0 || 707 --SuccChain.UnscheduledPredecessors > 0) 708 continue; 709 710 auto *NewBB = *SuccChain.begin(); 711 if (NewBB->isEHPad()) 712 EHPadWorkList.push_back(NewBB); 713 else 714 BlockWorkList.push_back(NewBB); 715 } 716 } 717 718 /// This helper function collects the set of successors of block 719 /// \p BB that are allowed to be its layout successors, and return 720 /// the total branch probability of edges from \p BB to those 721 /// blocks. 722 BranchProbability MachineBlockPlacement::collectViableSuccessors( 723 const MachineBasicBlock *BB, const BlockChain &Chain, 724 const BlockFilterSet *BlockFilter, 725 SmallVector<MachineBasicBlock *, 4> &Successors) { 726 // Adjust edge probabilities by excluding edges pointing to blocks that is 727 // either not in BlockFilter or is already in the current chain. Consider the 728 // following CFG: 729 // 730 // --->A 731 // | / \ 732 // | B C 733 // | \ / \ 734 // ----D E 735 // 736 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 737 // A->C is chosen as a fall-through, D won't be selected as a successor of C 738 // due to CFG constraint (the probability of C->D is not greater than 739 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 740 // when calculating the probability of C->D, D will be selected and we 741 // will get A C D B as the layout of this loop. 742 auto AdjustedSumProb = BranchProbability::getOne(); 743 for (MachineBasicBlock *Succ : BB->successors()) { 744 bool SkipSucc = false; 745 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 746 SkipSucc = true; 747 } else { 748 BlockChain *SuccChain = BlockToChain[Succ]; 749 if (SuccChain == &Chain) { 750 SkipSucc = true; 751 } else if (Succ != *SuccChain->begin()) { 752 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 753 << " -> Mid chain!\n"); 754 continue; 755 } 756 } 757 if (SkipSucc) 758 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 759 else 760 Successors.push_back(Succ); 761 } 762 763 return AdjustedSumProb; 764 } 765 766 /// The helper function returns the branch probability that is adjusted 767 /// or normalized over the new total \p AdjustedSumProb. 768 static BranchProbability 769 getAdjustedProbability(BranchProbability OrigProb, 770 BranchProbability AdjustedSumProb) { 771 BranchProbability SuccProb; 772 uint32_t SuccProbN = OrigProb.getNumerator(); 773 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 774 if (SuccProbN >= SuccProbD) 775 SuccProb = BranchProbability::getOne(); 776 else 777 SuccProb = BranchProbability(SuccProbN, SuccProbD); 778 779 return SuccProb; 780 } 781 782 /// Check if \p BB has exactly the successors in \p Successors. 783 static bool 784 hasSameSuccessors(MachineBasicBlock &BB, 785 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 786 if (BB.succ_size() != Successors.size()) 787 return false; 788 // We don't want to count self-loops 789 if (Successors.count(&BB)) 790 return false; 791 for (MachineBasicBlock *Succ : BB.successors()) 792 if (!Successors.count(Succ)) 793 return false; 794 return true; 795 } 796 797 /// Check if a block should be tail duplicated to increase fallthrough 798 /// opportunities. 799 /// \p BB Block to check. 800 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 801 // Blocks with single successors don't create additional fallthrough 802 // opportunities. Don't duplicate them. TODO: When conditional exits are 803 // analyzable, allow them to be duplicated. 804 bool IsSimple = TailDup.isSimpleBB(BB); 805 806 if (BB->succ_size() == 1) 807 return false; 808 return TailDup.shouldTailDuplicate(IsSimple, *BB); 809 } 810 811 /// Compare 2 BlockFrequency's with a small penalty for \p A. 812 /// In order to be conservative, we apply a X% penalty to account for 813 /// increased icache pressure and static heuristics. For small frequencies 814 /// we use only the numerators to improve accuracy. For simplicity, we assume 815 /// the penalty is less than 100% 816 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 817 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 818 BlockFrequency EntryFreq) { 819 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 820 BlockFrequency Gain = A - B; 821 return (Gain / ThresholdProb) >= EntryFreq; 822 } 823 824 /// Check the edge frequencies to see if tail duplication will increase 825 /// fallthroughs. It only makes sense to call this function when 826 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 827 /// always locally profitable if we would have picked \p Succ without 828 /// considering duplication. 829 bool MachineBlockPlacement::isProfitableToTailDup( 830 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 831 BranchProbability QProb, const BlockChain &Chain, 832 const BlockFilterSet *BlockFilter) { 833 // We need to do a probability calculation to make sure this is profitable. 834 // First: does succ have a successor that post-dominates? This affects the 835 // calculation. The 2 relevant cases are: 836 // BB BB 837 // | \Qout | \Qout 838 // P| C |P C 839 // = C' = C' 840 // | /Qin | /Qin 841 // | / | / 842 // Succ Succ 843 // / \ | \ V 844 // U/ =V |U \ 845 // / \ = D 846 // D E | / 847 // | / 848 // |/ 849 // PDom 850 // '=' : Branch taken for that CFG edge 851 // In the second case, Placing Succ while duplicating it into C prevents the 852 // fallthrough of Succ into either D or PDom, because they now have C as an 853 // unplaced predecessor 854 855 // Start by figuring out which case we fall into 856 MachineBasicBlock *PDom = nullptr; 857 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 858 // Only scan the relevant successors 859 auto AdjustedSuccSumProb = 860 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 861 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 862 auto BBFreq = MBFI->getBlockFreq(BB); 863 auto SuccFreq = MBFI->getBlockFreq(Succ); 864 BlockFrequency P = BBFreq * PProb; 865 BlockFrequency Qout = BBFreq * QProb; 866 BlockFrequency EntryFreq = MBFI->getEntryFreq(); 867 // If there are no more successors, it is profitable to copy, as it strictly 868 // increases fallthrough. 869 if (SuccSuccs.size() == 0) 870 return greaterWithBias(P, Qout, EntryFreq); 871 872 auto BestSuccSucc = BranchProbability::getZero(); 873 // Find the PDom or the best Succ if no PDom exists. 874 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 875 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 876 if (Prob > BestSuccSucc) 877 BestSuccSucc = Prob; 878 if (PDom == nullptr) 879 if (MPDT->dominates(SuccSucc, Succ)) { 880 PDom = SuccSucc; 881 break; 882 } 883 } 884 // For the comparisons, we need to know Succ's best incoming edge that isn't 885 // from BB. 886 auto SuccBestPred = BlockFrequency(0); 887 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 888 if (SuccPred == Succ || SuccPred == BB || 889 BlockToChain[SuccPred] == &Chain || 890 (BlockFilter && !BlockFilter->count(SuccPred))) 891 continue; 892 auto Freq = 893 MBFI->getBlockFreq(SuccPred) * MBPI->getEdgeProbability(SuccPred, Succ); 894 if (Freq > SuccBestPred) 895 SuccBestPred = Freq; 896 } 897 // Qin is Succ's best unplaced incoming edge that isn't BB 898 BlockFrequency Qin = SuccBestPred; 899 // If it doesn't have a post-dominating successor, here is the calculation: 900 // BB BB 901 // | \Qout | \ 902 // P| C | = 903 // = C' | C 904 // | /Qin | | 905 // | / | C' (+Succ) 906 // Succ Succ /| 907 // / \ | \/ | 908 // U/ =V | == | 909 // / \ | / \| 910 // D E D E 911 // '=' : Branch taken for that CFG edge 912 // Cost in the first case is: P + V 913 // For this calculation, we always assume P > Qout. If Qout > P 914 // The result of this function will be ignored at the caller. 915 // Let F = SuccFreq - Qin 916 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 917 918 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 919 BranchProbability UProb = BestSuccSucc; 920 BranchProbability VProb = AdjustedSuccSumProb - UProb; 921 BlockFrequency F = SuccFreq - Qin; 922 BlockFrequency V = SuccFreq * VProb; 923 BlockFrequency QinU = std::min(Qin, F) * UProb; 924 BlockFrequency BaseCost = P + V; 925 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 926 return greaterWithBias(BaseCost, DupCost, EntryFreq); 927 } 928 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 929 BranchProbability VProb = AdjustedSuccSumProb - UProb; 930 BlockFrequency U = SuccFreq * UProb; 931 BlockFrequency V = SuccFreq * VProb; 932 BlockFrequency F = SuccFreq - Qin; 933 // If there is a post-dominating successor, here is the calculation: 934 // BB BB BB BB 935 // | \Qout | \ | \Qout | \ 936 // |P C | = |P C | = 937 // = C' |P C = C' |P C 938 // | /Qin | | | /Qin | | 939 // | / | C' (+Succ) | / | C' (+Succ) 940 // Succ Succ /| Succ Succ /| 941 // | \ V | \/ | | \ V | \/ | 942 // |U \ |U /\ =? |U = |U /\ | 943 // = D = = =?| | D | = =| 944 // | / |/ D | / |/ D 945 // | / | / | = | / 946 // |/ | / |/ | = 947 // Dom Dom Dom Dom 948 // '=' : Branch taken for that CFG edge 949 // The cost for taken branches in the first case is P + U 950 // Let F = SuccFreq - Qin 951 // The cost in the second case (assuming independence), given the layout: 952 // BB, Succ, (C+Succ), D, Dom or the layout: 953 // BB, Succ, D, Dom, (C+Succ) 954 // is Qout + max(F, Qin) * U + min(F, Qin) 955 // compare P + U vs Qout + P * U + Qin. 956 // 957 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 958 // 959 // For the 3rd case, the cost is P + 2 * V 960 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 961 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 962 if (UProb > AdjustedSuccSumProb / 2 && 963 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 964 Chain, BlockFilter)) 965 // Cases 3 & 4 966 return greaterWithBias( 967 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 968 EntryFreq); 969 // Cases 1 & 2 970 return greaterWithBias((P + U), 971 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 972 std::max(Qin, F) * UProb), 973 EntryFreq); 974 } 975 976 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 977 /// successors form the lower part of a trellis. A successor set S forms the 978 /// lower part of a trellis if all of the predecessors of S are either in S or 979 /// have all of S as successors. We ignore trellises where BB doesn't have 2 980 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 981 /// are very uncommon and complex to compute optimally. Allowing edges within S 982 /// is not strictly a trellis, but the same algorithm works, so we allow it. 983 bool MachineBlockPlacement::isTrellis( 984 const MachineBasicBlock *BB, 985 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 986 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 987 // Technically BB could form a trellis with branching factor higher than 2. 988 // But that's extremely uncommon. 989 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 990 return false; 991 992 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 993 BB->succ_end()); 994 // To avoid reviewing the same predecessors twice. 995 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 996 997 for (MachineBasicBlock *Succ : ViableSuccs) { 998 int PredCount = 0; 999 for (auto *SuccPred : Succ->predecessors()) { 1000 // Allow triangle successors, but don't count them. 1001 if (Successors.count(SuccPred)) { 1002 // Make sure that it is actually a triangle. 1003 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 1004 if (!Successors.count(CheckSucc)) 1005 return false; 1006 continue; 1007 } 1008 const BlockChain *PredChain = BlockToChain[SuccPred]; 1009 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 1010 PredChain == &Chain || PredChain == BlockToChain[Succ]) 1011 continue; 1012 ++PredCount; 1013 // Perform the successor check only once. 1014 if (!SeenPreds.insert(SuccPred).second) 1015 continue; 1016 if (!hasSameSuccessors(*SuccPred, Successors)) 1017 return false; 1018 } 1019 // If one of the successors has only BB as a predecessor, it is not a 1020 // trellis. 1021 if (PredCount < 1) 1022 return false; 1023 } 1024 return true; 1025 } 1026 1027 /// Pick the highest total weight pair of edges that can both be laid out. 1028 /// The edges in \p Edges[0] are assumed to have a different destination than 1029 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 1030 /// the individual highest weight edges to the 2 different destinations, or in 1031 /// case of a conflict, one of them should be replaced with a 2nd best edge. 1032 std::pair<MachineBlockPlacement::WeightedEdge, 1033 MachineBlockPlacement::WeightedEdge> 1034 MachineBlockPlacement::getBestNonConflictingEdges( 1035 const MachineBasicBlock *BB, 1036 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 1037 Edges) { 1038 // Sort the edges, and then for each successor, find the best incoming 1039 // predecessor. If the best incoming predecessors aren't the same, 1040 // then that is clearly the best layout. If there is a conflict, one of the 1041 // successors will have to fallthrough from the second best predecessor. We 1042 // compare which combination is better overall. 1043 1044 // Sort for highest frequency. 1045 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 1046 1047 llvm::stable_sort(Edges[0], Cmp); 1048 llvm::stable_sort(Edges[1], Cmp); 1049 auto BestA = Edges[0].begin(); 1050 auto BestB = Edges[1].begin(); 1051 // Arrange for the correct answer to be in BestA and BestB 1052 // If the 2 best edges don't conflict, the answer is already there. 1053 if (BestA->Src == BestB->Src) { 1054 // Compare the total fallthrough of (Best + Second Best) for both pairs 1055 auto SecondBestA = std::next(BestA); 1056 auto SecondBestB = std::next(BestB); 1057 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1058 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1059 if (BestAScore < BestBScore) 1060 BestA = SecondBestA; 1061 else 1062 BestB = SecondBestB; 1063 } 1064 // Arrange for the BB edge to be in BestA if it exists. 1065 if (BestB->Src == BB) 1066 std::swap(BestA, BestB); 1067 return std::make_pair(*BestA, *BestB); 1068 } 1069 1070 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1071 /// We only handle trellises with 2 successors, so the algorithm is 1072 /// straightforward: Find the best pair of edges that don't conflict. We find 1073 /// the best incoming edge for each successor in the trellis. If those conflict, 1074 /// we consider which of them should be replaced with the second best. 1075 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1076 /// comes from \p BB, it will be in \p BestEdges[0] 1077 MachineBlockPlacement::BlockAndTailDupResult 1078 MachineBlockPlacement::getBestTrellisSuccessor( 1079 const MachineBasicBlock *BB, 1080 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1081 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1082 const BlockFilterSet *BlockFilter) { 1083 1084 BlockAndTailDupResult Result = {nullptr, false}; 1085 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1086 BB->succ_end()); 1087 1088 // We assume size 2 because it's common. For general n, we would have to do 1089 // the Hungarian algorithm, but it's not worth the complexity because more 1090 // than 2 successors is fairly uncommon, and a trellis even more so. 1091 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1092 return Result; 1093 1094 // Collect the edge frequencies of all edges that form the trellis. 1095 SmallVector<WeightedEdge, 8> Edges[2]; 1096 int SuccIndex = 0; 1097 for (auto *Succ : ViableSuccs) { 1098 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1099 // Skip any placed predecessors that are not BB 1100 if (SuccPred != BB) 1101 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1102 BlockToChain[SuccPred] == &Chain || 1103 BlockToChain[SuccPred] == BlockToChain[Succ]) 1104 continue; 1105 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1106 MBPI->getEdgeProbability(SuccPred, Succ); 1107 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1108 } 1109 ++SuccIndex; 1110 } 1111 1112 // Pick the best combination of 2 edges from all the edges in the trellis. 1113 WeightedEdge BestA, BestB; 1114 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1115 1116 if (BestA.Src != BB) { 1117 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1118 // we shouldn't choose any successor. We've already looked and there's a 1119 // better fallthrough edge for all the successors. 1120 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1121 return Result; 1122 } 1123 1124 // Did we pick the triangle edge? If tail-duplication is profitable, do 1125 // that instead. Otherwise merge the triangle edge now while we know it is 1126 // optimal. 1127 if (BestA.Dest == BestB.Src) { 1128 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1129 // would be better. 1130 MachineBasicBlock *Succ1 = BestA.Dest; 1131 MachineBasicBlock *Succ2 = BestB.Dest; 1132 // Check to see if tail-duplication would be profitable. 1133 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1134 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1135 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1136 Chain, BlockFilter)) { 1137 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1138 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1139 dbgs() << " Selected: " << getBlockName(Succ2) 1140 << ", probability: " << Succ2Prob 1141 << " (Tail Duplicate)\n"); 1142 Result.BB = Succ2; 1143 Result.ShouldTailDup = true; 1144 return Result; 1145 } 1146 } 1147 // We have already computed the optimal edge for the other side of the 1148 // trellis. 1149 ComputedEdges[BestB.Src] = {BestB.Dest, false}; 1150 1151 auto TrellisSucc = BestA.Dest; 1152 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1153 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1154 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1155 << ", probability: " << SuccProb << " (Trellis)\n"); 1156 Result.BB = TrellisSucc; 1157 return Result; 1158 } 1159 1160 /// When the option allowTailDupPlacement() is on, this method checks if the 1161 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1162 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1163 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1164 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1165 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1166 if (!shouldTailDuplicate(Succ)) 1167 return false; 1168 1169 // The result of canTailDuplicate. 1170 bool Duplicate = true; 1171 // Number of possible duplication. 1172 unsigned int NumDup = 0; 1173 1174 // For CFG checking. 1175 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1176 BB->succ_end()); 1177 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1178 // Make sure all unplaced and unfiltered predecessors can be 1179 // tail-duplicated into. 1180 // Skip any blocks that are already placed or not in this loop. 1181 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) || 1182 (BlockToChain[Pred] == &Chain && !Succ->succ_empty())) 1183 continue; 1184 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1185 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1186 // This will result in a trellis after tail duplication, so we don't 1187 // need to copy Succ into this predecessor. In the presence 1188 // of a trellis tail duplication can continue to be profitable. 1189 // For example: 1190 // A A 1191 // |\ |\ 1192 // | \ | \ 1193 // | C | C+BB 1194 // | / | | 1195 // |/ | | 1196 // BB => BB | 1197 // |\ |\/| 1198 // | \ |/\| 1199 // | D | D 1200 // | / | / 1201 // |/ |/ 1202 // Succ Succ 1203 // 1204 // After BB was duplicated into C, the layout looks like the one on the 1205 // right. BB and C now have the same successors. When considering 1206 // whether Succ can be duplicated into all its unplaced predecessors, we 1207 // ignore C. 1208 // We can do this because C already has a profitable fallthrough, namely 1209 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1210 // duplication and for this test. 1211 // 1212 // This allows trellises to be laid out in 2 separate chains 1213 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1214 // because it allows the creation of 2 fallthrough paths with links 1215 // between them, and we correctly identify the best layout for these 1216 // CFGs. We want to extend trellises that the user created in addition 1217 // to trellises created by tail-duplication, so we just look for the 1218 // CFG. 1219 continue; 1220 Duplicate = false; 1221 continue; 1222 } 1223 NumDup++; 1224 } 1225 1226 // No possible duplication in current filter set. 1227 if (NumDup == 0) 1228 return false; 1229 1230 // If profile information is available, findDuplicateCandidates can do more 1231 // precise benefit analysis. 1232 if (F->getFunction().hasProfileData()) 1233 return true; 1234 1235 // This is mainly for function exit BB. 1236 // The integrated tail duplication is really designed for increasing 1237 // fallthrough from predecessors from Succ to its successors. We may need 1238 // other machanism to handle different cases. 1239 if (Succ->succ_empty()) 1240 return true; 1241 1242 // Plus the already placed predecessor. 1243 NumDup++; 1244 1245 // If the duplication candidate has more unplaced predecessors than 1246 // successors, the extra duplication can't bring more fallthrough. 1247 // 1248 // Pred1 Pred2 Pred3 1249 // \ | / 1250 // \ | / 1251 // \ | / 1252 // Dup 1253 // / \ 1254 // / \ 1255 // Succ1 Succ2 1256 // 1257 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1258 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1259 // but the duplication into Pred3 can't increase fallthrough. 1260 // 1261 // A small number of extra duplication may not hurt too much. We need a better 1262 // heuristic to handle it. 1263 if ((NumDup > Succ->succ_size()) || !Duplicate) 1264 return false; 1265 1266 return true; 1267 } 1268 1269 /// Find chains of triangles where we believe it would be profitable to 1270 /// tail-duplicate them all, but a local analysis would not find them. 1271 /// There are 3 ways this can be profitable: 1272 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1273 /// longer chains) 1274 /// 2) The chains are statically correlated. Branch probabilities have a very 1275 /// U-shaped distribution. 1276 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1277 /// If the branches in a chain are likely to be from the same side of the 1278 /// distribution as their predecessor, but are independent at runtime, this 1279 /// transformation is profitable. (Because the cost of being wrong is a small 1280 /// fixed cost, unlike the standard triangle layout where the cost of being 1281 /// wrong scales with the # of triangles.) 1282 /// 3) The chains are dynamically correlated. If the probability that a previous 1283 /// branch was taken positively influences whether the next branch will be 1284 /// taken 1285 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1286 void MachineBlockPlacement::precomputeTriangleChains() { 1287 struct TriangleChain { 1288 std::vector<MachineBasicBlock *> Edges; 1289 1290 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1291 : Edges({src, dst}) {} 1292 1293 void append(MachineBasicBlock *dst) { 1294 assert(getKey()->isSuccessor(dst) && 1295 "Attempting to append a block that is not a successor."); 1296 Edges.push_back(dst); 1297 } 1298 1299 unsigned count() const { return Edges.size() - 1; } 1300 1301 MachineBasicBlock *getKey() const { return Edges.back(); } 1302 }; 1303 1304 if (TriangleChainCount == 0) 1305 return; 1306 1307 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1308 // Map from last block to the chain that contains it. This allows us to extend 1309 // chains as we find new triangles. 1310 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1311 for (MachineBasicBlock &BB : *F) { 1312 // If BB doesn't have 2 successors, it doesn't start a triangle. 1313 if (BB.succ_size() != 2) 1314 continue; 1315 MachineBasicBlock *PDom = nullptr; 1316 for (MachineBasicBlock *Succ : BB.successors()) { 1317 if (!MPDT->dominates(Succ, &BB)) 1318 continue; 1319 PDom = Succ; 1320 break; 1321 } 1322 // If BB doesn't have a post-dominating successor, it doesn't form a 1323 // triangle. 1324 if (PDom == nullptr) 1325 continue; 1326 // If PDom has a hint that it is low probability, skip this triangle. 1327 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1328 continue; 1329 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1330 // we're looking for. 1331 if (!shouldTailDuplicate(PDom)) 1332 continue; 1333 bool CanTailDuplicate = true; 1334 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1335 // isn't the kind of triangle we're looking for. 1336 for (MachineBasicBlock *Pred : PDom->predecessors()) { 1337 if (Pred == &BB) 1338 continue; 1339 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1340 CanTailDuplicate = false; 1341 break; 1342 } 1343 } 1344 // If we can't tail-duplicate PDom to its predecessors, then skip this 1345 // triangle. 1346 if (!CanTailDuplicate) 1347 continue; 1348 1349 // Now we have an interesting triangle. Insert it if it's not part of an 1350 // existing chain. 1351 // Note: This cannot be replaced with a call insert() or emplace() because 1352 // the find key is BB, but the insert/emplace key is PDom. 1353 auto Found = TriangleChainMap.find(&BB); 1354 // If it is, remove the chain from the map, grow it, and put it back in the 1355 // map with the end as the new key. 1356 if (Found != TriangleChainMap.end()) { 1357 TriangleChain Chain = std::move(Found->second); 1358 TriangleChainMap.erase(Found); 1359 Chain.append(PDom); 1360 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1361 } else { 1362 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1363 assert(InsertResult.second && "Block seen twice."); 1364 (void)InsertResult; 1365 } 1366 } 1367 1368 // Iterating over a DenseMap is safe here, because the only thing in the body 1369 // of the loop is inserting into another DenseMap (ComputedEdges). 1370 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1371 for (auto &ChainPair : TriangleChainMap) { 1372 TriangleChain &Chain = ChainPair.second; 1373 // Benchmarking has shown that due to branch correlation duplicating 2 or 1374 // more triangles is profitable, despite the calculations assuming 1375 // independence. 1376 if (Chain.count() < TriangleChainCount) 1377 continue; 1378 MachineBasicBlock *dst = Chain.Edges.back(); 1379 Chain.Edges.pop_back(); 1380 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1381 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1382 << getBlockName(dst) 1383 << " as pre-computed based on triangles.\n"); 1384 1385 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1386 assert(InsertResult.second && "Block seen twice."); 1387 (void)InsertResult; 1388 1389 dst = src; 1390 } 1391 } 1392 } 1393 1394 // When profile is not present, return the StaticLikelyProb. 1395 // When profile is available, we need to handle the triangle-shape CFG. 1396 static BranchProbability 1397 getLayoutSuccessorProbThreshold(const MachineBasicBlock *BB) { 1398 if (!BB->getParent()->getFunction().hasProfileData()) 1399 return BranchProbability(StaticLikelyProb, 100); 1400 if (BB->succ_size() == 2) { 1401 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1402 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1403 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1404 /* See case 1 below for the cost analysis. For BB->Succ to 1405 * be taken with smaller cost, the following needs to hold: 1406 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1407 * So the threshold T in the calculation below 1408 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1409 * So T / (1 - T) = 2, Yielding T = 2/3 1410 * Also adding user specified branch bias, we have 1411 * T = (2/3)*(ProfileLikelyProb/50) 1412 * = (2*ProfileLikelyProb)/150) 1413 */ 1414 return BranchProbability(2 * ProfileLikelyProb, 150); 1415 } 1416 } 1417 return BranchProbability(ProfileLikelyProb, 100); 1418 } 1419 1420 /// Checks to see if the layout candidate block \p Succ has a better layout 1421 /// predecessor than \c BB. If yes, returns true. 1422 /// \p SuccProb: The probability adjusted for only remaining blocks. 1423 /// Only used for logging 1424 /// \p RealSuccProb: The un-adjusted probability. 1425 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1426 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1427 /// considered 1428 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1430 const BlockChain &SuccChain, BranchProbability SuccProb, 1431 BranchProbability RealSuccProb, const BlockChain &Chain, 1432 const BlockFilterSet *BlockFilter) { 1433 1434 // There isn't a better layout when there are no unscheduled predecessors. 1435 if (SuccChain.UnscheduledPredecessors == 0) 1436 return false; 1437 1438 // There are two basic scenarios here: 1439 // ------------------------------------- 1440 // Case 1: triangular shape CFG (if-then): 1441 // BB 1442 // | \ 1443 // | \ 1444 // | Pred 1445 // | / 1446 // Succ 1447 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1448 // set Succ as the layout successor of BB. Picking Succ as BB's 1449 // successor breaks the CFG constraints (FIXME: define these constraints). 1450 // With this layout, Pred BB 1451 // is forced to be outlined, so the overall cost will be cost of the 1452 // branch taken from BB to Pred, plus the cost of back taken branch 1453 // from Pred to Succ, as well as the additional cost associated 1454 // with the needed unconditional jump instruction from Pred To Succ. 1455 1456 // The cost of the topological order layout is the taken branch cost 1457 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1458 // must hold: 1459 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1460 // < freq(BB->Succ) * taken_branch_cost. 1461 // Ignoring unconditional jump cost, we get 1462 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1463 // prob(BB->Succ) > 2 * prob(BB->Pred) 1464 // 1465 // When real profile data is available, we can precisely compute the 1466 // probability threshold that is needed for edge BB->Succ to be considered. 1467 // Without profile data, the heuristic requires the branch bias to be 1468 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1469 // ----------------------------------------------------------------- 1470 // Case 2: diamond like CFG (if-then-else): 1471 // S 1472 // / \ 1473 // | \ 1474 // BB Pred 1475 // \ / 1476 // Succ 1477 // .. 1478 // 1479 // The current block is BB and edge BB->Succ is now being evaluated. 1480 // Note that edge S->BB was previously already selected because 1481 // prob(S->BB) > prob(S->Pred). 1482 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1483 // choose Pred, we will have a topological ordering as shown on the left 1484 // in the picture below. If we choose Succ, we have the solution as shown 1485 // on the right: 1486 // 1487 // topo-order: 1488 // 1489 // S----- ---S 1490 // | | | | 1491 // ---BB | | BB 1492 // | | | | 1493 // | Pred-- | Succ-- 1494 // | | | | 1495 // ---Succ ---Pred-- 1496 // 1497 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1498 // = freq(S->Pred) + freq(S->BB) 1499 // 1500 // If we have profile data (i.e, branch probabilities can be trusted), the 1501 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1502 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1503 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1504 // means the cost of topological order is greater. 1505 // When profile data is not available, however, we need to be more 1506 // conservative. If the branch prediction is wrong, breaking the topo-order 1507 // will actually yield a layout with large cost. For this reason, we need 1508 // strong biased branch at block S with Prob(S->BB) in order to select 1509 // BB->Succ. This is equivalent to looking the CFG backward with backward 1510 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1511 // profile data). 1512 // -------------------------------------------------------------------------- 1513 // Case 3: forked diamond 1514 // S 1515 // / \ 1516 // / \ 1517 // BB Pred 1518 // | \ / | 1519 // | \ / | 1520 // | X | 1521 // | / \ | 1522 // | / \ | 1523 // S1 S2 1524 // 1525 // The current block is BB and edge BB->S1 is now being evaluated. 1526 // As above S->BB was already selected because 1527 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1528 // 1529 // topo-order: 1530 // 1531 // S-------| ---S 1532 // | | | | 1533 // ---BB | | BB 1534 // | | | | 1535 // | Pred----| | S1---- 1536 // | | | | 1537 // --(S1 or S2) ---Pred-- 1538 // | 1539 // S2 1540 // 1541 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1542 // + min(freq(Pred->S1), freq(Pred->S2)) 1543 // Non-topo-order cost: 1544 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1545 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1546 // is 0. Then the non topo layout is better when 1547 // freq(S->Pred) < freq(BB->S1). 1548 // This is exactly what is checked below. 1549 // Note there are other shapes that apply (Pred may not be a single block, 1550 // but they all fit this general pattern.) 1551 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1552 1553 // Make sure that a hot successor doesn't have a globally more 1554 // important predecessor. 1555 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1556 bool BadCFGConflict = false; 1557 1558 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1559 BlockChain *PredChain = BlockToChain[Pred]; 1560 if (Pred == Succ || PredChain == &SuccChain || 1561 (BlockFilter && !BlockFilter->count(Pred)) || PredChain == &Chain || 1562 Pred != *std::prev(PredChain->end()) || 1563 // This check is redundant except for look ahead. This function is 1564 // called for lookahead by isProfitableToTailDup when BB hasn't been 1565 // placed yet. 1566 (Pred == BB)) 1567 continue; 1568 // Do backward checking. 1569 // For all cases above, we need a backward checking to filter out edges that 1570 // are not 'strongly' biased. 1571 // BB Pred 1572 // \ / 1573 // Succ 1574 // We select edge BB->Succ if 1575 // freq(BB->Succ) > freq(Succ) * HotProb 1576 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1577 // HotProb 1578 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1579 // Case 1 is covered too, because the first equation reduces to: 1580 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1581 BlockFrequency PredEdgeFreq = 1582 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1583 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1584 BadCFGConflict = true; 1585 break; 1586 } 1587 } 1588 1589 if (BadCFGConflict) { 1590 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1591 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1592 return true; 1593 } 1594 1595 return false; 1596 } 1597 1598 /// Select the best successor for a block. 1599 /// 1600 /// This looks across all successors of a particular block and attempts to 1601 /// select the "best" one to be the layout successor. It only considers direct 1602 /// successors which also pass the block filter. It will attempt to avoid 1603 /// breaking CFG structure, but cave and break such structures in the case of 1604 /// very hot successor edges. 1605 /// 1606 /// \returns The best successor block found, or null if none are viable, along 1607 /// with a boolean indicating if tail duplication is necessary. 1608 MachineBlockPlacement::BlockAndTailDupResult 1609 MachineBlockPlacement::selectBestSuccessor(const MachineBasicBlock *BB, 1610 const BlockChain &Chain, 1611 const BlockFilterSet *BlockFilter) { 1612 const BranchProbability HotProb(StaticLikelyProb, 100); 1613 1614 BlockAndTailDupResult BestSucc = {nullptr, false}; 1615 auto BestProb = BranchProbability::getZero(); 1616 1617 SmallVector<MachineBasicBlock *, 4> Successors; 1618 auto AdjustedSumProb = 1619 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1620 1621 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1622 << "\n"); 1623 1624 // if we already precomputed the best successor for BB, return that if still 1625 // applicable. 1626 auto FoundEdge = ComputedEdges.find(BB); 1627 if (FoundEdge != ComputedEdges.end()) { 1628 MachineBasicBlock *Succ = FoundEdge->second.BB; 1629 ComputedEdges.erase(FoundEdge); 1630 BlockChain *SuccChain = BlockToChain[Succ]; 1631 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1632 SuccChain != &Chain && Succ == *SuccChain->begin()) 1633 return FoundEdge->second; 1634 } 1635 1636 // if BB is part of a trellis, Use the trellis to determine the optimal 1637 // fallthrough edges 1638 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1639 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1640 BlockFilter); 1641 1642 // For blocks with CFG violations, we may be able to lay them out anyway with 1643 // tail-duplication. We keep this vector so we can perform the probability 1644 // calculations the minimum number of times. 1645 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1646 DupCandidates; 1647 for (MachineBasicBlock *Succ : Successors) { 1648 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1649 BranchProbability SuccProb = 1650 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1651 1652 BlockChain &SuccChain = *BlockToChain[Succ]; 1653 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1654 // predecessor that yields lower global cost. 1655 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1656 Chain, BlockFilter)) { 1657 // If tail duplication would make Succ profitable, place it. 1658 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1659 DupCandidates.emplace_back(SuccProb, Succ); 1660 continue; 1661 } 1662 1663 LLVM_DEBUG( 1664 dbgs() << " Candidate: " << getBlockName(Succ) 1665 << ", probability: " << SuccProb 1666 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1667 << "\n"); 1668 1669 if (BestSucc.BB && BestProb >= SuccProb) { 1670 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1671 continue; 1672 } 1673 1674 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1675 BestSucc.BB = Succ; 1676 BestProb = SuccProb; 1677 } 1678 // Handle the tail duplication candidates in order of decreasing probability. 1679 // Stop at the first one that is profitable. Also stop if they are less 1680 // profitable than BestSucc. Position is important because we preserve it and 1681 // prefer first best match. Here we aren't comparing in order, so we capture 1682 // the position instead. 1683 llvm::stable_sort(DupCandidates, 1684 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1685 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1686 return std::get<0>(L) > std::get<0>(R); 1687 }); 1688 for (auto &Tup : DupCandidates) { 1689 BranchProbability DupProb; 1690 MachineBasicBlock *Succ; 1691 std::tie(DupProb, Succ) = Tup; 1692 if (DupProb < BestProb) 1693 break; 1694 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) && 1695 (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1696 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1697 << ", probability: " << DupProb 1698 << " (Tail Duplicate)\n"); 1699 BestSucc.BB = Succ; 1700 BestSucc.ShouldTailDup = true; 1701 break; 1702 } 1703 } 1704 1705 if (BestSucc.BB) 1706 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1707 1708 return BestSucc; 1709 } 1710 1711 /// Select the best block from a worklist. 1712 /// 1713 /// This looks through the provided worklist as a list of candidate basic 1714 /// blocks and select the most profitable one to place. The definition of 1715 /// profitable only really makes sense in the context of a loop. This returns 1716 /// the most frequently visited block in the worklist, which in the case of 1717 /// a loop, is the one most desirable to be physically close to the rest of the 1718 /// loop body in order to improve i-cache behavior. 1719 /// 1720 /// \returns The best block found, or null if none are viable. 1721 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1722 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1723 // Once we need to walk the worklist looking for a candidate, cleanup the 1724 // worklist of already placed entries. 1725 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1726 // some code complexity) into the loop below. 1727 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1728 return BlockToChain.lookup(BB) == &Chain; 1729 }); 1730 1731 if (WorkList.empty()) 1732 return nullptr; 1733 1734 bool IsEHPad = WorkList[0]->isEHPad(); 1735 1736 MachineBasicBlock *BestBlock = nullptr; 1737 BlockFrequency BestFreq; 1738 for (MachineBasicBlock *MBB : WorkList) { 1739 assert(MBB->isEHPad() == IsEHPad && 1740 "EHPad mismatch between block and work list."); 1741 1742 BlockChain &SuccChain = *BlockToChain[MBB]; 1743 if (&SuccChain == &Chain) 1744 continue; 1745 1746 assert(SuccChain.UnscheduledPredecessors == 0 && 1747 "Found CFG-violating block"); 1748 1749 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1750 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> " 1751 << printBlockFreq(MBFI->getMBFI(), CandidateFreq) 1752 << " (freq)\n"); 1753 1754 // For ehpad, we layout the least probable first as to avoid jumping back 1755 // from least probable landingpads to more probable ones. 1756 // 1757 // FIXME: Using probability is probably (!) not the best way to achieve 1758 // this. We should probably have a more principled approach to layout 1759 // cleanup code. 1760 // 1761 // The goal is to get: 1762 // 1763 // +--------------------------+ 1764 // | V 1765 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1766 // 1767 // Rather than: 1768 // 1769 // +-------------------------------------+ 1770 // V | 1771 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1772 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1773 continue; 1774 1775 BestBlock = MBB; 1776 BestFreq = CandidateFreq; 1777 } 1778 1779 return BestBlock; 1780 } 1781 1782 /// Retrieve the first unplaced basic block in the entire function. 1783 /// 1784 /// This routine is called when we are unable to use the CFG to walk through 1785 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1786 /// We walk through the function's blocks in order, starting from the 1787 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1788 /// re-scanning the entire sequence on repeated calls to this routine. 1789 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1790 const BlockChain &PlacedChain, 1791 MachineFunction::iterator &PrevUnplacedBlockIt) { 1792 1793 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1794 ++I) { 1795 if (BlockToChain[&*I] != &PlacedChain) { 1796 PrevUnplacedBlockIt = I; 1797 // Now select the head of the chain to which the unplaced block belongs 1798 // as the block to place. This will force the entire chain to be placed, 1799 // and satisfies the requirements of merging chains. 1800 return *BlockToChain[&*I]->begin(); 1801 } 1802 } 1803 return nullptr; 1804 } 1805 1806 /// Retrieve the first unplaced basic block among the blocks in BlockFilter. 1807 /// 1808 /// This is similar to getFirstUnplacedBlock for the entire function, but since 1809 /// the size of BlockFilter is typically far less than the number of blocks in 1810 /// the entire function, iterating through the BlockFilter is more efficient. 1811 /// When processing the entire funciton, using the version without BlockFilter 1812 /// has a complexity of #(loops in function) * #(blocks in function), while this 1813 /// version has a complexity of sum(#(loops in block) foreach block in function) 1814 /// which is always smaller. For long function mostly sequential in structure, 1815 /// the complexity is amortized to 1 * #(blocks in function). 1816 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1817 const BlockChain &PlacedChain, 1818 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 1819 const BlockFilterSet *BlockFilter) { 1820 assert(BlockFilter); 1821 for (; PrevUnplacedBlockInFilterIt != BlockFilter->end(); 1822 ++PrevUnplacedBlockInFilterIt) { 1823 BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt]; 1824 if (C != &PlacedChain) { 1825 return *C->begin(); 1826 } 1827 } 1828 return nullptr; 1829 } 1830 1831 void MachineBlockPlacement::fillWorkLists( 1832 const MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1833 const BlockFilterSet *BlockFilter = nullptr) { 1834 BlockChain &Chain = *BlockToChain[MBB]; 1835 if (!UpdatedPreds.insert(&Chain).second) 1836 return; 1837 1838 assert( 1839 Chain.UnscheduledPredecessors == 0 && 1840 "Attempting to place block with unscheduled predecessors in worklist."); 1841 for (MachineBasicBlock *ChainBB : Chain) { 1842 assert(BlockToChain[ChainBB] == &Chain && 1843 "Block in chain doesn't match BlockToChain map."); 1844 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1845 if (BlockFilter && !BlockFilter->count(Pred)) 1846 continue; 1847 if (BlockToChain[Pred] == &Chain) 1848 continue; 1849 ++Chain.UnscheduledPredecessors; 1850 } 1851 } 1852 1853 if (Chain.UnscheduledPredecessors != 0) 1854 return; 1855 1856 MachineBasicBlock *BB = *Chain.begin(); 1857 if (BB->isEHPad()) 1858 EHPadWorkList.push_back(BB); 1859 else 1860 BlockWorkList.push_back(BB); 1861 } 1862 1863 void MachineBlockPlacement::buildChain(const MachineBasicBlock *HeadBB, 1864 BlockChain &Chain, 1865 BlockFilterSet *BlockFilter) { 1866 assert(HeadBB && "BB must not be null.\n"); 1867 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1868 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1869 BlockFilterSet::iterator PrevUnplacedBlockInFilterIt; 1870 if (BlockFilter) 1871 PrevUnplacedBlockInFilterIt = BlockFilter->begin(); 1872 1873 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1874 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1875 MachineBasicBlock *BB = *std::prev(Chain.end()); 1876 while (true) { 1877 assert(BB && "null block found at end of chain in loop."); 1878 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1879 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1880 1881 // Look for the best viable successor if there is one to place immediately 1882 // after this block. 1883 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1884 MachineBasicBlock *BestSucc = Result.BB; 1885 bool ShouldTailDup = Result.ShouldTailDup; 1886 if (allowTailDupPlacement()) 1887 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds( 1888 BB, BestSucc, Chain, BlockFilter)); 1889 1890 // If an immediate successor isn't available, look for the best viable 1891 // block among those we've identified as not violating the loop's CFG at 1892 // this point. This won't be a fallthrough, but it will increase locality. 1893 if (!BestSucc) 1894 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1895 if (!BestSucc) 1896 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1897 1898 if (!BestSucc) { 1899 if (BlockFilter) 1900 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt, 1901 BlockFilter); 1902 else 1903 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt); 1904 if (!BestSucc) 1905 break; 1906 1907 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1908 "layout successor until the CFG reduces\n"); 1909 } 1910 1911 // Placement may have changed tail duplication opportunities. 1912 // Check for that now. 1913 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1914 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1915 BlockFilter, PrevUnplacedBlockIt, 1916 PrevUnplacedBlockInFilterIt); 1917 // If the chosen successor was duplicated into BB, don't bother laying 1918 // it out, just go round the loop again with BB as the chain end. 1919 if (!BB->isSuccessor(BestSucc)) 1920 continue; 1921 } 1922 1923 // Place this block, updating the datastructures to reflect its placement. 1924 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1925 // Zero out UnscheduledPredecessors for the successor we're about to merge 1926 // in case we selected a successor that didn't fit naturally into the CFG. 1927 SuccChain.UnscheduledPredecessors = 0; 1928 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1929 << getBlockName(BestSucc) << "\n"); 1930 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1931 Chain.merge(BestSucc, &SuccChain); 1932 BB = *std::prev(Chain.end()); 1933 } 1934 1935 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1936 << getBlockName(*Chain.begin()) << "\n"); 1937 } 1938 1939 // If bottom of block BB has only one successor OldTop, in most cases it is 1940 // profitable to move it before OldTop, except the following case: 1941 // 1942 // -->OldTop<- 1943 // | . | 1944 // | . | 1945 // | . | 1946 // ---Pred | 1947 // | | 1948 // BB----- 1949 // 1950 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1951 // layout the other successor below it, so it can't reduce taken branch. 1952 // In this case we keep its original layout. 1953 bool MachineBlockPlacement::canMoveBottomBlockToTop( 1954 const MachineBasicBlock *BottomBlock, const MachineBasicBlock *OldTop) { 1955 if (BottomBlock->pred_size() != 1) 1956 return true; 1957 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1958 if (Pred->succ_size() != 2) 1959 return true; 1960 1961 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1962 if (OtherBB == BottomBlock) 1963 OtherBB = *Pred->succ_rbegin(); 1964 if (OtherBB == OldTop) 1965 return false; 1966 1967 return true; 1968 } 1969 1970 // Find out the possible fall through frequence to the top of a loop. 1971 BlockFrequency 1972 MachineBlockPlacement::TopFallThroughFreq(const MachineBasicBlock *Top, 1973 const BlockFilterSet &LoopBlockSet) { 1974 BlockFrequency MaxFreq = BlockFrequency(0); 1975 for (MachineBasicBlock *Pred : Top->predecessors()) { 1976 BlockChain *PredChain = BlockToChain[Pred]; 1977 if (!LoopBlockSet.count(Pred) && 1978 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1979 // Found a Pred block can be placed before Top. 1980 // Check if Top is the best successor of Pred. 1981 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1982 bool TopOK = true; 1983 for (MachineBasicBlock *Succ : Pred->successors()) { 1984 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1985 BlockChain *SuccChain = BlockToChain[Succ]; 1986 // Check if Succ can be placed after Pred. 1987 // Succ should not be in any chain, or it is the head of some chain. 1988 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1989 (!SuccChain || Succ == *SuccChain->begin())) { 1990 TopOK = false; 1991 break; 1992 } 1993 } 1994 if (TopOK) { 1995 BlockFrequency EdgeFreq = 1996 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Top); 1997 if (EdgeFreq > MaxFreq) 1998 MaxFreq = EdgeFreq; 1999 } 2000 } 2001 } 2002 return MaxFreq; 2003 } 2004 2005 // Compute the fall through gains when move NewTop before OldTop. 2006 // 2007 // In following diagram, edges marked as "-" are reduced fallthrough, edges 2008 // marked as "+" are increased fallthrough, this function computes 2009 // 2010 // SUM(increased fallthrough) - SUM(decreased fallthrough) 2011 // 2012 // | 2013 // | - 2014 // V 2015 // --->OldTop 2016 // | . 2017 // | . 2018 // +| . + 2019 // | Pred ---> 2020 // | |- 2021 // | V 2022 // --- NewTop <--- 2023 // |- 2024 // V 2025 // 2026 BlockFrequency MachineBlockPlacement::FallThroughGains( 2027 const MachineBasicBlock *NewTop, const MachineBasicBlock *OldTop, 2028 const MachineBasicBlock *ExitBB, const BlockFilterSet &LoopBlockSet) { 2029 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 2030 BlockFrequency FallThrough2Exit = BlockFrequency(0); 2031 if (ExitBB) 2032 FallThrough2Exit = 2033 MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, ExitBB); 2034 BlockFrequency BackEdgeFreq = 2035 MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, OldTop); 2036 2037 // Find the best Pred of NewTop. 2038 MachineBasicBlock *BestPred = nullptr; 2039 BlockFrequency FallThroughFromPred = BlockFrequency(0); 2040 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 2041 if (!LoopBlockSet.count(Pred)) 2042 continue; 2043 BlockChain *PredChain = BlockToChain[Pred]; 2044 if (!PredChain || Pred == *std::prev(PredChain->end())) { 2045 BlockFrequency EdgeFreq = 2046 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop); 2047 if (EdgeFreq > FallThroughFromPred) { 2048 FallThroughFromPred = EdgeFreq; 2049 BestPred = Pred; 2050 } 2051 } 2052 } 2053 2054 // If NewTop is not placed after Pred, another successor can be placed 2055 // after Pred. 2056 BlockFrequency NewFreq = BlockFrequency(0); 2057 if (BestPred) { 2058 for (MachineBasicBlock *Succ : BestPred->successors()) { 2059 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 2060 continue; 2061 if (ComputedEdges.contains(Succ)) 2062 continue; 2063 BlockChain *SuccChain = BlockToChain[Succ]; 2064 if ((SuccChain && (Succ != *SuccChain->begin())) || 2065 (SuccChain == BlockToChain[BestPred])) 2066 continue; 2067 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 2068 MBPI->getEdgeProbability(BestPred, Succ); 2069 if (EdgeFreq > NewFreq) 2070 NewFreq = EdgeFreq; 2071 } 2072 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2073 MBPI->getEdgeProbability(BestPred, NewTop); 2074 if (NewFreq > OrigEdgeFreq) { 2075 // If NewTop is not the best successor of Pred, then Pred doesn't 2076 // fallthrough to NewTop. So there is no FallThroughFromPred and 2077 // NewFreq. 2078 NewFreq = BlockFrequency(0); 2079 FallThroughFromPred = BlockFrequency(0); 2080 } 2081 } 2082 2083 BlockFrequency Result = BlockFrequency(0); 2084 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2085 BlockFrequency Lost = 2086 FallThrough2Top + FallThrough2Exit + FallThroughFromPred; 2087 if (Gains > Lost) 2088 Result = Gains - Lost; 2089 return Result; 2090 } 2091 2092 /// Helper function of findBestLoopTop. Find the best loop top block 2093 /// from predecessors of old top. 2094 /// 2095 /// Look for a block which is strictly better than the old top for laying 2096 /// out before the old top of the loop. This looks for only two patterns: 2097 /// 2098 /// 1. a block has only one successor, the old loop top 2099 /// 2100 /// Because such a block will always result in an unconditional jump, 2101 /// rotating it in front of the old top is always profitable. 2102 /// 2103 /// 2. a block has two successors, one is old top, another is exit 2104 /// and it has more than one predecessors 2105 /// 2106 /// If it is below one of its predecessors P, only P can fall through to 2107 /// it, all other predecessors need a jump to it, and another conditional 2108 /// jump to loop header. If it is moved before loop header, all its 2109 /// predecessors jump to it, then fall through to loop header. So all its 2110 /// predecessors except P can reduce one taken branch. 2111 /// At the same time, move it before old top increases the taken branch 2112 /// to loop exit block, so the reduced taken branch will be compared with 2113 /// the increased taken branch to the loop exit block. 2114 MachineBasicBlock *MachineBlockPlacement::findBestLoopTopHelper( 2115 MachineBasicBlock *OldTop, const MachineLoop &L, 2116 const BlockFilterSet &LoopBlockSet) { 2117 // Check that the header hasn't been fused with a preheader block due to 2118 // crazy branches. If it has, we need to start with the header at the top to 2119 // prevent pulling the preheader into the loop body. 2120 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2121 if (!LoopBlockSet.count(*HeaderChain.begin())) 2122 return OldTop; 2123 if (OldTop != *HeaderChain.begin()) 2124 return OldTop; 2125 2126 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2127 << "\n"); 2128 2129 BlockFrequency BestGains = BlockFrequency(0); 2130 MachineBasicBlock *BestPred = nullptr; 2131 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2132 if (!LoopBlockSet.count(Pred)) 2133 continue; 2134 if (Pred == L.getHeader()) 2135 continue; 2136 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2137 << Pred->succ_size() << " successors, " 2138 << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n"); 2139 if (Pred->succ_size() > 2) 2140 continue; 2141 2142 MachineBasicBlock *OtherBB = nullptr; 2143 if (Pred->succ_size() == 2) { 2144 OtherBB = *Pred->succ_begin(); 2145 if (OtherBB == OldTop) 2146 OtherBB = *Pred->succ_rbegin(); 2147 } 2148 2149 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2150 continue; 2151 2152 BlockFrequency Gains = 2153 FallThroughGains(Pred, OldTop, OtherBB, LoopBlockSet); 2154 if ((Gains > BlockFrequency(0)) && 2155 (Gains > BestGains || 2156 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2157 BestPred = Pred; 2158 BestGains = Gains; 2159 } 2160 } 2161 2162 // If no direct predecessor is fine, just use the loop header. 2163 if (!BestPred) { 2164 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2165 return OldTop; 2166 } 2167 2168 // Walk backwards through any straight line of predecessors. 2169 while (BestPred->pred_size() == 1 && 2170 (*BestPred->pred_begin())->succ_size() == 1 && 2171 *BestPred->pred_begin() != L.getHeader()) 2172 BestPred = *BestPred->pred_begin(); 2173 2174 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2175 return BestPred; 2176 } 2177 2178 /// Find the best loop top block for layout. 2179 /// 2180 /// This function iteratively calls findBestLoopTopHelper, until no new better 2181 /// BB can be found. 2182 MachineBasicBlock * 2183 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2184 const BlockFilterSet &LoopBlockSet) { 2185 // Placing the latch block before the header may introduce an extra branch 2186 // that skips this block the first time the loop is executed, which we want 2187 // to avoid when optimising for size. 2188 // FIXME: in theory there is a case that does not introduce a new branch, 2189 // i.e. when the layout predecessor does not fallthrough to the loop header. 2190 // In practice this never happens though: there always seems to be a preheader 2191 // that can fallthrough and that is also placed before the header. 2192 if (llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get())) 2193 return L.getHeader(); 2194 2195 MachineBasicBlock *OldTop = nullptr; 2196 MachineBasicBlock *NewTop = L.getHeader(); 2197 while (NewTop != OldTop) { 2198 OldTop = NewTop; 2199 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2200 if (NewTop != OldTop) 2201 ComputedEdges[NewTop] = {OldTop, false}; 2202 } 2203 return NewTop; 2204 } 2205 2206 /// Find the best loop exiting block for layout. 2207 /// 2208 /// This routine implements the logic to analyze the loop looking for the best 2209 /// block to layout at the top of the loop. Typically this is done to maximize 2210 /// fallthrough opportunities. 2211 MachineBasicBlock * 2212 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2213 const BlockFilterSet &LoopBlockSet, 2214 BlockFrequency &ExitFreq) { 2215 // We don't want to layout the loop linearly in all cases. If the loop header 2216 // is just a normal basic block in the loop, we want to look for what block 2217 // within the loop is the best one to layout at the top. However, if the loop 2218 // header has be pre-merged into a chain due to predecessors not having 2219 // analyzable branches, *and* the predecessor it is merged with is *not* part 2220 // of the loop, rotating the header into the middle of the loop will create 2221 // a non-contiguous range of blocks which is Very Bad. So start with the 2222 // header and only rotate if safe. 2223 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2224 if (!LoopBlockSet.count(*HeaderChain.begin())) 2225 return nullptr; 2226 2227 BlockFrequency BestExitEdgeFreq; 2228 unsigned BestExitLoopDepth = 0; 2229 MachineBasicBlock *ExitingBB = nullptr; 2230 // If there are exits to outer loops, loop rotation can severely limit 2231 // fallthrough opportunities unless it selects such an exit. Keep a set of 2232 // blocks where rotating to exit with that block will reach an outer loop. 2233 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2234 2235 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2236 << getBlockName(L.getHeader()) << "\n"); 2237 for (MachineBasicBlock *MBB : L.getBlocks()) { 2238 BlockChain &Chain = *BlockToChain[MBB]; 2239 // Ensure that this block is at the end of a chain; otherwise it could be 2240 // mid-way through an inner loop or a successor of an unanalyzable branch. 2241 if (MBB != *std::prev(Chain.end())) 2242 continue; 2243 2244 // Now walk the successors. We need to establish whether this has a viable 2245 // exiting successor and whether it has a viable non-exiting successor. 2246 // We store the old exiting state and restore it if a viable looping 2247 // successor isn't found. 2248 MachineBasicBlock *OldExitingBB = ExitingBB; 2249 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2250 bool HasLoopingSucc = false; 2251 for (MachineBasicBlock *Succ : MBB->successors()) { 2252 if (Succ->isEHPad()) 2253 continue; 2254 if (Succ == MBB) 2255 continue; 2256 BlockChain &SuccChain = *BlockToChain[Succ]; 2257 // Don't split chains, either this chain or the successor's chain. 2258 if (&Chain == &SuccChain) { 2259 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2260 << getBlockName(Succ) << " (chain conflict)\n"); 2261 continue; 2262 } 2263 2264 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2265 if (LoopBlockSet.count(Succ)) { 2266 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2267 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2268 HasLoopingSucc = true; 2269 continue; 2270 } 2271 2272 unsigned SuccLoopDepth = 0; 2273 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2274 SuccLoopDepth = ExitLoop->getLoopDepth(); 2275 if (ExitLoop->contains(&L)) 2276 BlocksExitingToOuterLoop.insert(MBB); 2277 } 2278 2279 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2280 LLVM_DEBUG( 2281 dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2282 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (" 2283 << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n"); 2284 // Note that we bias this toward an existing layout successor to retain 2285 // incoming order in the absence of better information. The exit must have 2286 // a frequency higher than the current exit before we consider breaking 2287 // the layout. 2288 BranchProbability Bias(100 - ExitBlockBias, 100); 2289 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2290 ExitEdgeFreq > BestExitEdgeFreq || 2291 (MBB->isLayoutSuccessor(Succ) && 2292 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2293 BestExitEdgeFreq = ExitEdgeFreq; 2294 ExitingBB = MBB; 2295 } 2296 } 2297 2298 if (!HasLoopingSucc) { 2299 // Restore the old exiting state, no viable looping successor was found. 2300 ExitingBB = OldExitingBB; 2301 BestExitEdgeFreq = OldBestExitEdgeFreq; 2302 } 2303 } 2304 // Without a candidate exiting block or with only a single block in the 2305 // loop, just use the loop header to layout the loop. 2306 if (!ExitingBB) { 2307 LLVM_DEBUG( 2308 dbgs() << " No other candidate exit blocks, using loop header\n"); 2309 return nullptr; 2310 } 2311 if (L.getNumBlocks() == 1) { 2312 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2313 return nullptr; 2314 } 2315 2316 // Also, if we have exit blocks which lead to outer loops but didn't select 2317 // one of them as the exiting block we are rotating toward, disable loop 2318 // rotation altogether. 2319 if (!BlocksExitingToOuterLoop.empty() && 2320 !BlocksExitingToOuterLoop.count(ExitingBB)) 2321 return nullptr; 2322 2323 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2324 << "\n"); 2325 ExitFreq = BestExitEdgeFreq; 2326 return ExitingBB; 2327 } 2328 2329 /// Check if there is a fallthrough to loop header Top. 2330 /// 2331 /// 1. Look for a Pred that can be layout before Top. 2332 /// 2. Check if Top is the most possible successor of Pred. 2333 bool MachineBlockPlacement::hasViableTopFallthrough( 2334 const MachineBasicBlock *Top, const BlockFilterSet &LoopBlockSet) { 2335 for (MachineBasicBlock *Pred : Top->predecessors()) { 2336 BlockChain *PredChain = BlockToChain[Pred]; 2337 if (!LoopBlockSet.count(Pred) && 2338 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2339 // Found a Pred block can be placed before Top. 2340 // Check if Top is the best successor of Pred. 2341 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2342 bool TopOK = true; 2343 for (MachineBasicBlock *Succ : Pred->successors()) { 2344 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2345 BlockChain *SuccChain = BlockToChain[Succ]; 2346 // Check if Succ can be placed after Pred. 2347 // Succ should not be in any chain, or it is the head of some chain. 2348 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2349 TopOK = false; 2350 break; 2351 } 2352 } 2353 if (TopOK) 2354 return true; 2355 } 2356 } 2357 return false; 2358 } 2359 2360 /// Attempt to rotate an exiting block to the bottom of the loop. 2361 /// 2362 /// Once we have built a chain, try to rotate it to line up the hot exit block 2363 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2364 /// branches. For example, if the loop has fallthrough into its header and out 2365 /// of its bottom already, don't rotate it. 2366 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2367 const MachineBasicBlock *ExitingBB, 2368 BlockFrequency ExitFreq, 2369 const BlockFilterSet &LoopBlockSet) { 2370 if (!ExitingBB) 2371 return; 2372 2373 MachineBasicBlock *Top = *LoopChain.begin(); 2374 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2375 2376 // If ExitingBB is already the last one in a chain then nothing to do. 2377 if (Bottom == ExitingBB) 2378 return; 2379 2380 // The entry block should always be the first BB in a function. 2381 if (Top->isEntryBlock()) 2382 return; 2383 2384 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2385 2386 // If the header has viable fallthrough, check whether the current loop 2387 // bottom is a viable exiting block. If so, bail out as rotating will 2388 // introduce an unnecessary branch. 2389 if (ViableTopFallthrough) { 2390 for (MachineBasicBlock *Succ : Bottom->successors()) { 2391 BlockChain *SuccChain = BlockToChain[Succ]; 2392 if (!LoopBlockSet.count(Succ) && 2393 (!SuccChain || Succ == *SuccChain->begin())) 2394 return; 2395 } 2396 2397 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2398 // frequency is larger than top fallthrough. 2399 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2400 if (FallThrough2Top >= ExitFreq) 2401 return; 2402 } 2403 2404 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2405 if (ExitIt == LoopChain.end()) 2406 return; 2407 2408 // Rotating a loop exit to the bottom when there is a fallthrough to top 2409 // trades the entry fallthrough for an exit fallthrough. 2410 // If there is no bottom->top edge, but the chosen exit block does have 2411 // a fallthrough, we break that fallthrough for nothing in return. 2412 2413 // Let's consider an example. We have a built chain of basic blocks 2414 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2415 // By doing a rotation we get 2416 // Bk+1, ..., Bn, B1, ..., Bk 2417 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2418 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2419 // It might be compensated by fallthrough Bn -> B1. 2420 // So we have a condition to avoid creation of extra branch by loop rotation. 2421 // All below must be true to avoid loop rotation: 2422 // If there is a fallthrough to top (B1) 2423 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2424 // There is no fallthrough from bottom (Bn) to top (B1). 2425 // Please note that there is no exit fallthrough from Bn because we checked it 2426 // above. 2427 if (ViableTopFallthrough) { 2428 assert(std::next(ExitIt) != LoopChain.end() && 2429 "Exit should not be last BB"); 2430 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2431 if (ExitingBB->isSuccessor(NextBlockInChain)) 2432 if (!Bottom->isSuccessor(Top)) 2433 return; 2434 } 2435 2436 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2437 << " at bottom\n"); 2438 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2439 } 2440 2441 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2442 /// 2443 /// With profile data, we can determine the cost in terms of missed fall through 2444 /// opportunities when rotating a loop chain and select the best rotation. 2445 /// Basically, there are three kinds of cost to consider for each rotation: 2446 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2447 /// the loop to the loop header. 2448 /// 2. The possibly missed fall through edges (if they exist) from the loop 2449 /// exits to BB out of the loop. 2450 /// 3. The missed fall through edge (if it exists) from the last BB to the 2451 /// first BB in the loop chain. 2452 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2453 /// We select the best rotation with the smallest cost. 2454 void MachineBlockPlacement::rotateLoopWithProfile( 2455 BlockChain &LoopChain, const MachineLoop &L, 2456 const BlockFilterSet &LoopBlockSet) { 2457 auto RotationPos = LoopChain.end(); 2458 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2459 2460 // The entry block should always be the first BB in a function. 2461 if (ChainHeaderBB->isEntryBlock()) 2462 return; 2463 2464 BlockFrequency SmallestRotationCost = BlockFrequency::max(); 2465 2466 // A utility lambda that scales up a block frequency by dividing it by a 2467 // branch probability which is the reciprocal of the scale. 2468 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2469 unsigned Scale) -> BlockFrequency { 2470 if (Scale == 0) 2471 return BlockFrequency(0); 2472 // Use operator / between BlockFrequency and BranchProbability to implement 2473 // saturating multiplication. 2474 return Freq / BranchProbability(1, Scale); 2475 }; 2476 2477 // Compute the cost of the missed fall-through edge to the loop header if the 2478 // chain head is not the loop header. As we only consider natural loops with 2479 // single header, this computation can be done only once. 2480 BlockFrequency HeaderFallThroughCost(0); 2481 for (auto *Pred : ChainHeaderBB->predecessors()) { 2482 BlockChain *PredChain = BlockToChain[Pred]; 2483 if (!LoopBlockSet.count(Pred) && 2484 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2485 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2486 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2487 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2488 // If the predecessor has only an unconditional jump to the header, we 2489 // need to consider the cost of this jump. 2490 if (Pred->succ_size() == 1) 2491 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2492 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2493 } 2494 } 2495 2496 // Here we collect all exit blocks in the loop, and for each exit we find out 2497 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2498 // as the sum of frequencies of exit edges we collect here, excluding the exit 2499 // edge from the tail of the loop chain. 2500 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2501 for (auto *BB : LoopChain) { 2502 auto LargestExitEdgeProb = BranchProbability::getZero(); 2503 for (auto *Succ : BB->successors()) { 2504 BlockChain *SuccChain = BlockToChain[Succ]; 2505 if (!LoopBlockSet.count(Succ) && 2506 (!SuccChain || Succ == *SuccChain->begin())) { 2507 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2508 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2509 } 2510 } 2511 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2512 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2513 ExitsWithFreq.emplace_back(BB, ExitFreq); 2514 } 2515 } 2516 2517 // In this loop we iterate every block in the loop chain and calculate the 2518 // cost assuming the block is the head of the loop chain. When the loop ends, 2519 // we should have found the best candidate as the loop chain's head. 2520 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2521 EndIter = LoopChain.end(); 2522 Iter != EndIter; Iter++, TailIter++) { 2523 // TailIter is used to track the tail of the loop chain if the block we are 2524 // checking (pointed by Iter) is the head of the chain. 2525 if (TailIter == LoopChain.end()) 2526 TailIter = LoopChain.begin(); 2527 2528 auto TailBB = *TailIter; 2529 2530 // Calculate the cost by putting this BB to the top. 2531 BlockFrequency Cost = BlockFrequency(0); 2532 2533 // If the current BB is the loop header, we need to take into account the 2534 // cost of the missed fall through edge from outside of the loop to the 2535 // header. 2536 if (Iter != LoopChain.begin()) 2537 Cost += HeaderFallThroughCost; 2538 2539 // Collect the loop exit cost by summing up frequencies of all exit edges 2540 // except the one from the chain tail. 2541 for (auto &ExitWithFreq : ExitsWithFreq) 2542 if (TailBB != ExitWithFreq.first) 2543 Cost += ExitWithFreq.second; 2544 2545 // The cost of breaking the once fall-through edge from the tail to the top 2546 // of the loop chain. Here we need to consider three cases: 2547 // 1. If the tail node has only one successor, then we will get an 2548 // additional jmp instruction. So the cost here is (MisfetchCost + 2549 // JumpInstCost) * tail node frequency. 2550 // 2. If the tail node has two successors, then we may still get an 2551 // additional jmp instruction if the layout successor after the loop 2552 // chain is not its CFG successor. Note that the more frequently executed 2553 // jmp instruction will be put ahead of the other one. Assume the 2554 // frequency of those two branches are x and y, where x is the frequency 2555 // of the edge to the chain head, then the cost will be 2556 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2557 // 3. If the tail node has more than two successors (this rarely happens), 2558 // we won't consider any additional cost. 2559 if (TailBB->isSuccessor(*Iter)) { 2560 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2561 if (TailBB->succ_size() == 1) 2562 Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost); 2563 else if (TailBB->succ_size() == 2) { 2564 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2565 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2566 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2567 ? TailBBFreq * TailToHeadProb.getCompl() 2568 : TailToHeadFreq; 2569 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2570 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2571 } 2572 } 2573 2574 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2575 << getBlockName(*Iter) << " to the top: " 2576 << printBlockFreq(MBFI->getMBFI(), Cost) << "\n"); 2577 2578 if (Cost < SmallestRotationCost) { 2579 SmallestRotationCost = Cost; 2580 RotationPos = Iter; 2581 } 2582 } 2583 2584 if (RotationPos != LoopChain.end()) { 2585 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2586 << " to the top\n"); 2587 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2588 } 2589 } 2590 2591 /// Collect blocks in the given loop that are to be placed. 2592 /// 2593 /// When profile data is available, exclude cold blocks from the returned set; 2594 /// otherwise, collect all blocks in the loop. 2595 MachineBlockPlacement::BlockFilterSet 2596 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2597 // Collect the blocks in a set ordered by block number, as this gives the same 2598 // order as they appear in the function. 2599 struct MBBCompare { 2600 bool operator()(const MachineBasicBlock *X, 2601 const MachineBasicBlock *Y) const { 2602 return X->getNumber() < Y->getNumber(); 2603 } 2604 }; 2605 std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet; 2606 2607 // Filter cold blocks off from LoopBlockSet when profile data is available. 2608 // Collect the sum of frequencies of incoming edges to the loop header from 2609 // outside. If we treat the loop as a super block, this is the frequency of 2610 // the loop. Then for each block in the loop, we calculate the ratio between 2611 // its frequency and the frequency of the loop block. When it is too small, 2612 // don't add it to the loop chain. If there are outer loops, then this block 2613 // will be merged into the first outer loop chain for which this block is not 2614 // cold anymore. This needs precise profile data and we only do this when 2615 // profile data is available. 2616 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2617 BlockFrequency LoopFreq(0); 2618 for (auto *LoopPred : L.getHeader()->predecessors()) 2619 if (!L.contains(LoopPred)) 2620 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2621 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2622 2623 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2624 if (LoopBlockSet.count(LoopBB)) 2625 continue; 2626 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2627 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2628 continue; 2629 BlockChain *Chain = BlockToChain[LoopBB]; 2630 for (MachineBasicBlock *ChainBB : *Chain) 2631 LoopBlockSet.insert(ChainBB); 2632 } 2633 } else 2634 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2635 2636 // Copy the blocks into a BlockFilterSet, as iterating it is faster than 2637 // std::set. We will only remove blocks and never insert them, which will 2638 // preserve the ordering. 2639 BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end()); 2640 return Ret; 2641 } 2642 2643 /// Forms basic block chains from the natural loop structures. 2644 /// 2645 /// These chains are designed to preserve the existing *structure* of the code 2646 /// as much as possible. We can then stitch the chains together in a way which 2647 /// both preserves the topological structure and minimizes taken conditional 2648 /// branches. 2649 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2650 // First recurse through any nested loops, building chains for those inner 2651 // loops. 2652 for (const MachineLoop *InnerLoop : L) 2653 buildLoopChains(*InnerLoop); 2654 2655 assert(BlockWorkList.empty() && 2656 "BlockWorkList not empty when starting to build loop chains."); 2657 assert(EHPadWorkList.empty() && 2658 "EHPadWorkList not empty when starting to build loop chains."); 2659 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2660 2661 // Check if we have profile data for this function. If yes, we will rotate 2662 // this loop by modeling costs more precisely which requires the profile data 2663 // for better layout. 2664 bool RotateLoopWithProfile = 2665 ForcePreciseRotationCost || 2666 (PreciseRotationCost && F->getFunction().hasProfileData()); 2667 2668 // First check to see if there is an obviously preferable top block for the 2669 // loop. This will default to the header, but may end up as one of the 2670 // predecessors to the header if there is one which will result in strictly 2671 // fewer branches in the loop body. 2672 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2673 2674 // If we selected just the header for the loop top, look for a potentially 2675 // profitable exit block in the event that rotating the loop can eliminate 2676 // branches by placing an exit edge at the bottom. 2677 // 2678 // Loops are processed innermost to uttermost, make sure we clear 2679 // PreferredLoopExit before processing a new loop. 2680 PreferredLoopExit = nullptr; 2681 BlockFrequency ExitFreq; 2682 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2683 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2684 2685 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2686 2687 // FIXME: This is a really lame way of walking the chains in the loop: we 2688 // walk the blocks, and use a set to prevent visiting a particular chain 2689 // twice. 2690 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2691 assert(LoopChain.UnscheduledPredecessors == 0 && 2692 "LoopChain should not have unscheduled predecessors."); 2693 UpdatedPreds.insert(&LoopChain); 2694 2695 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2696 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2697 2698 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2699 2700 if (RotateLoopWithProfile) 2701 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2702 else 2703 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2704 2705 LLVM_DEBUG({ 2706 // Crash at the end so we get all of the debugging output first. 2707 bool BadLoop = false; 2708 if (LoopChain.UnscheduledPredecessors) { 2709 BadLoop = true; 2710 dbgs() << "Loop chain contains a block without its preds placed!\n" 2711 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2712 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2713 } 2714 for (MachineBasicBlock *ChainBB : LoopChain) { 2715 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2716 if (!LoopBlockSet.remove(ChainBB)) { 2717 // We don't mark the loop as bad here because there are real situations 2718 // where this can occur. For example, with an unanalyzable fallthrough 2719 // from a loop block to a non-loop block or vice versa. 2720 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2721 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2722 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2723 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2724 } 2725 } 2726 2727 if (!LoopBlockSet.empty()) { 2728 BadLoop = true; 2729 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2730 dbgs() << "Loop contains blocks never placed into a chain!\n" 2731 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2732 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2733 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2734 } 2735 assert(!BadLoop && "Detected problems with the placement of this loop."); 2736 }); 2737 2738 BlockWorkList.clear(); 2739 EHPadWorkList.clear(); 2740 } 2741 2742 void MachineBlockPlacement::buildCFGChains() { 2743 // Ensure that every BB in the function has an associated chain to simplify 2744 // the assumptions of the remaining algorithm. 2745 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2746 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2747 ++FI) { 2748 MachineBasicBlock *BB = &*FI; 2749 BlockChain *Chain = 2750 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2751 // Also, merge any blocks which we cannot reason about and must preserve 2752 // the exact fallthrough behavior for. 2753 while (true) { 2754 Cond.clear(); 2755 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2756 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2757 break; 2758 2759 MachineFunction::iterator NextFI = std::next(FI); 2760 MachineBasicBlock *NextBB = &*NextFI; 2761 // Ensure that the layout successor is a viable block, as we know that 2762 // fallthrough is a possibility. 2763 assert(NextFI != FE && "Can't fallthrough past the last block."); 2764 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2765 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2766 << "\n"); 2767 Chain->merge(NextBB, nullptr); 2768 #ifndef NDEBUG 2769 BlocksWithUnanalyzableExits.insert(&*BB); 2770 #endif 2771 FI = NextFI; 2772 BB = NextBB; 2773 } 2774 } 2775 2776 // Build any loop-based chains. 2777 PreferredLoopExit = nullptr; 2778 for (MachineLoop *L : *MLI) 2779 buildLoopChains(*L); 2780 2781 assert(BlockWorkList.empty() && 2782 "BlockWorkList should be empty before building final chain."); 2783 assert(EHPadWorkList.empty() && 2784 "EHPadWorkList should be empty before building final chain."); 2785 2786 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2787 for (MachineBasicBlock &MBB : *F) 2788 fillWorkLists(&MBB, UpdatedPreds); 2789 2790 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2791 buildChain(&F->front(), FunctionChain); 2792 2793 #ifndef NDEBUG 2794 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2795 #endif 2796 LLVM_DEBUG({ 2797 // Crash at the end so we get all of the debugging output first. 2798 bool BadFunc = false; 2799 FunctionBlockSetType FunctionBlockSet; 2800 for (MachineBasicBlock &MBB : *F) 2801 FunctionBlockSet.insert(&MBB); 2802 2803 for (MachineBasicBlock *ChainBB : FunctionChain) 2804 if (!FunctionBlockSet.erase(ChainBB)) { 2805 BadFunc = true; 2806 dbgs() << "Function chain contains a block not in the function!\n" 2807 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2808 } 2809 2810 if (!FunctionBlockSet.empty()) { 2811 BadFunc = true; 2812 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2813 dbgs() << "Function contains blocks never placed into a chain!\n" 2814 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2815 } 2816 assert(!BadFunc && "Detected problems with the block placement."); 2817 }); 2818 2819 // Remember original layout ordering, so we can update terminators after 2820 // reordering to point to the original layout successor. 2821 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2822 F->getNumBlockIDs()); 2823 { 2824 MachineBasicBlock *LastMBB = nullptr; 2825 for (auto &MBB : *F) { 2826 if (LastMBB != nullptr) 2827 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2828 LastMBB = &MBB; 2829 } 2830 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2831 } 2832 2833 // Splice the blocks into place. 2834 MachineFunction::iterator InsertPos = F->begin(); 2835 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2836 for (MachineBasicBlock *ChainBB : FunctionChain) { 2837 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2838 : " ... ") 2839 << getBlockName(ChainBB) << "\n"); 2840 if (InsertPos != MachineFunction::iterator(ChainBB)) 2841 F->splice(InsertPos, ChainBB); 2842 else 2843 ++InsertPos; 2844 2845 // Update the terminator of the previous block. 2846 if (ChainBB == *FunctionChain.begin()) 2847 continue; 2848 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2849 2850 // FIXME: It would be awesome of updateTerminator would just return rather 2851 // than assert when the branch cannot be analyzed in order to remove this 2852 // boiler plate. 2853 Cond.clear(); 2854 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2855 2856 #ifndef NDEBUG 2857 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2858 // Given the exact block placement we chose, we may actually not _need_ to 2859 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2860 // do that at this point is a bug. 2861 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2862 !PrevBB->canFallThrough()) && 2863 "Unexpected block with un-analyzable fallthrough!"); 2864 Cond.clear(); 2865 TBB = FBB = nullptr; 2866 } 2867 #endif 2868 2869 // The "PrevBB" is not yet updated to reflect current code layout, so, 2870 // o. it may fall-through to a block without explicit "goto" instruction 2871 // before layout, and no longer fall-through it after layout; or 2872 // o. just opposite. 2873 // 2874 // analyzeBranch() may return erroneous value for FBB when these two 2875 // situations take place. For the first scenario FBB is mistakenly set NULL; 2876 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2877 // mistakenly pointing to "*BI". 2878 // Thus, if the future change needs to use FBB before the layout is set, it 2879 // has to correct FBB first by using the code similar to the following: 2880 // 2881 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2882 // PrevBB->updateTerminator(); 2883 // Cond.clear(); 2884 // TBB = FBB = nullptr; 2885 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2886 // // FIXME: This should never take place. 2887 // TBB = FBB = nullptr; 2888 // } 2889 // } 2890 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2891 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2892 } 2893 } 2894 2895 // Fixup the last block. 2896 Cond.clear(); 2897 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2898 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2899 MachineBasicBlock *PrevBB = &F->back(); 2900 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2901 } 2902 2903 BlockWorkList.clear(); 2904 EHPadWorkList.clear(); 2905 } 2906 2907 void MachineBlockPlacement::optimizeBranches() { 2908 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2909 SmallVector<MachineOperand, 4> Cond; 2910 2911 // Now that all the basic blocks in the chain have the proper layout, 2912 // make a final call to analyzeBranch with AllowModify set. 2913 // Indeed, the target may be able to optimize the branches in a way we 2914 // cannot because all branches may not be analyzable. 2915 // E.g., the target may be able to remove an unconditional branch to 2916 // a fallthrough when it occurs after predicated terminators. 2917 for (MachineBasicBlock *ChainBB : FunctionChain) { 2918 Cond.clear(); 2919 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2920 if (TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) 2921 continue; 2922 if (!TBB || !FBB || Cond.empty()) 2923 continue; 2924 // If we are optimizing for size we do not consider the runtime performance. 2925 // Instead, we retain the original branch condition so we have more uniform 2926 // instructions which will benefit ICF. 2927 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get())) 2928 continue; 2929 // If ChainBB has a two-way branch, try to re-order the branches 2930 // such that we branch to the successor with higher probability first. 2931 if (MBPI->getEdgeProbability(ChainBB, TBB) >= 2932 MBPI->getEdgeProbability(ChainBB, FBB)) 2933 continue; 2934 if (TII->reverseBranchCondition(Cond)) 2935 continue; 2936 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2937 << getBlockName(ChainBB) << "\n"); 2938 LLVM_DEBUG(dbgs() << " " << getBlockName(TBB) << " < " << getBlockName(FBB) 2939 << "\n"); 2940 auto Dl = ChainBB->findBranchDebugLoc(); 2941 TII->removeBranch(*ChainBB); 2942 TII->insertBranch(*ChainBB, FBB, TBB, Cond, Dl); 2943 } 2944 } 2945 2946 void MachineBlockPlacement::alignBlocks() { 2947 // Walk through the backedges of the function now that we have fully laid out 2948 // the basic blocks and align the destination of each backedge. We don't rely 2949 // exclusively on the loop info here so that we can align backedges in 2950 // unnatural CFGs and backedges that were introduced purely because of the 2951 // loop rotations done during this layout pass. 2952 if (!AlignAllBlock && !AlignAllNonFallThruBlocks) { 2953 if (F->getFunction().hasMinSize() || 2954 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2955 return; 2956 } 2957 2958 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2959 // Empty chain. 2960 if (FunctionChain.begin() == FunctionChain.end()) 2961 return; 2962 2963 const BranchProbability ColdProb(1, 5); // 20% 2964 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2965 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2966 for (MachineBasicBlock *ChainBB : FunctionChain) { 2967 if (ChainBB == *FunctionChain.begin()) 2968 continue; 2969 2970 // Don't align non-looping basic blocks. These are unlikely to execute 2971 // enough times to matter in practice. Note that we'll still handle 2972 // unnatural CFGs inside of a natural outer loop (the common case) and 2973 // rotated loops. 2974 MachineLoop *L = MLI->getLoopFor(ChainBB); 2975 if (!L) 2976 continue; 2977 2978 const Align TLIAlign = TLI->getPrefLoopAlignment(L); 2979 unsigned MDAlign = 1; 2980 MDNode *LoopID = L->getLoopID(); 2981 if (LoopID) { 2982 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 2983 MDNode *MD = dyn_cast<MDNode>(MDO); 2984 if (MD == nullptr) 2985 continue; 2986 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 2987 if (S == nullptr) 2988 continue; 2989 if (S->getString() == "llvm.loop.align") { 2990 assert(MD->getNumOperands() == 2 && 2991 "per-loop align metadata should have two operands."); 2992 MDAlign = 2993 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 2994 assert(MDAlign >= 1 && "per-loop align value must be positive."); 2995 } 2996 } 2997 } 2998 2999 // Use max of the TLIAlign and MDAlign 3000 const Align LoopAlign = std::max(TLIAlign, Align(MDAlign)); 3001 if (LoopAlign == 1) 3002 continue; // Don't care about loop alignment. 3003 3004 // If the block is cold relative to the function entry don't waste space 3005 // aligning it. 3006 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 3007 if (Freq < WeightedEntryFreq) 3008 continue; 3009 3010 // If the block is cold relative to its loop header, don't align it 3011 // regardless of what edges into the block exist. 3012 MachineBasicBlock *LoopHeader = L->getHeader(); 3013 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 3014 if (Freq < (LoopHeaderFreq * ColdProb)) 3015 continue; 3016 3017 // If the global profiles indicates so, don't align it. 3018 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 3019 !TLI->alignLoopsWithOptSize()) 3020 continue; 3021 3022 // Check for the existence of a non-layout predecessor which would benefit 3023 // from aligning this block. 3024 MachineBasicBlock *LayoutPred = 3025 &*std::prev(MachineFunction::iterator(ChainBB)); 3026 3027 auto DetermineMaxAlignmentPadding = [&]() { 3028 // Set the maximum bytes allowed to be emitted for alignment. 3029 unsigned MaxBytes; 3030 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) 3031 MaxBytes = MaxBytesForAlignmentOverride; 3032 else 3033 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB); 3034 ChainBB->setMaxBytesForAlignment(MaxBytes); 3035 }; 3036 3037 // Force alignment if all the predecessors are jumps. We already checked 3038 // that the block isn't cold above. 3039 if (!LayoutPred->isSuccessor(ChainBB)) { 3040 ChainBB->setAlignment(LoopAlign); 3041 DetermineMaxAlignmentPadding(); 3042 continue; 3043 } 3044 3045 // Align this block if the layout predecessor's edge into this block is 3046 // cold relative to the block. When this is true, other predecessors make up 3047 // all of the hot entries into the block and thus alignment is likely to be 3048 // important. 3049 BranchProbability LayoutProb = 3050 MBPI->getEdgeProbability(LayoutPred, ChainBB); 3051 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 3052 if (LayoutEdgeFreq <= (Freq * ColdProb)) { 3053 ChainBB->setAlignment(LoopAlign); 3054 DetermineMaxAlignmentPadding(); 3055 } 3056 } 3057 3058 const bool HasMaxBytesOverride = 3059 MaxBytesForAlignmentOverride.getNumOccurrences() > 0; 3060 3061 if (AlignAllBlock) 3062 // Align all of the blocks in the function to a specific alignment. 3063 for (MachineBasicBlock &MBB : *F) { 3064 if (HasMaxBytesOverride) 3065 MBB.setAlignment(Align(1ULL << AlignAllBlock), 3066 MaxBytesForAlignmentOverride); 3067 else 3068 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3069 } 3070 else if (AlignAllNonFallThruBlocks) { 3071 // Align all of the blocks that have no fall-through predecessors to a 3072 // specific alignment. 3073 for (auto MBI = std::next(F->begin()), MBE = F->end(); MBI != MBE; ++MBI) { 3074 auto LayoutPred = std::prev(MBI); 3075 if (!LayoutPred->isSuccessor(&*MBI)) { 3076 if (HasMaxBytesOverride) 3077 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks), 3078 MaxBytesForAlignmentOverride); 3079 else 3080 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3081 } 3082 } 3083 } 3084 } 3085 3086 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 3087 /// it was duplicated into its chain predecessor and removed. 3088 /// \p BB - Basic block that may be duplicated. 3089 /// 3090 /// \p LPred - Chosen layout predecessor of \p BB. 3091 /// Updated to be the chain end if LPred is removed. 3092 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3093 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3094 /// Used to identify which blocks to update predecessor 3095 /// counts. 3096 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3097 /// chosen in the given order due to unnatural CFG 3098 /// only needed if \p BB is removed and 3099 /// \p PrevUnplacedBlockIt pointed to \p BB. 3100 /// @return true if \p BB was removed. 3101 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 3102 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 3103 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 3104 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3105 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) { 3106 bool Removed, DuplicatedToLPred; 3107 bool DuplicatedToOriginalLPred; 3108 Removed = maybeTailDuplicateBlock( 3109 BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3110 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3111 if (!Removed) 3112 return false; 3113 DuplicatedToOriginalLPred = DuplicatedToLPred; 3114 // Iteratively try to duplicate again. It can happen that a block that is 3115 // duplicated into is still small enough to be duplicated again. 3116 // No need to call markBlockSuccessors in this case, as the blocks being 3117 // duplicated from here on are already scheduled. 3118 while (DuplicatedToLPred && Removed) { 3119 MachineBasicBlock *DupBB, *DupPred; 3120 // The removal callback causes Chain.end() to be updated when a block is 3121 // removed. On the first pass through the loop, the chain end should be the 3122 // same as it was on function entry. On subsequent passes, because we are 3123 // duplicating the block at the end of the chain, if it is removed the 3124 // chain will have shrunk by one block. 3125 BlockChain::iterator ChainEnd = Chain.end(); 3126 DupBB = *(--ChainEnd); 3127 // Now try to duplicate again. 3128 if (ChainEnd == Chain.begin()) 3129 break; 3130 DupPred = *std::prev(ChainEnd); 3131 Removed = maybeTailDuplicateBlock( 3132 DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3133 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3134 } 3135 // If BB was duplicated into LPred, it is now scheduled. But because it was 3136 // removed, markChainSuccessors won't be called for its chain. Instead we 3137 // call markBlockSuccessors for LPred to achieve the same effect. This must go 3138 // at the end because repeating the tail duplication can increase the number 3139 // of unscheduled predecessors. 3140 LPred = *std::prev(Chain.end()); 3141 if (DuplicatedToOriginalLPred) 3142 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 3143 return true; 3144 } 3145 3146 /// Tail duplicate \p BB into (some) predecessors if profitable. 3147 /// \p BB - Basic block that may be duplicated 3148 /// \p LPred - Chosen layout predecessor of \p BB 3149 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3150 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3151 /// Used to identify which blocks to update predecessor 3152 /// counts. 3153 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3154 /// chosen in the given order due to unnatural CFG 3155 /// only needed if \p BB is removed and 3156 /// \p PrevUnplacedBlockIt pointed to \p BB. 3157 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3158 /// \return - True if the block was duplicated into all preds and removed. 3159 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3160 MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain, 3161 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3162 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 3163 bool &DuplicatedToLPred) { 3164 DuplicatedToLPred = false; 3165 if (!shouldTailDuplicate(BB)) 3166 return false; 3167 3168 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3169 << "\n"); 3170 3171 // This has to be a callback because none of it can be done after 3172 // BB is deleted. 3173 bool Removed = false; 3174 auto RemovalCallback = [&](MachineBasicBlock *RemBB) { 3175 // Signal to outer function 3176 Removed = true; 3177 3178 // Conservative default. 3179 bool InWorkList = true; 3180 // Remove from the Chain and Chain Map 3181 if (auto It = BlockToChain.find(RemBB); It != BlockToChain.end()) { 3182 BlockChain *Chain = It->second; 3183 InWorkList = Chain->UnscheduledPredecessors == 0; 3184 Chain->remove(RemBB); 3185 BlockToChain.erase(It); 3186 } 3187 3188 // Handle the unplaced block iterator 3189 if (&(*PrevUnplacedBlockIt) == RemBB) { 3190 PrevUnplacedBlockIt++; 3191 } 3192 3193 // Handle the Work Lists 3194 if (InWorkList) { 3195 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3196 if (RemBB->isEHPad()) 3197 RemoveList = EHPadWorkList; 3198 llvm::erase(RemoveList, RemBB); 3199 } 3200 3201 // Handle the filter set 3202 if (BlockFilter) { 3203 auto It = llvm::find(*BlockFilter, RemBB); 3204 // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt 3205 // pointing to the same element as before. 3206 if (It != BlockFilter->end()) { 3207 if (It < PrevUnplacedBlockInFilterIt) { 3208 const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt; 3209 // BlockFilter is a SmallVector so all elements after RemBB are 3210 // shifted to the front by 1 after its deletion. 3211 auto Distance = PrevUnplacedBlockInFilterIt - It - 1; 3212 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance; 3213 assert(*PrevUnplacedBlockInFilterIt == PrevBB); 3214 (void)PrevBB; 3215 } else if (It == PrevUnplacedBlockInFilterIt) 3216 // The block pointed by PrevUnplacedBlockInFilterIt is erased, we 3217 // have to set it to the next element. 3218 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It); 3219 else 3220 BlockFilter->erase(It); 3221 } 3222 } 3223 3224 // Remove the block from loop info. 3225 MLI->removeBlock(RemBB); 3226 if (RemBB == PreferredLoopExit) 3227 PreferredLoopExit = nullptr; 3228 3229 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " << getBlockName(RemBB) 3230 << "\n"); 3231 }; 3232 auto RemovalCallbackRef = 3233 function_ref<void(MachineBasicBlock *)>(RemovalCallback); 3234 3235 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3236 bool IsSimple = TailDup.isSimpleBB(BB); 3237 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3238 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3239 if (F->getFunction().hasProfileData()) { 3240 // We can do partial duplication with precise profile information. 3241 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3242 if (CandidatePreds.size() == 0) 3243 return false; 3244 if (CandidatePreds.size() < BB->pred_size()) 3245 CandidatePtr = &CandidatePreds; 3246 } 3247 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3248 &RemovalCallbackRef, CandidatePtr); 3249 3250 // Update UnscheduledPredecessors to reflect tail-duplication. 3251 DuplicatedToLPred = false; 3252 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3253 // We're only looking for unscheduled predecessors that match the filter. 3254 BlockChain *PredChain = BlockToChain[Pred]; 3255 if (Pred == LPred) 3256 DuplicatedToLPred = true; 3257 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) || 3258 PredChain == &Chain) 3259 continue; 3260 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3261 if (BlockFilter && !BlockFilter->count(NewSucc)) 3262 continue; 3263 BlockChain *NewChain = BlockToChain[NewSucc]; 3264 if (NewChain != &Chain && NewChain != PredChain) 3265 NewChain->UnscheduledPredecessors++; 3266 } 3267 } 3268 return Removed; 3269 } 3270 3271 // Count the number of actual machine instructions. 3272 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3273 uint64_t InstrCount = 0; 3274 for (MachineInstr &MI : *MBB) { 3275 if (!MI.isPHI() && !MI.isMetaInstruction()) 3276 InstrCount += 1; 3277 } 3278 return InstrCount; 3279 } 3280 3281 // The size cost of duplication is the instruction size of the duplicated block. 3282 // So we should scale the threshold accordingly. But the instruction size is not 3283 // available on all targets, so we use the number of instructions instead. 3284 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3285 return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB)); 3286 } 3287 3288 // Returns true if BB is Pred's best successor. 3289 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3290 MachineBasicBlock *Pred, 3291 BlockFilterSet *BlockFilter) { 3292 if (BB == Pred) 3293 return false; 3294 if (BlockFilter && !BlockFilter->count(Pred)) 3295 return false; 3296 BlockChain *PredChain = BlockToChain[Pred]; 3297 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3298 return false; 3299 3300 // Find the successor with largest probability excluding BB. 3301 BranchProbability BestProb = BranchProbability::getZero(); 3302 for (MachineBasicBlock *Succ : Pred->successors()) 3303 if (Succ != BB) { 3304 if (BlockFilter && !BlockFilter->count(Succ)) 3305 continue; 3306 BlockChain *SuccChain = BlockToChain[Succ]; 3307 if (SuccChain && (Succ != *SuccChain->begin())) 3308 continue; 3309 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3310 if (SuccProb > BestProb) 3311 BestProb = SuccProb; 3312 } 3313 3314 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3315 if (BBProb <= BestProb) 3316 return false; 3317 3318 // Compute the number of reduced taken branches if Pred falls through to BB 3319 // instead of another successor. Then compare it with threshold. 3320 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3321 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3322 return Gain > scaleThreshold(BB); 3323 } 3324 3325 // Find out the predecessors of BB and BB can be beneficially duplicated into 3326 // them. 3327 void MachineBlockPlacement::findDuplicateCandidates( 3328 SmallVectorImpl<MachineBasicBlock *> &Candidates, MachineBasicBlock *BB, 3329 BlockFilterSet *BlockFilter) { 3330 MachineBasicBlock *Fallthrough = nullptr; 3331 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3332 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3333 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3334 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3335 3336 // Sort for highest frequency. 3337 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3338 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3339 }; 3340 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3341 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3342 }; 3343 llvm::stable_sort(Succs, CmpSucc); 3344 llvm::stable_sort(Preds, CmpPred); 3345 3346 auto SuccIt = Succs.begin(); 3347 if (SuccIt != Succs.end()) { 3348 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3349 } 3350 3351 // For each predecessors of BB, compute the benefit of duplicating BB, 3352 // if it is larger than the threshold, add it into Candidates. 3353 // 3354 // If we have following control flow. 3355 // 3356 // PB1 PB2 PB3 PB4 3357 // \ | / /\ 3358 // \ | / / \ 3359 // \ |/ / \ 3360 // BB----/ OB 3361 // /\ 3362 // / \ 3363 // SB1 SB2 3364 // 3365 // And it can be partially duplicated as 3366 // 3367 // PB2+BB 3368 // | PB1 PB3 PB4 3369 // | | / /\ 3370 // | | / / \ 3371 // | |/ / \ 3372 // | BB----/ OB 3373 // |\ /| 3374 // | X | 3375 // |/ \| 3376 // SB2 SB1 3377 // 3378 // The benefit of duplicating into a predecessor is defined as 3379 // Orig_taken_branch - Duplicated_taken_branch 3380 // 3381 // The Orig_taken_branch is computed with the assumption that predecessor 3382 // jumps to BB and the most possible successor is laid out after BB. 3383 // 3384 // The Duplicated_taken_branch is computed with the assumption that BB is 3385 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3386 // SB2 for PB2 in our case). If there is no available successor, the combined 3387 // block jumps to all BB's successor, like PB3 in this example. 3388 // 3389 // If a predecessor has multiple successors, so BB can't be duplicated into 3390 // it. But it can beneficially fall through to BB, and duplicate BB into other 3391 // predecessors. 3392 for (MachineBasicBlock *Pred : Preds) { 3393 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3394 3395 if (!TailDup.canTailDuplicate(BB, Pred)) { 3396 // BB can't be duplicated into Pred, but it is possible to be layout 3397 // below Pred. 3398 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3399 Fallthrough = Pred; 3400 if (SuccIt != Succs.end()) 3401 SuccIt++; 3402 } 3403 continue; 3404 } 3405 3406 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3407 BlockFrequency DupCost; 3408 if (SuccIt == Succs.end()) { 3409 // Jump to all successors; 3410 if (Succs.size() > 0) 3411 DupCost += PredFreq; 3412 } else { 3413 // Fallthrough to *SuccIt, jump to all other successors; 3414 DupCost += PredFreq; 3415 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3416 } 3417 3418 assert(OrigCost >= DupCost); 3419 OrigCost -= DupCost; 3420 if (OrigCost > BBDupThreshold) { 3421 Candidates.push_back(Pred); 3422 if (SuccIt != Succs.end()) 3423 SuccIt++; 3424 } 3425 } 3426 3427 // No predecessors can optimally fallthrough to BB. 3428 // So we can change one duplication into fallthrough. 3429 if (!Fallthrough) { 3430 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3431 Candidates[0] = Candidates.back(); 3432 Candidates.pop_back(); 3433 } 3434 } 3435 } 3436 3437 void MachineBlockPlacement::initTailDupThreshold() { 3438 DupThreshold = BlockFrequency(0); 3439 if (F->getFunction().hasProfileData()) { 3440 // We prefer to use prifile count. 3441 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3442 if (HotThreshold != UINT64_MAX) { 3443 UseProfileCount = true; 3444 DupThreshold = 3445 BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100); 3446 } else { 3447 // Profile count is not available, we can use block frequency instead. 3448 BlockFrequency MaxFreq = BlockFrequency(0); 3449 for (MachineBasicBlock &MBB : *F) { 3450 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3451 if (Freq > MaxFreq) 3452 MaxFreq = Freq; 3453 } 3454 3455 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3456 DupThreshold = BlockFrequency(MaxFreq * ThresholdProb); 3457 UseProfileCount = false; 3458 } 3459 } 3460 3461 TailDupSize = TailDupPlacementThreshold; 3462 // If only the aggressive threshold is explicitly set, use it. 3463 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3464 TailDupPlacementThreshold.getNumOccurrences() == 0) 3465 TailDupSize = TailDupPlacementAggressiveThreshold; 3466 3467 // For aggressive optimization, we can adjust some thresholds to be less 3468 // conservative. 3469 if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) { 3470 // At O3 we should be more willing to copy blocks for tail duplication. This 3471 // increases size pressure, so we only do it at O3 3472 // Do this unless only the regular threshold is explicitly set. 3473 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3474 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3475 TailDupSize = TailDupPlacementAggressiveThreshold; 3476 } 3477 3478 // If there's no threshold provided through options, query the target 3479 // information for a threshold instead. 3480 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3481 (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive || 3482 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3483 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3484 } 3485 3486 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3487 if (skipFunction(MF.getFunction())) 3488 return false; 3489 3490 // Check for single-block functions and skip them. 3491 if (std::next(MF.begin()) == MF.end()) 3492 return false; 3493 3494 F = &MF; 3495 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3496 MBFI = std::make_unique<MBFIWrapper>( 3497 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); 3498 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 3499 TII = MF.getSubtarget().getInstrInfo(); 3500 TLI = MF.getSubtarget().getTargetLowering(); 3501 MPDT = nullptr; 3502 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3503 PassConfig = &getAnalysis<TargetPassConfig>(); 3504 3505 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3506 // there are no MachineLoops. 3507 PreferredLoopExit = nullptr; 3508 3509 assert(BlockToChain.empty() && 3510 "BlockToChain map should be empty before starting placement."); 3511 assert(ComputedEdges.empty() && 3512 "Computed Edge map should be empty before starting placement."); 3513 3514 // Initialize tail duplication thresholds. 3515 initTailDupThreshold(); 3516 3517 const bool OptForSize = 3518 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3519 // Determine whether to use ext-tsp for perf/size optimization. The method 3520 // is beneficial only for instances with at least 3 basic blocks and it can be 3521 // disabled for huge functions (exceeding a certain size). 3522 bool UseExtTspForPerf = false; 3523 bool UseExtTspForSize = false; 3524 if (3 <= MF.size() && MF.size() <= ExtTspBlockPlacementMaxBlocks) { 3525 UseExtTspForPerf = 3526 EnableExtTspBlockPlacement && 3527 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData()); 3528 UseExtTspForSize = OptForSize && ApplyExtTspForSize; 3529 } 3530 3531 // Apply tail duplication. 3532 if (allowTailDupPlacement()) { 3533 MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 3534 if (OptForSize) 3535 TailDupSize = 1; 3536 const bool PreRegAlloc = false; 3537 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3538 /* LayoutMode */ true, TailDupSize); 3539 if (!UseExtTspForSize) 3540 precomputeTriangleChains(); 3541 } 3542 3543 // Run the main block placement. 3544 if (!UseExtTspForSize) 3545 buildCFGChains(); 3546 3547 // Changing the layout can create new tail merging opportunities. 3548 // TailMerge can create jump into if branches that make CFG irreducible for 3549 // HW that requires structured CFG. 3550 const bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3551 PassConfig->getEnableTailMerge() && 3552 BranchFoldPlacement && MF.size() > 3; 3553 // No tail merging opportunities if the block number is less than four. 3554 if (EnableTailMerge) { 3555 const unsigned TailMergeSize = TailDupSize + 1; 3556 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3557 *MBFI, *MBPI, PSI, TailMergeSize); 3558 3559 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3560 /*AfterPlacement=*/true)) { 3561 // Must redo the post-dominator tree if blocks were changed. 3562 if (MPDT) 3563 MPDT->recalculate(MF); 3564 if (!UseExtTspForSize) { 3565 // Redo the layout if tail merging creates/removes/moves blocks. 3566 BlockToChain.clear(); 3567 ComputedEdges.clear(); 3568 ChainAllocator.DestroyAll(); 3569 buildCFGChains(); 3570 } 3571 } 3572 } 3573 3574 // Apply a post-processing optimizing block placement: 3575 // - find a new placement and modify the layout of the blocks in the function; 3576 // - re-create CFG chains so that we can optimizeBranches and alignBlocks. 3577 if (UseExtTspForPerf || UseExtTspForSize) { 3578 assert( 3579 !(UseExtTspForPerf && UseExtTspForSize) && 3580 "UseExtTspForPerf and UseExtTspForSize can not be set simultaneously"); 3581 applyExtTsp(/*OptForSize=*/UseExtTspForSize); 3582 createCFGChainExtTsp(); 3583 } 3584 3585 optimizeBranches(); 3586 alignBlocks(); 3587 3588 BlockToChain.clear(); 3589 ComputedEdges.clear(); 3590 ChainAllocator.DestroyAll(); 3591 3592 // View the function. 3593 if (ViewBlockLayoutWithBFI != GVDT_None && 3594 (ViewBlockFreqFuncName.empty() || 3595 F->getFunction().getName() == ViewBlockFreqFuncName)) { 3596 if (RenumberBlocksBeforeView) 3597 MF.RenumberBlocks(); 3598 MBFI->view("MBP." + MF.getName(), false); 3599 } 3600 3601 // We always return true as we have no way to track whether the final order 3602 // differs from the original order. 3603 return true; 3604 } 3605 3606 void MachineBlockPlacement::applyExtTsp(bool OptForSize) { 3607 // Prepare data; blocks are indexed by their index in the current ordering. 3608 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; 3609 BlockIndex.reserve(F->size()); 3610 std::vector<const MachineBasicBlock *> CurrentBlockOrder; 3611 CurrentBlockOrder.reserve(F->size()); 3612 size_t NumBlocks = 0; 3613 for (const MachineBasicBlock &MBB : *F) { 3614 BlockIndex[&MBB] = NumBlocks++; 3615 CurrentBlockOrder.push_back(&MBB); 3616 } 3617 3618 SmallVector<uint64_t, 0> BlockCounts(F->size()); 3619 SmallVector<uint64_t, 0> BlockSizes(F->size()); 3620 SmallVector<codelayout::EdgeCount, 0> JumpCounts; 3621 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 3622 SmallVector<const MachineBasicBlock *, 4> Succs; 3623 for (MachineBasicBlock &MBB : *F) { 3624 // Getting the block frequency. 3625 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3626 BlockCounts[BlockIndex[&MBB]] = OptForSize ? 1 : BlockFreq.getFrequency(); 3627 // Getting the block size: 3628 // - approximate the size of an instruction by 4 bytes, and 3629 // - ignore debug instructions. 3630 // Note: getting the exact size of each block is target-dependent and can be 3631 // done by extending the interface of MCCodeEmitter. Experimentally we do 3632 // not see a perf improvement with the exact block sizes. 3633 auto NonDbgInsts = 3634 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end()); 3635 size_t NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end()); 3636 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; 3637 3638 // Getting jump frequencies. 3639 if (OptForSize) { 3640 Cond.clear(); 3641 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 3642 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 3643 continue; 3644 3645 const MachineBasicBlock *FTB = MBB.getFallThrough(); 3646 // Succs is a collection of distinct destinations of the block reachable 3647 // from MBB via a jump instruction; initialize the list using the three 3648 // (non-necessarily distinct) blocks, FTB, TBB, and FBB. 3649 Succs.clear(); 3650 if (TBB && TBB != FTB) 3651 Succs.push_back(TBB); 3652 if (FBB && FBB != FTB) 3653 Succs.push_back(FBB); 3654 if (FTB) 3655 Succs.push_back(FTB); 3656 // Absolute magnitude of non-zero counts does not matter for the 3657 // optimization; prioritize slightly jumps with a single successor, since 3658 // the corresponding jump instruction will be removed from the binary. 3659 const uint64_t Freq = Succs.size() == 1 ? 110 : 100; 3660 for (const MachineBasicBlock *Succ : Succs) 3661 JumpCounts.push_back({BlockIndex[&MBB], BlockIndex[Succ], Freq}); 3662 } else { 3663 for (MachineBasicBlock *Succ : MBB.successors()) { 3664 auto EP = MBPI->getEdgeProbability(&MBB, Succ); 3665 BlockFrequency JumpFreq = BlockFreq * EP; 3666 JumpCounts.push_back( 3667 {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()}); 3668 } 3669 } 3670 } 3671 3672 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() 3673 << " with profile = " << F->getFunction().hasProfileData() 3674 << " (" << F->getName() << ")" << "\n"); 3675 3676 const double OrgScore = calcExtTspScore(BlockSizes, JumpCounts); 3677 LLVM_DEBUG(dbgs() << format(" original layout score: %0.2f\n", OrgScore)); 3678 3679 // Run the layout algorithm. 3680 auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts); 3681 std::vector<const MachineBasicBlock *> NewBlockOrder; 3682 NewBlockOrder.reserve(F->size()); 3683 for (uint64_t Node : NewOrder) { 3684 NewBlockOrder.push_back(CurrentBlockOrder[Node]); 3685 } 3686 const double OptScore = calcExtTspScore(NewOrder, BlockSizes, JumpCounts); 3687 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n", OptScore)); 3688 3689 // If the optimization is unsuccessful, fall back to the original block order. 3690 if (OptForSize && OrgScore > OptScore) 3691 assignBlockOrder(CurrentBlockOrder); 3692 else 3693 assignBlockOrder(NewBlockOrder); 3694 } 3695 3696 void MachineBlockPlacement::assignBlockOrder( 3697 const std::vector<const MachineBasicBlock *> &NewBlockOrder) { 3698 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order"); 3699 F->RenumberBlocks(); 3700 // At this point, we possibly removed blocks from the function, so we can't 3701 // renumber the domtree. At this point, we don't need it anymore, though. 3702 // TODO: move this to the point where the dominator tree is actually 3703 // invalidated (i.e., where blocks are removed without updating the domtree). 3704 MPDT = nullptr; 3705 3706 bool HasChanges = false; 3707 for (size_t I = 0; I < NewBlockOrder.size(); I++) { 3708 if (NewBlockOrder[I] != F->getBlockNumbered(I)) { 3709 HasChanges = true; 3710 break; 3711 } 3712 } 3713 // Stop early if the new block order is identical to the existing one. 3714 if (!HasChanges) 3715 return; 3716 3717 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); 3718 for (auto &MBB : *F) { 3719 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 3720 } 3721 3722 // Sort basic blocks in the function according to the computed order. 3723 DenseMap<const MachineBasicBlock *, size_t> NewIndex; 3724 for (const MachineBasicBlock *MBB : NewBlockOrder) { 3725 NewIndex[MBB] = NewIndex.size(); 3726 } 3727 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) { 3728 return NewIndex[&L] < NewIndex[&R]; 3729 }); 3730 3731 // Update basic block branches by inserting explicit fallthrough branches 3732 // when required and re-optimize branches when possible. 3733 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); 3734 SmallVector<MachineOperand, 4> Cond; 3735 for (auto &MBB : *F) { 3736 MachineFunction::iterator NextMBB = std::next(MBB.getIterator()); 3737 MachineFunction::iterator EndIt = MBB.getParent()->end(); 3738 auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; 3739 // If this block had a fallthrough before we need an explicit unconditional 3740 // branch to that block if the fallthrough block is not adjacent to the 3741 // block in the new order. 3742 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { 3743 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 3744 } 3745 3746 // It might be possible to optimize branches by flipping the condition. 3747 Cond.clear(); 3748 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 3749 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 3750 continue; 3751 MBB.updateTerminator(FTMBB); 3752 } 3753 } 3754 3755 void MachineBlockPlacement::createCFGChainExtTsp() { 3756 BlockToChain.clear(); 3757 ComputedEdges.clear(); 3758 ChainAllocator.DestroyAll(); 3759 3760 MachineBasicBlock *HeadBB = &F->front(); 3761 BlockChain *FunctionChain = 3762 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); 3763 3764 for (MachineBasicBlock &MBB : *F) { 3765 if (HeadBB == &MBB) 3766 continue; // Ignore head of the chain 3767 FunctionChain->merge(&MBB, nullptr); 3768 } 3769 } 3770 3771 namespace { 3772 3773 /// A pass to compute block placement statistics. 3774 /// 3775 /// A separate pass to compute interesting statistics for evaluating block 3776 /// placement. This is separate from the actual placement pass so that they can 3777 /// be computed in the absence of any placement transformations or when using 3778 /// alternative placement strategies. 3779 class MachineBlockPlacementStats : public MachineFunctionPass { 3780 /// A handle to the branch probability pass. 3781 const MachineBranchProbabilityInfo *MBPI; 3782 3783 /// A handle to the function-wide block frequency pass. 3784 const MachineBlockFrequencyInfo *MBFI; 3785 3786 public: 3787 static char ID; // Pass identification, replacement for typeid 3788 3789 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3790 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3791 } 3792 3793 bool runOnMachineFunction(MachineFunction &F) override; 3794 3795 void getAnalysisUsage(AnalysisUsage &AU) const override { 3796 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 3797 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 3798 AU.setPreservesAll(); 3799 MachineFunctionPass::getAnalysisUsage(AU); 3800 } 3801 }; 3802 3803 } // end anonymous namespace 3804 3805 char MachineBlockPlacementStats::ID = 0; 3806 3807 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3808 3809 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3810 "Basic Block Placement Stats", false, false) 3811 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 3812 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 3813 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3814 "Basic Block Placement Stats", false, false) 3815 3816 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3817 // Check for single-block functions and skip them. 3818 if (std::next(F.begin()) == F.end()) 3819 return false; 3820 3821 if (!isFunctionInPrintList(F.getName())) 3822 return false; 3823 3824 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3825 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 3826 3827 for (MachineBasicBlock &MBB : F) { 3828 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3829 Statistic &NumBranches = 3830 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3831 Statistic &BranchTakenFreq = 3832 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3833 for (MachineBasicBlock *Succ : MBB.successors()) { 3834 // Skip if this successor is a fallthrough. 3835 if (MBB.isLayoutSuccessor(Succ)) 3836 continue; 3837 3838 BlockFrequency EdgeFreq = 3839 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3840 ++NumBranches; 3841 BranchTakenFreq += EdgeFreq.getFrequency(); 3842 } 3843 } 3844 3845 return false; 3846 } 3847