xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision ee51a20164fba305401158e9d1020f7c3cd27adc)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetSubtargetInfo.h"
52 #include <algorithm>
53 #include <forward_list>
54 #include <functional>
55 #include <utility>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "block-placement"
59 
60 STATISTIC(NumCondBranches, "Number of conditional branches");
61 STATISTIC(NumUncondBranches, "Number of unconditional branches");
62 STATISTIC(CondBranchTakenFreq,
63           "Potential frequency of taking conditional branches");
64 STATISTIC(UncondBranchTakenFreq,
65           "Potential frequency of taking unconditional branches");
66 
67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
68                                        cl::desc("Force the alignment of all "
69                                                 "blocks in the function."),
70                                        cl::init(0), cl::Hidden);
71 
72 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
73     "align-all-nofallthru-blocks",
74     cl::desc("Force the alignment of all "
75              "blocks that have no fall-through predecessors (i.e. don't add "
76              "nops that are executed)."),
77     cl::init(0), cl::Hidden);
78 
79 // FIXME: Find a good default for this flag and remove the flag.
80 static cl::opt<unsigned> ExitBlockBias(
81     "block-placement-exit-block-bias",
82     cl::desc("Block frequency percentage a loop exit block needs "
83              "over the original exit to be considered the new exit."),
84     cl::init(0), cl::Hidden);
85 
86 // Definition:
87 // - Outlining: placement of a basic block outside the chain or hot path.
88 
89 static cl::opt<unsigned> LoopToColdBlockRatio(
90     "loop-to-cold-block-ratio",
91     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
92              "(frequency of block) is greater than this ratio"),
93     cl::init(5), cl::Hidden);
94 
95 static cl::opt<bool>
96     PreciseRotationCost("precise-rotation-cost",
97                         cl::desc("Model the cost of loop rotation more "
98                                  "precisely by using profile data."),
99                         cl::init(false), cl::Hidden);
100 static cl::opt<bool>
101     ForcePreciseRotationCost("force-precise-rotation-cost",
102                              cl::desc("Force the use of precise cost "
103                                       "loop rotation strategy."),
104                              cl::init(false), cl::Hidden);
105 
106 static cl::opt<unsigned> MisfetchCost(
107     "misfetch-cost",
108     cl::desc("Cost that models the probabilistic risk of an instruction "
109              "misfetch due to a jump comparing to falling through, whose cost "
110              "is zero."),
111     cl::init(1), cl::Hidden);
112 
113 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
114                                       cl::desc("Cost of jump instructions."),
115                                       cl::init(1), cl::Hidden);
116 static cl::opt<bool>
117 TailDupPlacement("tail-dup-placement",
118               cl::desc("Perform tail duplication during placement. "
119                        "Creates more fallthrough opportunites in "
120                        "outline branches."),
121               cl::init(true), cl::Hidden);
122 
123 static cl::opt<bool>
124 BranchFoldPlacement("branch-fold-placement",
125               cl::desc("Perform branch folding during placement. "
126                        "Reduces code size."),
127               cl::init(true), cl::Hidden);
128 
129 // Heuristic for tail duplication.
130 static cl::opt<unsigned> TailDupPlacementThreshold(
131     "tail-dup-placement-threshold",
132     cl::desc("Instruction cutoff for tail duplication during layout. "
133              "Tail merging during layout is forced to have a threshold "
134              "that won't conflict."), cl::init(2),
135     cl::Hidden);
136 
137 // Heuristic for tail duplication.
138 static cl::opt<unsigned> TailDupPlacementPenalty(
139     "tail-dup-placement-penalty",
140     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
141              "Copying can increase fallthrough, but it also increases icache "
142              "pressure. This parameter controls the penalty to account for that. "
143              "Percent as integer."),
144     cl::init(2),
145     cl::Hidden);
146 
147 // Heuristic for triangle chains.
148 static cl::opt<unsigned> TriangleChainCount(
149     "triangle-chain-count",
150     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
151              "triangle tail duplication heuristic to kick in. 0 to disable."),
152     cl::init(2),
153     cl::Hidden);
154 
155 extern cl::opt<unsigned> StaticLikelyProb;
156 extern cl::opt<unsigned> ProfileLikelyProb;
157 
158 // Internal option used to control BFI display only after MBP pass.
159 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
160 // -view-block-layout-with-bfi=
161 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
162 
163 // Command line option to specify the name of the function for CFG dump
164 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
165 extern cl::opt<std::string> ViewBlockFreqFuncName;
166 
167 namespace {
168 class BlockChain;
169 /// \brief Type for our function-wide basic block -> block chain mapping.
170 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
171 }
172 
173 namespace {
174 /// \brief A chain of blocks which will be laid out contiguously.
175 ///
176 /// This is the datastructure representing a chain of consecutive blocks that
177 /// are profitable to layout together in order to maximize fallthrough
178 /// probabilities and code locality. We also can use a block chain to represent
179 /// a sequence of basic blocks which have some external (correctness)
180 /// requirement for sequential layout.
181 ///
182 /// Chains can be built around a single basic block and can be merged to grow
183 /// them. They participate in a block-to-chain mapping, which is updated
184 /// automatically as chains are merged together.
185 class BlockChain {
186   /// \brief The sequence of blocks belonging to this chain.
187   ///
188   /// This is the sequence of blocks for a particular chain. These will be laid
189   /// out in-order within the function.
190   SmallVector<MachineBasicBlock *, 4> Blocks;
191 
192   /// \brief A handle to the function-wide basic block to block chain mapping.
193   ///
194   /// This is retained in each block chain to simplify the computation of child
195   /// block chains for SCC-formation and iteration. We store the edges to child
196   /// basic blocks, and map them back to their associated chains using this
197   /// structure.
198   BlockToChainMapType &BlockToChain;
199 
200 public:
201   /// \brief Construct a new BlockChain.
202   ///
203   /// This builds a new block chain representing a single basic block in the
204   /// function. It also registers itself as the chain that block participates
205   /// in with the BlockToChain mapping.
206   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
207       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
208     assert(BB && "Cannot create a chain with a null basic block");
209     BlockToChain[BB] = this;
210   }
211 
212   /// \brief Iterator over blocks within the chain.
213   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
214   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
215 
216   /// \brief Beginning of blocks within the chain.
217   iterator begin() { return Blocks.begin(); }
218   const_iterator begin() const { return Blocks.begin(); }
219 
220   /// \brief End of blocks within the chain.
221   iterator end() { return Blocks.end(); }
222   const_iterator end() const { return Blocks.end(); }
223 
224   bool remove(MachineBasicBlock* BB) {
225     for(iterator i = begin(); i != end(); ++i) {
226       if (*i == BB) {
227         Blocks.erase(i);
228         return true;
229       }
230     }
231     return false;
232   }
233 
234   /// \brief Merge a block chain into this one.
235   ///
236   /// This routine merges a block chain into this one. It takes care of forming
237   /// a contiguous sequence of basic blocks, updating the edge list, and
238   /// updating the block -> chain mapping. It does not free or tear down the
239   /// old chain, but the old chain's block list is no longer valid.
240   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
241     assert(BB);
242     assert(!Blocks.empty());
243 
244     // Fast path in case we don't have a chain already.
245     if (!Chain) {
246       assert(!BlockToChain[BB]);
247       Blocks.push_back(BB);
248       BlockToChain[BB] = this;
249       return;
250     }
251 
252     assert(BB == *Chain->begin());
253     assert(Chain->begin() != Chain->end());
254 
255     // Update the incoming blocks to point to this chain, and add them to the
256     // chain structure.
257     for (MachineBasicBlock *ChainBB : *Chain) {
258       Blocks.push_back(ChainBB);
259       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
260       BlockToChain[ChainBB] = this;
261     }
262   }
263 
264 #ifndef NDEBUG
265   /// \brief Dump the blocks in this chain.
266   LLVM_DUMP_METHOD void dump() {
267     for (MachineBasicBlock *MBB : *this)
268       MBB->dump();
269   }
270 #endif // NDEBUG
271 
272   /// \brief Count of predecessors of any block within the chain which have not
273   /// yet been scheduled.  In general, we will delay scheduling this chain
274   /// until those predecessors are scheduled (or we find a sufficiently good
275   /// reason to override this heuristic.)  Note that when forming loop chains,
276   /// blocks outside the loop are ignored and treated as if they were already
277   /// scheduled.
278   ///
279   /// Note: This field is reinitialized multiple times - once for each loop,
280   /// and then once for the function as a whole.
281   unsigned UnscheduledPredecessors;
282 };
283 }
284 
285 namespace {
286 class MachineBlockPlacement : public MachineFunctionPass {
287   /// \brief A typedef for a block filter set.
288   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
289 
290   /// Pair struct containing basic block and taildup profitiability
291   struct BlockAndTailDupResult {
292     MachineBasicBlock *BB;
293     bool ShouldTailDup;
294   };
295 
296   /// Triple struct containing edge weight and the edge.
297   struct WeightedEdge {
298     BlockFrequency Weight;
299     MachineBasicBlock *Src;
300     MachineBasicBlock *Dest;
301   };
302 
303   /// \brief work lists of blocks that are ready to be laid out
304   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
305   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
306 
307   /// Edges that have already been computed as optimal.
308   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
309 
310   /// \brief Machine Function
311   MachineFunction *F;
312 
313   /// \brief A handle to the branch probability pass.
314   const MachineBranchProbabilityInfo *MBPI;
315 
316   /// \brief A handle to the function-wide block frequency pass.
317   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
318 
319   /// \brief A handle to the loop info.
320   MachineLoopInfo *MLI;
321 
322   /// \brief Preferred loop exit.
323   /// Member variable for convenience. It may be removed by duplication deep
324   /// in the call stack.
325   MachineBasicBlock *PreferredLoopExit;
326 
327   /// \brief A handle to the target's instruction info.
328   const TargetInstrInfo *TII;
329 
330   /// \brief A handle to the target's lowering info.
331   const TargetLoweringBase *TLI;
332 
333   /// \brief A handle to the post dominator tree.
334   MachinePostDominatorTree *MPDT;
335 
336   /// \brief Duplicator used to duplicate tails during placement.
337   ///
338   /// Placement decisions can open up new tail duplication opportunities, but
339   /// since tail duplication affects placement decisions of later blocks, it
340   /// must be done inline.
341   TailDuplicator TailDup;
342 
343   /// \brief Allocator and owner of BlockChain structures.
344   ///
345   /// We build BlockChains lazily while processing the loop structure of
346   /// a function. To reduce malloc traffic, we allocate them using this
347   /// slab-like allocator, and destroy them after the pass completes. An
348   /// important guarantee is that this allocator produces stable pointers to
349   /// the chains.
350   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
351 
352   /// \brief Function wide BasicBlock to BlockChain mapping.
353   ///
354   /// This mapping allows efficiently moving from any given basic block to the
355   /// BlockChain it participates in, if any. We use it to, among other things,
356   /// allow implicitly defining edges between chains as the existing edges
357   /// between basic blocks.
358   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
359 
360 #ifndef NDEBUG
361   /// The set of basic blocks that have terminators that cannot be fully
362   /// analyzed.  These basic blocks cannot be re-ordered safely by
363   /// MachineBlockPlacement, and we must preserve physical layout of these
364   /// blocks and their successors through the pass.
365   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
366 #endif
367 
368   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
369   /// if the count goes to 0, add them to the appropriate work list.
370   void markChainSuccessors(
371       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
372       const BlockFilterSet *BlockFilter = nullptr);
373 
374   /// Decrease the UnscheduledPredecessors count for a single block, and
375   /// if the count goes to 0, add them to the appropriate work list.
376   void markBlockSuccessors(
377       const BlockChain &Chain, const MachineBasicBlock *BB,
378       const MachineBasicBlock *LoopHeaderBB,
379       const BlockFilterSet *BlockFilter = nullptr);
380 
381   BranchProbability
382   collectViableSuccessors(
383       const MachineBasicBlock *BB, const BlockChain &Chain,
384       const BlockFilterSet *BlockFilter,
385       SmallVector<MachineBasicBlock *, 4> &Successors);
386   bool shouldPredBlockBeOutlined(
387       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
388       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
389       BranchProbability SuccProb, BranchProbability HotProb);
390   bool repeatedlyTailDuplicateBlock(
391       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
392       const MachineBasicBlock *LoopHeaderBB,
393       BlockChain &Chain, BlockFilterSet *BlockFilter,
394       MachineFunction::iterator &PrevUnplacedBlockIt);
395   bool maybeTailDuplicateBlock(
396       MachineBasicBlock *BB, MachineBasicBlock *LPred,
397       BlockChain &Chain, BlockFilterSet *BlockFilter,
398       MachineFunction::iterator &PrevUnplacedBlockIt,
399       bool &DuplicatedToPred);
400   bool hasBetterLayoutPredecessor(
401       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
402       const BlockChain &SuccChain, BranchProbability SuccProb,
403       BranchProbability RealSuccProb, const BlockChain &Chain,
404       const BlockFilterSet *BlockFilter);
405   BlockAndTailDupResult selectBestSuccessor(
406       const MachineBasicBlock *BB, const BlockChain &Chain,
407       const BlockFilterSet *BlockFilter);
408   MachineBasicBlock *selectBestCandidateBlock(
409       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
410   MachineBasicBlock *getFirstUnplacedBlock(
411       const BlockChain &PlacedChain,
412       MachineFunction::iterator &PrevUnplacedBlockIt,
413       const BlockFilterSet *BlockFilter);
414 
415   /// \brief Add a basic block to the work list if it is appropriate.
416   ///
417   /// If the optional parameter BlockFilter is provided, only MBB
418   /// present in the set will be added to the worklist. If nullptr
419   /// is provided, no filtering occurs.
420   void fillWorkLists(const MachineBasicBlock *MBB,
421                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
422                      const BlockFilterSet *BlockFilter);
423   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
424                   BlockFilterSet *BlockFilter = nullptr);
425   MachineBasicBlock *findBestLoopTop(
426       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
427   MachineBasicBlock *findBestLoopExit(
428       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
429   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
430   void buildLoopChains(const MachineLoop &L);
431   void rotateLoop(
432       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
433       const BlockFilterSet &LoopBlockSet);
434   void rotateLoopWithProfile(
435       BlockChain &LoopChain, const MachineLoop &L,
436       const BlockFilterSet &LoopBlockSet);
437   void buildCFGChains();
438   void optimizeBranches();
439   void alignBlocks();
440   /// Returns true if a block should be tail-duplicated to increase fallthrough
441   /// opportunities.
442   bool shouldTailDuplicate(MachineBasicBlock *BB);
443   /// Check the edge frequencies to see if tail duplication will increase
444   /// fallthroughs.
445   bool isProfitableToTailDup(
446     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
447     BranchProbability AdjustedSumProb,
448     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
449   /// Check for a trellis layout.
450   bool isTrellis(const MachineBasicBlock *BB,
451                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
452                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
453   /// Get the best successor given a trellis layout.
454   BlockAndTailDupResult getBestTrellisSuccessor(
455       const MachineBasicBlock *BB,
456       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
457       BranchProbability AdjustedSumProb, const BlockChain &Chain,
458       const BlockFilterSet *BlockFilter);
459   /// Get the best pair of non-conflicting edges.
460   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
461       const MachineBasicBlock *BB,
462       SmallVector<SmallVector<WeightedEdge, 8>, 2> &Edges);
463   /// Returns true if a block can tail duplicate into all unplaced
464   /// predecessors. Filters based on loop.
465   bool canTailDuplicateUnplacedPreds(
466       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
467       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
468   /// Find chains of triangles to tail-duplicate where a global analysis works,
469   /// but a local analysis would not find them.
470   void precomputeTriangleChains();
471 
472 public:
473   static char ID; // Pass identification, replacement for typeid
474   MachineBlockPlacement() : MachineFunctionPass(ID) {
475     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
476   }
477 
478   bool runOnMachineFunction(MachineFunction &F) override;
479 
480   void getAnalysisUsage(AnalysisUsage &AU) const override {
481     AU.addRequired<MachineBranchProbabilityInfo>();
482     AU.addRequired<MachineBlockFrequencyInfo>();
483     if (TailDupPlacement)
484       AU.addRequired<MachinePostDominatorTree>();
485     AU.addRequired<MachineLoopInfo>();
486     AU.addRequired<TargetPassConfig>();
487     MachineFunctionPass::getAnalysisUsage(AU);
488   }
489 };
490 }
491 
492 char MachineBlockPlacement::ID = 0;
493 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
494 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
495                       "Branch Probability Basic Block Placement", false, false)
496 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
497 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
498 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
499 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
500 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
501                     "Branch Probability Basic Block Placement", false, false)
502 
503 #ifndef NDEBUG
504 /// \brief Helper to print the name of a MBB.
505 ///
506 /// Only used by debug logging.
507 static std::string getBlockName(const MachineBasicBlock *BB) {
508   std::string Result;
509   raw_string_ostream OS(Result);
510   OS << "BB#" << BB->getNumber();
511   OS << " ('" << BB->getName() << "')";
512   OS.flush();
513   return Result;
514 }
515 #endif
516 
517 /// \brief Mark a chain's successors as having one fewer preds.
518 ///
519 /// When a chain is being merged into the "placed" chain, this routine will
520 /// quickly walk the successors of each block in the chain and mark them as
521 /// having one fewer active predecessor. It also adds any successors of this
522 /// chain which reach the zero-predecessor state to the appropriate worklist.
523 void MachineBlockPlacement::markChainSuccessors(
524     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
525     const BlockFilterSet *BlockFilter) {
526   // Walk all the blocks in this chain, marking their successors as having
527   // a predecessor placed.
528   for (MachineBasicBlock *MBB : Chain) {
529     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
530   }
531 }
532 
533 /// \brief Mark a single block's successors as having one fewer preds.
534 ///
535 /// Under normal circumstances, this is only called by markChainSuccessors,
536 /// but if a block that was to be placed is completely tail-duplicated away,
537 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
538 /// for just that block.
539 void MachineBlockPlacement::markBlockSuccessors(
540     const BlockChain &Chain, const MachineBasicBlock *MBB,
541     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
542   // Add any successors for which this is the only un-placed in-loop
543   // predecessor to the worklist as a viable candidate for CFG-neutral
544   // placement. No subsequent placement of this block will violate the CFG
545   // shape, so we get to use heuristics to choose a favorable placement.
546   for (MachineBasicBlock *Succ : MBB->successors()) {
547     if (BlockFilter && !BlockFilter->count(Succ))
548       continue;
549     BlockChain &SuccChain = *BlockToChain[Succ];
550     // Disregard edges within a fixed chain, or edges to the loop header.
551     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
552       continue;
553 
554     // This is a cross-chain edge that is within the loop, so decrement the
555     // loop predecessor count of the destination chain.
556     if (SuccChain.UnscheduledPredecessors == 0 ||
557         --SuccChain.UnscheduledPredecessors > 0)
558       continue;
559 
560     auto *NewBB = *SuccChain.begin();
561     if (NewBB->isEHPad())
562       EHPadWorkList.push_back(NewBB);
563     else
564       BlockWorkList.push_back(NewBB);
565   }
566 }
567 
568 /// This helper function collects the set of successors of block
569 /// \p BB that are allowed to be its layout successors, and return
570 /// the total branch probability of edges from \p BB to those
571 /// blocks.
572 BranchProbability MachineBlockPlacement::collectViableSuccessors(
573     const MachineBasicBlock *BB, const BlockChain &Chain,
574     const BlockFilterSet *BlockFilter,
575     SmallVector<MachineBasicBlock *, 4> &Successors) {
576   // Adjust edge probabilities by excluding edges pointing to blocks that is
577   // either not in BlockFilter or is already in the current chain. Consider the
578   // following CFG:
579   //
580   //     --->A
581   //     |  / \
582   //     | B   C
583   //     |  \ / \
584   //     ----D   E
585   //
586   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
587   // A->C is chosen as a fall-through, D won't be selected as a successor of C
588   // due to CFG constraint (the probability of C->D is not greater than
589   // HotProb to break top-order). If we exclude E that is not in BlockFilter
590   // when calculating the  probability of C->D, D will be selected and we
591   // will get A C D B as the layout of this loop.
592   auto AdjustedSumProb = BranchProbability::getOne();
593   for (MachineBasicBlock *Succ : BB->successors()) {
594     bool SkipSucc = false;
595     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
596       SkipSucc = true;
597     } else {
598       BlockChain *SuccChain = BlockToChain[Succ];
599       if (SuccChain == &Chain) {
600         SkipSucc = true;
601       } else if (Succ != *SuccChain->begin()) {
602         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
603         continue;
604       }
605     }
606     if (SkipSucc)
607       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
608     else
609       Successors.push_back(Succ);
610   }
611 
612   return AdjustedSumProb;
613 }
614 
615 /// The helper function returns the branch probability that is adjusted
616 /// or normalized over the new total \p AdjustedSumProb.
617 static BranchProbability
618 getAdjustedProbability(BranchProbability OrigProb,
619                        BranchProbability AdjustedSumProb) {
620   BranchProbability SuccProb;
621   uint32_t SuccProbN = OrigProb.getNumerator();
622   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
623   if (SuccProbN >= SuccProbD)
624     SuccProb = BranchProbability::getOne();
625   else
626     SuccProb = BranchProbability(SuccProbN, SuccProbD);
627 
628   return SuccProb;
629 }
630 
631 /// Check if \p BB has exactly the successors in \p Successors.
632 static bool
633 hasSameSuccessors(MachineBasicBlock &BB,
634                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
635   if (BB.succ_size() != Successors.size())
636     return false;
637   // We don't want to count self-loops
638   if (Successors.count(&BB))
639     return false;
640   for (MachineBasicBlock *Succ : BB.successors())
641     if (!Successors.count(Succ))
642       return false;
643   return true;
644 }
645 
646 /// Check if a block should be tail duplicated to increase fallthrough
647 /// opportunities.
648 /// \p BB Block to check.
649 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
650   // Blocks with single successors don't create additional fallthrough
651   // opportunities. Don't duplicate them. TODO: When conditional exits are
652   // analyzable, allow them to be duplicated.
653   bool IsSimple = TailDup.isSimpleBB(BB);
654 
655   if (BB->succ_size() == 1)
656     return false;
657   return TailDup.shouldTailDuplicate(IsSimple, *BB);
658 }
659 
660 /// Compare 2 BlockFrequency's with a small penalty for \p A.
661 /// In order to be conservative, we apply a X% penalty to account for
662 /// increased icache pressure and static heuristics. For small frequencies
663 /// we use only the numerators to improve accuracy. For simplicity, we assume the
664 /// penalty is less than 100%
665 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
666 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
667                             uint64_t EntryFreq) {
668   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
669   BlockFrequency Gain = A - B;
670   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
671 }
672 
673 /// Check the edge frequencies to see if tail duplication will increase
674 /// fallthroughs. It only makes sense to call this function when
675 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
676 /// always locally profitable if we would have picked \p Succ without
677 /// considering duplication.
678 bool MachineBlockPlacement::isProfitableToTailDup(
679     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
680     BranchProbability QProb,
681     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
682   // We need to do a probability calculation to make sure this is profitable.
683   // First: does succ have a successor that post-dominates? This affects the
684   // calculation. The 2 relevant cases are:
685   //    BB         BB
686   //    | \Qout    | \Qout
687   //   P|  C       |P C
688   //    =   C'     =   C'
689   //    |  /Qin    |  /Qin
690   //    | /        | /
691   //    Succ       Succ
692   //    / \        | \  V
693   //  U/   =V      |U \
694   //  /     \      =   D
695   //  D      E     |  /
696   //               | /
697   //               |/
698   //               PDom
699   //  '=' : Branch taken for that CFG edge
700   // In the second case, Placing Succ while duplicating it into C prevents the
701   // fallthrough of Succ into either D or PDom, because they now have C as an
702   // unplaced predecessor
703 
704   // Start by figuring out which case we fall into
705   MachineBasicBlock *PDom = nullptr;
706   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
707   // Only scan the relevant successors
708   auto AdjustedSuccSumProb =
709       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
710   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
711   auto BBFreq = MBFI->getBlockFreq(BB);
712   auto SuccFreq = MBFI->getBlockFreq(Succ);
713   BlockFrequency P = BBFreq * PProb;
714   BlockFrequency Qout = BBFreq * QProb;
715   uint64_t EntryFreq = MBFI->getEntryFreq();
716   // If there are no more successors, it is profitable to copy, as it strictly
717   // increases fallthrough.
718   if (SuccSuccs.size() == 0)
719     return greaterWithBias(P, Qout, EntryFreq);
720 
721   auto BestSuccSucc = BranchProbability::getZero();
722   // Find the PDom or the best Succ if no PDom exists.
723   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
724     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
725     if (Prob > BestSuccSucc)
726       BestSuccSucc = Prob;
727     if (PDom == nullptr)
728       if (MPDT->dominates(SuccSucc, Succ)) {
729         PDom = SuccSucc;
730         break;
731       }
732   }
733   // For the comparisons, we need to know Succ's best incoming edge that isn't
734   // from BB.
735   auto SuccBestPred = BlockFrequency(0);
736   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
737     if (SuccPred == Succ || SuccPred == BB
738         || BlockToChain[SuccPred] == &Chain
739         || (BlockFilter && !BlockFilter->count(SuccPred)))
740       continue;
741     auto Freq = MBFI->getBlockFreq(SuccPred)
742         * MBPI->getEdgeProbability(SuccPred, Succ);
743     if (Freq > SuccBestPred)
744       SuccBestPred = Freq;
745   }
746   // Qin is Succ's best unplaced incoming edge that isn't BB
747   BlockFrequency Qin = SuccBestPred;
748   // If it doesn't have a post-dominating successor, here is the calculation:
749   //    BB        BB
750   //    | \Qout   |  \
751   //   P|  C      |   =
752   //    =   C'    |    C
753   //    |  /Qin   |     |
754   //    | /       |     C' (+Succ)
755   //    Succ      Succ /|
756   //    / \       |  \/ |
757   //  U/   =V     |  == |
758   //  /     \     | /  \|
759   //  D      E    D     E
760   //  '=' : Branch taken for that CFG edge
761   //  Cost in the first case is: P + V
762   //  For this calculation, we always assume P > Qout. If Qout > P
763   //  The result of this function will be ignored at the caller.
764   //  Let F = SuccFreq - Qin
765   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
766 
767   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
768     BranchProbability UProb = BestSuccSucc;
769     BranchProbability VProb = AdjustedSuccSumProb - UProb;
770     BlockFrequency F = SuccFreq - Qin;
771     BlockFrequency V = SuccFreq * VProb;
772     BlockFrequency QinU = std::min(Qin, F) * UProb;
773     BlockFrequency BaseCost = P + V;
774     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
775     return greaterWithBias(BaseCost, DupCost, EntryFreq);
776   }
777   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
778   BranchProbability VProb = AdjustedSuccSumProb - UProb;
779   BlockFrequency U = SuccFreq * UProb;
780   BlockFrequency V = SuccFreq * VProb;
781   BlockFrequency F = SuccFreq - Qin;
782   // If there is a post-dominating successor, here is the calculation:
783   // BB         BB                 BB          BB
784   // | \Qout    |   \               | \Qout     |  \
785   // |P C       |    =              |P C        |   =
786   // =   C'     |P    C             =   C'      |P   C
787   // |  /Qin    |      |            |  /Qin     |     |
788   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
789   // Succ       Succ  /|            Succ        Succ /|
790   // | \  V     |   \/ |            | \  V      |  \/ |
791   // |U \       |U  /\ =?           |U =        |U /\ |
792   // =   D      = =  =?|            |   D       | =  =|
793   // |  /       |/     D            |  /        |/    D
794   // | /        |     /             | =         |    /
795   // |/         |    /              |/          |   =
796   // Dom         Dom                Dom         Dom
797   //  '=' : Branch taken for that CFG edge
798   // The cost for taken branches in the first case is P + U
799   // Let F = SuccFreq - Qin
800   // The cost in the second case (assuming independence), given the layout:
801   // BB, Succ, (C+Succ), D, Dom or the layout:
802   // BB, Succ, D, Dom, (C+Succ)
803   // is Qout + max(F, Qin) * U + min(F, Qin)
804   // compare P + U vs Qout + P * U + Qin.
805   //
806   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
807   //
808   // For the 3rd case, the cost is P + 2 * V
809   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
810   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
811   if (UProb > AdjustedSuccSumProb / 2 &&
812       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
813                                   Chain, BlockFilter))
814     // Cases 3 & 4
815     return greaterWithBias(
816         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
817         EntryFreq);
818   // Cases 1 & 2
819   return greaterWithBias((P + U),
820                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
821                           std::max(Qin, F) * UProb),
822                          EntryFreq);
823 }
824 
825 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
826 /// successors form the lower part of a trellis. A successor set S forms the
827 /// lower part of a trellis if all of the predecessors of S are either in S or
828 /// have all of S as successors. We ignore trellises where BB doesn't have 2
829 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
830 /// are very uncommon and complex to compute optimally. Allowing edges within S
831 /// is not strictly a trellis, but the same algorithm works, so we allow it.
832 bool MachineBlockPlacement::isTrellis(
833     const MachineBasicBlock *BB,
834     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
835     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
836   // Technically BB could form a trellis with branching factor higher than 2.
837   // But that's extremely uncommon.
838   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
839     return false;
840 
841   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
842                                                        BB->succ_end());
843   // To avoid reviewing the same predecessors twice.
844   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
845 
846   for (MachineBasicBlock *Succ : ViableSuccs) {
847     int PredCount = 0;
848     for (auto SuccPred : Succ->predecessors()) {
849       // Allow triangle successors, but don't count them.
850       if (Successors.count(SuccPred)) {
851         // Make sure that it is actually a triangle.
852         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
853           if (!Successors.count(CheckSucc))
854             return false;
855         continue;
856       }
857       const BlockChain *PredChain = BlockToChain[SuccPred];
858       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
859           PredChain == &Chain || PredChain == BlockToChain[Succ])
860         continue;
861       ++PredCount;
862       // Perform the successor check only once.
863       if (!SeenPreds.insert(SuccPred).second)
864         continue;
865       if (!hasSameSuccessors(*SuccPred, Successors))
866         return false;
867     }
868     // If one of the successors has only BB as a predecessor, it is not a
869     // trellis.
870     if (PredCount < 1)
871       return false;
872   }
873   return true;
874 }
875 
876 /// Pick the highest total weight pair of edges that can both be laid out.
877 /// The edges in \p Edges[0] are assumed to have a different destination than
878 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
879 /// the individual highest weight edges to the 2 different destinations, or in
880 /// case of a conflict, one of them should be replaced with a 2nd best edge.
881 std::pair<MachineBlockPlacement::WeightedEdge,
882           MachineBlockPlacement::WeightedEdge>
883 MachineBlockPlacement::getBestNonConflictingEdges(
884     const MachineBasicBlock *BB,
885     SmallVector<SmallVector<MachineBlockPlacement::WeightedEdge, 8>, 2>
886         &Edges) {
887   // Sort the edges, and then for each successor, find the best incoming
888   // predecessor. If the best incoming predecessors aren't the same,
889   // then that is clearly the best layout. If there is a conflict, one of the
890   // successors will have to fallthrough from the second best predecessor. We
891   // compare which combination is better overall.
892 
893   // Sort for highest frequency.
894   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
895 
896   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
897   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
898   auto BestA = Edges[0].begin();
899   auto BestB = Edges[1].begin();
900   // Arrange for the correct answer to be in BestA and BestB
901   // If the 2 best edges don't conflict, the answer is already there.
902   if (BestA->Src == BestB->Src) {
903     // Compare the total fallthrough of (Best + Second Best) for both pairs
904     auto SecondBestA = std::next(BestA);
905     auto SecondBestB = std::next(BestB);
906     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
907     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
908     if (BestAScore < BestBScore)
909       BestA = SecondBestA;
910     else
911       BestB = SecondBestB;
912   }
913   // Arrange for the BB edge to be in BestA if it exists.
914   if (BestB->Src == BB)
915     std::swap(BestA, BestB);
916   return std::make_pair(*BestA, *BestB);
917 }
918 
919 /// Get the best successor from \p BB based on \p BB being part of a trellis.
920 /// We only handle trellises with 2 successors, so the algorithm is
921 /// straightforward: Find the best pair of edges that don't conflict. We find
922 /// the best incoming edge for each successor in the trellis. If those conflict,
923 /// we consider which of them should be replaced with the second best.
924 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
925 /// comes from \p BB, it will be in \p BestEdges[0]
926 MachineBlockPlacement::BlockAndTailDupResult
927 MachineBlockPlacement::getBestTrellisSuccessor(
928     const MachineBasicBlock *BB,
929     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
930     BranchProbability AdjustedSumProb, const BlockChain &Chain,
931     const BlockFilterSet *BlockFilter) {
932 
933   BlockAndTailDupResult Result = {nullptr, false};
934   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
935                                                        BB->succ_end());
936 
937   // We assume size 2 because it's common. For general n, we would have to do
938   // the Hungarian algorithm, but it's not worth the complexity because more
939   // than 2 successors is fairly uncommon, and a trellis even more so.
940   if (Successors.size() != 2 || ViableSuccs.size() != 2)
941     return Result;
942 
943   // Collect the edge frequencies of all edges that form the trellis.
944   SmallVector<SmallVector<WeightedEdge, 8>, 2> Edges(2);
945   int SuccIndex = 0;
946   for (auto Succ : ViableSuccs) {
947     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
948       // Skip any placed predecessors that are not BB
949       if (SuccPred != BB)
950         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
951             BlockToChain[SuccPred] == &Chain ||
952             BlockToChain[SuccPred] == BlockToChain[Succ])
953           continue;
954       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
955                                 MBPI->getEdgeProbability(SuccPred, Succ);
956       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
957     }
958     ++SuccIndex;
959   }
960 
961   // Pick the best combination of 2 edges from all the edges in the trellis.
962   WeightedEdge BestA, BestB;
963   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
964 
965   if (BestA.Src != BB) {
966     // If we have a trellis, and BB doesn't have the best fallthrough edges,
967     // we shouldn't choose any successor. We've already looked and there's a
968     // better fallthrough edge for all the successors.
969     DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
970     return Result;
971   }
972 
973   // Did we pick the triangle edge? If tail-duplication is profitable, do
974   // that instead. Otherwise merge the triangle edge now while we know it is
975   // optimal.
976   if (BestA.Dest == BestB.Src) {
977     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
978     // would be better.
979     MachineBasicBlock *Succ1 = BestA.Dest;
980     MachineBasicBlock *Succ2 = BestB.Dest;
981     // Check to see if tail-duplication would be profitable.
982     if (TailDupPlacement && shouldTailDuplicate(Succ2) &&
983         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
984         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
985                               Chain, BlockFilter)) {
986       DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
987                 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
988             dbgs() << "    Selected: " << getBlockName(Succ2)
989                    << ", probability: " << Succ2Prob << " (Tail Duplicate)\n");
990       Result.BB = Succ2;
991       Result.ShouldTailDup = true;
992       return Result;
993     }
994   }
995   // We have already computed the optimal edge for the other side of the
996   // trellis.
997   ComputedEdges[BestB.Src] = { BestB.Dest, false };
998 
999   auto TrellisSucc = BestA.Dest;
1000   DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1001             MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1002         dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1003                << ", probability: " << SuccProb << " (Trellis)\n");
1004   Result.BB = TrellisSucc;
1005   return Result;
1006 }
1007 
1008 /// When the option TailDupPlacement is on, this method checks if the
1009 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1010 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1011 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1012     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1013     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1014   if (!shouldTailDuplicate(Succ))
1015     return false;
1016 
1017   // For CFG checking.
1018   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1019                                                        BB->succ_end());
1020   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1021     // Make sure all unplaced and unfiltered predecessors can be
1022     // tail-duplicated into.
1023     // Skip any blocks that are already placed or not in this loop.
1024     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1025         || BlockToChain[Pred] == &Chain)
1026       continue;
1027     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1028       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1029         // This will result in a trellis after tail duplication, so we don't
1030         // need to copy Succ into this predecessor. In the presence
1031         // of a trellis tail duplication can continue to be profitable.
1032         // For example:
1033         // A            A
1034         // |\           |\
1035         // | \          | \
1036         // |  C         |  C+BB
1037         // | /          |  |
1038         // |/           |  |
1039         // BB    =>     BB |
1040         // |\           |\/|
1041         // | \          |/\|
1042         // |  D         |  D
1043         // | /          | /
1044         // |/           |/
1045         // Succ         Succ
1046         //
1047         // After BB was duplicated into C, the layout looks like the one on the
1048         // right. BB and C now have the same successors. When considering
1049         // whether Succ can be duplicated into all its unplaced predecessors, we
1050         // ignore C.
1051         // We can do this because C already has a profitable fallthrough, namely
1052         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1053         // duplication and for this test.
1054         //
1055         // This allows trellises to be laid out in 2 separate chains
1056         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1057         // because it allows the creation of 2 fallthrough paths with links
1058         // between them, and we correctly identify the best layout for these
1059         // CFGs. We want to extend trellises that the user created in addition
1060         // to trellises created by tail-duplication, so we just look for the
1061         // CFG.
1062         continue;
1063       return false;
1064     }
1065   }
1066   return true;
1067 }
1068 
1069 /// Find chains of triangles where we believe it would be profitable to
1070 /// tail-duplicate them all, but a local analysis would not find them.
1071 /// There are 3 ways this can be profitable:
1072 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1073 ///    longer chains)
1074 /// 2) The chains are statically correlated. Branch probabilities have a very
1075 ///    U-shaped distribution.
1076 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1077 ///    If the branches in a chain are likely to be from the same side of the
1078 ///    distribution as their predecessor, but are independent at runtime, this
1079 ///    transformation is profitable. (Because the cost of being wrong is a small
1080 ///    fixed cost, unlike the standard triangle layout where the cost of being
1081 ///    wrong scales with the # of triangles.)
1082 /// 3) The chains are dynamically correlated. If the probability that a previous
1083 ///    branch was taken positively influences whether the next branch will be
1084 ///    taken
1085 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1086 void MachineBlockPlacement::precomputeTriangleChains() {
1087   struct TriangleChain {
1088     unsigned Count;
1089     std::forward_list<MachineBasicBlock*> Edges;
1090     TriangleChain(MachineBasicBlock* src, MachineBasicBlock *dst) {
1091       Edges.push_front(src);
1092       Edges.push_front(dst);
1093       Count = 1;
1094     }
1095 
1096     void append(MachineBasicBlock *dst) {
1097       assert(!Edges.empty() && Edges.front()->isSuccessor(dst) &&
1098              "Attempting to append a block that is not a successor.");
1099       Edges.push_front(dst);
1100       ++Count;
1101     }
1102 
1103     MachineBasicBlock *getKey() {
1104       return Edges.front();
1105     }
1106   };
1107 
1108   if (TriangleChainCount == 0)
1109     return;
1110 
1111   DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1112   // Map from last block to the chain that contains it. This allows us to extend
1113   // chains as we find new triangles.
1114   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1115   for (MachineBasicBlock &BB : *F) {
1116     // If BB doesn't have 2 successors, it doesn't start a triangle.
1117     if (BB.succ_size() != 2)
1118       continue;
1119     MachineBasicBlock *PDom = nullptr;
1120     for (MachineBasicBlock *Succ : BB.successors()) {
1121       if (!MPDT->dominates(Succ, &BB))
1122         continue;
1123       PDom = Succ;
1124       break;
1125     }
1126     // If BB doesn't have a post-dominating successor, it doesn't form a
1127     // triangle.
1128     if (PDom == nullptr)
1129       continue;
1130     // If PDom has a hint that it is low probability, skip this triangle.
1131     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1132       continue;
1133     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1134     // we're looking for.
1135     if (!shouldTailDuplicate(PDom))
1136       continue;
1137     bool CanTailDuplicate = true;
1138     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1139     // isn't the kind of triangle we're looking for.
1140     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1141       if (Pred == &BB)
1142         continue;
1143       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1144         CanTailDuplicate = false;
1145         break;
1146       }
1147     }
1148     // If we can't tail-duplicate PDom to its predecessors, then skip this
1149     // triangle.
1150     if (!CanTailDuplicate)
1151       continue;
1152 
1153     // Now we have an interesting triangle. Insert it if it's not part of an
1154     // existing chain
1155     // Note: This cannot be replaced with a call insert() or emplace() because
1156     // the find key is BB, but the insert/emplace key is PDom.
1157     auto Found = TriangleChainMap.find(&BB);
1158     // If it is, remove the chain from the map, grow it, and put it back in the
1159     // map with the end as the new key.
1160     if (Found != TriangleChainMap.end()) {
1161       TriangleChain Chain = std::move(Found->second);
1162       TriangleChainMap.erase(Found);
1163       Chain.append(PDom);
1164       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1165     } else {
1166       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1167       assert (InsertResult.second && "Block seen twice.");
1168       (void) InsertResult;
1169     }
1170   }
1171 
1172   for (auto &ChainPair : TriangleChainMap) {
1173     TriangleChain &Chain = ChainPair.second;
1174     // Benchmarking has shown that due to branch correlation duplicating 2 or
1175     // more triangles is profitable, despite the calculations assuming
1176     // independence.
1177     if (Chain.Count < TriangleChainCount)
1178       continue;
1179     MachineBasicBlock *dst = Chain.Edges.front();
1180     Chain.Edges.pop_front();
1181     for (MachineBasicBlock *src : Chain.Edges) {
1182       DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" <<
1183             getBlockName(dst) << " as pre-computed based on triangles.\n");
1184       ComputedEdges[src] = { dst, true };
1185       dst = src;
1186     }
1187   }
1188 }
1189 
1190 // When profile is not present, return the StaticLikelyProb.
1191 // When profile is available, we need to handle the triangle-shape CFG.
1192 static BranchProbability getLayoutSuccessorProbThreshold(
1193       const MachineBasicBlock *BB) {
1194   if (!BB->getParent()->getFunction()->getEntryCount())
1195     return BranchProbability(StaticLikelyProb, 100);
1196   if (BB->succ_size() == 2) {
1197     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1198     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1199     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1200       /* See case 1 below for the cost analysis. For BB->Succ to
1201        * be taken with smaller cost, the following needs to hold:
1202        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1203        *   So the threshold T in the calculation below
1204        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1205        *   So T / (1 - T) = 2, Yielding T = 2/3
1206        * Also adding user specified branch bias, we have
1207        *   T = (2/3)*(ProfileLikelyProb/50)
1208        *     = (2*ProfileLikelyProb)/150)
1209        */
1210       return BranchProbability(2 * ProfileLikelyProb, 150);
1211     }
1212   }
1213   return BranchProbability(ProfileLikelyProb, 100);
1214 }
1215 
1216 /// Checks to see if the layout candidate block \p Succ has a better layout
1217 /// predecessor than \c BB. If yes, returns true.
1218 /// \p SuccProb: The probability adjusted for only remaining blocks.
1219 ///   Only used for logging
1220 /// \p RealSuccProb: The un-adjusted probability.
1221 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1222 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1223 ///    considered
1224 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1225     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1226     const BlockChain &SuccChain, BranchProbability SuccProb,
1227     BranchProbability RealSuccProb, const BlockChain &Chain,
1228     const BlockFilterSet *BlockFilter) {
1229 
1230   // There isn't a better layout when there are no unscheduled predecessors.
1231   if (SuccChain.UnscheduledPredecessors == 0)
1232     return false;
1233 
1234   // There are two basic scenarios here:
1235   // -------------------------------------
1236   // Case 1: triangular shape CFG (if-then):
1237   //     BB
1238   //     | \
1239   //     |  \
1240   //     |   Pred
1241   //     |   /
1242   //     Succ
1243   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1244   // set Succ as the layout successor of BB. Picking Succ as BB's
1245   // successor breaks the CFG constraints (FIXME: define these constraints).
1246   // With this layout, Pred BB
1247   // is forced to be outlined, so the overall cost will be cost of the
1248   // branch taken from BB to Pred, plus the cost of back taken branch
1249   // from Pred to Succ, as well as the additional cost associated
1250   // with the needed unconditional jump instruction from Pred To Succ.
1251 
1252   // The cost of the topological order layout is the taken branch cost
1253   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1254   // must hold:
1255   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1256   //      < freq(BB->Succ) *  taken_branch_cost.
1257   // Ignoring unconditional jump cost, we get
1258   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1259   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1260   //
1261   // When real profile data is available, we can precisely compute the
1262   // probability threshold that is needed for edge BB->Succ to be considered.
1263   // Without profile data, the heuristic requires the branch bias to be
1264   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1265   // -----------------------------------------------------------------
1266   // Case 2: diamond like CFG (if-then-else):
1267   //     S
1268   //    / \
1269   //   |   \
1270   //  BB    Pred
1271   //   \    /
1272   //    Succ
1273   //    ..
1274   //
1275   // The current block is BB and edge BB->Succ is now being evaluated.
1276   // Note that edge S->BB was previously already selected because
1277   // prob(S->BB) > prob(S->Pred).
1278   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1279   // choose Pred, we will have a topological ordering as shown on the left
1280   // in the picture below. If we choose Succ, we have the solution as shown
1281   // on the right:
1282   //
1283   //   topo-order:
1284   //
1285   //       S-----                             ---S
1286   //       |    |                             |  |
1287   //    ---BB   |                             |  BB
1288   //    |       |                             |  |
1289   //    |  pred--                             |  Succ--
1290   //    |  |                                  |       |
1291   //    ---succ                               ---pred--
1292   //
1293   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1294   //      = freq(S->Pred) + freq(S->BB)
1295   //
1296   // If we have profile data (i.e, branch probabilities can be trusted), the
1297   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1298   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1299   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1300   // means the cost of topological order is greater.
1301   // When profile data is not available, however, we need to be more
1302   // conservative. If the branch prediction is wrong, breaking the topo-order
1303   // will actually yield a layout with large cost. For this reason, we need
1304   // strong biased branch at block S with Prob(S->BB) in order to select
1305   // BB->Succ. This is equivalent to looking the CFG backward with backward
1306   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1307   // profile data).
1308   // --------------------------------------------------------------------------
1309   // Case 3: forked diamond
1310   //       S
1311   //      / \
1312   //     /   \
1313   //   BB    Pred
1314   //   | \   / |
1315   //   |  \ /  |
1316   //   |   X   |
1317   //   |  / \  |
1318   //   | /   \ |
1319   //   S1     S2
1320   //
1321   // The current block is BB and edge BB->S1 is now being evaluated.
1322   // As above S->BB was already selected because
1323   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1324   //
1325   // topo-order:
1326   //
1327   //     S-------|                     ---S
1328   //     |       |                     |  |
1329   //  ---BB      |                     |  BB
1330   //  |          |                     |  |
1331   //  |  Pred----|                     |  S1----
1332   //  |  |                             |       |
1333   //  --(S1 or S2)                     ---Pred--
1334   //                                        |
1335   //                                       S2
1336   //
1337   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1338   //    + min(freq(Pred->S1), freq(Pred->S2))
1339   // Non-topo-order cost:
1340   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1341   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1342   // is 0. Then the non topo layout is better when
1343   // freq(S->Pred) < freq(BB->S1).
1344   // This is exactly what is checked below.
1345   // Note there are other shapes that apply (Pred may not be a single block,
1346   // but they all fit this general pattern.)
1347   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1348 
1349   // Make sure that a hot successor doesn't have a globally more
1350   // important predecessor.
1351   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1352   bool BadCFGConflict = false;
1353 
1354   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1355     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1356         (BlockFilter && !BlockFilter->count(Pred)) ||
1357         BlockToChain[Pred] == &Chain ||
1358         // This check is redundant except for look ahead. This function is
1359         // called for lookahead by isProfitableToTailDup when BB hasn't been
1360         // placed yet.
1361         (Pred == BB))
1362       continue;
1363     // Do backward checking.
1364     // For all cases above, we need a backward checking to filter out edges that
1365     // are not 'strongly' biased.
1366     // BB  Pred
1367     //  \ /
1368     //  Succ
1369     // We select edge BB->Succ if
1370     //      freq(BB->Succ) > freq(Succ) * HotProb
1371     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1372     //      HotProb
1373     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1374     // Case 1 is covered too, because the first equation reduces to:
1375     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1376     BlockFrequency PredEdgeFreq =
1377         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1378     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1379       BadCFGConflict = true;
1380       break;
1381     }
1382   }
1383 
1384   if (BadCFGConflict) {
1385     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1386                  << " (prob) (non-cold CFG conflict)\n");
1387     return true;
1388   }
1389 
1390   return false;
1391 }
1392 
1393 /// \brief Select the best successor for a block.
1394 ///
1395 /// This looks across all successors of a particular block and attempts to
1396 /// select the "best" one to be the layout successor. It only considers direct
1397 /// successors which also pass the block filter. It will attempt to avoid
1398 /// breaking CFG structure, but cave and break such structures in the case of
1399 /// very hot successor edges.
1400 ///
1401 /// \returns The best successor block found, or null if none are viable, along
1402 /// with a boolean indicating if tail duplication is necessary.
1403 MachineBlockPlacement::BlockAndTailDupResult
1404 MachineBlockPlacement::selectBestSuccessor(
1405     const MachineBasicBlock *BB, const BlockChain &Chain,
1406     const BlockFilterSet *BlockFilter) {
1407   const BranchProbability HotProb(StaticLikelyProb, 100);
1408 
1409   BlockAndTailDupResult BestSucc = { nullptr, false };
1410   auto BestProb = BranchProbability::getZero();
1411 
1412   SmallVector<MachineBasicBlock *, 4> Successors;
1413   auto AdjustedSumProb =
1414       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1415 
1416   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1417 
1418   // if we already precomputed the best successor for BB, return that if still
1419   // applicable.
1420   auto FoundEdge = ComputedEdges.find(BB);
1421   if (FoundEdge != ComputedEdges.end()) {
1422     MachineBasicBlock *Succ = FoundEdge->second.BB;
1423     ComputedEdges.erase(FoundEdge);
1424     BlockChain *SuccChain = BlockToChain[Succ];
1425     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1426         SuccChain != &Chain && Succ == *SuccChain->begin())
1427       return FoundEdge->second;
1428   }
1429 
1430   // if BB is part of a trellis, Use the trellis to determine the optimal
1431   // fallthrough edges
1432   if (isTrellis(BB, Successors, Chain, BlockFilter))
1433     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1434                                    BlockFilter);
1435 
1436   // For blocks with CFG violations, we may be able to lay them out anyway with
1437   // tail-duplication. We keep this vector so we can perform the probability
1438   // calculations the minimum number of times.
1439   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1440       DupCandidates;
1441   for (MachineBasicBlock *Succ : Successors) {
1442     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1443     BranchProbability SuccProb =
1444         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1445 
1446     BlockChain &SuccChain = *BlockToChain[Succ];
1447     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1448     // predecessor that yields lower global cost.
1449     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1450                                    Chain, BlockFilter)) {
1451       // If tail duplication would make Succ profitable, place it.
1452       if (TailDupPlacement && shouldTailDuplicate(Succ))
1453         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1454       continue;
1455     }
1456 
1457     DEBUG(
1458         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1459                << SuccProb
1460                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1461                << "\n");
1462 
1463     if (BestSucc.BB && BestProb >= SuccProb) {
1464       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1465       continue;
1466     }
1467 
1468     DEBUG(dbgs() << "    Setting it as best candidate\n");
1469     BestSucc.BB = Succ;
1470     BestProb = SuccProb;
1471   }
1472   // Handle the tail duplication candidates in order of decreasing probability.
1473   // Stop at the first one that is profitable. Also stop if they are less
1474   // profitable than BestSucc. Position is important because we preserve it and
1475   // prefer first best match. Here we aren't comparing in order, so we capture
1476   // the position instead.
1477   if (DupCandidates.size() != 0) {
1478     auto cmp =
1479         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1480            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1481           return std::get<0>(a) > std::get<0>(b);
1482         };
1483     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1484   }
1485   for(auto &Tup : DupCandidates) {
1486     BranchProbability DupProb;
1487     MachineBasicBlock *Succ;
1488     std::tie(DupProb, Succ) = Tup;
1489     if (DupProb < BestProb)
1490       break;
1491     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1492         // If tail duplication gives us fallthrough when we otherwise wouldn't
1493         // have it, that is a strict gain.
1494         && (BestSucc.BB == nullptr
1495             || isProfitableToTailDup(BB, Succ, BestProb, Chain,
1496                                      BlockFilter))) {
1497       DEBUG(
1498           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1499                  << DupProb
1500                  << " (Tail Duplicate)\n");
1501       BestSucc.BB = Succ;
1502       BestSucc.ShouldTailDup = true;
1503       break;
1504     }
1505   }
1506 
1507   if (BestSucc.BB)
1508     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1509 
1510   return BestSucc;
1511 }
1512 
1513 /// \brief Select the best block from a worklist.
1514 ///
1515 /// This looks through the provided worklist as a list of candidate basic
1516 /// blocks and select the most profitable one to place. The definition of
1517 /// profitable only really makes sense in the context of a loop. This returns
1518 /// the most frequently visited block in the worklist, which in the case of
1519 /// a loop, is the one most desirable to be physically close to the rest of the
1520 /// loop body in order to improve i-cache behavior.
1521 ///
1522 /// \returns The best block found, or null if none are viable.
1523 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1524     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1525   // Once we need to walk the worklist looking for a candidate, cleanup the
1526   // worklist of already placed entries.
1527   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1528   // some code complexity) into the loop below.
1529   WorkList.erase(remove_if(WorkList,
1530                            [&](MachineBasicBlock *BB) {
1531                              return BlockToChain.lookup(BB) == &Chain;
1532                            }),
1533                  WorkList.end());
1534 
1535   if (WorkList.empty())
1536     return nullptr;
1537 
1538   bool IsEHPad = WorkList[0]->isEHPad();
1539 
1540   MachineBasicBlock *BestBlock = nullptr;
1541   BlockFrequency BestFreq;
1542   for (MachineBasicBlock *MBB : WorkList) {
1543     assert(MBB->isEHPad() == IsEHPad);
1544 
1545     BlockChain &SuccChain = *BlockToChain[MBB];
1546     if (&SuccChain == &Chain)
1547       continue;
1548 
1549     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
1550 
1551     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1552     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1553           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1554 
1555     // For ehpad, we layout the least probable first as to avoid jumping back
1556     // from least probable landingpads to more probable ones.
1557     //
1558     // FIXME: Using probability is probably (!) not the best way to achieve
1559     // this. We should probably have a more principled approach to layout
1560     // cleanup code.
1561     //
1562     // The goal is to get:
1563     //
1564     //                 +--------------------------+
1565     //                 |                          V
1566     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1567     //
1568     // Rather than:
1569     //
1570     //                 +-------------------------------------+
1571     //                 V                                     |
1572     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1573     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1574       continue;
1575 
1576     BestBlock = MBB;
1577     BestFreq = CandidateFreq;
1578   }
1579 
1580   return BestBlock;
1581 }
1582 
1583 /// \brief Retrieve the first unplaced basic block.
1584 ///
1585 /// This routine is called when we are unable to use the CFG to walk through
1586 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1587 /// We walk through the function's blocks in order, starting from the
1588 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1589 /// re-scanning the entire sequence on repeated calls to this routine.
1590 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1591     const BlockChain &PlacedChain,
1592     MachineFunction::iterator &PrevUnplacedBlockIt,
1593     const BlockFilterSet *BlockFilter) {
1594   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1595        ++I) {
1596     if (BlockFilter && !BlockFilter->count(&*I))
1597       continue;
1598     if (BlockToChain[&*I] != &PlacedChain) {
1599       PrevUnplacedBlockIt = I;
1600       // Now select the head of the chain to which the unplaced block belongs
1601       // as the block to place. This will force the entire chain to be placed,
1602       // and satisfies the requirements of merging chains.
1603       return *BlockToChain[&*I]->begin();
1604     }
1605   }
1606   return nullptr;
1607 }
1608 
1609 void MachineBlockPlacement::fillWorkLists(
1610     const MachineBasicBlock *MBB,
1611     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1612     const BlockFilterSet *BlockFilter = nullptr) {
1613   BlockChain &Chain = *BlockToChain[MBB];
1614   if (!UpdatedPreds.insert(&Chain).second)
1615     return;
1616 
1617   assert(Chain.UnscheduledPredecessors == 0);
1618   for (MachineBasicBlock *ChainBB : Chain) {
1619     assert(BlockToChain[ChainBB] == &Chain);
1620     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1621       if (BlockFilter && !BlockFilter->count(Pred))
1622         continue;
1623       if (BlockToChain[Pred] == &Chain)
1624         continue;
1625       ++Chain.UnscheduledPredecessors;
1626     }
1627   }
1628 
1629   if (Chain.UnscheduledPredecessors != 0)
1630     return;
1631 
1632   MachineBasicBlock *BB = *Chain.begin();
1633   if (BB->isEHPad())
1634     EHPadWorkList.push_back(BB);
1635   else
1636     BlockWorkList.push_back(BB);
1637 }
1638 
1639 void MachineBlockPlacement::buildChain(
1640     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1641     BlockFilterSet *BlockFilter) {
1642   assert(HeadBB && "BB must not be null.\n");
1643   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1644   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1645 
1646   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1647   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1648   MachineBasicBlock *BB = *std::prev(Chain.end());
1649   for (;;) {
1650     assert(BB && "null block found at end of chain in loop.");
1651     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1652     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1653 
1654 
1655     // Look for the best viable successor if there is one to place immediately
1656     // after this block.
1657     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1658     MachineBasicBlock* BestSucc = Result.BB;
1659     bool ShouldTailDup = Result.ShouldTailDup;
1660     if (TailDupPlacement)
1661       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1662 
1663     // If an immediate successor isn't available, look for the best viable
1664     // block among those we've identified as not violating the loop's CFG at
1665     // this point. This won't be a fallthrough, but it will increase locality.
1666     if (!BestSucc)
1667       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1668     if (!BestSucc)
1669       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1670 
1671     if (!BestSucc) {
1672       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1673       if (!BestSucc)
1674         break;
1675 
1676       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1677                       "layout successor until the CFG reduces\n");
1678     }
1679 
1680     // Placement may have changed tail duplication opportunities.
1681     // Check for that now.
1682     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1683       // If the chosen successor was duplicated into all its predecessors,
1684       // don't bother laying it out, just go round the loop again with BB as
1685       // the chain end.
1686       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1687                                        BlockFilter, PrevUnplacedBlockIt))
1688         continue;
1689     }
1690 
1691     // Place this block, updating the datastructures to reflect its placement.
1692     BlockChain &SuccChain = *BlockToChain[BestSucc];
1693     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1694     // we selected a successor that didn't fit naturally into the CFG.
1695     SuccChain.UnscheduledPredecessors = 0;
1696     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1697                  << getBlockName(BestSucc) << "\n");
1698     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1699     Chain.merge(BestSucc, &SuccChain);
1700     BB = *std::prev(Chain.end());
1701   }
1702 
1703   DEBUG(dbgs() << "Finished forming chain for header block "
1704                << getBlockName(*Chain.begin()) << "\n");
1705 }
1706 
1707 /// \brief Find the best loop top block for layout.
1708 ///
1709 /// Look for a block which is strictly better than the loop header for laying
1710 /// out at the top of the loop. This looks for one and only one pattern:
1711 /// a latch block with no conditional exit. This block will cause a conditional
1712 /// jump around it or will be the bottom of the loop if we lay it out in place,
1713 /// but if it it doesn't end up at the bottom of the loop for any reason,
1714 /// rotation alone won't fix it. Because such a block will always result in an
1715 /// unconditional jump (for the backedge) rotating it in front of the loop
1716 /// header is always profitable.
1717 MachineBasicBlock *
1718 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1719                                        const BlockFilterSet &LoopBlockSet) {
1720   // Placing the latch block before the header may introduce an extra branch
1721   // that skips this block the first time the loop is executed, which we want
1722   // to avoid when optimising for size.
1723   // FIXME: in theory there is a case that does not introduce a new branch,
1724   // i.e. when the layout predecessor does not fallthrough to the loop header.
1725   // In practice this never happens though: there always seems to be a preheader
1726   // that can fallthrough and that is also placed before the header.
1727   if (F->getFunction()->optForSize())
1728     return L.getHeader();
1729 
1730   // Check that the header hasn't been fused with a preheader block due to
1731   // crazy branches. If it has, we need to start with the header at the top to
1732   // prevent pulling the preheader into the loop body.
1733   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1734   if (!LoopBlockSet.count(*HeaderChain.begin()))
1735     return L.getHeader();
1736 
1737   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1738                << "\n");
1739 
1740   BlockFrequency BestPredFreq;
1741   MachineBasicBlock *BestPred = nullptr;
1742   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1743     if (!LoopBlockSet.count(Pred))
1744       continue;
1745     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1746                  << Pred->succ_size() << " successors, ";
1747           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1748     if (Pred->succ_size() > 1)
1749       continue;
1750 
1751     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1752     if (!BestPred || PredFreq > BestPredFreq ||
1753         (!(PredFreq < BestPredFreq) &&
1754          Pred->isLayoutSuccessor(L.getHeader()))) {
1755       BestPred = Pred;
1756       BestPredFreq = PredFreq;
1757     }
1758   }
1759 
1760   // If no direct predecessor is fine, just use the loop header.
1761   if (!BestPred) {
1762     DEBUG(dbgs() << "    final top unchanged\n");
1763     return L.getHeader();
1764   }
1765 
1766   // Walk backwards through any straight line of predecessors.
1767   while (BestPred->pred_size() == 1 &&
1768          (*BestPred->pred_begin())->succ_size() == 1 &&
1769          *BestPred->pred_begin() != L.getHeader())
1770     BestPred = *BestPred->pred_begin();
1771 
1772   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1773   return BestPred;
1774 }
1775 
1776 /// \brief Find the best loop exiting block for layout.
1777 ///
1778 /// This routine implements the logic to analyze the loop looking for the best
1779 /// block to layout at the top of the loop. Typically this is done to maximize
1780 /// fallthrough opportunities.
1781 MachineBasicBlock *
1782 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1783                                         const BlockFilterSet &LoopBlockSet) {
1784   // We don't want to layout the loop linearly in all cases. If the loop header
1785   // is just a normal basic block in the loop, we want to look for what block
1786   // within the loop is the best one to layout at the top. However, if the loop
1787   // header has be pre-merged into a chain due to predecessors not having
1788   // analyzable branches, *and* the predecessor it is merged with is *not* part
1789   // of the loop, rotating the header into the middle of the loop will create
1790   // a non-contiguous range of blocks which is Very Bad. So start with the
1791   // header and only rotate if safe.
1792   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1793   if (!LoopBlockSet.count(*HeaderChain.begin()))
1794     return nullptr;
1795 
1796   BlockFrequency BestExitEdgeFreq;
1797   unsigned BestExitLoopDepth = 0;
1798   MachineBasicBlock *ExitingBB = nullptr;
1799   // If there are exits to outer loops, loop rotation can severely limit
1800   // fallthrough opportunities unless it selects such an exit. Keep a set of
1801   // blocks where rotating to exit with that block will reach an outer loop.
1802   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1803 
1804   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1805                << "\n");
1806   for (MachineBasicBlock *MBB : L.getBlocks()) {
1807     BlockChain &Chain = *BlockToChain[MBB];
1808     // Ensure that this block is at the end of a chain; otherwise it could be
1809     // mid-way through an inner loop or a successor of an unanalyzable branch.
1810     if (MBB != *std::prev(Chain.end()))
1811       continue;
1812 
1813     // Now walk the successors. We need to establish whether this has a viable
1814     // exiting successor and whether it has a viable non-exiting successor.
1815     // We store the old exiting state and restore it if a viable looping
1816     // successor isn't found.
1817     MachineBasicBlock *OldExitingBB = ExitingBB;
1818     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1819     bool HasLoopingSucc = false;
1820     for (MachineBasicBlock *Succ : MBB->successors()) {
1821       if (Succ->isEHPad())
1822         continue;
1823       if (Succ == MBB)
1824         continue;
1825       BlockChain &SuccChain = *BlockToChain[Succ];
1826       // Don't split chains, either this chain or the successor's chain.
1827       if (&Chain == &SuccChain) {
1828         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1829                      << getBlockName(Succ) << " (chain conflict)\n");
1830         continue;
1831       }
1832 
1833       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1834       if (LoopBlockSet.count(Succ)) {
1835         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1836                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1837         HasLoopingSucc = true;
1838         continue;
1839       }
1840 
1841       unsigned SuccLoopDepth = 0;
1842       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1843         SuccLoopDepth = ExitLoop->getLoopDepth();
1844         if (ExitLoop->contains(&L))
1845           BlocksExitingToOuterLoop.insert(MBB);
1846       }
1847 
1848       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1849       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1850                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1851             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1852       // Note that we bias this toward an existing layout successor to retain
1853       // incoming order in the absence of better information. The exit must have
1854       // a frequency higher than the current exit before we consider breaking
1855       // the layout.
1856       BranchProbability Bias(100 - ExitBlockBias, 100);
1857       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1858           ExitEdgeFreq > BestExitEdgeFreq ||
1859           (MBB->isLayoutSuccessor(Succ) &&
1860            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1861         BestExitEdgeFreq = ExitEdgeFreq;
1862         ExitingBB = MBB;
1863       }
1864     }
1865 
1866     if (!HasLoopingSucc) {
1867       // Restore the old exiting state, no viable looping successor was found.
1868       ExitingBB = OldExitingBB;
1869       BestExitEdgeFreq = OldBestExitEdgeFreq;
1870     }
1871   }
1872   // Without a candidate exiting block or with only a single block in the
1873   // loop, just use the loop header to layout the loop.
1874   if (!ExitingBB) {
1875     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1876     return nullptr;
1877   }
1878   if (L.getNumBlocks() == 1) {
1879     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1880     return nullptr;
1881   }
1882 
1883   // Also, if we have exit blocks which lead to outer loops but didn't select
1884   // one of them as the exiting block we are rotating toward, disable loop
1885   // rotation altogether.
1886   if (!BlocksExitingToOuterLoop.empty() &&
1887       !BlocksExitingToOuterLoop.count(ExitingBB))
1888     return nullptr;
1889 
1890   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1891   return ExitingBB;
1892 }
1893 
1894 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1895 ///
1896 /// Once we have built a chain, try to rotate it to line up the hot exit block
1897 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1898 /// branches. For example, if the loop has fallthrough into its header and out
1899 /// of its bottom already, don't rotate it.
1900 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1901                                        const MachineBasicBlock *ExitingBB,
1902                                        const BlockFilterSet &LoopBlockSet) {
1903   if (!ExitingBB)
1904     return;
1905 
1906   MachineBasicBlock *Top = *LoopChain.begin();
1907   bool ViableTopFallthrough = false;
1908   for (MachineBasicBlock *Pred : Top->predecessors()) {
1909     BlockChain *PredChain = BlockToChain[Pred];
1910     if (!LoopBlockSet.count(Pred) &&
1911         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1912       ViableTopFallthrough = true;
1913       break;
1914     }
1915   }
1916 
1917   // If the header has viable fallthrough, check whether the current loop
1918   // bottom is a viable exiting block. If so, bail out as rotating will
1919   // introduce an unnecessary branch.
1920   if (ViableTopFallthrough) {
1921     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1922     for (MachineBasicBlock *Succ : Bottom->successors()) {
1923       BlockChain *SuccChain = BlockToChain[Succ];
1924       if (!LoopBlockSet.count(Succ) &&
1925           (!SuccChain || Succ == *SuccChain->begin()))
1926         return;
1927     }
1928   }
1929 
1930   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1931   if (ExitIt == LoopChain.end())
1932     return;
1933 
1934   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1935 }
1936 
1937 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1938 ///
1939 /// With profile data, we can determine the cost in terms of missed fall through
1940 /// opportunities when rotating a loop chain and select the best rotation.
1941 /// Basically, there are three kinds of cost to consider for each rotation:
1942 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1943 ///    the loop to the loop header.
1944 ///    2. The possibly missed fall through edges (if they exist) from the loop
1945 ///    exits to BB out of the loop.
1946 ///    3. The missed fall through edge (if it exists) from the last BB to the
1947 ///    first BB in the loop chain.
1948 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1949 ///  We select the best rotation with the smallest cost.
1950 void MachineBlockPlacement::rotateLoopWithProfile(
1951     BlockChain &LoopChain, const MachineLoop &L,
1952     const BlockFilterSet &LoopBlockSet) {
1953   auto HeaderBB = L.getHeader();
1954   auto HeaderIter = find(LoopChain, HeaderBB);
1955   auto RotationPos = LoopChain.end();
1956 
1957   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1958 
1959   // A utility lambda that scales up a block frequency by dividing it by a
1960   // branch probability which is the reciprocal of the scale.
1961   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1962                                 unsigned Scale) -> BlockFrequency {
1963     if (Scale == 0)
1964       return 0;
1965     // Use operator / between BlockFrequency and BranchProbability to implement
1966     // saturating multiplication.
1967     return Freq / BranchProbability(1, Scale);
1968   };
1969 
1970   // Compute the cost of the missed fall-through edge to the loop header if the
1971   // chain head is not the loop header. As we only consider natural loops with
1972   // single header, this computation can be done only once.
1973   BlockFrequency HeaderFallThroughCost(0);
1974   for (auto *Pred : HeaderBB->predecessors()) {
1975     BlockChain *PredChain = BlockToChain[Pred];
1976     if (!LoopBlockSet.count(Pred) &&
1977         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1978       auto EdgeFreq =
1979           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1980       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1981       // If the predecessor has only an unconditional jump to the header, we
1982       // need to consider the cost of this jump.
1983       if (Pred->succ_size() == 1)
1984         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1985       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1986     }
1987   }
1988 
1989   // Here we collect all exit blocks in the loop, and for each exit we find out
1990   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1991   // as the sum of frequencies of exit edges we collect here, excluding the exit
1992   // edge from the tail of the loop chain.
1993   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1994   for (auto BB : LoopChain) {
1995     auto LargestExitEdgeProb = BranchProbability::getZero();
1996     for (auto *Succ : BB->successors()) {
1997       BlockChain *SuccChain = BlockToChain[Succ];
1998       if (!LoopBlockSet.count(Succ) &&
1999           (!SuccChain || Succ == *SuccChain->begin())) {
2000         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2001         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2002       }
2003     }
2004     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2005       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2006       ExitsWithFreq.emplace_back(BB, ExitFreq);
2007     }
2008   }
2009 
2010   // In this loop we iterate every block in the loop chain and calculate the
2011   // cost assuming the block is the head of the loop chain. When the loop ends,
2012   // we should have found the best candidate as the loop chain's head.
2013   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2014             EndIter = LoopChain.end();
2015        Iter != EndIter; Iter++, TailIter++) {
2016     // TailIter is used to track the tail of the loop chain if the block we are
2017     // checking (pointed by Iter) is the head of the chain.
2018     if (TailIter == LoopChain.end())
2019       TailIter = LoopChain.begin();
2020 
2021     auto TailBB = *TailIter;
2022 
2023     // Calculate the cost by putting this BB to the top.
2024     BlockFrequency Cost = 0;
2025 
2026     // If the current BB is the loop header, we need to take into account the
2027     // cost of the missed fall through edge from outside of the loop to the
2028     // header.
2029     if (Iter != HeaderIter)
2030       Cost += HeaderFallThroughCost;
2031 
2032     // Collect the loop exit cost by summing up frequencies of all exit edges
2033     // except the one from the chain tail.
2034     for (auto &ExitWithFreq : ExitsWithFreq)
2035       if (TailBB != ExitWithFreq.first)
2036         Cost += ExitWithFreq.second;
2037 
2038     // The cost of breaking the once fall-through edge from the tail to the top
2039     // of the loop chain. Here we need to consider three cases:
2040     // 1. If the tail node has only one successor, then we will get an
2041     //    additional jmp instruction. So the cost here is (MisfetchCost +
2042     //    JumpInstCost) * tail node frequency.
2043     // 2. If the tail node has two successors, then we may still get an
2044     //    additional jmp instruction if the layout successor after the loop
2045     //    chain is not its CFG successor. Note that the more frequently executed
2046     //    jmp instruction will be put ahead of the other one. Assume the
2047     //    frequency of those two branches are x and y, where x is the frequency
2048     //    of the edge to the chain head, then the cost will be
2049     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2050     // 3. If the tail node has more than two successors (this rarely happens),
2051     //    we won't consider any additional cost.
2052     if (TailBB->isSuccessor(*Iter)) {
2053       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2054       if (TailBB->succ_size() == 1)
2055         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2056                                     MisfetchCost + JumpInstCost);
2057       else if (TailBB->succ_size() == 2) {
2058         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2059         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2060         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2061                                   ? TailBBFreq * TailToHeadProb.getCompl()
2062                                   : TailToHeadFreq;
2063         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2064                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2065       }
2066     }
2067 
2068     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
2069                  << " to the top: " << Cost.getFrequency() << "\n");
2070 
2071     if (Cost < SmallestRotationCost) {
2072       SmallestRotationCost = Cost;
2073       RotationPos = Iter;
2074     }
2075   }
2076 
2077   if (RotationPos != LoopChain.end()) {
2078     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2079                  << " to the top\n");
2080     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2081   }
2082 }
2083 
2084 /// \brief Collect blocks in the given loop that are to be placed.
2085 ///
2086 /// When profile data is available, exclude cold blocks from the returned set;
2087 /// otherwise, collect all blocks in the loop.
2088 MachineBlockPlacement::BlockFilterSet
2089 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2090   BlockFilterSet LoopBlockSet;
2091 
2092   // Filter cold blocks off from LoopBlockSet when profile data is available.
2093   // Collect the sum of frequencies of incoming edges to the loop header from
2094   // outside. If we treat the loop as a super block, this is the frequency of
2095   // the loop. Then for each block in the loop, we calculate the ratio between
2096   // its frequency and the frequency of the loop block. When it is too small,
2097   // don't add it to the loop chain. If there are outer loops, then this block
2098   // will be merged into the first outer loop chain for which this block is not
2099   // cold anymore. This needs precise profile data and we only do this when
2100   // profile data is available.
2101   if (F->getFunction()->getEntryCount()) {
2102     BlockFrequency LoopFreq(0);
2103     for (auto LoopPred : L.getHeader()->predecessors())
2104       if (!L.contains(LoopPred))
2105         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2106                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2107 
2108     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2109       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2110       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2111         continue;
2112       LoopBlockSet.insert(LoopBB);
2113     }
2114   } else
2115     LoopBlockSet.insert(L.block_begin(), L.block_end());
2116 
2117   return LoopBlockSet;
2118 }
2119 
2120 /// \brief Forms basic block chains from the natural loop structures.
2121 ///
2122 /// These chains are designed to preserve the existing *structure* of the code
2123 /// as much as possible. We can then stitch the chains together in a way which
2124 /// both preserves the topological structure and minimizes taken conditional
2125 /// branches.
2126 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2127   // First recurse through any nested loops, building chains for those inner
2128   // loops.
2129   for (const MachineLoop *InnerLoop : L)
2130     buildLoopChains(*InnerLoop);
2131 
2132   assert(BlockWorkList.empty());
2133   assert(EHPadWorkList.empty());
2134   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2135 
2136   // Check if we have profile data for this function. If yes, we will rotate
2137   // this loop by modeling costs more precisely which requires the profile data
2138   // for better layout.
2139   bool RotateLoopWithProfile =
2140       ForcePreciseRotationCost ||
2141       (PreciseRotationCost && F->getFunction()->getEntryCount());
2142 
2143   // First check to see if there is an obviously preferable top block for the
2144   // loop. This will default to the header, but may end up as one of the
2145   // predecessors to the header if there is one which will result in strictly
2146   // fewer branches in the loop body.
2147   // When we use profile data to rotate the loop, this is unnecessary.
2148   MachineBasicBlock *LoopTop =
2149       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2150 
2151   // If we selected just the header for the loop top, look for a potentially
2152   // profitable exit block in the event that rotating the loop can eliminate
2153   // branches by placing an exit edge at the bottom.
2154   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2155     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2156 
2157   BlockChain &LoopChain = *BlockToChain[LoopTop];
2158 
2159   // FIXME: This is a really lame way of walking the chains in the loop: we
2160   // walk the blocks, and use a set to prevent visiting a particular chain
2161   // twice.
2162   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2163   assert(LoopChain.UnscheduledPredecessors == 0);
2164   UpdatedPreds.insert(&LoopChain);
2165 
2166   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2167     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2168 
2169   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2170 
2171   if (RotateLoopWithProfile)
2172     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2173   else
2174     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2175 
2176   DEBUG({
2177     // Crash at the end so we get all of the debugging output first.
2178     bool BadLoop = false;
2179     if (LoopChain.UnscheduledPredecessors) {
2180       BadLoop = true;
2181       dbgs() << "Loop chain contains a block without its preds placed!\n"
2182              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2183              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2184     }
2185     for (MachineBasicBlock *ChainBB : LoopChain) {
2186       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2187       if (!LoopBlockSet.remove(ChainBB)) {
2188         // We don't mark the loop as bad here because there are real situations
2189         // where this can occur. For example, with an unanalyzable fallthrough
2190         // from a loop block to a non-loop block or vice versa.
2191         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2192                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2193                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2194                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2195       }
2196     }
2197 
2198     if (!LoopBlockSet.empty()) {
2199       BadLoop = true;
2200       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2201         dbgs() << "Loop contains blocks never placed into a chain!\n"
2202                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2203                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2204                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2205     }
2206     assert(!BadLoop && "Detected problems with the placement of this loop.");
2207   });
2208 
2209   BlockWorkList.clear();
2210   EHPadWorkList.clear();
2211 }
2212 
2213 void MachineBlockPlacement::buildCFGChains() {
2214   // Ensure that every BB in the function has an associated chain to simplify
2215   // the assumptions of the remaining algorithm.
2216   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2217   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2218        ++FI) {
2219     MachineBasicBlock *BB = &*FI;
2220     BlockChain *Chain =
2221         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2222     // Also, merge any blocks which we cannot reason about and must preserve
2223     // the exact fallthrough behavior for.
2224     for (;;) {
2225       Cond.clear();
2226       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2227       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2228         break;
2229 
2230       MachineFunction::iterator NextFI = std::next(FI);
2231       MachineBasicBlock *NextBB = &*NextFI;
2232       // Ensure that the layout successor is a viable block, as we know that
2233       // fallthrough is a possibility.
2234       assert(NextFI != FE && "Can't fallthrough past the last block.");
2235       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2236                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
2237                    << "\n");
2238       Chain->merge(NextBB, nullptr);
2239 #ifndef NDEBUG
2240       BlocksWithUnanalyzableExits.insert(&*BB);
2241 #endif
2242       FI = NextFI;
2243       BB = NextBB;
2244     }
2245   }
2246 
2247   // Build any loop-based chains.
2248   PreferredLoopExit = nullptr;
2249   for (MachineLoop *L : *MLI)
2250     buildLoopChains(*L);
2251 
2252   assert(BlockWorkList.empty());
2253   assert(EHPadWorkList.empty());
2254 
2255   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2256   for (MachineBasicBlock &MBB : *F)
2257     fillWorkLists(&MBB, UpdatedPreds);
2258 
2259   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2260   buildChain(&F->front(), FunctionChain);
2261 
2262 #ifndef NDEBUG
2263   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
2264 #endif
2265   DEBUG({
2266     // Crash at the end so we get all of the debugging output first.
2267     bool BadFunc = false;
2268     FunctionBlockSetType FunctionBlockSet;
2269     for (MachineBasicBlock &MBB : *F)
2270       FunctionBlockSet.insert(&MBB);
2271 
2272     for (MachineBasicBlock *ChainBB : FunctionChain)
2273       if (!FunctionBlockSet.erase(ChainBB)) {
2274         BadFunc = true;
2275         dbgs() << "Function chain contains a block not in the function!\n"
2276                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2277       }
2278 
2279     if (!FunctionBlockSet.empty()) {
2280       BadFunc = true;
2281       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2282         dbgs() << "Function contains blocks never placed into a chain!\n"
2283                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2284     }
2285     assert(!BadFunc && "Detected problems with the block placement.");
2286   });
2287 
2288   // Splice the blocks into place.
2289   MachineFunction::iterator InsertPos = F->begin();
2290   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
2291   for (MachineBasicBlock *ChainBB : FunctionChain) {
2292     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2293                                                        : "          ... ")
2294                  << getBlockName(ChainBB) << "\n");
2295     if (InsertPos != MachineFunction::iterator(ChainBB))
2296       F->splice(InsertPos, ChainBB);
2297     else
2298       ++InsertPos;
2299 
2300     // Update the terminator of the previous block.
2301     if (ChainBB == *FunctionChain.begin())
2302       continue;
2303     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2304 
2305     // FIXME: It would be awesome of updateTerminator would just return rather
2306     // than assert when the branch cannot be analyzed in order to remove this
2307     // boiler plate.
2308     Cond.clear();
2309     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2310 
2311 #ifndef NDEBUG
2312     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2313       // Given the exact block placement we chose, we may actually not _need_ to
2314       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2315       // do that at this point is a bug.
2316       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2317               !PrevBB->canFallThrough()) &&
2318              "Unexpected block with un-analyzable fallthrough!");
2319       Cond.clear();
2320       TBB = FBB = nullptr;
2321     }
2322 #endif
2323 
2324     // The "PrevBB" is not yet updated to reflect current code layout, so,
2325     //   o. it may fall-through to a block without explicit "goto" instruction
2326     //      before layout, and no longer fall-through it after layout; or
2327     //   o. just opposite.
2328     //
2329     // analyzeBranch() may return erroneous value for FBB when these two
2330     // situations take place. For the first scenario FBB is mistakenly set NULL;
2331     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2332     // mistakenly pointing to "*BI".
2333     // Thus, if the future change needs to use FBB before the layout is set, it
2334     // has to correct FBB first by using the code similar to the following:
2335     //
2336     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2337     //   PrevBB->updateTerminator();
2338     //   Cond.clear();
2339     //   TBB = FBB = nullptr;
2340     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2341     //     // FIXME: This should never take place.
2342     //     TBB = FBB = nullptr;
2343     //   }
2344     // }
2345     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2346       PrevBB->updateTerminator();
2347   }
2348 
2349   // Fixup the last block.
2350   Cond.clear();
2351   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2352   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2353     F->back().updateTerminator();
2354 
2355   BlockWorkList.clear();
2356   EHPadWorkList.clear();
2357 }
2358 
2359 void MachineBlockPlacement::optimizeBranches() {
2360   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2361   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2362 
2363   // Now that all the basic blocks in the chain have the proper layout,
2364   // make a final call to AnalyzeBranch with AllowModify set.
2365   // Indeed, the target may be able to optimize the branches in a way we
2366   // cannot because all branches may not be analyzable.
2367   // E.g., the target may be able to remove an unconditional branch to
2368   // a fallthrough when it occurs after predicated terminators.
2369   for (MachineBasicBlock *ChainBB : FunctionChain) {
2370     Cond.clear();
2371     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2372     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2373       // If PrevBB has a two-way branch, try to re-order the branches
2374       // such that we branch to the successor with higher probability first.
2375       if (TBB && !Cond.empty() && FBB &&
2376           MBPI->getEdgeProbability(ChainBB, FBB) >
2377               MBPI->getEdgeProbability(ChainBB, TBB) &&
2378           !TII->reverseBranchCondition(Cond)) {
2379         DEBUG(dbgs() << "Reverse order of the two branches: "
2380                      << getBlockName(ChainBB) << "\n");
2381         DEBUG(dbgs() << "    Edge probability: "
2382                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2383                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2384         DebugLoc dl; // FIXME: this is nowhere
2385         TII->removeBranch(*ChainBB);
2386         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2387         ChainBB->updateTerminator();
2388       }
2389     }
2390   }
2391 }
2392 
2393 void MachineBlockPlacement::alignBlocks() {
2394   // Walk through the backedges of the function now that we have fully laid out
2395   // the basic blocks and align the destination of each backedge. We don't rely
2396   // exclusively on the loop info here so that we can align backedges in
2397   // unnatural CFGs and backedges that were introduced purely because of the
2398   // loop rotations done during this layout pass.
2399   if (F->getFunction()->optForSize())
2400     return;
2401   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2402   if (FunctionChain.begin() == FunctionChain.end())
2403     return; // Empty chain.
2404 
2405   const BranchProbability ColdProb(1, 5); // 20%
2406   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2407   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2408   for (MachineBasicBlock *ChainBB : FunctionChain) {
2409     if (ChainBB == *FunctionChain.begin())
2410       continue;
2411 
2412     // Don't align non-looping basic blocks. These are unlikely to execute
2413     // enough times to matter in practice. Note that we'll still handle
2414     // unnatural CFGs inside of a natural outer loop (the common case) and
2415     // rotated loops.
2416     MachineLoop *L = MLI->getLoopFor(ChainBB);
2417     if (!L)
2418       continue;
2419 
2420     unsigned Align = TLI->getPrefLoopAlignment(L);
2421     if (!Align)
2422       continue; // Don't care about loop alignment.
2423 
2424     // If the block is cold relative to the function entry don't waste space
2425     // aligning it.
2426     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2427     if (Freq < WeightedEntryFreq)
2428       continue;
2429 
2430     // If the block is cold relative to its loop header, don't align it
2431     // regardless of what edges into the block exist.
2432     MachineBasicBlock *LoopHeader = L->getHeader();
2433     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2434     if (Freq < (LoopHeaderFreq * ColdProb))
2435       continue;
2436 
2437     // Check for the existence of a non-layout predecessor which would benefit
2438     // from aligning this block.
2439     MachineBasicBlock *LayoutPred =
2440         &*std::prev(MachineFunction::iterator(ChainBB));
2441 
2442     // Force alignment if all the predecessors are jumps. We already checked
2443     // that the block isn't cold above.
2444     if (!LayoutPred->isSuccessor(ChainBB)) {
2445       ChainBB->setAlignment(Align);
2446       continue;
2447     }
2448 
2449     // Align this block if the layout predecessor's edge into this block is
2450     // cold relative to the block. When this is true, other predecessors make up
2451     // all of the hot entries into the block and thus alignment is likely to be
2452     // important.
2453     BranchProbability LayoutProb =
2454         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2455     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2456     if (LayoutEdgeFreq <= (Freq * ColdProb))
2457       ChainBB->setAlignment(Align);
2458   }
2459 }
2460 
2461 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2462 /// it was duplicated into its chain predecessor and removed.
2463 /// \p BB    - Basic block that may be duplicated.
2464 ///
2465 /// \p LPred - Chosen layout predecessor of \p BB.
2466 ///            Updated to be the chain end if LPred is removed.
2467 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2468 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2469 ///                  Used to identify which blocks to update predecessor
2470 ///                  counts.
2471 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2472 ///                          chosen in the given order due to unnatural CFG
2473 ///                          only needed if \p BB is removed and
2474 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2475 /// @return true if \p BB was removed.
2476 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2477     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2478     const MachineBasicBlock *LoopHeaderBB,
2479     BlockChain &Chain, BlockFilterSet *BlockFilter,
2480     MachineFunction::iterator &PrevUnplacedBlockIt) {
2481   bool Removed, DuplicatedToLPred;
2482   bool DuplicatedToOriginalLPred;
2483   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2484                                     PrevUnplacedBlockIt,
2485                                     DuplicatedToLPred);
2486   if (!Removed)
2487     return false;
2488   DuplicatedToOriginalLPred = DuplicatedToLPred;
2489   // Iteratively try to duplicate again. It can happen that a block that is
2490   // duplicated into is still small enough to be duplicated again.
2491   // No need to call markBlockSuccessors in this case, as the blocks being
2492   // duplicated from here on are already scheduled.
2493   // Note that DuplicatedToLPred always implies Removed.
2494   while (DuplicatedToLPred) {
2495     assert (Removed && "Block must have been removed to be duplicated into its "
2496             "layout predecessor.");
2497     MachineBasicBlock *DupBB, *DupPred;
2498     // The removal callback causes Chain.end() to be updated when a block is
2499     // removed. On the first pass through the loop, the chain end should be the
2500     // same as it was on function entry. On subsequent passes, because we are
2501     // duplicating the block at the end of the chain, if it is removed the
2502     // chain will have shrunk by one block.
2503     BlockChain::iterator ChainEnd = Chain.end();
2504     DupBB = *(--ChainEnd);
2505     // Now try to duplicate again.
2506     if (ChainEnd == Chain.begin())
2507       break;
2508     DupPred = *std::prev(ChainEnd);
2509     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2510                                       PrevUnplacedBlockIt,
2511                                       DuplicatedToLPred);
2512   }
2513   // If BB was duplicated into LPred, it is now scheduled. But because it was
2514   // removed, markChainSuccessors won't be called for its chain. Instead we
2515   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2516   // at the end because repeating the tail duplication can increase the number
2517   // of unscheduled predecessors.
2518   LPred = *std::prev(Chain.end());
2519   if (DuplicatedToOriginalLPred)
2520     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2521   return true;
2522 }
2523 
2524 /// Tail duplicate \p BB into (some) predecessors if profitable.
2525 /// \p BB    - Basic block that may be duplicated
2526 /// \p LPred - Chosen layout predecessor of \p BB
2527 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2528 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2529 ///                  Used to identify which blocks to update predecessor
2530 ///                  counts.
2531 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2532 ///                          chosen in the given order due to unnatural CFG
2533 ///                          only needed if \p BB is removed and
2534 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2535 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2536 ///                        only be true if the block was removed.
2537 /// \return  - True if the block was duplicated into all preds and removed.
2538 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2539     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2540     BlockChain &Chain, BlockFilterSet *BlockFilter,
2541     MachineFunction::iterator &PrevUnplacedBlockIt,
2542     bool &DuplicatedToLPred) {
2543   DuplicatedToLPred = false;
2544   if (!shouldTailDuplicate(BB))
2545     return false;
2546 
2547   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2548         << BB->getNumber() << "\n");
2549 
2550   // This has to be a callback because none of it can be done after
2551   // BB is deleted.
2552   bool Removed = false;
2553   auto RemovalCallback =
2554       [&](MachineBasicBlock *RemBB) {
2555         // Signal to outer function
2556         Removed = true;
2557 
2558         // Conservative default.
2559         bool InWorkList = true;
2560         // Remove from the Chain and Chain Map
2561         if (BlockToChain.count(RemBB)) {
2562           BlockChain *Chain = BlockToChain[RemBB];
2563           InWorkList = Chain->UnscheduledPredecessors == 0;
2564           Chain->remove(RemBB);
2565           BlockToChain.erase(RemBB);
2566         }
2567 
2568         // Handle the unplaced block iterator
2569         if (&(*PrevUnplacedBlockIt) == RemBB) {
2570           PrevUnplacedBlockIt++;
2571         }
2572 
2573         // Handle the Work Lists
2574         if (InWorkList) {
2575           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2576           if (RemBB->isEHPad())
2577             RemoveList = EHPadWorkList;
2578           RemoveList.erase(
2579               remove_if(RemoveList,
2580                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2581               RemoveList.end());
2582         }
2583 
2584         // Handle the filter set
2585         if (BlockFilter) {
2586           BlockFilter->remove(RemBB);
2587         }
2588 
2589         // Remove the block from loop info.
2590         MLI->removeBlock(RemBB);
2591         if (RemBB == PreferredLoopExit)
2592           PreferredLoopExit = nullptr;
2593 
2594         DEBUG(dbgs() << "TailDuplicator deleted block: "
2595               << getBlockName(RemBB) << "\n");
2596       };
2597   auto RemovalCallbackRef =
2598       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2599 
2600   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2601   bool IsSimple = TailDup.isSimpleBB(BB);
2602   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2603                                  &DuplicatedPreds, &RemovalCallbackRef);
2604 
2605   // Update UnscheduledPredecessors to reflect tail-duplication.
2606   DuplicatedToLPred = false;
2607   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2608     // We're only looking for unscheduled predecessors that match the filter.
2609     BlockChain* PredChain = BlockToChain[Pred];
2610     if (Pred == LPred)
2611       DuplicatedToLPred = true;
2612     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2613         || PredChain == &Chain)
2614       continue;
2615     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2616       if (BlockFilter && !BlockFilter->count(NewSucc))
2617         continue;
2618       BlockChain *NewChain = BlockToChain[NewSucc];
2619       if (NewChain != &Chain && NewChain != PredChain)
2620         NewChain->UnscheduledPredecessors++;
2621     }
2622   }
2623   return Removed;
2624 }
2625 
2626 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2627   if (skipFunction(*MF.getFunction()))
2628     return false;
2629 
2630   // Check for single-block functions and skip them.
2631   if (std::next(MF.begin()) == MF.end())
2632     return false;
2633 
2634   F = &MF;
2635   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2636   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2637       getAnalysis<MachineBlockFrequencyInfo>());
2638   MLI = &getAnalysis<MachineLoopInfo>();
2639   TII = MF.getSubtarget().getInstrInfo();
2640   TLI = MF.getSubtarget().getTargetLowering();
2641   MPDT = nullptr;
2642 
2643   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2644   // there are no MachineLoops.
2645   PreferredLoopExit = nullptr;
2646 
2647   if (TailDupPlacement) {
2648     MPDT = &getAnalysis<MachinePostDominatorTree>();
2649     unsigned TailDupSize = TailDupPlacementThreshold;
2650     if (MF.getFunction()->optForSize())
2651       TailDupSize = 1;
2652     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2653     precomputeTriangleChains();
2654   }
2655 
2656   assert(BlockToChain.empty());
2657 
2658   buildCFGChains();
2659 
2660   // Changing the layout can create new tail merging opportunities.
2661   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2662   // TailMerge can create jump into if branches that make CFG irreducible for
2663   // HW that requires structured CFG.
2664   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2665                          PassConfig->getEnableTailMerge() &&
2666                          BranchFoldPlacement;
2667   // No tail merging opportunities if the block number is less than four.
2668   if (MF.size() > 3 && EnableTailMerge) {
2669     unsigned TailMergeSize = TailDupPlacementThreshold + 1;
2670     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2671                     *MBPI, TailMergeSize);
2672 
2673     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2674                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2675                             /*AfterBlockPlacement=*/true)) {
2676       // Redo the layout if tail merging creates/removes/moves blocks.
2677       BlockToChain.clear();
2678       // Must redo the post-dominator tree if blocks were changed.
2679       if (MPDT)
2680         MPDT->runOnMachineFunction(MF);
2681       ChainAllocator.DestroyAll();
2682       buildCFGChains();
2683     }
2684   }
2685 
2686   optimizeBranches();
2687   alignBlocks();
2688 
2689   BlockToChain.clear();
2690   ChainAllocator.DestroyAll();
2691 
2692   if (AlignAllBlock)
2693     // Align all of the blocks in the function to a specific alignment.
2694     for (MachineBasicBlock &MBB : MF)
2695       MBB.setAlignment(AlignAllBlock);
2696   else if (AlignAllNonFallThruBlocks) {
2697     // Align all of the blocks that have no fall-through predecessors to a
2698     // specific alignment.
2699     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2700       auto LayoutPred = std::prev(MBI);
2701       if (!LayoutPred->isSuccessor(&*MBI))
2702         MBI->setAlignment(AlignAllNonFallThruBlocks);
2703     }
2704   }
2705   if (ViewBlockLayoutWithBFI != GVDT_None &&
2706       (ViewBlockFreqFuncName.empty() ||
2707        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2708     MBFI->view("MBP." + MF.getName(), false);
2709   }
2710 
2711 
2712   // We always return true as we have no way to track whether the final order
2713   // differs from the original order.
2714   return true;
2715 }
2716 
2717 namespace {
2718 /// \brief A pass to compute block placement statistics.
2719 ///
2720 /// A separate pass to compute interesting statistics for evaluating block
2721 /// placement. This is separate from the actual placement pass so that they can
2722 /// be computed in the absence of any placement transformations or when using
2723 /// alternative placement strategies.
2724 class MachineBlockPlacementStats : public MachineFunctionPass {
2725   /// \brief A handle to the branch probability pass.
2726   const MachineBranchProbabilityInfo *MBPI;
2727 
2728   /// \brief A handle to the function-wide block frequency pass.
2729   const MachineBlockFrequencyInfo *MBFI;
2730 
2731 public:
2732   static char ID; // Pass identification, replacement for typeid
2733   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2734     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2735   }
2736 
2737   bool runOnMachineFunction(MachineFunction &F) override;
2738 
2739   void getAnalysisUsage(AnalysisUsage &AU) const override {
2740     AU.addRequired<MachineBranchProbabilityInfo>();
2741     AU.addRequired<MachineBlockFrequencyInfo>();
2742     AU.setPreservesAll();
2743     MachineFunctionPass::getAnalysisUsage(AU);
2744   }
2745 };
2746 }
2747 
2748 char MachineBlockPlacementStats::ID = 0;
2749 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2750 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2751                       "Basic Block Placement Stats", false, false)
2752 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2753 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2754 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2755                     "Basic Block Placement Stats", false, false)
2756 
2757 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2758   // Check for single-block functions and skip them.
2759   if (std::next(F.begin()) == F.end())
2760     return false;
2761 
2762   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2763   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2764 
2765   for (MachineBasicBlock &MBB : F) {
2766     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2767     Statistic &NumBranches =
2768         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2769     Statistic &BranchTakenFreq =
2770         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2771     for (MachineBasicBlock *Succ : MBB.successors()) {
2772       // Skip if this successor is a fallthrough.
2773       if (MBB.isLayoutSuccessor(Succ))
2774         continue;
2775 
2776       BlockFrequency EdgeFreq =
2777           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2778       ++NumBranches;
2779       BranchTakenFreq += EdgeFreq.getFrequency();
2780     }
2781   }
2782 
2783   return false;
2784 }
2785