1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineDominators.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include <algorithm> 54 #include <functional> 55 #include <utility> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "block-placement" 59 60 STATISTIC(NumCondBranches, "Number of conditional branches"); 61 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 62 STATISTIC(CondBranchTakenFreq, 63 "Potential frequency of taking conditional branches"); 64 STATISTIC(UncondBranchTakenFreq, 65 "Potential frequency of taking unconditional branches"); 66 67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 68 cl::desc("Force the alignment of all " 69 "blocks in the function."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 73 "align-all-nofallthru-blocks", 74 cl::desc("Force the alignment of all " 75 "blocks that have no fall-through predecessors (i.e. don't add " 76 "nops that are executed)."), 77 cl::init(0), cl::Hidden); 78 79 // FIXME: Find a good default for this flag and remove the flag. 80 static cl::opt<unsigned> ExitBlockBias( 81 "block-placement-exit-block-bias", 82 cl::desc("Block frequency percentage a loop exit block needs " 83 "over the original exit to be considered the new exit."), 84 cl::init(0), cl::Hidden); 85 86 // Definition: 87 // - Outlining: placement of a basic block outside the chain or hot path. 88 89 static cl::opt<bool> OutlineOptionalBranches( 90 "outline-optional-branches", 91 cl::desc("Outlining optional branches will place blocks that are optional " 92 "branches, i.e. branches with a common post dominator, outside " 93 "the hot path or chain"), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> OutlineOptionalThreshold( 97 "outline-optional-threshold", 98 cl::desc("Don't outline optional branches that are a single block with an " 99 "instruction count below this threshold"), 100 cl::init(4), cl::Hidden); 101 102 static cl::opt<unsigned> LoopToColdBlockRatio( 103 "loop-to-cold-block-ratio", 104 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 105 "(frequency of block) is greater than this ratio"), 106 cl::init(5), cl::Hidden); 107 108 static cl::opt<bool> 109 PreciseRotationCost("precise-rotation-cost", 110 cl::desc("Model the cost of loop rotation more " 111 "precisely by using profile data."), 112 cl::init(false), cl::Hidden); 113 static cl::opt<bool> 114 ForcePreciseRotationCost("force-precise-rotation-cost", 115 cl::desc("Force the use of precise cost " 116 "loop rotation strategy."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<unsigned> MisfetchCost( 120 "misfetch-cost", 121 cl::desc("Cost that models the probabilistic risk of an instruction " 122 "misfetch due to a jump comparing to falling through, whose cost " 123 "is zero."), 124 cl::init(1), cl::Hidden); 125 126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 127 cl::desc("Cost of jump instructions."), 128 cl::init(1), cl::Hidden); 129 static cl::opt<bool> 130 TailDupPlacement("tail-dup-placement", 131 cl::desc("Perform tail duplication during placement. " 132 "Creates more fallthrough opportunites in " 133 "outline branches."), 134 cl::init(true), cl::Hidden); 135 136 static cl::opt<bool> 137 BranchFoldPlacement("branch-fold-placement", 138 cl::desc("Perform branch folding during placement. " 139 "Reduces code size."), 140 cl::init(true), cl::Hidden); 141 142 // Heuristic for tail duplication. 143 static cl::opt<unsigned> TailDupPlacementThreshold( 144 "tail-dup-placement-threshold", 145 cl::desc("Instruction cutoff for tail duplication during layout. " 146 "Tail merging during layout is forced to have a threshold " 147 "that won't conflict."), cl::init(2), 148 cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementPenalty( 152 "tail-dup-placement-penalty", 153 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 154 "Copying can increase fallthrough, but it also increases icache " 155 "pressure. This parameter controls the penalty to account for that. " 156 "Percent as integer."), 157 cl::init(2), 158 cl::Hidden); 159 160 extern cl::opt<unsigned> StaticLikelyProb; 161 extern cl::opt<unsigned> ProfileLikelyProb; 162 163 // Internal option used to control BFI display only after MBP pass. 164 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 165 // -view-block-layout-with-bfi= 166 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 167 168 // Command line option to specify the name of the function for CFG dump 169 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 170 extern cl::opt<std::string> ViewBlockFreqFuncName; 171 172 namespace { 173 class BlockChain; 174 /// \brief Type for our function-wide basic block -> block chain mapping. 175 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 176 } 177 178 namespace { 179 /// \brief A chain of blocks which will be laid out contiguously. 180 /// 181 /// This is the datastructure representing a chain of consecutive blocks that 182 /// are profitable to layout together in order to maximize fallthrough 183 /// probabilities and code locality. We also can use a block chain to represent 184 /// a sequence of basic blocks which have some external (correctness) 185 /// requirement for sequential layout. 186 /// 187 /// Chains can be built around a single basic block and can be merged to grow 188 /// them. They participate in a block-to-chain mapping, which is updated 189 /// automatically as chains are merged together. 190 class BlockChain { 191 /// \brief The sequence of blocks belonging to this chain. 192 /// 193 /// This is the sequence of blocks for a particular chain. These will be laid 194 /// out in-order within the function. 195 SmallVector<MachineBasicBlock *, 4> Blocks; 196 197 /// \brief A handle to the function-wide basic block to block chain mapping. 198 /// 199 /// This is retained in each block chain to simplify the computation of child 200 /// block chains for SCC-formation and iteration. We store the edges to child 201 /// basic blocks, and map them back to their associated chains using this 202 /// structure. 203 BlockToChainMapType &BlockToChain; 204 205 public: 206 /// \brief Construct a new BlockChain. 207 /// 208 /// This builds a new block chain representing a single basic block in the 209 /// function. It also registers itself as the chain that block participates 210 /// in with the BlockToChain mapping. 211 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 212 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 213 assert(BB && "Cannot create a chain with a null basic block"); 214 BlockToChain[BB] = this; 215 } 216 217 /// \brief Iterator over blocks within the chain. 218 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 219 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 220 221 /// \brief Beginning of blocks within the chain. 222 iterator begin() { return Blocks.begin(); } 223 const_iterator begin() const { return Blocks.begin(); } 224 225 /// \brief End of blocks within the chain. 226 iterator end() { return Blocks.end(); } 227 const_iterator end() const { return Blocks.end(); } 228 229 bool remove(MachineBasicBlock* BB) { 230 for(iterator i = begin(); i != end(); ++i) { 231 if (*i == BB) { 232 Blocks.erase(i); 233 return true; 234 } 235 } 236 return false; 237 } 238 239 /// \brief Merge a block chain into this one. 240 /// 241 /// This routine merges a block chain into this one. It takes care of forming 242 /// a contiguous sequence of basic blocks, updating the edge list, and 243 /// updating the block -> chain mapping. It does not free or tear down the 244 /// old chain, but the old chain's block list is no longer valid. 245 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 246 assert(BB); 247 assert(!Blocks.empty()); 248 249 // Fast path in case we don't have a chain already. 250 if (!Chain) { 251 assert(!BlockToChain[BB]); 252 Blocks.push_back(BB); 253 BlockToChain[BB] = this; 254 return; 255 } 256 257 assert(BB == *Chain->begin()); 258 assert(Chain->begin() != Chain->end()); 259 260 // Update the incoming blocks to point to this chain, and add them to the 261 // chain structure. 262 for (MachineBasicBlock *ChainBB : *Chain) { 263 Blocks.push_back(ChainBB); 264 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 265 BlockToChain[ChainBB] = this; 266 } 267 } 268 269 #ifndef NDEBUG 270 /// \brief Dump the blocks in this chain. 271 LLVM_DUMP_METHOD void dump() { 272 for (MachineBasicBlock *MBB : *this) 273 MBB->dump(); 274 } 275 #endif // NDEBUG 276 277 /// \brief Count of predecessors of any block within the chain which have not 278 /// yet been scheduled. In general, we will delay scheduling this chain 279 /// until those predecessors are scheduled (or we find a sufficiently good 280 /// reason to override this heuristic.) Note that when forming loop chains, 281 /// blocks outside the loop are ignored and treated as if they were already 282 /// scheduled. 283 /// 284 /// Note: This field is reinitialized multiple times - once for each loop, 285 /// and then once for the function as a whole. 286 unsigned UnscheduledPredecessors; 287 }; 288 } 289 290 namespace { 291 class MachineBlockPlacement : public MachineFunctionPass { 292 /// \brief A typedef for a block filter set. 293 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 294 295 /// Pair struct containing basic block and taildup profitiability 296 struct BlockAndTailDupResult { 297 MachineBasicBlock *BB; 298 bool ShouldTailDup; 299 }; 300 301 /// Triple struct containing edge weight and the edge. 302 struct WeightedEdge { 303 BlockFrequency Weight; 304 MachineBasicBlock *Src; 305 MachineBasicBlock *Dest; 306 }; 307 308 /// \brief work lists of blocks that are ready to be laid out 309 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 310 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 311 312 /// Edges that have already been computed as optimal. 313 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 314 315 /// \brief Machine Function 316 MachineFunction *F; 317 318 /// \brief A handle to the branch probability pass. 319 const MachineBranchProbabilityInfo *MBPI; 320 321 /// \brief A handle to the function-wide block frequency pass. 322 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 323 324 /// \brief A handle to the loop info. 325 MachineLoopInfo *MLI; 326 327 /// \brief Preferred loop exit. 328 /// Member variable for convenience. It may be removed by duplication deep 329 /// in the call stack. 330 MachineBasicBlock *PreferredLoopExit; 331 332 /// \brief A handle to the target's instruction info. 333 const TargetInstrInfo *TII; 334 335 /// \brief A handle to the target's lowering info. 336 const TargetLoweringBase *TLI; 337 338 /// \brief A handle to the dominator tree. 339 MachineDominatorTree *MDT; 340 341 /// \brief A handle to the post dominator tree. 342 MachinePostDominatorTree *MPDT; 343 344 /// \brief Duplicator used to duplicate tails during placement. 345 /// 346 /// Placement decisions can open up new tail duplication opportunities, but 347 /// since tail duplication affects placement decisions of later blocks, it 348 /// must be done inline. 349 TailDuplicator TailDup; 350 351 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 352 /// all terminators of the MachineFunction. 353 SmallPtrSet<const MachineBasicBlock *, 4> UnavoidableBlocks; 354 355 /// \brief Allocator and owner of BlockChain structures. 356 /// 357 /// We build BlockChains lazily while processing the loop structure of 358 /// a function. To reduce malloc traffic, we allocate them using this 359 /// slab-like allocator, and destroy them after the pass completes. An 360 /// important guarantee is that this allocator produces stable pointers to 361 /// the chains. 362 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 363 364 /// \brief Function wide BasicBlock to BlockChain mapping. 365 /// 366 /// This mapping allows efficiently moving from any given basic block to the 367 /// BlockChain it participates in, if any. We use it to, among other things, 368 /// allow implicitly defining edges between chains as the existing edges 369 /// between basic blocks. 370 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 371 372 #ifndef NDEBUG 373 /// The set of basic blocks that have terminators that cannot be fully 374 /// analyzed. These basic blocks cannot be re-ordered safely by 375 /// MachineBlockPlacement, and we must preserve physical layout of these 376 /// blocks and their successors through the pass. 377 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 378 #endif 379 380 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 381 /// if the count goes to 0, add them to the appropriate work list. 382 void markChainSuccessors( 383 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 384 const BlockFilterSet *BlockFilter = nullptr); 385 386 /// Decrease the UnscheduledPredecessors count for a single block, and 387 /// if the count goes to 0, add them to the appropriate work list. 388 void markBlockSuccessors( 389 const BlockChain &Chain, const MachineBasicBlock *BB, 390 const MachineBasicBlock *LoopHeaderBB, 391 const BlockFilterSet *BlockFilter = nullptr); 392 393 BranchProbability 394 collectViableSuccessors( 395 const MachineBasicBlock *BB, const BlockChain &Chain, 396 const BlockFilterSet *BlockFilter, 397 SmallVector<MachineBasicBlock *, 4> &Successors); 398 bool shouldPredBlockBeOutlined( 399 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 400 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 401 BranchProbability SuccProb, BranchProbability HotProb); 402 bool repeatedlyTailDuplicateBlock( 403 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 404 const MachineBasicBlock *LoopHeaderBB, 405 BlockChain &Chain, BlockFilterSet *BlockFilter, 406 MachineFunction::iterator &PrevUnplacedBlockIt); 407 bool maybeTailDuplicateBlock( 408 MachineBasicBlock *BB, MachineBasicBlock *LPred, 409 BlockChain &Chain, BlockFilterSet *BlockFilter, 410 MachineFunction::iterator &PrevUnplacedBlockIt, 411 bool &DuplicatedToPred); 412 bool hasBetterLayoutPredecessor( 413 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 414 const BlockChain &SuccChain, BranchProbability SuccProb, 415 BranchProbability RealSuccProb, const BlockChain &Chain, 416 const BlockFilterSet *BlockFilter); 417 BlockAndTailDupResult selectBestSuccessor( 418 const MachineBasicBlock *BB, const BlockChain &Chain, 419 const BlockFilterSet *BlockFilter); 420 MachineBasicBlock *selectBestCandidateBlock( 421 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 422 MachineBasicBlock *getFirstUnplacedBlock( 423 const BlockChain &PlacedChain, 424 MachineFunction::iterator &PrevUnplacedBlockIt, 425 const BlockFilterSet *BlockFilter); 426 427 /// \brief Add a basic block to the work list if it is appropriate. 428 /// 429 /// If the optional parameter BlockFilter is provided, only MBB 430 /// present in the set will be added to the worklist. If nullptr 431 /// is provided, no filtering occurs. 432 void fillWorkLists(const MachineBasicBlock *MBB, 433 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 434 const BlockFilterSet *BlockFilter); 435 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 436 BlockFilterSet *BlockFilter = nullptr); 437 MachineBasicBlock *findBestLoopTop( 438 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 439 MachineBasicBlock *findBestLoopExit( 440 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 441 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 442 void buildLoopChains(const MachineLoop &L); 443 void rotateLoop( 444 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 445 const BlockFilterSet &LoopBlockSet); 446 void rotateLoopWithProfile( 447 BlockChain &LoopChain, const MachineLoop &L, 448 const BlockFilterSet &LoopBlockSet); 449 void collectMustExecuteBBs(); 450 void buildCFGChains(); 451 void optimizeBranches(); 452 void alignBlocks(); 453 /// Returns true if a block should be tail-duplicated to increase fallthrough 454 /// opportunities. 455 bool shouldTailDuplicate(MachineBasicBlock *BB); 456 /// Check the edge frequencies to see if tail duplication will increase 457 /// fallthroughs. 458 bool isProfitableToTailDup( 459 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 460 BranchProbability AdjustedSumProb, 461 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 462 /// Check for a trellis layout. 463 bool isTrellis(const MachineBasicBlock *BB, 464 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 465 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 466 /// Get the best successor given a trellis layout. 467 BlockAndTailDupResult getBestTrellisSuccessor( 468 const MachineBasicBlock *BB, 469 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 470 BranchProbability AdjustedSumProb, const BlockChain &Chain, 471 const BlockFilterSet *BlockFilter); 472 /// Get the best pair of non-conflicting edges. 473 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 474 const MachineBasicBlock *BB, 475 SmallVector<SmallVector<WeightedEdge, 8>, 2> &Edges); 476 /// Returns true if a block can tail duplicate into all unplaced 477 /// predecessors. Filters based on loop. 478 bool canTailDuplicateUnplacedPreds( 479 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 480 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 481 482 public: 483 static char ID; // Pass identification, replacement for typeid 484 MachineBlockPlacement() : MachineFunctionPass(ID) { 485 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 486 } 487 488 bool runOnMachineFunction(MachineFunction &F) override; 489 490 void getAnalysisUsage(AnalysisUsage &AU) const override { 491 AU.addRequired<MachineBranchProbabilityInfo>(); 492 AU.addRequired<MachineBlockFrequencyInfo>(); 493 AU.addRequired<MachineDominatorTree>(); 494 if (TailDupPlacement) 495 AU.addRequired<MachinePostDominatorTree>(); 496 AU.addRequired<MachineLoopInfo>(); 497 AU.addRequired<TargetPassConfig>(); 498 MachineFunctionPass::getAnalysisUsage(AU); 499 } 500 }; 501 } 502 503 char MachineBlockPlacement::ID = 0; 504 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 505 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 506 "Branch Probability Basic Block Placement", false, false) 507 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 508 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 509 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 510 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 511 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 512 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 513 "Branch Probability Basic Block Placement", false, false) 514 515 #ifndef NDEBUG 516 /// \brief Helper to print the name of a MBB. 517 /// 518 /// Only used by debug logging. 519 static std::string getBlockName(const MachineBasicBlock *BB) { 520 std::string Result; 521 raw_string_ostream OS(Result); 522 OS << "BB#" << BB->getNumber(); 523 OS << " ('" << BB->getName() << "')"; 524 OS.flush(); 525 return Result; 526 } 527 #endif 528 529 /// \brief Mark a chain's successors as having one fewer preds. 530 /// 531 /// When a chain is being merged into the "placed" chain, this routine will 532 /// quickly walk the successors of each block in the chain and mark them as 533 /// having one fewer active predecessor. It also adds any successors of this 534 /// chain which reach the zero-predecessor state to the appropriate worklist. 535 void MachineBlockPlacement::markChainSuccessors( 536 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 537 const BlockFilterSet *BlockFilter) { 538 // Walk all the blocks in this chain, marking their successors as having 539 // a predecessor placed. 540 for (MachineBasicBlock *MBB : Chain) { 541 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 542 } 543 } 544 545 /// \brief Mark a single block's successors as having one fewer preds. 546 /// 547 /// Under normal circumstances, this is only called by markChainSuccessors, 548 /// but if a block that was to be placed is completely tail-duplicated away, 549 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 550 /// for just that block. 551 void MachineBlockPlacement::markBlockSuccessors( 552 const BlockChain &Chain, const MachineBasicBlock *MBB, 553 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 554 // Add any successors for which this is the only un-placed in-loop 555 // predecessor to the worklist as a viable candidate for CFG-neutral 556 // placement. No subsequent placement of this block will violate the CFG 557 // shape, so we get to use heuristics to choose a favorable placement. 558 for (MachineBasicBlock *Succ : MBB->successors()) { 559 if (BlockFilter && !BlockFilter->count(Succ)) 560 continue; 561 BlockChain &SuccChain = *BlockToChain[Succ]; 562 // Disregard edges within a fixed chain, or edges to the loop header. 563 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 564 continue; 565 566 // This is a cross-chain edge that is within the loop, so decrement the 567 // loop predecessor count of the destination chain. 568 if (SuccChain.UnscheduledPredecessors == 0 || 569 --SuccChain.UnscheduledPredecessors > 0) 570 continue; 571 572 auto *NewBB = *SuccChain.begin(); 573 if (NewBB->isEHPad()) 574 EHPadWorkList.push_back(NewBB); 575 else 576 BlockWorkList.push_back(NewBB); 577 } 578 } 579 580 /// This helper function collects the set of successors of block 581 /// \p BB that are allowed to be its layout successors, and return 582 /// the total branch probability of edges from \p BB to those 583 /// blocks. 584 BranchProbability MachineBlockPlacement::collectViableSuccessors( 585 const MachineBasicBlock *BB, const BlockChain &Chain, 586 const BlockFilterSet *BlockFilter, 587 SmallVector<MachineBasicBlock *, 4> &Successors) { 588 // Adjust edge probabilities by excluding edges pointing to blocks that is 589 // either not in BlockFilter or is already in the current chain. Consider the 590 // following CFG: 591 // 592 // --->A 593 // | / \ 594 // | B C 595 // | \ / \ 596 // ----D E 597 // 598 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 599 // A->C is chosen as a fall-through, D won't be selected as a successor of C 600 // due to CFG constraint (the probability of C->D is not greater than 601 // HotProb to break top-order). If we exclude E that is not in BlockFilter 602 // when calculating the probability of C->D, D will be selected and we 603 // will get A C D B as the layout of this loop. 604 auto AdjustedSumProb = BranchProbability::getOne(); 605 for (MachineBasicBlock *Succ : BB->successors()) { 606 bool SkipSucc = false; 607 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 608 SkipSucc = true; 609 } else { 610 BlockChain *SuccChain = BlockToChain[Succ]; 611 if (SuccChain == &Chain) { 612 SkipSucc = true; 613 } else if (Succ != *SuccChain->begin()) { 614 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 615 continue; 616 } 617 } 618 if (SkipSucc) 619 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 620 else 621 Successors.push_back(Succ); 622 } 623 624 return AdjustedSumProb; 625 } 626 627 /// The helper function returns the branch probability that is adjusted 628 /// or normalized over the new total \p AdjustedSumProb. 629 static BranchProbability 630 getAdjustedProbability(BranchProbability OrigProb, 631 BranchProbability AdjustedSumProb) { 632 BranchProbability SuccProb; 633 uint32_t SuccProbN = OrigProb.getNumerator(); 634 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 635 if (SuccProbN >= SuccProbD) 636 SuccProb = BranchProbability::getOne(); 637 else 638 SuccProb = BranchProbability(SuccProbN, SuccProbD); 639 640 return SuccProb; 641 } 642 643 /// Check if \p BB has exactly the successors in \p Successors. 644 static bool 645 hasSameSuccessors(MachineBasicBlock &BB, 646 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 647 if (BB.succ_size() != Successors.size()) 648 return false; 649 // We don't want to count self-loops 650 if (Successors.count(&BB)) 651 return false; 652 for (MachineBasicBlock *Succ : BB.successors()) 653 if (!Successors.count(Succ)) 654 return false; 655 return true; 656 } 657 658 /// Check if a block should be tail duplicated to increase fallthrough 659 /// opportunities. 660 /// \p BB Block to check. 661 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 662 // Blocks with single successors don't create additional fallthrough 663 // opportunities. Don't duplicate them. TODO: When conditional exits are 664 // analyzable, allow them to be duplicated. 665 bool IsSimple = TailDup.isSimpleBB(BB); 666 667 if (BB->succ_size() == 1) 668 return false; 669 return TailDup.shouldTailDuplicate(IsSimple, *BB); 670 } 671 672 /// Compare 2 BlockFrequency's with a small penalty for \p A. 673 /// In order to be conservative, we apply a X% penalty to account for 674 /// increased icache pressure and static heuristics. For small frequencies 675 /// we use only the numerators to improve accuracy. For simplicity, we assume the 676 /// penalty is less than 100% 677 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 678 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 679 uint64_t EntryFreq) { 680 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 681 BlockFrequency Gain = A - B; 682 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 683 } 684 685 /// Check the edge frequencies to see if tail duplication will increase 686 /// fallthroughs. It only makes sense to call this function when 687 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 688 /// always locally profitable if we would have picked \p Succ without 689 /// considering duplication. 690 bool MachineBlockPlacement::isProfitableToTailDup( 691 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 692 BranchProbability QProb, 693 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 694 // We need to do a probability calculation to make sure this is profitable. 695 // First: does succ have a successor that post-dominates? This affects the 696 // calculation. The 2 relevant cases are: 697 // BB BB 698 // | \Qout | \Qout 699 // P| C |P C 700 // = C' = C' 701 // | /Qin | /Qin 702 // | / | / 703 // Succ Succ 704 // / \ | \ V 705 // U/ =V |U \ 706 // / \ = D 707 // D E | / 708 // | / 709 // |/ 710 // PDom 711 // '=' : Branch taken for that CFG edge 712 // In the second case, Placing Succ while duplicating it into C prevents the 713 // fallthrough of Succ into either D or PDom, because they now have C as an 714 // unplaced predecessor 715 716 // Start by figuring out which case we fall into 717 MachineBasicBlock *PDom = nullptr; 718 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 719 // Only scan the relevant successors 720 auto AdjustedSuccSumProb = 721 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 722 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 723 auto BBFreq = MBFI->getBlockFreq(BB); 724 auto SuccFreq = MBFI->getBlockFreq(Succ); 725 BlockFrequency P = BBFreq * PProb; 726 BlockFrequency Qout = BBFreq * QProb; 727 uint64_t EntryFreq = MBFI->getEntryFreq(); 728 // If there are no more successors, it is profitable to copy, as it strictly 729 // increases fallthrough. 730 if (SuccSuccs.size() == 0) 731 return greaterWithBias(P, Qout, EntryFreq); 732 733 auto BestSuccSucc = BranchProbability::getZero(); 734 // Find the PDom or the best Succ if no PDom exists. 735 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 736 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 737 if (Prob > BestSuccSucc) 738 BestSuccSucc = Prob; 739 if (PDom == nullptr) 740 if (MPDT->dominates(SuccSucc, Succ)) { 741 PDom = SuccSucc; 742 break; 743 } 744 } 745 // For the comparisons, we need to know Succ's best incoming edge that isn't 746 // from BB. 747 auto SuccBestPred = BlockFrequency(0); 748 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 749 if (SuccPred == Succ || SuccPred == BB 750 || BlockToChain[SuccPred] == &Chain 751 || (BlockFilter && !BlockFilter->count(SuccPred))) 752 continue; 753 auto Freq = MBFI->getBlockFreq(SuccPred) 754 * MBPI->getEdgeProbability(SuccPred, Succ); 755 if (Freq > SuccBestPred) 756 SuccBestPred = Freq; 757 } 758 // Qin is Succ's best unplaced incoming edge that isn't BB 759 BlockFrequency Qin = SuccBestPred; 760 // If it doesn't have a post-dominating successor, here is the calculation: 761 // BB BB 762 // | \Qout | \ 763 // P| C | = 764 // = C' | C 765 // | /Qin | | 766 // | / | C' (+Succ) 767 // Succ Succ /| 768 // / \ | \/ | 769 // U/ =V | == | 770 // / \ | / \| 771 // D E D E 772 // '=' : Branch taken for that CFG edge 773 // Cost in the first case is: P + V 774 // For this calculation, we always assume P > Qout. If Qout > P 775 // The result of this function will be ignored at the caller. 776 // Cost in the second case is: Qout + Qin * U + P * V 777 778 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 779 BranchProbability UProb = BestSuccSucc; 780 BranchProbability VProb = AdjustedSuccSumProb - UProb; 781 BlockFrequency V = SuccFreq * VProb; 782 BlockFrequency QinU = Qin * UProb; 783 BlockFrequency BaseCost = P + V; 784 BlockFrequency DupCost = Qout + QinU + P * VProb; 785 return greaterWithBias(BaseCost, DupCost, EntryFreq); 786 } 787 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 788 BranchProbability VProb = AdjustedSuccSumProb - UProb; 789 BlockFrequency U = SuccFreq * UProb; 790 BlockFrequency V = SuccFreq * VProb; 791 // If there is a post-dominating successor, here is the calculation: 792 // BB BB BB BB 793 // | \Qout | \ | \Qout | \ 794 // |P C | = |P C | = 795 // = C' |P C = C' |P C 796 // | /Qin | | | /Qin | | 797 // | / | C' (+Succ) | / | C' (+Succ) 798 // Succ Succ /| Succ Succ /| 799 // | \ V | \/ | | \ V | \/ | 800 // |U \ |U /\ | |U = |U /\ | 801 // = D = = \= | D | = =| 802 // | / |/ D | / |/ D 803 // | / | / | = | / 804 // |/ | / |/ | = 805 // Dom Dom Dom Dom 806 // '=' : Branch taken for that CFG edge 807 // The cost for taken branches in the first case is P + U 808 // The cost in the second case (assuming independence), given the layout: 809 // BB, Succ, (C+Succ), D, Dom 810 // is Qout + P * V + Qin * U 811 // compare P + U vs Qout + P * U + Qin. 812 // 813 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 814 // 815 // For the 3rd case, the cost is P + 2 * V 816 // For the 4th case, the cost is Qout + Qin * U + P * V + V 817 // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V 818 if (UProb > AdjustedSuccSumProb / 2 && 819 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 820 Chain, BlockFilter)) 821 // Cases 3 & 4 822 return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb), 823 EntryFreq); 824 // Cases 1 & 2 825 return greaterWithBias( 826 (P + U), (Qout + Qin * AdjustedSuccSumProb + P * UProb), EntryFreq); 827 } 828 829 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 830 /// successors form the lower part of a trellis. A successor set S forms the 831 /// lower part of a trellis if all of the predecessors of S are either in S or 832 /// have all of S as successors. We ignore trellises where BB doesn't have 2 833 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 834 /// are very uncommon and complex to compute optimally. Allowing edges within S 835 /// is not strictly a trellis, but the same algorithm works, so we allow it. 836 bool MachineBlockPlacement::isTrellis( 837 const MachineBasicBlock *BB, 838 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 839 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 840 // Technically BB could form a trellis with branching factor higher than 2. 841 // But that's extremely uncommon. 842 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 843 return false; 844 845 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 846 BB->succ_end()); 847 // To avoid reviewing the same predecessors twice. 848 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 849 850 for (MachineBasicBlock *Succ : ViableSuccs) { 851 int PredCount = 0; 852 for (auto SuccPred : Succ->predecessors()) { 853 // Allow triangle successors, but don't count them. 854 if (Successors.count(SuccPred)) 855 continue; 856 const BlockChain *PredChain = BlockToChain[SuccPred]; 857 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 858 PredChain == &Chain || PredChain == BlockToChain[Succ]) 859 continue; 860 ++PredCount; 861 // Perform the successor check only once. 862 if (!SeenPreds.insert(SuccPred).second) 863 continue; 864 if (!hasSameSuccessors(*SuccPred, Successors)) 865 return false; 866 } 867 // If one of the successors has only BB as a predecessor, it is not a 868 // trellis. 869 if (PredCount < 1) 870 return false; 871 } 872 return true; 873 } 874 875 /// Pick the highest total weight pair of edges that can both be laid out. 876 /// The edges in \p Edges[0] are assumed to have a different destination than 877 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 878 /// the individual highest weight edges to the 2 different destinations, or in 879 /// case of a conflict, one of them should be replaced with a 2nd best edge. 880 std::pair<MachineBlockPlacement::WeightedEdge, 881 MachineBlockPlacement::WeightedEdge> 882 MachineBlockPlacement::getBestNonConflictingEdges( 883 const MachineBasicBlock *BB, 884 SmallVector<SmallVector<MachineBlockPlacement::WeightedEdge, 8>, 2> 885 &Edges) { 886 // Sort the edges, and then for each successor, find the best incoming 887 // predecessor. If the best incoming predecessors aren't the same, 888 // then that is clearly the best layout. If there is a conflict, one of the 889 // successors will have to fallthrough from the second best predecessor. We 890 // compare which combination is better overall. 891 892 // Sort for highest frequency. 893 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 894 895 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 896 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 897 auto BestA = Edges[0].begin(); 898 auto BestB = Edges[1].begin(); 899 // Arrange for the correct answer to be in BestA and BestB 900 // If the 2 best edges don't conflict, the answer is already there. 901 if (BestA->Src == BestB->Src) { 902 // Compare the total fallthrough of (Best + Second Best) for both pairs 903 auto SecondBestA = std::next(BestA); 904 auto SecondBestB = std::next(BestB); 905 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 906 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 907 if (BestAScore < BestBScore) 908 BestA = SecondBestA; 909 else 910 BestB = SecondBestB; 911 } 912 // Arrange for the BB edge to be in BestA if it exists. 913 if (BestB->Src == BB) 914 std::swap(BestA, BestB); 915 return std::make_pair(*BestA, *BestB); 916 } 917 918 /// Get the best successor from \p BB based on \p BB being part of a trellis. 919 /// We only handle trellises with 2 successors, so the algorithm is 920 /// straightforward: Find the best pair of edges that don't conflict. We find 921 /// the best incoming edge for each successor in the trellis. If those conflict, 922 /// we consider which of them should be replaced with the second best. 923 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 924 /// comes from \p BB, it will be in \p BestEdges[0] 925 MachineBlockPlacement::BlockAndTailDupResult 926 MachineBlockPlacement::getBestTrellisSuccessor( 927 const MachineBasicBlock *BB, 928 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 929 BranchProbability AdjustedSumProb, const BlockChain &Chain, 930 const BlockFilterSet *BlockFilter) { 931 932 BlockAndTailDupResult Result = {nullptr, false}; 933 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 934 BB->succ_end()); 935 936 // We assume size 2 because it's common. For general n, we would have to do 937 // the Hungarian algorithm, but it's not worth the complexity because more 938 // than 2 successors is fairly uncommon, and a trellis even more so. 939 if (Successors.size() != 2 || ViableSuccs.size() != 2) 940 return Result; 941 942 // Collect the edge frequencies of all edges that form the trellis. 943 SmallVector<SmallVector<WeightedEdge, 8>, 2> Edges(2); 944 int SuccIndex = 0; 945 for (auto Succ : ViableSuccs) { 946 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 947 // Skip any placed predecessors that are not BB 948 if (SuccPred != BB) 949 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 950 BlockToChain[SuccPred] == &Chain || 951 BlockToChain[SuccPred] == BlockToChain[Succ]) 952 continue; 953 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 954 MBPI->getEdgeProbability(SuccPred, Succ); 955 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 956 } 957 ++SuccIndex; 958 } 959 960 // Pick the best combination of 2 edges from all the edges in the trellis. 961 WeightedEdge BestA, BestB; 962 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 963 964 if (BestA.Src != BB) { 965 // If we have a trellis, and BB doesn't have the best fallthrough edges, 966 // we shouldn't choose any successor. We've already looked and there's a 967 // better fallthrough edge for all the successors. 968 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 969 return Result; 970 } 971 972 // Did we pick the triangle edge? If tail-duplication is profitable, do 973 // that instead. Otherwise merge the triangle edge now while we know it is 974 // optimal. 975 if (BestA.Dest == BestB.Src) { 976 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 977 // would be better. 978 MachineBasicBlock *Succ1 = BestA.Dest; 979 MachineBasicBlock *Succ2 = BestB.Dest; 980 // Check to see if tail-duplication would be profitable. 981 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 982 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 983 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 984 Chain, BlockFilter)) { 985 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 986 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 987 dbgs() << " Selected: " << getBlockName(Succ2) 988 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 989 Result.BB = Succ2; 990 Result.ShouldTailDup = true; 991 return Result; 992 } 993 } 994 // We have already computed the optimal edge for the other side of the 995 // trellis. 996 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 997 998 auto TrellisSucc = BestA.Dest; 999 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1000 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1001 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1002 << ", probability: " << SuccProb << " (Trellis)\n"); 1003 Result.BB = TrellisSucc; 1004 return Result; 1005 } 1006 1007 /// When the option TailDupPlacement is on, this method checks if the 1008 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1009 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1010 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1011 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1012 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1013 if (!shouldTailDuplicate(Succ)) 1014 return false; 1015 1016 // For CFG checking. 1017 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1018 BB->succ_end()); 1019 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1020 // Make sure all unplaced and unfiltered predecessors can be 1021 // tail-duplicated into. 1022 // Skip any blocks that are already placed or not in this loop. 1023 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1024 || BlockToChain[Pred] == &Chain) 1025 continue; 1026 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1027 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1028 // This will result in a trellis after tail duplication, so we don't 1029 // need to copy Succ into this predecessor. In the presence 1030 // of a trellis tail duplication can continue to be profitable. 1031 // For example: 1032 // A A 1033 // |\ |\ 1034 // | \ | \ 1035 // | C | C+BB 1036 // | / | | 1037 // |/ | | 1038 // BB => BB | 1039 // |\ |\/| 1040 // | \ |/\| 1041 // | D | D 1042 // | / | / 1043 // |/ |/ 1044 // Succ Succ 1045 // 1046 // After BB was duplicated into C, the layout looks like the one on the 1047 // right. BB and C now have the same successors. When considering 1048 // whether Succ can be duplicated into all its unplaced predecessors, we 1049 // ignore C. 1050 // We can do this because C already has a profitable fallthrough, namely 1051 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1052 // duplication and for this test. 1053 // 1054 // This allows trellises to be laid out in 2 separate chains 1055 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1056 // because it allows the creation of 2 fallthrough paths with links 1057 // between them, and we correctly identify the best layout for these 1058 // CFGs. We want to extend trellises that the user created in addition 1059 // to trellises created by tail-duplication, so we just look for the 1060 // CFG. 1061 continue; 1062 return false; 1063 } 1064 } 1065 return true; 1066 } 1067 1068 /// When the option OutlineOptionalBranches is on, this method 1069 /// checks if the fallthrough candidate block \p Succ (of block 1070 /// \p BB) also has other unscheduled predecessor blocks which 1071 /// are also successors of \p BB (forming triangular shape CFG). 1072 /// If none of such predecessors are small, it returns true. 1073 /// The caller can choose to select \p Succ as the layout successors 1074 /// so that \p Succ's predecessors (optional branches) can be 1075 /// outlined. 1076 /// FIXME: fold this with more general layout cost analysis. 1077 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 1078 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1079 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 1080 BranchProbability SuccProb, BranchProbability HotProb) { 1081 if (!OutlineOptionalBranches) 1082 return false; 1083 // If we outline optional branches, look whether Succ is unavoidable, i.e. 1084 // dominates all terminators of the MachineFunction. If it does, other 1085 // successors must be optional. Don't do this for cold branches. 1086 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 1087 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1088 // Check whether there is an unplaced optional branch. 1089 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 1090 BlockToChain[Pred] == &Chain) 1091 continue; 1092 // Check whether the optional branch has exactly one BB. 1093 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 1094 continue; 1095 // Check whether the optional branch is small. 1096 if (Pred->size() < OutlineOptionalThreshold) 1097 return false; 1098 } 1099 return true; 1100 } else 1101 return false; 1102 } 1103 1104 // When profile is not present, return the StaticLikelyProb. 1105 // When profile is available, we need to handle the triangle-shape CFG. 1106 static BranchProbability getLayoutSuccessorProbThreshold( 1107 const MachineBasicBlock *BB) { 1108 if (!BB->getParent()->getFunction()->getEntryCount()) 1109 return BranchProbability(StaticLikelyProb, 100); 1110 if (BB->succ_size() == 2) { 1111 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1112 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1113 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1114 /* See case 1 below for the cost analysis. For BB->Succ to 1115 * be taken with smaller cost, the following needs to hold: 1116 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1117 * So the threshold T in the calculation below 1118 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1119 * So T / (1 - T) = 2, Yielding T = 2/3 1120 * Also adding user specified branch bias, we have 1121 * T = (2/3)*(ProfileLikelyProb/50) 1122 * = (2*ProfileLikelyProb)/150) 1123 */ 1124 return BranchProbability(2 * ProfileLikelyProb, 150); 1125 } 1126 } 1127 return BranchProbability(ProfileLikelyProb, 100); 1128 } 1129 1130 /// Checks to see if the layout candidate block \p Succ has a better layout 1131 /// predecessor than \c BB. If yes, returns true. 1132 /// \p SuccProb: The probability adjusted for only remaining blocks. 1133 /// Only used for logging 1134 /// \p RealSuccProb: The un-adjusted probability. 1135 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1136 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1137 /// considered 1138 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1139 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1140 const BlockChain &SuccChain, BranchProbability SuccProb, 1141 BranchProbability RealSuccProb, const BlockChain &Chain, 1142 const BlockFilterSet *BlockFilter) { 1143 1144 // There isn't a better layout when there are no unscheduled predecessors. 1145 if (SuccChain.UnscheduledPredecessors == 0) 1146 return false; 1147 1148 // There are two basic scenarios here: 1149 // ------------------------------------- 1150 // Case 1: triangular shape CFG (if-then): 1151 // BB 1152 // | \ 1153 // | \ 1154 // | Pred 1155 // | / 1156 // Succ 1157 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1158 // set Succ as the layout successor of BB. Picking Succ as BB's 1159 // successor breaks the CFG constraints (FIXME: define these constraints). 1160 // With this layout, Pred BB 1161 // is forced to be outlined, so the overall cost will be cost of the 1162 // branch taken from BB to Pred, plus the cost of back taken branch 1163 // from Pred to Succ, as well as the additional cost associated 1164 // with the needed unconditional jump instruction from Pred To Succ. 1165 1166 // The cost of the topological order layout is the taken branch cost 1167 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1168 // must hold: 1169 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1170 // < freq(BB->Succ) * taken_branch_cost. 1171 // Ignoring unconditional jump cost, we get 1172 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1173 // prob(BB->Succ) > 2 * prob(BB->Pred) 1174 // 1175 // When real profile data is available, we can precisely compute the 1176 // probability threshold that is needed for edge BB->Succ to be considered. 1177 // Without profile data, the heuristic requires the branch bias to be 1178 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1179 // ----------------------------------------------------------------- 1180 // Case 2: diamond like CFG (if-then-else): 1181 // S 1182 // / \ 1183 // | \ 1184 // BB Pred 1185 // \ / 1186 // Succ 1187 // .. 1188 // 1189 // The current block is BB and edge BB->Succ is now being evaluated. 1190 // Note that edge S->BB was previously already selected because 1191 // prob(S->BB) > prob(S->Pred). 1192 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1193 // choose Pred, we will have a topological ordering as shown on the left 1194 // in the picture below. If we choose Succ, we have the solution as shown 1195 // on the right: 1196 // 1197 // topo-order: 1198 // 1199 // S----- ---S 1200 // | | | | 1201 // ---BB | | BB 1202 // | | | | 1203 // | pred-- | Succ-- 1204 // | | | | 1205 // ---succ ---pred-- 1206 // 1207 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1208 // = freq(S->Pred) + freq(S->BB) 1209 // 1210 // If we have profile data (i.e, branch probabilities can be trusted), the 1211 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1212 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1213 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1214 // means the cost of topological order is greater. 1215 // When profile data is not available, however, we need to be more 1216 // conservative. If the branch prediction is wrong, breaking the topo-order 1217 // will actually yield a layout with large cost. For this reason, we need 1218 // strong biased branch at block S with Prob(S->BB) in order to select 1219 // BB->Succ. This is equivalent to looking the CFG backward with backward 1220 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1221 // profile data). 1222 // -------------------------------------------------------------------------- 1223 // Case 3: forked diamond 1224 // S 1225 // / \ 1226 // / \ 1227 // BB Pred 1228 // | \ / | 1229 // | \ / | 1230 // | X | 1231 // | / \ | 1232 // | / \ | 1233 // S1 S2 1234 // 1235 // The current block is BB and edge BB->S1 is now being evaluated. 1236 // As above S->BB was already selected because 1237 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1238 // 1239 // topo-order: 1240 // 1241 // S-------| ---S 1242 // | | | | 1243 // ---BB | | BB 1244 // | | | | 1245 // | Pred----| | S1---- 1246 // | | | | 1247 // --(S1 or S2) ---Pred-- 1248 // | 1249 // S2 1250 // 1251 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1252 // + min(freq(Pred->S1), freq(Pred->S2)) 1253 // Non-topo-order cost: 1254 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1255 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1256 // is 0. Then the non topo layout is better when 1257 // freq(S->Pred) < freq(BB->S1). 1258 // This is exactly what is checked below. 1259 // Note there are other shapes that apply (Pred may not be a single block, 1260 // but they all fit this general pattern.) 1261 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1262 1263 // Make sure that a hot successor doesn't have a globally more 1264 // important predecessor. 1265 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1266 bool BadCFGConflict = false; 1267 1268 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1269 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1270 (BlockFilter && !BlockFilter->count(Pred)) || 1271 BlockToChain[Pred] == &Chain || 1272 // This check is redundant except for look ahead. This function is 1273 // called for lookahead by isProfitableToTailDup when BB hasn't been 1274 // placed yet. 1275 (Pred == BB)) 1276 continue; 1277 // Do backward checking. 1278 // For all cases above, we need a backward checking to filter out edges that 1279 // are not 'strongly' biased. 1280 // BB Pred 1281 // \ / 1282 // Succ 1283 // We select edge BB->Succ if 1284 // freq(BB->Succ) > freq(Succ) * HotProb 1285 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1286 // HotProb 1287 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1288 // Case 1 is covered too, because the first equation reduces to: 1289 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1290 BlockFrequency PredEdgeFreq = 1291 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1292 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1293 BadCFGConflict = true; 1294 break; 1295 } 1296 } 1297 1298 if (BadCFGConflict) { 1299 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1300 << " (prob) (non-cold CFG conflict)\n"); 1301 return true; 1302 } 1303 1304 return false; 1305 } 1306 1307 /// \brief Select the best successor for a block. 1308 /// 1309 /// This looks across all successors of a particular block and attempts to 1310 /// select the "best" one to be the layout successor. It only considers direct 1311 /// successors which also pass the block filter. It will attempt to avoid 1312 /// breaking CFG structure, but cave and break such structures in the case of 1313 /// very hot successor edges. 1314 /// 1315 /// \returns The best successor block found, or null if none are viable, along 1316 /// with a boolean indicating if tail duplication is necessary. 1317 MachineBlockPlacement::BlockAndTailDupResult 1318 MachineBlockPlacement::selectBestSuccessor( 1319 const MachineBasicBlock *BB, const BlockChain &Chain, 1320 const BlockFilterSet *BlockFilter) { 1321 const BranchProbability HotProb(StaticLikelyProb, 100); 1322 1323 BlockAndTailDupResult BestSucc = { nullptr, false }; 1324 auto BestProb = BranchProbability::getZero(); 1325 1326 SmallVector<MachineBasicBlock *, 4> Successors; 1327 auto AdjustedSumProb = 1328 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1329 1330 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1331 1332 // if we already precomputed the best successor for BB, return that if still 1333 // applicable. 1334 auto FoundEdge = ComputedEdges.find(BB); 1335 if (FoundEdge != ComputedEdges.end()) { 1336 MachineBasicBlock *Succ = FoundEdge->second.BB; 1337 ComputedEdges.erase(FoundEdge); 1338 BlockChain *SuccChain = BlockToChain[Succ]; 1339 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1340 SuccChain != &Chain && Succ == *SuccChain->begin()) 1341 return FoundEdge->second; 1342 } 1343 1344 // if BB is part of a trellis, Use the trellis to determine the optimal 1345 // fallthrough edges 1346 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1347 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1348 BlockFilter); 1349 1350 // For blocks with CFG violations, we may be able to lay them out anyway with 1351 // tail-duplication. We keep this vector so we can perform the probability 1352 // calculations the minimum number of times. 1353 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1354 DupCandidates; 1355 for (MachineBasicBlock *Succ : Successors) { 1356 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1357 BranchProbability SuccProb = 1358 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1359 1360 // This heuristic is off by default. 1361 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 1362 HotProb)) { 1363 BestSucc.BB = Succ; 1364 return BestSucc; 1365 } 1366 1367 BlockChain &SuccChain = *BlockToChain[Succ]; 1368 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1369 // predecessor that yields lower global cost. 1370 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1371 Chain, BlockFilter)) { 1372 // If tail duplication would make Succ profitable, place it. 1373 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1374 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1375 continue; 1376 } 1377 1378 DEBUG( 1379 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1380 << SuccProb 1381 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1382 << "\n"); 1383 1384 if (BestSucc.BB && BestProb >= SuccProb) { 1385 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1386 continue; 1387 } 1388 1389 DEBUG(dbgs() << " Setting it as best candidate\n"); 1390 BestSucc.BB = Succ; 1391 BestProb = SuccProb; 1392 } 1393 // Handle the tail duplication candidates in order of decreasing probability. 1394 // Stop at the first one that is profitable. Also stop if they are less 1395 // profitable than BestSucc. Position is important because we preserve it and 1396 // prefer first best match. Here we aren't comparing in order, so we capture 1397 // the position instead. 1398 if (DupCandidates.size() != 0) { 1399 auto cmp = 1400 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1401 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1402 return std::get<0>(a) > std::get<0>(b); 1403 }; 1404 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1405 } 1406 for(auto &Tup : DupCandidates) { 1407 BranchProbability DupProb; 1408 MachineBasicBlock *Succ; 1409 std::tie(DupProb, Succ) = Tup; 1410 if (DupProb < BestProb) 1411 break; 1412 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1413 // If tail duplication gives us fallthrough when we otherwise wouldn't 1414 // have it, that is a strict gain. 1415 && (BestSucc.BB == nullptr 1416 || isProfitableToTailDup(BB, Succ, BestProb, Chain, 1417 BlockFilter))) { 1418 DEBUG( 1419 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1420 << DupProb 1421 << " (Tail Duplicate)\n"); 1422 BestSucc.BB = Succ; 1423 BestSucc.ShouldTailDup = true; 1424 break; 1425 } 1426 } 1427 1428 if (BestSucc.BB) 1429 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1430 1431 return BestSucc; 1432 } 1433 1434 /// \brief Select the best block from a worklist. 1435 /// 1436 /// This looks through the provided worklist as a list of candidate basic 1437 /// blocks and select the most profitable one to place. The definition of 1438 /// profitable only really makes sense in the context of a loop. This returns 1439 /// the most frequently visited block in the worklist, which in the case of 1440 /// a loop, is the one most desirable to be physically close to the rest of the 1441 /// loop body in order to improve i-cache behavior. 1442 /// 1443 /// \returns The best block found, or null if none are viable. 1444 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1445 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1446 // Once we need to walk the worklist looking for a candidate, cleanup the 1447 // worklist of already placed entries. 1448 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1449 // some code complexity) into the loop below. 1450 WorkList.erase(remove_if(WorkList, 1451 [&](MachineBasicBlock *BB) { 1452 return BlockToChain.lookup(BB) == &Chain; 1453 }), 1454 WorkList.end()); 1455 1456 if (WorkList.empty()) 1457 return nullptr; 1458 1459 bool IsEHPad = WorkList[0]->isEHPad(); 1460 1461 MachineBasicBlock *BestBlock = nullptr; 1462 BlockFrequency BestFreq; 1463 for (MachineBasicBlock *MBB : WorkList) { 1464 assert(MBB->isEHPad() == IsEHPad); 1465 1466 BlockChain &SuccChain = *BlockToChain[MBB]; 1467 if (&SuccChain == &Chain) 1468 continue; 1469 1470 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1471 1472 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1473 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1474 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1475 1476 // For ehpad, we layout the least probable first as to avoid jumping back 1477 // from least probable landingpads to more probable ones. 1478 // 1479 // FIXME: Using probability is probably (!) not the best way to achieve 1480 // this. We should probably have a more principled approach to layout 1481 // cleanup code. 1482 // 1483 // The goal is to get: 1484 // 1485 // +--------------------------+ 1486 // | V 1487 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1488 // 1489 // Rather than: 1490 // 1491 // +-------------------------------------+ 1492 // V | 1493 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1494 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1495 continue; 1496 1497 BestBlock = MBB; 1498 BestFreq = CandidateFreq; 1499 } 1500 1501 return BestBlock; 1502 } 1503 1504 /// \brief Retrieve the first unplaced basic block. 1505 /// 1506 /// This routine is called when we are unable to use the CFG to walk through 1507 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1508 /// We walk through the function's blocks in order, starting from the 1509 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1510 /// re-scanning the entire sequence on repeated calls to this routine. 1511 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1512 const BlockChain &PlacedChain, 1513 MachineFunction::iterator &PrevUnplacedBlockIt, 1514 const BlockFilterSet *BlockFilter) { 1515 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1516 ++I) { 1517 if (BlockFilter && !BlockFilter->count(&*I)) 1518 continue; 1519 if (BlockToChain[&*I] != &PlacedChain) { 1520 PrevUnplacedBlockIt = I; 1521 // Now select the head of the chain to which the unplaced block belongs 1522 // as the block to place. This will force the entire chain to be placed, 1523 // and satisfies the requirements of merging chains. 1524 return *BlockToChain[&*I]->begin(); 1525 } 1526 } 1527 return nullptr; 1528 } 1529 1530 void MachineBlockPlacement::fillWorkLists( 1531 const MachineBasicBlock *MBB, 1532 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1533 const BlockFilterSet *BlockFilter = nullptr) { 1534 BlockChain &Chain = *BlockToChain[MBB]; 1535 if (!UpdatedPreds.insert(&Chain).second) 1536 return; 1537 1538 assert(Chain.UnscheduledPredecessors == 0); 1539 for (MachineBasicBlock *ChainBB : Chain) { 1540 assert(BlockToChain[ChainBB] == &Chain); 1541 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1542 if (BlockFilter && !BlockFilter->count(Pred)) 1543 continue; 1544 if (BlockToChain[Pred] == &Chain) 1545 continue; 1546 ++Chain.UnscheduledPredecessors; 1547 } 1548 } 1549 1550 if (Chain.UnscheduledPredecessors != 0) 1551 return; 1552 1553 MachineBasicBlock *BB = *Chain.begin(); 1554 if (BB->isEHPad()) 1555 EHPadWorkList.push_back(BB); 1556 else 1557 BlockWorkList.push_back(BB); 1558 } 1559 1560 void MachineBlockPlacement::buildChain( 1561 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1562 BlockFilterSet *BlockFilter) { 1563 assert(HeadBB && "BB must not be null.\n"); 1564 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1565 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1566 1567 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1568 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1569 MachineBasicBlock *BB = *std::prev(Chain.end()); 1570 for (;;) { 1571 assert(BB && "null block found at end of chain in loop."); 1572 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1573 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1574 1575 1576 // Look for the best viable successor if there is one to place immediately 1577 // after this block. 1578 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1579 MachineBasicBlock* BestSucc = Result.BB; 1580 bool ShouldTailDup = Result.ShouldTailDup; 1581 if (TailDupPlacement) 1582 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1583 1584 // If an immediate successor isn't available, look for the best viable 1585 // block among those we've identified as not violating the loop's CFG at 1586 // this point. This won't be a fallthrough, but it will increase locality. 1587 if (!BestSucc) 1588 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1589 if (!BestSucc) 1590 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1591 1592 if (!BestSucc) { 1593 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1594 if (!BestSucc) 1595 break; 1596 1597 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1598 "layout successor until the CFG reduces\n"); 1599 } 1600 1601 // Placement may have changed tail duplication opportunities. 1602 // Check for that now. 1603 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1604 // If the chosen successor was duplicated into all its predecessors, 1605 // don't bother laying it out, just go round the loop again with BB as 1606 // the chain end. 1607 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1608 BlockFilter, PrevUnplacedBlockIt)) 1609 continue; 1610 } 1611 1612 // Place this block, updating the datastructures to reflect its placement. 1613 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1614 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1615 // we selected a successor that didn't fit naturally into the CFG. 1616 SuccChain.UnscheduledPredecessors = 0; 1617 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1618 << getBlockName(BestSucc) << "\n"); 1619 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1620 Chain.merge(BestSucc, &SuccChain); 1621 BB = *std::prev(Chain.end()); 1622 } 1623 1624 DEBUG(dbgs() << "Finished forming chain for header block " 1625 << getBlockName(*Chain.begin()) << "\n"); 1626 } 1627 1628 /// \brief Find the best loop top block for layout. 1629 /// 1630 /// Look for a block which is strictly better than the loop header for laying 1631 /// out at the top of the loop. This looks for one and only one pattern: 1632 /// a latch block with no conditional exit. This block will cause a conditional 1633 /// jump around it or will be the bottom of the loop if we lay it out in place, 1634 /// but if it it doesn't end up at the bottom of the loop for any reason, 1635 /// rotation alone won't fix it. Because such a block will always result in an 1636 /// unconditional jump (for the backedge) rotating it in front of the loop 1637 /// header is always profitable. 1638 MachineBasicBlock * 1639 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1640 const BlockFilterSet &LoopBlockSet) { 1641 // Placing the latch block before the header may introduce an extra branch 1642 // that skips this block the first time the loop is executed, which we want 1643 // to avoid when optimising for size. 1644 // FIXME: in theory there is a case that does not introduce a new branch, 1645 // i.e. when the layout predecessor does not fallthrough to the loop header. 1646 // In practice this never happens though: there always seems to be a preheader 1647 // that can fallthrough and that is also placed before the header. 1648 if (F->getFunction()->optForSize()) 1649 return L.getHeader(); 1650 1651 // Check that the header hasn't been fused with a preheader block due to 1652 // crazy branches. If it has, we need to start with the header at the top to 1653 // prevent pulling the preheader into the loop body. 1654 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1655 if (!LoopBlockSet.count(*HeaderChain.begin())) 1656 return L.getHeader(); 1657 1658 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1659 << "\n"); 1660 1661 BlockFrequency BestPredFreq; 1662 MachineBasicBlock *BestPred = nullptr; 1663 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1664 if (!LoopBlockSet.count(Pred)) 1665 continue; 1666 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1667 << Pred->succ_size() << " successors, "; 1668 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1669 if (Pred->succ_size() > 1) 1670 continue; 1671 1672 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1673 if (!BestPred || PredFreq > BestPredFreq || 1674 (!(PredFreq < BestPredFreq) && 1675 Pred->isLayoutSuccessor(L.getHeader()))) { 1676 BestPred = Pred; 1677 BestPredFreq = PredFreq; 1678 } 1679 } 1680 1681 // If no direct predecessor is fine, just use the loop header. 1682 if (!BestPred) { 1683 DEBUG(dbgs() << " final top unchanged\n"); 1684 return L.getHeader(); 1685 } 1686 1687 // Walk backwards through any straight line of predecessors. 1688 while (BestPred->pred_size() == 1 && 1689 (*BestPred->pred_begin())->succ_size() == 1 && 1690 *BestPred->pred_begin() != L.getHeader()) 1691 BestPred = *BestPred->pred_begin(); 1692 1693 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1694 return BestPred; 1695 } 1696 1697 /// \brief Find the best loop exiting block for layout. 1698 /// 1699 /// This routine implements the logic to analyze the loop looking for the best 1700 /// block to layout at the top of the loop. Typically this is done to maximize 1701 /// fallthrough opportunities. 1702 MachineBasicBlock * 1703 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1704 const BlockFilterSet &LoopBlockSet) { 1705 // We don't want to layout the loop linearly in all cases. If the loop header 1706 // is just a normal basic block in the loop, we want to look for what block 1707 // within the loop is the best one to layout at the top. However, if the loop 1708 // header has be pre-merged into a chain due to predecessors not having 1709 // analyzable branches, *and* the predecessor it is merged with is *not* part 1710 // of the loop, rotating the header into the middle of the loop will create 1711 // a non-contiguous range of blocks which is Very Bad. So start with the 1712 // header and only rotate if safe. 1713 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1714 if (!LoopBlockSet.count(*HeaderChain.begin())) 1715 return nullptr; 1716 1717 BlockFrequency BestExitEdgeFreq; 1718 unsigned BestExitLoopDepth = 0; 1719 MachineBasicBlock *ExitingBB = nullptr; 1720 // If there are exits to outer loops, loop rotation can severely limit 1721 // fallthrough opportunities unless it selects such an exit. Keep a set of 1722 // blocks where rotating to exit with that block will reach an outer loop. 1723 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1724 1725 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1726 << "\n"); 1727 for (MachineBasicBlock *MBB : L.getBlocks()) { 1728 BlockChain &Chain = *BlockToChain[MBB]; 1729 // Ensure that this block is at the end of a chain; otherwise it could be 1730 // mid-way through an inner loop or a successor of an unanalyzable branch. 1731 if (MBB != *std::prev(Chain.end())) 1732 continue; 1733 1734 // Now walk the successors. We need to establish whether this has a viable 1735 // exiting successor and whether it has a viable non-exiting successor. 1736 // We store the old exiting state and restore it if a viable looping 1737 // successor isn't found. 1738 MachineBasicBlock *OldExitingBB = ExitingBB; 1739 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1740 bool HasLoopingSucc = false; 1741 for (MachineBasicBlock *Succ : MBB->successors()) { 1742 if (Succ->isEHPad()) 1743 continue; 1744 if (Succ == MBB) 1745 continue; 1746 BlockChain &SuccChain = *BlockToChain[Succ]; 1747 // Don't split chains, either this chain or the successor's chain. 1748 if (&Chain == &SuccChain) { 1749 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1750 << getBlockName(Succ) << " (chain conflict)\n"); 1751 continue; 1752 } 1753 1754 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1755 if (LoopBlockSet.count(Succ)) { 1756 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1757 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1758 HasLoopingSucc = true; 1759 continue; 1760 } 1761 1762 unsigned SuccLoopDepth = 0; 1763 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1764 SuccLoopDepth = ExitLoop->getLoopDepth(); 1765 if (ExitLoop->contains(&L)) 1766 BlocksExitingToOuterLoop.insert(MBB); 1767 } 1768 1769 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1770 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1771 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1772 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1773 // Note that we bias this toward an existing layout successor to retain 1774 // incoming order in the absence of better information. The exit must have 1775 // a frequency higher than the current exit before we consider breaking 1776 // the layout. 1777 BranchProbability Bias(100 - ExitBlockBias, 100); 1778 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1779 ExitEdgeFreq > BestExitEdgeFreq || 1780 (MBB->isLayoutSuccessor(Succ) && 1781 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1782 BestExitEdgeFreq = ExitEdgeFreq; 1783 ExitingBB = MBB; 1784 } 1785 } 1786 1787 if (!HasLoopingSucc) { 1788 // Restore the old exiting state, no viable looping successor was found. 1789 ExitingBB = OldExitingBB; 1790 BestExitEdgeFreq = OldBestExitEdgeFreq; 1791 } 1792 } 1793 // Without a candidate exiting block or with only a single block in the 1794 // loop, just use the loop header to layout the loop. 1795 if (!ExitingBB) { 1796 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1797 return nullptr; 1798 } 1799 if (L.getNumBlocks() == 1) { 1800 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1801 return nullptr; 1802 } 1803 1804 // Also, if we have exit blocks which lead to outer loops but didn't select 1805 // one of them as the exiting block we are rotating toward, disable loop 1806 // rotation altogether. 1807 if (!BlocksExitingToOuterLoop.empty() && 1808 !BlocksExitingToOuterLoop.count(ExitingBB)) 1809 return nullptr; 1810 1811 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1812 return ExitingBB; 1813 } 1814 1815 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1816 /// 1817 /// Once we have built a chain, try to rotate it to line up the hot exit block 1818 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1819 /// branches. For example, if the loop has fallthrough into its header and out 1820 /// of its bottom already, don't rotate it. 1821 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1822 const MachineBasicBlock *ExitingBB, 1823 const BlockFilterSet &LoopBlockSet) { 1824 if (!ExitingBB) 1825 return; 1826 1827 MachineBasicBlock *Top = *LoopChain.begin(); 1828 bool ViableTopFallthrough = false; 1829 for (MachineBasicBlock *Pred : Top->predecessors()) { 1830 BlockChain *PredChain = BlockToChain[Pred]; 1831 if (!LoopBlockSet.count(Pred) && 1832 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1833 ViableTopFallthrough = true; 1834 break; 1835 } 1836 } 1837 1838 // If the header has viable fallthrough, check whether the current loop 1839 // bottom is a viable exiting block. If so, bail out as rotating will 1840 // introduce an unnecessary branch. 1841 if (ViableTopFallthrough) { 1842 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1843 for (MachineBasicBlock *Succ : Bottom->successors()) { 1844 BlockChain *SuccChain = BlockToChain[Succ]; 1845 if (!LoopBlockSet.count(Succ) && 1846 (!SuccChain || Succ == *SuccChain->begin())) 1847 return; 1848 } 1849 } 1850 1851 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1852 if (ExitIt == LoopChain.end()) 1853 return; 1854 1855 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1856 } 1857 1858 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1859 /// 1860 /// With profile data, we can determine the cost in terms of missed fall through 1861 /// opportunities when rotating a loop chain and select the best rotation. 1862 /// Basically, there are three kinds of cost to consider for each rotation: 1863 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1864 /// the loop to the loop header. 1865 /// 2. The possibly missed fall through edges (if they exist) from the loop 1866 /// exits to BB out of the loop. 1867 /// 3. The missed fall through edge (if it exists) from the last BB to the 1868 /// first BB in the loop chain. 1869 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1870 /// We select the best rotation with the smallest cost. 1871 void MachineBlockPlacement::rotateLoopWithProfile( 1872 BlockChain &LoopChain, const MachineLoop &L, 1873 const BlockFilterSet &LoopBlockSet) { 1874 auto HeaderBB = L.getHeader(); 1875 auto HeaderIter = find(LoopChain, HeaderBB); 1876 auto RotationPos = LoopChain.end(); 1877 1878 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1879 1880 // A utility lambda that scales up a block frequency by dividing it by a 1881 // branch probability which is the reciprocal of the scale. 1882 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1883 unsigned Scale) -> BlockFrequency { 1884 if (Scale == 0) 1885 return 0; 1886 // Use operator / between BlockFrequency and BranchProbability to implement 1887 // saturating multiplication. 1888 return Freq / BranchProbability(1, Scale); 1889 }; 1890 1891 // Compute the cost of the missed fall-through edge to the loop header if the 1892 // chain head is not the loop header. As we only consider natural loops with 1893 // single header, this computation can be done only once. 1894 BlockFrequency HeaderFallThroughCost(0); 1895 for (auto *Pred : HeaderBB->predecessors()) { 1896 BlockChain *PredChain = BlockToChain[Pred]; 1897 if (!LoopBlockSet.count(Pred) && 1898 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1899 auto EdgeFreq = 1900 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1901 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1902 // If the predecessor has only an unconditional jump to the header, we 1903 // need to consider the cost of this jump. 1904 if (Pred->succ_size() == 1) 1905 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1906 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1907 } 1908 } 1909 1910 // Here we collect all exit blocks in the loop, and for each exit we find out 1911 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1912 // as the sum of frequencies of exit edges we collect here, excluding the exit 1913 // edge from the tail of the loop chain. 1914 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1915 for (auto BB : LoopChain) { 1916 auto LargestExitEdgeProb = BranchProbability::getZero(); 1917 for (auto *Succ : BB->successors()) { 1918 BlockChain *SuccChain = BlockToChain[Succ]; 1919 if (!LoopBlockSet.count(Succ) && 1920 (!SuccChain || Succ == *SuccChain->begin())) { 1921 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1922 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1923 } 1924 } 1925 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1926 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1927 ExitsWithFreq.emplace_back(BB, ExitFreq); 1928 } 1929 } 1930 1931 // In this loop we iterate every block in the loop chain and calculate the 1932 // cost assuming the block is the head of the loop chain. When the loop ends, 1933 // we should have found the best candidate as the loop chain's head. 1934 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1935 EndIter = LoopChain.end(); 1936 Iter != EndIter; Iter++, TailIter++) { 1937 // TailIter is used to track the tail of the loop chain if the block we are 1938 // checking (pointed by Iter) is the head of the chain. 1939 if (TailIter == LoopChain.end()) 1940 TailIter = LoopChain.begin(); 1941 1942 auto TailBB = *TailIter; 1943 1944 // Calculate the cost by putting this BB to the top. 1945 BlockFrequency Cost = 0; 1946 1947 // If the current BB is the loop header, we need to take into account the 1948 // cost of the missed fall through edge from outside of the loop to the 1949 // header. 1950 if (Iter != HeaderIter) 1951 Cost += HeaderFallThroughCost; 1952 1953 // Collect the loop exit cost by summing up frequencies of all exit edges 1954 // except the one from the chain tail. 1955 for (auto &ExitWithFreq : ExitsWithFreq) 1956 if (TailBB != ExitWithFreq.first) 1957 Cost += ExitWithFreq.second; 1958 1959 // The cost of breaking the once fall-through edge from the tail to the top 1960 // of the loop chain. Here we need to consider three cases: 1961 // 1. If the tail node has only one successor, then we will get an 1962 // additional jmp instruction. So the cost here is (MisfetchCost + 1963 // JumpInstCost) * tail node frequency. 1964 // 2. If the tail node has two successors, then we may still get an 1965 // additional jmp instruction if the layout successor after the loop 1966 // chain is not its CFG successor. Note that the more frequently executed 1967 // jmp instruction will be put ahead of the other one. Assume the 1968 // frequency of those two branches are x and y, where x is the frequency 1969 // of the edge to the chain head, then the cost will be 1970 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1971 // 3. If the tail node has more than two successors (this rarely happens), 1972 // we won't consider any additional cost. 1973 if (TailBB->isSuccessor(*Iter)) { 1974 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1975 if (TailBB->succ_size() == 1) 1976 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1977 MisfetchCost + JumpInstCost); 1978 else if (TailBB->succ_size() == 2) { 1979 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1980 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1981 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1982 ? TailBBFreq * TailToHeadProb.getCompl() 1983 : TailToHeadFreq; 1984 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1985 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1986 } 1987 } 1988 1989 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1990 << " to the top: " << Cost.getFrequency() << "\n"); 1991 1992 if (Cost < SmallestRotationCost) { 1993 SmallestRotationCost = Cost; 1994 RotationPos = Iter; 1995 } 1996 } 1997 1998 if (RotationPos != LoopChain.end()) { 1999 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2000 << " to the top\n"); 2001 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2002 } 2003 } 2004 2005 /// \brief Collect blocks in the given loop that are to be placed. 2006 /// 2007 /// When profile data is available, exclude cold blocks from the returned set; 2008 /// otherwise, collect all blocks in the loop. 2009 MachineBlockPlacement::BlockFilterSet 2010 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2011 BlockFilterSet LoopBlockSet; 2012 2013 // Filter cold blocks off from LoopBlockSet when profile data is available. 2014 // Collect the sum of frequencies of incoming edges to the loop header from 2015 // outside. If we treat the loop as a super block, this is the frequency of 2016 // the loop. Then for each block in the loop, we calculate the ratio between 2017 // its frequency and the frequency of the loop block. When it is too small, 2018 // don't add it to the loop chain. If there are outer loops, then this block 2019 // will be merged into the first outer loop chain for which this block is not 2020 // cold anymore. This needs precise profile data and we only do this when 2021 // profile data is available. 2022 if (F->getFunction()->getEntryCount()) { 2023 BlockFrequency LoopFreq(0); 2024 for (auto LoopPred : L.getHeader()->predecessors()) 2025 if (!L.contains(LoopPred)) 2026 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2027 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2028 2029 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2030 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2031 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2032 continue; 2033 LoopBlockSet.insert(LoopBB); 2034 } 2035 } else 2036 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2037 2038 return LoopBlockSet; 2039 } 2040 2041 /// \brief Forms basic block chains from the natural loop structures. 2042 /// 2043 /// These chains are designed to preserve the existing *structure* of the code 2044 /// as much as possible. We can then stitch the chains together in a way which 2045 /// both preserves the topological structure and minimizes taken conditional 2046 /// branches. 2047 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2048 // First recurse through any nested loops, building chains for those inner 2049 // loops. 2050 for (const MachineLoop *InnerLoop : L) 2051 buildLoopChains(*InnerLoop); 2052 2053 assert(BlockWorkList.empty()); 2054 assert(EHPadWorkList.empty()); 2055 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2056 2057 // Check if we have profile data for this function. If yes, we will rotate 2058 // this loop by modeling costs more precisely which requires the profile data 2059 // for better layout. 2060 bool RotateLoopWithProfile = 2061 ForcePreciseRotationCost || 2062 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2063 2064 // First check to see if there is an obviously preferable top block for the 2065 // loop. This will default to the header, but may end up as one of the 2066 // predecessors to the header if there is one which will result in strictly 2067 // fewer branches in the loop body. 2068 // When we use profile data to rotate the loop, this is unnecessary. 2069 MachineBasicBlock *LoopTop = 2070 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2071 2072 // If we selected just the header for the loop top, look for a potentially 2073 // profitable exit block in the event that rotating the loop can eliminate 2074 // branches by placing an exit edge at the bottom. 2075 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2076 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2077 2078 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2079 2080 // FIXME: This is a really lame way of walking the chains in the loop: we 2081 // walk the blocks, and use a set to prevent visiting a particular chain 2082 // twice. 2083 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2084 assert(LoopChain.UnscheduledPredecessors == 0); 2085 UpdatedPreds.insert(&LoopChain); 2086 2087 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2088 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2089 2090 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2091 2092 if (RotateLoopWithProfile) 2093 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2094 else 2095 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2096 2097 DEBUG({ 2098 // Crash at the end so we get all of the debugging output first. 2099 bool BadLoop = false; 2100 if (LoopChain.UnscheduledPredecessors) { 2101 BadLoop = true; 2102 dbgs() << "Loop chain contains a block without its preds placed!\n" 2103 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2104 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2105 } 2106 for (MachineBasicBlock *ChainBB : LoopChain) { 2107 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2108 if (!LoopBlockSet.remove(ChainBB)) { 2109 // We don't mark the loop as bad here because there are real situations 2110 // where this can occur. For example, with an unanalyzable fallthrough 2111 // from a loop block to a non-loop block or vice versa. 2112 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2113 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2114 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2115 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2116 } 2117 } 2118 2119 if (!LoopBlockSet.empty()) { 2120 BadLoop = true; 2121 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2122 dbgs() << "Loop contains blocks never placed into a chain!\n" 2123 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2124 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2125 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2126 } 2127 assert(!BadLoop && "Detected problems with the placement of this loop."); 2128 }); 2129 2130 BlockWorkList.clear(); 2131 EHPadWorkList.clear(); 2132 } 2133 2134 /// When OutlineOpitonalBranches is on, this method collects BBs that 2135 /// dominates all terminator blocks of the function \p F. 2136 void MachineBlockPlacement::collectMustExecuteBBs() { 2137 if (OutlineOptionalBranches) { 2138 // Find the nearest common dominator of all of F's terminators. 2139 MachineBasicBlock *Terminator = nullptr; 2140 for (MachineBasicBlock &MBB : *F) { 2141 if (MBB.succ_size() == 0) { 2142 if (Terminator == nullptr) 2143 Terminator = &MBB; 2144 else 2145 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 2146 } 2147 } 2148 2149 // MBBs dominating this common dominator are unavoidable. 2150 UnavoidableBlocks.clear(); 2151 for (MachineBasicBlock &MBB : *F) { 2152 if (MDT->dominates(&MBB, Terminator)) { 2153 UnavoidableBlocks.insert(&MBB); 2154 } 2155 } 2156 } 2157 } 2158 2159 void MachineBlockPlacement::buildCFGChains() { 2160 // Ensure that every BB in the function has an associated chain to simplify 2161 // the assumptions of the remaining algorithm. 2162 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2163 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2164 ++FI) { 2165 MachineBasicBlock *BB = &*FI; 2166 BlockChain *Chain = 2167 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2168 // Also, merge any blocks which we cannot reason about and must preserve 2169 // the exact fallthrough behavior for. 2170 for (;;) { 2171 Cond.clear(); 2172 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2173 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2174 break; 2175 2176 MachineFunction::iterator NextFI = std::next(FI); 2177 MachineBasicBlock *NextBB = &*NextFI; 2178 // Ensure that the layout successor is a viable block, as we know that 2179 // fallthrough is a possibility. 2180 assert(NextFI != FE && "Can't fallthrough past the last block."); 2181 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2182 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2183 << "\n"); 2184 Chain->merge(NextBB, nullptr); 2185 #ifndef NDEBUG 2186 BlocksWithUnanalyzableExits.insert(&*BB); 2187 #endif 2188 FI = NextFI; 2189 BB = NextBB; 2190 } 2191 } 2192 2193 // Turned on with OutlineOptionalBranches option 2194 collectMustExecuteBBs(); 2195 2196 // Build any loop-based chains. 2197 PreferredLoopExit = nullptr; 2198 for (MachineLoop *L : *MLI) 2199 buildLoopChains(*L); 2200 2201 assert(BlockWorkList.empty()); 2202 assert(EHPadWorkList.empty()); 2203 2204 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2205 for (MachineBasicBlock &MBB : *F) 2206 fillWorkLists(&MBB, UpdatedPreds); 2207 2208 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2209 buildChain(&F->front(), FunctionChain); 2210 2211 #ifndef NDEBUG 2212 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2213 #endif 2214 DEBUG({ 2215 // Crash at the end so we get all of the debugging output first. 2216 bool BadFunc = false; 2217 FunctionBlockSetType FunctionBlockSet; 2218 for (MachineBasicBlock &MBB : *F) 2219 FunctionBlockSet.insert(&MBB); 2220 2221 for (MachineBasicBlock *ChainBB : FunctionChain) 2222 if (!FunctionBlockSet.erase(ChainBB)) { 2223 BadFunc = true; 2224 dbgs() << "Function chain contains a block not in the function!\n" 2225 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2226 } 2227 2228 if (!FunctionBlockSet.empty()) { 2229 BadFunc = true; 2230 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2231 dbgs() << "Function contains blocks never placed into a chain!\n" 2232 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2233 } 2234 assert(!BadFunc && "Detected problems with the block placement."); 2235 }); 2236 2237 // Splice the blocks into place. 2238 MachineFunction::iterator InsertPos = F->begin(); 2239 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2240 for (MachineBasicBlock *ChainBB : FunctionChain) { 2241 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2242 : " ... ") 2243 << getBlockName(ChainBB) << "\n"); 2244 if (InsertPos != MachineFunction::iterator(ChainBB)) 2245 F->splice(InsertPos, ChainBB); 2246 else 2247 ++InsertPos; 2248 2249 // Update the terminator of the previous block. 2250 if (ChainBB == *FunctionChain.begin()) 2251 continue; 2252 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2253 2254 // FIXME: It would be awesome of updateTerminator would just return rather 2255 // than assert when the branch cannot be analyzed in order to remove this 2256 // boiler plate. 2257 Cond.clear(); 2258 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2259 2260 #ifndef NDEBUG 2261 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2262 // Given the exact block placement we chose, we may actually not _need_ to 2263 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2264 // do that at this point is a bug. 2265 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2266 !PrevBB->canFallThrough()) && 2267 "Unexpected block with un-analyzable fallthrough!"); 2268 Cond.clear(); 2269 TBB = FBB = nullptr; 2270 } 2271 #endif 2272 2273 // The "PrevBB" is not yet updated to reflect current code layout, so, 2274 // o. it may fall-through to a block without explicit "goto" instruction 2275 // before layout, and no longer fall-through it after layout; or 2276 // o. just opposite. 2277 // 2278 // analyzeBranch() may return erroneous value for FBB when these two 2279 // situations take place. For the first scenario FBB is mistakenly set NULL; 2280 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2281 // mistakenly pointing to "*BI". 2282 // Thus, if the future change needs to use FBB before the layout is set, it 2283 // has to correct FBB first by using the code similar to the following: 2284 // 2285 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2286 // PrevBB->updateTerminator(); 2287 // Cond.clear(); 2288 // TBB = FBB = nullptr; 2289 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2290 // // FIXME: This should never take place. 2291 // TBB = FBB = nullptr; 2292 // } 2293 // } 2294 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2295 PrevBB->updateTerminator(); 2296 } 2297 2298 // Fixup the last block. 2299 Cond.clear(); 2300 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2301 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2302 F->back().updateTerminator(); 2303 2304 BlockWorkList.clear(); 2305 EHPadWorkList.clear(); 2306 } 2307 2308 void MachineBlockPlacement::optimizeBranches() { 2309 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2310 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2311 2312 // Now that all the basic blocks in the chain have the proper layout, 2313 // make a final call to AnalyzeBranch with AllowModify set. 2314 // Indeed, the target may be able to optimize the branches in a way we 2315 // cannot because all branches may not be analyzable. 2316 // E.g., the target may be able to remove an unconditional branch to 2317 // a fallthrough when it occurs after predicated terminators. 2318 for (MachineBasicBlock *ChainBB : FunctionChain) { 2319 Cond.clear(); 2320 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2321 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2322 // If PrevBB has a two-way branch, try to re-order the branches 2323 // such that we branch to the successor with higher probability first. 2324 if (TBB && !Cond.empty() && FBB && 2325 MBPI->getEdgeProbability(ChainBB, FBB) > 2326 MBPI->getEdgeProbability(ChainBB, TBB) && 2327 !TII->reverseBranchCondition(Cond)) { 2328 DEBUG(dbgs() << "Reverse order of the two branches: " 2329 << getBlockName(ChainBB) << "\n"); 2330 DEBUG(dbgs() << " Edge probability: " 2331 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2332 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2333 DebugLoc dl; // FIXME: this is nowhere 2334 TII->removeBranch(*ChainBB); 2335 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2336 ChainBB->updateTerminator(); 2337 } 2338 } 2339 } 2340 } 2341 2342 void MachineBlockPlacement::alignBlocks() { 2343 // Walk through the backedges of the function now that we have fully laid out 2344 // the basic blocks and align the destination of each backedge. We don't rely 2345 // exclusively on the loop info here so that we can align backedges in 2346 // unnatural CFGs and backedges that were introduced purely because of the 2347 // loop rotations done during this layout pass. 2348 if (F->getFunction()->optForSize()) 2349 return; 2350 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2351 if (FunctionChain.begin() == FunctionChain.end()) 2352 return; // Empty chain. 2353 2354 const BranchProbability ColdProb(1, 5); // 20% 2355 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2356 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2357 for (MachineBasicBlock *ChainBB : FunctionChain) { 2358 if (ChainBB == *FunctionChain.begin()) 2359 continue; 2360 2361 // Don't align non-looping basic blocks. These are unlikely to execute 2362 // enough times to matter in practice. Note that we'll still handle 2363 // unnatural CFGs inside of a natural outer loop (the common case) and 2364 // rotated loops. 2365 MachineLoop *L = MLI->getLoopFor(ChainBB); 2366 if (!L) 2367 continue; 2368 2369 unsigned Align = TLI->getPrefLoopAlignment(L); 2370 if (!Align) 2371 continue; // Don't care about loop alignment. 2372 2373 // If the block is cold relative to the function entry don't waste space 2374 // aligning it. 2375 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2376 if (Freq < WeightedEntryFreq) 2377 continue; 2378 2379 // If the block is cold relative to its loop header, don't align it 2380 // regardless of what edges into the block exist. 2381 MachineBasicBlock *LoopHeader = L->getHeader(); 2382 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2383 if (Freq < (LoopHeaderFreq * ColdProb)) 2384 continue; 2385 2386 // Check for the existence of a non-layout predecessor which would benefit 2387 // from aligning this block. 2388 MachineBasicBlock *LayoutPred = 2389 &*std::prev(MachineFunction::iterator(ChainBB)); 2390 2391 // Force alignment if all the predecessors are jumps. We already checked 2392 // that the block isn't cold above. 2393 if (!LayoutPred->isSuccessor(ChainBB)) { 2394 ChainBB->setAlignment(Align); 2395 continue; 2396 } 2397 2398 // Align this block if the layout predecessor's edge into this block is 2399 // cold relative to the block. When this is true, other predecessors make up 2400 // all of the hot entries into the block and thus alignment is likely to be 2401 // important. 2402 BranchProbability LayoutProb = 2403 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2404 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2405 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2406 ChainBB->setAlignment(Align); 2407 } 2408 } 2409 2410 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2411 /// it was duplicated into its chain predecessor and removed. 2412 /// \p BB - Basic block that may be duplicated. 2413 /// 2414 /// \p LPred - Chosen layout predecessor of \p BB. 2415 /// Updated to be the chain end if LPred is removed. 2416 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2417 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2418 /// Used to identify which blocks to update predecessor 2419 /// counts. 2420 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2421 /// chosen in the given order due to unnatural CFG 2422 /// only needed if \p BB is removed and 2423 /// \p PrevUnplacedBlockIt pointed to \p BB. 2424 /// @return true if \p BB was removed. 2425 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2426 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2427 const MachineBasicBlock *LoopHeaderBB, 2428 BlockChain &Chain, BlockFilterSet *BlockFilter, 2429 MachineFunction::iterator &PrevUnplacedBlockIt) { 2430 bool Removed, DuplicatedToLPred; 2431 bool DuplicatedToOriginalLPred; 2432 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2433 PrevUnplacedBlockIt, 2434 DuplicatedToLPred); 2435 if (!Removed) 2436 return false; 2437 DuplicatedToOriginalLPred = DuplicatedToLPred; 2438 // Iteratively try to duplicate again. It can happen that a block that is 2439 // duplicated into is still small enough to be duplicated again. 2440 // No need to call markBlockSuccessors in this case, as the blocks being 2441 // duplicated from here on are already scheduled. 2442 // Note that DuplicatedToLPred always implies Removed. 2443 while (DuplicatedToLPred) { 2444 assert (Removed && "Block must have been removed to be duplicated into its " 2445 "layout predecessor."); 2446 MachineBasicBlock *DupBB, *DupPred; 2447 // The removal callback causes Chain.end() to be updated when a block is 2448 // removed. On the first pass through the loop, the chain end should be the 2449 // same as it was on function entry. On subsequent passes, because we are 2450 // duplicating the block at the end of the chain, if it is removed the 2451 // chain will have shrunk by one block. 2452 BlockChain::iterator ChainEnd = Chain.end(); 2453 DupBB = *(--ChainEnd); 2454 // Now try to duplicate again. 2455 if (ChainEnd == Chain.begin()) 2456 break; 2457 DupPred = *std::prev(ChainEnd); 2458 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2459 PrevUnplacedBlockIt, 2460 DuplicatedToLPred); 2461 } 2462 // If BB was duplicated into LPred, it is now scheduled. But because it was 2463 // removed, markChainSuccessors won't be called for its chain. Instead we 2464 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2465 // at the end because repeating the tail duplication can increase the number 2466 // of unscheduled predecessors. 2467 LPred = *std::prev(Chain.end()); 2468 if (DuplicatedToOriginalLPred) 2469 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2470 return true; 2471 } 2472 2473 /// Tail duplicate \p BB into (some) predecessors if profitable. 2474 /// \p BB - Basic block that may be duplicated 2475 /// \p LPred - Chosen layout predecessor of \p BB 2476 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2477 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2478 /// Used to identify which blocks to update predecessor 2479 /// counts. 2480 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2481 /// chosen in the given order due to unnatural CFG 2482 /// only needed if \p BB is removed and 2483 /// \p PrevUnplacedBlockIt pointed to \p BB. 2484 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2485 /// only be true if the block was removed. 2486 /// \return - True if the block was duplicated into all preds and removed. 2487 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2488 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2489 BlockChain &Chain, BlockFilterSet *BlockFilter, 2490 MachineFunction::iterator &PrevUnplacedBlockIt, 2491 bool &DuplicatedToLPred) { 2492 DuplicatedToLPred = false; 2493 if (!shouldTailDuplicate(BB)) 2494 return false; 2495 2496 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2497 << BB->getNumber() << "\n"); 2498 2499 // This has to be a callback because none of it can be done after 2500 // BB is deleted. 2501 bool Removed = false; 2502 auto RemovalCallback = 2503 [&](MachineBasicBlock *RemBB) { 2504 // Signal to outer function 2505 Removed = true; 2506 2507 // Conservative default. 2508 bool InWorkList = true; 2509 // Remove from the Chain and Chain Map 2510 if (BlockToChain.count(RemBB)) { 2511 BlockChain *Chain = BlockToChain[RemBB]; 2512 InWorkList = Chain->UnscheduledPredecessors == 0; 2513 Chain->remove(RemBB); 2514 BlockToChain.erase(RemBB); 2515 } 2516 2517 // Handle the unplaced block iterator 2518 if (&(*PrevUnplacedBlockIt) == RemBB) { 2519 PrevUnplacedBlockIt++; 2520 } 2521 2522 // Handle the Work Lists 2523 if (InWorkList) { 2524 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2525 if (RemBB->isEHPad()) 2526 RemoveList = EHPadWorkList; 2527 RemoveList.erase( 2528 remove_if(RemoveList, 2529 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2530 RemoveList.end()); 2531 } 2532 2533 // Handle the filter set 2534 if (BlockFilter) { 2535 BlockFilter->remove(RemBB); 2536 } 2537 2538 // Remove the block from loop info. 2539 MLI->removeBlock(RemBB); 2540 if (RemBB == PreferredLoopExit) 2541 PreferredLoopExit = nullptr; 2542 2543 DEBUG(dbgs() << "TailDuplicator deleted block: " 2544 << getBlockName(RemBB) << "\n"); 2545 }; 2546 auto RemovalCallbackRef = 2547 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2548 2549 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2550 bool IsSimple = TailDup.isSimpleBB(BB); 2551 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2552 &DuplicatedPreds, &RemovalCallbackRef); 2553 2554 // Update UnscheduledPredecessors to reflect tail-duplication. 2555 DuplicatedToLPred = false; 2556 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2557 // We're only looking for unscheduled predecessors that match the filter. 2558 BlockChain* PredChain = BlockToChain[Pred]; 2559 if (Pred == LPred) 2560 DuplicatedToLPred = true; 2561 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2562 || PredChain == &Chain) 2563 continue; 2564 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2565 if (BlockFilter && !BlockFilter->count(NewSucc)) 2566 continue; 2567 BlockChain *NewChain = BlockToChain[NewSucc]; 2568 if (NewChain != &Chain && NewChain != PredChain) 2569 NewChain->UnscheduledPredecessors++; 2570 } 2571 } 2572 return Removed; 2573 } 2574 2575 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2576 if (skipFunction(*MF.getFunction())) 2577 return false; 2578 2579 // Check for single-block functions and skip them. 2580 if (std::next(MF.begin()) == MF.end()) 2581 return false; 2582 2583 F = &MF; 2584 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2585 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2586 getAnalysis<MachineBlockFrequencyInfo>()); 2587 MLI = &getAnalysis<MachineLoopInfo>(); 2588 TII = MF.getSubtarget().getInstrInfo(); 2589 TLI = MF.getSubtarget().getTargetLowering(); 2590 MDT = &getAnalysis<MachineDominatorTree>(); 2591 MPDT = nullptr; 2592 2593 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2594 // there are no MachineLoops. 2595 PreferredLoopExit = nullptr; 2596 2597 if (TailDupPlacement) { 2598 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2599 unsigned TailDupSize = TailDupPlacementThreshold; 2600 if (MF.getFunction()->optForSize()) 2601 TailDupSize = 1; 2602 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2603 } 2604 2605 assert(BlockToChain.empty()); 2606 2607 buildCFGChains(); 2608 2609 // Changing the layout can create new tail merging opportunities. 2610 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2611 // TailMerge can create jump into if branches that make CFG irreducible for 2612 // HW that requires structured CFG. 2613 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2614 PassConfig->getEnableTailMerge() && 2615 BranchFoldPlacement; 2616 // No tail merging opportunities if the block number is less than four. 2617 if (MF.size() > 3 && EnableTailMerge) { 2618 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2619 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2620 *MBPI, TailMergeSize); 2621 2622 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2623 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2624 /*AfterBlockPlacement=*/true)) { 2625 // Redo the layout if tail merging creates/removes/moves blocks. 2626 BlockToChain.clear(); 2627 // Must redo the dominator tree if blocks were changed. 2628 MDT->runOnMachineFunction(MF); 2629 if (MPDT) 2630 MPDT->runOnMachineFunction(MF); 2631 ChainAllocator.DestroyAll(); 2632 buildCFGChains(); 2633 } 2634 } 2635 2636 optimizeBranches(); 2637 alignBlocks(); 2638 2639 BlockToChain.clear(); 2640 ChainAllocator.DestroyAll(); 2641 2642 if (AlignAllBlock) 2643 // Align all of the blocks in the function to a specific alignment. 2644 for (MachineBasicBlock &MBB : MF) 2645 MBB.setAlignment(AlignAllBlock); 2646 else if (AlignAllNonFallThruBlocks) { 2647 // Align all of the blocks that have no fall-through predecessors to a 2648 // specific alignment. 2649 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2650 auto LayoutPred = std::prev(MBI); 2651 if (!LayoutPred->isSuccessor(&*MBI)) 2652 MBI->setAlignment(AlignAllNonFallThruBlocks); 2653 } 2654 } 2655 if (ViewBlockLayoutWithBFI != GVDT_None && 2656 (ViewBlockFreqFuncName.empty() || 2657 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2658 MBFI->view("MBP." + MF.getName(), false); 2659 } 2660 2661 2662 // We always return true as we have no way to track whether the final order 2663 // differs from the original order. 2664 return true; 2665 } 2666 2667 namespace { 2668 /// \brief A pass to compute block placement statistics. 2669 /// 2670 /// A separate pass to compute interesting statistics for evaluating block 2671 /// placement. This is separate from the actual placement pass so that they can 2672 /// be computed in the absence of any placement transformations or when using 2673 /// alternative placement strategies. 2674 class MachineBlockPlacementStats : public MachineFunctionPass { 2675 /// \brief A handle to the branch probability pass. 2676 const MachineBranchProbabilityInfo *MBPI; 2677 2678 /// \brief A handle to the function-wide block frequency pass. 2679 const MachineBlockFrequencyInfo *MBFI; 2680 2681 public: 2682 static char ID; // Pass identification, replacement for typeid 2683 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2684 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2685 } 2686 2687 bool runOnMachineFunction(MachineFunction &F) override; 2688 2689 void getAnalysisUsage(AnalysisUsage &AU) const override { 2690 AU.addRequired<MachineBranchProbabilityInfo>(); 2691 AU.addRequired<MachineBlockFrequencyInfo>(); 2692 AU.setPreservesAll(); 2693 MachineFunctionPass::getAnalysisUsage(AU); 2694 } 2695 }; 2696 } 2697 2698 char MachineBlockPlacementStats::ID = 0; 2699 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2700 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2701 "Basic Block Placement Stats", false, false) 2702 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2703 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2704 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2705 "Basic Block Placement Stats", false, false) 2706 2707 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2708 // Check for single-block functions and skip them. 2709 if (std::next(F.begin()) == F.end()) 2710 return false; 2711 2712 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2713 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2714 2715 for (MachineBasicBlock &MBB : F) { 2716 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2717 Statistic &NumBranches = 2718 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2719 Statistic &BranchTakenFreq = 2720 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2721 for (MachineBasicBlock *Succ : MBB.successors()) { 2722 // Skip if this successor is a fallthrough. 2723 if (MBB.isLayoutSuccessor(Succ)) 2724 continue; 2725 2726 BlockFrequency EdgeFreq = 2727 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2728 ++NumBranches; 2729 BranchTakenFreq += EdgeFreq.getFrequency(); 2730 } 2731 } 2732 2733 return false; 2734 } 2735