xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision ebe6cc4dadf64b64a8f93ae8e2c94203ae8520ac)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/TailDuplicator.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 #include <algorithm>
54 #include <functional>
55 #include <utility>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "block-placement"
59 
60 STATISTIC(NumCondBranches, "Number of conditional branches");
61 STATISTIC(NumUncondBranches, "Number of unconditional branches");
62 STATISTIC(CondBranchTakenFreq,
63           "Potential frequency of taking conditional branches");
64 STATISTIC(UncondBranchTakenFreq,
65           "Potential frequency of taking unconditional branches");
66 
67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
68                                        cl::desc("Force the alignment of all "
69                                                 "blocks in the function."),
70                                        cl::init(0), cl::Hidden);
71 
72 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
73     "align-all-nofallthru-blocks",
74     cl::desc("Force the alignment of all "
75              "blocks that have no fall-through predecessors (i.e. don't add "
76              "nops that are executed)."),
77     cl::init(0), cl::Hidden);
78 
79 // FIXME: Find a good default for this flag and remove the flag.
80 static cl::opt<unsigned> ExitBlockBias(
81     "block-placement-exit-block-bias",
82     cl::desc("Block frequency percentage a loop exit block needs "
83              "over the original exit to be considered the new exit."),
84     cl::init(0), cl::Hidden);
85 
86 // Definition:
87 // - Outlining: placement of a basic block outside the chain or hot path.
88 
89 static cl::opt<bool> OutlineOptionalBranches(
90     "outline-optional-branches",
91     cl::desc("Outlining optional branches will place blocks that are optional "
92               "branches, i.e. branches with a common post dominator, outside "
93               "the hot path or chain"),
94     cl::init(false), cl::Hidden);
95 
96 static cl::opt<unsigned> OutlineOptionalThreshold(
97     "outline-optional-threshold",
98     cl::desc("Don't outline optional branches that are a single block with an "
99              "instruction count below this threshold"),
100     cl::init(4), cl::Hidden);
101 
102 static cl::opt<unsigned> LoopToColdBlockRatio(
103     "loop-to-cold-block-ratio",
104     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
105              "(frequency of block) is greater than this ratio"),
106     cl::init(5), cl::Hidden);
107 
108 static cl::opt<bool>
109     PreciseRotationCost("precise-rotation-cost",
110                         cl::desc("Model the cost of loop rotation more "
111                                  "precisely by using profile data."),
112                         cl::init(false), cl::Hidden);
113 static cl::opt<bool>
114     ForcePreciseRotationCost("force-precise-rotation-cost",
115                              cl::desc("Force the use of precise cost "
116                                       "loop rotation strategy."),
117                              cl::init(false), cl::Hidden);
118 
119 static cl::opt<unsigned> MisfetchCost(
120     "misfetch-cost",
121     cl::desc("Cost that models the probabilistic risk of an instruction "
122              "misfetch due to a jump comparing to falling through, whose cost "
123              "is zero."),
124     cl::init(1), cl::Hidden);
125 
126 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
127                                       cl::desc("Cost of jump instructions."),
128                                       cl::init(1), cl::Hidden);
129 static cl::opt<bool>
130 TailDupPlacement("tail-dup-placement",
131               cl::desc("Perform tail duplication during placement. "
132                        "Creates more fallthrough opportunites in "
133                        "outline branches."),
134               cl::init(true), cl::Hidden);
135 
136 static cl::opt<bool>
137 BranchFoldPlacement("branch-fold-placement",
138               cl::desc("Perform branch folding during placement. "
139                        "Reduces code size."),
140               cl::init(true), cl::Hidden);
141 
142 // Heuristic for tail duplication.
143 static cl::opt<unsigned> TailDupPlacementThreshold(
144     "tail-dup-placement-threshold",
145     cl::desc("Instruction cutoff for tail duplication during layout. "
146              "Tail merging during layout is forced to have a threshold "
147              "that won't conflict."), cl::init(2),
148     cl::Hidden);
149 
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementPenalty(
152     "tail-dup-placement-penalty",
153     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
154              "Copying can increase fallthrough, but it also increases icache "
155              "pressure. This parameter controls the penalty to account for that. "
156              "Percent as integer."),
157     cl::init(2),
158     cl::Hidden);
159 
160 extern cl::opt<unsigned> StaticLikelyProb;
161 extern cl::opt<unsigned> ProfileLikelyProb;
162 
163 // Internal option used to control BFI display only after MBP pass.
164 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
165 // -view-block-layout-with-bfi=
166 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
167 
168 // Command line option to specify the name of the function for CFG dump
169 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
170 extern cl::opt<std::string> ViewBlockFreqFuncName;
171 
172 namespace {
173 class BlockChain;
174 /// \brief Type for our function-wide basic block -> block chain mapping.
175 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
176 }
177 
178 namespace {
179 /// \brief A chain of blocks which will be laid out contiguously.
180 ///
181 /// This is the datastructure representing a chain of consecutive blocks that
182 /// are profitable to layout together in order to maximize fallthrough
183 /// probabilities and code locality. We also can use a block chain to represent
184 /// a sequence of basic blocks which have some external (correctness)
185 /// requirement for sequential layout.
186 ///
187 /// Chains can be built around a single basic block and can be merged to grow
188 /// them. They participate in a block-to-chain mapping, which is updated
189 /// automatically as chains are merged together.
190 class BlockChain {
191   /// \brief The sequence of blocks belonging to this chain.
192   ///
193   /// This is the sequence of blocks for a particular chain. These will be laid
194   /// out in-order within the function.
195   SmallVector<MachineBasicBlock *, 4> Blocks;
196 
197   /// \brief A handle to the function-wide basic block to block chain mapping.
198   ///
199   /// This is retained in each block chain to simplify the computation of child
200   /// block chains for SCC-formation and iteration. We store the edges to child
201   /// basic blocks, and map them back to their associated chains using this
202   /// structure.
203   BlockToChainMapType &BlockToChain;
204 
205 public:
206   /// \brief Construct a new BlockChain.
207   ///
208   /// This builds a new block chain representing a single basic block in the
209   /// function. It also registers itself as the chain that block participates
210   /// in with the BlockToChain mapping.
211   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
212       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
213     assert(BB && "Cannot create a chain with a null basic block");
214     BlockToChain[BB] = this;
215   }
216 
217   /// \brief Iterator over blocks within the chain.
218   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
219   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
220 
221   /// \brief Beginning of blocks within the chain.
222   iterator begin() { return Blocks.begin(); }
223   const_iterator begin() const { return Blocks.begin(); }
224 
225   /// \brief End of blocks within the chain.
226   iterator end() { return Blocks.end(); }
227   const_iterator end() const { return Blocks.end(); }
228 
229   bool remove(MachineBasicBlock* BB) {
230     for(iterator i = begin(); i != end(); ++i) {
231       if (*i == BB) {
232         Blocks.erase(i);
233         return true;
234       }
235     }
236     return false;
237   }
238 
239   /// \brief Merge a block chain into this one.
240   ///
241   /// This routine merges a block chain into this one. It takes care of forming
242   /// a contiguous sequence of basic blocks, updating the edge list, and
243   /// updating the block -> chain mapping. It does not free or tear down the
244   /// old chain, but the old chain's block list is no longer valid.
245   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
246     assert(BB);
247     assert(!Blocks.empty());
248 
249     // Fast path in case we don't have a chain already.
250     if (!Chain) {
251       assert(!BlockToChain[BB]);
252       Blocks.push_back(BB);
253       BlockToChain[BB] = this;
254       return;
255     }
256 
257     assert(BB == *Chain->begin());
258     assert(Chain->begin() != Chain->end());
259 
260     // Update the incoming blocks to point to this chain, and add them to the
261     // chain structure.
262     for (MachineBasicBlock *ChainBB : *Chain) {
263       Blocks.push_back(ChainBB);
264       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
265       BlockToChain[ChainBB] = this;
266     }
267   }
268 
269 #ifndef NDEBUG
270   /// \brief Dump the blocks in this chain.
271   LLVM_DUMP_METHOD void dump() {
272     for (MachineBasicBlock *MBB : *this)
273       MBB->dump();
274   }
275 #endif // NDEBUG
276 
277   /// \brief Count of predecessors of any block within the chain which have not
278   /// yet been scheduled.  In general, we will delay scheduling this chain
279   /// until those predecessors are scheduled (or we find a sufficiently good
280   /// reason to override this heuristic.)  Note that when forming loop chains,
281   /// blocks outside the loop are ignored and treated as if they were already
282   /// scheduled.
283   ///
284   /// Note: This field is reinitialized multiple times - once for each loop,
285   /// and then once for the function as a whole.
286   unsigned UnscheduledPredecessors;
287 };
288 }
289 
290 namespace {
291 class MachineBlockPlacement : public MachineFunctionPass {
292   /// \brief A typedef for a block filter set.
293   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
294 
295   /// Pair struct containing basic block and taildup profitiability
296   struct BlockAndTailDupResult {
297     MachineBasicBlock *BB;
298     bool ShouldTailDup;
299   };
300 
301   /// Triple struct containing edge weight and the edge.
302   struct WeightedEdge {
303     BlockFrequency Weight;
304     MachineBasicBlock *Src;
305     MachineBasicBlock *Dest;
306   };
307 
308   /// \brief work lists of blocks that are ready to be laid out
309   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
310   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
311 
312   /// Edges that have already been computed as optimal.
313   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
314 
315   /// \brief Machine Function
316   MachineFunction *F;
317 
318   /// \brief A handle to the branch probability pass.
319   const MachineBranchProbabilityInfo *MBPI;
320 
321   /// \brief A handle to the function-wide block frequency pass.
322   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
323 
324   /// \brief A handle to the loop info.
325   MachineLoopInfo *MLI;
326 
327   /// \brief Preferred loop exit.
328   /// Member variable for convenience. It may be removed by duplication deep
329   /// in the call stack.
330   MachineBasicBlock *PreferredLoopExit;
331 
332   /// \brief A handle to the target's instruction info.
333   const TargetInstrInfo *TII;
334 
335   /// \brief A handle to the target's lowering info.
336   const TargetLoweringBase *TLI;
337 
338   /// \brief A handle to the dominator tree.
339   MachineDominatorTree *MDT;
340 
341   /// \brief A handle to the post dominator tree.
342   MachinePostDominatorTree *MPDT;
343 
344   /// \brief Duplicator used to duplicate tails during placement.
345   ///
346   /// Placement decisions can open up new tail duplication opportunities, but
347   /// since tail duplication affects placement decisions of later blocks, it
348   /// must be done inline.
349   TailDuplicator TailDup;
350 
351   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
352   /// all terminators of the MachineFunction.
353   SmallPtrSet<const MachineBasicBlock *, 4> UnavoidableBlocks;
354 
355   /// \brief Allocator and owner of BlockChain structures.
356   ///
357   /// We build BlockChains lazily while processing the loop structure of
358   /// a function. To reduce malloc traffic, we allocate them using this
359   /// slab-like allocator, and destroy them after the pass completes. An
360   /// important guarantee is that this allocator produces stable pointers to
361   /// the chains.
362   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
363 
364   /// \brief Function wide BasicBlock to BlockChain mapping.
365   ///
366   /// This mapping allows efficiently moving from any given basic block to the
367   /// BlockChain it participates in, if any. We use it to, among other things,
368   /// allow implicitly defining edges between chains as the existing edges
369   /// between basic blocks.
370   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
371 
372 #ifndef NDEBUG
373   /// The set of basic blocks that have terminators that cannot be fully
374   /// analyzed.  These basic blocks cannot be re-ordered safely by
375   /// MachineBlockPlacement, and we must preserve physical layout of these
376   /// blocks and their successors through the pass.
377   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
378 #endif
379 
380   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
381   /// if the count goes to 0, add them to the appropriate work list.
382   void markChainSuccessors(
383       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
384       const BlockFilterSet *BlockFilter = nullptr);
385 
386   /// Decrease the UnscheduledPredecessors count for a single block, and
387   /// if the count goes to 0, add them to the appropriate work list.
388   void markBlockSuccessors(
389       const BlockChain &Chain, const MachineBasicBlock *BB,
390       const MachineBasicBlock *LoopHeaderBB,
391       const BlockFilterSet *BlockFilter = nullptr);
392 
393   BranchProbability
394   collectViableSuccessors(
395       const MachineBasicBlock *BB, const BlockChain &Chain,
396       const BlockFilterSet *BlockFilter,
397       SmallVector<MachineBasicBlock *, 4> &Successors);
398   bool shouldPredBlockBeOutlined(
399       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
400       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
401       BranchProbability SuccProb, BranchProbability HotProb);
402   bool repeatedlyTailDuplicateBlock(
403       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
404       const MachineBasicBlock *LoopHeaderBB,
405       BlockChain &Chain, BlockFilterSet *BlockFilter,
406       MachineFunction::iterator &PrevUnplacedBlockIt);
407   bool maybeTailDuplicateBlock(
408       MachineBasicBlock *BB, MachineBasicBlock *LPred,
409       BlockChain &Chain, BlockFilterSet *BlockFilter,
410       MachineFunction::iterator &PrevUnplacedBlockIt,
411       bool &DuplicatedToPred);
412   bool hasBetterLayoutPredecessor(
413       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
414       const BlockChain &SuccChain, BranchProbability SuccProb,
415       BranchProbability RealSuccProb, const BlockChain &Chain,
416       const BlockFilterSet *BlockFilter);
417   BlockAndTailDupResult selectBestSuccessor(
418       const MachineBasicBlock *BB, const BlockChain &Chain,
419       const BlockFilterSet *BlockFilter);
420   MachineBasicBlock *selectBestCandidateBlock(
421       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
422   MachineBasicBlock *getFirstUnplacedBlock(
423       const BlockChain &PlacedChain,
424       MachineFunction::iterator &PrevUnplacedBlockIt,
425       const BlockFilterSet *BlockFilter);
426 
427   /// \brief Add a basic block to the work list if it is appropriate.
428   ///
429   /// If the optional parameter BlockFilter is provided, only MBB
430   /// present in the set will be added to the worklist. If nullptr
431   /// is provided, no filtering occurs.
432   void fillWorkLists(const MachineBasicBlock *MBB,
433                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
434                      const BlockFilterSet *BlockFilter);
435   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
436                   BlockFilterSet *BlockFilter = nullptr);
437   MachineBasicBlock *findBestLoopTop(
438       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
439   MachineBasicBlock *findBestLoopExit(
440       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
441   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
442   void buildLoopChains(const MachineLoop &L);
443   void rotateLoop(
444       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
445       const BlockFilterSet &LoopBlockSet);
446   void rotateLoopWithProfile(
447       BlockChain &LoopChain, const MachineLoop &L,
448       const BlockFilterSet &LoopBlockSet);
449   void collectMustExecuteBBs();
450   void buildCFGChains();
451   void optimizeBranches();
452   void alignBlocks();
453   /// Returns true if a block should be tail-duplicated to increase fallthrough
454   /// opportunities.
455   bool shouldTailDuplicate(MachineBasicBlock *BB);
456   /// Check the edge frequencies to see if tail duplication will increase
457   /// fallthroughs.
458   bool isProfitableToTailDup(
459     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
460     BranchProbability AdjustedSumProb,
461     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
462   /// Check for a trellis layout.
463   bool isTrellis(const MachineBasicBlock *BB,
464                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
465                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
466   /// Get the best successor given a trellis layout.
467   BlockAndTailDupResult getBestTrellisSuccessor(
468       const MachineBasicBlock *BB,
469       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
470       BranchProbability AdjustedSumProb, const BlockChain &Chain,
471       const BlockFilterSet *BlockFilter);
472   /// Get the best pair of non-conflicting edges.
473   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
474       const MachineBasicBlock *BB,
475       SmallVector<SmallVector<WeightedEdge, 8>, 2> &Edges);
476   /// Returns true if a block can tail duplicate into all unplaced
477   /// predecessors. Filters based on loop.
478   bool canTailDuplicateUnplacedPreds(
479       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
480       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
481 
482 public:
483   static char ID; // Pass identification, replacement for typeid
484   MachineBlockPlacement() : MachineFunctionPass(ID) {
485     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
486   }
487 
488   bool runOnMachineFunction(MachineFunction &F) override;
489 
490   void getAnalysisUsage(AnalysisUsage &AU) const override {
491     AU.addRequired<MachineBranchProbabilityInfo>();
492     AU.addRequired<MachineBlockFrequencyInfo>();
493     AU.addRequired<MachineDominatorTree>();
494     if (TailDupPlacement)
495       AU.addRequired<MachinePostDominatorTree>();
496     AU.addRequired<MachineLoopInfo>();
497     AU.addRequired<TargetPassConfig>();
498     MachineFunctionPass::getAnalysisUsage(AU);
499   }
500 };
501 }
502 
503 char MachineBlockPlacement::ID = 0;
504 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
505 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
506                       "Branch Probability Basic Block Placement", false, false)
507 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
508 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
509 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
510 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
511 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
512 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
513                     "Branch Probability Basic Block Placement", false, false)
514 
515 #ifndef NDEBUG
516 /// \brief Helper to print the name of a MBB.
517 ///
518 /// Only used by debug logging.
519 static std::string getBlockName(const MachineBasicBlock *BB) {
520   std::string Result;
521   raw_string_ostream OS(Result);
522   OS << "BB#" << BB->getNumber();
523   OS << " ('" << BB->getName() << "')";
524   OS.flush();
525   return Result;
526 }
527 #endif
528 
529 /// \brief Mark a chain's successors as having one fewer preds.
530 ///
531 /// When a chain is being merged into the "placed" chain, this routine will
532 /// quickly walk the successors of each block in the chain and mark them as
533 /// having one fewer active predecessor. It also adds any successors of this
534 /// chain which reach the zero-predecessor state to the appropriate worklist.
535 void MachineBlockPlacement::markChainSuccessors(
536     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
537     const BlockFilterSet *BlockFilter) {
538   // Walk all the blocks in this chain, marking their successors as having
539   // a predecessor placed.
540   for (MachineBasicBlock *MBB : Chain) {
541     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
542   }
543 }
544 
545 /// \brief Mark a single block's successors as having one fewer preds.
546 ///
547 /// Under normal circumstances, this is only called by markChainSuccessors,
548 /// but if a block that was to be placed is completely tail-duplicated away,
549 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
550 /// for just that block.
551 void MachineBlockPlacement::markBlockSuccessors(
552     const BlockChain &Chain, const MachineBasicBlock *MBB,
553     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
554   // Add any successors for which this is the only un-placed in-loop
555   // predecessor to the worklist as a viable candidate for CFG-neutral
556   // placement. No subsequent placement of this block will violate the CFG
557   // shape, so we get to use heuristics to choose a favorable placement.
558   for (MachineBasicBlock *Succ : MBB->successors()) {
559     if (BlockFilter && !BlockFilter->count(Succ))
560       continue;
561     BlockChain &SuccChain = *BlockToChain[Succ];
562     // Disregard edges within a fixed chain, or edges to the loop header.
563     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
564       continue;
565 
566     // This is a cross-chain edge that is within the loop, so decrement the
567     // loop predecessor count of the destination chain.
568     if (SuccChain.UnscheduledPredecessors == 0 ||
569         --SuccChain.UnscheduledPredecessors > 0)
570       continue;
571 
572     auto *NewBB = *SuccChain.begin();
573     if (NewBB->isEHPad())
574       EHPadWorkList.push_back(NewBB);
575     else
576       BlockWorkList.push_back(NewBB);
577   }
578 }
579 
580 /// This helper function collects the set of successors of block
581 /// \p BB that are allowed to be its layout successors, and return
582 /// the total branch probability of edges from \p BB to those
583 /// blocks.
584 BranchProbability MachineBlockPlacement::collectViableSuccessors(
585     const MachineBasicBlock *BB, const BlockChain &Chain,
586     const BlockFilterSet *BlockFilter,
587     SmallVector<MachineBasicBlock *, 4> &Successors) {
588   // Adjust edge probabilities by excluding edges pointing to blocks that is
589   // either not in BlockFilter or is already in the current chain. Consider the
590   // following CFG:
591   //
592   //     --->A
593   //     |  / \
594   //     | B   C
595   //     |  \ / \
596   //     ----D   E
597   //
598   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
599   // A->C is chosen as a fall-through, D won't be selected as a successor of C
600   // due to CFG constraint (the probability of C->D is not greater than
601   // HotProb to break top-order). If we exclude E that is not in BlockFilter
602   // when calculating the  probability of C->D, D will be selected and we
603   // will get A C D B as the layout of this loop.
604   auto AdjustedSumProb = BranchProbability::getOne();
605   for (MachineBasicBlock *Succ : BB->successors()) {
606     bool SkipSucc = false;
607     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
608       SkipSucc = true;
609     } else {
610       BlockChain *SuccChain = BlockToChain[Succ];
611       if (SuccChain == &Chain) {
612         SkipSucc = true;
613       } else if (Succ != *SuccChain->begin()) {
614         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
615         continue;
616       }
617     }
618     if (SkipSucc)
619       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
620     else
621       Successors.push_back(Succ);
622   }
623 
624   return AdjustedSumProb;
625 }
626 
627 /// The helper function returns the branch probability that is adjusted
628 /// or normalized over the new total \p AdjustedSumProb.
629 static BranchProbability
630 getAdjustedProbability(BranchProbability OrigProb,
631                        BranchProbability AdjustedSumProb) {
632   BranchProbability SuccProb;
633   uint32_t SuccProbN = OrigProb.getNumerator();
634   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
635   if (SuccProbN >= SuccProbD)
636     SuccProb = BranchProbability::getOne();
637   else
638     SuccProb = BranchProbability(SuccProbN, SuccProbD);
639 
640   return SuccProb;
641 }
642 
643 /// Check if \p BB has exactly the successors in \p Successors.
644 static bool
645 hasSameSuccessors(MachineBasicBlock &BB,
646                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
647   if (BB.succ_size() != Successors.size())
648     return false;
649   // We don't want to count self-loops
650   if (Successors.count(&BB))
651     return false;
652   for (MachineBasicBlock *Succ : BB.successors())
653     if (!Successors.count(Succ))
654       return false;
655   return true;
656 }
657 
658 /// Check if a block should be tail duplicated to increase fallthrough
659 /// opportunities.
660 /// \p BB Block to check.
661 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
662   // Blocks with single successors don't create additional fallthrough
663   // opportunities. Don't duplicate them. TODO: When conditional exits are
664   // analyzable, allow them to be duplicated.
665   bool IsSimple = TailDup.isSimpleBB(BB);
666 
667   if (BB->succ_size() == 1)
668     return false;
669   return TailDup.shouldTailDuplicate(IsSimple, *BB);
670 }
671 
672 /// Compare 2 BlockFrequency's with a small penalty for \p A.
673 /// In order to be conservative, we apply a X% penalty to account for
674 /// increased icache pressure and static heuristics. For small frequencies
675 /// we use only the numerators to improve accuracy. For simplicity, we assume the
676 /// penalty is less than 100%
677 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
678 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
679                             uint64_t EntryFreq) {
680   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
681   BlockFrequency Gain = A - B;
682   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
683 }
684 
685 /// Check the edge frequencies to see if tail duplication will increase
686 /// fallthroughs. It only makes sense to call this function when
687 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
688 /// always locally profitable if we would have picked \p Succ without
689 /// considering duplication.
690 bool MachineBlockPlacement::isProfitableToTailDup(
691     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
692     BranchProbability QProb,
693     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
694   // We need to do a probability calculation to make sure this is profitable.
695   // First: does succ have a successor that post-dominates? This affects the
696   // calculation. The 2 relevant cases are:
697   //    BB         BB
698   //    | \Qout    | \Qout
699   //   P|  C       |P C
700   //    =   C'     =   C'
701   //    |  /Qin    |  /Qin
702   //    | /        | /
703   //    Succ       Succ
704   //    / \        | \  V
705   //  U/   =V      |U \
706   //  /     \      =   D
707   //  D      E     |  /
708   //               | /
709   //               |/
710   //               PDom
711   //  '=' : Branch taken for that CFG edge
712   // In the second case, Placing Succ while duplicating it into C prevents the
713   // fallthrough of Succ into either D or PDom, because they now have C as an
714   // unplaced predecessor
715 
716   // Start by figuring out which case we fall into
717   MachineBasicBlock *PDom = nullptr;
718   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
719   // Only scan the relevant successors
720   auto AdjustedSuccSumProb =
721       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
722   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
723   auto BBFreq = MBFI->getBlockFreq(BB);
724   auto SuccFreq = MBFI->getBlockFreq(Succ);
725   BlockFrequency P = BBFreq * PProb;
726   BlockFrequency Qout = BBFreq * QProb;
727   uint64_t EntryFreq = MBFI->getEntryFreq();
728   // If there are no more successors, it is profitable to copy, as it strictly
729   // increases fallthrough.
730   if (SuccSuccs.size() == 0)
731     return greaterWithBias(P, Qout, EntryFreq);
732 
733   auto BestSuccSucc = BranchProbability::getZero();
734   // Find the PDom or the best Succ if no PDom exists.
735   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
736     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
737     if (Prob > BestSuccSucc)
738       BestSuccSucc = Prob;
739     if (PDom == nullptr)
740       if (MPDT->dominates(SuccSucc, Succ)) {
741         PDom = SuccSucc;
742         break;
743       }
744   }
745   // For the comparisons, we need to know Succ's best incoming edge that isn't
746   // from BB.
747   auto SuccBestPred = BlockFrequency(0);
748   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
749     if (SuccPred == Succ || SuccPred == BB
750         || BlockToChain[SuccPred] == &Chain
751         || (BlockFilter && !BlockFilter->count(SuccPred)))
752       continue;
753     auto Freq = MBFI->getBlockFreq(SuccPred)
754         * MBPI->getEdgeProbability(SuccPred, Succ);
755     if (Freq > SuccBestPred)
756       SuccBestPred = Freq;
757   }
758   // Qin is Succ's best unplaced incoming edge that isn't BB
759   BlockFrequency Qin = SuccBestPred;
760   // If it doesn't have a post-dominating successor, here is the calculation:
761   //    BB        BB
762   //    | \Qout   |  \
763   //   P|  C      |   =
764   //    =   C'    |    C
765   //    |  /Qin   |     |
766   //    | /       |     C' (+Succ)
767   //    Succ      Succ /|
768   //    / \       |  \/ |
769   //  U/   =V     |  == |
770   //  /     \     | /  \|
771   //  D      E    D     E
772   //  '=' : Branch taken for that CFG edge
773   //  Cost in the first case is: P + V
774   //  For this calculation, we always assume P > Qout. If Qout > P
775   //  The result of this function will be ignored at the caller.
776   //  Cost in the second case is: Qout + Qin * U + P * V
777 
778   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
779     BranchProbability UProb = BestSuccSucc;
780     BranchProbability VProb = AdjustedSuccSumProb - UProb;
781     BlockFrequency V = SuccFreq * VProb;
782     BlockFrequency QinU = Qin * UProb;
783     BlockFrequency BaseCost = P + V;
784     BlockFrequency DupCost = Qout + QinU + P * VProb;
785     return greaterWithBias(BaseCost, DupCost, EntryFreq);
786   }
787   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
788   BranchProbability VProb = AdjustedSuccSumProb - UProb;
789   BlockFrequency U = SuccFreq * UProb;
790   BlockFrequency V = SuccFreq * VProb;
791   // If there is a post-dominating successor, here is the calculation:
792   // BB         BB                 BB          BB
793   // | \Qout    |  \               | \Qout     |  \
794   // |P C       |   =              |P C        |   =
795   // =   C'     |P   C             =   C'      |P   C
796   // |  /Qin    |     |            |  /Qin     |     |
797   // | /        |     C' (+Succ)   | /         |     C' (+Succ)
798   // Succ       Succ /|            Succ        Succ /|
799   // | \  V     |  \/ |            | \  V      |  \/ |
800   // |U \       |U /\ |            |U =        |U /\ |
801   // =   D      = =  \=            |   D       | =  =|
802   // |  /       |/    D            |  /        |/    D
803   // | /        |    /             | =         |    /
804   // |/         |   /              |/          |   =
805   // Dom        Dom                Dom         Dom
806   //  '=' : Branch taken for that CFG edge
807   // The cost for taken branches in the first case is P + U
808   // The cost in the second case (assuming independence), given the layout:
809   // BB, Succ, (C+Succ), D, Dom
810   // is Qout + P * V + Qin * U
811   // compare P + U vs Qout + P * U + Qin.
812   //
813   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
814   //
815   // For the 3rd case, the cost is P + 2 * V
816   // For the 4th case, the cost is Qout + Qin * U + P * V + V
817   // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V
818   if (UProb > AdjustedSuccSumProb / 2 &&
819       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
820                                   Chain, BlockFilter))
821     // Cases 3 & 4
822     return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb),
823                            EntryFreq);
824   // Cases 1 & 2
825   return greaterWithBias(
826       (P + U), (Qout + Qin * AdjustedSuccSumProb + P * UProb), EntryFreq);
827 }
828 
829 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
830 /// successors form the lower part of a trellis. A successor set S forms the
831 /// lower part of a trellis if all of the predecessors of S are either in S or
832 /// have all of S as successors. We ignore trellises where BB doesn't have 2
833 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
834 /// are very uncommon and complex to compute optimally. Allowing edges within S
835 /// is not strictly a trellis, but the same algorithm works, so we allow it.
836 bool MachineBlockPlacement::isTrellis(
837     const MachineBasicBlock *BB,
838     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
839     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
840   // Technically BB could form a trellis with branching factor higher than 2.
841   // But that's extremely uncommon.
842   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
843     return false;
844 
845   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
846                                                        BB->succ_end());
847   // To avoid reviewing the same predecessors twice.
848   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
849 
850   for (MachineBasicBlock *Succ : ViableSuccs) {
851     int PredCount = 0;
852     for (auto SuccPred : Succ->predecessors()) {
853       // Allow triangle successors, but don't count them.
854       if (Successors.count(SuccPred))
855         continue;
856       const BlockChain *PredChain = BlockToChain[SuccPred];
857       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
858           PredChain == &Chain || PredChain == BlockToChain[Succ])
859         continue;
860       ++PredCount;
861       // Perform the successor check only once.
862       if (!SeenPreds.insert(SuccPred).second)
863         continue;
864       if (!hasSameSuccessors(*SuccPred, Successors))
865         return false;
866     }
867     // If one of the successors has only BB as a predecessor, it is not a
868     // trellis.
869     if (PredCount < 1)
870       return false;
871   }
872   return true;
873 }
874 
875 /// Pick the highest total weight pair of edges that can both be laid out.
876 /// The edges in \p Edges[0] are assumed to have a different destination than
877 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
878 /// the individual highest weight edges to the 2 different destinations, or in
879 /// case of a conflict, one of them should be replaced with a 2nd best edge.
880 std::pair<MachineBlockPlacement::WeightedEdge,
881           MachineBlockPlacement::WeightedEdge>
882 MachineBlockPlacement::getBestNonConflictingEdges(
883     const MachineBasicBlock *BB,
884     SmallVector<SmallVector<MachineBlockPlacement::WeightedEdge, 8>, 2>
885         &Edges) {
886   // Sort the edges, and then for each successor, find the best incoming
887   // predecessor. If the best incoming predecessors aren't the same,
888   // then that is clearly the best layout. If there is a conflict, one of the
889   // successors will have to fallthrough from the second best predecessor. We
890   // compare which combination is better overall.
891 
892   // Sort for highest frequency.
893   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
894 
895   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
896   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
897   auto BestA = Edges[0].begin();
898   auto BestB = Edges[1].begin();
899   // Arrange for the correct answer to be in BestA and BestB
900   // If the 2 best edges don't conflict, the answer is already there.
901   if (BestA->Src == BestB->Src) {
902     // Compare the total fallthrough of (Best + Second Best) for both pairs
903     auto SecondBestA = std::next(BestA);
904     auto SecondBestB = std::next(BestB);
905     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
906     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
907     if (BestAScore < BestBScore)
908       BestA = SecondBestA;
909     else
910       BestB = SecondBestB;
911   }
912   // Arrange for the BB edge to be in BestA if it exists.
913   if (BestB->Src == BB)
914     std::swap(BestA, BestB);
915   return std::make_pair(*BestA, *BestB);
916 }
917 
918 /// Get the best successor from \p BB based on \p BB being part of a trellis.
919 /// We only handle trellises with 2 successors, so the algorithm is
920 /// straightforward: Find the best pair of edges that don't conflict. We find
921 /// the best incoming edge for each successor in the trellis. If those conflict,
922 /// we consider which of them should be replaced with the second best.
923 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
924 /// comes from \p BB, it will be in \p BestEdges[0]
925 MachineBlockPlacement::BlockAndTailDupResult
926 MachineBlockPlacement::getBestTrellisSuccessor(
927     const MachineBasicBlock *BB,
928     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
929     BranchProbability AdjustedSumProb, const BlockChain &Chain,
930     const BlockFilterSet *BlockFilter) {
931 
932   BlockAndTailDupResult Result = {nullptr, false};
933   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
934                                                        BB->succ_end());
935 
936   // We assume size 2 because it's common. For general n, we would have to do
937   // the Hungarian algorithm, but it's not worth the complexity because more
938   // than 2 successors is fairly uncommon, and a trellis even more so.
939   if (Successors.size() != 2 || ViableSuccs.size() != 2)
940     return Result;
941 
942   // Collect the edge frequencies of all edges that form the trellis.
943   SmallVector<SmallVector<WeightedEdge, 8>, 2> Edges(2);
944   int SuccIndex = 0;
945   for (auto Succ : ViableSuccs) {
946     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
947       // Skip any placed predecessors that are not BB
948       if (SuccPred != BB)
949         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
950             BlockToChain[SuccPred] == &Chain ||
951             BlockToChain[SuccPred] == BlockToChain[Succ])
952           continue;
953       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
954                                 MBPI->getEdgeProbability(SuccPred, Succ);
955       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
956     }
957     ++SuccIndex;
958   }
959 
960   // Pick the best combination of 2 edges from all the edges in the trellis.
961   WeightedEdge BestA, BestB;
962   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
963 
964   if (BestA.Src != BB) {
965     // If we have a trellis, and BB doesn't have the best fallthrough edges,
966     // we shouldn't choose any successor. We've already looked and there's a
967     // better fallthrough edge for all the successors.
968     DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
969     return Result;
970   }
971 
972   // Did we pick the triangle edge? If tail-duplication is profitable, do
973   // that instead. Otherwise merge the triangle edge now while we know it is
974   // optimal.
975   if (BestA.Dest == BestB.Src) {
976     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
977     // would be better.
978     MachineBasicBlock *Succ1 = BestA.Dest;
979     MachineBasicBlock *Succ2 = BestB.Dest;
980     // Check to see if tail-duplication would be profitable.
981     if (TailDupPlacement && shouldTailDuplicate(Succ2) &&
982         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
983         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
984                               Chain, BlockFilter)) {
985       DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
986                 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
987             dbgs() << "    Selected: " << getBlockName(Succ2)
988                    << ", probability: " << Succ2Prob << " (Tail Duplicate)\n");
989       Result.BB = Succ2;
990       Result.ShouldTailDup = true;
991       return Result;
992     }
993   }
994   // We have already computed the optimal edge for the other side of the
995   // trellis.
996   ComputedEdges[BestB.Src] = { BestB.Dest, false };
997 
998   auto TrellisSucc = BestA.Dest;
999   DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1000             MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1001         dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1002                << ", probability: " << SuccProb << " (Trellis)\n");
1003   Result.BB = TrellisSucc;
1004   return Result;
1005 }
1006 
1007 /// When the option TailDupPlacement is on, this method checks if the
1008 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1009 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1010 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1011     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1012     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1013   if (!shouldTailDuplicate(Succ))
1014     return false;
1015 
1016   // For CFG checking.
1017   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1018                                                        BB->succ_end());
1019   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1020     // Make sure all unplaced and unfiltered predecessors can be
1021     // tail-duplicated into.
1022     // Skip any blocks that are already placed or not in this loop.
1023     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1024         || BlockToChain[Pred] == &Chain)
1025       continue;
1026     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1027       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1028         // This will result in a trellis after tail duplication, so we don't
1029         // need to copy Succ into this predecessor. In the presence
1030         // of a trellis tail duplication can continue to be profitable.
1031         // For example:
1032         // A            A
1033         // |\           |\
1034         // | \          | \
1035         // |  C         |  C+BB
1036         // | /          |  |
1037         // |/           |  |
1038         // BB    =>     BB |
1039         // |\           |\/|
1040         // | \          |/\|
1041         // |  D         |  D
1042         // | /          | /
1043         // |/           |/
1044         // Succ         Succ
1045         //
1046         // After BB was duplicated into C, the layout looks like the one on the
1047         // right. BB and C now have the same successors. When considering
1048         // whether Succ can be duplicated into all its unplaced predecessors, we
1049         // ignore C.
1050         // We can do this because C already has a profitable fallthrough, namely
1051         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1052         // duplication and for this test.
1053         //
1054         // This allows trellises to be laid out in 2 separate chains
1055         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1056         // because it allows the creation of 2 fallthrough paths with links
1057         // between them, and we correctly identify the best layout for these
1058         // CFGs. We want to extend trellises that the user created in addition
1059         // to trellises created by tail-duplication, so we just look for the
1060         // CFG.
1061         continue;
1062       return false;
1063     }
1064   }
1065   return true;
1066 }
1067 
1068 /// When the option OutlineOptionalBranches is on, this method
1069 /// checks if the fallthrough candidate block \p Succ (of block
1070 /// \p BB) also has other unscheduled predecessor blocks which
1071 /// are also successors of \p BB (forming triangular shape CFG).
1072 /// If none of such predecessors are small, it returns true.
1073 /// The caller can choose to select \p Succ as the layout successors
1074 /// so that \p Succ's predecessors (optional branches) can be
1075 /// outlined.
1076 /// FIXME: fold this with more general layout cost analysis.
1077 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
1078     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1079     const BlockChain &Chain, const BlockFilterSet *BlockFilter,
1080     BranchProbability SuccProb, BranchProbability HotProb) {
1081   if (!OutlineOptionalBranches)
1082     return false;
1083   // If we outline optional branches, look whether Succ is unavoidable, i.e.
1084   // dominates all terminators of the MachineFunction. If it does, other
1085   // successors must be optional. Don't do this for cold branches.
1086   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
1087     for (MachineBasicBlock *Pred : Succ->predecessors()) {
1088       // Check whether there is an unplaced optional branch.
1089       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
1090           BlockToChain[Pred] == &Chain)
1091         continue;
1092       // Check whether the optional branch has exactly one BB.
1093       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
1094         continue;
1095       // Check whether the optional branch is small.
1096       if (Pred->size() < OutlineOptionalThreshold)
1097         return false;
1098     }
1099     return true;
1100   } else
1101     return false;
1102 }
1103 
1104 // When profile is not present, return the StaticLikelyProb.
1105 // When profile is available, we need to handle the triangle-shape CFG.
1106 static BranchProbability getLayoutSuccessorProbThreshold(
1107       const MachineBasicBlock *BB) {
1108   if (!BB->getParent()->getFunction()->getEntryCount())
1109     return BranchProbability(StaticLikelyProb, 100);
1110   if (BB->succ_size() == 2) {
1111     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1112     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1113     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1114       /* See case 1 below for the cost analysis. For BB->Succ to
1115        * be taken with smaller cost, the following needs to hold:
1116        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1117        *   So the threshold T in the calculation below
1118        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1119        *   So T / (1 - T) = 2, Yielding T = 2/3
1120        * Also adding user specified branch bias, we have
1121        *   T = (2/3)*(ProfileLikelyProb/50)
1122        *     = (2*ProfileLikelyProb)/150)
1123        */
1124       return BranchProbability(2 * ProfileLikelyProb, 150);
1125     }
1126   }
1127   return BranchProbability(ProfileLikelyProb, 100);
1128 }
1129 
1130 /// Checks to see if the layout candidate block \p Succ has a better layout
1131 /// predecessor than \c BB. If yes, returns true.
1132 /// \p SuccProb: The probability adjusted for only remaining blocks.
1133 ///   Only used for logging
1134 /// \p RealSuccProb: The un-adjusted probability.
1135 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1136 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1137 ///    considered
1138 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1139     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1140     const BlockChain &SuccChain, BranchProbability SuccProb,
1141     BranchProbability RealSuccProb, const BlockChain &Chain,
1142     const BlockFilterSet *BlockFilter) {
1143 
1144   // There isn't a better layout when there are no unscheduled predecessors.
1145   if (SuccChain.UnscheduledPredecessors == 0)
1146     return false;
1147 
1148   // There are two basic scenarios here:
1149   // -------------------------------------
1150   // Case 1: triangular shape CFG (if-then):
1151   //     BB
1152   //     | \
1153   //     |  \
1154   //     |   Pred
1155   //     |   /
1156   //     Succ
1157   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1158   // set Succ as the layout successor of BB. Picking Succ as BB's
1159   // successor breaks the CFG constraints (FIXME: define these constraints).
1160   // With this layout, Pred BB
1161   // is forced to be outlined, so the overall cost will be cost of the
1162   // branch taken from BB to Pred, plus the cost of back taken branch
1163   // from Pred to Succ, as well as the additional cost associated
1164   // with the needed unconditional jump instruction from Pred To Succ.
1165 
1166   // The cost of the topological order layout is the taken branch cost
1167   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1168   // must hold:
1169   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1170   //      < freq(BB->Succ) *  taken_branch_cost.
1171   // Ignoring unconditional jump cost, we get
1172   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1173   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1174   //
1175   // When real profile data is available, we can precisely compute the
1176   // probability threshold that is needed for edge BB->Succ to be considered.
1177   // Without profile data, the heuristic requires the branch bias to be
1178   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1179   // -----------------------------------------------------------------
1180   // Case 2: diamond like CFG (if-then-else):
1181   //     S
1182   //    / \
1183   //   |   \
1184   //  BB    Pred
1185   //   \    /
1186   //    Succ
1187   //    ..
1188   //
1189   // The current block is BB and edge BB->Succ is now being evaluated.
1190   // Note that edge S->BB was previously already selected because
1191   // prob(S->BB) > prob(S->Pred).
1192   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1193   // choose Pred, we will have a topological ordering as shown on the left
1194   // in the picture below. If we choose Succ, we have the solution as shown
1195   // on the right:
1196   //
1197   //   topo-order:
1198   //
1199   //       S-----                             ---S
1200   //       |    |                             |  |
1201   //    ---BB   |                             |  BB
1202   //    |       |                             |  |
1203   //    |  pred--                             |  Succ--
1204   //    |  |                                  |       |
1205   //    ---succ                               ---pred--
1206   //
1207   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1208   //      = freq(S->Pred) + freq(S->BB)
1209   //
1210   // If we have profile data (i.e, branch probabilities can be trusted), the
1211   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1212   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1213   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1214   // means the cost of topological order is greater.
1215   // When profile data is not available, however, we need to be more
1216   // conservative. If the branch prediction is wrong, breaking the topo-order
1217   // will actually yield a layout with large cost. For this reason, we need
1218   // strong biased branch at block S with Prob(S->BB) in order to select
1219   // BB->Succ. This is equivalent to looking the CFG backward with backward
1220   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1221   // profile data).
1222   // --------------------------------------------------------------------------
1223   // Case 3: forked diamond
1224   //       S
1225   //      / \
1226   //     /   \
1227   //   BB    Pred
1228   //   | \   / |
1229   //   |  \ /  |
1230   //   |   X   |
1231   //   |  / \  |
1232   //   | /   \ |
1233   //   S1     S2
1234   //
1235   // The current block is BB and edge BB->S1 is now being evaluated.
1236   // As above S->BB was already selected because
1237   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1238   //
1239   // topo-order:
1240   //
1241   //     S-------|                     ---S
1242   //     |       |                     |  |
1243   //  ---BB      |                     |  BB
1244   //  |          |                     |  |
1245   //  |  Pred----|                     |  S1----
1246   //  |  |                             |       |
1247   //  --(S1 or S2)                     ---Pred--
1248   //                                        |
1249   //                                       S2
1250   //
1251   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1252   //    + min(freq(Pred->S1), freq(Pred->S2))
1253   // Non-topo-order cost:
1254   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1255   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1256   // is 0. Then the non topo layout is better when
1257   // freq(S->Pred) < freq(BB->S1).
1258   // This is exactly what is checked below.
1259   // Note there are other shapes that apply (Pred may not be a single block,
1260   // but they all fit this general pattern.)
1261   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1262 
1263   // Make sure that a hot successor doesn't have a globally more
1264   // important predecessor.
1265   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1266   bool BadCFGConflict = false;
1267 
1268   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1269     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1270         (BlockFilter && !BlockFilter->count(Pred)) ||
1271         BlockToChain[Pred] == &Chain ||
1272         // This check is redundant except for look ahead. This function is
1273         // called for lookahead by isProfitableToTailDup when BB hasn't been
1274         // placed yet.
1275         (Pred == BB))
1276       continue;
1277     // Do backward checking.
1278     // For all cases above, we need a backward checking to filter out edges that
1279     // are not 'strongly' biased.
1280     // BB  Pred
1281     //  \ /
1282     //  Succ
1283     // We select edge BB->Succ if
1284     //      freq(BB->Succ) > freq(Succ) * HotProb
1285     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1286     //      HotProb
1287     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1288     // Case 1 is covered too, because the first equation reduces to:
1289     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1290     BlockFrequency PredEdgeFreq =
1291         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1292     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1293       BadCFGConflict = true;
1294       break;
1295     }
1296   }
1297 
1298   if (BadCFGConflict) {
1299     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1300                  << " (prob) (non-cold CFG conflict)\n");
1301     return true;
1302   }
1303 
1304   return false;
1305 }
1306 
1307 /// \brief Select the best successor for a block.
1308 ///
1309 /// This looks across all successors of a particular block and attempts to
1310 /// select the "best" one to be the layout successor. It only considers direct
1311 /// successors which also pass the block filter. It will attempt to avoid
1312 /// breaking CFG structure, but cave and break such structures in the case of
1313 /// very hot successor edges.
1314 ///
1315 /// \returns The best successor block found, or null if none are viable, along
1316 /// with a boolean indicating if tail duplication is necessary.
1317 MachineBlockPlacement::BlockAndTailDupResult
1318 MachineBlockPlacement::selectBestSuccessor(
1319     const MachineBasicBlock *BB, const BlockChain &Chain,
1320     const BlockFilterSet *BlockFilter) {
1321   const BranchProbability HotProb(StaticLikelyProb, 100);
1322 
1323   BlockAndTailDupResult BestSucc = { nullptr, false };
1324   auto BestProb = BranchProbability::getZero();
1325 
1326   SmallVector<MachineBasicBlock *, 4> Successors;
1327   auto AdjustedSumProb =
1328       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1329 
1330   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1331 
1332   // if we already precomputed the best successor for BB, return that if still
1333   // applicable.
1334   auto FoundEdge = ComputedEdges.find(BB);
1335   if (FoundEdge != ComputedEdges.end()) {
1336     MachineBasicBlock *Succ = FoundEdge->second.BB;
1337     ComputedEdges.erase(FoundEdge);
1338     BlockChain *SuccChain = BlockToChain[Succ];
1339     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1340         SuccChain != &Chain && Succ == *SuccChain->begin())
1341       return FoundEdge->second;
1342   }
1343 
1344   // if BB is part of a trellis, Use the trellis to determine the optimal
1345   // fallthrough edges
1346   if (isTrellis(BB, Successors, Chain, BlockFilter))
1347     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1348                                    BlockFilter);
1349 
1350   // For blocks with CFG violations, we may be able to lay them out anyway with
1351   // tail-duplication. We keep this vector so we can perform the probability
1352   // calculations the minimum number of times.
1353   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1354       DupCandidates;
1355   for (MachineBasicBlock *Succ : Successors) {
1356     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1357     BranchProbability SuccProb =
1358         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1359 
1360     // This heuristic is off by default.
1361     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
1362                                   HotProb)) {
1363       BestSucc.BB = Succ;
1364       return BestSucc;
1365     }
1366 
1367     BlockChain &SuccChain = *BlockToChain[Succ];
1368     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1369     // predecessor that yields lower global cost.
1370     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1371                                    Chain, BlockFilter)) {
1372       // If tail duplication would make Succ profitable, place it.
1373       if (TailDupPlacement && shouldTailDuplicate(Succ))
1374         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1375       continue;
1376     }
1377 
1378     DEBUG(
1379         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1380                << SuccProb
1381                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1382                << "\n");
1383 
1384     if (BestSucc.BB && BestProb >= SuccProb) {
1385       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1386       continue;
1387     }
1388 
1389     DEBUG(dbgs() << "    Setting it as best candidate\n");
1390     BestSucc.BB = Succ;
1391     BestProb = SuccProb;
1392   }
1393   // Handle the tail duplication candidates in order of decreasing probability.
1394   // Stop at the first one that is profitable. Also stop if they are less
1395   // profitable than BestSucc. Position is important because we preserve it and
1396   // prefer first best match. Here we aren't comparing in order, so we capture
1397   // the position instead.
1398   if (DupCandidates.size() != 0) {
1399     auto cmp =
1400         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1401            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1402           return std::get<0>(a) > std::get<0>(b);
1403         };
1404     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1405   }
1406   for(auto &Tup : DupCandidates) {
1407     BranchProbability DupProb;
1408     MachineBasicBlock *Succ;
1409     std::tie(DupProb, Succ) = Tup;
1410     if (DupProb < BestProb)
1411       break;
1412     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1413         // If tail duplication gives us fallthrough when we otherwise wouldn't
1414         // have it, that is a strict gain.
1415         && (BestSucc.BB == nullptr
1416             || isProfitableToTailDup(BB, Succ, BestProb, Chain,
1417                                      BlockFilter))) {
1418       DEBUG(
1419           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1420                  << DupProb
1421                  << " (Tail Duplicate)\n");
1422       BestSucc.BB = Succ;
1423       BestSucc.ShouldTailDup = true;
1424       break;
1425     }
1426   }
1427 
1428   if (BestSucc.BB)
1429     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1430 
1431   return BestSucc;
1432 }
1433 
1434 /// \brief Select the best block from a worklist.
1435 ///
1436 /// This looks through the provided worklist as a list of candidate basic
1437 /// blocks and select the most profitable one to place. The definition of
1438 /// profitable only really makes sense in the context of a loop. This returns
1439 /// the most frequently visited block in the worklist, which in the case of
1440 /// a loop, is the one most desirable to be physically close to the rest of the
1441 /// loop body in order to improve i-cache behavior.
1442 ///
1443 /// \returns The best block found, or null if none are viable.
1444 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1445     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1446   // Once we need to walk the worklist looking for a candidate, cleanup the
1447   // worklist of already placed entries.
1448   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1449   // some code complexity) into the loop below.
1450   WorkList.erase(remove_if(WorkList,
1451                            [&](MachineBasicBlock *BB) {
1452                              return BlockToChain.lookup(BB) == &Chain;
1453                            }),
1454                  WorkList.end());
1455 
1456   if (WorkList.empty())
1457     return nullptr;
1458 
1459   bool IsEHPad = WorkList[0]->isEHPad();
1460 
1461   MachineBasicBlock *BestBlock = nullptr;
1462   BlockFrequency BestFreq;
1463   for (MachineBasicBlock *MBB : WorkList) {
1464     assert(MBB->isEHPad() == IsEHPad);
1465 
1466     BlockChain &SuccChain = *BlockToChain[MBB];
1467     if (&SuccChain == &Chain)
1468       continue;
1469 
1470     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
1471 
1472     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1473     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1474           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1475 
1476     // For ehpad, we layout the least probable first as to avoid jumping back
1477     // from least probable landingpads to more probable ones.
1478     //
1479     // FIXME: Using probability is probably (!) not the best way to achieve
1480     // this. We should probably have a more principled approach to layout
1481     // cleanup code.
1482     //
1483     // The goal is to get:
1484     //
1485     //                 +--------------------------+
1486     //                 |                          V
1487     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1488     //
1489     // Rather than:
1490     //
1491     //                 +-------------------------------------+
1492     //                 V                                     |
1493     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1494     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1495       continue;
1496 
1497     BestBlock = MBB;
1498     BestFreq = CandidateFreq;
1499   }
1500 
1501   return BestBlock;
1502 }
1503 
1504 /// \brief Retrieve the first unplaced basic block.
1505 ///
1506 /// This routine is called when we are unable to use the CFG to walk through
1507 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1508 /// We walk through the function's blocks in order, starting from the
1509 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1510 /// re-scanning the entire sequence on repeated calls to this routine.
1511 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1512     const BlockChain &PlacedChain,
1513     MachineFunction::iterator &PrevUnplacedBlockIt,
1514     const BlockFilterSet *BlockFilter) {
1515   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1516        ++I) {
1517     if (BlockFilter && !BlockFilter->count(&*I))
1518       continue;
1519     if (BlockToChain[&*I] != &PlacedChain) {
1520       PrevUnplacedBlockIt = I;
1521       // Now select the head of the chain to which the unplaced block belongs
1522       // as the block to place. This will force the entire chain to be placed,
1523       // and satisfies the requirements of merging chains.
1524       return *BlockToChain[&*I]->begin();
1525     }
1526   }
1527   return nullptr;
1528 }
1529 
1530 void MachineBlockPlacement::fillWorkLists(
1531     const MachineBasicBlock *MBB,
1532     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1533     const BlockFilterSet *BlockFilter = nullptr) {
1534   BlockChain &Chain = *BlockToChain[MBB];
1535   if (!UpdatedPreds.insert(&Chain).second)
1536     return;
1537 
1538   assert(Chain.UnscheduledPredecessors == 0);
1539   for (MachineBasicBlock *ChainBB : Chain) {
1540     assert(BlockToChain[ChainBB] == &Chain);
1541     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1542       if (BlockFilter && !BlockFilter->count(Pred))
1543         continue;
1544       if (BlockToChain[Pred] == &Chain)
1545         continue;
1546       ++Chain.UnscheduledPredecessors;
1547     }
1548   }
1549 
1550   if (Chain.UnscheduledPredecessors != 0)
1551     return;
1552 
1553   MachineBasicBlock *BB = *Chain.begin();
1554   if (BB->isEHPad())
1555     EHPadWorkList.push_back(BB);
1556   else
1557     BlockWorkList.push_back(BB);
1558 }
1559 
1560 void MachineBlockPlacement::buildChain(
1561     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1562     BlockFilterSet *BlockFilter) {
1563   assert(HeadBB && "BB must not be null.\n");
1564   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1565   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1566 
1567   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1568   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1569   MachineBasicBlock *BB = *std::prev(Chain.end());
1570   for (;;) {
1571     assert(BB && "null block found at end of chain in loop.");
1572     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1573     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1574 
1575 
1576     // Look for the best viable successor if there is one to place immediately
1577     // after this block.
1578     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1579     MachineBasicBlock* BestSucc = Result.BB;
1580     bool ShouldTailDup = Result.ShouldTailDup;
1581     if (TailDupPlacement)
1582       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1583 
1584     // If an immediate successor isn't available, look for the best viable
1585     // block among those we've identified as not violating the loop's CFG at
1586     // this point. This won't be a fallthrough, but it will increase locality.
1587     if (!BestSucc)
1588       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1589     if (!BestSucc)
1590       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1591 
1592     if (!BestSucc) {
1593       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1594       if (!BestSucc)
1595         break;
1596 
1597       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1598                       "layout successor until the CFG reduces\n");
1599     }
1600 
1601     // Placement may have changed tail duplication opportunities.
1602     // Check for that now.
1603     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1604       // If the chosen successor was duplicated into all its predecessors,
1605       // don't bother laying it out, just go round the loop again with BB as
1606       // the chain end.
1607       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1608                                        BlockFilter, PrevUnplacedBlockIt))
1609         continue;
1610     }
1611 
1612     // Place this block, updating the datastructures to reflect its placement.
1613     BlockChain &SuccChain = *BlockToChain[BestSucc];
1614     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1615     // we selected a successor that didn't fit naturally into the CFG.
1616     SuccChain.UnscheduledPredecessors = 0;
1617     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1618                  << getBlockName(BestSucc) << "\n");
1619     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1620     Chain.merge(BestSucc, &SuccChain);
1621     BB = *std::prev(Chain.end());
1622   }
1623 
1624   DEBUG(dbgs() << "Finished forming chain for header block "
1625                << getBlockName(*Chain.begin()) << "\n");
1626 }
1627 
1628 /// \brief Find the best loop top block for layout.
1629 ///
1630 /// Look for a block which is strictly better than the loop header for laying
1631 /// out at the top of the loop. This looks for one and only one pattern:
1632 /// a latch block with no conditional exit. This block will cause a conditional
1633 /// jump around it or will be the bottom of the loop if we lay it out in place,
1634 /// but if it it doesn't end up at the bottom of the loop for any reason,
1635 /// rotation alone won't fix it. Because such a block will always result in an
1636 /// unconditional jump (for the backedge) rotating it in front of the loop
1637 /// header is always profitable.
1638 MachineBasicBlock *
1639 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1640                                        const BlockFilterSet &LoopBlockSet) {
1641   // Placing the latch block before the header may introduce an extra branch
1642   // that skips this block the first time the loop is executed, which we want
1643   // to avoid when optimising for size.
1644   // FIXME: in theory there is a case that does not introduce a new branch,
1645   // i.e. when the layout predecessor does not fallthrough to the loop header.
1646   // In practice this never happens though: there always seems to be a preheader
1647   // that can fallthrough and that is also placed before the header.
1648   if (F->getFunction()->optForSize())
1649     return L.getHeader();
1650 
1651   // Check that the header hasn't been fused with a preheader block due to
1652   // crazy branches. If it has, we need to start with the header at the top to
1653   // prevent pulling the preheader into the loop body.
1654   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1655   if (!LoopBlockSet.count(*HeaderChain.begin()))
1656     return L.getHeader();
1657 
1658   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1659                << "\n");
1660 
1661   BlockFrequency BestPredFreq;
1662   MachineBasicBlock *BestPred = nullptr;
1663   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1664     if (!LoopBlockSet.count(Pred))
1665       continue;
1666     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1667                  << Pred->succ_size() << " successors, ";
1668           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1669     if (Pred->succ_size() > 1)
1670       continue;
1671 
1672     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1673     if (!BestPred || PredFreq > BestPredFreq ||
1674         (!(PredFreq < BestPredFreq) &&
1675          Pred->isLayoutSuccessor(L.getHeader()))) {
1676       BestPred = Pred;
1677       BestPredFreq = PredFreq;
1678     }
1679   }
1680 
1681   // If no direct predecessor is fine, just use the loop header.
1682   if (!BestPred) {
1683     DEBUG(dbgs() << "    final top unchanged\n");
1684     return L.getHeader();
1685   }
1686 
1687   // Walk backwards through any straight line of predecessors.
1688   while (BestPred->pred_size() == 1 &&
1689          (*BestPred->pred_begin())->succ_size() == 1 &&
1690          *BestPred->pred_begin() != L.getHeader())
1691     BestPred = *BestPred->pred_begin();
1692 
1693   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1694   return BestPred;
1695 }
1696 
1697 /// \brief Find the best loop exiting block for layout.
1698 ///
1699 /// This routine implements the logic to analyze the loop looking for the best
1700 /// block to layout at the top of the loop. Typically this is done to maximize
1701 /// fallthrough opportunities.
1702 MachineBasicBlock *
1703 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1704                                         const BlockFilterSet &LoopBlockSet) {
1705   // We don't want to layout the loop linearly in all cases. If the loop header
1706   // is just a normal basic block in the loop, we want to look for what block
1707   // within the loop is the best one to layout at the top. However, if the loop
1708   // header has be pre-merged into a chain due to predecessors not having
1709   // analyzable branches, *and* the predecessor it is merged with is *not* part
1710   // of the loop, rotating the header into the middle of the loop will create
1711   // a non-contiguous range of blocks which is Very Bad. So start with the
1712   // header and only rotate if safe.
1713   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1714   if (!LoopBlockSet.count(*HeaderChain.begin()))
1715     return nullptr;
1716 
1717   BlockFrequency BestExitEdgeFreq;
1718   unsigned BestExitLoopDepth = 0;
1719   MachineBasicBlock *ExitingBB = nullptr;
1720   // If there are exits to outer loops, loop rotation can severely limit
1721   // fallthrough opportunities unless it selects such an exit. Keep a set of
1722   // blocks where rotating to exit with that block will reach an outer loop.
1723   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1724 
1725   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1726                << "\n");
1727   for (MachineBasicBlock *MBB : L.getBlocks()) {
1728     BlockChain &Chain = *BlockToChain[MBB];
1729     // Ensure that this block is at the end of a chain; otherwise it could be
1730     // mid-way through an inner loop or a successor of an unanalyzable branch.
1731     if (MBB != *std::prev(Chain.end()))
1732       continue;
1733 
1734     // Now walk the successors. We need to establish whether this has a viable
1735     // exiting successor and whether it has a viable non-exiting successor.
1736     // We store the old exiting state and restore it if a viable looping
1737     // successor isn't found.
1738     MachineBasicBlock *OldExitingBB = ExitingBB;
1739     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1740     bool HasLoopingSucc = false;
1741     for (MachineBasicBlock *Succ : MBB->successors()) {
1742       if (Succ->isEHPad())
1743         continue;
1744       if (Succ == MBB)
1745         continue;
1746       BlockChain &SuccChain = *BlockToChain[Succ];
1747       // Don't split chains, either this chain or the successor's chain.
1748       if (&Chain == &SuccChain) {
1749         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1750                      << getBlockName(Succ) << " (chain conflict)\n");
1751         continue;
1752       }
1753 
1754       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1755       if (LoopBlockSet.count(Succ)) {
1756         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1757                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1758         HasLoopingSucc = true;
1759         continue;
1760       }
1761 
1762       unsigned SuccLoopDepth = 0;
1763       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1764         SuccLoopDepth = ExitLoop->getLoopDepth();
1765         if (ExitLoop->contains(&L))
1766           BlocksExitingToOuterLoop.insert(MBB);
1767       }
1768 
1769       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1770       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1771                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1772             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1773       // Note that we bias this toward an existing layout successor to retain
1774       // incoming order in the absence of better information. The exit must have
1775       // a frequency higher than the current exit before we consider breaking
1776       // the layout.
1777       BranchProbability Bias(100 - ExitBlockBias, 100);
1778       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1779           ExitEdgeFreq > BestExitEdgeFreq ||
1780           (MBB->isLayoutSuccessor(Succ) &&
1781            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1782         BestExitEdgeFreq = ExitEdgeFreq;
1783         ExitingBB = MBB;
1784       }
1785     }
1786 
1787     if (!HasLoopingSucc) {
1788       // Restore the old exiting state, no viable looping successor was found.
1789       ExitingBB = OldExitingBB;
1790       BestExitEdgeFreq = OldBestExitEdgeFreq;
1791     }
1792   }
1793   // Without a candidate exiting block or with only a single block in the
1794   // loop, just use the loop header to layout the loop.
1795   if (!ExitingBB) {
1796     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1797     return nullptr;
1798   }
1799   if (L.getNumBlocks() == 1) {
1800     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1801     return nullptr;
1802   }
1803 
1804   // Also, if we have exit blocks which lead to outer loops but didn't select
1805   // one of them as the exiting block we are rotating toward, disable loop
1806   // rotation altogether.
1807   if (!BlocksExitingToOuterLoop.empty() &&
1808       !BlocksExitingToOuterLoop.count(ExitingBB))
1809     return nullptr;
1810 
1811   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1812   return ExitingBB;
1813 }
1814 
1815 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1816 ///
1817 /// Once we have built a chain, try to rotate it to line up the hot exit block
1818 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1819 /// branches. For example, if the loop has fallthrough into its header and out
1820 /// of its bottom already, don't rotate it.
1821 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1822                                        const MachineBasicBlock *ExitingBB,
1823                                        const BlockFilterSet &LoopBlockSet) {
1824   if (!ExitingBB)
1825     return;
1826 
1827   MachineBasicBlock *Top = *LoopChain.begin();
1828   bool ViableTopFallthrough = false;
1829   for (MachineBasicBlock *Pred : Top->predecessors()) {
1830     BlockChain *PredChain = BlockToChain[Pred];
1831     if (!LoopBlockSet.count(Pred) &&
1832         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1833       ViableTopFallthrough = true;
1834       break;
1835     }
1836   }
1837 
1838   // If the header has viable fallthrough, check whether the current loop
1839   // bottom is a viable exiting block. If so, bail out as rotating will
1840   // introduce an unnecessary branch.
1841   if (ViableTopFallthrough) {
1842     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1843     for (MachineBasicBlock *Succ : Bottom->successors()) {
1844       BlockChain *SuccChain = BlockToChain[Succ];
1845       if (!LoopBlockSet.count(Succ) &&
1846           (!SuccChain || Succ == *SuccChain->begin()))
1847         return;
1848     }
1849   }
1850 
1851   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1852   if (ExitIt == LoopChain.end())
1853     return;
1854 
1855   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1856 }
1857 
1858 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1859 ///
1860 /// With profile data, we can determine the cost in terms of missed fall through
1861 /// opportunities when rotating a loop chain and select the best rotation.
1862 /// Basically, there are three kinds of cost to consider for each rotation:
1863 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1864 ///    the loop to the loop header.
1865 ///    2. The possibly missed fall through edges (if they exist) from the loop
1866 ///    exits to BB out of the loop.
1867 ///    3. The missed fall through edge (if it exists) from the last BB to the
1868 ///    first BB in the loop chain.
1869 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1870 ///  We select the best rotation with the smallest cost.
1871 void MachineBlockPlacement::rotateLoopWithProfile(
1872     BlockChain &LoopChain, const MachineLoop &L,
1873     const BlockFilterSet &LoopBlockSet) {
1874   auto HeaderBB = L.getHeader();
1875   auto HeaderIter = find(LoopChain, HeaderBB);
1876   auto RotationPos = LoopChain.end();
1877 
1878   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1879 
1880   // A utility lambda that scales up a block frequency by dividing it by a
1881   // branch probability which is the reciprocal of the scale.
1882   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1883                                 unsigned Scale) -> BlockFrequency {
1884     if (Scale == 0)
1885       return 0;
1886     // Use operator / between BlockFrequency and BranchProbability to implement
1887     // saturating multiplication.
1888     return Freq / BranchProbability(1, Scale);
1889   };
1890 
1891   // Compute the cost of the missed fall-through edge to the loop header if the
1892   // chain head is not the loop header. As we only consider natural loops with
1893   // single header, this computation can be done only once.
1894   BlockFrequency HeaderFallThroughCost(0);
1895   for (auto *Pred : HeaderBB->predecessors()) {
1896     BlockChain *PredChain = BlockToChain[Pred];
1897     if (!LoopBlockSet.count(Pred) &&
1898         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1899       auto EdgeFreq =
1900           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1901       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1902       // If the predecessor has only an unconditional jump to the header, we
1903       // need to consider the cost of this jump.
1904       if (Pred->succ_size() == 1)
1905         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1906       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1907     }
1908   }
1909 
1910   // Here we collect all exit blocks in the loop, and for each exit we find out
1911   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1912   // as the sum of frequencies of exit edges we collect here, excluding the exit
1913   // edge from the tail of the loop chain.
1914   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1915   for (auto BB : LoopChain) {
1916     auto LargestExitEdgeProb = BranchProbability::getZero();
1917     for (auto *Succ : BB->successors()) {
1918       BlockChain *SuccChain = BlockToChain[Succ];
1919       if (!LoopBlockSet.count(Succ) &&
1920           (!SuccChain || Succ == *SuccChain->begin())) {
1921         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1922         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1923       }
1924     }
1925     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1926       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1927       ExitsWithFreq.emplace_back(BB, ExitFreq);
1928     }
1929   }
1930 
1931   // In this loop we iterate every block in the loop chain and calculate the
1932   // cost assuming the block is the head of the loop chain. When the loop ends,
1933   // we should have found the best candidate as the loop chain's head.
1934   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1935             EndIter = LoopChain.end();
1936        Iter != EndIter; Iter++, TailIter++) {
1937     // TailIter is used to track the tail of the loop chain if the block we are
1938     // checking (pointed by Iter) is the head of the chain.
1939     if (TailIter == LoopChain.end())
1940       TailIter = LoopChain.begin();
1941 
1942     auto TailBB = *TailIter;
1943 
1944     // Calculate the cost by putting this BB to the top.
1945     BlockFrequency Cost = 0;
1946 
1947     // If the current BB is the loop header, we need to take into account the
1948     // cost of the missed fall through edge from outside of the loop to the
1949     // header.
1950     if (Iter != HeaderIter)
1951       Cost += HeaderFallThroughCost;
1952 
1953     // Collect the loop exit cost by summing up frequencies of all exit edges
1954     // except the one from the chain tail.
1955     for (auto &ExitWithFreq : ExitsWithFreq)
1956       if (TailBB != ExitWithFreq.first)
1957         Cost += ExitWithFreq.second;
1958 
1959     // The cost of breaking the once fall-through edge from the tail to the top
1960     // of the loop chain. Here we need to consider three cases:
1961     // 1. If the tail node has only one successor, then we will get an
1962     //    additional jmp instruction. So the cost here is (MisfetchCost +
1963     //    JumpInstCost) * tail node frequency.
1964     // 2. If the tail node has two successors, then we may still get an
1965     //    additional jmp instruction if the layout successor after the loop
1966     //    chain is not its CFG successor. Note that the more frequently executed
1967     //    jmp instruction will be put ahead of the other one. Assume the
1968     //    frequency of those two branches are x and y, where x is the frequency
1969     //    of the edge to the chain head, then the cost will be
1970     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1971     // 3. If the tail node has more than two successors (this rarely happens),
1972     //    we won't consider any additional cost.
1973     if (TailBB->isSuccessor(*Iter)) {
1974       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1975       if (TailBB->succ_size() == 1)
1976         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1977                                     MisfetchCost + JumpInstCost);
1978       else if (TailBB->succ_size() == 2) {
1979         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1980         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1981         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1982                                   ? TailBBFreq * TailToHeadProb.getCompl()
1983                                   : TailToHeadFreq;
1984         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1985                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1986       }
1987     }
1988 
1989     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1990                  << " to the top: " << Cost.getFrequency() << "\n");
1991 
1992     if (Cost < SmallestRotationCost) {
1993       SmallestRotationCost = Cost;
1994       RotationPos = Iter;
1995     }
1996   }
1997 
1998   if (RotationPos != LoopChain.end()) {
1999     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2000                  << " to the top\n");
2001     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2002   }
2003 }
2004 
2005 /// \brief Collect blocks in the given loop that are to be placed.
2006 ///
2007 /// When profile data is available, exclude cold blocks from the returned set;
2008 /// otherwise, collect all blocks in the loop.
2009 MachineBlockPlacement::BlockFilterSet
2010 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2011   BlockFilterSet LoopBlockSet;
2012 
2013   // Filter cold blocks off from LoopBlockSet when profile data is available.
2014   // Collect the sum of frequencies of incoming edges to the loop header from
2015   // outside. If we treat the loop as a super block, this is the frequency of
2016   // the loop. Then for each block in the loop, we calculate the ratio between
2017   // its frequency and the frequency of the loop block. When it is too small,
2018   // don't add it to the loop chain. If there are outer loops, then this block
2019   // will be merged into the first outer loop chain for which this block is not
2020   // cold anymore. This needs precise profile data and we only do this when
2021   // profile data is available.
2022   if (F->getFunction()->getEntryCount()) {
2023     BlockFrequency LoopFreq(0);
2024     for (auto LoopPred : L.getHeader()->predecessors())
2025       if (!L.contains(LoopPred))
2026         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2027                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2028 
2029     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2030       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2031       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2032         continue;
2033       LoopBlockSet.insert(LoopBB);
2034     }
2035   } else
2036     LoopBlockSet.insert(L.block_begin(), L.block_end());
2037 
2038   return LoopBlockSet;
2039 }
2040 
2041 /// \brief Forms basic block chains from the natural loop structures.
2042 ///
2043 /// These chains are designed to preserve the existing *structure* of the code
2044 /// as much as possible. We can then stitch the chains together in a way which
2045 /// both preserves the topological structure and minimizes taken conditional
2046 /// branches.
2047 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2048   // First recurse through any nested loops, building chains for those inner
2049   // loops.
2050   for (const MachineLoop *InnerLoop : L)
2051     buildLoopChains(*InnerLoop);
2052 
2053   assert(BlockWorkList.empty());
2054   assert(EHPadWorkList.empty());
2055   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2056 
2057   // Check if we have profile data for this function. If yes, we will rotate
2058   // this loop by modeling costs more precisely which requires the profile data
2059   // for better layout.
2060   bool RotateLoopWithProfile =
2061       ForcePreciseRotationCost ||
2062       (PreciseRotationCost && F->getFunction()->getEntryCount());
2063 
2064   // First check to see if there is an obviously preferable top block for the
2065   // loop. This will default to the header, but may end up as one of the
2066   // predecessors to the header if there is one which will result in strictly
2067   // fewer branches in the loop body.
2068   // When we use profile data to rotate the loop, this is unnecessary.
2069   MachineBasicBlock *LoopTop =
2070       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2071 
2072   // If we selected just the header for the loop top, look for a potentially
2073   // profitable exit block in the event that rotating the loop can eliminate
2074   // branches by placing an exit edge at the bottom.
2075   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2076     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2077 
2078   BlockChain &LoopChain = *BlockToChain[LoopTop];
2079 
2080   // FIXME: This is a really lame way of walking the chains in the loop: we
2081   // walk the blocks, and use a set to prevent visiting a particular chain
2082   // twice.
2083   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2084   assert(LoopChain.UnscheduledPredecessors == 0);
2085   UpdatedPreds.insert(&LoopChain);
2086 
2087   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2088     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2089 
2090   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2091 
2092   if (RotateLoopWithProfile)
2093     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2094   else
2095     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2096 
2097   DEBUG({
2098     // Crash at the end so we get all of the debugging output first.
2099     bool BadLoop = false;
2100     if (LoopChain.UnscheduledPredecessors) {
2101       BadLoop = true;
2102       dbgs() << "Loop chain contains a block without its preds placed!\n"
2103              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2104              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2105     }
2106     for (MachineBasicBlock *ChainBB : LoopChain) {
2107       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2108       if (!LoopBlockSet.remove(ChainBB)) {
2109         // We don't mark the loop as bad here because there are real situations
2110         // where this can occur. For example, with an unanalyzable fallthrough
2111         // from a loop block to a non-loop block or vice versa.
2112         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2113                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2114                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2115                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2116       }
2117     }
2118 
2119     if (!LoopBlockSet.empty()) {
2120       BadLoop = true;
2121       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2122         dbgs() << "Loop contains blocks never placed into a chain!\n"
2123                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2124                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2125                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2126     }
2127     assert(!BadLoop && "Detected problems with the placement of this loop.");
2128   });
2129 
2130   BlockWorkList.clear();
2131   EHPadWorkList.clear();
2132 }
2133 
2134 /// When OutlineOpitonalBranches is on, this method collects BBs that
2135 /// dominates all terminator blocks of the function \p F.
2136 void MachineBlockPlacement::collectMustExecuteBBs() {
2137   if (OutlineOptionalBranches) {
2138     // Find the nearest common dominator of all of F's terminators.
2139     MachineBasicBlock *Terminator = nullptr;
2140     for (MachineBasicBlock &MBB : *F) {
2141       if (MBB.succ_size() == 0) {
2142         if (Terminator == nullptr)
2143           Terminator = &MBB;
2144         else
2145           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
2146       }
2147     }
2148 
2149     // MBBs dominating this common dominator are unavoidable.
2150     UnavoidableBlocks.clear();
2151     for (MachineBasicBlock &MBB : *F) {
2152       if (MDT->dominates(&MBB, Terminator)) {
2153         UnavoidableBlocks.insert(&MBB);
2154       }
2155     }
2156   }
2157 }
2158 
2159 void MachineBlockPlacement::buildCFGChains() {
2160   // Ensure that every BB in the function has an associated chain to simplify
2161   // the assumptions of the remaining algorithm.
2162   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2163   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2164        ++FI) {
2165     MachineBasicBlock *BB = &*FI;
2166     BlockChain *Chain =
2167         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2168     // Also, merge any blocks which we cannot reason about and must preserve
2169     // the exact fallthrough behavior for.
2170     for (;;) {
2171       Cond.clear();
2172       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2173       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2174         break;
2175 
2176       MachineFunction::iterator NextFI = std::next(FI);
2177       MachineBasicBlock *NextBB = &*NextFI;
2178       // Ensure that the layout successor is a viable block, as we know that
2179       // fallthrough is a possibility.
2180       assert(NextFI != FE && "Can't fallthrough past the last block.");
2181       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2182                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
2183                    << "\n");
2184       Chain->merge(NextBB, nullptr);
2185 #ifndef NDEBUG
2186       BlocksWithUnanalyzableExits.insert(&*BB);
2187 #endif
2188       FI = NextFI;
2189       BB = NextBB;
2190     }
2191   }
2192 
2193   // Turned on with OutlineOptionalBranches option
2194   collectMustExecuteBBs();
2195 
2196   // Build any loop-based chains.
2197   PreferredLoopExit = nullptr;
2198   for (MachineLoop *L : *MLI)
2199     buildLoopChains(*L);
2200 
2201   assert(BlockWorkList.empty());
2202   assert(EHPadWorkList.empty());
2203 
2204   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2205   for (MachineBasicBlock &MBB : *F)
2206     fillWorkLists(&MBB, UpdatedPreds);
2207 
2208   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2209   buildChain(&F->front(), FunctionChain);
2210 
2211 #ifndef NDEBUG
2212   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
2213 #endif
2214   DEBUG({
2215     // Crash at the end so we get all of the debugging output first.
2216     bool BadFunc = false;
2217     FunctionBlockSetType FunctionBlockSet;
2218     for (MachineBasicBlock &MBB : *F)
2219       FunctionBlockSet.insert(&MBB);
2220 
2221     for (MachineBasicBlock *ChainBB : FunctionChain)
2222       if (!FunctionBlockSet.erase(ChainBB)) {
2223         BadFunc = true;
2224         dbgs() << "Function chain contains a block not in the function!\n"
2225                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2226       }
2227 
2228     if (!FunctionBlockSet.empty()) {
2229       BadFunc = true;
2230       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2231         dbgs() << "Function contains blocks never placed into a chain!\n"
2232                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2233     }
2234     assert(!BadFunc && "Detected problems with the block placement.");
2235   });
2236 
2237   // Splice the blocks into place.
2238   MachineFunction::iterator InsertPos = F->begin();
2239   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
2240   for (MachineBasicBlock *ChainBB : FunctionChain) {
2241     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2242                                                        : "          ... ")
2243                  << getBlockName(ChainBB) << "\n");
2244     if (InsertPos != MachineFunction::iterator(ChainBB))
2245       F->splice(InsertPos, ChainBB);
2246     else
2247       ++InsertPos;
2248 
2249     // Update the terminator of the previous block.
2250     if (ChainBB == *FunctionChain.begin())
2251       continue;
2252     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2253 
2254     // FIXME: It would be awesome of updateTerminator would just return rather
2255     // than assert when the branch cannot be analyzed in order to remove this
2256     // boiler plate.
2257     Cond.clear();
2258     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2259 
2260 #ifndef NDEBUG
2261     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2262       // Given the exact block placement we chose, we may actually not _need_ to
2263       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2264       // do that at this point is a bug.
2265       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2266               !PrevBB->canFallThrough()) &&
2267              "Unexpected block with un-analyzable fallthrough!");
2268       Cond.clear();
2269       TBB = FBB = nullptr;
2270     }
2271 #endif
2272 
2273     // The "PrevBB" is not yet updated to reflect current code layout, so,
2274     //   o. it may fall-through to a block without explicit "goto" instruction
2275     //      before layout, and no longer fall-through it after layout; or
2276     //   o. just opposite.
2277     //
2278     // analyzeBranch() may return erroneous value for FBB when these two
2279     // situations take place. For the first scenario FBB is mistakenly set NULL;
2280     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2281     // mistakenly pointing to "*BI".
2282     // Thus, if the future change needs to use FBB before the layout is set, it
2283     // has to correct FBB first by using the code similar to the following:
2284     //
2285     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2286     //   PrevBB->updateTerminator();
2287     //   Cond.clear();
2288     //   TBB = FBB = nullptr;
2289     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2290     //     // FIXME: This should never take place.
2291     //     TBB = FBB = nullptr;
2292     //   }
2293     // }
2294     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2295       PrevBB->updateTerminator();
2296   }
2297 
2298   // Fixup the last block.
2299   Cond.clear();
2300   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2301   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2302     F->back().updateTerminator();
2303 
2304   BlockWorkList.clear();
2305   EHPadWorkList.clear();
2306 }
2307 
2308 void MachineBlockPlacement::optimizeBranches() {
2309   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2310   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2311 
2312   // Now that all the basic blocks in the chain have the proper layout,
2313   // make a final call to AnalyzeBranch with AllowModify set.
2314   // Indeed, the target may be able to optimize the branches in a way we
2315   // cannot because all branches may not be analyzable.
2316   // E.g., the target may be able to remove an unconditional branch to
2317   // a fallthrough when it occurs after predicated terminators.
2318   for (MachineBasicBlock *ChainBB : FunctionChain) {
2319     Cond.clear();
2320     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2321     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2322       // If PrevBB has a two-way branch, try to re-order the branches
2323       // such that we branch to the successor with higher probability first.
2324       if (TBB && !Cond.empty() && FBB &&
2325           MBPI->getEdgeProbability(ChainBB, FBB) >
2326               MBPI->getEdgeProbability(ChainBB, TBB) &&
2327           !TII->reverseBranchCondition(Cond)) {
2328         DEBUG(dbgs() << "Reverse order of the two branches: "
2329                      << getBlockName(ChainBB) << "\n");
2330         DEBUG(dbgs() << "    Edge probability: "
2331                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2332                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2333         DebugLoc dl; // FIXME: this is nowhere
2334         TII->removeBranch(*ChainBB);
2335         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2336         ChainBB->updateTerminator();
2337       }
2338     }
2339   }
2340 }
2341 
2342 void MachineBlockPlacement::alignBlocks() {
2343   // Walk through the backedges of the function now that we have fully laid out
2344   // the basic blocks and align the destination of each backedge. We don't rely
2345   // exclusively on the loop info here so that we can align backedges in
2346   // unnatural CFGs and backedges that were introduced purely because of the
2347   // loop rotations done during this layout pass.
2348   if (F->getFunction()->optForSize())
2349     return;
2350   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2351   if (FunctionChain.begin() == FunctionChain.end())
2352     return; // Empty chain.
2353 
2354   const BranchProbability ColdProb(1, 5); // 20%
2355   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2356   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2357   for (MachineBasicBlock *ChainBB : FunctionChain) {
2358     if (ChainBB == *FunctionChain.begin())
2359       continue;
2360 
2361     // Don't align non-looping basic blocks. These are unlikely to execute
2362     // enough times to matter in practice. Note that we'll still handle
2363     // unnatural CFGs inside of a natural outer loop (the common case) and
2364     // rotated loops.
2365     MachineLoop *L = MLI->getLoopFor(ChainBB);
2366     if (!L)
2367       continue;
2368 
2369     unsigned Align = TLI->getPrefLoopAlignment(L);
2370     if (!Align)
2371       continue; // Don't care about loop alignment.
2372 
2373     // If the block is cold relative to the function entry don't waste space
2374     // aligning it.
2375     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2376     if (Freq < WeightedEntryFreq)
2377       continue;
2378 
2379     // If the block is cold relative to its loop header, don't align it
2380     // regardless of what edges into the block exist.
2381     MachineBasicBlock *LoopHeader = L->getHeader();
2382     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2383     if (Freq < (LoopHeaderFreq * ColdProb))
2384       continue;
2385 
2386     // Check for the existence of a non-layout predecessor which would benefit
2387     // from aligning this block.
2388     MachineBasicBlock *LayoutPred =
2389         &*std::prev(MachineFunction::iterator(ChainBB));
2390 
2391     // Force alignment if all the predecessors are jumps. We already checked
2392     // that the block isn't cold above.
2393     if (!LayoutPred->isSuccessor(ChainBB)) {
2394       ChainBB->setAlignment(Align);
2395       continue;
2396     }
2397 
2398     // Align this block if the layout predecessor's edge into this block is
2399     // cold relative to the block. When this is true, other predecessors make up
2400     // all of the hot entries into the block and thus alignment is likely to be
2401     // important.
2402     BranchProbability LayoutProb =
2403         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2404     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2405     if (LayoutEdgeFreq <= (Freq * ColdProb))
2406       ChainBB->setAlignment(Align);
2407   }
2408 }
2409 
2410 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2411 /// it was duplicated into its chain predecessor and removed.
2412 /// \p BB    - Basic block that may be duplicated.
2413 ///
2414 /// \p LPred - Chosen layout predecessor of \p BB.
2415 ///            Updated to be the chain end if LPred is removed.
2416 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2417 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2418 ///                  Used to identify which blocks to update predecessor
2419 ///                  counts.
2420 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2421 ///                          chosen in the given order due to unnatural CFG
2422 ///                          only needed if \p BB is removed and
2423 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2424 /// @return true if \p BB was removed.
2425 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2426     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2427     const MachineBasicBlock *LoopHeaderBB,
2428     BlockChain &Chain, BlockFilterSet *BlockFilter,
2429     MachineFunction::iterator &PrevUnplacedBlockIt) {
2430   bool Removed, DuplicatedToLPred;
2431   bool DuplicatedToOriginalLPred;
2432   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2433                                     PrevUnplacedBlockIt,
2434                                     DuplicatedToLPred);
2435   if (!Removed)
2436     return false;
2437   DuplicatedToOriginalLPred = DuplicatedToLPred;
2438   // Iteratively try to duplicate again. It can happen that a block that is
2439   // duplicated into is still small enough to be duplicated again.
2440   // No need to call markBlockSuccessors in this case, as the blocks being
2441   // duplicated from here on are already scheduled.
2442   // Note that DuplicatedToLPred always implies Removed.
2443   while (DuplicatedToLPred) {
2444     assert (Removed && "Block must have been removed to be duplicated into its "
2445             "layout predecessor.");
2446     MachineBasicBlock *DupBB, *DupPred;
2447     // The removal callback causes Chain.end() to be updated when a block is
2448     // removed. On the first pass through the loop, the chain end should be the
2449     // same as it was on function entry. On subsequent passes, because we are
2450     // duplicating the block at the end of the chain, if it is removed the
2451     // chain will have shrunk by one block.
2452     BlockChain::iterator ChainEnd = Chain.end();
2453     DupBB = *(--ChainEnd);
2454     // Now try to duplicate again.
2455     if (ChainEnd == Chain.begin())
2456       break;
2457     DupPred = *std::prev(ChainEnd);
2458     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2459                                       PrevUnplacedBlockIt,
2460                                       DuplicatedToLPred);
2461   }
2462   // If BB was duplicated into LPred, it is now scheduled. But because it was
2463   // removed, markChainSuccessors won't be called for its chain. Instead we
2464   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2465   // at the end because repeating the tail duplication can increase the number
2466   // of unscheduled predecessors.
2467   LPred = *std::prev(Chain.end());
2468   if (DuplicatedToOriginalLPred)
2469     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2470   return true;
2471 }
2472 
2473 /// Tail duplicate \p BB into (some) predecessors if profitable.
2474 /// \p BB    - Basic block that may be duplicated
2475 /// \p LPred - Chosen layout predecessor of \p BB
2476 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2477 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2478 ///                  Used to identify which blocks to update predecessor
2479 ///                  counts.
2480 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2481 ///                          chosen in the given order due to unnatural CFG
2482 ///                          only needed if \p BB is removed and
2483 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2484 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2485 ///                        only be true if the block was removed.
2486 /// \return  - True if the block was duplicated into all preds and removed.
2487 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2488     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2489     BlockChain &Chain, BlockFilterSet *BlockFilter,
2490     MachineFunction::iterator &PrevUnplacedBlockIt,
2491     bool &DuplicatedToLPred) {
2492   DuplicatedToLPred = false;
2493   if (!shouldTailDuplicate(BB))
2494     return false;
2495 
2496   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2497         << BB->getNumber() << "\n");
2498 
2499   // This has to be a callback because none of it can be done after
2500   // BB is deleted.
2501   bool Removed = false;
2502   auto RemovalCallback =
2503       [&](MachineBasicBlock *RemBB) {
2504         // Signal to outer function
2505         Removed = true;
2506 
2507         // Conservative default.
2508         bool InWorkList = true;
2509         // Remove from the Chain and Chain Map
2510         if (BlockToChain.count(RemBB)) {
2511           BlockChain *Chain = BlockToChain[RemBB];
2512           InWorkList = Chain->UnscheduledPredecessors == 0;
2513           Chain->remove(RemBB);
2514           BlockToChain.erase(RemBB);
2515         }
2516 
2517         // Handle the unplaced block iterator
2518         if (&(*PrevUnplacedBlockIt) == RemBB) {
2519           PrevUnplacedBlockIt++;
2520         }
2521 
2522         // Handle the Work Lists
2523         if (InWorkList) {
2524           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2525           if (RemBB->isEHPad())
2526             RemoveList = EHPadWorkList;
2527           RemoveList.erase(
2528               remove_if(RemoveList,
2529                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2530               RemoveList.end());
2531         }
2532 
2533         // Handle the filter set
2534         if (BlockFilter) {
2535           BlockFilter->remove(RemBB);
2536         }
2537 
2538         // Remove the block from loop info.
2539         MLI->removeBlock(RemBB);
2540         if (RemBB == PreferredLoopExit)
2541           PreferredLoopExit = nullptr;
2542 
2543         DEBUG(dbgs() << "TailDuplicator deleted block: "
2544               << getBlockName(RemBB) << "\n");
2545       };
2546   auto RemovalCallbackRef =
2547       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2548 
2549   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2550   bool IsSimple = TailDup.isSimpleBB(BB);
2551   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2552                                  &DuplicatedPreds, &RemovalCallbackRef);
2553 
2554   // Update UnscheduledPredecessors to reflect tail-duplication.
2555   DuplicatedToLPred = false;
2556   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2557     // We're only looking for unscheduled predecessors that match the filter.
2558     BlockChain* PredChain = BlockToChain[Pred];
2559     if (Pred == LPred)
2560       DuplicatedToLPred = true;
2561     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2562         || PredChain == &Chain)
2563       continue;
2564     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2565       if (BlockFilter && !BlockFilter->count(NewSucc))
2566         continue;
2567       BlockChain *NewChain = BlockToChain[NewSucc];
2568       if (NewChain != &Chain && NewChain != PredChain)
2569         NewChain->UnscheduledPredecessors++;
2570     }
2571   }
2572   return Removed;
2573 }
2574 
2575 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2576   if (skipFunction(*MF.getFunction()))
2577     return false;
2578 
2579   // Check for single-block functions and skip them.
2580   if (std::next(MF.begin()) == MF.end())
2581     return false;
2582 
2583   F = &MF;
2584   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2585   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2586       getAnalysis<MachineBlockFrequencyInfo>());
2587   MLI = &getAnalysis<MachineLoopInfo>();
2588   TII = MF.getSubtarget().getInstrInfo();
2589   TLI = MF.getSubtarget().getTargetLowering();
2590   MDT = &getAnalysis<MachineDominatorTree>();
2591   MPDT = nullptr;
2592 
2593   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2594   // there are no MachineLoops.
2595   PreferredLoopExit = nullptr;
2596 
2597   if (TailDupPlacement) {
2598     MPDT = &getAnalysis<MachinePostDominatorTree>();
2599     unsigned TailDupSize = TailDupPlacementThreshold;
2600     if (MF.getFunction()->optForSize())
2601       TailDupSize = 1;
2602     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2603   }
2604 
2605   assert(BlockToChain.empty());
2606 
2607   buildCFGChains();
2608 
2609   // Changing the layout can create new tail merging opportunities.
2610   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2611   // TailMerge can create jump into if branches that make CFG irreducible for
2612   // HW that requires structured CFG.
2613   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2614                          PassConfig->getEnableTailMerge() &&
2615                          BranchFoldPlacement;
2616   // No tail merging opportunities if the block number is less than four.
2617   if (MF.size() > 3 && EnableTailMerge) {
2618     unsigned TailMergeSize = TailDupPlacementThreshold + 1;
2619     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2620                     *MBPI, TailMergeSize);
2621 
2622     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2623                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2624                             /*AfterBlockPlacement=*/true)) {
2625       // Redo the layout if tail merging creates/removes/moves blocks.
2626       BlockToChain.clear();
2627       // Must redo the dominator tree if blocks were changed.
2628       MDT->runOnMachineFunction(MF);
2629       if (MPDT)
2630         MPDT->runOnMachineFunction(MF);
2631       ChainAllocator.DestroyAll();
2632       buildCFGChains();
2633     }
2634   }
2635 
2636   optimizeBranches();
2637   alignBlocks();
2638 
2639   BlockToChain.clear();
2640   ChainAllocator.DestroyAll();
2641 
2642   if (AlignAllBlock)
2643     // Align all of the blocks in the function to a specific alignment.
2644     for (MachineBasicBlock &MBB : MF)
2645       MBB.setAlignment(AlignAllBlock);
2646   else if (AlignAllNonFallThruBlocks) {
2647     // Align all of the blocks that have no fall-through predecessors to a
2648     // specific alignment.
2649     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2650       auto LayoutPred = std::prev(MBI);
2651       if (!LayoutPred->isSuccessor(&*MBI))
2652         MBI->setAlignment(AlignAllNonFallThruBlocks);
2653     }
2654   }
2655   if (ViewBlockLayoutWithBFI != GVDT_None &&
2656       (ViewBlockFreqFuncName.empty() ||
2657        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2658     MBFI->view("MBP." + MF.getName(), false);
2659   }
2660 
2661 
2662   // We always return true as we have no way to track whether the final order
2663   // differs from the original order.
2664   return true;
2665 }
2666 
2667 namespace {
2668 /// \brief A pass to compute block placement statistics.
2669 ///
2670 /// A separate pass to compute interesting statistics for evaluating block
2671 /// placement. This is separate from the actual placement pass so that they can
2672 /// be computed in the absence of any placement transformations or when using
2673 /// alternative placement strategies.
2674 class MachineBlockPlacementStats : public MachineFunctionPass {
2675   /// \brief A handle to the branch probability pass.
2676   const MachineBranchProbabilityInfo *MBPI;
2677 
2678   /// \brief A handle to the function-wide block frequency pass.
2679   const MachineBlockFrequencyInfo *MBFI;
2680 
2681 public:
2682   static char ID; // Pass identification, replacement for typeid
2683   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2684     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2685   }
2686 
2687   bool runOnMachineFunction(MachineFunction &F) override;
2688 
2689   void getAnalysisUsage(AnalysisUsage &AU) const override {
2690     AU.addRequired<MachineBranchProbabilityInfo>();
2691     AU.addRequired<MachineBlockFrequencyInfo>();
2692     AU.setPreservesAll();
2693     MachineFunctionPass::getAnalysisUsage(AU);
2694   }
2695 };
2696 }
2697 
2698 char MachineBlockPlacementStats::ID = 0;
2699 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2700 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2701                       "Basic Block Placement Stats", false, false)
2702 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2703 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2704 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2705                     "Basic Block Placement Stats", false, false)
2706 
2707 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2708   // Check for single-block functions and skip them.
2709   if (std::next(F.begin()) == F.end())
2710     return false;
2711 
2712   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2713   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2714 
2715   for (MachineBasicBlock &MBB : F) {
2716     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2717     Statistic &NumBranches =
2718         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2719     Statistic &BranchTakenFreq =
2720         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2721     for (MachineBasicBlock *Succ : MBB.successors()) {
2722       // Skip if this successor is a fallthrough.
2723       if (MBB.isLayoutSuccessor(Succ))
2724         continue;
2725 
2726       BlockFrequency EdgeFreq =
2727           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2728       ++NumBranches;
2729       BranchTakenFreq += EdgeFreq.getFrequency();
2730     }
2731   }
2732 
2733   return false;
2734 }
2735