xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision dee058c670593b999fec19c458dbbd882ad9de56)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Transforms/Utils/CodeLayout.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "block-placement"
78 
79 STATISTIC(NumCondBranches, "Number of conditional branches");
80 STATISTIC(NumUncondBranches, "Number of unconditional branches");
81 STATISTIC(CondBranchTakenFreq,
82           "Potential frequency of taking conditional branches");
83 STATISTIC(UncondBranchTakenFreq,
84           "Potential frequency of taking unconditional branches");
85 
86 static cl::opt<unsigned> AlignAllBlock(
87     "align-all-blocks",
88     cl::desc("Force the alignment of all blocks in the function in log2 format "
89              "(e.g 4 means align on 16B boundaries)."),
90     cl::init(0), cl::Hidden);
91 
92 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
93     "align-all-nofallthru-blocks",
94     cl::desc("Force the alignment of all blocks that have no fall-through "
95              "predecessors (i.e. don't add nops that are executed). In log2 "
96              "format (e.g 4 means align on 16B boundaries)."),
97     cl::init(0), cl::Hidden);
98 
99 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
100     "max-bytes-for-alignment",
101     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
102              "alignment"),
103     cl::init(0), cl::Hidden);
104 
105 // FIXME: Find a good default for this flag and remove the flag.
106 static cl::opt<unsigned> ExitBlockBias(
107     "block-placement-exit-block-bias",
108     cl::desc("Block frequency percentage a loop exit block needs "
109              "over the original exit to be considered the new exit."),
110     cl::init(0), cl::Hidden);
111 
112 // Definition:
113 // - Outlining: placement of a basic block outside the chain or hot path.
114 
115 static cl::opt<unsigned> LoopToColdBlockRatio(
116     "loop-to-cold-block-ratio",
117     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
118              "(frequency of block) is greater than this ratio"),
119     cl::init(5), cl::Hidden);
120 
121 static cl::opt<bool> ForceLoopColdBlock(
122     "force-loop-cold-block",
123     cl::desc("Force outlining cold blocks from loops."),
124     cl::init(false), cl::Hidden);
125 
126 static cl::opt<bool>
127     PreciseRotationCost("precise-rotation-cost",
128                         cl::desc("Model the cost of loop rotation more "
129                                  "precisely by using profile data."),
130                         cl::init(false), cl::Hidden);
131 
132 static cl::opt<bool>
133     ForcePreciseRotationCost("force-precise-rotation-cost",
134                              cl::desc("Force the use of precise cost "
135                                       "loop rotation strategy."),
136                              cl::init(false), cl::Hidden);
137 
138 static cl::opt<unsigned> MisfetchCost(
139     "misfetch-cost",
140     cl::desc("Cost that models the probabilistic risk of an instruction "
141              "misfetch due to a jump comparing to falling through, whose cost "
142              "is zero."),
143     cl::init(1), cl::Hidden);
144 
145 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
146                                       cl::desc("Cost of jump instructions."),
147                                       cl::init(1), cl::Hidden);
148 static cl::opt<bool>
149 TailDupPlacement("tail-dup-placement",
150               cl::desc("Perform tail duplication during placement. "
151                        "Creates more fallthrough opportunites in "
152                        "outline branches."),
153               cl::init(true), cl::Hidden);
154 
155 static cl::opt<bool>
156 BranchFoldPlacement("branch-fold-placement",
157               cl::desc("Perform branch folding during placement. "
158                        "Reduces code size."),
159               cl::init(true), cl::Hidden);
160 
161 // Heuristic for tail duplication.
162 static cl::opt<unsigned> TailDupPlacementThreshold(
163     "tail-dup-placement-threshold",
164     cl::desc("Instruction cutoff for tail duplication during layout. "
165              "Tail merging during layout is forced to have a threshold "
166              "that won't conflict."), cl::init(2),
167     cl::Hidden);
168 
169 // Heuristic for aggressive tail duplication.
170 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
171     "tail-dup-placement-aggressive-threshold",
172     cl::desc("Instruction cutoff for aggressive tail duplication during "
173              "layout. Used at -O3. Tail merging during layout is forced to "
174              "have a threshold that won't conflict."), cl::init(4),
175     cl::Hidden);
176 
177 // Heuristic for tail duplication.
178 static cl::opt<unsigned> TailDupPlacementPenalty(
179     "tail-dup-placement-penalty",
180     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
181              "Copying can increase fallthrough, but it also increases icache "
182              "pressure. This parameter controls the penalty to account for that. "
183              "Percent as integer."),
184     cl::init(2),
185     cl::Hidden);
186 
187 // Heuristic for tail duplication if profile count is used in cost model.
188 static cl::opt<unsigned> TailDupProfilePercentThreshold(
189     "tail-dup-profile-percent-threshold",
190     cl::desc("If profile count information is used in tail duplication cost "
191              "model, the gained fall through number from tail duplication "
192              "should be at least this percent of hot count."),
193     cl::init(50), cl::Hidden);
194 
195 // Heuristic for triangle chains.
196 static cl::opt<unsigned> TriangleChainCount(
197     "triangle-chain-count",
198     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
199              "triangle tail duplication heuristic to kick in. 0 to disable."),
200     cl::init(2),
201     cl::Hidden);
202 
203 extern cl::opt<bool> EnableExtTspBlockPlacement;
204 
205 namespace llvm {
206 extern cl::opt<unsigned> StaticLikelyProb;
207 extern cl::opt<unsigned> ProfileLikelyProb;
208 
209 // Internal option used to control BFI display only after MBP pass.
210 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
211 // -view-block-layout-with-bfi=
212 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
213 
214 // Command line option to specify the name of the function for CFG dump
215 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
216 extern cl::opt<std::string> ViewBlockFreqFuncName;
217 } // namespace llvm
218 
219 namespace {
220 
221 class BlockChain;
222 
223 /// Type for our function-wide basic block -> block chain mapping.
224 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
225 
226 /// A chain of blocks which will be laid out contiguously.
227 ///
228 /// This is the datastructure representing a chain of consecutive blocks that
229 /// are profitable to layout together in order to maximize fallthrough
230 /// probabilities and code locality. We also can use a block chain to represent
231 /// a sequence of basic blocks which have some external (correctness)
232 /// requirement for sequential layout.
233 ///
234 /// Chains can be built around a single basic block and can be merged to grow
235 /// them. They participate in a block-to-chain mapping, which is updated
236 /// automatically as chains are merged together.
237 class BlockChain {
238   /// The sequence of blocks belonging to this chain.
239   ///
240   /// This is the sequence of blocks for a particular chain. These will be laid
241   /// out in-order within the function.
242   SmallVector<MachineBasicBlock *, 4> Blocks;
243 
244   /// A handle to the function-wide basic block to block chain mapping.
245   ///
246   /// This is retained in each block chain to simplify the computation of child
247   /// block chains for SCC-formation and iteration. We store the edges to child
248   /// basic blocks, and map them back to their associated chains using this
249   /// structure.
250   BlockToChainMapType &BlockToChain;
251 
252 public:
253   /// Construct a new BlockChain.
254   ///
255   /// This builds a new block chain representing a single basic block in the
256   /// function. It also registers itself as the chain that block participates
257   /// in with the BlockToChain mapping.
258   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
259       : Blocks(1, BB), BlockToChain(BlockToChain) {
260     assert(BB && "Cannot create a chain with a null basic block");
261     BlockToChain[BB] = this;
262   }
263 
264   /// Iterator over blocks within the chain.
265   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
266   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
267 
268   /// Beginning of blocks within the chain.
269   iterator begin() { return Blocks.begin(); }
270   const_iterator begin() const { return Blocks.begin(); }
271 
272   /// End of blocks within the chain.
273   iterator end() { return Blocks.end(); }
274   const_iterator end() const { return Blocks.end(); }
275 
276   bool remove(MachineBasicBlock* BB) {
277     for(iterator i = begin(); i != end(); ++i) {
278       if (*i == BB) {
279         Blocks.erase(i);
280         return true;
281       }
282     }
283     return false;
284   }
285 
286   /// Merge a block chain into this one.
287   ///
288   /// This routine merges a block chain into this one. It takes care of forming
289   /// a contiguous sequence of basic blocks, updating the edge list, and
290   /// updating the block -> chain mapping. It does not free or tear down the
291   /// old chain, but the old chain's block list is no longer valid.
292   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
293     assert(BB && "Can't merge a null block.");
294     assert(!Blocks.empty() && "Can't merge into an empty chain.");
295 
296     // Fast path in case we don't have a chain already.
297     if (!Chain) {
298       assert(!BlockToChain[BB] &&
299              "Passed chain is null, but BB has entry in BlockToChain.");
300       Blocks.push_back(BB);
301       BlockToChain[BB] = this;
302       return;
303     }
304 
305     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
306     assert(Chain->begin() != Chain->end());
307 
308     // Update the incoming blocks to point to this chain, and add them to the
309     // chain structure.
310     for (MachineBasicBlock *ChainBB : *Chain) {
311       Blocks.push_back(ChainBB);
312       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
313       BlockToChain[ChainBB] = this;
314     }
315   }
316 
317 #ifndef NDEBUG
318   /// Dump the blocks in this chain.
319   LLVM_DUMP_METHOD void dump() {
320     for (MachineBasicBlock *MBB : *this)
321       MBB->dump();
322   }
323 #endif // NDEBUG
324 
325   /// Count of predecessors of any block within the chain which have not
326   /// yet been scheduled.  In general, we will delay scheduling this chain
327   /// until those predecessors are scheduled (or we find a sufficiently good
328   /// reason to override this heuristic.)  Note that when forming loop chains,
329   /// blocks outside the loop are ignored and treated as if they were already
330   /// scheduled.
331   ///
332   /// Note: This field is reinitialized multiple times - once for each loop,
333   /// and then once for the function as a whole.
334   unsigned UnscheduledPredecessors = 0;
335 };
336 
337 class MachineBlockPlacement : public MachineFunctionPass {
338   /// A type for a block filter set.
339   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
340 
341   /// Pair struct containing basic block and taildup profitability
342   struct BlockAndTailDupResult {
343     MachineBasicBlock *BB;
344     bool ShouldTailDup;
345   };
346 
347   /// Triple struct containing edge weight and the edge.
348   struct WeightedEdge {
349     BlockFrequency Weight;
350     MachineBasicBlock *Src;
351     MachineBasicBlock *Dest;
352   };
353 
354   /// work lists of blocks that are ready to be laid out
355   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
356   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
357 
358   /// Edges that have already been computed as optimal.
359   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
360 
361   /// Machine Function
362   MachineFunction *F;
363 
364   /// A handle to the branch probability pass.
365   const MachineBranchProbabilityInfo *MBPI;
366 
367   /// A handle to the function-wide block frequency pass.
368   std::unique_ptr<MBFIWrapper> MBFI;
369 
370   /// A handle to the loop info.
371   MachineLoopInfo *MLI;
372 
373   /// Preferred loop exit.
374   /// Member variable for convenience. It may be removed by duplication deep
375   /// in the call stack.
376   MachineBasicBlock *PreferredLoopExit;
377 
378   /// A handle to the target's instruction info.
379   const TargetInstrInfo *TII;
380 
381   /// A handle to the target's lowering info.
382   const TargetLoweringBase *TLI;
383 
384   /// A handle to the post dominator tree.
385   MachinePostDominatorTree *MPDT;
386 
387   ProfileSummaryInfo *PSI;
388 
389   /// Duplicator used to duplicate tails during placement.
390   ///
391   /// Placement decisions can open up new tail duplication opportunities, but
392   /// since tail duplication affects placement decisions of later blocks, it
393   /// must be done inline.
394   TailDuplicator TailDup;
395 
396   /// Partial tail duplication threshold.
397   BlockFrequency DupThreshold;
398 
399   /// True:  use block profile count to compute tail duplication cost.
400   /// False: use block frequency to compute tail duplication cost.
401   bool UseProfileCount;
402 
403   /// Allocator and owner of BlockChain structures.
404   ///
405   /// We build BlockChains lazily while processing the loop structure of
406   /// a function. To reduce malloc traffic, we allocate them using this
407   /// slab-like allocator, and destroy them after the pass completes. An
408   /// important guarantee is that this allocator produces stable pointers to
409   /// the chains.
410   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
411 
412   /// Function wide BasicBlock to BlockChain mapping.
413   ///
414   /// This mapping allows efficiently moving from any given basic block to the
415   /// BlockChain it participates in, if any. We use it to, among other things,
416   /// allow implicitly defining edges between chains as the existing edges
417   /// between basic blocks.
418   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
419 
420 #ifndef NDEBUG
421   /// The set of basic blocks that have terminators that cannot be fully
422   /// analyzed.  These basic blocks cannot be re-ordered safely by
423   /// MachineBlockPlacement, and we must preserve physical layout of these
424   /// blocks and their successors through the pass.
425   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
426 #endif
427 
428   /// Get block profile count or frequency according to UseProfileCount.
429   /// The return value is used to model tail duplication cost.
430   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
431     if (UseProfileCount) {
432       auto Count = MBFI->getBlockProfileCount(BB);
433       if (Count)
434         return *Count;
435       else
436         return 0;
437     } else
438       return MBFI->getBlockFreq(BB);
439   }
440 
441   /// Scale the DupThreshold according to basic block size.
442   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
443   void initDupThreshold();
444 
445   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
446   /// if the count goes to 0, add them to the appropriate work list.
447   void markChainSuccessors(
448       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
449       const BlockFilterSet *BlockFilter = nullptr);
450 
451   /// Decrease the UnscheduledPredecessors count for a single block, and
452   /// if the count goes to 0, add them to the appropriate work list.
453   void markBlockSuccessors(
454       const BlockChain &Chain, const MachineBasicBlock *BB,
455       const MachineBasicBlock *LoopHeaderBB,
456       const BlockFilterSet *BlockFilter = nullptr);
457 
458   BranchProbability
459   collectViableSuccessors(
460       const MachineBasicBlock *BB, const BlockChain &Chain,
461       const BlockFilterSet *BlockFilter,
462       SmallVector<MachineBasicBlock *, 4> &Successors);
463   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
464                        BlockFilterSet *BlockFilter);
465   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
466                                MachineBasicBlock *BB,
467                                BlockFilterSet *BlockFilter);
468   bool repeatedlyTailDuplicateBlock(
469       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
470       const MachineBasicBlock *LoopHeaderBB,
471       BlockChain &Chain, BlockFilterSet *BlockFilter,
472       MachineFunction::iterator &PrevUnplacedBlockIt);
473   bool maybeTailDuplicateBlock(
474       MachineBasicBlock *BB, MachineBasicBlock *LPred,
475       BlockChain &Chain, BlockFilterSet *BlockFilter,
476       MachineFunction::iterator &PrevUnplacedBlockIt,
477       bool &DuplicatedToLPred);
478   bool hasBetterLayoutPredecessor(
479       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
480       const BlockChain &SuccChain, BranchProbability SuccProb,
481       BranchProbability RealSuccProb, const BlockChain &Chain,
482       const BlockFilterSet *BlockFilter);
483   BlockAndTailDupResult selectBestSuccessor(
484       const MachineBasicBlock *BB, const BlockChain &Chain,
485       const BlockFilterSet *BlockFilter);
486   MachineBasicBlock *selectBestCandidateBlock(
487       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
488   MachineBasicBlock *getFirstUnplacedBlock(
489       const BlockChain &PlacedChain,
490       MachineFunction::iterator &PrevUnplacedBlockIt,
491       const BlockFilterSet *BlockFilter);
492 
493   /// Add a basic block to the work list if it is appropriate.
494   ///
495   /// If the optional parameter BlockFilter is provided, only MBB
496   /// present in the set will be added to the worklist. If nullptr
497   /// is provided, no filtering occurs.
498   void fillWorkLists(const MachineBasicBlock *MBB,
499                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
500                      const BlockFilterSet *BlockFilter);
501 
502   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
503                   BlockFilterSet *BlockFilter = nullptr);
504   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
505                                const MachineBasicBlock *OldTop);
506   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
507                                const BlockFilterSet &LoopBlockSet);
508   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
509                                     const BlockFilterSet &LoopBlockSet);
510   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
511                                   const MachineBasicBlock *OldTop,
512                                   const MachineBasicBlock *ExitBB,
513                                   const BlockFilterSet &LoopBlockSet);
514   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
515       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
516   MachineBasicBlock *findBestLoopTop(
517       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
518   MachineBasicBlock *findBestLoopExit(
519       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
520       BlockFrequency &ExitFreq);
521   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
522   void buildLoopChains(const MachineLoop &L);
523   void rotateLoop(
524       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
525       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
526   void rotateLoopWithProfile(
527       BlockChain &LoopChain, const MachineLoop &L,
528       const BlockFilterSet &LoopBlockSet);
529   void buildCFGChains();
530   void optimizeBranches();
531   void alignBlocks();
532   /// Returns true if a block should be tail-duplicated to increase fallthrough
533   /// opportunities.
534   bool shouldTailDuplicate(MachineBasicBlock *BB);
535   /// Check the edge frequencies to see if tail duplication will increase
536   /// fallthroughs.
537   bool isProfitableToTailDup(
538     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
539     BranchProbability QProb,
540     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
541 
542   /// Check for a trellis layout.
543   bool isTrellis(const MachineBasicBlock *BB,
544                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
545                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
546 
547   /// Get the best successor given a trellis layout.
548   BlockAndTailDupResult getBestTrellisSuccessor(
549       const MachineBasicBlock *BB,
550       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
551       BranchProbability AdjustedSumProb, const BlockChain &Chain,
552       const BlockFilterSet *BlockFilter);
553 
554   /// Get the best pair of non-conflicting edges.
555   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
556       const MachineBasicBlock *BB,
557       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
558 
559   /// Returns true if a block can tail duplicate into all unplaced
560   /// predecessors. Filters based on loop.
561   bool canTailDuplicateUnplacedPreds(
562       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
563       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
564 
565   /// Find chains of triangles to tail-duplicate where a global analysis works,
566   /// but a local analysis would not find them.
567   void precomputeTriangleChains();
568 
569   /// Apply a post-processing step optimizing block placement.
570   void applyExtTsp();
571 
572   /// Modify the existing block placement in the function and adjust all jumps.
573   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
574 
575   /// Create a single CFG chain from the current block order.
576   void createCFGChainExtTsp();
577 
578 public:
579   static char ID; // Pass identification, replacement for typeid
580 
581   MachineBlockPlacement() : MachineFunctionPass(ID) {
582     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
583   }
584 
585   bool runOnMachineFunction(MachineFunction &F) override;
586 
587   bool allowTailDupPlacement() const {
588     assert(F);
589     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
590   }
591 
592   void getAnalysisUsage(AnalysisUsage &AU) const override {
593     AU.addRequired<MachineBranchProbabilityInfo>();
594     AU.addRequired<MachineBlockFrequencyInfo>();
595     if (TailDupPlacement)
596       AU.addRequired<MachinePostDominatorTree>();
597     AU.addRequired<MachineLoopInfo>();
598     AU.addRequired<ProfileSummaryInfoWrapperPass>();
599     AU.addRequired<TargetPassConfig>();
600     MachineFunctionPass::getAnalysisUsage(AU);
601   }
602 };
603 
604 } // end anonymous namespace
605 
606 char MachineBlockPlacement::ID = 0;
607 
608 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
609 
610 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
611                       "Branch Probability Basic Block Placement", false, false)
612 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
613 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
614 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
615 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
616 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
617 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
618                     "Branch Probability Basic Block Placement", false, false)
619 
620 #ifndef NDEBUG
621 /// Helper to print the name of a MBB.
622 ///
623 /// Only used by debug logging.
624 static std::string getBlockName(const MachineBasicBlock *BB) {
625   std::string Result;
626   raw_string_ostream OS(Result);
627   OS << printMBBReference(*BB);
628   OS << " ('" << BB->getName() << "')";
629   OS.flush();
630   return Result;
631 }
632 #endif
633 
634 /// Mark a chain's successors as having one fewer preds.
635 ///
636 /// When a chain is being merged into the "placed" chain, this routine will
637 /// quickly walk the successors of each block in the chain and mark them as
638 /// having one fewer active predecessor. It also adds any successors of this
639 /// chain which reach the zero-predecessor state to the appropriate worklist.
640 void MachineBlockPlacement::markChainSuccessors(
641     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
642     const BlockFilterSet *BlockFilter) {
643   // Walk all the blocks in this chain, marking their successors as having
644   // a predecessor placed.
645   for (MachineBasicBlock *MBB : Chain) {
646     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
647   }
648 }
649 
650 /// Mark a single block's successors as having one fewer preds.
651 ///
652 /// Under normal circumstances, this is only called by markChainSuccessors,
653 /// but if a block that was to be placed is completely tail-duplicated away,
654 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
655 /// for just that block.
656 void MachineBlockPlacement::markBlockSuccessors(
657     const BlockChain &Chain, const MachineBasicBlock *MBB,
658     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
659   // Add any successors for which this is the only un-placed in-loop
660   // predecessor to the worklist as a viable candidate for CFG-neutral
661   // placement. No subsequent placement of this block will violate the CFG
662   // shape, so we get to use heuristics to choose a favorable placement.
663   for (MachineBasicBlock *Succ : MBB->successors()) {
664     if (BlockFilter && !BlockFilter->count(Succ))
665       continue;
666     BlockChain &SuccChain = *BlockToChain[Succ];
667     // Disregard edges within a fixed chain, or edges to the loop header.
668     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
669       continue;
670 
671     // This is a cross-chain edge that is within the loop, so decrement the
672     // loop predecessor count of the destination chain.
673     if (SuccChain.UnscheduledPredecessors == 0 ||
674         --SuccChain.UnscheduledPredecessors > 0)
675       continue;
676 
677     auto *NewBB = *SuccChain.begin();
678     if (NewBB->isEHPad())
679       EHPadWorkList.push_back(NewBB);
680     else
681       BlockWorkList.push_back(NewBB);
682   }
683 }
684 
685 /// This helper function collects the set of successors of block
686 /// \p BB that are allowed to be its layout successors, and return
687 /// the total branch probability of edges from \p BB to those
688 /// blocks.
689 BranchProbability MachineBlockPlacement::collectViableSuccessors(
690     const MachineBasicBlock *BB, const BlockChain &Chain,
691     const BlockFilterSet *BlockFilter,
692     SmallVector<MachineBasicBlock *, 4> &Successors) {
693   // Adjust edge probabilities by excluding edges pointing to blocks that is
694   // either not in BlockFilter or is already in the current chain. Consider the
695   // following CFG:
696   //
697   //     --->A
698   //     |  / \
699   //     | B   C
700   //     |  \ / \
701   //     ----D   E
702   //
703   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
704   // A->C is chosen as a fall-through, D won't be selected as a successor of C
705   // due to CFG constraint (the probability of C->D is not greater than
706   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
707   // when calculating the probability of C->D, D will be selected and we
708   // will get A C D B as the layout of this loop.
709   auto AdjustedSumProb = BranchProbability::getOne();
710   for (MachineBasicBlock *Succ : BB->successors()) {
711     bool SkipSucc = false;
712     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
713       SkipSucc = true;
714     } else {
715       BlockChain *SuccChain = BlockToChain[Succ];
716       if (SuccChain == &Chain) {
717         SkipSucc = true;
718       } else if (Succ != *SuccChain->begin()) {
719         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
720                           << " -> Mid chain!\n");
721         continue;
722       }
723     }
724     if (SkipSucc)
725       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
726     else
727       Successors.push_back(Succ);
728   }
729 
730   return AdjustedSumProb;
731 }
732 
733 /// The helper function returns the branch probability that is adjusted
734 /// or normalized over the new total \p AdjustedSumProb.
735 static BranchProbability
736 getAdjustedProbability(BranchProbability OrigProb,
737                        BranchProbability AdjustedSumProb) {
738   BranchProbability SuccProb;
739   uint32_t SuccProbN = OrigProb.getNumerator();
740   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
741   if (SuccProbN >= SuccProbD)
742     SuccProb = BranchProbability::getOne();
743   else
744     SuccProb = BranchProbability(SuccProbN, SuccProbD);
745 
746   return SuccProb;
747 }
748 
749 /// Check if \p BB has exactly the successors in \p Successors.
750 static bool
751 hasSameSuccessors(MachineBasicBlock &BB,
752                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
753   if (BB.succ_size() != Successors.size())
754     return false;
755   // We don't want to count self-loops
756   if (Successors.count(&BB))
757     return false;
758   for (MachineBasicBlock *Succ : BB.successors())
759     if (!Successors.count(Succ))
760       return false;
761   return true;
762 }
763 
764 /// Check if a block should be tail duplicated to increase fallthrough
765 /// opportunities.
766 /// \p BB Block to check.
767 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
768   // Blocks with single successors don't create additional fallthrough
769   // opportunities. Don't duplicate them. TODO: When conditional exits are
770   // analyzable, allow them to be duplicated.
771   bool IsSimple = TailDup.isSimpleBB(BB);
772 
773   if (BB->succ_size() == 1)
774     return false;
775   return TailDup.shouldTailDuplicate(IsSimple, *BB);
776 }
777 
778 /// Compare 2 BlockFrequency's with a small penalty for \p A.
779 /// In order to be conservative, we apply a X% penalty to account for
780 /// increased icache pressure and static heuristics. For small frequencies
781 /// we use only the numerators to improve accuracy. For simplicity, we assume the
782 /// penalty is less than 100%
783 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
784 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
785                             uint64_t EntryFreq) {
786   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
787   BlockFrequency Gain = A - B;
788   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
789 }
790 
791 /// Check the edge frequencies to see if tail duplication will increase
792 /// fallthroughs. It only makes sense to call this function when
793 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
794 /// always locally profitable if we would have picked \p Succ without
795 /// considering duplication.
796 bool MachineBlockPlacement::isProfitableToTailDup(
797     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
798     BranchProbability QProb,
799     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
800   // We need to do a probability calculation to make sure this is profitable.
801   // First: does succ have a successor that post-dominates? This affects the
802   // calculation. The 2 relevant cases are:
803   //    BB         BB
804   //    | \Qout    | \Qout
805   //   P|  C       |P C
806   //    =   C'     =   C'
807   //    |  /Qin    |  /Qin
808   //    | /        | /
809   //    Succ       Succ
810   //    / \        | \  V
811   //  U/   =V      |U \
812   //  /     \      =   D
813   //  D      E     |  /
814   //               | /
815   //               |/
816   //               PDom
817   //  '=' : Branch taken for that CFG edge
818   // In the second case, Placing Succ while duplicating it into C prevents the
819   // fallthrough of Succ into either D or PDom, because they now have C as an
820   // unplaced predecessor
821 
822   // Start by figuring out which case we fall into
823   MachineBasicBlock *PDom = nullptr;
824   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
825   // Only scan the relevant successors
826   auto AdjustedSuccSumProb =
827       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
828   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
829   auto BBFreq = MBFI->getBlockFreq(BB);
830   auto SuccFreq = MBFI->getBlockFreq(Succ);
831   BlockFrequency P = BBFreq * PProb;
832   BlockFrequency Qout = BBFreq * QProb;
833   uint64_t EntryFreq = MBFI->getEntryFreq();
834   // If there are no more successors, it is profitable to copy, as it strictly
835   // increases fallthrough.
836   if (SuccSuccs.size() == 0)
837     return greaterWithBias(P, Qout, EntryFreq);
838 
839   auto BestSuccSucc = BranchProbability::getZero();
840   // Find the PDom or the best Succ if no PDom exists.
841   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
842     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
843     if (Prob > BestSuccSucc)
844       BestSuccSucc = Prob;
845     if (PDom == nullptr)
846       if (MPDT->dominates(SuccSucc, Succ)) {
847         PDom = SuccSucc;
848         break;
849       }
850   }
851   // For the comparisons, we need to know Succ's best incoming edge that isn't
852   // from BB.
853   auto SuccBestPred = BlockFrequency(0);
854   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
855     if (SuccPred == Succ || SuccPred == BB
856         || BlockToChain[SuccPred] == &Chain
857         || (BlockFilter && !BlockFilter->count(SuccPred)))
858       continue;
859     auto Freq = MBFI->getBlockFreq(SuccPred)
860         * MBPI->getEdgeProbability(SuccPred, Succ);
861     if (Freq > SuccBestPred)
862       SuccBestPred = Freq;
863   }
864   // Qin is Succ's best unplaced incoming edge that isn't BB
865   BlockFrequency Qin = SuccBestPred;
866   // If it doesn't have a post-dominating successor, here is the calculation:
867   //    BB        BB
868   //    | \Qout   |  \
869   //   P|  C      |   =
870   //    =   C'    |    C
871   //    |  /Qin   |     |
872   //    | /       |     C' (+Succ)
873   //    Succ      Succ /|
874   //    / \       |  \/ |
875   //  U/   =V     |  == |
876   //  /     \     | /  \|
877   //  D      E    D     E
878   //  '=' : Branch taken for that CFG edge
879   //  Cost in the first case is: P + V
880   //  For this calculation, we always assume P > Qout. If Qout > P
881   //  The result of this function will be ignored at the caller.
882   //  Let F = SuccFreq - Qin
883   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
884 
885   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
886     BranchProbability UProb = BestSuccSucc;
887     BranchProbability VProb = AdjustedSuccSumProb - UProb;
888     BlockFrequency F = SuccFreq - Qin;
889     BlockFrequency V = SuccFreq * VProb;
890     BlockFrequency QinU = std::min(Qin, F) * UProb;
891     BlockFrequency BaseCost = P + V;
892     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
893     return greaterWithBias(BaseCost, DupCost, EntryFreq);
894   }
895   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
896   BranchProbability VProb = AdjustedSuccSumProb - UProb;
897   BlockFrequency U = SuccFreq * UProb;
898   BlockFrequency V = SuccFreq * VProb;
899   BlockFrequency F = SuccFreq - Qin;
900   // If there is a post-dominating successor, here is the calculation:
901   // BB         BB                 BB          BB
902   // | \Qout    |   \               | \Qout     |  \
903   // |P C       |    =              |P C        |   =
904   // =   C'     |P    C             =   C'      |P   C
905   // |  /Qin    |      |            |  /Qin     |     |
906   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
907   // Succ       Succ  /|            Succ        Succ /|
908   // | \  V     |   \/ |            | \  V      |  \/ |
909   // |U \       |U  /\ =?           |U =        |U /\ |
910   // =   D      = =  =?|            |   D       | =  =|
911   // |  /       |/     D            |  /        |/    D
912   // | /        |     /             | =         |    /
913   // |/         |    /              |/          |   =
914   // Dom         Dom                Dom         Dom
915   //  '=' : Branch taken for that CFG edge
916   // The cost for taken branches in the first case is P + U
917   // Let F = SuccFreq - Qin
918   // The cost in the second case (assuming independence), given the layout:
919   // BB, Succ, (C+Succ), D, Dom or the layout:
920   // BB, Succ, D, Dom, (C+Succ)
921   // is Qout + max(F, Qin) * U + min(F, Qin)
922   // compare P + U vs Qout + P * U + Qin.
923   //
924   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
925   //
926   // For the 3rd case, the cost is P + 2 * V
927   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
928   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
929   if (UProb > AdjustedSuccSumProb / 2 &&
930       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
931                                   Chain, BlockFilter))
932     // Cases 3 & 4
933     return greaterWithBias(
934         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
935         EntryFreq);
936   // Cases 1 & 2
937   return greaterWithBias((P + U),
938                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
939                           std::max(Qin, F) * UProb),
940                          EntryFreq);
941 }
942 
943 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
944 /// successors form the lower part of a trellis. A successor set S forms the
945 /// lower part of a trellis if all of the predecessors of S are either in S or
946 /// have all of S as successors. We ignore trellises where BB doesn't have 2
947 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
948 /// are very uncommon and complex to compute optimally. Allowing edges within S
949 /// is not strictly a trellis, but the same algorithm works, so we allow it.
950 bool MachineBlockPlacement::isTrellis(
951     const MachineBasicBlock *BB,
952     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
953     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
954   // Technically BB could form a trellis with branching factor higher than 2.
955   // But that's extremely uncommon.
956   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
957     return false;
958 
959   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
960                                                        BB->succ_end());
961   // To avoid reviewing the same predecessors twice.
962   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
963 
964   for (MachineBasicBlock *Succ : ViableSuccs) {
965     int PredCount = 0;
966     for (auto SuccPred : Succ->predecessors()) {
967       // Allow triangle successors, but don't count them.
968       if (Successors.count(SuccPred)) {
969         // Make sure that it is actually a triangle.
970         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
971           if (!Successors.count(CheckSucc))
972             return false;
973         continue;
974       }
975       const BlockChain *PredChain = BlockToChain[SuccPred];
976       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
977           PredChain == &Chain || PredChain == BlockToChain[Succ])
978         continue;
979       ++PredCount;
980       // Perform the successor check only once.
981       if (!SeenPreds.insert(SuccPred).second)
982         continue;
983       if (!hasSameSuccessors(*SuccPred, Successors))
984         return false;
985     }
986     // If one of the successors has only BB as a predecessor, it is not a
987     // trellis.
988     if (PredCount < 1)
989       return false;
990   }
991   return true;
992 }
993 
994 /// Pick the highest total weight pair of edges that can both be laid out.
995 /// The edges in \p Edges[0] are assumed to have a different destination than
996 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
997 /// the individual highest weight edges to the 2 different destinations, or in
998 /// case of a conflict, one of them should be replaced with a 2nd best edge.
999 std::pair<MachineBlockPlacement::WeightedEdge,
1000           MachineBlockPlacement::WeightedEdge>
1001 MachineBlockPlacement::getBestNonConflictingEdges(
1002     const MachineBasicBlock *BB,
1003     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1004         Edges) {
1005   // Sort the edges, and then for each successor, find the best incoming
1006   // predecessor. If the best incoming predecessors aren't the same,
1007   // then that is clearly the best layout. If there is a conflict, one of the
1008   // successors will have to fallthrough from the second best predecessor. We
1009   // compare which combination is better overall.
1010 
1011   // Sort for highest frequency.
1012   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1013 
1014   llvm::stable_sort(Edges[0], Cmp);
1015   llvm::stable_sort(Edges[1], Cmp);
1016   auto BestA = Edges[0].begin();
1017   auto BestB = Edges[1].begin();
1018   // Arrange for the correct answer to be in BestA and BestB
1019   // If the 2 best edges don't conflict, the answer is already there.
1020   if (BestA->Src == BestB->Src) {
1021     // Compare the total fallthrough of (Best + Second Best) for both pairs
1022     auto SecondBestA = std::next(BestA);
1023     auto SecondBestB = std::next(BestB);
1024     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1025     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1026     if (BestAScore < BestBScore)
1027       BestA = SecondBestA;
1028     else
1029       BestB = SecondBestB;
1030   }
1031   // Arrange for the BB edge to be in BestA if it exists.
1032   if (BestB->Src == BB)
1033     std::swap(BestA, BestB);
1034   return std::make_pair(*BestA, *BestB);
1035 }
1036 
1037 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1038 /// We only handle trellises with 2 successors, so the algorithm is
1039 /// straightforward: Find the best pair of edges that don't conflict. We find
1040 /// the best incoming edge for each successor in the trellis. If those conflict,
1041 /// we consider which of them should be replaced with the second best.
1042 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1043 /// comes from \p BB, it will be in \p BestEdges[0]
1044 MachineBlockPlacement::BlockAndTailDupResult
1045 MachineBlockPlacement::getBestTrellisSuccessor(
1046     const MachineBasicBlock *BB,
1047     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1048     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1049     const BlockFilterSet *BlockFilter) {
1050 
1051   BlockAndTailDupResult Result = {nullptr, false};
1052   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1053                                                        BB->succ_end());
1054 
1055   // We assume size 2 because it's common. For general n, we would have to do
1056   // the Hungarian algorithm, but it's not worth the complexity because more
1057   // than 2 successors is fairly uncommon, and a trellis even more so.
1058   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1059     return Result;
1060 
1061   // Collect the edge frequencies of all edges that form the trellis.
1062   SmallVector<WeightedEdge, 8> Edges[2];
1063   int SuccIndex = 0;
1064   for (auto Succ : ViableSuccs) {
1065     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1066       // Skip any placed predecessors that are not BB
1067       if (SuccPred != BB)
1068         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1069             BlockToChain[SuccPred] == &Chain ||
1070             BlockToChain[SuccPred] == BlockToChain[Succ])
1071           continue;
1072       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1073                                 MBPI->getEdgeProbability(SuccPred, Succ);
1074       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1075     }
1076     ++SuccIndex;
1077   }
1078 
1079   // Pick the best combination of 2 edges from all the edges in the trellis.
1080   WeightedEdge BestA, BestB;
1081   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1082 
1083   if (BestA.Src != BB) {
1084     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1085     // we shouldn't choose any successor. We've already looked and there's a
1086     // better fallthrough edge for all the successors.
1087     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1088     return Result;
1089   }
1090 
1091   // Did we pick the triangle edge? If tail-duplication is profitable, do
1092   // that instead. Otherwise merge the triangle edge now while we know it is
1093   // optimal.
1094   if (BestA.Dest == BestB.Src) {
1095     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1096     // would be better.
1097     MachineBasicBlock *Succ1 = BestA.Dest;
1098     MachineBasicBlock *Succ2 = BestB.Dest;
1099     // Check to see if tail-duplication would be profitable.
1100     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1101         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1102         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1103                               Chain, BlockFilter)) {
1104       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1105                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1106                  dbgs() << "    Selected: " << getBlockName(Succ2)
1107                         << ", probability: " << Succ2Prob
1108                         << " (Tail Duplicate)\n");
1109       Result.BB = Succ2;
1110       Result.ShouldTailDup = true;
1111       return Result;
1112     }
1113   }
1114   // We have already computed the optimal edge for the other side of the
1115   // trellis.
1116   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1117 
1118   auto TrellisSucc = BestA.Dest;
1119   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1120                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1121              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1122                     << ", probability: " << SuccProb << " (Trellis)\n");
1123   Result.BB = TrellisSucc;
1124   return Result;
1125 }
1126 
1127 /// When the option allowTailDupPlacement() is on, this method checks if the
1128 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1129 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1130 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1131     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1132     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1133   if (!shouldTailDuplicate(Succ))
1134     return false;
1135 
1136   // The result of canTailDuplicate.
1137   bool Duplicate = true;
1138   // Number of possible duplication.
1139   unsigned int NumDup = 0;
1140 
1141   // For CFG checking.
1142   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1143                                                        BB->succ_end());
1144   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1145     // Make sure all unplaced and unfiltered predecessors can be
1146     // tail-duplicated into.
1147     // Skip any blocks that are already placed or not in this loop.
1148     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1149         || BlockToChain[Pred] == &Chain)
1150       continue;
1151     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1152       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1153         // This will result in a trellis after tail duplication, so we don't
1154         // need to copy Succ into this predecessor. In the presence
1155         // of a trellis tail duplication can continue to be profitable.
1156         // For example:
1157         // A            A
1158         // |\           |\
1159         // | \          | \
1160         // |  C         |  C+BB
1161         // | /          |  |
1162         // |/           |  |
1163         // BB    =>     BB |
1164         // |\           |\/|
1165         // | \          |/\|
1166         // |  D         |  D
1167         // | /          | /
1168         // |/           |/
1169         // Succ         Succ
1170         //
1171         // After BB was duplicated into C, the layout looks like the one on the
1172         // right. BB and C now have the same successors. When considering
1173         // whether Succ can be duplicated into all its unplaced predecessors, we
1174         // ignore C.
1175         // We can do this because C already has a profitable fallthrough, namely
1176         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1177         // duplication and for this test.
1178         //
1179         // This allows trellises to be laid out in 2 separate chains
1180         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1181         // because it allows the creation of 2 fallthrough paths with links
1182         // between them, and we correctly identify the best layout for these
1183         // CFGs. We want to extend trellises that the user created in addition
1184         // to trellises created by tail-duplication, so we just look for the
1185         // CFG.
1186         continue;
1187       Duplicate = false;
1188       continue;
1189     }
1190     NumDup++;
1191   }
1192 
1193   // No possible duplication in current filter set.
1194   if (NumDup == 0)
1195     return false;
1196 
1197   // If profile information is available, findDuplicateCandidates can do more
1198   // precise benefit analysis.
1199   if (F->getFunction().hasProfileData())
1200     return true;
1201 
1202   // This is mainly for function exit BB.
1203   // The integrated tail duplication is really designed for increasing
1204   // fallthrough from predecessors from Succ to its successors. We may need
1205   // other machanism to handle different cases.
1206   if (Succ->succ_empty())
1207     return true;
1208 
1209   // Plus the already placed predecessor.
1210   NumDup++;
1211 
1212   // If the duplication candidate has more unplaced predecessors than
1213   // successors, the extra duplication can't bring more fallthrough.
1214   //
1215   //     Pred1 Pred2 Pred3
1216   //         \   |   /
1217   //          \  |  /
1218   //           \ | /
1219   //            Dup
1220   //            / \
1221   //           /   \
1222   //       Succ1  Succ2
1223   //
1224   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1225   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1226   // but the duplication into Pred3 can't increase fallthrough.
1227   //
1228   // A small number of extra duplication may not hurt too much. We need a better
1229   // heuristic to handle it.
1230   if ((NumDup > Succ->succ_size()) || !Duplicate)
1231     return false;
1232 
1233   return true;
1234 }
1235 
1236 /// Find chains of triangles where we believe it would be profitable to
1237 /// tail-duplicate them all, but a local analysis would not find them.
1238 /// There are 3 ways this can be profitable:
1239 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1240 ///    longer chains)
1241 /// 2) The chains are statically correlated. Branch probabilities have a very
1242 ///    U-shaped distribution.
1243 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1244 ///    If the branches in a chain are likely to be from the same side of the
1245 ///    distribution as their predecessor, but are independent at runtime, this
1246 ///    transformation is profitable. (Because the cost of being wrong is a small
1247 ///    fixed cost, unlike the standard triangle layout where the cost of being
1248 ///    wrong scales with the # of triangles.)
1249 /// 3) The chains are dynamically correlated. If the probability that a previous
1250 ///    branch was taken positively influences whether the next branch will be
1251 ///    taken
1252 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1253 void MachineBlockPlacement::precomputeTriangleChains() {
1254   struct TriangleChain {
1255     std::vector<MachineBasicBlock *> Edges;
1256 
1257     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1258         : Edges({src, dst}) {}
1259 
1260     void append(MachineBasicBlock *dst) {
1261       assert(getKey()->isSuccessor(dst) &&
1262              "Attempting to append a block that is not a successor.");
1263       Edges.push_back(dst);
1264     }
1265 
1266     unsigned count() const { return Edges.size() - 1; }
1267 
1268     MachineBasicBlock *getKey() const {
1269       return Edges.back();
1270     }
1271   };
1272 
1273   if (TriangleChainCount == 0)
1274     return;
1275 
1276   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1277   // Map from last block to the chain that contains it. This allows us to extend
1278   // chains as we find new triangles.
1279   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1280   for (MachineBasicBlock &BB : *F) {
1281     // If BB doesn't have 2 successors, it doesn't start a triangle.
1282     if (BB.succ_size() != 2)
1283       continue;
1284     MachineBasicBlock *PDom = nullptr;
1285     for (MachineBasicBlock *Succ : BB.successors()) {
1286       if (!MPDT->dominates(Succ, &BB))
1287         continue;
1288       PDom = Succ;
1289       break;
1290     }
1291     // If BB doesn't have a post-dominating successor, it doesn't form a
1292     // triangle.
1293     if (PDom == nullptr)
1294       continue;
1295     // If PDom has a hint that it is low probability, skip this triangle.
1296     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1297       continue;
1298     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1299     // we're looking for.
1300     if (!shouldTailDuplicate(PDom))
1301       continue;
1302     bool CanTailDuplicate = true;
1303     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1304     // isn't the kind of triangle we're looking for.
1305     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1306       if (Pred == &BB)
1307         continue;
1308       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1309         CanTailDuplicate = false;
1310         break;
1311       }
1312     }
1313     // If we can't tail-duplicate PDom to its predecessors, then skip this
1314     // triangle.
1315     if (!CanTailDuplicate)
1316       continue;
1317 
1318     // Now we have an interesting triangle. Insert it if it's not part of an
1319     // existing chain.
1320     // Note: This cannot be replaced with a call insert() or emplace() because
1321     // the find key is BB, but the insert/emplace key is PDom.
1322     auto Found = TriangleChainMap.find(&BB);
1323     // If it is, remove the chain from the map, grow it, and put it back in the
1324     // map with the end as the new key.
1325     if (Found != TriangleChainMap.end()) {
1326       TriangleChain Chain = std::move(Found->second);
1327       TriangleChainMap.erase(Found);
1328       Chain.append(PDom);
1329       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1330     } else {
1331       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1332       assert(InsertResult.second && "Block seen twice.");
1333       (void)InsertResult;
1334     }
1335   }
1336 
1337   // Iterating over a DenseMap is safe here, because the only thing in the body
1338   // of the loop is inserting into another DenseMap (ComputedEdges).
1339   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1340   for (auto &ChainPair : TriangleChainMap) {
1341     TriangleChain &Chain = ChainPair.second;
1342     // Benchmarking has shown that due to branch correlation duplicating 2 or
1343     // more triangles is profitable, despite the calculations assuming
1344     // independence.
1345     if (Chain.count() < TriangleChainCount)
1346       continue;
1347     MachineBasicBlock *dst = Chain.Edges.back();
1348     Chain.Edges.pop_back();
1349     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1350       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1351                         << getBlockName(dst)
1352                         << " as pre-computed based on triangles.\n");
1353 
1354       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1355       assert(InsertResult.second && "Block seen twice.");
1356       (void)InsertResult;
1357 
1358       dst = src;
1359     }
1360   }
1361 }
1362 
1363 // When profile is not present, return the StaticLikelyProb.
1364 // When profile is available, we need to handle the triangle-shape CFG.
1365 static BranchProbability getLayoutSuccessorProbThreshold(
1366       const MachineBasicBlock *BB) {
1367   if (!BB->getParent()->getFunction().hasProfileData())
1368     return BranchProbability(StaticLikelyProb, 100);
1369   if (BB->succ_size() == 2) {
1370     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1371     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1372     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1373       /* See case 1 below for the cost analysis. For BB->Succ to
1374        * be taken with smaller cost, the following needs to hold:
1375        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1376        *   So the threshold T in the calculation below
1377        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1378        *   So T / (1 - T) = 2, Yielding T = 2/3
1379        * Also adding user specified branch bias, we have
1380        *   T = (2/3)*(ProfileLikelyProb/50)
1381        *     = (2*ProfileLikelyProb)/150)
1382        */
1383       return BranchProbability(2 * ProfileLikelyProb, 150);
1384     }
1385   }
1386   return BranchProbability(ProfileLikelyProb, 100);
1387 }
1388 
1389 /// Checks to see if the layout candidate block \p Succ has a better layout
1390 /// predecessor than \c BB. If yes, returns true.
1391 /// \p SuccProb: The probability adjusted for only remaining blocks.
1392 ///   Only used for logging
1393 /// \p RealSuccProb: The un-adjusted probability.
1394 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1395 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1396 ///    considered
1397 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1398     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1399     const BlockChain &SuccChain, BranchProbability SuccProb,
1400     BranchProbability RealSuccProb, const BlockChain &Chain,
1401     const BlockFilterSet *BlockFilter) {
1402 
1403   // There isn't a better layout when there are no unscheduled predecessors.
1404   if (SuccChain.UnscheduledPredecessors == 0)
1405     return false;
1406 
1407   // There are two basic scenarios here:
1408   // -------------------------------------
1409   // Case 1: triangular shape CFG (if-then):
1410   //     BB
1411   //     | \
1412   //     |  \
1413   //     |   Pred
1414   //     |   /
1415   //     Succ
1416   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1417   // set Succ as the layout successor of BB. Picking Succ as BB's
1418   // successor breaks the CFG constraints (FIXME: define these constraints).
1419   // With this layout, Pred BB
1420   // is forced to be outlined, so the overall cost will be cost of the
1421   // branch taken from BB to Pred, plus the cost of back taken branch
1422   // from Pred to Succ, as well as the additional cost associated
1423   // with the needed unconditional jump instruction from Pred To Succ.
1424 
1425   // The cost of the topological order layout is the taken branch cost
1426   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1427   // must hold:
1428   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1429   //      < freq(BB->Succ) *  taken_branch_cost.
1430   // Ignoring unconditional jump cost, we get
1431   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1432   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1433   //
1434   // When real profile data is available, we can precisely compute the
1435   // probability threshold that is needed for edge BB->Succ to be considered.
1436   // Without profile data, the heuristic requires the branch bias to be
1437   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1438   // -----------------------------------------------------------------
1439   // Case 2: diamond like CFG (if-then-else):
1440   //     S
1441   //    / \
1442   //   |   \
1443   //  BB    Pred
1444   //   \    /
1445   //    Succ
1446   //    ..
1447   //
1448   // The current block is BB and edge BB->Succ is now being evaluated.
1449   // Note that edge S->BB was previously already selected because
1450   // prob(S->BB) > prob(S->Pred).
1451   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1452   // choose Pred, we will have a topological ordering as shown on the left
1453   // in the picture below. If we choose Succ, we have the solution as shown
1454   // on the right:
1455   //
1456   //   topo-order:
1457   //
1458   //       S-----                             ---S
1459   //       |    |                             |  |
1460   //    ---BB   |                             |  BB
1461   //    |       |                             |  |
1462   //    |  Pred--                             |  Succ--
1463   //    |  |                                  |       |
1464   //    ---Succ                               ---Pred--
1465   //
1466   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1467   //      = freq(S->Pred) + freq(S->BB)
1468   //
1469   // If we have profile data (i.e, branch probabilities can be trusted), the
1470   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1471   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1472   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1473   // means the cost of topological order is greater.
1474   // When profile data is not available, however, we need to be more
1475   // conservative. If the branch prediction is wrong, breaking the topo-order
1476   // will actually yield a layout with large cost. For this reason, we need
1477   // strong biased branch at block S with Prob(S->BB) in order to select
1478   // BB->Succ. This is equivalent to looking the CFG backward with backward
1479   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1480   // profile data).
1481   // --------------------------------------------------------------------------
1482   // Case 3: forked diamond
1483   //       S
1484   //      / \
1485   //     /   \
1486   //   BB    Pred
1487   //   | \   / |
1488   //   |  \ /  |
1489   //   |   X   |
1490   //   |  / \  |
1491   //   | /   \ |
1492   //   S1     S2
1493   //
1494   // The current block is BB and edge BB->S1 is now being evaluated.
1495   // As above S->BB was already selected because
1496   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1497   //
1498   // topo-order:
1499   //
1500   //     S-------|                     ---S
1501   //     |       |                     |  |
1502   //  ---BB      |                     |  BB
1503   //  |          |                     |  |
1504   //  |  Pred----|                     |  S1----
1505   //  |  |                             |       |
1506   //  --(S1 or S2)                     ---Pred--
1507   //                                        |
1508   //                                       S2
1509   //
1510   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1511   //    + min(freq(Pred->S1), freq(Pred->S2))
1512   // Non-topo-order cost:
1513   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1514   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1515   // is 0. Then the non topo layout is better when
1516   // freq(S->Pred) < freq(BB->S1).
1517   // This is exactly what is checked below.
1518   // Note there are other shapes that apply (Pred may not be a single block,
1519   // but they all fit this general pattern.)
1520   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1521 
1522   // Make sure that a hot successor doesn't have a globally more
1523   // important predecessor.
1524   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1525   bool BadCFGConflict = false;
1526 
1527   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1528     BlockChain *PredChain = BlockToChain[Pred];
1529     if (Pred == Succ || PredChain == &SuccChain ||
1530         (BlockFilter && !BlockFilter->count(Pred)) ||
1531         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1532         // This check is redundant except for look ahead. This function is
1533         // called for lookahead by isProfitableToTailDup when BB hasn't been
1534         // placed yet.
1535         (Pred == BB))
1536       continue;
1537     // Do backward checking.
1538     // For all cases above, we need a backward checking to filter out edges that
1539     // are not 'strongly' biased.
1540     // BB  Pred
1541     //  \ /
1542     //  Succ
1543     // We select edge BB->Succ if
1544     //      freq(BB->Succ) > freq(Succ) * HotProb
1545     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1546     //      HotProb
1547     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1548     // Case 1 is covered too, because the first equation reduces to:
1549     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1550     BlockFrequency PredEdgeFreq =
1551         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1552     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1553       BadCFGConflict = true;
1554       break;
1555     }
1556   }
1557 
1558   if (BadCFGConflict) {
1559     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1560                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1561     return true;
1562   }
1563 
1564   return false;
1565 }
1566 
1567 /// Select the best successor for a block.
1568 ///
1569 /// This looks across all successors of a particular block and attempts to
1570 /// select the "best" one to be the layout successor. It only considers direct
1571 /// successors which also pass the block filter. It will attempt to avoid
1572 /// breaking CFG structure, but cave and break such structures in the case of
1573 /// very hot successor edges.
1574 ///
1575 /// \returns The best successor block found, or null if none are viable, along
1576 /// with a boolean indicating if tail duplication is necessary.
1577 MachineBlockPlacement::BlockAndTailDupResult
1578 MachineBlockPlacement::selectBestSuccessor(
1579     const MachineBasicBlock *BB, const BlockChain &Chain,
1580     const BlockFilterSet *BlockFilter) {
1581   const BranchProbability HotProb(StaticLikelyProb, 100);
1582 
1583   BlockAndTailDupResult BestSucc = { nullptr, false };
1584   auto BestProb = BranchProbability::getZero();
1585 
1586   SmallVector<MachineBasicBlock *, 4> Successors;
1587   auto AdjustedSumProb =
1588       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1589 
1590   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1591                     << "\n");
1592 
1593   // if we already precomputed the best successor for BB, return that if still
1594   // applicable.
1595   auto FoundEdge = ComputedEdges.find(BB);
1596   if (FoundEdge != ComputedEdges.end()) {
1597     MachineBasicBlock *Succ = FoundEdge->second.BB;
1598     ComputedEdges.erase(FoundEdge);
1599     BlockChain *SuccChain = BlockToChain[Succ];
1600     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1601         SuccChain != &Chain && Succ == *SuccChain->begin())
1602       return FoundEdge->second;
1603   }
1604 
1605   // if BB is part of a trellis, Use the trellis to determine the optimal
1606   // fallthrough edges
1607   if (isTrellis(BB, Successors, Chain, BlockFilter))
1608     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1609                                    BlockFilter);
1610 
1611   // For blocks with CFG violations, we may be able to lay them out anyway with
1612   // tail-duplication. We keep this vector so we can perform the probability
1613   // calculations the minimum number of times.
1614   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1615       DupCandidates;
1616   for (MachineBasicBlock *Succ : Successors) {
1617     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1618     BranchProbability SuccProb =
1619         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1620 
1621     BlockChain &SuccChain = *BlockToChain[Succ];
1622     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1623     // predecessor that yields lower global cost.
1624     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1625                                    Chain, BlockFilter)) {
1626       // If tail duplication would make Succ profitable, place it.
1627       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1628         DupCandidates.emplace_back(SuccProb, Succ);
1629       continue;
1630     }
1631 
1632     LLVM_DEBUG(
1633         dbgs() << "    Candidate: " << getBlockName(Succ)
1634                << ", probability: " << SuccProb
1635                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1636                << "\n");
1637 
1638     if (BestSucc.BB && BestProb >= SuccProb) {
1639       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1640       continue;
1641     }
1642 
1643     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1644     BestSucc.BB = Succ;
1645     BestProb = SuccProb;
1646   }
1647   // Handle the tail duplication candidates in order of decreasing probability.
1648   // Stop at the first one that is profitable. Also stop if they are less
1649   // profitable than BestSucc. Position is important because we preserve it and
1650   // prefer first best match. Here we aren't comparing in order, so we capture
1651   // the position instead.
1652   llvm::stable_sort(DupCandidates,
1653                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1654                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1655                       return std::get<0>(L) > std::get<0>(R);
1656                     });
1657   for (auto &Tup : DupCandidates) {
1658     BranchProbability DupProb;
1659     MachineBasicBlock *Succ;
1660     std::tie(DupProb, Succ) = Tup;
1661     if (DupProb < BestProb)
1662       break;
1663     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1664         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1665       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1666                         << ", probability: " << DupProb
1667                         << " (Tail Duplicate)\n");
1668       BestSucc.BB = Succ;
1669       BestSucc.ShouldTailDup = true;
1670       break;
1671     }
1672   }
1673 
1674   if (BestSucc.BB)
1675     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1676 
1677   return BestSucc;
1678 }
1679 
1680 /// Select the best block from a worklist.
1681 ///
1682 /// This looks through the provided worklist as a list of candidate basic
1683 /// blocks and select the most profitable one to place. The definition of
1684 /// profitable only really makes sense in the context of a loop. This returns
1685 /// the most frequently visited block in the worklist, which in the case of
1686 /// a loop, is the one most desirable to be physically close to the rest of the
1687 /// loop body in order to improve i-cache behavior.
1688 ///
1689 /// \returns The best block found, or null if none are viable.
1690 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1691     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1692   // Once we need to walk the worklist looking for a candidate, cleanup the
1693   // worklist of already placed entries.
1694   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1695   // some code complexity) into the loop below.
1696   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1697     return BlockToChain.lookup(BB) == &Chain;
1698   });
1699 
1700   if (WorkList.empty())
1701     return nullptr;
1702 
1703   bool IsEHPad = WorkList[0]->isEHPad();
1704 
1705   MachineBasicBlock *BestBlock = nullptr;
1706   BlockFrequency BestFreq;
1707   for (MachineBasicBlock *MBB : WorkList) {
1708     assert(MBB->isEHPad() == IsEHPad &&
1709            "EHPad mismatch between block and work list.");
1710 
1711     BlockChain &SuccChain = *BlockToChain[MBB];
1712     if (&SuccChain == &Chain)
1713       continue;
1714 
1715     assert(SuccChain.UnscheduledPredecessors == 0 &&
1716            "Found CFG-violating block");
1717 
1718     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1719     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1720                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1721 
1722     // For ehpad, we layout the least probable first as to avoid jumping back
1723     // from least probable landingpads to more probable ones.
1724     //
1725     // FIXME: Using probability is probably (!) not the best way to achieve
1726     // this. We should probably have a more principled approach to layout
1727     // cleanup code.
1728     //
1729     // The goal is to get:
1730     //
1731     //                 +--------------------------+
1732     //                 |                          V
1733     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1734     //
1735     // Rather than:
1736     //
1737     //                 +-------------------------------------+
1738     //                 V                                     |
1739     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1740     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1741       continue;
1742 
1743     BestBlock = MBB;
1744     BestFreq = CandidateFreq;
1745   }
1746 
1747   return BestBlock;
1748 }
1749 
1750 /// Retrieve the first unplaced basic block.
1751 ///
1752 /// This routine is called when we are unable to use the CFG to walk through
1753 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1754 /// We walk through the function's blocks in order, starting from the
1755 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1756 /// re-scanning the entire sequence on repeated calls to this routine.
1757 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1758     const BlockChain &PlacedChain,
1759     MachineFunction::iterator &PrevUnplacedBlockIt,
1760     const BlockFilterSet *BlockFilter) {
1761   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1762        ++I) {
1763     if (BlockFilter && !BlockFilter->count(&*I))
1764       continue;
1765     if (BlockToChain[&*I] != &PlacedChain) {
1766       PrevUnplacedBlockIt = I;
1767       // Now select the head of the chain to which the unplaced block belongs
1768       // as the block to place. This will force the entire chain to be placed,
1769       // and satisfies the requirements of merging chains.
1770       return *BlockToChain[&*I]->begin();
1771     }
1772   }
1773   return nullptr;
1774 }
1775 
1776 void MachineBlockPlacement::fillWorkLists(
1777     const MachineBasicBlock *MBB,
1778     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1779     const BlockFilterSet *BlockFilter = nullptr) {
1780   BlockChain &Chain = *BlockToChain[MBB];
1781   if (!UpdatedPreds.insert(&Chain).second)
1782     return;
1783 
1784   assert(
1785       Chain.UnscheduledPredecessors == 0 &&
1786       "Attempting to place block with unscheduled predecessors in worklist.");
1787   for (MachineBasicBlock *ChainBB : Chain) {
1788     assert(BlockToChain[ChainBB] == &Chain &&
1789            "Block in chain doesn't match BlockToChain map.");
1790     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1791       if (BlockFilter && !BlockFilter->count(Pred))
1792         continue;
1793       if (BlockToChain[Pred] == &Chain)
1794         continue;
1795       ++Chain.UnscheduledPredecessors;
1796     }
1797   }
1798 
1799   if (Chain.UnscheduledPredecessors != 0)
1800     return;
1801 
1802   MachineBasicBlock *BB = *Chain.begin();
1803   if (BB->isEHPad())
1804     EHPadWorkList.push_back(BB);
1805   else
1806     BlockWorkList.push_back(BB);
1807 }
1808 
1809 void MachineBlockPlacement::buildChain(
1810     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1811     BlockFilterSet *BlockFilter) {
1812   assert(HeadBB && "BB must not be null.\n");
1813   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1814   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1815 
1816   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1817   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1818   MachineBasicBlock *BB = *std::prev(Chain.end());
1819   while (true) {
1820     assert(BB && "null block found at end of chain in loop.");
1821     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1822     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1823 
1824 
1825     // Look for the best viable successor if there is one to place immediately
1826     // after this block.
1827     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1828     MachineBasicBlock* BestSucc = Result.BB;
1829     bool ShouldTailDup = Result.ShouldTailDup;
1830     if (allowTailDupPlacement())
1831       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1832                                                                   Chain,
1833                                                                   BlockFilter));
1834 
1835     // If an immediate successor isn't available, look for the best viable
1836     // block among those we've identified as not violating the loop's CFG at
1837     // this point. This won't be a fallthrough, but it will increase locality.
1838     if (!BestSucc)
1839       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1840     if (!BestSucc)
1841       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1842 
1843     if (!BestSucc) {
1844       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1845       if (!BestSucc)
1846         break;
1847 
1848       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1849                            "layout successor until the CFG reduces\n");
1850     }
1851 
1852     // Placement may have changed tail duplication opportunities.
1853     // Check for that now.
1854     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1855       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1856                                        BlockFilter, PrevUnplacedBlockIt);
1857       // If the chosen successor was duplicated into BB, don't bother laying
1858       // it out, just go round the loop again with BB as the chain end.
1859       if (!BB->isSuccessor(BestSucc))
1860         continue;
1861     }
1862 
1863     // Place this block, updating the datastructures to reflect its placement.
1864     BlockChain &SuccChain = *BlockToChain[BestSucc];
1865     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1866     // we selected a successor that didn't fit naturally into the CFG.
1867     SuccChain.UnscheduledPredecessors = 0;
1868     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1869                       << getBlockName(BestSucc) << "\n");
1870     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1871     Chain.merge(BestSucc, &SuccChain);
1872     BB = *std::prev(Chain.end());
1873   }
1874 
1875   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1876                     << getBlockName(*Chain.begin()) << "\n");
1877 }
1878 
1879 // If bottom of block BB has only one successor OldTop, in most cases it is
1880 // profitable to move it before OldTop, except the following case:
1881 //
1882 //     -->OldTop<-
1883 //     |    .    |
1884 //     |    .    |
1885 //     |    .    |
1886 //     ---Pred   |
1887 //          |    |
1888 //         BB-----
1889 //
1890 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1891 // layout the other successor below it, so it can't reduce taken branch.
1892 // In this case we keep its original layout.
1893 bool
1894 MachineBlockPlacement::canMoveBottomBlockToTop(
1895     const MachineBasicBlock *BottomBlock,
1896     const MachineBasicBlock *OldTop) {
1897   if (BottomBlock->pred_size() != 1)
1898     return true;
1899   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1900   if (Pred->succ_size() != 2)
1901     return true;
1902 
1903   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1904   if (OtherBB == BottomBlock)
1905     OtherBB = *Pred->succ_rbegin();
1906   if (OtherBB == OldTop)
1907     return false;
1908 
1909   return true;
1910 }
1911 
1912 // Find out the possible fall through frequence to the top of a loop.
1913 BlockFrequency
1914 MachineBlockPlacement::TopFallThroughFreq(
1915     const MachineBasicBlock *Top,
1916     const BlockFilterSet &LoopBlockSet) {
1917   BlockFrequency MaxFreq = 0;
1918   for (MachineBasicBlock *Pred : Top->predecessors()) {
1919     BlockChain *PredChain = BlockToChain[Pred];
1920     if (!LoopBlockSet.count(Pred) &&
1921         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1922       // Found a Pred block can be placed before Top.
1923       // Check if Top is the best successor of Pred.
1924       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1925       bool TopOK = true;
1926       for (MachineBasicBlock *Succ : Pred->successors()) {
1927         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1928         BlockChain *SuccChain = BlockToChain[Succ];
1929         // Check if Succ can be placed after Pred.
1930         // Succ should not be in any chain, or it is the head of some chain.
1931         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1932             (!SuccChain || Succ == *SuccChain->begin())) {
1933           TopOK = false;
1934           break;
1935         }
1936       }
1937       if (TopOK) {
1938         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1939                                   MBPI->getEdgeProbability(Pred, Top);
1940         if (EdgeFreq > MaxFreq)
1941           MaxFreq = EdgeFreq;
1942       }
1943     }
1944   }
1945   return MaxFreq;
1946 }
1947 
1948 // Compute the fall through gains when move NewTop before OldTop.
1949 //
1950 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1951 // marked as "+" are increased fallthrough, this function computes
1952 //
1953 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1954 //
1955 //              |
1956 //              | -
1957 //              V
1958 //        --->OldTop
1959 //        |     .
1960 //        |     .
1961 //       +|     .    +
1962 //        |   Pred --->
1963 //        |     |-
1964 //        |     V
1965 //        --- NewTop <---
1966 //              |-
1967 //              V
1968 //
1969 BlockFrequency
1970 MachineBlockPlacement::FallThroughGains(
1971     const MachineBasicBlock *NewTop,
1972     const MachineBasicBlock *OldTop,
1973     const MachineBasicBlock *ExitBB,
1974     const BlockFilterSet &LoopBlockSet) {
1975   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1976   BlockFrequency FallThrough2Exit = 0;
1977   if (ExitBB)
1978     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1979         MBPI->getEdgeProbability(NewTop, ExitBB);
1980   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1981       MBPI->getEdgeProbability(NewTop, OldTop);
1982 
1983   // Find the best Pred of NewTop.
1984    MachineBasicBlock *BestPred = nullptr;
1985    BlockFrequency FallThroughFromPred = 0;
1986    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1987      if (!LoopBlockSet.count(Pred))
1988        continue;
1989      BlockChain *PredChain = BlockToChain[Pred];
1990      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1991        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1992            MBPI->getEdgeProbability(Pred, NewTop);
1993        if (EdgeFreq > FallThroughFromPred) {
1994          FallThroughFromPred = EdgeFreq;
1995          BestPred = Pred;
1996        }
1997      }
1998    }
1999 
2000    // If NewTop is not placed after Pred, another successor can be placed
2001    // after Pred.
2002    BlockFrequency NewFreq = 0;
2003    if (BestPred) {
2004      for (MachineBasicBlock *Succ : BestPred->successors()) {
2005        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2006          continue;
2007        if (ComputedEdges.find(Succ) != ComputedEdges.end())
2008          continue;
2009        BlockChain *SuccChain = BlockToChain[Succ];
2010        if ((SuccChain && (Succ != *SuccChain->begin())) ||
2011            (SuccChain == BlockToChain[BestPred]))
2012          continue;
2013        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2014            MBPI->getEdgeProbability(BestPred, Succ);
2015        if (EdgeFreq > NewFreq)
2016          NewFreq = EdgeFreq;
2017      }
2018      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2019          MBPI->getEdgeProbability(BestPred, NewTop);
2020      if (NewFreq > OrigEdgeFreq) {
2021        // If NewTop is not the best successor of Pred, then Pred doesn't
2022        // fallthrough to NewTop. So there is no FallThroughFromPred and
2023        // NewFreq.
2024        NewFreq = 0;
2025        FallThroughFromPred = 0;
2026      }
2027    }
2028 
2029    BlockFrequency Result = 0;
2030    BlockFrequency Gains = BackEdgeFreq + NewFreq;
2031    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2032        FallThroughFromPred;
2033    if (Gains > Lost)
2034      Result = Gains - Lost;
2035    return Result;
2036 }
2037 
2038 /// Helper function of findBestLoopTop. Find the best loop top block
2039 /// from predecessors of old top.
2040 ///
2041 /// Look for a block which is strictly better than the old top for laying
2042 /// out before the old top of the loop. This looks for only two patterns:
2043 ///
2044 ///     1. a block has only one successor, the old loop top
2045 ///
2046 ///        Because such a block will always result in an unconditional jump,
2047 ///        rotating it in front of the old top is always profitable.
2048 ///
2049 ///     2. a block has two successors, one is old top, another is exit
2050 ///        and it has more than one predecessors
2051 ///
2052 ///        If it is below one of its predecessors P, only P can fall through to
2053 ///        it, all other predecessors need a jump to it, and another conditional
2054 ///        jump to loop header. If it is moved before loop header, all its
2055 ///        predecessors jump to it, then fall through to loop header. So all its
2056 ///        predecessors except P can reduce one taken branch.
2057 ///        At the same time, move it before old top increases the taken branch
2058 ///        to loop exit block, so the reduced taken branch will be compared with
2059 ///        the increased taken branch to the loop exit block.
2060 MachineBasicBlock *
2061 MachineBlockPlacement::findBestLoopTopHelper(
2062     MachineBasicBlock *OldTop,
2063     const MachineLoop &L,
2064     const BlockFilterSet &LoopBlockSet) {
2065   // Check that the header hasn't been fused with a preheader block due to
2066   // crazy branches. If it has, we need to start with the header at the top to
2067   // prevent pulling the preheader into the loop body.
2068   BlockChain &HeaderChain = *BlockToChain[OldTop];
2069   if (!LoopBlockSet.count(*HeaderChain.begin()))
2070     return OldTop;
2071   if (OldTop != *HeaderChain.begin())
2072     return OldTop;
2073 
2074   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2075                     << "\n");
2076 
2077   BlockFrequency BestGains = 0;
2078   MachineBasicBlock *BestPred = nullptr;
2079   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2080     if (!LoopBlockSet.count(Pred))
2081       continue;
2082     if (Pred == L.getHeader())
2083       continue;
2084     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2085                       << Pred->succ_size() << " successors, ";
2086                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2087     if (Pred->succ_size() > 2)
2088       continue;
2089 
2090     MachineBasicBlock *OtherBB = nullptr;
2091     if (Pred->succ_size() == 2) {
2092       OtherBB = *Pred->succ_begin();
2093       if (OtherBB == OldTop)
2094         OtherBB = *Pred->succ_rbegin();
2095     }
2096 
2097     if (!canMoveBottomBlockToTop(Pred, OldTop))
2098       continue;
2099 
2100     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2101                                             LoopBlockSet);
2102     if ((Gains > 0) && (Gains > BestGains ||
2103         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2104       BestPred = Pred;
2105       BestGains = Gains;
2106     }
2107   }
2108 
2109   // If no direct predecessor is fine, just use the loop header.
2110   if (!BestPred) {
2111     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2112     return OldTop;
2113   }
2114 
2115   // Walk backwards through any straight line of predecessors.
2116   while (BestPred->pred_size() == 1 &&
2117          (*BestPred->pred_begin())->succ_size() == 1 &&
2118          *BestPred->pred_begin() != L.getHeader())
2119     BestPred = *BestPred->pred_begin();
2120 
2121   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2122   return BestPred;
2123 }
2124 
2125 /// Find the best loop top block for layout.
2126 ///
2127 /// This function iteratively calls findBestLoopTopHelper, until no new better
2128 /// BB can be found.
2129 MachineBasicBlock *
2130 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2131                                        const BlockFilterSet &LoopBlockSet) {
2132   // Placing the latch block before the header may introduce an extra branch
2133   // that skips this block the first time the loop is executed, which we want
2134   // to avoid when optimising for size.
2135   // FIXME: in theory there is a case that does not introduce a new branch,
2136   // i.e. when the layout predecessor does not fallthrough to the loop header.
2137   // In practice this never happens though: there always seems to be a preheader
2138   // that can fallthrough and that is also placed before the header.
2139   bool OptForSize = F->getFunction().hasOptSize() ||
2140                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2141   if (OptForSize)
2142     return L.getHeader();
2143 
2144   MachineBasicBlock *OldTop = nullptr;
2145   MachineBasicBlock *NewTop = L.getHeader();
2146   while (NewTop != OldTop) {
2147     OldTop = NewTop;
2148     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2149     if (NewTop != OldTop)
2150       ComputedEdges[NewTop] = { OldTop, false };
2151   }
2152   return NewTop;
2153 }
2154 
2155 /// Find the best loop exiting block for layout.
2156 ///
2157 /// This routine implements the logic to analyze the loop looking for the best
2158 /// block to layout at the top of the loop. Typically this is done to maximize
2159 /// fallthrough opportunities.
2160 MachineBasicBlock *
2161 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2162                                         const BlockFilterSet &LoopBlockSet,
2163                                         BlockFrequency &ExitFreq) {
2164   // We don't want to layout the loop linearly in all cases. If the loop header
2165   // is just a normal basic block in the loop, we want to look for what block
2166   // within the loop is the best one to layout at the top. However, if the loop
2167   // header has be pre-merged into a chain due to predecessors not having
2168   // analyzable branches, *and* the predecessor it is merged with is *not* part
2169   // of the loop, rotating the header into the middle of the loop will create
2170   // a non-contiguous range of blocks which is Very Bad. So start with the
2171   // header and only rotate if safe.
2172   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2173   if (!LoopBlockSet.count(*HeaderChain.begin()))
2174     return nullptr;
2175 
2176   BlockFrequency BestExitEdgeFreq;
2177   unsigned BestExitLoopDepth = 0;
2178   MachineBasicBlock *ExitingBB = nullptr;
2179   // If there are exits to outer loops, loop rotation can severely limit
2180   // fallthrough opportunities unless it selects such an exit. Keep a set of
2181   // blocks where rotating to exit with that block will reach an outer loop.
2182   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2183 
2184   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2185                     << getBlockName(L.getHeader()) << "\n");
2186   for (MachineBasicBlock *MBB : L.getBlocks()) {
2187     BlockChain &Chain = *BlockToChain[MBB];
2188     // Ensure that this block is at the end of a chain; otherwise it could be
2189     // mid-way through an inner loop or a successor of an unanalyzable branch.
2190     if (MBB != *std::prev(Chain.end()))
2191       continue;
2192 
2193     // Now walk the successors. We need to establish whether this has a viable
2194     // exiting successor and whether it has a viable non-exiting successor.
2195     // We store the old exiting state and restore it if a viable looping
2196     // successor isn't found.
2197     MachineBasicBlock *OldExitingBB = ExitingBB;
2198     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2199     bool HasLoopingSucc = false;
2200     for (MachineBasicBlock *Succ : MBB->successors()) {
2201       if (Succ->isEHPad())
2202         continue;
2203       if (Succ == MBB)
2204         continue;
2205       BlockChain &SuccChain = *BlockToChain[Succ];
2206       // Don't split chains, either this chain or the successor's chain.
2207       if (&Chain == &SuccChain) {
2208         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2209                           << getBlockName(Succ) << " (chain conflict)\n");
2210         continue;
2211       }
2212 
2213       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2214       if (LoopBlockSet.count(Succ)) {
2215         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2216                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2217         HasLoopingSucc = true;
2218         continue;
2219       }
2220 
2221       unsigned SuccLoopDepth = 0;
2222       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2223         SuccLoopDepth = ExitLoop->getLoopDepth();
2224         if (ExitLoop->contains(&L))
2225           BlocksExitingToOuterLoop.insert(MBB);
2226       }
2227 
2228       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2229       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2230                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2231                         << "] (";
2232                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2233       // Note that we bias this toward an existing layout successor to retain
2234       // incoming order in the absence of better information. The exit must have
2235       // a frequency higher than the current exit before we consider breaking
2236       // the layout.
2237       BranchProbability Bias(100 - ExitBlockBias, 100);
2238       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2239           ExitEdgeFreq > BestExitEdgeFreq ||
2240           (MBB->isLayoutSuccessor(Succ) &&
2241            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2242         BestExitEdgeFreq = ExitEdgeFreq;
2243         ExitingBB = MBB;
2244       }
2245     }
2246 
2247     if (!HasLoopingSucc) {
2248       // Restore the old exiting state, no viable looping successor was found.
2249       ExitingBB = OldExitingBB;
2250       BestExitEdgeFreq = OldBestExitEdgeFreq;
2251     }
2252   }
2253   // Without a candidate exiting block or with only a single block in the
2254   // loop, just use the loop header to layout the loop.
2255   if (!ExitingBB) {
2256     LLVM_DEBUG(
2257         dbgs() << "    No other candidate exit blocks, using loop header\n");
2258     return nullptr;
2259   }
2260   if (L.getNumBlocks() == 1) {
2261     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2262     return nullptr;
2263   }
2264 
2265   // Also, if we have exit blocks which lead to outer loops but didn't select
2266   // one of them as the exiting block we are rotating toward, disable loop
2267   // rotation altogether.
2268   if (!BlocksExitingToOuterLoop.empty() &&
2269       !BlocksExitingToOuterLoop.count(ExitingBB))
2270     return nullptr;
2271 
2272   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2273                     << "\n");
2274   ExitFreq = BestExitEdgeFreq;
2275   return ExitingBB;
2276 }
2277 
2278 /// Check if there is a fallthrough to loop header Top.
2279 ///
2280 ///   1. Look for a Pred that can be layout before Top.
2281 ///   2. Check if Top is the most possible successor of Pred.
2282 bool
2283 MachineBlockPlacement::hasViableTopFallthrough(
2284     const MachineBasicBlock *Top,
2285     const BlockFilterSet &LoopBlockSet) {
2286   for (MachineBasicBlock *Pred : Top->predecessors()) {
2287     BlockChain *PredChain = BlockToChain[Pred];
2288     if (!LoopBlockSet.count(Pred) &&
2289         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2290       // Found a Pred block can be placed before Top.
2291       // Check if Top is the best successor of Pred.
2292       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2293       bool TopOK = true;
2294       for (MachineBasicBlock *Succ : Pred->successors()) {
2295         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2296         BlockChain *SuccChain = BlockToChain[Succ];
2297         // Check if Succ can be placed after Pred.
2298         // Succ should not be in any chain, or it is the head of some chain.
2299         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2300           TopOK = false;
2301           break;
2302         }
2303       }
2304       if (TopOK)
2305         return true;
2306     }
2307   }
2308   return false;
2309 }
2310 
2311 /// Attempt to rotate an exiting block to the bottom of the loop.
2312 ///
2313 /// Once we have built a chain, try to rotate it to line up the hot exit block
2314 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2315 /// branches. For example, if the loop has fallthrough into its header and out
2316 /// of its bottom already, don't rotate it.
2317 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2318                                        const MachineBasicBlock *ExitingBB,
2319                                        BlockFrequency ExitFreq,
2320                                        const BlockFilterSet &LoopBlockSet) {
2321   if (!ExitingBB)
2322     return;
2323 
2324   MachineBasicBlock *Top = *LoopChain.begin();
2325   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2326 
2327   // If ExitingBB is already the last one in a chain then nothing to do.
2328   if (Bottom == ExitingBB)
2329     return;
2330 
2331   // The entry block should always be the first BB in a function.
2332   if (Top->isEntryBlock())
2333     return;
2334 
2335   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2336 
2337   // If the header has viable fallthrough, check whether the current loop
2338   // bottom is a viable exiting block. If so, bail out as rotating will
2339   // introduce an unnecessary branch.
2340   if (ViableTopFallthrough) {
2341     for (MachineBasicBlock *Succ : Bottom->successors()) {
2342       BlockChain *SuccChain = BlockToChain[Succ];
2343       if (!LoopBlockSet.count(Succ) &&
2344           (!SuccChain || Succ == *SuccChain->begin()))
2345         return;
2346     }
2347 
2348     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2349     // frequency is larger than top fallthrough.
2350     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2351     if (FallThrough2Top >= ExitFreq)
2352       return;
2353   }
2354 
2355   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2356   if (ExitIt == LoopChain.end())
2357     return;
2358 
2359   // Rotating a loop exit to the bottom when there is a fallthrough to top
2360   // trades the entry fallthrough for an exit fallthrough.
2361   // If there is no bottom->top edge, but the chosen exit block does have
2362   // a fallthrough, we break that fallthrough for nothing in return.
2363 
2364   // Let's consider an example. We have a built chain of basic blocks
2365   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2366   // By doing a rotation we get
2367   // Bk+1, ..., Bn, B1, ..., Bk
2368   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2369   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2370   // It might be compensated by fallthrough Bn -> B1.
2371   // So we have a condition to avoid creation of extra branch by loop rotation.
2372   // All below must be true to avoid loop rotation:
2373   //   If there is a fallthrough to top (B1)
2374   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2375   //   There is no fallthrough from bottom (Bn) to top (B1).
2376   // Please note that there is no exit fallthrough from Bn because we checked it
2377   // above.
2378   if (ViableTopFallthrough) {
2379     assert(std::next(ExitIt) != LoopChain.end() &&
2380            "Exit should not be last BB");
2381     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2382     if (ExitingBB->isSuccessor(NextBlockInChain))
2383       if (!Bottom->isSuccessor(Top))
2384         return;
2385   }
2386 
2387   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2388                     << " at bottom\n");
2389   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2390 }
2391 
2392 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2393 ///
2394 /// With profile data, we can determine the cost in terms of missed fall through
2395 /// opportunities when rotating a loop chain and select the best rotation.
2396 /// Basically, there are three kinds of cost to consider for each rotation:
2397 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2398 ///    the loop to the loop header.
2399 ///    2. The possibly missed fall through edges (if they exist) from the loop
2400 ///    exits to BB out of the loop.
2401 ///    3. The missed fall through edge (if it exists) from the last BB to the
2402 ///    first BB in the loop chain.
2403 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2404 ///  We select the best rotation with the smallest cost.
2405 void MachineBlockPlacement::rotateLoopWithProfile(
2406     BlockChain &LoopChain, const MachineLoop &L,
2407     const BlockFilterSet &LoopBlockSet) {
2408   auto RotationPos = LoopChain.end();
2409   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2410 
2411   // The entry block should always be the first BB in a function.
2412   if (ChainHeaderBB->isEntryBlock())
2413     return;
2414 
2415   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2416 
2417   // A utility lambda that scales up a block frequency by dividing it by a
2418   // branch probability which is the reciprocal of the scale.
2419   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2420                                 unsigned Scale) -> BlockFrequency {
2421     if (Scale == 0)
2422       return 0;
2423     // Use operator / between BlockFrequency and BranchProbability to implement
2424     // saturating multiplication.
2425     return Freq / BranchProbability(1, Scale);
2426   };
2427 
2428   // Compute the cost of the missed fall-through edge to the loop header if the
2429   // chain head is not the loop header. As we only consider natural loops with
2430   // single header, this computation can be done only once.
2431   BlockFrequency HeaderFallThroughCost(0);
2432   for (auto *Pred : ChainHeaderBB->predecessors()) {
2433     BlockChain *PredChain = BlockToChain[Pred];
2434     if (!LoopBlockSet.count(Pred) &&
2435         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2436       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2437           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2438       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2439       // If the predecessor has only an unconditional jump to the header, we
2440       // need to consider the cost of this jump.
2441       if (Pred->succ_size() == 1)
2442         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2443       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2444     }
2445   }
2446 
2447   // Here we collect all exit blocks in the loop, and for each exit we find out
2448   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2449   // as the sum of frequencies of exit edges we collect here, excluding the exit
2450   // edge from the tail of the loop chain.
2451   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2452   for (auto BB : LoopChain) {
2453     auto LargestExitEdgeProb = BranchProbability::getZero();
2454     for (auto *Succ : BB->successors()) {
2455       BlockChain *SuccChain = BlockToChain[Succ];
2456       if (!LoopBlockSet.count(Succ) &&
2457           (!SuccChain || Succ == *SuccChain->begin())) {
2458         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2459         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2460       }
2461     }
2462     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2463       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2464       ExitsWithFreq.emplace_back(BB, ExitFreq);
2465     }
2466   }
2467 
2468   // In this loop we iterate every block in the loop chain and calculate the
2469   // cost assuming the block is the head of the loop chain. When the loop ends,
2470   // we should have found the best candidate as the loop chain's head.
2471   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2472             EndIter = LoopChain.end();
2473        Iter != EndIter; Iter++, TailIter++) {
2474     // TailIter is used to track the tail of the loop chain if the block we are
2475     // checking (pointed by Iter) is the head of the chain.
2476     if (TailIter == LoopChain.end())
2477       TailIter = LoopChain.begin();
2478 
2479     auto TailBB = *TailIter;
2480 
2481     // Calculate the cost by putting this BB to the top.
2482     BlockFrequency Cost = 0;
2483 
2484     // If the current BB is the loop header, we need to take into account the
2485     // cost of the missed fall through edge from outside of the loop to the
2486     // header.
2487     if (Iter != LoopChain.begin())
2488       Cost += HeaderFallThroughCost;
2489 
2490     // Collect the loop exit cost by summing up frequencies of all exit edges
2491     // except the one from the chain tail.
2492     for (auto &ExitWithFreq : ExitsWithFreq)
2493       if (TailBB != ExitWithFreq.first)
2494         Cost += ExitWithFreq.second;
2495 
2496     // The cost of breaking the once fall-through edge from the tail to the top
2497     // of the loop chain. Here we need to consider three cases:
2498     // 1. If the tail node has only one successor, then we will get an
2499     //    additional jmp instruction. So the cost here is (MisfetchCost +
2500     //    JumpInstCost) * tail node frequency.
2501     // 2. If the tail node has two successors, then we may still get an
2502     //    additional jmp instruction if the layout successor after the loop
2503     //    chain is not its CFG successor. Note that the more frequently executed
2504     //    jmp instruction will be put ahead of the other one. Assume the
2505     //    frequency of those two branches are x and y, where x is the frequency
2506     //    of the edge to the chain head, then the cost will be
2507     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2508     // 3. If the tail node has more than two successors (this rarely happens),
2509     //    we won't consider any additional cost.
2510     if (TailBB->isSuccessor(*Iter)) {
2511       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2512       if (TailBB->succ_size() == 1)
2513         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2514                                     MisfetchCost + JumpInstCost);
2515       else if (TailBB->succ_size() == 2) {
2516         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2517         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2518         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2519                                   ? TailBBFreq * TailToHeadProb.getCompl()
2520                                   : TailToHeadFreq;
2521         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2522                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2523       }
2524     }
2525 
2526     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2527                       << getBlockName(*Iter)
2528                       << " to the top: " << Cost.getFrequency() << "\n");
2529 
2530     if (Cost < SmallestRotationCost) {
2531       SmallestRotationCost = Cost;
2532       RotationPos = Iter;
2533     }
2534   }
2535 
2536   if (RotationPos != LoopChain.end()) {
2537     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2538                       << " to the top\n");
2539     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2540   }
2541 }
2542 
2543 /// Collect blocks in the given loop that are to be placed.
2544 ///
2545 /// When profile data is available, exclude cold blocks from the returned set;
2546 /// otherwise, collect all blocks in the loop.
2547 MachineBlockPlacement::BlockFilterSet
2548 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2549   BlockFilterSet LoopBlockSet;
2550 
2551   // Filter cold blocks off from LoopBlockSet when profile data is available.
2552   // Collect the sum of frequencies of incoming edges to the loop header from
2553   // outside. If we treat the loop as a super block, this is the frequency of
2554   // the loop. Then for each block in the loop, we calculate the ratio between
2555   // its frequency and the frequency of the loop block. When it is too small,
2556   // don't add it to the loop chain. If there are outer loops, then this block
2557   // will be merged into the first outer loop chain for which this block is not
2558   // cold anymore. This needs precise profile data and we only do this when
2559   // profile data is available.
2560   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2561     BlockFrequency LoopFreq(0);
2562     for (auto LoopPred : L.getHeader()->predecessors())
2563       if (!L.contains(LoopPred))
2564         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2565                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2566 
2567     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2568       if (LoopBlockSet.count(LoopBB))
2569         continue;
2570       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2571       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2572         continue;
2573       BlockChain *Chain = BlockToChain[LoopBB];
2574       for (MachineBasicBlock *ChainBB : *Chain)
2575         LoopBlockSet.insert(ChainBB);
2576     }
2577   } else
2578     LoopBlockSet.insert(L.block_begin(), L.block_end());
2579 
2580   return LoopBlockSet;
2581 }
2582 
2583 /// Forms basic block chains from the natural loop structures.
2584 ///
2585 /// These chains are designed to preserve the existing *structure* of the code
2586 /// as much as possible. We can then stitch the chains together in a way which
2587 /// both preserves the topological structure and minimizes taken conditional
2588 /// branches.
2589 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2590   // First recurse through any nested loops, building chains for those inner
2591   // loops.
2592   for (const MachineLoop *InnerLoop : L)
2593     buildLoopChains(*InnerLoop);
2594 
2595   assert(BlockWorkList.empty() &&
2596          "BlockWorkList not empty when starting to build loop chains.");
2597   assert(EHPadWorkList.empty() &&
2598          "EHPadWorkList not empty when starting to build loop chains.");
2599   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2600 
2601   // Check if we have profile data for this function. If yes, we will rotate
2602   // this loop by modeling costs more precisely which requires the profile data
2603   // for better layout.
2604   bool RotateLoopWithProfile =
2605       ForcePreciseRotationCost ||
2606       (PreciseRotationCost && F->getFunction().hasProfileData());
2607 
2608   // First check to see if there is an obviously preferable top block for the
2609   // loop. This will default to the header, but may end up as one of the
2610   // predecessors to the header if there is one which will result in strictly
2611   // fewer branches in the loop body.
2612   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2613 
2614   // If we selected just the header for the loop top, look for a potentially
2615   // profitable exit block in the event that rotating the loop can eliminate
2616   // branches by placing an exit edge at the bottom.
2617   //
2618   // Loops are processed innermost to uttermost, make sure we clear
2619   // PreferredLoopExit before processing a new loop.
2620   PreferredLoopExit = nullptr;
2621   BlockFrequency ExitFreq;
2622   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2623     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2624 
2625   BlockChain &LoopChain = *BlockToChain[LoopTop];
2626 
2627   // FIXME: This is a really lame way of walking the chains in the loop: we
2628   // walk the blocks, and use a set to prevent visiting a particular chain
2629   // twice.
2630   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2631   assert(LoopChain.UnscheduledPredecessors == 0 &&
2632          "LoopChain should not have unscheduled predecessors.");
2633   UpdatedPreds.insert(&LoopChain);
2634 
2635   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2636     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2637 
2638   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2639 
2640   if (RotateLoopWithProfile)
2641     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2642   else
2643     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2644 
2645   LLVM_DEBUG({
2646     // Crash at the end so we get all of the debugging output first.
2647     bool BadLoop = false;
2648     if (LoopChain.UnscheduledPredecessors) {
2649       BadLoop = true;
2650       dbgs() << "Loop chain contains a block without its preds placed!\n"
2651              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2652              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2653     }
2654     for (MachineBasicBlock *ChainBB : LoopChain) {
2655       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2656       if (!LoopBlockSet.remove(ChainBB)) {
2657         // We don't mark the loop as bad here because there are real situations
2658         // where this can occur. For example, with an unanalyzable fallthrough
2659         // from a loop block to a non-loop block or vice versa.
2660         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2661                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2662                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2663                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2664       }
2665     }
2666 
2667     if (!LoopBlockSet.empty()) {
2668       BadLoop = true;
2669       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2670         dbgs() << "Loop contains blocks never placed into a chain!\n"
2671                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2672                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2673                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2674     }
2675     assert(!BadLoop && "Detected problems with the placement of this loop.");
2676   });
2677 
2678   BlockWorkList.clear();
2679   EHPadWorkList.clear();
2680 }
2681 
2682 void MachineBlockPlacement::buildCFGChains() {
2683   // Ensure that every BB in the function has an associated chain to simplify
2684   // the assumptions of the remaining algorithm.
2685   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2686   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2687        ++FI) {
2688     MachineBasicBlock *BB = &*FI;
2689     BlockChain *Chain =
2690         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2691     // Also, merge any blocks which we cannot reason about and must preserve
2692     // the exact fallthrough behavior for.
2693     while (true) {
2694       Cond.clear();
2695       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2696       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2697         break;
2698 
2699       MachineFunction::iterator NextFI = std::next(FI);
2700       MachineBasicBlock *NextBB = &*NextFI;
2701       // Ensure that the layout successor is a viable block, as we know that
2702       // fallthrough is a possibility.
2703       assert(NextFI != FE && "Can't fallthrough past the last block.");
2704       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2705                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2706                         << "\n");
2707       Chain->merge(NextBB, nullptr);
2708 #ifndef NDEBUG
2709       BlocksWithUnanalyzableExits.insert(&*BB);
2710 #endif
2711       FI = NextFI;
2712       BB = NextBB;
2713     }
2714   }
2715 
2716   // Build any loop-based chains.
2717   PreferredLoopExit = nullptr;
2718   for (MachineLoop *L : *MLI)
2719     buildLoopChains(*L);
2720 
2721   assert(BlockWorkList.empty() &&
2722          "BlockWorkList should be empty before building final chain.");
2723   assert(EHPadWorkList.empty() &&
2724          "EHPadWorkList should be empty before building final chain.");
2725 
2726   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2727   for (MachineBasicBlock &MBB : *F)
2728     fillWorkLists(&MBB, UpdatedPreds);
2729 
2730   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2731   buildChain(&F->front(), FunctionChain);
2732 
2733 #ifndef NDEBUG
2734   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2735 #endif
2736   LLVM_DEBUG({
2737     // Crash at the end so we get all of the debugging output first.
2738     bool BadFunc = false;
2739     FunctionBlockSetType FunctionBlockSet;
2740     for (MachineBasicBlock &MBB : *F)
2741       FunctionBlockSet.insert(&MBB);
2742 
2743     for (MachineBasicBlock *ChainBB : FunctionChain)
2744       if (!FunctionBlockSet.erase(ChainBB)) {
2745         BadFunc = true;
2746         dbgs() << "Function chain contains a block not in the function!\n"
2747                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2748       }
2749 
2750     if (!FunctionBlockSet.empty()) {
2751       BadFunc = true;
2752       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2753         dbgs() << "Function contains blocks never placed into a chain!\n"
2754                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2755     }
2756     assert(!BadFunc && "Detected problems with the block placement.");
2757   });
2758 
2759   // Remember original layout ordering, so we can update terminators after
2760   // reordering to point to the original layout successor.
2761   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2762       F->getNumBlockIDs());
2763   {
2764     MachineBasicBlock *LastMBB = nullptr;
2765     for (auto &MBB : *F) {
2766       if (LastMBB != nullptr)
2767         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2768       LastMBB = &MBB;
2769     }
2770     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2771   }
2772 
2773   // Splice the blocks into place.
2774   MachineFunction::iterator InsertPos = F->begin();
2775   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2776   for (MachineBasicBlock *ChainBB : FunctionChain) {
2777     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2778                                                             : "          ... ")
2779                       << getBlockName(ChainBB) << "\n");
2780     if (InsertPos != MachineFunction::iterator(ChainBB))
2781       F->splice(InsertPos, ChainBB);
2782     else
2783       ++InsertPos;
2784 
2785     // Update the terminator of the previous block.
2786     if (ChainBB == *FunctionChain.begin())
2787       continue;
2788     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2789 
2790     // FIXME: It would be awesome of updateTerminator would just return rather
2791     // than assert when the branch cannot be analyzed in order to remove this
2792     // boiler plate.
2793     Cond.clear();
2794     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2795 
2796 #ifndef NDEBUG
2797     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2798       // Given the exact block placement we chose, we may actually not _need_ to
2799       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2800       // do that at this point is a bug.
2801       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2802               !PrevBB->canFallThrough()) &&
2803              "Unexpected block with un-analyzable fallthrough!");
2804       Cond.clear();
2805       TBB = FBB = nullptr;
2806     }
2807 #endif
2808 
2809     // The "PrevBB" is not yet updated to reflect current code layout, so,
2810     //   o. it may fall-through to a block without explicit "goto" instruction
2811     //      before layout, and no longer fall-through it after layout; or
2812     //   o. just opposite.
2813     //
2814     // analyzeBranch() may return erroneous value for FBB when these two
2815     // situations take place. For the first scenario FBB is mistakenly set NULL;
2816     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2817     // mistakenly pointing to "*BI".
2818     // Thus, if the future change needs to use FBB before the layout is set, it
2819     // has to correct FBB first by using the code similar to the following:
2820     //
2821     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2822     //   PrevBB->updateTerminator();
2823     //   Cond.clear();
2824     //   TBB = FBB = nullptr;
2825     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2826     //     // FIXME: This should never take place.
2827     //     TBB = FBB = nullptr;
2828     //   }
2829     // }
2830     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2831       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2832     }
2833   }
2834 
2835   // Fixup the last block.
2836   Cond.clear();
2837   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2838   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2839     MachineBasicBlock *PrevBB = &F->back();
2840     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2841   }
2842 
2843   BlockWorkList.clear();
2844   EHPadWorkList.clear();
2845 }
2846 
2847 void MachineBlockPlacement::optimizeBranches() {
2848   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2849   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2850 
2851   // Now that all the basic blocks in the chain have the proper layout,
2852   // make a final call to analyzeBranch with AllowModify set.
2853   // Indeed, the target may be able to optimize the branches in a way we
2854   // cannot because all branches may not be analyzable.
2855   // E.g., the target may be able to remove an unconditional branch to
2856   // a fallthrough when it occurs after predicated terminators.
2857   for (MachineBasicBlock *ChainBB : FunctionChain) {
2858     Cond.clear();
2859     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2860     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2861       // If PrevBB has a two-way branch, try to re-order the branches
2862       // such that we branch to the successor with higher probability first.
2863       if (TBB && !Cond.empty() && FBB &&
2864           MBPI->getEdgeProbability(ChainBB, FBB) >
2865               MBPI->getEdgeProbability(ChainBB, TBB) &&
2866           !TII->reverseBranchCondition(Cond)) {
2867         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2868                           << getBlockName(ChainBB) << "\n");
2869         LLVM_DEBUG(dbgs() << "    Edge probability: "
2870                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2871                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2872         DebugLoc dl; // FIXME: this is nowhere
2873         TII->removeBranch(*ChainBB);
2874         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2875       }
2876     }
2877   }
2878 }
2879 
2880 void MachineBlockPlacement::alignBlocks() {
2881   // Walk through the backedges of the function now that we have fully laid out
2882   // the basic blocks and align the destination of each backedge. We don't rely
2883   // exclusively on the loop info here so that we can align backedges in
2884   // unnatural CFGs and backedges that were introduced purely because of the
2885   // loop rotations done during this layout pass.
2886   if (F->getFunction().hasMinSize() ||
2887       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2888     return;
2889   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2890   if (FunctionChain.begin() == FunctionChain.end())
2891     return; // Empty chain.
2892 
2893   const BranchProbability ColdProb(1, 5); // 20%
2894   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2895   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2896   for (MachineBasicBlock *ChainBB : FunctionChain) {
2897     if (ChainBB == *FunctionChain.begin())
2898       continue;
2899 
2900     // Don't align non-looping basic blocks. These are unlikely to execute
2901     // enough times to matter in practice. Note that we'll still handle
2902     // unnatural CFGs inside of a natural outer loop (the common case) and
2903     // rotated loops.
2904     MachineLoop *L = MLI->getLoopFor(ChainBB);
2905     if (!L)
2906       continue;
2907 
2908     const Align Align = TLI->getPrefLoopAlignment(L);
2909     if (Align == 1)
2910       continue; // Don't care about loop alignment.
2911 
2912     // If the block is cold relative to the function entry don't waste space
2913     // aligning it.
2914     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2915     if (Freq < WeightedEntryFreq)
2916       continue;
2917 
2918     // If the block is cold relative to its loop header, don't align it
2919     // regardless of what edges into the block exist.
2920     MachineBasicBlock *LoopHeader = L->getHeader();
2921     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2922     if (Freq < (LoopHeaderFreq * ColdProb))
2923       continue;
2924 
2925     // If the global profiles indicates so, don't align it.
2926     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2927         !TLI->alignLoopsWithOptSize())
2928       continue;
2929 
2930     // Check for the existence of a non-layout predecessor which would benefit
2931     // from aligning this block.
2932     MachineBasicBlock *LayoutPred =
2933         &*std::prev(MachineFunction::iterator(ChainBB));
2934 
2935     auto DetermineMaxAlignmentPadding = [&]() {
2936       // Set the maximum bytes allowed to be emitted for alignment.
2937       unsigned MaxBytes;
2938       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2939         MaxBytes = MaxBytesForAlignmentOverride;
2940       else
2941         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
2942       ChainBB->setMaxBytesForAlignment(MaxBytes);
2943     };
2944 
2945     // Force alignment if all the predecessors are jumps. We already checked
2946     // that the block isn't cold above.
2947     if (!LayoutPred->isSuccessor(ChainBB)) {
2948       ChainBB->setAlignment(Align);
2949       DetermineMaxAlignmentPadding();
2950       continue;
2951     }
2952 
2953     // Align this block if the layout predecessor's edge into this block is
2954     // cold relative to the block. When this is true, other predecessors make up
2955     // all of the hot entries into the block and thus alignment is likely to be
2956     // important.
2957     BranchProbability LayoutProb =
2958         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2959     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2960     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2961       ChainBB->setAlignment(Align);
2962       DetermineMaxAlignmentPadding();
2963     }
2964   }
2965 }
2966 
2967 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2968 /// it was duplicated into its chain predecessor and removed.
2969 /// \p BB    - Basic block that may be duplicated.
2970 ///
2971 /// \p LPred - Chosen layout predecessor of \p BB.
2972 ///            Updated to be the chain end if LPred is removed.
2973 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2974 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2975 ///                  Used to identify which blocks to update predecessor
2976 ///                  counts.
2977 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2978 ///                          chosen in the given order due to unnatural CFG
2979 ///                          only needed if \p BB is removed and
2980 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2981 /// @return true if \p BB was removed.
2982 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2983     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2984     const MachineBasicBlock *LoopHeaderBB,
2985     BlockChain &Chain, BlockFilterSet *BlockFilter,
2986     MachineFunction::iterator &PrevUnplacedBlockIt) {
2987   bool Removed, DuplicatedToLPred;
2988   bool DuplicatedToOriginalLPred;
2989   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2990                                     PrevUnplacedBlockIt,
2991                                     DuplicatedToLPred);
2992   if (!Removed)
2993     return false;
2994   DuplicatedToOriginalLPred = DuplicatedToLPred;
2995   // Iteratively try to duplicate again. It can happen that a block that is
2996   // duplicated into is still small enough to be duplicated again.
2997   // No need to call markBlockSuccessors in this case, as the blocks being
2998   // duplicated from here on are already scheduled.
2999   while (DuplicatedToLPred && Removed) {
3000     MachineBasicBlock *DupBB, *DupPred;
3001     // The removal callback causes Chain.end() to be updated when a block is
3002     // removed. On the first pass through the loop, the chain end should be the
3003     // same as it was on function entry. On subsequent passes, because we are
3004     // duplicating the block at the end of the chain, if it is removed the
3005     // chain will have shrunk by one block.
3006     BlockChain::iterator ChainEnd = Chain.end();
3007     DupBB = *(--ChainEnd);
3008     // Now try to duplicate again.
3009     if (ChainEnd == Chain.begin())
3010       break;
3011     DupPred = *std::prev(ChainEnd);
3012     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
3013                                       PrevUnplacedBlockIt,
3014                                       DuplicatedToLPred);
3015   }
3016   // If BB was duplicated into LPred, it is now scheduled. But because it was
3017   // removed, markChainSuccessors won't be called for its chain. Instead we
3018   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3019   // at the end because repeating the tail duplication can increase the number
3020   // of unscheduled predecessors.
3021   LPred = *std::prev(Chain.end());
3022   if (DuplicatedToOriginalLPred)
3023     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3024   return true;
3025 }
3026 
3027 /// Tail duplicate \p BB into (some) predecessors if profitable.
3028 /// \p BB    - Basic block that may be duplicated
3029 /// \p LPred - Chosen layout predecessor of \p BB
3030 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3031 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3032 ///                  Used to identify which blocks to update predecessor
3033 ///                  counts.
3034 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3035 ///                          chosen in the given order due to unnatural CFG
3036 ///                          only needed if \p BB is removed and
3037 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3038 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3039 /// \return  - True if the block was duplicated into all preds and removed.
3040 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3041     MachineBasicBlock *BB, MachineBasicBlock *LPred,
3042     BlockChain &Chain, BlockFilterSet *BlockFilter,
3043     MachineFunction::iterator &PrevUnplacedBlockIt,
3044     bool &DuplicatedToLPred) {
3045   DuplicatedToLPred = false;
3046   if (!shouldTailDuplicate(BB))
3047     return false;
3048 
3049   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3050                     << "\n");
3051 
3052   // This has to be a callback because none of it can be done after
3053   // BB is deleted.
3054   bool Removed = false;
3055   auto RemovalCallback =
3056       [&](MachineBasicBlock *RemBB) {
3057         // Signal to outer function
3058         Removed = true;
3059 
3060         // Conservative default.
3061         bool InWorkList = true;
3062         // Remove from the Chain and Chain Map
3063         if (BlockToChain.count(RemBB)) {
3064           BlockChain *Chain = BlockToChain[RemBB];
3065           InWorkList = Chain->UnscheduledPredecessors == 0;
3066           Chain->remove(RemBB);
3067           BlockToChain.erase(RemBB);
3068         }
3069 
3070         // Handle the unplaced block iterator
3071         if (&(*PrevUnplacedBlockIt) == RemBB) {
3072           PrevUnplacedBlockIt++;
3073         }
3074 
3075         // Handle the Work Lists
3076         if (InWorkList) {
3077           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3078           if (RemBB->isEHPad())
3079             RemoveList = EHPadWorkList;
3080           llvm::erase_value(RemoveList, RemBB);
3081         }
3082 
3083         // Handle the filter set
3084         if (BlockFilter) {
3085           BlockFilter->remove(RemBB);
3086         }
3087 
3088         // Remove the block from loop info.
3089         MLI->removeBlock(RemBB);
3090         if (RemBB == PreferredLoopExit)
3091           PreferredLoopExit = nullptr;
3092 
3093         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3094                           << getBlockName(RemBB) << "\n");
3095       };
3096   auto RemovalCallbackRef =
3097       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3098 
3099   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3100   bool IsSimple = TailDup.isSimpleBB(BB);
3101   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3102   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3103   if (F->getFunction().hasProfileData()) {
3104     // We can do partial duplication with precise profile information.
3105     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3106     if (CandidatePreds.size() == 0)
3107       return false;
3108     if (CandidatePreds.size() < BB->pred_size())
3109       CandidatePtr = &CandidatePreds;
3110   }
3111   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3112                                  &RemovalCallbackRef, CandidatePtr);
3113 
3114   // Update UnscheduledPredecessors to reflect tail-duplication.
3115   DuplicatedToLPred = false;
3116   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3117     // We're only looking for unscheduled predecessors that match the filter.
3118     BlockChain* PredChain = BlockToChain[Pred];
3119     if (Pred == LPred)
3120       DuplicatedToLPred = true;
3121     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3122         || PredChain == &Chain)
3123       continue;
3124     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3125       if (BlockFilter && !BlockFilter->count(NewSucc))
3126         continue;
3127       BlockChain *NewChain = BlockToChain[NewSucc];
3128       if (NewChain != &Chain && NewChain != PredChain)
3129         NewChain->UnscheduledPredecessors++;
3130     }
3131   }
3132   return Removed;
3133 }
3134 
3135 // Count the number of actual machine instructions.
3136 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3137   uint64_t InstrCount = 0;
3138   for (MachineInstr &MI : *MBB) {
3139     if (!MI.isPHI() && !MI.isMetaInstruction())
3140       InstrCount += 1;
3141   }
3142   return InstrCount;
3143 }
3144 
3145 // The size cost of duplication is the instruction size of the duplicated block.
3146 // So we should scale the threshold accordingly. But the instruction size is not
3147 // available on all targets, so we use the number of instructions instead.
3148 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3149   return DupThreshold.getFrequency() * countMBBInstruction(BB);
3150 }
3151 
3152 // Returns true if BB is Pred's best successor.
3153 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3154                                             MachineBasicBlock *Pred,
3155                                             BlockFilterSet *BlockFilter) {
3156   if (BB == Pred)
3157     return false;
3158   if (BlockFilter && !BlockFilter->count(Pred))
3159     return false;
3160   BlockChain *PredChain = BlockToChain[Pred];
3161   if (PredChain && (Pred != *std::prev(PredChain->end())))
3162     return false;
3163 
3164   // Find the successor with largest probability excluding BB.
3165   BranchProbability BestProb = BranchProbability::getZero();
3166   for (MachineBasicBlock *Succ : Pred->successors())
3167     if (Succ != BB) {
3168       if (BlockFilter && !BlockFilter->count(Succ))
3169         continue;
3170       BlockChain *SuccChain = BlockToChain[Succ];
3171       if (SuccChain && (Succ != *SuccChain->begin()))
3172         continue;
3173       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3174       if (SuccProb > BestProb)
3175         BestProb = SuccProb;
3176     }
3177 
3178   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3179   if (BBProb <= BestProb)
3180     return false;
3181 
3182   // Compute the number of reduced taken branches if Pred falls through to BB
3183   // instead of another successor. Then compare it with threshold.
3184   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3185   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3186   return Gain > scaleThreshold(BB);
3187 }
3188 
3189 // Find out the predecessors of BB and BB can be beneficially duplicated into
3190 // them.
3191 void MachineBlockPlacement::findDuplicateCandidates(
3192     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3193     MachineBasicBlock *BB,
3194     BlockFilterSet *BlockFilter) {
3195   MachineBasicBlock *Fallthrough = nullptr;
3196   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3197   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3198   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3199   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3200 
3201   // Sort for highest frequency.
3202   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3203     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3204   };
3205   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3206     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3207   };
3208   llvm::stable_sort(Succs, CmpSucc);
3209   llvm::stable_sort(Preds, CmpPred);
3210 
3211   auto SuccIt = Succs.begin();
3212   if (SuccIt != Succs.end()) {
3213     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3214   }
3215 
3216   // For each predecessors of BB, compute the benefit of duplicating BB,
3217   // if it is larger than the threshold, add it into Candidates.
3218   //
3219   // If we have following control flow.
3220   //
3221   //     PB1 PB2 PB3 PB4
3222   //      \   |  /    /\
3223   //       \  | /    /  \
3224   //        \ |/    /    \
3225   //         BB----/     OB
3226   //         /\
3227   //        /  \
3228   //      SB1 SB2
3229   //
3230   // And it can be partially duplicated as
3231   //
3232   //   PB2+BB
3233   //      |  PB1 PB3 PB4
3234   //      |   |  /    /\
3235   //      |   | /    /  \
3236   //      |   |/    /    \
3237   //      |  BB----/     OB
3238   //      |\ /|
3239   //      | X |
3240   //      |/ \|
3241   //     SB2 SB1
3242   //
3243   // The benefit of duplicating into a predecessor is defined as
3244   //         Orig_taken_branch - Duplicated_taken_branch
3245   //
3246   // The Orig_taken_branch is computed with the assumption that predecessor
3247   // jumps to BB and the most possible successor is laid out after BB.
3248   //
3249   // The Duplicated_taken_branch is computed with the assumption that BB is
3250   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3251   // SB2 for PB2 in our case). If there is no available successor, the combined
3252   // block jumps to all BB's successor, like PB3 in this example.
3253   //
3254   // If a predecessor has multiple successors, so BB can't be duplicated into
3255   // it. But it can beneficially fall through to BB, and duplicate BB into other
3256   // predecessors.
3257   for (MachineBasicBlock *Pred : Preds) {
3258     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3259 
3260     if (!TailDup.canTailDuplicate(BB, Pred)) {
3261       // BB can't be duplicated into Pred, but it is possible to be layout
3262       // below Pred.
3263       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3264         Fallthrough = Pred;
3265         if (SuccIt != Succs.end())
3266           SuccIt++;
3267       }
3268       continue;
3269     }
3270 
3271     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3272     BlockFrequency DupCost;
3273     if (SuccIt == Succs.end()) {
3274       // Jump to all successors;
3275       if (Succs.size() > 0)
3276         DupCost += PredFreq;
3277     } else {
3278       // Fallthrough to *SuccIt, jump to all other successors;
3279       DupCost += PredFreq;
3280       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3281     }
3282 
3283     assert(OrigCost >= DupCost);
3284     OrigCost -= DupCost;
3285     if (OrigCost > BBDupThreshold) {
3286       Candidates.push_back(Pred);
3287       if (SuccIt != Succs.end())
3288         SuccIt++;
3289     }
3290   }
3291 
3292   // No predecessors can optimally fallthrough to BB.
3293   // So we can change one duplication into fallthrough.
3294   if (!Fallthrough) {
3295     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3296       Candidates[0] = Candidates.back();
3297       Candidates.pop_back();
3298     }
3299   }
3300 }
3301 
3302 void MachineBlockPlacement::initDupThreshold() {
3303   DupThreshold = 0;
3304   if (!F->getFunction().hasProfileData())
3305     return;
3306 
3307   // We prefer to use prifile count.
3308   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3309   if (HotThreshold != UINT64_MAX) {
3310     UseProfileCount = true;
3311     DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3312     return;
3313   }
3314 
3315   // Profile count is not available, we can use block frequency instead.
3316   BlockFrequency MaxFreq = 0;
3317   for (MachineBasicBlock &MBB : *F) {
3318     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3319     if (Freq > MaxFreq)
3320       MaxFreq = Freq;
3321   }
3322 
3323   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3324   DupThreshold = MaxFreq * ThresholdProb;
3325   UseProfileCount = false;
3326 }
3327 
3328 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3329   if (skipFunction(MF.getFunction()))
3330     return false;
3331 
3332   // Check for single-block functions and skip them.
3333   if (std::next(MF.begin()) == MF.end())
3334     return false;
3335 
3336   F = &MF;
3337   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3338   MBFI = std::make_unique<MBFIWrapper>(
3339       getAnalysis<MachineBlockFrequencyInfo>());
3340   MLI = &getAnalysis<MachineLoopInfo>();
3341   TII = MF.getSubtarget().getInstrInfo();
3342   TLI = MF.getSubtarget().getTargetLowering();
3343   MPDT = nullptr;
3344   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3345 
3346   initDupThreshold();
3347 
3348   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3349   // there are no MachineLoops.
3350   PreferredLoopExit = nullptr;
3351 
3352   assert(BlockToChain.empty() &&
3353          "BlockToChain map should be empty before starting placement.");
3354   assert(ComputedEdges.empty() &&
3355          "Computed Edge map should be empty before starting placement.");
3356 
3357   unsigned TailDupSize = TailDupPlacementThreshold;
3358   // If only the aggressive threshold is explicitly set, use it.
3359   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3360       TailDupPlacementThreshold.getNumOccurrences() == 0)
3361     TailDupSize = TailDupPlacementAggressiveThreshold;
3362 
3363   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3364   // For aggressive optimization, we can adjust some thresholds to be less
3365   // conservative.
3366   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3367     // At O3 we should be more willing to copy blocks for tail duplication. This
3368     // increases size pressure, so we only do it at O3
3369     // Do this unless only the regular threshold is explicitly set.
3370     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3371         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3372       TailDupSize = TailDupPlacementAggressiveThreshold;
3373   }
3374 
3375   // If there's no threshold provided through options, query the target
3376   // information for a threshold instead.
3377   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3378       (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3379        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3380     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3381 
3382   if (allowTailDupPlacement()) {
3383     MPDT = &getAnalysis<MachinePostDominatorTree>();
3384     bool OptForSize = MF.getFunction().hasOptSize() ||
3385                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3386     if (OptForSize)
3387       TailDupSize = 1;
3388     bool PreRegAlloc = false;
3389     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3390                    /* LayoutMode */ true, TailDupSize);
3391     precomputeTriangleChains();
3392   }
3393 
3394   buildCFGChains();
3395 
3396   // Changing the layout can create new tail merging opportunities.
3397   // TailMerge can create jump into if branches that make CFG irreducible for
3398   // HW that requires structured CFG.
3399   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3400                          PassConfig->getEnableTailMerge() &&
3401                          BranchFoldPlacement;
3402   // No tail merging opportunities if the block number is less than four.
3403   if (MF.size() > 3 && EnableTailMerge) {
3404     unsigned TailMergeSize = TailDupSize + 1;
3405     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3406                     *MBFI, *MBPI, PSI, TailMergeSize);
3407 
3408     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3409                             /*AfterPlacement=*/true)) {
3410       // Redo the layout if tail merging creates/removes/moves blocks.
3411       BlockToChain.clear();
3412       ComputedEdges.clear();
3413       // Must redo the post-dominator tree if blocks were changed.
3414       if (MPDT)
3415         MPDT->runOnMachineFunction(MF);
3416       ChainAllocator.DestroyAll();
3417       buildCFGChains();
3418     }
3419   }
3420 
3421   // Apply a post-processing optimizing block placement.
3422   if (MF.size() >= 3 && EnableExtTspBlockPlacement) {
3423     // Find a new placement and modify the layout of the blocks in the function.
3424     applyExtTsp();
3425 
3426     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3427     createCFGChainExtTsp();
3428   }
3429 
3430   optimizeBranches();
3431   alignBlocks();
3432 
3433   BlockToChain.clear();
3434   ComputedEdges.clear();
3435   ChainAllocator.DestroyAll();
3436 
3437   bool HasMaxBytesOverride =
3438       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3439 
3440   if (AlignAllBlock)
3441     // Align all of the blocks in the function to a specific alignment.
3442     for (MachineBasicBlock &MBB : MF) {
3443       if (HasMaxBytesOverride)
3444         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3445                          MaxBytesForAlignmentOverride);
3446       else
3447         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3448     }
3449   else if (AlignAllNonFallThruBlocks) {
3450     // Align all of the blocks that have no fall-through predecessors to a
3451     // specific alignment.
3452     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3453       auto LayoutPred = std::prev(MBI);
3454       if (!LayoutPred->isSuccessor(&*MBI)) {
3455         if (HasMaxBytesOverride)
3456           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3457                             MaxBytesForAlignmentOverride);
3458         else
3459           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3460       }
3461     }
3462   }
3463   if (ViewBlockLayoutWithBFI != GVDT_None &&
3464       (ViewBlockFreqFuncName.empty() ||
3465        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3466     MBFI->view("MBP." + MF.getName(), false);
3467   }
3468 
3469   // We always return true as we have no way to track whether the final order
3470   // differs from the original order.
3471   return true;
3472 }
3473 
3474 void MachineBlockPlacement::applyExtTsp() {
3475   // Prepare data; blocks are indexed by their index in the current ordering.
3476   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3477   BlockIndex.reserve(F->size());
3478   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3479   CurrentBlockOrder.reserve(F->size());
3480   size_t NumBlocks = 0;
3481   for (const MachineBasicBlock &MBB : *F) {
3482     BlockIndex[&MBB] = NumBlocks++;
3483     CurrentBlockOrder.push_back(&MBB);
3484   }
3485 
3486   auto BlockSizes = std::vector<uint64_t>(F->size());
3487   auto BlockCounts = std::vector<uint64_t>(F->size());
3488   DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> JumpCounts;
3489   for (MachineBasicBlock &MBB : *F) {
3490     // Getting the block frequency.
3491     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3492     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3493     // Getting the block size:
3494     // - approximate the size of an instruction by 4 bytes, and
3495     // - ignore debug instructions.
3496     // Note: getting the exact size of each block is target-dependent and can be
3497     // done by extending the interface of MCCodeEmitter. Experimentally we do
3498     // not see a perf improvement with the exact block sizes.
3499     auto NonDbgInsts =
3500         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3501     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3502     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3503     // Getting jump frequencies.
3504     for (MachineBasicBlock *Succ : MBB.successors()) {
3505       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3506       BlockFrequency EdgeFreq = BlockFreq * EP;
3507       auto Edge = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3508       JumpCounts[Edge] = EdgeFreq.getFrequency();
3509     }
3510   }
3511 
3512   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3513                     << " with profile = " << F->getFunction().hasProfileData()
3514                     << " (" << F->getName().str() << ")"
3515                     << "\n");
3516   LLVM_DEBUG(
3517       dbgs() << format("  original  layout score: %0.2f\n",
3518                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3519 
3520   // Run the layout algorithm.
3521   auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3522   std::vector<const MachineBasicBlock *> NewBlockOrder;
3523   NewBlockOrder.reserve(F->size());
3524   for (uint64_t Node : NewOrder) {
3525     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3526   }
3527   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3528                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3529                                               JumpCounts)));
3530 
3531   // Assign new block order.
3532   assignBlockOrder(NewBlockOrder);
3533 }
3534 
3535 void MachineBlockPlacement::assignBlockOrder(
3536     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3537   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3538   F->RenumberBlocks();
3539 
3540   bool HasChanges = false;
3541   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3542     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3543       HasChanges = true;
3544       break;
3545     }
3546   }
3547   // Stop early if the new block order is identical to the existing one.
3548   if (!HasChanges)
3549     return;
3550 
3551   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3552   for (auto &MBB : *F) {
3553     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3554   }
3555 
3556   // Sort basic blocks in the function according to the computed order.
3557   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3558   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3559     NewIndex[MBB] = NewIndex.size();
3560   }
3561   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3562     return NewIndex[&L] < NewIndex[&R];
3563   });
3564 
3565   // Update basic block branches by inserting explicit fallthrough branches
3566   // when required and re-optimize branches when possible.
3567   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3568   SmallVector<MachineOperand, 4> Cond;
3569   for (auto &MBB : *F) {
3570     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3571     MachineFunction::iterator EndIt = MBB.getParent()->end();
3572     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3573     // If this block had a fallthrough before we need an explicit unconditional
3574     // branch to that block if the fallthrough block is not adjacent to the
3575     // block in the new order.
3576     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3577       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3578     }
3579 
3580     // It might be possible to optimize branches by flipping the condition.
3581     Cond.clear();
3582     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3583     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3584       continue;
3585     MBB.updateTerminator(FTMBB);
3586   }
3587 
3588 #ifndef NDEBUG
3589   // Make sure we correctly constructed all branches.
3590   F->verify(this, "After optimized block reordering");
3591 #endif
3592 }
3593 
3594 void MachineBlockPlacement::createCFGChainExtTsp() {
3595   BlockToChain.clear();
3596   ComputedEdges.clear();
3597   ChainAllocator.DestroyAll();
3598 
3599   MachineBasicBlock *HeadBB = &F->front();
3600   BlockChain *FunctionChain =
3601       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3602 
3603   for (MachineBasicBlock &MBB : *F) {
3604     if (HeadBB == &MBB)
3605       continue; // Ignore head of the chain
3606     FunctionChain->merge(&MBB, nullptr);
3607   }
3608 }
3609 
3610 namespace {
3611 
3612 /// A pass to compute block placement statistics.
3613 ///
3614 /// A separate pass to compute interesting statistics for evaluating block
3615 /// placement. This is separate from the actual placement pass so that they can
3616 /// be computed in the absence of any placement transformations or when using
3617 /// alternative placement strategies.
3618 class MachineBlockPlacementStats : public MachineFunctionPass {
3619   /// A handle to the branch probability pass.
3620   const MachineBranchProbabilityInfo *MBPI;
3621 
3622   /// A handle to the function-wide block frequency pass.
3623   const MachineBlockFrequencyInfo *MBFI;
3624 
3625 public:
3626   static char ID; // Pass identification, replacement for typeid
3627 
3628   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3629     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3630   }
3631 
3632   bool runOnMachineFunction(MachineFunction &F) override;
3633 
3634   void getAnalysisUsage(AnalysisUsage &AU) const override {
3635     AU.addRequired<MachineBranchProbabilityInfo>();
3636     AU.addRequired<MachineBlockFrequencyInfo>();
3637     AU.setPreservesAll();
3638     MachineFunctionPass::getAnalysisUsage(AU);
3639   }
3640 };
3641 
3642 } // end anonymous namespace
3643 
3644 char MachineBlockPlacementStats::ID = 0;
3645 
3646 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3647 
3648 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3649                       "Basic Block Placement Stats", false, false)
3650 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3651 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3652 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3653                     "Basic Block Placement Stats", false, false)
3654 
3655 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3656   // Check for single-block functions and skip them.
3657   if (std::next(F.begin()) == F.end())
3658     return false;
3659 
3660   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3661   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3662 
3663   for (MachineBasicBlock &MBB : F) {
3664     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3665     Statistic &NumBranches =
3666         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3667     Statistic &BranchTakenFreq =
3668         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3669     for (MachineBasicBlock *Succ : MBB.successors()) {
3670       // Skip if this successor is a fallthrough.
3671       if (MBB.isLayoutSuccessor(Succ))
3672         continue;
3673 
3674       BlockFrequency EdgeFreq =
3675           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3676       ++NumBranches;
3677       BranchTakenFreq += EdgeFreq.getFrequency();
3678     }
3679   }
3680 
3681   return false;
3682 }
3683