xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision d71461c2095c685a9fc612a58945fe995f7eee8a)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetSubtargetInfo.h"
52 #include <algorithm>
53 #include <functional>
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "block-placement"
58 
59 STATISTIC(NumCondBranches, "Number of conditional branches");
60 STATISTIC(NumUncondBranches, "Number of unconditional branches");
61 STATISTIC(CondBranchTakenFreq,
62           "Potential frequency of taking conditional branches");
63 STATISTIC(UncondBranchTakenFreq,
64           "Potential frequency of taking unconditional branches");
65 
66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
67                                        cl::desc("Force the alignment of all "
68                                                 "blocks in the function."),
69                                        cl::init(0), cl::Hidden);
70 
71 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
72     "align-all-nofallthru-blocks",
73     cl::desc("Force the alignment of all "
74              "blocks that have no fall-through predecessors (i.e. don't add "
75              "nops that are executed)."),
76     cl::init(0), cl::Hidden);
77 
78 // FIXME: Find a good default for this flag and remove the flag.
79 static cl::opt<unsigned> ExitBlockBias(
80     "block-placement-exit-block-bias",
81     cl::desc("Block frequency percentage a loop exit block needs "
82              "over the original exit to be considered the new exit."),
83     cl::init(0), cl::Hidden);
84 
85 // Definition:
86 // - Outlining: placement of a basic block outside the chain or hot path.
87 
88 static cl::opt<unsigned> LoopToColdBlockRatio(
89     "loop-to-cold-block-ratio",
90     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
91              "(frequency of block) is greater than this ratio"),
92     cl::init(5), cl::Hidden);
93 
94 static cl::opt<bool>
95     PreciseRotationCost("precise-rotation-cost",
96                         cl::desc("Model the cost of loop rotation more "
97                                  "precisely by using profile data."),
98                         cl::init(false), cl::Hidden);
99 static cl::opt<bool>
100     ForcePreciseRotationCost("force-precise-rotation-cost",
101                              cl::desc("Force the use of precise cost "
102                                       "loop rotation strategy."),
103                              cl::init(false), cl::Hidden);
104 
105 static cl::opt<unsigned> MisfetchCost(
106     "misfetch-cost",
107     cl::desc("Cost that models the probabilistic risk of an instruction "
108              "misfetch due to a jump comparing to falling through, whose cost "
109              "is zero."),
110     cl::init(1), cl::Hidden);
111 
112 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
113                                       cl::desc("Cost of jump instructions."),
114                                       cl::init(1), cl::Hidden);
115 static cl::opt<bool>
116 TailDupPlacement("tail-dup-placement",
117               cl::desc("Perform tail duplication during placement. "
118                        "Creates more fallthrough opportunites in "
119                        "outline branches."),
120               cl::init(true), cl::Hidden);
121 
122 static cl::opt<bool>
123 BranchFoldPlacement("branch-fold-placement",
124               cl::desc("Perform branch folding during placement. "
125                        "Reduces code size."),
126               cl::init(true), cl::Hidden);
127 
128 // Heuristic for tail duplication.
129 static cl::opt<unsigned> TailDupPlacementThreshold(
130     "tail-dup-placement-threshold",
131     cl::desc("Instruction cutoff for tail duplication during layout. "
132              "Tail merging during layout is forced to have a threshold "
133              "that won't conflict."), cl::init(2),
134     cl::Hidden);
135 
136 // Heuristic for tail duplication.
137 static cl::opt<unsigned> TailDupPlacementPenalty(
138     "tail-dup-placement-penalty",
139     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
140              "Copying can increase fallthrough, but it also increases icache "
141              "pressure. This parameter controls the penalty to account for that. "
142              "Percent as integer."),
143     cl::init(2),
144     cl::Hidden);
145 
146 // Heuristic for triangle chains.
147 static cl::opt<unsigned> TriangleChainCount(
148     "triangle-chain-count",
149     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
150              "triangle tail duplication heuristic to kick in. 0 to disable."),
151     cl::init(2),
152     cl::Hidden);
153 
154 extern cl::opt<unsigned> StaticLikelyProb;
155 extern cl::opt<unsigned> ProfileLikelyProb;
156 
157 // Internal option used to control BFI display only after MBP pass.
158 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
159 // -view-block-layout-with-bfi=
160 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
161 
162 // Command line option to specify the name of the function for CFG dump
163 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
164 extern cl::opt<std::string> ViewBlockFreqFuncName;
165 
166 namespace {
167 class BlockChain;
168 /// \brief Type for our function-wide basic block -> block chain mapping.
169 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
170 }
171 
172 namespace {
173 /// \brief A chain of blocks which will be laid out contiguously.
174 ///
175 /// This is the datastructure representing a chain of consecutive blocks that
176 /// are profitable to layout together in order to maximize fallthrough
177 /// probabilities and code locality. We also can use a block chain to represent
178 /// a sequence of basic blocks which have some external (correctness)
179 /// requirement for sequential layout.
180 ///
181 /// Chains can be built around a single basic block and can be merged to grow
182 /// them. They participate in a block-to-chain mapping, which is updated
183 /// automatically as chains are merged together.
184 class BlockChain {
185   /// \brief The sequence of blocks belonging to this chain.
186   ///
187   /// This is the sequence of blocks for a particular chain. These will be laid
188   /// out in-order within the function.
189   SmallVector<MachineBasicBlock *, 4> Blocks;
190 
191   /// \brief A handle to the function-wide basic block to block chain mapping.
192   ///
193   /// This is retained in each block chain to simplify the computation of child
194   /// block chains for SCC-formation and iteration. We store the edges to child
195   /// basic blocks, and map them back to their associated chains using this
196   /// structure.
197   BlockToChainMapType &BlockToChain;
198 
199 public:
200   /// \brief Construct a new BlockChain.
201   ///
202   /// This builds a new block chain representing a single basic block in the
203   /// function. It also registers itself as the chain that block participates
204   /// in with the BlockToChain mapping.
205   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
206       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
207     assert(BB && "Cannot create a chain with a null basic block");
208     BlockToChain[BB] = this;
209   }
210 
211   /// \brief Iterator over blocks within the chain.
212   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
213   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
214 
215   /// \brief Beginning of blocks within the chain.
216   iterator begin() { return Blocks.begin(); }
217   const_iterator begin() const { return Blocks.begin(); }
218 
219   /// \brief End of blocks within the chain.
220   iterator end() { return Blocks.end(); }
221   const_iterator end() const { return Blocks.end(); }
222 
223   bool remove(MachineBasicBlock* BB) {
224     for(iterator i = begin(); i != end(); ++i) {
225       if (*i == BB) {
226         Blocks.erase(i);
227         return true;
228       }
229     }
230     return false;
231   }
232 
233   /// \brief Merge a block chain into this one.
234   ///
235   /// This routine merges a block chain into this one. It takes care of forming
236   /// a contiguous sequence of basic blocks, updating the edge list, and
237   /// updating the block -> chain mapping. It does not free or tear down the
238   /// old chain, but the old chain's block list is no longer valid.
239   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
240     assert(BB);
241     assert(!Blocks.empty());
242 
243     // Fast path in case we don't have a chain already.
244     if (!Chain) {
245       assert(!BlockToChain[BB]);
246       Blocks.push_back(BB);
247       BlockToChain[BB] = this;
248       return;
249     }
250 
251     assert(BB == *Chain->begin());
252     assert(Chain->begin() != Chain->end());
253 
254     // Update the incoming blocks to point to this chain, and add them to the
255     // chain structure.
256     for (MachineBasicBlock *ChainBB : *Chain) {
257       Blocks.push_back(ChainBB);
258       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
259       BlockToChain[ChainBB] = this;
260     }
261   }
262 
263 #ifndef NDEBUG
264   /// \brief Dump the blocks in this chain.
265   LLVM_DUMP_METHOD void dump() {
266     for (MachineBasicBlock *MBB : *this)
267       MBB->dump();
268   }
269 #endif // NDEBUG
270 
271   /// \brief Count of predecessors of any block within the chain which have not
272   /// yet been scheduled.  In general, we will delay scheduling this chain
273   /// until those predecessors are scheduled (or we find a sufficiently good
274   /// reason to override this heuristic.)  Note that when forming loop chains,
275   /// blocks outside the loop are ignored and treated as if they were already
276   /// scheduled.
277   ///
278   /// Note: This field is reinitialized multiple times - once for each loop,
279   /// and then once for the function as a whole.
280   unsigned UnscheduledPredecessors;
281 };
282 }
283 
284 namespace {
285 class MachineBlockPlacement : public MachineFunctionPass {
286   /// \brief A typedef for a block filter set.
287   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
288 
289   /// Pair struct containing basic block and taildup profitiability
290   struct BlockAndTailDupResult {
291     MachineBasicBlock *BB;
292     bool ShouldTailDup;
293   };
294 
295   /// Triple struct containing edge weight and the edge.
296   struct WeightedEdge {
297     BlockFrequency Weight;
298     MachineBasicBlock *Src;
299     MachineBasicBlock *Dest;
300   };
301 
302   /// \brief work lists of blocks that are ready to be laid out
303   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
304   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
305 
306   /// Edges that have already been computed as optimal.
307   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
308 
309   /// \brief Machine Function
310   MachineFunction *F;
311 
312   /// \brief A handle to the branch probability pass.
313   const MachineBranchProbabilityInfo *MBPI;
314 
315   /// \brief A handle to the function-wide block frequency pass.
316   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
317 
318   /// \brief A handle to the loop info.
319   MachineLoopInfo *MLI;
320 
321   /// \brief Preferred loop exit.
322   /// Member variable for convenience. It may be removed by duplication deep
323   /// in the call stack.
324   MachineBasicBlock *PreferredLoopExit;
325 
326   /// \brief A handle to the target's instruction info.
327   const TargetInstrInfo *TII;
328 
329   /// \brief A handle to the target's lowering info.
330   const TargetLoweringBase *TLI;
331 
332   /// \brief A handle to the post dominator tree.
333   MachinePostDominatorTree *MPDT;
334 
335   /// \brief Duplicator used to duplicate tails during placement.
336   ///
337   /// Placement decisions can open up new tail duplication opportunities, but
338   /// since tail duplication affects placement decisions of later blocks, it
339   /// must be done inline.
340   TailDuplicator TailDup;
341 
342   /// \brief Allocator and owner of BlockChain structures.
343   ///
344   /// We build BlockChains lazily while processing the loop structure of
345   /// a function. To reduce malloc traffic, we allocate them using this
346   /// slab-like allocator, and destroy them after the pass completes. An
347   /// important guarantee is that this allocator produces stable pointers to
348   /// the chains.
349   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
350 
351   /// \brief Function wide BasicBlock to BlockChain mapping.
352   ///
353   /// This mapping allows efficiently moving from any given basic block to the
354   /// BlockChain it participates in, if any. We use it to, among other things,
355   /// allow implicitly defining edges between chains as the existing edges
356   /// between basic blocks.
357   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
358 
359 #ifndef NDEBUG
360   /// The set of basic blocks that have terminators that cannot be fully
361   /// analyzed.  These basic blocks cannot be re-ordered safely by
362   /// MachineBlockPlacement, and we must preserve physical layout of these
363   /// blocks and their successors through the pass.
364   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
365 #endif
366 
367   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
368   /// if the count goes to 0, add them to the appropriate work list.
369   void markChainSuccessors(
370       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
371       const BlockFilterSet *BlockFilter = nullptr);
372 
373   /// Decrease the UnscheduledPredecessors count for a single block, and
374   /// if the count goes to 0, add them to the appropriate work list.
375   void markBlockSuccessors(
376       const BlockChain &Chain, const MachineBasicBlock *BB,
377       const MachineBasicBlock *LoopHeaderBB,
378       const BlockFilterSet *BlockFilter = nullptr);
379 
380   BranchProbability
381   collectViableSuccessors(
382       const MachineBasicBlock *BB, const BlockChain &Chain,
383       const BlockFilterSet *BlockFilter,
384       SmallVector<MachineBasicBlock *, 4> &Successors);
385   bool shouldPredBlockBeOutlined(
386       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
387       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
388       BranchProbability SuccProb, BranchProbability HotProb);
389   bool repeatedlyTailDuplicateBlock(
390       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
391       const MachineBasicBlock *LoopHeaderBB,
392       BlockChain &Chain, BlockFilterSet *BlockFilter,
393       MachineFunction::iterator &PrevUnplacedBlockIt);
394   bool maybeTailDuplicateBlock(
395       MachineBasicBlock *BB, MachineBasicBlock *LPred,
396       BlockChain &Chain, BlockFilterSet *BlockFilter,
397       MachineFunction::iterator &PrevUnplacedBlockIt,
398       bool &DuplicatedToPred);
399   bool hasBetterLayoutPredecessor(
400       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
401       const BlockChain &SuccChain, BranchProbability SuccProb,
402       BranchProbability RealSuccProb, const BlockChain &Chain,
403       const BlockFilterSet *BlockFilter);
404   BlockAndTailDupResult selectBestSuccessor(
405       const MachineBasicBlock *BB, const BlockChain &Chain,
406       const BlockFilterSet *BlockFilter);
407   MachineBasicBlock *selectBestCandidateBlock(
408       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
409   MachineBasicBlock *getFirstUnplacedBlock(
410       const BlockChain &PlacedChain,
411       MachineFunction::iterator &PrevUnplacedBlockIt,
412       const BlockFilterSet *BlockFilter);
413 
414   /// \brief Add a basic block to the work list if it is appropriate.
415   ///
416   /// If the optional parameter BlockFilter is provided, only MBB
417   /// present in the set will be added to the worklist. If nullptr
418   /// is provided, no filtering occurs.
419   void fillWorkLists(const MachineBasicBlock *MBB,
420                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
421                      const BlockFilterSet *BlockFilter);
422   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
423                   BlockFilterSet *BlockFilter = nullptr);
424   MachineBasicBlock *findBestLoopTop(
425       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
426   MachineBasicBlock *findBestLoopExit(
427       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
428   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
429   void buildLoopChains(const MachineLoop &L);
430   void rotateLoop(
431       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
432       const BlockFilterSet &LoopBlockSet);
433   void rotateLoopWithProfile(
434       BlockChain &LoopChain, const MachineLoop &L,
435       const BlockFilterSet &LoopBlockSet);
436   void buildCFGChains();
437   void optimizeBranches();
438   void alignBlocks();
439   /// Returns true if a block should be tail-duplicated to increase fallthrough
440   /// opportunities.
441   bool shouldTailDuplicate(MachineBasicBlock *BB);
442   /// Check the edge frequencies to see if tail duplication will increase
443   /// fallthroughs.
444   bool isProfitableToTailDup(
445     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
446     BranchProbability AdjustedSumProb,
447     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
448   /// Check for a trellis layout.
449   bool isTrellis(const MachineBasicBlock *BB,
450                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
451                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
452   /// Get the best successor given a trellis layout.
453   BlockAndTailDupResult getBestTrellisSuccessor(
454       const MachineBasicBlock *BB,
455       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
456       BranchProbability AdjustedSumProb, const BlockChain &Chain,
457       const BlockFilterSet *BlockFilter);
458   /// Get the best pair of non-conflicting edges.
459   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
460       const MachineBasicBlock *BB,
461       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
462   /// Returns true if a block can tail duplicate into all unplaced
463   /// predecessors. Filters based on loop.
464   bool canTailDuplicateUnplacedPreds(
465       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
466       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
467   /// Find chains of triangles to tail-duplicate where a global analysis works,
468   /// but a local analysis would not find them.
469   void precomputeTriangleChains();
470 
471 public:
472   static char ID; // Pass identification, replacement for typeid
473   MachineBlockPlacement() : MachineFunctionPass(ID) {
474     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
475   }
476 
477   bool runOnMachineFunction(MachineFunction &F) override;
478 
479   void getAnalysisUsage(AnalysisUsage &AU) const override {
480     AU.addRequired<MachineBranchProbabilityInfo>();
481     AU.addRequired<MachineBlockFrequencyInfo>();
482     if (TailDupPlacement)
483       AU.addRequired<MachinePostDominatorTree>();
484     AU.addRequired<MachineLoopInfo>();
485     AU.addRequired<TargetPassConfig>();
486     MachineFunctionPass::getAnalysisUsage(AU);
487   }
488 };
489 }
490 
491 char MachineBlockPlacement::ID = 0;
492 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
493 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
494                       "Branch Probability Basic Block Placement", false, false)
495 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
496 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
497 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
498 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
499 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
500                     "Branch Probability Basic Block Placement", false, false)
501 
502 #ifndef NDEBUG
503 /// \brief Helper to print the name of a MBB.
504 ///
505 /// Only used by debug logging.
506 static std::string getBlockName(const MachineBasicBlock *BB) {
507   std::string Result;
508   raw_string_ostream OS(Result);
509   OS << "BB#" << BB->getNumber();
510   OS << " ('" << BB->getName() << "')";
511   OS.flush();
512   return Result;
513 }
514 #endif
515 
516 /// \brief Mark a chain's successors as having one fewer preds.
517 ///
518 /// When a chain is being merged into the "placed" chain, this routine will
519 /// quickly walk the successors of each block in the chain and mark them as
520 /// having one fewer active predecessor. It also adds any successors of this
521 /// chain which reach the zero-predecessor state to the appropriate worklist.
522 void MachineBlockPlacement::markChainSuccessors(
523     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
524     const BlockFilterSet *BlockFilter) {
525   // Walk all the blocks in this chain, marking their successors as having
526   // a predecessor placed.
527   for (MachineBasicBlock *MBB : Chain) {
528     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
529   }
530 }
531 
532 /// \brief Mark a single block's successors as having one fewer preds.
533 ///
534 /// Under normal circumstances, this is only called by markChainSuccessors,
535 /// but if a block that was to be placed is completely tail-duplicated away,
536 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
537 /// for just that block.
538 void MachineBlockPlacement::markBlockSuccessors(
539     const BlockChain &Chain, const MachineBasicBlock *MBB,
540     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
541   // Add any successors for which this is the only un-placed in-loop
542   // predecessor to the worklist as a viable candidate for CFG-neutral
543   // placement. No subsequent placement of this block will violate the CFG
544   // shape, so we get to use heuristics to choose a favorable placement.
545   for (MachineBasicBlock *Succ : MBB->successors()) {
546     if (BlockFilter && !BlockFilter->count(Succ))
547       continue;
548     BlockChain &SuccChain = *BlockToChain[Succ];
549     // Disregard edges within a fixed chain, or edges to the loop header.
550     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
551       continue;
552 
553     // This is a cross-chain edge that is within the loop, so decrement the
554     // loop predecessor count of the destination chain.
555     if (SuccChain.UnscheduledPredecessors == 0 ||
556         --SuccChain.UnscheduledPredecessors > 0)
557       continue;
558 
559     auto *NewBB = *SuccChain.begin();
560     if (NewBB->isEHPad())
561       EHPadWorkList.push_back(NewBB);
562     else
563       BlockWorkList.push_back(NewBB);
564   }
565 }
566 
567 /// This helper function collects the set of successors of block
568 /// \p BB that are allowed to be its layout successors, and return
569 /// the total branch probability of edges from \p BB to those
570 /// blocks.
571 BranchProbability MachineBlockPlacement::collectViableSuccessors(
572     const MachineBasicBlock *BB, const BlockChain &Chain,
573     const BlockFilterSet *BlockFilter,
574     SmallVector<MachineBasicBlock *, 4> &Successors) {
575   // Adjust edge probabilities by excluding edges pointing to blocks that is
576   // either not in BlockFilter or is already in the current chain. Consider the
577   // following CFG:
578   //
579   //     --->A
580   //     |  / \
581   //     | B   C
582   //     |  \ / \
583   //     ----D   E
584   //
585   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
586   // A->C is chosen as a fall-through, D won't be selected as a successor of C
587   // due to CFG constraint (the probability of C->D is not greater than
588   // HotProb to break top-order). If we exclude E that is not in BlockFilter
589   // when calculating the  probability of C->D, D will be selected and we
590   // will get A C D B as the layout of this loop.
591   auto AdjustedSumProb = BranchProbability::getOne();
592   for (MachineBasicBlock *Succ : BB->successors()) {
593     bool SkipSucc = false;
594     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
595       SkipSucc = true;
596     } else {
597       BlockChain *SuccChain = BlockToChain[Succ];
598       if (SuccChain == &Chain) {
599         SkipSucc = true;
600       } else if (Succ != *SuccChain->begin()) {
601         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
602         continue;
603       }
604     }
605     if (SkipSucc)
606       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
607     else
608       Successors.push_back(Succ);
609   }
610 
611   return AdjustedSumProb;
612 }
613 
614 /// The helper function returns the branch probability that is adjusted
615 /// or normalized over the new total \p AdjustedSumProb.
616 static BranchProbability
617 getAdjustedProbability(BranchProbability OrigProb,
618                        BranchProbability AdjustedSumProb) {
619   BranchProbability SuccProb;
620   uint32_t SuccProbN = OrigProb.getNumerator();
621   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
622   if (SuccProbN >= SuccProbD)
623     SuccProb = BranchProbability::getOne();
624   else
625     SuccProb = BranchProbability(SuccProbN, SuccProbD);
626 
627   return SuccProb;
628 }
629 
630 /// Check if \p BB has exactly the successors in \p Successors.
631 static bool
632 hasSameSuccessors(MachineBasicBlock &BB,
633                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
634   if (BB.succ_size() != Successors.size())
635     return false;
636   // We don't want to count self-loops
637   if (Successors.count(&BB))
638     return false;
639   for (MachineBasicBlock *Succ : BB.successors())
640     if (!Successors.count(Succ))
641       return false;
642   return true;
643 }
644 
645 /// Check if a block should be tail duplicated to increase fallthrough
646 /// opportunities.
647 /// \p BB Block to check.
648 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
649   // Blocks with single successors don't create additional fallthrough
650   // opportunities. Don't duplicate them. TODO: When conditional exits are
651   // analyzable, allow them to be duplicated.
652   bool IsSimple = TailDup.isSimpleBB(BB);
653 
654   if (BB->succ_size() == 1)
655     return false;
656   return TailDup.shouldTailDuplicate(IsSimple, *BB);
657 }
658 
659 /// Compare 2 BlockFrequency's with a small penalty for \p A.
660 /// In order to be conservative, we apply a X% penalty to account for
661 /// increased icache pressure and static heuristics. For small frequencies
662 /// we use only the numerators to improve accuracy. For simplicity, we assume the
663 /// penalty is less than 100%
664 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
665 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
666                             uint64_t EntryFreq) {
667   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
668   BlockFrequency Gain = A - B;
669   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
670 }
671 
672 /// Check the edge frequencies to see if tail duplication will increase
673 /// fallthroughs. It only makes sense to call this function when
674 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
675 /// always locally profitable if we would have picked \p Succ without
676 /// considering duplication.
677 bool MachineBlockPlacement::isProfitableToTailDup(
678     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
679     BranchProbability QProb,
680     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
681   // We need to do a probability calculation to make sure this is profitable.
682   // First: does succ have a successor that post-dominates? This affects the
683   // calculation. The 2 relevant cases are:
684   //    BB         BB
685   //    | \Qout    | \Qout
686   //   P|  C       |P C
687   //    =   C'     =   C'
688   //    |  /Qin    |  /Qin
689   //    | /        | /
690   //    Succ       Succ
691   //    / \        | \  V
692   //  U/   =V      |U \
693   //  /     \      =   D
694   //  D      E     |  /
695   //               | /
696   //               |/
697   //               PDom
698   //  '=' : Branch taken for that CFG edge
699   // In the second case, Placing Succ while duplicating it into C prevents the
700   // fallthrough of Succ into either D or PDom, because they now have C as an
701   // unplaced predecessor
702 
703   // Start by figuring out which case we fall into
704   MachineBasicBlock *PDom = nullptr;
705   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
706   // Only scan the relevant successors
707   auto AdjustedSuccSumProb =
708       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
709   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
710   auto BBFreq = MBFI->getBlockFreq(BB);
711   auto SuccFreq = MBFI->getBlockFreq(Succ);
712   BlockFrequency P = BBFreq * PProb;
713   BlockFrequency Qout = BBFreq * QProb;
714   uint64_t EntryFreq = MBFI->getEntryFreq();
715   // If there are no more successors, it is profitable to copy, as it strictly
716   // increases fallthrough.
717   if (SuccSuccs.size() == 0)
718     return greaterWithBias(P, Qout, EntryFreq);
719 
720   auto BestSuccSucc = BranchProbability::getZero();
721   // Find the PDom or the best Succ if no PDom exists.
722   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
723     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
724     if (Prob > BestSuccSucc)
725       BestSuccSucc = Prob;
726     if (PDom == nullptr)
727       if (MPDT->dominates(SuccSucc, Succ)) {
728         PDom = SuccSucc;
729         break;
730       }
731   }
732   // For the comparisons, we need to know Succ's best incoming edge that isn't
733   // from BB.
734   auto SuccBestPred = BlockFrequency(0);
735   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
736     if (SuccPred == Succ || SuccPred == BB
737         || BlockToChain[SuccPred] == &Chain
738         || (BlockFilter && !BlockFilter->count(SuccPred)))
739       continue;
740     auto Freq = MBFI->getBlockFreq(SuccPred)
741         * MBPI->getEdgeProbability(SuccPred, Succ);
742     if (Freq > SuccBestPred)
743       SuccBestPred = Freq;
744   }
745   // Qin is Succ's best unplaced incoming edge that isn't BB
746   BlockFrequency Qin = SuccBestPred;
747   // If it doesn't have a post-dominating successor, here is the calculation:
748   //    BB        BB
749   //    | \Qout   |  \
750   //   P|  C      |   =
751   //    =   C'    |    C
752   //    |  /Qin   |     |
753   //    | /       |     C' (+Succ)
754   //    Succ      Succ /|
755   //    / \       |  \/ |
756   //  U/   =V     |  == |
757   //  /     \     | /  \|
758   //  D      E    D     E
759   //  '=' : Branch taken for that CFG edge
760   //  Cost in the first case is: P + V
761   //  For this calculation, we always assume P > Qout. If Qout > P
762   //  The result of this function will be ignored at the caller.
763   //  Let F = SuccFreq - Qin
764   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
765 
766   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
767     BranchProbability UProb = BestSuccSucc;
768     BranchProbability VProb = AdjustedSuccSumProb - UProb;
769     BlockFrequency F = SuccFreq - Qin;
770     BlockFrequency V = SuccFreq * VProb;
771     BlockFrequency QinU = std::min(Qin, F) * UProb;
772     BlockFrequency BaseCost = P + V;
773     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
774     return greaterWithBias(BaseCost, DupCost, EntryFreq);
775   }
776   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
777   BranchProbability VProb = AdjustedSuccSumProb - UProb;
778   BlockFrequency U = SuccFreq * UProb;
779   BlockFrequency V = SuccFreq * VProb;
780   BlockFrequency F = SuccFreq - Qin;
781   // If there is a post-dominating successor, here is the calculation:
782   // BB         BB                 BB          BB
783   // | \Qout    |   \               | \Qout     |  \
784   // |P C       |    =              |P C        |   =
785   // =   C'     |P    C             =   C'      |P   C
786   // |  /Qin    |      |            |  /Qin     |     |
787   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
788   // Succ       Succ  /|            Succ        Succ /|
789   // | \  V     |   \/ |            | \  V      |  \/ |
790   // |U \       |U  /\ =?           |U =        |U /\ |
791   // =   D      = =  =?|            |   D       | =  =|
792   // |  /       |/     D            |  /        |/    D
793   // | /        |     /             | =         |    /
794   // |/         |    /              |/          |   =
795   // Dom         Dom                Dom         Dom
796   //  '=' : Branch taken for that CFG edge
797   // The cost for taken branches in the first case is P + U
798   // Let F = SuccFreq - Qin
799   // The cost in the second case (assuming independence), given the layout:
800   // BB, Succ, (C+Succ), D, Dom or the layout:
801   // BB, Succ, D, Dom, (C+Succ)
802   // is Qout + max(F, Qin) * U + min(F, Qin)
803   // compare P + U vs Qout + P * U + Qin.
804   //
805   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
806   //
807   // For the 3rd case, the cost is P + 2 * V
808   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
809   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
810   if (UProb > AdjustedSuccSumProb / 2 &&
811       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
812                                   Chain, BlockFilter))
813     // Cases 3 & 4
814     return greaterWithBias(
815         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
816         EntryFreq);
817   // Cases 1 & 2
818   return greaterWithBias((P + U),
819                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
820                           std::max(Qin, F) * UProb),
821                          EntryFreq);
822 }
823 
824 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
825 /// successors form the lower part of a trellis. A successor set S forms the
826 /// lower part of a trellis if all of the predecessors of S are either in S or
827 /// have all of S as successors. We ignore trellises where BB doesn't have 2
828 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
829 /// are very uncommon and complex to compute optimally. Allowing edges within S
830 /// is not strictly a trellis, but the same algorithm works, so we allow it.
831 bool MachineBlockPlacement::isTrellis(
832     const MachineBasicBlock *BB,
833     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
834     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
835   // Technically BB could form a trellis with branching factor higher than 2.
836   // But that's extremely uncommon.
837   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
838     return false;
839 
840   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
841                                                        BB->succ_end());
842   // To avoid reviewing the same predecessors twice.
843   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
844 
845   for (MachineBasicBlock *Succ : ViableSuccs) {
846     int PredCount = 0;
847     for (auto SuccPred : Succ->predecessors()) {
848       // Allow triangle successors, but don't count them.
849       if (Successors.count(SuccPred)) {
850         // Make sure that it is actually a triangle.
851         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
852           if (!Successors.count(CheckSucc))
853             return false;
854         continue;
855       }
856       const BlockChain *PredChain = BlockToChain[SuccPred];
857       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
858           PredChain == &Chain || PredChain == BlockToChain[Succ])
859         continue;
860       ++PredCount;
861       // Perform the successor check only once.
862       if (!SeenPreds.insert(SuccPred).second)
863         continue;
864       if (!hasSameSuccessors(*SuccPred, Successors))
865         return false;
866     }
867     // If one of the successors has only BB as a predecessor, it is not a
868     // trellis.
869     if (PredCount < 1)
870       return false;
871   }
872   return true;
873 }
874 
875 /// Pick the highest total weight pair of edges that can both be laid out.
876 /// The edges in \p Edges[0] are assumed to have a different destination than
877 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
878 /// the individual highest weight edges to the 2 different destinations, or in
879 /// case of a conflict, one of them should be replaced with a 2nd best edge.
880 std::pair<MachineBlockPlacement::WeightedEdge,
881           MachineBlockPlacement::WeightedEdge>
882 MachineBlockPlacement::getBestNonConflictingEdges(
883     const MachineBasicBlock *BB,
884     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
885         Edges) {
886   // Sort the edges, and then for each successor, find the best incoming
887   // predecessor. If the best incoming predecessors aren't the same,
888   // then that is clearly the best layout. If there is a conflict, one of the
889   // successors will have to fallthrough from the second best predecessor. We
890   // compare which combination is better overall.
891 
892   // Sort for highest frequency.
893   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
894 
895   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
896   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
897   auto BestA = Edges[0].begin();
898   auto BestB = Edges[1].begin();
899   // Arrange for the correct answer to be in BestA and BestB
900   // If the 2 best edges don't conflict, the answer is already there.
901   if (BestA->Src == BestB->Src) {
902     // Compare the total fallthrough of (Best + Second Best) for both pairs
903     auto SecondBestA = std::next(BestA);
904     auto SecondBestB = std::next(BestB);
905     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
906     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
907     if (BestAScore < BestBScore)
908       BestA = SecondBestA;
909     else
910       BestB = SecondBestB;
911   }
912   // Arrange for the BB edge to be in BestA if it exists.
913   if (BestB->Src == BB)
914     std::swap(BestA, BestB);
915   return std::make_pair(*BestA, *BestB);
916 }
917 
918 /// Get the best successor from \p BB based on \p BB being part of a trellis.
919 /// We only handle trellises with 2 successors, so the algorithm is
920 /// straightforward: Find the best pair of edges that don't conflict. We find
921 /// the best incoming edge for each successor in the trellis. If those conflict,
922 /// we consider which of them should be replaced with the second best.
923 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
924 /// comes from \p BB, it will be in \p BestEdges[0]
925 MachineBlockPlacement::BlockAndTailDupResult
926 MachineBlockPlacement::getBestTrellisSuccessor(
927     const MachineBasicBlock *BB,
928     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
929     BranchProbability AdjustedSumProb, const BlockChain &Chain,
930     const BlockFilterSet *BlockFilter) {
931 
932   BlockAndTailDupResult Result = {nullptr, false};
933   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
934                                                        BB->succ_end());
935 
936   // We assume size 2 because it's common. For general n, we would have to do
937   // the Hungarian algorithm, but it's not worth the complexity because more
938   // than 2 successors is fairly uncommon, and a trellis even more so.
939   if (Successors.size() != 2 || ViableSuccs.size() != 2)
940     return Result;
941 
942   // Collect the edge frequencies of all edges that form the trellis.
943   SmallVector<WeightedEdge, 8> Edges[2];
944   int SuccIndex = 0;
945   for (auto Succ : ViableSuccs) {
946     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
947       // Skip any placed predecessors that are not BB
948       if (SuccPred != BB)
949         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
950             BlockToChain[SuccPred] == &Chain ||
951             BlockToChain[SuccPred] == BlockToChain[Succ])
952           continue;
953       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
954                                 MBPI->getEdgeProbability(SuccPred, Succ);
955       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
956     }
957     ++SuccIndex;
958   }
959 
960   // Pick the best combination of 2 edges from all the edges in the trellis.
961   WeightedEdge BestA, BestB;
962   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
963 
964   if (BestA.Src != BB) {
965     // If we have a trellis, and BB doesn't have the best fallthrough edges,
966     // we shouldn't choose any successor. We've already looked and there's a
967     // better fallthrough edge for all the successors.
968     DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
969     return Result;
970   }
971 
972   // Did we pick the triangle edge? If tail-duplication is profitable, do
973   // that instead. Otherwise merge the triangle edge now while we know it is
974   // optimal.
975   if (BestA.Dest == BestB.Src) {
976     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
977     // would be better.
978     MachineBasicBlock *Succ1 = BestA.Dest;
979     MachineBasicBlock *Succ2 = BestB.Dest;
980     // Check to see if tail-duplication would be profitable.
981     if (TailDupPlacement && shouldTailDuplicate(Succ2) &&
982         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
983         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
984                               Chain, BlockFilter)) {
985       DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
986                 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
987             dbgs() << "    Selected: " << getBlockName(Succ2)
988                    << ", probability: " << Succ2Prob << " (Tail Duplicate)\n");
989       Result.BB = Succ2;
990       Result.ShouldTailDup = true;
991       return Result;
992     }
993   }
994   // We have already computed the optimal edge for the other side of the
995   // trellis.
996   ComputedEdges[BestB.Src] = { BestB.Dest, false };
997 
998   auto TrellisSucc = BestA.Dest;
999   DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1000             MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1001         dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1002                << ", probability: " << SuccProb << " (Trellis)\n");
1003   Result.BB = TrellisSucc;
1004   return Result;
1005 }
1006 
1007 /// When the option TailDupPlacement is on, this method checks if the
1008 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1009 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1010 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1011     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1012     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1013   if (!shouldTailDuplicate(Succ))
1014     return false;
1015 
1016   // For CFG checking.
1017   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1018                                                        BB->succ_end());
1019   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1020     // Make sure all unplaced and unfiltered predecessors can be
1021     // tail-duplicated into.
1022     // Skip any blocks that are already placed or not in this loop.
1023     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1024         || BlockToChain[Pred] == &Chain)
1025       continue;
1026     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1027       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1028         // This will result in a trellis after tail duplication, so we don't
1029         // need to copy Succ into this predecessor. In the presence
1030         // of a trellis tail duplication can continue to be profitable.
1031         // For example:
1032         // A            A
1033         // |\           |\
1034         // | \          | \
1035         // |  C         |  C+BB
1036         // | /          |  |
1037         // |/           |  |
1038         // BB    =>     BB |
1039         // |\           |\/|
1040         // | \          |/\|
1041         // |  D         |  D
1042         // | /          | /
1043         // |/           |/
1044         // Succ         Succ
1045         //
1046         // After BB was duplicated into C, the layout looks like the one on the
1047         // right. BB and C now have the same successors. When considering
1048         // whether Succ can be duplicated into all its unplaced predecessors, we
1049         // ignore C.
1050         // We can do this because C already has a profitable fallthrough, namely
1051         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1052         // duplication and for this test.
1053         //
1054         // This allows trellises to be laid out in 2 separate chains
1055         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1056         // because it allows the creation of 2 fallthrough paths with links
1057         // between them, and we correctly identify the best layout for these
1058         // CFGs. We want to extend trellises that the user created in addition
1059         // to trellises created by tail-duplication, so we just look for the
1060         // CFG.
1061         continue;
1062       return false;
1063     }
1064   }
1065   return true;
1066 }
1067 
1068 /// Find chains of triangles where we believe it would be profitable to
1069 /// tail-duplicate them all, but a local analysis would not find them.
1070 /// There are 3 ways this can be profitable:
1071 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1072 ///    longer chains)
1073 /// 2) The chains are statically correlated. Branch probabilities have a very
1074 ///    U-shaped distribution.
1075 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1076 ///    If the branches in a chain are likely to be from the same side of the
1077 ///    distribution as their predecessor, but are independent at runtime, this
1078 ///    transformation is profitable. (Because the cost of being wrong is a small
1079 ///    fixed cost, unlike the standard triangle layout where the cost of being
1080 ///    wrong scales with the # of triangles.)
1081 /// 3) The chains are dynamically correlated. If the probability that a previous
1082 ///    branch was taken positively influences whether the next branch will be
1083 ///    taken
1084 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1085 void MachineBlockPlacement::precomputeTriangleChains() {
1086   struct TriangleChain {
1087     std::vector<MachineBasicBlock *> Edges;
1088     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1089         : Edges({src, dst}) {}
1090 
1091     void append(MachineBasicBlock *dst) {
1092       assert(getKey()->isSuccessor(dst) &&
1093              "Attempting to append a block that is not a successor.");
1094       Edges.push_back(dst);
1095     }
1096 
1097     unsigned count() const { return Edges.size() - 1; }
1098 
1099     MachineBasicBlock *getKey() const {
1100       return Edges.back();
1101     }
1102   };
1103 
1104   if (TriangleChainCount == 0)
1105     return;
1106 
1107   DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1108   // Map from last block to the chain that contains it. This allows us to extend
1109   // chains as we find new triangles.
1110   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1111   for (MachineBasicBlock &BB : *F) {
1112     // If BB doesn't have 2 successors, it doesn't start a triangle.
1113     if (BB.succ_size() != 2)
1114       continue;
1115     MachineBasicBlock *PDom = nullptr;
1116     for (MachineBasicBlock *Succ : BB.successors()) {
1117       if (!MPDT->dominates(Succ, &BB))
1118         continue;
1119       PDom = Succ;
1120       break;
1121     }
1122     // If BB doesn't have a post-dominating successor, it doesn't form a
1123     // triangle.
1124     if (PDom == nullptr)
1125       continue;
1126     // If PDom has a hint that it is low probability, skip this triangle.
1127     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1128       continue;
1129     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1130     // we're looking for.
1131     if (!shouldTailDuplicate(PDom))
1132       continue;
1133     bool CanTailDuplicate = true;
1134     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1135     // isn't the kind of triangle we're looking for.
1136     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1137       if (Pred == &BB)
1138         continue;
1139       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1140         CanTailDuplicate = false;
1141         break;
1142       }
1143     }
1144     // If we can't tail-duplicate PDom to its predecessors, then skip this
1145     // triangle.
1146     if (!CanTailDuplicate)
1147       continue;
1148 
1149     // Now we have an interesting triangle. Insert it if it's not part of an
1150     // existing chain
1151     // Note: This cannot be replaced with a call insert() or emplace() because
1152     // the find key is BB, but the insert/emplace key is PDom.
1153     auto Found = TriangleChainMap.find(&BB);
1154     // If it is, remove the chain from the map, grow it, and put it back in the
1155     // map with the end as the new key.
1156     if (Found != TriangleChainMap.end()) {
1157       TriangleChain Chain = std::move(Found->second);
1158       TriangleChainMap.erase(Found);
1159       Chain.append(PDom);
1160       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1161     } else {
1162       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1163       assert (InsertResult.second && "Block seen twice.");
1164       (void) InsertResult;
1165     }
1166   }
1167 
1168   for (auto &ChainPair : TriangleChainMap) {
1169     TriangleChain &Chain = ChainPair.second;
1170     // Benchmarking has shown that due to branch correlation duplicating 2 or
1171     // more triangles is profitable, despite the calculations assuming
1172     // independence.
1173     if (Chain.count() < TriangleChainCount)
1174       continue;
1175     MachineBasicBlock *dst = Chain.Edges.back();
1176     Chain.Edges.pop_back();
1177     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1178       DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" <<
1179             getBlockName(dst) << " as pre-computed based on triangles.\n");
1180       ComputedEdges[src] = { dst, true };
1181       dst = src;
1182     }
1183   }
1184 }
1185 
1186 // When profile is not present, return the StaticLikelyProb.
1187 // When profile is available, we need to handle the triangle-shape CFG.
1188 static BranchProbability getLayoutSuccessorProbThreshold(
1189       const MachineBasicBlock *BB) {
1190   if (!BB->getParent()->getFunction()->getEntryCount())
1191     return BranchProbability(StaticLikelyProb, 100);
1192   if (BB->succ_size() == 2) {
1193     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1194     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1195     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1196       /* See case 1 below for the cost analysis. For BB->Succ to
1197        * be taken with smaller cost, the following needs to hold:
1198        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1199        *   So the threshold T in the calculation below
1200        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1201        *   So T / (1 - T) = 2, Yielding T = 2/3
1202        * Also adding user specified branch bias, we have
1203        *   T = (2/3)*(ProfileLikelyProb/50)
1204        *     = (2*ProfileLikelyProb)/150)
1205        */
1206       return BranchProbability(2 * ProfileLikelyProb, 150);
1207     }
1208   }
1209   return BranchProbability(ProfileLikelyProb, 100);
1210 }
1211 
1212 /// Checks to see if the layout candidate block \p Succ has a better layout
1213 /// predecessor than \c BB. If yes, returns true.
1214 /// \p SuccProb: The probability adjusted for only remaining blocks.
1215 ///   Only used for logging
1216 /// \p RealSuccProb: The un-adjusted probability.
1217 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1218 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1219 ///    considered
1220 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1221     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1222     const BlockChain &SuccChain, BranchProbability SuccProb,
1223     BranchProbability RealSuccProb, const BlockChain &Chain,
1224     const BlockFilterSet *BlockFilter) {
1225 
1226   // There isn't a better layout when there are no unscheduled predecessors.
1227   if (SuccChain.UnscheduledPredecessors == 0)
1228     return false;
1229 
1230   // There are two basic scenarios here:
1231   // -------------------------------------
1232   // Case 1: triangular shape CFG (if-then):
1233   //     BB
1234   //     | \
1235   //     |  \
1236   //     |   Pred
1237   //     |   /
1238   //     Succ
1239   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1240   // set Succ as the layout successor of BB. Picking Succ as BB's
1241   // successor breaks the CFG constraints (FIXME: define these constraints).
1242   // With this layout, Pred BB
1243   // is forced to be outlined, so the overall cost will be cost of the
1244   // branch taken from BB to Pred, plus the cost of back taken branch
1245   // from Pred to Succ, as well as the additional cost associated
1246   // with the needed unconditional jump instruction from Pred To Succ.
1247 
1248   // The cost of the topological order layout is the taken branch cost
1249   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1250   // must hold:
1251   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1252   //      < freq(BB->Succ) *  taken_branch_cost.
1253   // Ignoring unconditional jump cost, we get
1254   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1255   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1256   //
1257   // When real profile data is available, we can precisely compute the
1258   // probability threshold that is needed for edge BB->Succ to be considered.
1259   // Without profile data, the heuristic requires the branch bias to be
1260   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1261   // -----------------------------------------------------------------
1262   // Case 2: diamond like CFG (if-then-else):
1263   //     S
1264   //    / \
1265   //   |   \
1266   //  BB    Pred
1267   //   \    /
1268   //    Succ
1269   //    ..
1270   //
1271   // The current block is BB and edge BB->Succ is now being evaluated.
1272   // Note that edge S->BB was previously already selected because
1273   // prob(S->BB) > prob(S->Pred).
1274   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1275   // choose Pred, we will have a topological ordering as shown on the left
1276   // in the picture below. If we choose Succ, we have the solution as shown
1277   // on the right:
1278   //
1279   //   topo-order:
1280   //
1281   //       S-----                             ---S
1282   //       |    |                             |  |
1283   //    ---BB   |                             |  BB
1284   //    |       |                             |  |
1285   //    |  pred--                             |  Succ--
1286   //    |  |                                  |       |
1287   //    ---succ                               ---pred--
1288   //
1289   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1290   //      = freq(S->Pred) + freq(S->BB)
1291   //
1292   // If we have profile data (i.e, branch probabilities can be trusted), the
1293   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1294   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1295   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1296   // means the cost of topological order is greater.
1297   // When profile data is not available, however, we need to be more
1298   // conservative. If the branch prediction is wrong, breaking the topo-order
1299   // will actually yield a layout with large cost. For this reason, we need
1300   // strong biased branch at block S with Prob(S->BB) in order to select
1301   // BB->Succ. This is equivalent to looking the CFG backward with backward
1302   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1303   // profile data).
1304   // --------------------------------------------------------------------------
1305   // Case 3: forked diamond
1306   //       S
1307   //      / \
1308   //     /   \
1309   //   BB    Pred
1310   //   | \   / |
1311   //   |  \ /  |
1312   //   |   X   |
1313   //   |  / \  |
1314   //   | /   \ |
1315   //   S1     S2
1316   //
1317   // The current block is BB and edge BB->S1 is now being evaluated.
1318   // As above S->BB was already selected because
1319   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1320   //
1321   // topo-order:
1322   //
1323   //     S-------|                     ---S
1324   //     |       |                     |  |
1325   //  ---BB      |                     |  BB
1326   //  |          |                     |  |
1327   //  |  Pred----|                     |  S1----
1328   //  |  |                             |       |
1329   //  --(S1 or S2)                     ---Pred--
1330   //                                        |
1331   //                                       S2
1332   //
1333   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1334   //    + min(freq(Pred->S1), freq(Pred->S2))
1335   // Non-topo-order cost:
1336   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1337   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1338   // is 0. Then the non topo layout is better when
1339   // freq(S->Pred) < freq(BB->S1).
1340   // This is exactly what is checked below.
1341   // Note there are other shapes that apply (Pred may not be a single block,
1342   // but they all fit this general pattern.)
1343   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1344 
1345   // Make sure that a hot successor doesn't have a globally more
1346   // important predecessor.
1347   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1348   bool BadCFGConflict = false;
1349 
1350   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1351     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1352         (BlockFilter && !BlockFilter->count(Pred)) ||
1353         BlockToChain[Pred] == &Chain ||
1354         // This check is redundant except for look ahead. This function is
1355         // called for lookahead by isProfitableToTailDup when BB hasn't been
1356         // placed yet.
1357         (Pred == BB))
1358       continue;
1359     // Do backward checking.
1360     // For all cases above, we need a backward checking to filter out edges that
1361     // are not 'strongly' biased.
1362     // BB  Pred
1363     //  \ /
1364     //  Succ
1365     // We select edge BB->Succ if
1366     //      freq(BB->Succ) > freq(Succ) * HotProb
1367     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1368     //      HotProb
1369     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1370     // Case 1 is covered too, because the first equation reduces to:
1371     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1372     BlockFrequency PredEdgeFreq =
1373         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1374     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1375       BadCFGConflict = true;
1376       break;
1377     }
1378   }
1379 
1380   if (BadCFGConflict) {
1381     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1382                  << " (prob) (non-cold CFG conflict)\n");
1383     return true;
1384   }
1385 
1386   return false;
1387 }
1388 
1389 /// \brief Select the best successor for a block.
1390 ///
1391 /// This looks across all successors of a particular block and attempts to
1392 /// select the "best" one to be the layout successor. It only considers direct
1393 /// successors which also pass the block filter. It will attempt to avoid
1394 /// breaking CFG structure, but cave and break such structures in the case of
1395 /// very hot successor edges.
1396 ///
1397 /// \returns The best successor block found, or null if none are viable, along
1398 /// with a boolean indicating if tail duplication is necessary.
1399 MachineBlockPlacement::BlockAndTailDupResult
1400 MachineBlockPlacement::selectBestSuccessor(
1401     const MachineBasicBlock *BB, const BlockChain &Chain,
1402     const BlockFilterSet *BlockFilter) {
1403   const BranchProbability HotProb(StaticLikelyProb, 100);
1404 
1405   BlockAndTailDupResult BestSucc = { nullptr, false };
1406   auto BestProb = BranchProbability::getZero();
1407 
1408   SmallVector<MachineBasicBlock *, 4> Successors;
1409   auto AdjustedSumProb =
1410       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1411 
1412   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1413 
1414   // if we already precomputed the best successor for BB, return that if still
1415   // applicable.
1416   auto FoundEdge = ComputedEdges.find(BB);
1417   if (FoundEdge != ComputedEdges.end()) {
1418     MachineBasicBlock *Succ = FoundEdge->second.BB;
1419     ComputedEdges.erase(FoundEdge);
1420     BlockChain *SuccChain = BlockToChain[Succ];
1421     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1422         SuccChain != &Chain && Succ == *SuccChain->begin())
1423       return FoundEdge->second;
1424   }
1425 
1426   // if BB is part of a trellis, Use the trellis to determine the optimal
1427   // fallthrough edges
1428   if (isTrellis(BB, Successors, Chain, BlockFilter))
1429     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1430                                    BlockFilter);
1431 
1432   // For blocks with CFG violations, we may be able to lay them out anyway with
1433   // tail-duplication. We keep this vector so we can perform the probability
1434   // calculations the minimum number of times.
1435   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1436       DupCandidates;
1437   for (MachineBasicBlock *Succ : Successors) {
1438     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1439     BranchProbability SuccProb =
1440         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1441 
1442     BlockChain &SuccChain = *BlockToChain[Succ];
1443     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1444     // predecessor that yields lower global cost.
1445     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1446                                    Chain, BlockFilter)) {
1447       // If tail duplication would make Succ profitable, place it.
1448       if (TailDupPlacement && shouldTailDuplicate(Succ))
1449         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1450       continue;
1451     }
1452 
1453     DEBUG(
1454         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1455                << SuccProb
1456                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1457                << "\n");
1458 
1459     if (BestSucc.BB && BestProb >= SuccProb) {
1460       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1461       continue;
1462     }
1463 
1464     DEBUG(dbgs() << "    Setting it as best candidate\n");
1465     BestSucc.BB = Succ;
1466     BestProb = SuccProb;
1467   }
1468   // Handle the tail duplication candidates in order of decreasing probability.
1469   // Stop at the first one that is profitable. Also stop if they are less
1470   // profitable than BestSucc. Position is important because we preserve it and
1471   // prefer first best match. Here we aren't comparing in order, so we capture
1472   // the position instead.
1473   if (DupCandidates.size() != 0) {
1474     auto cmp =
1475         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1476            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1477           return std::get<0>(a) > std::get<0>(b);
1478         };
1479     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1480   }
1481   for(auto &Tup : DupCandidates) {
1482     BranchProbability DupProb;
1483     MachineBasicBlock *Succ;
1484     std::tie(DupProb, Succ) = Tup;
1485     if (DupProb < BestProb)
1486       break;
1487     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1488         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1489       DEBUG(
1490           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1491                  << DupProb
1492                  << " (Tail Duplicate)\n");
1493       BestSucc.BB = Succ;
1494       BestSucc.ShouldTailDup = true;
1495       break;
1496     }
1497   }
1498 
1499   if (BestSucc.BB)
1500     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1501 
1502   return BestSucc;
1503 }
1504 
1505 /// \brief Select the best block from a worklist.
1506 ///
1507 /// This looks through the provided worklist as a list of candidate basic
1508 /// blocks and select the most profitable one to place. The definition of
1509 /// profitable only really makes sense in the context of a loop. This returns
1510 /// the most frequently visited block in the worklist, which in the case of
1511 /// a loop, is the one most desirable to be physically close to the rest of the
1512 /// loop body in order to improve i-cache behavior.
1513 ///
1514 /// \returns The best block found, or null if none are viable.
1515 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1516     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1517   // Once we need to walk the worklist looking for a candidate, cleanup the
1518   // worklist of already placed entries.
1519   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1520   // some code complexity) into the loop below.
1521   WorkList.erase(remove_if(WorkList,
1522                            [&](MachineBasicBlock *BB) {
1523                              return BlockToChain.lookup(BB) == &Chain;
1524                            }),
1525                  WorkList.end());
1526 
1527   if (WorkList.empty())
1528     return nullptr;
1529 
1530   bool IsEHPad = WorkList[0]->isEHPad();
1531 
1532   MachineBasicBlock *BestBlock = nullptr;
1533   BlockFrequency BestFreq;
1534   for (MachineBasicBlock *MBB : WorkList) {
1535     assert(MBB->isEHPad() == IsEHPad);
1536 
1537     BlockChain &SuccChain = *BlockToChain[MBB];
1538     if (&SuccChain == &Chain)
1539       continue;
1540 
1541     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
1542 
1543     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1544     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1545           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1546 
1547     // For ehpad, we layout the least probable first as to avoid jumping back
1548     // from least probable landingpads to more probable ones.
1549     //
1550     // FIXME: Using probability is probably (!) not the best way to achieve
1551     // this. We should probably have a more principled approach to layout
1552     // cleanup code.
1553     //
1554     // The goal is to get:
1555     //
1556     //                 +--------------------------+
1557     //                 |                          V
1558     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1559     //
1560     // Rather than:
1561     //
1562     //                 +-------------------------------------+
1563     //                 V                                     |
1564     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1565     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1566       continue;
1567 
1568     BestBlock = MBB;
1569     BestFreq = CandidateFreq;
1570   }
1571 
1572   return BestBlock;
1573 }
1574 
1575 /// \brief Retrieve the first unplaced basic block.
1576 ///
1577 /// This routine is called when we are unable to use the CFG to walk through
1578 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1579 /// We walk through the function's blocks in order, starting from the
1580 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1581 /// re-scanning the entire sequence on repeated calls to this routine.
1582 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1583     const BlockChain &PlacedChain,
1584     MachineFunction::iterator &PrevUnplacedBlockIt,
1585     const BlockFilterSet *BlockFilter) {
1586   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1587        ++I) {
1588     if (BlockFilter && !BlockFilter->count(&*I))
1589       continue;
1590     if (BlockToChain[&*I] != &PlacedChain) {
1591       PrevUnplacedBlockIt = I;
1592       // Now select the head of the chain to which the unplaced block belongs
1593       // as the block to place. This will force the entire chain to be placed,
1594       // and satisfies the requirements of merging chains.
1595       return *BlockToChain[&*I]->begin();
1596     }
1597   }
1598   return nullptr;
1599 }
1600 
1601 void MachineBlockPlacement::fillWorkLists(
1602     const MachineBasicBlock *MBB,
1603     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1604     const BlockFilterSet *BlockFilter = nullptr) {
1605   BlockChain &Chain = *BlockToChain[MBB];
1606   if (!UpdatedPreds.insert(&Chain).second)
1607     return;
1608 
1609   assert(Chain.UnscheduledPredecessors == 0);
1610   for (MachineBasicBlock *ChainBB : Chain) {
1611     assert(BlockToChain[ChainBB] == &Chain);
1612     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1613       if (BlockFilter && !BlockFilter->count(Pred))
1614         continue;
1615       if (BlockToChain[Pred] == &Chain)
1616         continue;
1617       ++Chain.UnscheduledPredecessors;
1618     }
1619   }
1620 
1621   if (Chain.UnscheduledPredecessors != 0)
1622     return;
1623 
1624   MachineBasicBlock *BB = *Chain.begin();
1625   if (BB->isEHPad())
1626     EHPadWorkList.push_back(BB);
1627   else
1628     BlockWorkList.push_back(BB);
1629 }
1630 
1631 void MachineBlockPlacement::buildChain(
1632     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1633     BlockFilterSet *BlockFilter) {
1634   assert(HeadBB && "BB must not be null.\n");
1635   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1636   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1637 
1638   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1639   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1640   MachineBasicBlock *BB = *std::prev(Chain.end());
1641   for (;;) {
1642     assert(BB && "null block found at end of chain in loop.");
1643     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1644     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1645 
1646 
1647     // Look for the best viable successor if there is one to place immediately
1648     // after this block.
1649     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1650     MachineBasicBlock* BestSucc = Result.BB;
1651     bool ShouldTailDup = Result.ShouldTailDup;
1652     if (TailDupPlacement)
1653       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1654 
1655     // If an immediate successor isn't available, look for the best viable
1656     // block among those we've identified as not violating the loop's CFG at
1657     // this point. This won't be a fallthrough, but it will increase locality.
1658     if (!BestSucc)
1659       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1660     if (!BestSucc)
1661       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1662 
1663     if (!BestSucc) {
1664       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1665       if (!BestSucc)
1666         break;
1667 
1668       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1669                       "layout successor until the CFG reduces\n");
1670     }
1671 
1672     // Placement may have changed tail duplication opportunities.
1673     // Check for that now.
1674     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1675       // If the chosen successor was duplicated into all its predecessors,
1676       // don't bother laying it out, just go round the loop again with BB as
1677       // the chain end.
1678       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1679                                        BlockFilter, PrevUnplacedBlockIt))
1680         continue;
1681     }
1682 
1683     // Place this block, updating the datastructures to reflect its placement.
1684     BlockChain &SuccChain = *BlockToChain[BestSucc];
1685     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1686     // we selected a successor that didn't fit naturally into the CFG.
1687     SuccChain.UnscheduledPredecessors = 0;
1688     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1689                  << getBlockName(BestSucc) << "\n");
1690     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1691     Chain.merge(BestSucc, &SuccChain);
1692     BB = *std::prev(Chain.end());
1693   }
1694 
1695   DEBUG(dbgs() << "Finished forming chain for header block "
1696                << getBlockName(*Chain.begin()) << "\n");
1697 }
1698 
1699 /// \brief Find the best loop top block for layout.
1700 ///
1701 /// Look for a block which is strictly better than the loop header for laying
1702 /// out at the top of the loop. This looks for one and only one pattern:
1703 /// a latch block with no conditional exit. This block will cause a conditional
1704 /// jump around it or will be the bottom of the loop if we lay it out in place,
1705 /// but if it it doesn't end up at the bottom of the loop for any reason,
1706 /// rotation alone won't fix it. Because such a block will always result in an
1707 /// unconditional jump (for the backedge) rotating it in front of the loop
1708 /// header is always profitable.
1709 MachineBasicBlock *
1710 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1711                                        const BlockFilterSet &LoopBlockSet) {
1712   // Placing the latch block before the header may introduce an extra branch
1713   // that skips this block the first time the loop is executed, which we want
1714   // to avoid when optimising for size.
1715   // FIXME: in theory there is a case that does not introduce a new branch,
1716   // i.e. when the layout predecessor does not fallthrough to the loop header.
1717   // In practice this never happens though: there always seems to be a preheader
1718   // that can fallthrough and that is also placed before the header.
1719   if (F->getFunction()->optForSize())
1720     return L.getHeader();
1721 
1722   // Check that the header hasn't been fused with a preheader block due to
1723   // crazy branches. If it has, we need to start with the header at the top to
1724   // prevent pulling the preheader into the loop body.
1725   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1726   if (!LoopBlockSet.count(*HeaderChain.begin()))
1727     return L.getHeader();
1728 
1729   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1730                << "\n");
1731 
1732   BlockFrequency BestPredFreq;
1733   MachineBasicBlock *BestPred = nullptr;
1734   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1735     if (!LoopBlockSet.count(Pred))
1736       continue;
1737     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1738                  << Pred->succ_size() << " successors, ";
1739           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1740     if (Pred->succ_size() > 1)
1741       continue;
1742 
1743     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1744     if (!BestPred || PredFreq > BestPredFreq ||
1745         (!(PredFreq < BestPredFreq) &&
1746          Pred->isLayoutSuccessor(L.getHeader()))) {
1747       BestPred = Pred;
1748       BestPredFreq = PredFreq;
1749     }
1750   }
1751 
1752   // If no direct predecessor is fine, just use the loop header.
1753   if (!BestPred) {
1754     DEBUG(dbgs() << "    final top unchanged\n");
1755     return L.getHeader();
1756   }
1757 
1758   // Walk backwards through any straight line of predecessors.
1759   while (BestPred->pred_size() == 1 &&
1760          (*BestPred->pred_begin())->succ_size() == 1 &&
1761          *BestPred->pred_begin() != L.getHeader())
1762     BestPred = *BestPred->pred_begin();
1763 
1764   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1765   return BestPred;
1766 }
1767 
1768 /// \brief Find the best loop exiting block for layout.
1769 ///
1770 /// This routine implements the logic to analyze the loop looking for the best
1771 /// block to layout at the top of the loop. Typically this is done to maximize
1772 /// fallthrough opportunities.
1773 MachineBasicBlock *
1774 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1775                                         const BlockFilterSet &LoopBlockSet) {
1776   // We don't want to layout the loop linearly in all cases. If the loop header
1777   // is just a normal basic block in the loop, we want to look for what block
1778   // within the loop is the best one to layout at the top. However, if the loop
1779   // header has be pre-merged into a chain due to predecessors not having
1780   // analyzable branches, *and* the predecessor it is merged with is *not* part
1781   // of the loop, rotating the header into the middle of the loop will create
1782   // a non-contiguous range of blocks which is Very Bad. So start with the
1783   // header and only rotate if safe.
1784   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1785   if (!LoopBlockSet.count(*HeaderChain.begin()))
1786     return nullptr;
1787 
1788   BlockFrequency BestExitEdgeFreq;
1789   unsigned BestExitLoopDepth = 0;
1790   MachineBasicBlock *ExitingBB = nullptr;
1791   // If there are exits to outer loops, loop rotation can severely limit
1792   // fallthrough opportunities unless it selects such an exit. Keep a set of
1793   // blocks where rotating to exit with that block will reach an outer loop.
1794   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1795 
1796   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1797                << "\n");
1798   for (MachineBasicBlock *MBB : L.getBlocks()) {
1799     BlockChain &Chain = *BlockToChain[MBB];
1800     // Ensure that this block is at the end of a chain; otherwise it could be
1801     // mid-way through an inner loop or a successor of an unanalyzable branch.
1802     if (MBB != *std::prev(Chain.end()))
1803       continue;
1804 
1805     // Now walk the successors. We need to establish whether this has a viable
1806     // exiting successor and whether it has a viable non-exiting successor.
1807     // We store the old exiting state and restore it if a viable looping
1808     // successor isn't found.
1809     MachineBasicBlock *OldExitingBB = ExitingBB;
1810     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1811     bool HasLoopingSucc = false;
1812     for (MachineBasicBlock *Succ : MBB->successors()) {
1813       if (Succ->isEHPad())
1814         continue;
1815       if (Succ == MBB)
1816         continue;
1817       BlockChain &SuccChain = *BlockToChain[Succ];
1818       // Don't split chains, either this chain or the successor's chain.
1819       if (&Chain == &SuccChain) {
1820         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1821                      << getBlockName(Succ) << " (chain conflict)\n");
1822         continue;
1823       }
1824 
1825       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1826       if (LoopBlockSet.count(Succ)) {
1827         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1828                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1829         HasLoopingSucc = true;
1830         continue;
1831       }
1832 
1833       unsigned SuccLoopDepth = 0;
1834       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1835         SuccLoopDepth = ExitLoop->getLoopDepth();
1836         if (ExitLoop->contains(&L))
1837           BlocksExitingToOuterLoop.insert(MBB);
1838       }
1839 
1840       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1841       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1842                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1843             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1844       // Note that we bias this toward an existing layout successor to retain
1845       // incoming order in the absence of better information. The exit must have
1846       // a frequency higher than the current exit before we consider breaking
1847       // the layout.
1848       BranchProbability Bias(100 - ExitBlockBias, 100);
1849       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1850           ExitEdgeFreq > BestExitEdgeFreq ||
1851           (MBB->isLayoutSuccessor(Succ) &&
1852            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1853         BestExitEdgeFreq = ExitEdgeFreq;
1854         ExitingBB = MBB;
1855       }
1856     }
1857 
1858     if (!HasLoopingSucc) {
1859       // Restore the old exiting state, no viable looping successor was found.
1860       ExitingBB = OldExitingBB;
1861       BestExitEdgeFreq = OldBestExitEdgeFreq;
1862     }
1863   }
1864   // Without a candidate exiting block or with only a single block in the
1865   // loop, just use the loop header to layout the loop.
1866   if (!ExitingBB) {
1867     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1868     return nullptr;
1869   }
1870   if (L.getNumBlocks() == 1) {
1871     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1872     return nullptr;
1873   }
1874 
1875   // Also, if we have exit blocks which lead to outer loops but didn't select
1876   // one of them as the exiting block we are rotating toward, disable loop
1877   // rotation altogether.
1878   if (!BlocksExitingToOuterLoop.empty() &&
1879       !BlocksExitingToOuterLoop.count(ExitingBB))
1880     return nullptr;
1881 
1882   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1883   return ExitingBB;
1884 }
1885 
1886 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1887 ///
1888 /// Once we have built a chain, try to rotate it to line up the hot exit block
1889 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1890 /// branches. For example, if the loop has fallthrough into its header and out
1891 /// of its bottom already, don't rotate it.
1892 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1893                                        const MachineBasicBlock *ExitingBB,
1894                                        const BlockFilterSet &LoopBlockSet) {
1895   if (!ExitingBB)
1896     return;
1897 
1898   MachineBasicBlock *Top = *LoopChain.begin();
1899   bool ViableTopFallthrough = false;
1900   for (MachineBasicBlock *Pred : Top->predecessors()) {
1901     BlockChain *PredChain = BlockToChain[Pred];
1902     if (!LoopBlockSet.count(Pred) &&
1903         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1904       ViableTopFallthrough = true;
1905       break;
1906     }
1907   }
1908 
1909   // If the header has viable fallthrough, check whether the current loop
1910   // bottom is a viable exiting block. If so, bail out as rotating will
1911   // introduce an unnecessary branch.
1912   if (ViableTopFallthrough) {
1913     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1914     for (MachineBasicBlock *Succ : Bottom->successors()) {
1915       BlockChain *SuccChain = BlockToChain[Succ];
1916       if (!LoopBlockSet.count(Succ) &&
1917           (!SuccChain || Succ == *SuccChain->begin()))
1918         return;
1919     }
1920   }
1921 
1922   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1923   if (ExitIt == LoopChain.end())
1924     return;
1925 
1926   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1927 }
1928 
1929 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1930 ///
1931 /// With profile data, we can determine the cost in terms of missed fall through
1932 /// opportunities when rotating a loop chain and select the best rotation.
1933 /// Basically, there are three kinds of cost to consider for each rotation:
1934 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1935 ///    the loop to the loop header.
1936 ///    2. The possibly missed fall through edges (if they exist) from the loop
1937 ///    exits to BB out of the loop.
1938 ///    3. The missed fall through edge (if it exists) from the last BB to the
1939 ///    first BB in the loop chain.
1940 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1941 ///  We select the best rotation with the smallest cost.
1942 void MachineBlockPlacement::rotateLoopWithProfile(
1943     BlockChain &LoopChain, const MachineLoop &L,
1944     const BlockFilterSet &LoopBlockSet) {
1945   auto HeaderBB = L.getHeader();
1946   auto HeaderIter = find(LoopChain, HeaderBB);
1947   auto RotationPos = LoopChain.end();
1948 
1949   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1950 
1951   // A utility lambda that scales up a block frequency by dividing it by a
1952   // branch probability which is the reciprocal of the scale.
1953   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1954                                 unsigned Scale) -> BlockFrequency {
1955     if (Scale == 0)
1956       return 0;
1957     // Use operator / between BlockFrequency and BranchProbability to implement
1958     // saturating multiplication.
1959     return Freq / BranchProbability(1, Scale);
1960   };
1961 
1962   // Compute the cost of the missed fall-through edge to the loop header if the
1963   // chain head is not the loop header. As we only consider natural loops with
1964   // single header, this computation can be done only once.
1965   BlockFrequency HeaderFallThroughCost(0);
1966   for (auto *Pred : HeaderBB->predecessors()) {
1967     BlockChain *PredChain = BlockToChain[Pred];
1968     if (!LoopBlockSet.count(Pred) &&
1969         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1970       auto EdgeFreq =
1971           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1972       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1973       // If the predecessor has only an unconditional jump to the header, we
1974       // need to consider the cost of this jump.
1975       if (Pred->succ_size() == 1)
1976         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1977       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1978     }
1979   }
1980 
1981   // Here we collect all exit blocks in the loop, and for each exit we find out
1982   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1983   // as the sum of frequencies of exit edges we collect here, excluding the exit
1984   // edge from the tail of the loop chain.
1985   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1986   for (auto BB : LoopChain) {
1987     auto LargestExitEdgeProb = BranchProbability::getZero();
1988     for (auto *Succ : BB->successors()) {
1989       BlockChain *SuccChain = BlockToChain[Succ];
1990       if (!LoopBlockSet.count(Succ) &&
1991           (!SuccChain || Succ == *SuccChain->begin())) {
1992         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1993         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1994       }
1995     }
1996     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1997       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1998       ExitsWithFreq.emplace_back(BB, ExitFreq);
1999     }
2000   }
2001 
2002   // In this loop we iterate every block in the loop chain and calculate the
2003   // cost assuming the block is the head of the loop chain. When the loop ends,
2004   // we should have found the best candidate as the loop chain's head.
2005   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2006             EndIter = LoopChain.end();
2007        Iter != EndIter; Iter++, TailIter++) {
2008     // TailIter is used to track the tail of the loop chain if the block we are
2009     // checking (pointed by Iter) is the head of the chain.
2010     if (TailIter == LoopChain.end())
2011       TailIter = LoopChain.begin();
2012 
2013     auto TailBB = *TailIter;
2014 
2015     // Calculate the cost by putting this BB to the top.
2016     BlockFrequency Cost = 0;
2017 
2018     // If the current BB is the loop header, we need to take into account the
2019     // cost of the missed fall through edge from outside of the loop to the
2020     // header.
2021     if (Iter != HeaderIter)
2022       Cost += HeaderFallThroughCost;
2023 
2024     // Collect the loop exit cost by summing up frequencies of all exit edges
2025     // except the one from the chain tail.
2026     for (auto &ExitWithFreq : ExitsWithFreq)
2027       if (TailBB != ExitWithFreq.first)
2028         Cost += ExitWithFreq.second;
2029 
2030     // The cost of breaking the once fall-through edge from the tail to the top
2031     // of the loop chain. Here we need to consider three cases:
2032     // 1. If the tail node has only one successor, then we will get an
2033     //    additional jmp instruction. So the cost here is (MisfetchCost +
2034     //    JumpInstCost) * tail node frequency.
2035     // 2. If the tail node has two successors, then we may still get an
2036     //    additional jmp instruction if the layout successor after the loop
2037     //    chain is not its CFG successor. Note that the more frequently executed
2038     //    jmp instruction will be put ahead of the other one. Assume the
2039     //    frequency of those two branches are x and y, where x is the frequency
2040     //    of the edge to the chain head, then the cost will be
2041     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2042     // 3. If the tail node has more than two successors (this rarely happens),
2043     //    we won't consider any additional cost.
2044     if (TailBB->isSuccessor(*Iter)) {
2045       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2046       if (TailBB->succ_size() == 1)
2047         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2048                                     MisfetchCost + JumpInstCost);
2049       else if (TailBB->succ_size() == 2) {
2050         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2051         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2052         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2053                                   ? TailBBFreq * TailToHeadProb.getCompl()
2054                                   : TailToHeadFreq;
2055         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2056                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2057       }
2058     }
2059 
2060     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
2061                  << " to the top: " << Cost.getFrequency() << "\n");
2062 
2063     if (Cost < SmallestRotationCost) {
2064       SmallestRotationCost = Cost;
2065       RotationPos = Iter;
2066     }
2067   }
2068 
2069   if (RotationPos != LoopChain.end()) {
2070     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2071                  << " to the top\n");
2072     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2073   }
2074 }
2075 
2076 /// \brief Collect blocks in the given loop that are to be placed.
2077 ///
2078 /// When profile data is available, exclude cold blocks from the returned set;
2079 /// otherwise, collect all blocks in the loop.
2080 MachineBlockPlacement::BlockFilterSet
2081 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2082   BlockFilterSet LoopBlockSet;
2083 
2084   // Filter cold blocks off from LoopBlockSet when profile data is available.
2085   // Collect the sum of frequencies of incoming edges to the loop header from
2086   // outside. If we treat the loop as a super block, this is the frequency of
2087   // the loop. Then for each block in the loop, we calculate the ratio between
2088   // its frequency and the frequency of the loop block. When it is too small,
2089   // don't add it to the loop chain. If there are outer loops, then this block
2090   // will be merged into the first outer loop chain for which this block is not
2091   // cold anymore. This needs precise profile data and we only do this when
2092   // profile data is available.
2093   if (F->getFunction()->getEntryCount()) {
2094     BlockFrequency LoopFreq(0);
2095     for (auto LoopPred : L.getHeader()->predecessors())
2096       if (!L.contains(LoopPred))
2097         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2098                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2099 
2100     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2101       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2102       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2103         continue;
2104       LoopBlockSet.insert(LoopBB);
2105     }
2106   } else
2107     LoopBlockSet.insert(L.block_begin(), L.block_end());
2108 
2109   return LoopBlockSet;
2110 }
2111 
2112 /// \brief Forms basic block chains from the natural loop structures.
2113 ///
2114 /// These chains are designed to preserve the existing *structure* of the code
2115 /// as much as possible. We can then stitch the chains together in a way which
2116 /// both preserves the topological structure and minimizes taken conditional
2117 /// branches.
2118 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2119   // First recurse through any nested loops, building chains for those inner
2120   // loops.
2121   for (const MachineLoop *InnerLoop : L)
2122     buildLoopChains(*InnerLoop);
2123 
2124   assert(BlockWorkList.empty());
2125   assert(EHPadWorkList.empty());
2126   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2127 
2128   // Check if we have profile data for this function. If yes, we will rotate
2129   // this loop by modeling costs more precisely which requires the profile data
2130   // for better layout.
2131   bool RotateLoopWithProfile =
2132       ForcePreciseRotationCost ||
2133       (PreciseRotationCost && F->getFunction()->getEntryCount());
2134 
2135   // First check to see if there is an obviously preferable top block for the
2136   // loop. This will default to the header, but may end up as one of the
2137   // predecessors to the header if there is one which will result in strictly
2138   // fewer branches in the loop body.
2139   // When we use profile data to rotate the loop, this is unnecessary.
2140   MachineBasicBlock *LoopTop =
2141       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2142 
2143   // If we selected just the header for the loop top, look for a potentially
2144   // profitable exit block in the event that rotating the loop can eliminate
2145   // branches by placing an exit edge at the bottom.
2146   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2147     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2148 
2149   BlockChain &LoopChain = *BlockToChain[LoopTop];
2150 
2151   // FIXME: This is a really lame way of walking the chains in the loop: we
2152   // walk the blocks, and use a set to prevent visiting a particular chain
2153   // twice.
2154   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2155   assert(LoopChain.UnscheduledPredecessors == 0);
2156   UpdatedPreds.insert(&LoopChain);
2157 
2158   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2159     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2160 
2161   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2162 
2163   if (RotateLoopWithProfile)
2164     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2165   else
2166     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2167 
2168   DEBUG({
2169     // Crash at the end so we get all of the debugging output first.
2170     bool BadLoop = false;
2171     if (LoopChain.UnscheduledPredecessors) {
2172       BadLoop = true;
2173       dbgs() << "Loop chain contains a block without its preds placed!\n"
2174              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2175              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2176     }
2177     for (MachineBasicBlock *ChainBB : LoopChain) {
2178       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2179       if (!LoopBlockSet.remove(ChainBB)) {
2180         // We don't mark the loop as bad here because there are real situations
2181         // where this can occur. For example, with an unanalyzable fallthrough
2182         // from a loop block to a non-loop block or vice versa.
2183         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2184                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2185                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2186                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2187       }
2188     }
2189 
2190     if (!LoopBlockSet.empty()) {
2191       BadLoop = true;
2192       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2193         dbgs() << "Loop contains blocks never placed into a chain!\n"
2194                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2195                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2196                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2197     }
2198     assert(!BadLoop && "Detected problems with the placement of this loop.");
2199   });
2200 
2201   BlockWorkList.clear();
2202   EHPadWorkList.clear();
2203 }
2204 
2205 void MachineBlockPlacement::buildCFGChains() {
2206   // Ensure that every BB in the function has an associated chain to simplify
2207   // the assumptions of the remaining algorithm.
2208   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2209   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2210        ++FI) {
2211     MachineBasicBlock *BB = &*FI;
2212     BlockChain *Chain =
2213         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2214     // Also, merge any blocks which we cannot reason about and must preserve
2215     // the exact fallthrough behavior for.
2216     for (;;) {
2217       Cond.clear();
2218       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2219       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2220         break;
2221 
2222       MachineFunction::iterator NextFI = std::next(FI);
2223       MachineBasicBlock *NextBB = &*NextFI;
2224       // Ensure that the layout successor is a viable block, as we know that
2225       // fallthrough is a possibility.
2226       assert(NextFI != FE && "Can't fallthrough past the last block.");
2227       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2228                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
2229                    << "\n");
2230       Chain->merge(NextBB, nullptr);
2231 #ifndef NDEBUG
2232       BlocksWithUnanalyzableExits.insert(&*BB);
2233 #endif
2234       FI = NextFI;
2235       BB = NextBB;
2236     }
2237   }
2238 
2239   // Build any loop-based chains.
2240   PreferredLoopExit = nullptr;
2241   for (MachineLoop *L : *MLI)
2242     buildLoopChains(*L);
2243 
2244   assert(BlockWorkList.empty());
2245   assert(EHPadWorkList.empty());
2246 
2247   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2248   for (MachineBasicBlock &MBB : *F)
2249     fillWorkLists(&MBB, UpdatedPreds);
2250 
2251   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2252   buildChain(&F->front(), FunctionChain);
2253 
2254 #ifndef NDEBUG
2255   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
2256 #endif
2257   DEBUG({
2258     // Crash at the end so we get all of the debugging output first.
2259     bool BadFunc = false;
2260     FunctionBlockSetType FunctionBlockSet;
2261     for (MachineBasicBlock &MBB : *F)
2262       FunctionBlockSet.insert(&MBB);
2263 
2264     for (MachineBasicBlock *ChainBB : FunctionChain)
2265       if (!FunctionBlockSet.erase(ChainBB)) {
2266         BadFunc = true;
2267         dbgs() << "Function chain contains a block not in the function!\n"
2268                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2269       }
2270 
2271     if (!FunctionBlockSet.empty()) {
2272       BadFunc = true;
2273       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2274         dbgs() << "Function contains blocks never placed into a chain!\n"
2275                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2276     }
2277     assert(!BadFunc && "Detected problems with the block placement.");
2278   });
2279 
2280   // Splice the blocks into place.
2281   MachineFunction::iterator InsertPos = F->begin();
2282   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
2283   for (MachineBasicBlock *ChainBB : FunctionChain) {
2284     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2285                                                        : "          ... ")
2286                  << getBlockName(ChainBB) << "\n");
2287     if (InsertPos != MachineFunction::iterator(ChainBB))
2288       F->splice(InsertPos, ChainBB);
2289     else
2290       ++InsertPos;
2291 
2292     // Update the terminator of the previous block.
2293     if (ChainBB == *FunctionChain.begin())
2294       continue;
2295     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2296 
2297     // FIXME: It would be awesome of updateTerminator would just return rather
2298     // than assert when the branch cannot be analyzed in order to remove this
2299     // boiler plate.
2300     Cond.clear();
2301     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2302 
2303 #ifndef NDEBUG
2304     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2305       // Given the exact block placement we chose, we may actually not _need_ to
2306       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2307       // do that at this point is a bug.
2308       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2309               !PrevBB->canFallThrough()) &&
2310              "Unexpected block with un-analyzable fallthrough!");
2311       Cond.clear();
2312       TBB = FBB = nullptr;
2313     }
2314 #endif
2315 
2316     // The "PrevBB" is not yet updated to reflect current code layout, so,
2317     //   o. it may fall-through to a block without explicit "goto" instruction
2318     //      before layout, and no longer fall-through it after layout; or
2319     //   o. just opposite.
2320     //
2321     // analyzeBranch() may return erroneous value for FBB when these two
2322     // situations take place. For the first scenario FBB is mistakenly set NULL;
2323     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2324     // mistakenly pointing to "*BI".
2325     // Thus, if the future change needs to use FBB before the layout is set, it
2326     // has to correct FBB first by using the code similar to the following:
2327     //
2328     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2329     //   PrevBB->updateTerminator();
2330     //   Cond.clear();
2331     //   TBB = FBB = nullptr;
2332     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2333     //     // FIXME: This should never take place.
2334     //     TBB = FBB = nullptr;
2335     //   }
2336     // }
2337     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2338       PrevBB->updateTerminator();
2339   }
2340 
2341   // Fixup the last block.
2342   Cond.clear();
2343   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2344   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2345     F->back().updateTerminator();
2346 
2347   BlockWorkList.clear();
2348   EHPadWorkList.clear();
2349 }
2350 
2351 void MachineBlockPlacement::optimizeBranches() {
2352   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2353   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2354 
2355   // Now that all the basic blocks in the chain have the proper layout,
2356   // make a final call to AnalyzeBranch with AllowModify set.
2357   // Indeed, the target may be able to optimize the branches in a way we
2358   // cannot because all branches may not be analyzable.
2359   // E.g., the target may be able to remove an unconditional branch to
2360   // a fallthrough when it occurs after predicated terminators.
2361   for (MachineBasicBlock *ChainBB : FunctionChain) {
2362     Cond.clear();
2363     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2364     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2365       // If PrevBB has a two-way branch, try to re-order the branches
2366       // such that we branch to the successor with higher probability first.
2367       if (TBB && !Cond.empty() && FBB &&
2368           MBPI->getEdgeProbability(ChainBB, FBB) >
2369               MBPI->getEdgeProbability(ChainBB, TBB) &&
2370           !TII->reverseBranchCondition(Cond)) {
2371         DEBUG(dbgs() << "Reverse order of the two branches: "
2372                      << getBlockName(ChainBB) << "\n");
2373         DEBUG(dbgs() << "    Edge probability: "
2374                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2375                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2376         DebugLoc dl; // FIXME: this is nowhere
2377         TII->removeBranch(*ChainBB);
2378         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2379         ChainBB->updateTerminator();
2380       }
2381     }
2382   }
2383 }
2384 
2385 void MachineBlockPlacement::alignBlocks() {
2386   // Walk through the backedges of the function now that we have fully laid out
2387   // the basic blocks and align the destination of each backedge. We don't rely
2388   // exclusively on the loop info here so that we can align backedges in
2389   // unnatural CFGs and backedges that were introduced purely because of the
2390   // loop rotations done during this layout pass.
2391   if (F->getFunction()->optForSize())
2392     return;
2393   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2394   if (FunctionChain.begin() == FunctionChain.end())
2395     return; // Empty chain.
2396 
2397   const BranchProbability ColdProb(1, 5); // 20%
2398   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2399   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2400   for (MachineBasicBlock *ChainBB : FunctionChain) {
2401     if (ChainBB == *FunctionChain.begin())
2402       continue;
2403 
2404     // Don't align non-looping basic blocks. These are unlikely to execute
2405     // enough times to matter in practice. Note that we'll still handle
2406     // unnatural CFGs inside of a natural outer loop (the common case) and
2407     // rotated loops.
2408     MachineLoop *L = MLI->getLoopFor(ChainBB);
2409     if (!L)
2410       continue;
2411 
2412     unsigned Align = TLI->getPrefLoopAlignment(L);
2413     if (!Align)
2414       continue; // Don't care about loop alignment.
2415 
2416     // If the block is cold relative to the function entry don't waste space
2417     // aligning it.
2418     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2419     if (Freq < WeightedEntryFreq)
2420       continue;
2421 
2422     // If the block is cold relative to its loop header, don't align it
2423     // regardless of what edges into the block exist.
2424     MachineBasicBlock *LoopHeader = L->getHeader();
2425     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2426     if (Freq < (LoopHeaderFreq * ColdProb))
2427       continue;
2428 
2429     // Check for the existence of a non-layout predecessor which would benefit
2430     // from aligning this block.
2431     MachineBasicBlock *LayoutPred =
2432         &*std::prev(MachineFunction::iterator(ChainBB));
2433 
2434     // Force alignment if all the predecessors are jumps. We already checked
2435     // that the block isn't cold above.
2436     if (!LayoutPred->isSuccessor(ChainBB)) {
2437       ChainBB->setAlignment(Align);
2438       continue;
2439     }
2440 
2441     // Align this block if the layout predecessor's edge into this block is
2442     // cold relative to the block. When this is true, other predecessors make up
2443     // all of the hot entries into the block and thus alignment is likely to be
2444     // important.
2445     BranchProbability LayoutProb =
2446         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2447     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2448     if (LayoutEdgeFreq <= (Freq * ColdProb))
2449       ChainBB->setAlignment(Align);
2450   }
2451 }
2452 
2453 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2454 /// it was duplicated into its chain predecessor and removed.
2455 /// \p BB    - Basic block that may be duplicated.
2456 ///
2457 /// \p LPred - Chosen layout predecessor of \p BB.
2458 ///            Updated to be the chain end if LPred is removed.
2459 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2460 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2461 ///                  Used to identify which blocks to update predecessor
2462 ///                  counts.
2463 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2464 ///                          chosen in the given order due to unnatural CFG
2465 ///                          only needed if \p BB is removed and
2466 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2467 /// @return true if \p BB was removed.
2468 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2469     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2470     const MachineBasicBlock *LoopHeaderBB,
2471     BlockChain &Chain, BlockFilterSet *BlockFilter,
2472     MachineFunction::iterator &PrevUnplacedBlockIt) {
2473   bool Removed, DuplicatedToLPred;
2474   bool DuplicatedToOriginalLPred;
2475   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2476                                     PrevUnplacedBlockIt,
2477                                     DuplicatedToLPred);
2478   if (!Removed)
2479     return false;
2480   DuplicatedToOriginalLPred = DuplicatedToLPred;
2481   // Iteratively try to duplicate again. It can happen that a block that is
2482   // duplicated into is still small enough to be duplicated again.
2483   // No need to call markBlockSuccessors in this case, as the blocks being
2484   // duplicated from here on are already scheduled.
2485   // Note that DuplicatedToLPred always implies Removed.
2486   while (DuplicatedToLPred) {
2487     assert (Removed && "Block must have been removed to be duplicated into its "
2488             "layout predecessor.");
2489     MachineBasicBlock *DupBB, *DupPred;
2490     // The removal callback causes Chain.end() to be updated when a block is
2491     // removed. On the first pass through the loop, the chain end should be the
2492     // same as it was on function entry. On subsequent passes, because we are
2493     // duplicating the block at the end of the chain, if it is removed the
2494     // chain will have shrunk by one block.
2495     BlockChain::iterator ChainEnd = Chain.end();
2496     DupBB = *(--ChainEnd);
2497     // Now try to duplicate again.
2498     if (ChainEnd == Chain.begin())
2499       break;
2500     DupPred = *std::prev(ChainEnd);
2501     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2502                                       PrevUnplacedBlockIt,
2503                                       DuplicatedToLPred);
2504   }
2505   // If BB was duplicated into LPred, it is now scheduled. But because it was
2506   // removed, markChainSuccessors won't be called for its chain. Instead we
2507   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2508   // at the end because repeating the tail duplication can increase the number
2509   // of unscheduled predecessors.
2510   LPred = *std::prev(Chain.end());
2511   if (DuplicatedToOriginalLPred)
2512     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2513   return true;
2514 }
2515 
2516 /// Tail duplicate \p BB into (some) predecessors if profitable.
2517 /// \p BB    - Basic block that may be duplicated
2518 /// \p LPred - Chosen layout predecessor of \p BB
2519 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2520 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2521 ///                  Used to identify which blocks to update predecessor
2522 ///                  counts.
2523 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2524 ///                          chosen in the given order due to unnatural CFG
2525 ///                          only needed if \p BB is removed and
2526 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2527 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2528 ///                        only be true if the block was removed.
2529 /// \return  - True if the block was duplicated into all preds and removed.
2530 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2531     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2532     BlockChain &Chain, BlockFilterSet *BlockFilter,
2533     MachineFunction::iterator &PrevUnplacedBlockIt,
2534     bool &DuplicatedToLPred) {
2535   DuplicatedToLPred = false;
2536   if (!shouldTailDuplicate(BB))
2537     return false;
2538 
2539   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2540         << BB->getNumber() << "\n");
2541 
2542   // This has to be a callback because none of it can be done after
2543   // BB is deleted.
2544   bool Removed = false;
2545   auto RemovalCallback =
2546       [&](MachineBasicBlock *RemBB) {
2547         // Signal to outer function
2548         Removed = true;
2549 
2550         // Conservative default.
2551         bool InWorkList = true;
2552         // Remove from the Chain and Chain Map
2553         if (BlockToChain.count(RemBB)) {
2554           BlockChain *Chain = BlockToChain[RemBB];
2555           InWorkList = Chain->UnscheduledPredecessors == 0;
2556           Chain->remove(RemBB);
2557           BlockToChain.erase(RemBB);
2558         }
2559 
2560         // Handle the unplaced block iterator
2561         if (&(*PrevUnplacedBlockIt) == RemBB) {
2562           PrevUnplacedBlockIt++;
2563         }
2564 
2565         // Handle the Work Lists
2566         if (InWorkList) {
2567           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2568           if (RemBB->isEHPad())
2569             RemoveList = EHPadWorkList;
2570           RemoveList.erase(
2571               remove_if(RemoveList,
2572                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2573               RemoveList.end());
2574         }
2575 
2576         // Handle the filter set
2577         if (BlockFilter) {
2578           BlockFilter->remove(RemBB);
2579         }
2580 
2581         // Remove the block from loop info.
2582         MLI->removeBlock(RemBB);
2583         if (RemBB == PreferredLoopExit)
2584           PreferredLoopExit = nullptr;
2585 
2586         DEBUG(dbgs() << "TailDuplicator deleted block: "
2587               << getBlockName(RemBB) << "\n");
2588       };
2589   auto RemovalCallbackRef =
2590       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2591 
2592   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2593   bool IsSimple = TailDup.isSimpleBB(BB);
2594   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2595                                  &DuplicatedPreds, &RemovalCallbackRef);
2596 
2597   // Update UnscheduledPredecessors to reflect tail-duplication.
2598   DuplicatedToLPred = false;
2599   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2600     // We're only looking for unscheduled predecessors that match the filter.
2601     BlockChain* PredChain = BlockToChain[Pred];
2602     if (Pred == LPred)
2603       DuplicatedToLPred = true;
2604     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2605         || PredChain == &Chain)
2606       continue;
2607     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2608       if (BlockFilter && !BlockFilter->count(NewSucc))
2609         continue;
2610       BlockChain *NewChain = BlockToChain[NewSucc];
2611       if (NewChain != &Chain && NewChain != PredChain)
2612         NewChain->UnscheduledPredecessors++;
2613     }
2614   }
2615   return Removed;
2616 }
2617 
2618 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2619   if (skipFunction(*MF.getFunction()))
2620     return false;
2621 
2622   // Check for single-block functions and skip them.
2623   if (std::next(MF.begin()) == MF.end())
2624     return false;
2625 
2626   F = &MF;
2627   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2628   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2629       getAnalysis<MachineBlockFrequencyInfo>());
2630   MLI = &getAnalysis<MachineLoopInfo>();
2631   TII = MF.getSubtarget().getInstrInfo();
2632   TLI = MF.getSubtarget().getTargetLowering();
2633   MPDT = nullptr;
2634 
2635   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2636   // there are no MachineLoops.
2637   PreferredLoopExit = nullptr;
2638 
2639   assert(BlockToChain.empty());
2640   assert(ComputedEdges.empty());
2641 
2642   if (TailDupPlacement) {
2643     MPDT = &getAnalysis<MachinePostDominatorTree>();
2644     unsigned TailDupSize = TailDupPlacementThreshold;
2645     if (MF.getFunction()->optForSize())
2646       TailDupSize = 1;
2647     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2648     precomputeTriangleChains();
2649   }
2650 
2651   buildCFGChains();
2652 
2653   // Changing the layout can create new tail merging opportunities.
2654   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2655   // TailMerge can create jump into if branches that make CFG irreducible for
2656   // HW that requires structured CFG.
2657   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2658                          PassConfig->getEnableTailMerge() &&
2659                          BranchFoldPlacement;
2660   // No tail merging opportunities if the block number is less than four.
2661   if (MF.size() > 3 && EnableTailMerge) {
2662     unsigned TailMergeSize = TailDupPlacementThreshold + 1;
2663     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2664                     *MBPI, TailMergeSize);
2665 
2666     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2667                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2668                             /*AfterBlockPlacement=*/true)) {
2669       // Redo the layout if tail merging creates/removes/moves blocks.
2670       BlockToChain.clear();
2671       ComputedEdges.clear();
2672       // Must redo the post-dominator tree if blocks were changed.
2673       if (MPDT)
2674         MPDT->runOnMachineFunction(MF);
2675       ChainAllocator.DestroyAll();
2676       buildCFGChains();
2677     }
2678   }
2679 
2680   optimizeBranches();
2681   alignBlocks();
2682 
2683   BlockToChain.clear();
2684   ComputedEdges.clear();
2685   ChainAllocator.DestroyAll();
2686 
2687   if (AlignAllBlock)
2688     // Align all of the blocks in the function to a specific alignment.
2689     for (MachineBasicBlock &MBB : MF)
2690       MBB.setAlignment(AlignAllBlock);
2691   else if (AlignAllNonFallThruBlocks) {
2692     // Align all of the blocks that have no fall-through predecessors to a
2693     // specific alignment.
2694     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2695       auto LayoutPred = std::prev(MBI);
2696       if (!LayoutPred->isSuccessor(&*MBI))
2697         MBI->setAlignment(AlignAllNonFallThruBlocks);
2698     }
2699   }
2700   if (ViewBlockLayoutWithBFI != GVDT_None &&
2701       (ViewBlockFreqFuncName.empty() ||
2702        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2703     MBFI->view("MBP." + MF.getName(), false);
2704   }
2705 
2706 
2707   // We always return true as we have no way to track whether the final order
2708   // differs from the original order.
2709   return true;
2710 }
2711 
2712 namespace {
2713 /// \brief A pass to compute block placement statistics.
2714 ///
2715 /// A separate pass to compute interesting statistics for evaluating block
2716 /// placement. This is separate from the actual placement pass so that they can
2717 /// be computed in the absence of any placement transformations or when using
2718 /// alternative placement strategies.
2719 class MachineBlockPlacementStats : public MachineFunctionPass {
2720   /// \brief A handle to the branch probability pass.
2721   const MachineBranchProbabilityInfo *MBPI;
2722 
2723   /// \brief A handle to the function-wide block frequency pass.
2724   const MachineBlockFrequencyInfo *MBFI;
2725 
2726 public:
2727   static char ID; // Pass identification, replacement for typeid
2728   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2729     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2730   }
2731 
2732   bool runOnMachineFunction(MachineFunction &F) override;
2733 
2734   void getAnalysisUsage(AnalysisUsage &AU) const override {
2735     AU.addRequired<MachineBranchProbabilityInfo>();
2736     AU.addRequired<MachineBlockFrequencyInfo>();
2737     AU.setPreservesAll();
2738     MachineFunctionPass::getAnalysisUsage(AU);
2739   }
2740 };
2741 }
2742 
2743 char MachineBlockPlacementStats::ID = 0;
2744 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2745 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2746                       "Basic Block Placement Stats", false, false)
2747 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2748 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2749 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2750                     "Basic Block Placement Stats", false, false)
2751 
2752 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2753   // Check for single-block functions and skip them.
2754   if (std::next(F.begin()) == F.end())
2755     return false;
2756 
2757   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2758   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2759 
2760   for (MachineBasicBlock &MBB : F) {
2761     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2762     Statistic &NumBranches =
2763         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2764     Statistic &BranchTakenFreq =
2765         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2766     for (MachineBasicBlock *Succ : MBB.successors()) {
2767       // Skip if this successor is a fallthrough.
2768       if (MBB.isLayoutSuccessor(Succ))
2769         continue;
2770 
2771       BlockFrequency EdgeFreq =
2772           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2773       ++NumBranches;
2774       BranchTakenFreq += EdgeFreq.getFrequency();
2775     }
2776   }
2777 
2778   return false;
2779 }
2780