xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision cb5fbd2f60a5a588bfa4668ea8269c3568cbff6e)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "block-placement"
79 
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83           "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85           "Potential frequency of taking unconditional branches");
86 
87 static cl::opt<unsigned> AlignAllBlock(
88     "align-all-blocks",
89     cl::desc("Force the alignment of all blocks in the function in log2 format "
90              "(e.g 4 means align on 16B boundaries)."),
91     cl::init(0), cl::Hidden);
92 
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94     "align-all-nofallthru-blocks",
95     cl::desc("Force the alignment of all blocks that have no fall-through "
96              "predecessors (i.e. don't add nops that are executed). In log2 "
97              "format (e.g 4 means align on 16B boundaries)."),
98     cl::init(0), cl::Hidden);
99 
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101     "max-bytes-for-alignment",
102     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103              "alignment"),
104     cl::init(0), cl::Hidden);
105 
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108     "block-placement-exit-block-bias",
109     cl::desc("Block frequency percentage a loop exit block needs "
110              "over the original exit to be considered the new exit."),
111     cl::init(0), cl::Hidden);
112 
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115 
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117     "loop-to-cold-block-ratio",
118     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119              "(frequency of block) is greater than this ratio"),
120     cl::init(5), cl::Hidden);
121 
122 static cl::opt<bool>
123     ForceLoopColdBlock("force-loop-cold-block",
124                        cl::desc("Force outlining cold blocks from loops."),
125                        cl::init(false), cl::Hidden);
126 
127 static cl::opt<bool>
128     PreciseRotationCost("precise-rotation-cost",
129                         cl::desc("Model the cost of loop rotation more "
130                                  "precisely by using profile data."),
131                         cl::init(false), cl::Hidden);
132 
133 static cl::opt<bool>
134     ForcePreciseRotationCost("force-precise-rotation-cost",
135                              cl::desc("Force the use of precise cost "
136                                       "loop rotation strategy."),
137                              cl::init(false), cl::Hidden);
138 
139 static cl::opt<unsigned> MisfetchCost(
140     "misfetch-cost",
141     cl::desc("Cost that models the probabilistic risk of an instruction "
142              "misfetch due to a jump comparing to falling through, whose cost "
143              "is zero."),
144     cl::init(1), cl::Hidden);
145 
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147                                       cl::desc("Cost of jump instructions."),
148                                       cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150     TailDupPlacement("tail-dup-placement",
151                      cl::desc("Perform tail duplication during placement. "
152                               "Creates more fallthrough opportunites in "
153                               "outline branches."),
154                      cl::init(true), cl::Hidden);
155 
156 static cl::opt<bool>
157     BranchFoldPlacement("branch-fold-placement",
158                         cl::desc("Perform branch folding during placement. "
159                                  "Reduces code size."),
160                         cl::init(true), cl::Hidden);
161 
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164     "tail-dup-placement-threshold",
165     cl::desc("Instruction cutoff for tail duplication during layout. "
166              "Tail merging during layout is forced to have a threshold "
167              "that won't conflict."),
168     cl::init(2), cl::Hidden);
169 
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172     "tail-dup-placement-aggressive-threshold",
173     cl::desc("Instruction cutoff for aggressive tail duplication during "
174              "layout. Used at -O3. Tail merging during layout is forced to "
175              "have a threshold that won't conflict."),
176     cl::init(4), cl::Hidden);
177 
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180     "tail-dup-placement-penalty",
181     cl::desc(
182         "Cost penalty for blocks that can avoid breaking CFG by copying. "
183         "Copying can increase fallthrough, but it also increases icache "
184         "pressure. This parameter controls the penalty to account for that. "
185         "Percent as integer."),
186     cl::init(2), cl::Hidden);
187 
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190     "tail-dup-profile-percent-threshold",
191     cl::desc("If profile count information is used in tail duplication cost "
192              "model, the gained fall through number from tail duplication "
193              "should be at least this percent of hot count."),
194     cl::init(50), cl::Hidden);
195 
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198     "triangle-chain-count",
199     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200              "triangle tail duplication heuristic to kick in. 0 to disable."),
201     cl::init(2), cl::Hidden);
202 
203 // Use case: When block layout is visualized after MBP pass, the basic blocks
204 // are labeled in layout order; meanwhile blocks could be numbered in a
205 // different order. It's hard to map between the graph and pass output.
206 // With this option on, the basic blocks are renumbered in function layout
207 // order. For debugging only.
208 static cl::opt<bool> RenumberBlocksBeforeView(
209     "renumber-blocks-before-view",
210     cl::desc(
211         "If true, basic blocks are re-numbered before MBP layout is printed "
212         "into a dot graph. Only used when a function is being printed."),
213     cl::init(false), cl::Hidden);
214 
215 static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks(
216     "ext-tsp-block-placement-max-blocks",
217     cl::desc("Maximum number of basic blocks in a function to run ext-TSP "
218              "block placement."),
219     cl::init(UINT_MAX), cl::Hidden);
220 
221 // Apply the ext-tsp algorithm minimizing the size of a binary.
222 static cl::opt<bool>
223     ApplyExtTspForSize("apply-ext-tsp-for-size", cl::init(false), cl::Hidden,
224                        cl::desc("Use ext-tsp for size-aware block placement."));
225 
226 namespace llvm {
227 extern cl::opt<bool> EnableExtTspBlockPlacement;
228 extern cl::opt<bool> ApplyExtTspWithoutProfile;
229 extern cl::opt<unsigned> StaticLikelyProb;
230 extern cl::opt<unsigned> ProfileLikelyProb;
231 
232 // Internal option used to control BFI display only after MBP pass.
233 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
234 // -view-block-layout-with-bfi=
235 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
236 
237 // Command line option to specify the name of the function for CFG dump
238 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
239 extern cl::opt<std::string> ViewBlockFreqFuncName;
240 } // namespace llvm
241 
242 namespace {
243 
244 class BlockChain;
245 
246 /// Type for our function-wide basic block -> block chain mapping.
247 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
248 
249 /// A chain of blocks which will be laid out contiguously.
250 ///
251 /// This is the datastructure representing a chain of consecutive blocks that
252 /// are profitable to layout together in order to maximize fallthrough
253 /// probabilities and code locality. We also can use a block chain to represent
254 /// a sequence of basic blocks which have some external (correctness)
255 /// requirement for sequential layout.
256 ///
257 /// Chains can be built around a single basic block and can be merged to grow
258 /// them. They participate in a block-to-chain mapping, which is updated
259 /// automatically as chains are merged together.
260 class BlockChain {
261   /// The sequence of blocks belonging to this chain.
262   ///
263   /// This is the sequence of blocks for a particular chain. These will be laid
264   /// out in-order within the function.
265   SmallVector<MachineBasicBlock *, 4> Blocks;
266 
267   /// A handle to the function-wide basic block to block chain mapping.
268   ///
269   /// This is retained in each block chain to simplify the computation of child
270   /// block chains for SCC-formation and iteration. We store the edges to child
271   /// basic blocks, and map them back to their associated chains using this
272   /// structure.
273   BlockToChainMapType &BlockToChain;
274 
275 public:
276   /// Construct a new BlockChain.
277   ///
278   /// This builds a new block chain representing a single basic block in the
279   /// function. It also registers itself as the chain that block participates
280   /// in with the BlockToChain mapping.
281   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
282       : Blocks(1, BB), BlockToChain(BlockToChain) {
283     assert(BB && "Cannot create a chain with a null basic block");
284     BlockToChain[BB] = this;
285   }
286 
287   /// Iterator over blocks within the chain.
288   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
289   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
290 
291   /// Beginning of blocks within the chain.
292   iterator begin() { return Blocks.begin(); }
293   const_iterator begin() const { return Blocks.begin(); }
294 
295   /// End of blocks within the chain.
296   iterator end() { return Blocks.end(); }
297   const_iterator end() const { return Blocks.end(); }
298 
299   bool remove(MachineBasicBlock *BB) {
300     for (iterator i = begin(); i != end(); ++i) {
301       if (*i == BB) {
302         Blocks.erase(i);
303         return true;
304       }
305     }
306     return false;
307   }
308 
309   /// Merge a block chain into this one.
310   ///
311   /// This routine merges a block chain into this one. It takes care of forming
312   /// a contiguous sequence of basic blocks, updating the edge list, and
313   /// updating the block -> chain mapping. It does not free or tear down the
314   /// old chain, but the old chain's block list is no longer valid.
315   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
316     assert(BB && "Can't merge a null block.");
317     assert(!Blocks.empty() && "Can't merge into an empty chain.");
318 
319     // Fast path in case we don't have a chain already.
320     if (!Chain) {
321       assert(!BlockToChain[BB] &&
322              "Passed chain is null, but BB has entry in BlockToChain.");
323       Blocks.push_back(BB);
324       BlockToChain[BB] = this;
325       return;
326     }
327 
328     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
329     assert(Chain->begin() != Chain->end());
330 
331     // Update the incoming blocks to point to this chain, and add them to the
332     // chain structure.
333     for (MachineBasicBlock *ChainBB : *Chain) {
334       Blocks.push_back(ChainBB);
335       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
336       BlockToChain[ChainBB] = this;
337     }
338   }
339 
340 #ifndef NDEBUG
341   /// Dump the blocks in this chain.
342   LLVM_DUMP_METHOD void dump() {
343     for (MachineBasicBlock *MBB : *this)
344       MBB->dump();
345   }
346 #endif // NDEBUG
347 
348   /// Count of predecessors of any block within the chain which have not
349   /// yet been scheduled.  In general, we will delay scheduling this chain
350   /// until those predecessors are scheduled (or we find a sufficiently good
351   /// reason to override this heuristic.)  Note that when forming loop chains,
352   /// blocks outside the loop are ignored and treated as if they were already
353   /// scheduled.
354   ///
355   /// Note: This field is reinitialized multiple times - once for each loop,
356   /// and then once for the function as a whole.
357   unsigned UnscheduledPredecessors = 0;
358 };
359 
360 class MachineBlockPlacement : public MachineFunctionPass {
361   /// A type for a block filter set.
362   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
363 
364   /// Pair struct containing basic block and taildup profitability
365   struct BlockAndTailDupResult {
366     MachineBasicBlock *BB = nullptr;
367     bool ShouldTailDup;
368   };
369 
370   /// Triple struct containing edge weight and the edge.
371   struct WeightedEdge {
372     BlockFrequency Weight;
373     MachineBasicBlock *Src = nullptr;
374     MachineBasicBlock *Dest = nullptr;
375   };
376 
377   /// work lists of blocks that are ready to be laid out
378   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
379   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
380 
381   /// Edges that have already been computed as optimal.
382   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
383 
384   /// Machine Function
385   MachineFunction *F = nullptr;
386 
387   /// A handle to the branch probability pass.
388   const MachineBranchProbabilityInfo *MBPI = nullptr;
389 
390   /// A handle to the function-wide block frequency pass.
391   std::unique_ptr<MBFIWrapper> MBFI;
392 
393   /// A handle to the loop info.
394   MachineLoopInfo *MLI = nullptr;
395 
396   /// Preferred loop exit.
397   /// Member variable for convenience. It may be removed by duplication deep
398   /// in the call stack.
399   MachineBasicBlock *PreferredLoopExit = nullptr;
400 
401   /// A handle to the target's instruction info.
402   const TargetInstrInfo *TII = nullptr;
403 
404   /// A handle to the target's lowering info.
405   const TargetLoweringBase *TLI = nullptr;
406 
407   /// A handle to the post dominator tree.
408   MachinePostDominatorTree *MPDT = nullptr;
409 
410   ProfileSummaryInfo *PSI = nullptr;
411 
412   TargetPassConfig *PassConfig = nullptr;
413 
414   /// Duplicator used to duplicate tails during placement.
415   ///
416   /// Placement decisions can open up new tail duplication opportunities, but
417   /// since tail duplication affects placement decisions of later blocks, it
418   /// must be done inline.
419   TailDuplicator TailDup;
420 
421   /// Partial tail duplication threshold.
422   BlockFrequency DupThreshold;
423 
424   unsigned TailDupSize;
425 
426   /// True:  use block profile count to compute tail duplication cost.
427   /// False: use block frequency to compute tail duplication cost.
428   bool UseProfileCount = false;
429 
430   /// Allocator and owner of BlockChain structures.
431   ///
432   /// We build BlockChains lazily while processing the loop structure of
433   /// a function. To reduce malloc traffic, we allocate them using this
434   /// slab-like allocator, and destroy them after the pass completes. An
435   /// important guarantee is that this allocator produces stable pointers to
436   /// the chains.
437   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
438 
439   /// Function wide BasicBlock to BlockChain mapping.
440   ///
441   /// This mapping allows efficiently moving from any given basic block to the
442   /// BlockChain it participates in, if any. We use it to, among other things,
443   /// allow implicitly defining edges between chains as the existing edges
444   /// between basic blocks.
445   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
446 
447 #ifndef NDEBUG
448   /// The set of basic blocks that have terminators that cannot be fully
449   /// analyzed.  These basic blocks cannot be re-ordered safely by
450   /// MachineBlockPlacement, and we must preserve physical layout of these
451   /// blocks and their successors through the pass.
452   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
453 #endif
454 
455   /// Get block profile count or frequency according to UseProfileCount.
456   /// The return value is used to model tail duplication cost.
457   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
458     if (UseProfileCount) {
459       auto Count = MBFI->getBlockProfileCount(BB);
460       if (Count)
461         return BlockFrequency(*Count);
462       else
463         return BlockFrequency(0);
464     } else
465       return MBFI->getBlockFreq(BB);
466   }
467 
468   /// Scale the DupThreshold according to basic block size.
469   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
470   void initTailDupThreshold();
471 
472   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
473   /// if the count goes to 0, add them to the appropriate work list.
474   void markChainSuccessors(const BlockChain &Chain,
475                            const MachineBasicBlock *LoopHeaderBB,
476                            const BlockFilterSet *BlockFilter = nullptr);
477 
478   /// Decrease the UnscheduledPredecessors count for a single block, and
479   /// if the count goes to 0, add them to the appropriate work list.
480   void markBlockSuccessors(const BlockChain &Chain, const MachineBasicBlock *BB,
481                            const MachineBasicBlock *LoopHeaderBB,
482                            const BlockFilterSet *BlockFilter = nullptr);
483 
484   BranchProbability
485   collectViableSuccessors(const MachineBasicBlock *BB, const BlockChain &Chain,
486                           const BlockFilterSet *BlockFilter,
487                           SmallVector<MachineBasicBlock *, 4> &Successors);
488   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
489                        BlockFilterSet *BlockFilter);
490   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
491                                MachineBasicBlock *BB,
492                                BlockFilterSet *BlockFilter);
493   bool repeatedlyTailDuplicateBlock(
494       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
495       const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
496       BlockFilterSet *BlockFilter,
497       MachineFunction::iterator &PrevUnplacedBlockIt,
498       BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt);
499   bool
500   maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
501                           BlockChain &Chain, BlockFilterSet *BlockFilter,
502                           MachineFunction::iterator &PrevUnplacedBlockIt,
503                           BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
504                           bool &DuplicatedToLPred);
505   bool hasBetterLayoutPredecessor(const MachineBasicBlock *BB,
506                                   const MachineBasicBlock *Succ,
507                                   const BlockChain &SuccChain,
508                                   BranchProbability SuccProb,
509                                   BranchProbability RealSuccProb,
510                                   const BlockChain &Chain,
511                                   const BlockFilterSet *BlockFilter);
512   BlockAndTailDupResult selectBestSuccessor(const MachineBasicBlock *BB,
513                                             const BlockChain &Chain,
514                                             const BlockFilterSet *BlockFilter);
515   MachineBasicBlock *
516   selectBestCandidateBlock(const BlockChain &Chain,
517                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
518   MachineBasicBlock *
519   getFirstUnplacedBlock(const BlockChain &PlacedChain,
520                         MachineFunction::iterator &PrevUnplacedBlockIt);
521   MachineBasicBlock *
522   getFirstUnplacedBlock(const BlockChain &PlacedChain,
523                         BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
524                         const BlockFilterSet *BlockFilter);
525 
526   /// Add a basic block to the work list if it is appropriate.
527   ///
528   /// If the optional parameter BlockFilter is provided, only MBB
529   /// present in the set will be added to the worklist. If nullptr
530   /// is provided, no filtering occurs.
531   void fillWorkLists(const MachineBasicBlock *MBB,
532                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
533                      const BlockFilterSet *BlockFilter);
534 
535   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
536                   BlockFilterSet *BlockFilter = nullptr);
537   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
538                                const MachineBasicBlock *OldTop);
539   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
540                                const BlockFilterSet &LoopBlockSet);
541   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
542                                     const BlockFilterSet &LoopBlockSet);
543   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
544                                   const MachineBasicBlock *OldTop,
545                                   const MachineBasicBlock *ExitBB,
546                                   const BlockFilterSet &LoopBlockSet);
547   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
548                                            const MachineLoop &L,
549                                            const BlockFilterSet &LoopBlockSet);
550   MachineBasicBlock *findBestLoopTop(const MachineLoop &L,
551                                      const BlockFilterSet &LoopBlockSet);
552   MachineBasicBlock *findBestLoopExit(const MachineLoop &L,
553                                       const BlockFilterSet &LoopBlockSet,
554                                       BlockFrequency &ExitFreq);
555   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
556   void buildLoopChains(const MachineLoop &L);
557   void rotateLoop(BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
558                   BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
559   void rotateLoopWithProfile(BlockChain &LoopChain, const MachineLoop &L,
560                              const BlockFilterSet &LoopBlockSet);
561   void buildCFGChains();
562   void optimizeBranches();
563   void alignBlocks();
564   /// Returns true if a block should be tail-duplicated to increase fallthrough
565   /// opportunities.
566   bool shouldTailDuplicate(MachineBasicBlock *BB);
567   /// Check the edge frequencies to see if tail duplication will increase
568   /// fallthroughs.
569   bool isProfitableToTailDup(const MachineBasicBlock *BB,
570                              const MachineBasicBlock *Succ,
571                              BranchProbability QProb, const BlockChain &Chain,
572                              const BlockFilterSet *BlockFilter);
573 
574   /// Check for a trellis layout.
575   bool isTrellis(const MachineBasicBlock *BB,
576                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
577                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
578 
579   /// Get the best successor given a trellis layout.
580   BlockAndTailDupResult getBestTrellisSuccessor(
581       const MachineBasicBlock *BB,
582       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
583       BranchProbability AdjustedSumProb, const BlockChain &Chain,
584       const BlockFilterSet *BlockFilter);
585 
586   /// Get the best pair of non-conflicting edges.
587   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
588       const MachineBasicBlock *BB,
589       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
590 
591   /// Returns true if a block can tail duplicate into all unplaced
592   /// predecessors. Filters based on loop.
593   bool canTailDuplicateUnplacedPreds(const MachineBasicBlock *BB,
594                                      MachineBasicBlock *Succ,
595                                      const BlockChain &Chain,
596                                      const BlockFilterSet *BlockFilter);
597 
598   /// Find chains of triangles to tail-duplicate where a global analysis works,
599   /// but a local analysis would not find them.
600   void precomputeTriangleChains();
601 
602   /// Apply a post-processing step optimizing block placement.
603   void applyExtTsp(bool OptForSize);
604 
605   /// Modify the existing block placement in the function and adjust all jumps.
606   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
607 
608   /// Create a single CFG chain from the current block order.
609   void createCFGChainExtTsp();
610 
611 public:
612   static char ID; // Pass identification, replacement for typeid
613 
614   MachineBlockPlacement() : MachineFunctionPass(ID) {
615     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
616   }
617 
618   bool runOnMachineFunction(MachineFunction &F) override;
619 
620   bool allowTailDupPlacement() const {
621     assert(F);
622     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
623   }
624 
625   void getAnalysisUsage(AnalysisUsage &AU) const override {
626     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
627     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
628     if (TailDupPlacement)
629       AU.addRequired<MachinePostDominatorTreeWrapperPass>();
630     AU.addRequired<MachineLoopInfoWrapperPass>();
631     AU.addRequired<ProfileSummaryInfoWrapperPass>();
632     AU.addRequired<TargetPassConfig>();
633     MachineFunctionPass::getAnalysisUsage(AU);
634   }
635 };
636 
637 } // end anonymous namespace
638 
639 char MachineBlockPlacement::ID = 0;
640 
641 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
642 
643 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
644                       "Branch Probability Basic Block Placement", false, false)
645 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
646 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
647 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
648 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
649 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
650 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
651                     "Branch Probability Basic Block Placement", false, false)
652 
653 #ifndef NDEBUG
654 /// Helper to print the name of a MBB.
655 ///
656 /// Only used by debug logging.
657 static std::string getBlockName(const MachineBasicBlock *BB) {
658   std::string Result;
659   raw_string_ostream OS(Result);
660   OS << printMBBReference(*BB);
661   OS << " ('" << BB->getName() << "')";
662   OS.flush();
663   return Result;
664 }
665 #endif
666 
667 /// Mark a chain's successors as having one fewer preds.
668 ///
669 /// When a chain is being merged into the "placed" chain, this routine will
670 /// quickly walk the successors of each block in the chain and mark them as
671 /// having one fewer active predecessor. It also adds any successors of this
672 /// chain which reach the zero-predecessor state to the appropriate worklist.
673 void MachineBlockPlacement::markChainSuccessors(
674     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
675     const BlockFilterSet *BlockFilter) {
676   // Walk all the blocks in this chain, marking their successors as having
677   // a predecessor placed.
678   for (MachineBasicBlock *MBB : Chain) {
679     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
680   }
681 }
682 
683 /// Mark a single block's successors as having one fewer preds.
684 ///
685 /// Under normal circumstances, this is only called by markChainSuccessors,
686 /// but if a block that was to be placed is completely tail-duplicated away,
687 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
688 /// for just that block.
689 void MachineBlockPlacement::markBlockSuccessors(
690     const BlockChain &Chain, const MachineBasicBlock *MBB,
691     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
692   // Add any successors for which this is the only un-placed in-loop
693   // predecessor to the worklist as a viable candidate for CFG-neutral
694   // placement. No subsequent placement of this block will violate the CFG
695   // shape, so we get to use heuristics to choose a favorable placement.
696   for (MachineBasicBlock *Succ : MBB->successors()) {
697     if (BlockFilter && !BlockFilter->count(Succ))
698       continue;
699     BlockChain &SuccChain = *BlockToChain[Succ];
700     // Disregard edges within a fixed chain, or edges to the loop header.
701     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
702       continue;
703 
704     // This is a cross-chain edge that is within the loop, so decrement the
705     // loop predecessor count of the destination chain.
706     if (SuccChain.UnscheduledPredecessors == 0 ||
707         --SuccChain.UnscheduledPredecessors > 0)
708       continue;
709 
710     auto *NewBB = *SuccChain.begin();
711     if (NewBB->isEHPad())
712       EHPadWorkList.push_back(NewBB);
713     else
714       BlockWorkList.push_back(NewBB);
715   }
716 }
717 
718 /// This helper function collects the set of successors of block
719 /// \p BB that are allowed to be its layout successors, and return
720 /// the total branch probability of edges from \p BB to those
721 /// blocks.
722 BranchProbability MachineBlockPlacement::collectViableSuccessors(
723     const MachineBasicBlock *BB, const BlockChain &Chain,
724     const BlockFilterSet *BlockFilter,
725     SmallVector<MachineBasicBlock *, 4> &Successors) {
726   // Adjust edge probabilities by excluding edges pointing to blocks that is
727   // either not in BlockFilter or is already in the current chain. Consider the
728   // following CFG:
729   //
730   //     --->A
731   //     |  / \
732   //     | B   C
733   //     |  \ / \
734   //     ----D   E
735   //
736   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
737   // A->C is chosen as a fall-through, D won't be selected as a successor of C
738   // due to CFG constraint (the probability of C->D is not greater than
739   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
740   // when calculating the probability of C->D, D will be selected and we
741   // will get A C D B as the layout of this loop.
742   auto AdjustedSumProb = BranchProbability::getOne();
743   for (MachineBasicBlock *Succ : BB->successors()) {
744     bool SkipSucc = false;
745     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
746       SkipSucc = true;
747     } else {
748       BlockChain *SuccChain = BlockToChain[Succ];
749       if (SuccChain == &Chain) {
750         SkipSucc = true;
751       } else if (Succ != *SuccChain->begin()) {
752         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
753                           << " -> Mid chain!\n");
754         continue;
755       }
756     }
757     if (SkipSucc)
758       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
759     else
760       Successors.push_back(Succ);
761   }
762 
763   return AdjustedSumProb;
764 }
765 
766 /// The helper function returns the branch probability that is adjusted
767 /// or normalized over the new total \p AdjustedSumProb.
768 static BranchProbability
769 getAdjustedProbability(BranchProbability OrigProb,
770                        BranchProbability AdjustedSumProb) {
771   BranchProbability SuccProb;
772   uint32_t SuccProbN = OrigProb.getNumerator();
773   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
774   if (SuccProbN >= SuccProbD)
775     SuccProb = BranchProbability::getOne();
776   else
777     SuccProb = BranchProbability(SuccProbN, SuccProbD);
778 
779   return SuccProb;
780 }
781 
782 /// Check if \p BB has exactly the successors in \p Successors.
783 static bool
784 hasSameSuccessors(MachineBasicBlock &BB,
785                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
786   if (BB.succ_size() != Successors.size())
787     return false;
788   // We don't want to count self-loops
789   if (Successors.count(&BB))
790     return false;
791   for (MachineBasicBlock *Succ : BB.successors())
792     if (!Successors.count(Succ))
793       return false;
794   return true;
795 }
796 
797 /// Check if a block should be tail duplicated to increase fallthrough
798 /// opportunities.
799 /// \p BB Block to check.
800 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
801   // Blocks with single successors don't create additional fallthrough
802   // opportunities. Don't duplicate them. TODO: When conditional exits are
803   // analyzable, allow them to be duplicated.
804   bool IsSimple = TailDup.isSimpleBB(BB);
805 
806   if (BB->succ_size() == 1)
807     return false;
808   return TailDup.shouldTailDuplicate(IsSimple, *BB);
809 }
810 
811 /// Compare 2 BlockFrequency's with a small penalty for \p A.
812 /// In order to be conservative, we apply a X% penalty to account for
813 /// increased icache pressure and static heuristics. For small frequencies
814 /// we use only the numerators to improve accuracy. For simplicity, we assume
815 /// the penalty is less than 100%
816 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
817 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
818                             BlockFrequency EntryFreq) {
819   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
820   BlockFrequency Gain = A - B;
821   return (Gain / ThresholdProb) >= EntryFreq;
822 }
823 
824 /// Check the edge frequencies to see if tail duplication will increase
825 /// fallthroughs. It only makes sense to call this function when
826 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
827 /// always locally profitable if we would have picked \p Succ without
828 /// considering duplication.
829 bool MachineBlockPlacement::isProfitableToTailDup(
830     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
831     BranchProbability QProb, const BlockChain &Chain,
832     const BlockFilterSet *BlockFilter) {
833   // We need to do a probability calculation to make sure this is profitable.
834   // First: does succ have a successor that post-dominates? This affects the
835   // calculation. The 2 relevant cases are:
836   //    BB         BB
837   //    | \Qout    | \Qout
838   //   P|  C       |P C
839   //    =   C'     =   C'
840   //    |  /Qin    |  /Qin
841   //    | /        | /
842   //    Succ       Succ
843   //    / \        | \  V
844   //  U/   =V      |U \
845   //  /     \      =   D
846   //  D      E     |  /
847   //               | /
848   //               |/
849   //               PDom
850   //  '=' : Branch taken for that CFG edge
851   // In the second case, Placing Succ while duplicating it into C prevents the
852   // fallthrough of Succ into either D or PDom, because they now have C as an
853   // unplaced predecessor
854 
855   // Start by figuring out which case we fall into
856   MachineBasicBlock *PDom = nullptr;
857   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
858   // Only scan the relevant successors
859   auto AdjustedSuccSumProb =
860       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
861   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
862   auto BBFreq = MBFI->getBlockFreq(BB);
863   auto SuccFreq = MBFI->getBlockFreq(Succ);
864   BlockFrequency P = BBFreq * PProb;
865   BlockFrequency Qout = BBFreq * QProb;
866   BlockFrequency EntryFreq = MBFI->getEntryFreq();
867   // If there are no more successors, it is profitable to copy, as it strictly
868   // increases fallthrough.
869   if (SuccSuccs.size() == 0)
870     return greaterWithBias(P, Qout, EntryFreq);
871 
872   auto BestSuccSucc = BranchProbability::getZero();
873   // Find the PDom or the best Succ if no PDom exists.
874   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
875     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
876     if (Prob > BestSuccSucc)
877       BestSuccSucc = Prob;
878     if (PDom == nullptr)
879       if (MPDT->dominates(SuccSucc, Succ)) {
880         PDom = SuccSucc;
881         break;
882       }
883   }
884   // For the comparisons, we need to know Succ's best incoming edge that isn't
885   // from BB.
886   auto SuccBestPred = BlockFrequency(0);
887   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
888     if (SuccPred == Succ || SuccPred == BB ||
889         BlockToChain[SuccPred] == &Chain ||
890         (BlockFilter && !BlockFilter->count(SuccPred)))
891       continue;
892     auto Freq =
893         MBFI->getBlockFreq(SuccPred) * MBPI->getEdgeProbability(SuccPred, Succ);
894     if (Freq > SuccBestPred)
895       SuccBestPred = Freq;
896   }
897   // Qin is Succ's best unplaced incoming edge that isn't BB
898   BlockFrequency Qin = SuccBestPred;
899   // If it doesn't have a post-dominating successor, here is the calculation:
900   //    BB        BB
901   //    | \Qout   |  \
902   //   P|  C      |   =
903   //    =   C'    |    C
904   //    |  /Qin   |     |
905   //    | /       |     C' (+Succ)
906   //    Succ      Succ /|
907   //    / \       |  \/ |
908   //  U/   =V     |  == |
909   //  /     \     | /  \|
910   //  D      E    D     E
911   //  '=' : Branch taken for that CFG edge
912   //  Cost in the first case is: P + V
913   //  For this calculation, we always assume P > Qout. If Qout > P
914   //  The result of this function will be ignored at the caller.
915   //  Let F = SuccFreq - Qin
916   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
917 
918   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
919     BranchProbability UProb = BestSuccSucc;
920     BranchProbability VProb = AdjustedSuccSumProb - UProb;
921     BlockFrequency F = SuccFreq - Qin;
922     BlockFrequency V = SuccFreq * VProb;
923     BlockFrequency QinU = std::min(Qin, F) * UProb;
924     BlockFrequency BaseCost = P + V;
925     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
926     return greaterWithBias(BaseCost, DupCost, EntryFreq);
927   }
928   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
929   BranchProbability VProb = AdjustedSuccSumProb - UProb;
930   BlockFrequency U = SuccFreq * UProb;
931   BlockFrequency V = SuccFreq * VProb;
932   BlockFrequency F = SuccFreq - Qin;
933   // If there is a post-dominating successor, here is the calculation:
934   // BB         BB                 BB          BB
935   // | \Qout    |   \               | \Qout     |  \
936   // |P C       |    =              |P C        |   =
937   // =   C'     |P    C             =   C'      |P   C
938   // |  /Qin    |      |            |  /Qin     |     |
939   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
940   // Succ       Succ  /|            Succ        Succ /|
941   // | \  V     |   \/ |            | \  V      |  \/ |
942   // |U \       |U  /\ =?           |U =        |U /\ |
943   // =   D      = =  =?|            |   D       | =  =|
944   // |  /       |/     D            |  /        |/    D
945   // | /        |     /             | =         |    /
946   // |/         |    /              |/          |   =
947   // Dom         Dom                Dom         Dom
948   //  '=' : Branch taken for that CFG edge
949   // The cost for taken branches in the first case is P + U
950   // Let F = SuccFreq - Qin
951   // The cost in the second case (assuming independence), given the layout:
952   // BB, Succ, (C+Succ), D, Dom or the layout:
953   // BB, Succ, D, Dom, (C+Succ)
954   // is Qout + max(F, Qin) * U + min(F, Qin)
955   // compare P + U vs Qout + P * U + Qin.
956   //
957   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
958   //
959   // For the 3rd case, the cost is P + 2 * V
960   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
961   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
962   if (UProb > AdjustedSuccSumProb / 2 &&
963       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
964                                   Chain, BlockFilter))
965     // Cases 3 & 4
966     return greaterWithBias(
967         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
968         EntryFreq);
969   // Cases 1 & 2
970   return greaterWithBias((P + U),
971                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
972                           std::max(Qin, F) * UProb),
973                          EntryFreq);
974 }
975 
976 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
977 /// successors form the lower part of a trellis. A successor set S forms the
978 /// lower part of a trellis if all of the predecessors of S are either in S or
979 /// have all of S as successors. We ignore trellises where BB doesn't have 2
980 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
981 /// are very uncommon and complex to compute optimally. Allowing edges within S
982 /// is not strictly a trellis, but the same algorithm works, so we allow it.
983 bool MachineBlockPlacement::isTrellis(
984     const MachineBasicBlock *BB,
985     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
986     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
987   // Technically BB could form a trellis with branching factor higher than 2.
988   // But that's extremely uncommon.
989   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
990     return false;
991 
992   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
993                                                        BB->succ_end());
994   // To avoid reviewing the same predecessors twice.
995   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
996 
997   for (MachineBasicBlock *Succ : ViableSuccs) {
998     int PredCount = 0;
999     for (auto *SuccPred : Succ->predecessors()) {
1000       // Allow triangle successors, but don't count them.
1001       if (Successors.count(SuccPred)) {
1002         // Make sure that it is actually a triangle.
1003         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
1004           if (!Successors.count(CheckSucc))
1005             return false;
1006         continue;
1007       }
1008       const BlockChain *PredChain = BlockToChain[SuccPred];
1009       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
1010           PredChain == &Chain || PredChain == BlockToChain[Succ])
1011         continue;
1012       ++PredCount;
1013       // Perform the successor check only once.
1014       if (!SeenPreds.insert(SuccPred).second)
1015         continue;
1016       if (!hasSameSuccessors(*SuccPred, Successors))
1017         return false;
1018     }
1019     // If one of the successors has only BB as a predecessor, it is not a
1020     // trellis.
1021     if (PredCount < 1)
1022       return false;
1023   }
1024   return true;
1025 }
1026 
1027 /// Pick the highest total weight pair of edges that can both be laid out.
1028 /// The edges in \p Edges[0] are assumed to have a different destination than
1029 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1030 /// the individual highest weight edges to the 2 different destinations, or in
1031 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1032 std::pair<MachineBlockPlacement::WeightedEdge,
1033           MachineBlockPlacement::WeightedEdge>
1034 MachineBlockPlacement::getBestNonConflictingEdges(
1035     const MachineBasicBlock *BB,
1036     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1037         Edges) {
1038   // Sort the edges, and then for each successor, find the best incoming
1039   // predecessor. If the best incoming predecessors aren't the same,
1040   // then that is clearly the best layout. If there is a conflict, one of the
1041   // successors will have to fallthrough from the second best predecessor. We
1042   // compare which combination is better overall.
1043 
1044   // Sort for highest frequency.
1045   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1046 
1047   llvm::stable_sort(Edges[0], Cmp);
1048   llvm::stable_sort(Edges[1], Cmp);
1049   auto BestA = Edges[0].begin();
1050   auto BestB = Edges[1].begin();
1051   // Arrange for the correct answer to be in BestA and BestB
1052   // If the 2 best edges don't conflict, the answer is already there.
1053   if (BestA->Src == BestB->Src) {
1054     // Compare the total fallthrough of (Best + Second Best) for both pairs
1055     auto SecondBestA = std::next(BestA);
1056     auto SecondBestB = std::next(BestB);
1057     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1058     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1059     if (BestAScore < BestBScore)
1060       BestA = SecondBestA;
1061     else
1062       BestB = SecondBestB;
1063   }
1064   // Arrange for the BB edge to be in BestA if it exists.
1065   if (BestB->Src == BB)
1066     std::swap(BestA, BestB);
1067   return std::make_pair(*BestA, *BestB);
1068 }
1069 
1070 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1071 /// We only handle trellises with 2 successors, so the algorithm is
1072 /// straightforward: Find the best pair of edges that don't conflict. We find
1073 /// the best incoming edge for each successor in the trellis. If those conflict,
1074 /// we consider which of them should be replaced with the second best.
1075 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1076 /// comes from \p BB, it will be in \p BestEdges[0]
1077 MachineBlockPlacement::BlockAndTailDupResult
1078 MachineBlockPlacement::getBestTrellisSuccessor(
1079     const MachineBasicBlock *BB,
1080     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1081     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1082     const BlockFilterSet *BlockFilter) {
1083 
1084   BlockAndTailDupResult Result = {nullptr, false};
1085   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1086                                                        BB->succ_end());
1087 
1088   // We assume size 2 because it's common. For general n, we would have to do
1089   // the Hungarian algorithm, but it's not worth the complexity because more
1090   // than 2 successors is fairly uncommon, and a trellis even more so.
1091   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1092     return Result;
1093 
1094   // Collect the edge frequencies of all edges that form the trellis.
1095   SmallVector<WeightedEdge, 8> Edges[2];
1096   int SuccIndex = 0;
1097   for (auto *Succ : ViableSuccs) {
1098     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1099       // Skip any placed predecessors that are not BB
1100       if (SuccPred != BB)
1101         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1102             BlockToChain[SuccPred] == &Chain ||
1103             BlockToChain[SuccPred] == BlockToChain[Succ])
1104           continue;
1105       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1106                                 MBPI->getEdgeProbability(SuccPred, Succ);
1107       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1108     }
1109     ++SuccIndex;
1110   }
1111 
1112   // Pick the best combination of 2 edges from all the edges in the trellis.
1113   WeightedEdge BestA, BestB;
1114   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1115 
1116   if (BestA.Src != BB) {
1117     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1118     // we shouldn't choose any successor. We've already looked and there's a
1119     // better fallthrough edge for all the successors.
1120     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1121     return Result;
1122   }
1123 
1124   // Did we pick the triangle edge? If tail-duplication is profitable, do
1125   // that instead. Otherwise merge the triangle edge now while we know it is
1126   // optimal.
1127   if (BestA.Dest == BestB.Src) {
1128     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1129     // would be better.
1130     MachineBasicBlock *Succ1 = BestA.Dest;
1131     MachineBasicBlock *Succ2 = BestB.Dest;
1132     // Check to see if tail-duplication would be profitable.
1133     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1134         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1135         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1136                               Chain, BlockFilter)) {
1137       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1138                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1139                  dbgs() << "    Selected: " << getBlockName(Succ2)
1140                         << ", probability: " << Succ2Prob
1141                         << " (Tail Duplicate)\n");
1142       Result.BB = Succ2;
1143       Result.ShouldTailDup = true;
1144       return Result;
1145     }
1146   }
1147   // We have already computed the optimal edge for the other side of the
1148   // trellis.
1149   ComputedEdges[BestB.Src] = {BestB.Dest, false};
1150 
1151   auto TrellisSucc = BestA.Dest;
1152   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1153                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1154              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1155                     << ", probability: " << SuccProb << " (Trellis)\n");
1156   Result.BB = TrellisSucc;
1157   return Result;
1158 }
1159 
1160 /// When the option allowTailDupPlacement() is on, this method checks if the
1161 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1162 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1163 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1164     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1165     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1166   if (!shouldTailDuplicate(Succ))
1167     return false;
1168 
1169   // The result of canTailDuplicate.
1170   bool Duplicate = true;
1171   // Number of possible duplication.
1172   unsigned int NumDup = 0;
1173 
1174   // For CFG checking.
1175   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1176                                                        BB->succ_end());
1177   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1178     // Make sure all unplaced and unfiltered predecessors can be
1179     // tail-duplicated into.
1180     // Skip any blocks that are already placed or not in this loop.
1181     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) ||
1182         (BlockToChain[Pred] == &Chain && !Succ->succ_empty()))
1183       continue;
1184     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1185       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1186         // This will result in a trellis after tail duplication, so we don't
1187         // need to copy Succ into this predecessor. In the presence
1188         // of a trellis tail duplication can continue to be profitable.
1189         // For example:
1190         // A            A
1191         // |\           |\
1192         // | \          | \
1193         // |  C         |  C+BB
1194         // | /          |  |
1195         // |/           |  |
1196         // BB    =>     BB |
1197         // |\           |\/|
1198         // | \          |/\|
1199         // |  D         |  D
1200         // | /          | /
1201         // |/           |/
1202         // Succ         Succ
1203         //
1204         // After BB was duplicated into C, the layout looks like the one on the
1205         // right. BB and C now have the same successors. When considering
1206         // whether Succ can be duplicated into all its unplaced predecessors, we
1207         // ignore C.
1208         // We can do this because C already has a profitable fallthrough, namely
1209         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1210         // duplication and for this test.
1211         //
1212         // This allows trellises to be laid out in 2 separate chains
1213         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1214         // because it allows the creation of 2 fallthrough paths with links
1215         // between them, and we correctly identify the best layout for these
1216         // CFGs. We want to extend trellises that the user created in addition
1217         // to trellises created by tail-duplication, so we just look for the
1218         // CFG.
1219         continue;
1220       Duplicate = false;
1221       continue;
1222     }
1223     NumDup++;
1224   }
1225 
1226   // No possible duplication in current filter set.
1227   if (NumDup == 0)
1228     return false;
1229 
1230   // If profile information is available, findDuplicateCandidates can do more
1231   // precise benefit analysis.
1232   if (F->getFunction().hasProfileData())
1233     return true;
1234 
1235   // This is mainly for function exit BB.
1236   // The integrated tail duplication is really designed for increasing
1237   // fallthrough from predecessors from Succ to its successors. We may need
1238   // other machanism to handle different cases.
1239   if (Succ->succ_empty())
1240     return true;
1241 
1242   // Plus the already placed predecessor.
1243   NumDup++;
1244 
1245   // If the duplication candidate has more unplaced predecessors than
1246   // successors, the extra duplication can't bring more fallthrough.
1247   //
1248   //     Pred1 Pred2 Pred3
1249   //         \   |   /
1250   //          \  |  /
1251   //           \ | /
1252   //            Dup
1253   //            / \
1254   //           /   \
1255   //       Succ1  Succ2
1256   //
1257   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1258   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1259   // but the duplication into Pred3 can't increase fallthrough.
1260   //
1261   // A small number of extra duplication may not hurt too much. We need a better
1262   // heuristic to handle it.
1263   if ((NumDup > Succ->succ_size()) || !Duplicate)
1264     return false;
1265 
1266   return true;
1267 }
1268 
1269 /// Find chains of triangles where we believe it would be profitable to
1270 /// tail-duplicate them all, but a local analysis would not find them.
1271 /// There are 3 ways this can be profitable:
1272 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1273 ///    longer chains)
1274 /// 2) The chains are statically correlated. Branch probabilities have a very
1275 ///    U-shaped distribution.
1276 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1277 ///    If the branches in a chain are likely to be from the same side of the
1278 ///    distribution as their predecessor, but are independent at runtime, this
1279 ///    transformation is profitable. (Because the cost of being wrong is a small
1280 ///    fixed cost, unlike the standard triangle layout where the cost of being
1281 ///    wrong scales with the # of triangles.)
1282 /// 3) The chains are dynamically correlated. If the probability that a previous
1283 ///    branch was taken positively influences whether the next branch will be
1284 ///    taken
1285 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1286 void MachineBlockPlacement::precomputeTriangleChains() {
1287   struct TriangleChain {
1288     std::vector<MachineBasicBlock *> Edges;
1289 
1290     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1291         : Edges({src, dst}) {}
1292 
1293     void append(MachineBasicBlock *dst) {
1294       assert(getKey()->isSuccessor(dst) &&
1295              "Attempting to append a block that is not a successor.");
1296       Edges.push_back(dst);
1297     }
1298 
1299     unsigned count() const { return Edges.size() - 1; }
1300 
1301     MachineBasicBlock *getKey() const { return Edges.back(); }
1302   };
1303 
1304   if (TriangleChainCount == 0)
1305     return;
1306 
1307   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1308   // Map from last block to the chain that contains it. This allows us to extend
1309   // chains as we find new triangles.
1310   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1311   for (MachineBasicBlock &BB : *F) {
1312     // If BB doesn't have 2 successors, it doesn't start a triangle.
1313     if (BB.succ_size() != 2)
1314       continue;
1315     MachineBasicBlock *PDom = nullptr;
1316     for (MachineBasicBlock *Succ : BB.successors()) {
1317       if (!MPDT->dominates(Succ, &BB))
1318         continue;
1319       PDom = Succ;
1320       break;
1321     }
1322     // If BB doesn't have a post-dominating successor, it doesn't form a
1323     // triangle.
1324     if (PDom == nullptr)
1325       continue;
1326     // If PDom has a hint that it is low probability, skip this triangle.
1327     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1328       continue;
1329     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1330     // we're looking for.
1331     if (!shouldTailDuplicate(PDom))
1332       continue;
1333     bool CanTailDuplicate = true;
1334     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1335     // isn't the kind of triangle we're looking for.
1336     for (MachineBasicBlock *Pred : PDom->predecessors()) {
1337       if (Pred == &BB)
1338         continue;
1339       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1340         CanTailDuplicate = false;
1341         break;
1342       }
1343     }
1344     // If we can't tail-duplicate PDom to its predecessors, then skip this
1345     // triangle.
1346     if (!CanTailDuplicate)
1347       continue;
1348 
1349     // Now we have an interesting triangle. Insert it if it's not part of an
1350     // existing chain.
1351     // Note: This cannot be replaced with a call insert() or emplace() because
1352     // the find key is BB, but the insert/emplace key is PDom.
1353     auto Found = TriangleChainMap.find(&BB);
1354     // If it is, remove the chain from the map, grow it, and put it back in the
1355     // map with the end as the new key.
1356     if (Found != TriangleChainMap.end()) {
1357       TriangleChain Chain = std::move(Found->second);
1358       TriangleChainMap.erase(Found);
1359       Chain.append(PDom);
1360       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1361     } else {
1362       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1363       assert(InsertResult.second && "Block seen twice.");
1364       (void)InsertResult;
1365     }
1366   }
1367 
1368   // Iterating over a DenseMap is safe here, because the only thing in the body
1369   // of the loop is inserting into another DenseMap (ComputedEdges).
1370   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1371   for (auto &ChainPair : TriangleChainMap) {
1372     TriangleChain &Chain = ChainPair.second;
1373     // Benchmarking has shown that due to branch correlation duplicating 2 or
1374     // more triangles is profitable, despite the calculations assuming
1375     // independence.
1376     if (Chain.count() < TriangleChainCount)
1377       continue;
1378     MachineBasicBlock *dst = Chain.Edges.back();
1379     Chain.Edges.pop_back();
1380     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1381       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1382                         << getBlockName(dst)
1383                         << " as pre-computed based on triangles.\n");
1384 
1385       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1386       assert(InsertResult.second && "Block seen twice.");
1387       (void)InsertResult;
1388 
1389       dst = src;
1390     }
1391   }
1392 }
1393 
1394 // When profile is not present, return the StaticLikelyProb.
1395 // When profile is available, we need to handle the triangle-shape CFG.
1396 static BranchProbability
1397 getLayoutSuccessorProbThreshold(const MachineBasicBlock *BB) {
1398   if (!BB->getParent()->getFunction().hasProfileData())
1399     return BranchProbability(StaticLikelyProb, 100);
1400   if (BB->succ_size() == 2) {
1401     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1402     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1403     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1404       /* See case 1 below for the cost analysis. For BB->Succ to
1405        * be taken with smaller cost, the following needs to hold:
1406        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1407        *   So the threshold T in the calculation below
1408        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1409        *   So T / (1 - T) = 2, Yielding T = 2/3
1410        * Also adding user specified branch bias, we have
1411        *   T = (2/3)*(ProfileLikelyProb/50)
1412        *     = (2*ProfileLikelyProb)/150)
1413        */
1414       return BranchProbability(2 * ProfileLikelyProb, 150);
1415     }
1416   }
1417   return BranchProbability(ProfileLikelyProb, 100);
1418 }
1419 
1420 /// Checks to see if the layout candidate block \p Succ has a better layout
1421 /// predecessor than \c BB. If yes, returns true.
1422 /// \p SuccProb: The probability adjusted for only remaining blocks.
1423 ///   Only used for logging
1424 /// \p RealSuccProb: The un-adjusted probability.
1425 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1426 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1427 ///    considered
1428 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1429     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1430     const BlockChain &SuccChain, BranchProbability SuccProb,
1431     BranchProbability RealSuccProb, const BlockChain &Chain,
1432     const BlockFilterSet *BlockFilter) {
1433 
1434   // There isn't a better layout when there are no unscheduled predecessors.
1435   if (SuccChain.UnscheduledPredecessors == 0)
1436     return false;
1437 
1438   // There are two basic scenarios here:
1439   // -------------------------------------
1440   // Case 1: triangular shape CFG (if-then):
1441   //     BB
1442   //     | \
1443   //     |  \
1444   //     |   Pred
1445   //     |   /
1446   //     Succ
1447   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1448   // set Succ as the layout successor of BB. Picking Succ as BB's
1449   // successor breaks the CFG constraints (FIXME: define these constraints).
1450   // With this layout, Pred BB
1451   // is forced to be outlined, so the overall cost will be cost of the
1452   // branch taken from BB to Pred, plus the cost of back taken branch
1453   // from Pred to Succ, as well as the additional cost associated
1454   // with the needed unconditional jump instruction from Pred To Succ.
1455 
1456   // The cost of the topological order layout is the taken branch cost
1457   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1458   // must hold:
1459   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1460   //      < freq(BB->Succ) *  taken_branch_cost.
1461   // Ignoring unconditional jump cost, we get
1462   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1463   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1464   //
1465   // When real profile data is available, we can precisely compute the
1466   // probability threshold that is needed for edge BB->Succ to be considered.
1467   // Without profile data, the heuristic requires the branch bias to be
1468   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1469   // -----------------------------------------------------------------
1470   // Case 2: diamond like CFG (if-then-else):
1471   //     S
1472   //    / \
1473   //   |   \
1474   //  BB    Pred
1475   //   \    /
1476   //    Succ
1477   //    ..
1478   //
1479   // The current block is BB and edge BB->Succ is now being evaluated.
1480   // Note that edge S->BB was previously already selected because
1481   // prob(S->BB) > prob(S->Pred).
1482   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1483   // choose Pred, we will have a topological ordering as shown on the left
1484   // in the picture below. If we choose Succ, we have the solution as shown
1485   // on the right:
1486   //
1487   //   topo-order:
1488   //
1489   //       S-----                             ---S
1490   //       |    |                             |  |
1491   //    ---BB   |                             |  BB
1492   //    |       |                             |  |
1493   //    |  Pred--                             |  Succ--
1494   //    |  |                                  |       |
1495   //    ---Succ                               ---Pred--
1496   //
1497   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1498   //      = freq(S->Pred) + freq(S->BB)
1499   //
1500   // If we have profile data (i.e, branch probabilities can be trusted), the
1501   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1502   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1503   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1504   // means the cost of topological order is greater.
1505   // When profile data is not available, however, we need to be more
1506   // conservative. If the branch prediction is wrong, breaking the topo-order
1507   // will actually yield a layout with large cost. For this reason, we need
1508   // strong biased branch at block S with Prob(S->BB) in order to select
1509   // BB->Succ. This is equivalent to looking the CFG backward with backward
1510   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1511   // profile data).
1512   // --------------------------------------------------------------------------
1513   // Case 3: forked diamond
1514   //       S
1515   //      / \
1516   //     /   \
1517   //   BB    Pred
1518   //   | \   / |
1519   //   |  \ /  |
1520   //   |   X   |
1521   //   |  / \  |
1522   //   | /   \ |
1523   //   S1     S2
1524   //
1525   // The current block is BB and edge BB->S1 is now being evaluated.
1526   // As above S->BB was already selected because
1527   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1528   //
1529   // topo-order:
1530   //
1531   //     S-------|                     ---S
1532   //     |       |                     |  |
1533   //  ---BB      |                     |  BB
1534   //  |          |                     |  |
1535   //  |  Pred----|                     |  S1----
1536   //  |  |                             |       |
1537   //  --(S1 or S2)                     ---Pred--
1538   //                                        |
1539   //                                       S2
1540   //
1541   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1542   //    + min(freq(Pred->S1), freq(Pred->S2))
1543   // Non-topo-order cost:
1544   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1545   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1546   // is 0. Then the non topo layout is better when
1547   // freq(S->Pred) < freq(BB->S1).
1548   // This is exactly what is checked below.
1549   // Note there are other shapes that apply (Pred may not be a single block,
1550   // but they all fit this general pattern.)
1551   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1552 
1553   // Make sure that a hot successor doesn't have a globally more
1554   // important predecessor.
1555   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1556   bool BadCFGConflict = false;
1557 
1558   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1559     BlockChain *PredChain = BlockToChain[Pred];
1560     if (Pred == Succ || PredChain == &SuccChain ||
1561         (BlockFilter && !BlockFilter->count(Pred)) || PredChain == &Chain ||
1562         Pred != *std::prev(PredChain->end()) ||
1563         // This check is redundant except for look ahead. This function is
1564         // called for lookahead by isProfitableToTailDup when BB hasn't been
1565         // placed yet.
1566         (Pred == BB))
1567       continue;
1568     // Do backward checking.
1569     // For all cases above, we need a backward checking to filter out edges that
1570     // are not 'strongly' biased.
1571     // BB  Pred
1572     //  \ /
1573     //  Succ
1574     // We select edge BB->Succ if
1575     //      freq(BB->Succ) > freq(Succ) * HotProb
1576     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1577     //      HotProb
1578     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1579     // Case 1 is covered too, because the first equation reduces to:
1580     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1581     BlockFrequency PredEdgeFreq =
1582         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1583     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1584       BadCFGConflict = true;
1585       break;
1586     }
1587   }
1588 
1589   if (BadCFGConflict) {
1590     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1591                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1592     return true;
1593   }
1594 
1595   return false;
1596 }
1597 
1598 /// Select the best successor for a block.
1599 ///
1600 /// This looks across all successors of a particular block and attempts to
1601 /// select the "best" one to be the layout successor. It only considers direct
1602 /// successors which also pass the block filter. It will attempt to avoid
1603 /// breaking CFG structure, but cave and break such structures in the case of
1604 /// very hot successor edges.
1605 ///
1606 /// \returns The best successor block found, or null if none are viable, along
1607 /// with a boolean indicating if tail duplication is necessary.
1608 MachineBlockPlacement::BlockAndTailDupResult
1609 MachineBlockPlacement::selectBestSuccessor(const MachineBasicBlock *BB,
1610                                            const BlockChain &Chain,
1611                                            const BlockFilterSet *BlockFilter) {
1612   const BranchProbability HotProb(StaticLikelyProb, 100);
1613 
1614   BlockAndTailDupResult BestSucc = {nullptr, false};
1615   auto BestProb = BranchProbability::getZero();
1616 
1617   SmallVector<MachineBasicBlock *, 4> Successors;
1618   auto AdjustedSumProb =
1619       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1620 
1621   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1622                     << "\n");
1623 
1624   // if we already precomputed the best successor for BB, return that if still
1625   // applicable.
1626   auto FoundEdge = ComputedEdges.find(BB);
1627   if (FoundEdge != ComputedEdges.end()) {
1628     MachineBasicBlock *Succ = FoundEdge->second.BB;
1629     ComputedEdges.erase(FoundEdge);
1630     BlockChain *SuccChain = BlockToChain[Succ];
1631     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1632         SuccChain != &Chain && Succ == *SuccChain->begin())
1633       return FoundEdge->second;
1634   }
1635 
1636   // if BB is part of a trellis, Use the trellis to determine the optimal
1637   // fallthrough edges
1638   if (isTrellis(BB, Successors, Chain, BlockFilter))
1639     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1640                                    BlockFilter);
1641 
1642   // For blocks with CFG violations, we may be able to lay them out anyway with
1643   // tail-duplication. We keep this vector so we can perform the probability
1644   // calculations the minimum number of times.
1645   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1646       DupCandidates;
1647   for (MachineBasicBlock *Succ : Successors) {
1648     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1649     BranchProbability SuccProb =
1650         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1651 
1652     BlockChain &SuccChain = *BlockToChain[Succ];
1653     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1654     // predecessor that yields lower global cost.
1655     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1656                                    Chain, BlockFilter)) {
1657       // If tail duplication would make Succ profitable, place it.
1658       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1659         DupCandidates.emplace_back(SuccProb, Succ);
1660       continue;
1661     }
1662 
1663     LLVM_DEBUG(
1664         dbgs() << "    Candidate: " << getBlockName(Succ)
1665                << ", probability: " << SuccProb
1666                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1667                << "\n");
1668 
1669     if (BestSucc.BB && BestProb >= SuccProb) {
1670       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1671       continue;
1672     }
1673 
1674     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1675     BestSucc.BB = Succ;
1676     BestProb = SuccProb;
1677   }
1678   // Handle the tail duplication candidates in order of decreasing probability.
1679   // Stop at the first one that is profitable. Also stop if they are less
1680   // profitable than BestSucc. Position is important because we preserve it and
1681   // prefer first best match. Here we aren't comparing in order, so we capture
1682   // the position instead.
1683   llvm::stable_sort(DupCandidates,
1684                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1685                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1686                       return std::get<0>(L) > std::get<0>(R);
1687                     });
1688   for (auto &Tup : DupCandidates) {
1689     BranchProbability DupProb;
1690     MachineBasicBlock *Succ;
1691     std::tie(DupProb, Succ) = Tup;
1692     if (DupProb < BestProb)
1693       break;
1694     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) &&
1695         (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1696       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1697                         << ", probability: " << DupProb
1698                         << " (Tail Duplicate)\n");
1699       BestSucc.BB = Succ;
1700       BestSucc.ShouldTailDup = true;
1701       break;
1702     }
1703   }
1704 
1705   if (BestSucc.BB)
1706     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1707 
1708   return BestSucc;
1709 }
1710 
1711 /// Select the best block from a worklist.
1712 ///
1713 /// This looks through the provided worklist as a list of candidate basic
1714 /// blocks and select the most profitable one to place. The definition of
1715 /// profitable only really makes sense in the context of a loop. This returns
1716 /// the most frequently visited block in the worklist, which in the case of
1717 /// a loop, is the one most desirable to be physically close to the rest of the
1718 /// loop body in order to improve i-cache behavior.
1719 ///
1720 /// \returns The best block found, or null if none are viable.
1721 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1722     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1723   // Once we need to walk the worklist looking for a candidate, cleanup the
1724   // worklist of already placed entries.
1725   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1726   // some code complexity) into the loop below.
1727   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1728     return BlockToChain.lookup(BB) == &Chain;
1729   });
1730 
1731   if (WorkList.empty())
1732     return nullptr;
1733 
1734   bool IsEHPad = WorkList[0]->isEHPad();
1735 
1736   MachineBasicBlock *BestBlock = nullptr;
1737   BlockFrequency BestFreq;
1738   for (MachineBasicBlock *MBB : WorkList) {
1739     assert(MBB->isEHPad() == IsEHPad &&
1740            "EHPad mismatch between block and work list.");
1741 
1742     BlockChain &SuccChain = *BlockToChain[MBB];
1743     if (&SuccChain == &Chain)
1744       continue;
1745 
1746     assert(SuccChain.UnscheduledPredecessors == 0 &&
1747            "Found CFG-violating block");
1748 
1749     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1750     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> "
1751                       << printBlockFreq(MBFI->getMBFI(), CandidateFreq)
1752                       << " (freq)\n");
1753 
1754     // For ehpad, we layout the least probable first as to avoid jumping back
1755     // from least probable landingpads to more probable ones.
1756     //
1757     // FIXME: Using probability is probably (!) not the best way to achieve
1758     // this. We should probably have a more principled approach to layout
1759     // cleanup code.
1760     //
1761     // The goal is to get:
1762     //
1763     //                 +--------------------------+
1764     //                 |                          V
1765     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1766     //
1767     // Rather than:
1768     //
1769     //                 +-------------------------------------+
1770     //                 V                                     |
1771     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1772     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1773       continue;
1774 
1775     BestBlock = MBB;
1776     BestFreq = CandidateFreq;
1777   }
1778 
1779   return BestBlock;
1780 }
1781 
1782 /// Retrieve the first unplaced basic block in the entire function.
1783 ///
1784 /// This routine is called when we are unable to use the CFG to walk through
1785 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1786 /// We walk through the function's blocks in order, starting from the
1787 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1788 /// re-scanning the entire sequence on repeated calls to this routine.
1789 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1790     const BlockChain &PlacedChain,
1791     MachineFunction::iterator &PrevUnplacedBlockIt) {
1792 
1793   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1794        ++I) {
1795     if (BlockToChain[&*I] != &PlacedChain) {
1796       PrevUnplacedBlockIt = I;
1797       // Now select the head of the chain to which the unplaced block belongs
1798       // as the block to place. This will force the entire chain to be placed,
1799       // and satisfies the requirements of merging chains.
1800       return *BlockToChain[&*I]->begin();
1801     }
1802   }
1803   return nullptr;
1804 }
1805 
1806 /// Retrieve the first unplaced basic block among the blocks in BlockFilter.
1807 ///
1808 /// This is similar to getFirstUnplacedBlock for the entire function, but since
1809 /// the size of BlockFilter is typically far less than the number of blocks in
1810 /// the entire function, iterating through the BlockFilter is more efficient.
1811 /// When processing the entire funciton, using the version without BlockFilter
1812 /// has a complexity of #(loops in function) * #(blocks in function), while this
1813 /// version has a complexity of sum(#(loops in block) foreach block in function)
1814 /// which is always smaller. For long function mostly sequential in structure,
1815 /// the complexity is amortized to 1 * #(blocks in function).
1816 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1817     const BlockChain &PlacedChain,
1818     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
1819     const BlockFilterSet *BlockFilter) {
1820   assert(BlockFilter);
1821   for (; PrevUnplacedBlockInFilterIt != BlockFilter->end();
1822        ++PrevUnplacedBlockInFilterIt) {
1823     BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt];
1824     if (C != &PlacedChain) {
1825       return *C->begin();
1826     }
1827   }
1828   return nullptr;
1829 }
1830 
1831 void MachineBlockPlacement::fillWorkLists(
1832     const MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1833     const BlockFilterSet *BlockFilter = nullptr) {
1834   BlockChain &Chain = *BlockToChain[MBB];
1835   if (!UpdatedPreds.insert(&Chain).second)
1836     return;
1837 
1838   assert(
1839       Chain.UnscheduledPredecessors == 0 &&
1840       "Attempting to place block with unscheduled predecessors in worklist.");
1841   for (MachineBasicBlock *ChainBB : Chain) {
1842     assert(BlockToChain[ChainBB] == &Chain &&
1843            "Block in chain doesn't match BlockToChain map.");
1844     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1845       if (BlockFilter && !BlockFilter->count(Pred))
1846         continue;
1847       if (BlockToChain[Pred] == &Chain)
1848         continue;
1849       ++Chain.UnscheduledPredecessors;
1850     }
1851   }
1852 
1853   if (Chain.UnscheduledPredecessors != 0)
1854     return;
1855 
1856   MachineBasicBlock *BB = *Chain.begin();
1857   if (BB->isEHPad())
1858     EHPadWorkList.push_back(BB);
1859   else
1860     BlockWorkList.push_back(BB);
1861 }
1862 
1863 void MachineBlockPlacement::buildChain(const MachineBasicBlock *HeadBB,
1864                                        BlockChain &Chain,
1865                                        BlockFilterSet *BlockFilter) {
1866   assert(HeadBB && "BB must not be null.\n");
1867   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1868   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1869   BlockFilterSet::iterator PrevUnplacedBlockInFilterIt;
1870   if (BlockFilter)
1871     PrevUnplacedBlockInFilterIt = BlockFilter->begin();
1872 
1873   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1874   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1875   MachineBasicBlock *BB = *std::prev(Chain.end());
1876   while (true) {
1877     assert(BB && "null block found at end of chain in loop.");
1878     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1879     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1880 
1881     // Look for the best viable successor if there is one to place immediately
1882     // after this block.
1883     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1884     MachineBasicBlock *BestSucc = Result.BB;
1885     bool ShouldTailDup = Result.ShouldTailDup;
1886     if (allowTailDupPlacement())
1887       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(
1888                                         BB, BestSucc, Chain, BlockFilter));
1889 
1890     // If an immediate successor isn't available, look for the best viable
1891     // block among those we've identified as not violating the loop's CFG at
1892     // this point. This won't be a fallthrough, but it will increase locality.
1893     if (!BestSucc)
1894       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1895     if (!BestSucc)
1896       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1897 
1898     if (!BestSucc) {
1899       if (BlockFilter)
1900         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt,
1901                                          BlockFilter);
1902       else
1903         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt);
1904       if (!BestSucc)
1905         break;
1906 
1907       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1908                            "layout successor until the CFG reduces\n");
1909     }
1910 
1911     // Placement may have changed tail duplication opportunities.
1912     // Check for that now.
1913     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1914       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1915                                    BlockFilter, PrevUnplacedBlockIt,
1916                                    PrevUnplacedBlockInFilterIt);
1917       // If the chosen successor was duplicated into BB, don't bother laying
1918       // it out, just go round the loop again with BB as the chain end.
1919       if (!BB->isSuccessor(BestSucc))
1920         continue;
1921     }
1922 
1923     // Place this block, updating the datastructures to reflect its placement.
1924     BlockChain &SuccChain = *BlockToChain[BestSucc];
1925     // Zero out UnscheduledPredecessors for the successor we're about to merge
1926     // in case we selected a successor that didn't fit naturally into the CFG.
1927     SuccChain.UnscheduledPredecessors = 0;
1928     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1929                       << getBlockName(BestSucc) << "\n");
1930     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1931     Chain.merge(BestSucc, &SuccChain);
1932     BB = *std::prev(Chain.end());
1933   }
1934 
1935   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1936                     << getBlockName(*Chain.begin()) << "\n");
1937 }
1938 
1939 // If bottom of block BB has only one successor OldTop, in most cases it is
1940 // profitable to move it before OldTop, except the following case:
1941 //
1942 //     -->OldTop<-
1943 //     |    .    |
1944 //     |    .    |
1945 //     |    .    |
1946 //     ---Pred   |
1947 //          |    |
1948 //         BB-----
1949 //
1950 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1951 // layout the other successor below it, so it can't reduce taken branch.
1952 // In this case we keep its original layout.
1953 bool MachineBlockPlacement::canMoveBottomBlockToTop(
1954     const MachineBasicBlock *BottomBlock, const MachineBasicBlock *OldTop) {
1955   if (BottomBlock->pred_size() != 1)
1956     return true;
1957   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1958   if (Pred->succ_size() != 2)
1959     return true;
1960 
1961   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1962   if (OtherBB == BottomBlock)
1963     OtherBB = *Pred->succ_rbegin();
1964   if (OtherBB == OldTop)
1965     return false;
1966 
1967   return true;
1968 }
1969 
1970 // Find out the possible fall through frequence to the top of a loop.
1971 BlockFrequency
1972 MachineBlockPlacement::TopFallThroughFreq(const MachineBasicBlock *Top,
1973                                           const BlockFilterSet &LoopBlockSet) {
1974   BlockFrequency MaxFreq = BlockFrequency(0);
1975   for (MachineBasicBlock *Pred : Top->predecessors()) {
1976     BlockChain *PredChain = BlockToChain[Pred];
1977     if (!LoopBlockSet.count(Pred) &&
1978         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1979       // Found a Pred block can be placed before Top.
1980       // Check if Top is the best successor of Pred.
1981       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1982       bool TopOK = true;
1983       for (MachineBasicBlock *Succ : Pred->successors()) {
1984         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1985         BlockChain *SuccChain = BlockToChain[Succ];
1986         // Check if Succ can be placed after Pred.
1987         // Succ should not be in any chain, or it is the head of some chain.
1988         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1989             (!SuccChain || Succ == *SuccChain->begin())) {
1990           TopOK = false;
1991           break;
1992         }
1993       }
1994       if (TopOK) {
1995         BlockFrequency EdgeFreq =
1996             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Top);
1997         if (EdgeFreq > MaxFreq)
1998           MaxFreq = EdgeFreq;
1999       }
2000     }
2001   }
2002   return MaxFreq;
2003 }
2004 
2005 // Compute the fall through gains when move NewTop before OldTop.
2006 //
2007 // In following diagram, edges marked as "-" are reduced fallthrough, edges
2008 // marked as "+" are increased fallthrough, this function computes
2009 //
2010 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
2011 //
2012 //              |
2013 //              | -
2014 //              V
2015 //        --->OldTop
2016 //        |     .
2017 //        |     .
2018 //       +|     .    +
2019 //        |   Pred --->
2020 //        |     |-
2021 //        |     V
2022 //        --- NewTop <---
2023 //              |-
2024 //              V
2025 //
2026 BlockFrequency MachineBlockPlacement::FallThroughGains(
2027     const MachineBasicBlock *NewTop, const MachineBasicBlock *OldTop,
2028     const MachineBasicBlock *ExitBB, const BlockFilterSet &LoopBlockSet) {
2029   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
2030   BlockFrequency FallThrough2Exit = BlockFrequency(0);
2031   if (ExitBB)
2032     FallThrough2Exit =
2033         MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, ExitBB);
2034   BlockFrequency BackEdgeFreq =
2035       MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, OldTop);
2036 
2037   // Find the best Pred of NewTop.
2038   MachineBasicBlock *BestPred = nullptr;
2039   BlockFrequency FallThroughFromPred = BlockFrequency(0);
2040   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2041     if (!LoopBlockSet.count(Pred))
2042       continue;
2043     BlockChain *PredChain = BlockToChain[Pred];
2044     if (!PredChain || Pred == *std::prev(PredChain->end())) {
2045       BlockFrequency EdgeFreq =
2046           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop);
2047       if (EdgeFreq > FallThroughFromPred) {
2048         FallThroughFromPred = EdgeFreq;
2049         BestPred = Pred;
2050       }
2051     }
2052   }
2053 
2054   // If NewTop is not placed after Pred, another successor can be placed
2055   // after Pred.
2056   BlockFrequency NewFreq = BlockFrequency(0);
2057   if (BestPred) {
2058     for (MachineBasicBlock *Succ : BestPred->successors()) {
2059       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2060         continue;
2061       if (ComputedEdges.contains(Succ))
2062         continue;
2063       BlockChain *SuccChain = BlockToChain[Succ];
2064       if ((SuccChain && (Succ != *SuccChain->begin())) ||
2065           (SuccChain == BlockToChain[BestPred]))
2066         continue;
2067       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2068                                 MBPI->getEdgeProbability(BestPred, Succ);
2069       if (EdgeFreq > NewFreq)
2070         NewFreq = EdgeFreq;
2071     }
2072     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2073                                   MBPI->getEdgeProbability(BestPred, NewTop);
2074     if (NewFreq > OrigEdgeFreq) {
2075       // If NewTop is not the best successor of Pred, then Pred doesn't
2076       // fallthrough to NewTop. So there is no FallThroughFromPred and
2077       // NewFreq.
2078       NewFreq = BlockFrequency(0);
2079       FallThroughFromPred = BlockFrequency(0);
2080     }
2081   }
2082 
2083   BlockFrequency Result = BlockFrequency(0);
2084   BlockFrequency Gains = BackEdgeFreq + NewFreq;
2085   BlockFrequency Lost =
2086       FallThrough2Top + FallThrough2Exit + FallThroughFromPred;
2087   if (Gains > Lost)
2088     Result = Gains - Lost;
2089   return Result;
2090 }
2091 
2092 /// Helper function of findBestLoopTop. Find the best loop top block
2093 /// from predecessors of old top.
2094 ///
2095 /// Look for a block which is strictly better than the old top for laying
2096 /// out before the old top of the loop. This looks for only two patterns:
2097 ///
2098 ///     1. a block has only one successor, the old loop top
2099 ///
2100 ///        Because such a block will always result in an unconditional jump,
2101 ///        rotating it in front of the old top is always profitable.
2102 ///
2103 ///     2. a block has two successors, one is old top, another is exit
2104 ///        and it has more than one predecessors
2105 ///
2106 ///        If it is below one of its predecessors P, only P can fall through to
2107 ///        it, all other predecessors need a jump to it, and another conditional
2108 ///        jump to loop header. If it is moved before loop header, all its
2109 ///        predecessors jump to it, then fall through to loop header. So all its
2110 ///        predecessors except P can reduce one taken branch.
2111 ///        At the same time, move it before old top increases the taken branch
2112 ///        to loop exit block, so the reduced taken branch will be compared with
2113 ///        the increased taken branch to the loop exit block.
2114 MachineBasicBlock *MachineBlockPlacement::findBestLoopTopHelper(
2115     MachineBasicBlock *OldTop, const MachineLoop &L,
2116     const BlockFilterSet &LoopBlockSet) {
2117   // Check that the header hasn't been fused with a preheader block due to
2118   // crazy branches. If it has, we need to start with the header at the top to
2119   // prevent pulling the preheader into the loop body.
2120   BlockChain &HeaderChain = *BlockToChain[OldTop];
2121   if (!LoopBlockSet.count(*HeaderChain.begin()))
2122     return OldTop;
2123   if (OldTop != *HeaderChain.begin())
2124     return OldTop;
2125 
2126   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2127                     << "\n");
2128 
2129   BlockFrequency BestGains = BlockFrequency(0);
2130   MachineBasicBlock *BestPred = nullptr;
2131   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2132     if (!LoopBlockSet.count(Pred))
2133       continue;
2134     if (Pred == L.getHeader())
2135       continue;
2136     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2137                       << Pred->succ_size() << " successors, "
2138                       << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n");
2139     if (Pred->succ_size() > 2)
2140       continue;
2141 
2142     MachineBasicBlock *OtherBB = nullptr;
2143     if (Pred->succ_size() == 2) {
2144       OtherBB = *Pred->succ_begin();
2145       if (OtherBB == OldTop)
2146         OtherBB = *Pred->succ_rbegin();
2147     }
2148 
2149     if (!canMoveBottomBlockToTop(Pred, OldTop))
2150       continue;
2151 
2152     BlockFrequency Gains =
2153         FallThroughGains(Pred, OldTop, OtherBB, LoopBlockSet);
2154     if ((Gains > BlockFrequency(0)) &&
2155         (Gains > BestGains ||
2156          ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2157       BestPred = Pred;
2158       BestGains = Gains;
2159     }
2160   }
2161 
2162   // If no direct predecessor is fine, just use the loop header.
2163   if (!BestPred) {
2164     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2165     return OldTop;
2166   }
2167 
2168   // Walk backwards through any straight line of predecessors.
2169   while (BestPred->pred_size() == 1 &&
2170          (*BestPred->pred_begin())->succ_size() == 1 &&
2171          *BestPred->pred_begin() != L.getHeader())
2172     BestPred = *BestPred->pred_begin();
2173 
2174   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2175   return BestPred;
2176 }
2177 
2178 /// Find the best loop top block for layout.
2179 ///
2180 /// This function iteratively calls findBestLoopTopHelper, until no new better
2181 /// BB can be found.
2182 MachineBasicBlock *
2183 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2184                                        const BlockFilterSet &LoopBlockSet) {
2185   // Placing the latch block before the header may introduce an extra branch
2186   // that skips this block the first time the loop is executed, which we want
2187   // to avoid when optimising for size.
2188   // FIXME: in theory there is a case that does not introduce a new branch,
2189   // i.e. when the layout predecessor does not fallthrough to the loop header.
2190   // In practice this never happens though: there always seems to be a preheader
2191   // that can fallthrough and that is also placed before the header.
2192   bool OptForSize = F->getFunction().hasOptSize() ||
2193                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2194   if (OptForSize)
2195     return L.getHeader();
2196 
2197   MachineBasicBlock *OldTop = nullptr;
2198   MachineBasicBlock *NewTop = L.getHeader();
2199   while (NewTop != OldTop) {
2200     OldTop = NewTop;
2201     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2202     if (NewTop != OldTop)
2203       ComputedEdges[NewTop] = {OldTop, false};
2204   }
2205   return NewTop;
2206 }
2207 
2208 /// Find the best loop exiting block for layout.
2209 ///
2210 /// This routine implements the logic to analyze the loop looking for the best
2211 /// block to layout at the top of the loop. Typically this is done to maximize
2212 /// fallthrough opportunities.
2213 MachineBasicBlock *
2214 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2215                                         const BlockFilterSet &LoopBlockSet,
2216                                         BlockFrequency &ExitFreq) {
2217   // We don't want to layout the loop linearly in all cases. If the loop header
2218   // is just a normal basic block in the loop, we want to look for what block
2219   // within the loop is the best one to layout at the top. However, if the loop
2220   // header has be pre-merged into a chain due to predecessors not having
2221   // analyzable branches, *and* the predecessor it is merged with is *not* part
2222   // of the loop, rotating the header into the middle of the loop will create
2223   // a non-contiguous range of blocks which is Very Bad. So start with the
2224   // header and only rotate if safe.
2225   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2226   if (!LoopBlockSet.count(*HeaderChain.begin()))
2227     return nullptr;
2228 
2229   BlockFrequency BestExitEdgeFreq;
2230   unsigned BestExitLoopDepth = 0;
2231   MachineBasicBlock *ExitingBB = nullptr;
2232   // If there are exits to outer loops, loop rotation can severely limit
2233   // fallthrough opportunities unless it selects such an exit. Keep a set of
2234   // blocks where rotating to exit with that block will reach an outer loop.
2235   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2236 
2237   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2238                     << getBlockName(L.getHeader()) << "\n");
2239   for (MachineBasicBlock *MBB : L.getBlocks()) {
2240     BlockChain &Chain = *BlockToChain[MBB];
2241     // Ensure that this block is at the end of a chain; otherwise it could be
2242     // mid-way through an inner loop or a successor of an unanalyzable branch.
2243     if (MBB != *std::prev(Chain.end()))
2244       continue;
2245 
2246     // Now walk the successors. We need to establish whether this has a viable
2247     // exiting successor and whether it has a viable non-exiting successor.
2248     // We store the old exiting state and restore it if a viable looping
2249     // successor isn't found.
2250     MachineBasicBlock *OldExitingBB = ExitingBB;
2251     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2252     bool HasLoopingSucc = false;
2253     for (MachineBasicBlock *Succ : MBB->successors()) {
2254       if (Succ->isEHPad())
2255         continue;
2256       if (Succ == MBB)
2257         continue;
2258       BlockChain &SuccChain = *BlockToChain[Succ];
2259       // Don't split chains, either this chain or the successor's chain.
2260       if (&Chain == &SuccChain) {
2261         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2262                           << getBlockName(Succ) << " (chain conflict)\n");
2263         continue;
2264       }
2265 
2266       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2267       if (LoopBlockSet.count(Succ)) {
2268         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2269                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2270         HasLoopingSucc = true;
2271         continue;
2272       }
2273 
2274       unsigned SuccLoopDepth = 0;
2275       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2276         SuccLoopDepth = ExitLoop->getLoopDepth();
2277         if (ExitLoop->contains(&L))
2278           BlocksExitingToOuterLoop.insert(MBB);
2279       }
2280 
2281       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2282       LLVM_DEBUG(
2283           dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2284                  << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("
2285                  << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n");
2286       // Note that we bias this toward an existing layout successor to retain
2287       // incoming order in the absence of better information. The exit must have
2288       // a frequency higher than the current exit before we consider breaking
2289       // the layout.
2290       BranchProbability Bias(100 - ExitBlockBias, 100);
2291       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2292           ExitEdgeFreq > BestExitEdgeFreq ||
2293           (MBB->isLayoutSuccessor(Succ) &&
2294            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2295         BestExitEdgeFreq = ExitEdgeFreq;
2296         ExitingBB = MBB;
2297       }
2298     }
2299 
2300     if (!HasLoopingSucc) {
2301       // Restore the old exiting state, no viable looping successor was found.
2302       ExitingBB = OldExitingBB;
2303       BestExitEdgeFreq = OldBestExitEdgeFreq;
2304     }
2305   }
2306   // Without a candidate exiting block or with only a single block in the
2307   // loop, just use the loop header to layout the loop.
2308   if (!ExitingBB) {
2309     LLVM_DEBUG(
2310         dbgs() << "    No other candidate exit blocks, using loop header\n");
2311     return nullptr;
2312   }
2313   if (L.getNumBlocks() == 1) {
2314     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2315     return nullptr;
2316   }
2317 
2318   // Also, if we have exit blocks which lead to outer loops but didn't select
2319   // one of them as the exiting block we are rotating toward, disable loop
2320   // rotation altogether.
2321   if (!BlocksExitingToOuterLoop.empty() &&
2322       !BlocksExitingToOuterLoop.count(ExitingBB))
2323     return nullptr;
2324 
2325   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2326                     << "\n");
2327   ExitFreq = BestExitEdgeFreq;
2328   return ExitingBB;
2329 }
2330 
2331 /// Check if there is a fallthrough to loop header Top.
2332 ///
2333 ///   1. Look for a Pred that can be layout before Top.
2334 ///   2. Check if Top is the most possible successor of Pred.
2335 bool MachineBlockPlacement::hasViableTopFallthrough(
2336     const MachineBasicBlock *Top, const BlockFilterSet &LoopBlockSet) {
2337   for (MachineBasicBlock *Pred : Top->predecessors()) {
2338     BlockChain *PredChain = BlockToChain[Pred];
2339     if (!LoopBlockSet.count(Pred) &&
2340         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2341       // Found a Pred block can be placed before Top.
2342       // Check if Top is the best successor of Pred.
2343       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2344       bool TopOK = true;
2345       for (MachineBasicBlock *Succ : Pred->successors()) {
2346         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2347         BlockChain *SuccChain = BlockToChain[Succ];
2348         // Check if Succ can be placed after Pred.
2349         // Succ should not be in any chain, or it is the head of some chain.
2350         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2351           TopOK = false;
2352           break;
2353         }
2354       }
2355       if (TopOK)
2356         return true;
2357     }
2358   }
2359   return false;
2360 }
2361 
2362 /// Attempt to rotate an exiting block to the bottom of the loop.
2363 ///
2364 /// Once we have built a chain, try to rotate it to line up the hot exit block
2365 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2366 /// branches. For example, if the loop has fallthrough into its header and out
2367 /// of its bottom already, don't rotate it.
2368 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2369                                        const MachineBasicBlock *ExitingBB,
2370                                        BlockFrequency ExitFreq,
2371                                        const BlockFilterSet &LoopBlockSet) {
2372   if (!ExitingBB)
2373     return;
2374 
2375   MachineBasicBlock *Top = *LoopChain.begin();
2376   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2377 
2378   // If ExitingBB is already the last one in a chain then nothing to do.
2379   if (Bottom == ExitingBB)
2380     return;
2381 
2382   // The entry block should always be the first BB in a function.
2383   if (Top->isEntryBlock())
2384     return;
2385 
2386   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2387 
2388   // If the header has viable fallthrough, check whether the current loop
2389   // bottom is a viable exiting block. If so, bail out as rotating will
2390   // introduce an unnecessary branch.
2391   if (ViableTopFallthrough) {
2392     for (MachineBasicBlock *Succ : Bottom->successors()) {
2393       BlockChain *SuccChain = BlockToChain[Succ];
2394       if (!LoopBlockSet.count(Succ) &&
2395           (!SuccChain || Succ == *SuccChain->begin()))
2396         return;
2397     }
2398 
2399     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2400     // frequency is larger than top fallthrough.
2401     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2402     if (FallThrough2Top >= ExitFreq)
2403       return;
2404   }
2405 
2406   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2407   if (ExitIt == LoopChain.end())
2408     return;
2409 
2410   // Rotating a loop exit to the bottom when there is a fallthrough to top
2411   // trades the entry fallthrough for an exit fallthrough.
2412   // If there is no bottom->top edge, but the chosen exit block does have
2413   // a fallthrough, we break that fallthrough for nothing in return.
2414 
2415   // Let's consider an example. We have a built chain of basic blocks
2416   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2417   // By doing a rotation we get
2418   // Bk+1, ..., Bn, B1, ..., Bk
2419   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2420   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2421   // It might be compensated by fallthrough Bn -> B1.
2422   // So we have a condition to avoid creation of extra branch by loop rotation.
2423   // All below must be true to avoid loop rotation:
2424   //   If there is a fallthrough to top (B1)
2425   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2426   //   There is no fallthrough from bottom (Bn) to top (B1).
2427   // Please note that there is no exit fallthrough from Bn because we checked it
2428   // above.
2429   if (ViableTopFallthrough) {
2430     assert(std::next(ExitIt) != LoopChain.end() &&
2431            "Exit should not be last BB");
2432     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2433     if (ExitingBB->isSuccessor(NextBlockInChain))
2434       if (!Bottom->isSuccessor(Top))
2435         return;
2436   }
2437 
2438   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2439                     << " at bottom\n");
2440   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2441 }
2442 
2443 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2444 ///
2445 /// With profile data, we can determine the cost in terms of missed fall through
2446 /// opportunities when rotating a loop chain and select the best rotation.
2447 /// Basically, there are three kinds of cost to consider for each rotation:
2448 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2449 ///    the loop to the loop header.
2450 ///    2. The possibly missed fall through edges (if they exist) from the loop
2451 ///    exits to BB out of the loop.
2452 ///    3. The missed fall through edge (if it exists) from the last BB to the
2453 ///    first BB in the loop chain.
2454 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2455 ///  We select the best rotation with the smallest cost.
2456 void MachineBlockPlacement::rotateLoopWithProfile(
2457     BlockChain &LoopChain, const MachineLoop &L,
2458     const BlockFilterSet &LoopBlockSet) {
2459   auto RotationPos = LoopChain.end();
2460   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2461 
2462   // The entry block should always be the first BB in a function.
2463   if (ChainHeaderBB->isEntryBlock())
2464     return;
2465 
2466   BlockFrequency SmallestRotationCost = BlockFrequency::max();
2467 
2468   // A utility lambda that scales up a block frequency by dividing it by a
2469   // branch probability which is the reciprocal of the scale.
2470   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2471                                 unsigned Scale) -> BlockFrequency {
2472     if (Scale == 0)
2473       return BlockFrequency(0);
2474     // Use operator / between BlockFrequency and BranchProbability to implement
2475     // saturating multiplication.
2476     return Freq / BranchProbability(1, Scale);
2477   };
2478 
2479   // Compute the cost of the missed fall-through edge to the loop header if the
2480   // chain head is not the loop header. As we only consider natural loops with
2481   // single header, this computation can be done only once.
2482   BlockFrequency HeaderFallThroughCost(0);
2483   for (auto *Pred : ChainHeaderBB->predecessors()) {
2484     BlockChain *PredChain = BlockToChain[Pred];
2485     if (!LoopBlockSet.count(Pred) &&
2486         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2487       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2488                       MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2489       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2490       // If the predecessor has only an unconditional jump to the header, we
2491       // need to consider the cost of this jump.
2492       if (Pred->succ_size() == 1)
2493         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2494       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2495     }
2496   }
2497 
2498   // Here we collect all exit blocks in the loop, and for each exit we find out
2499   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2500   // as the sum of frequencies of exit edges we collect here, excluding the exit
2501   // edge from the tail of the loop chain.
2502   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2503   for (auto *BB : LoopChain) {
2504     auto LargestExitEdgeProb = BranchProbability::getZero();
2505     for (auto *Succ : BB->successors()) {
2506       BlockChain *SuccChain = BlockToChain[Succ];
2507       if (!LoopBlockSet.count(Succ) &&
2508           (!SuccChain || Succ == *SuccChain->begin())) {
2509         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2510         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2511       }
2512     }
2513     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2514       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2515       ExitsWithFreq.emplace_back(BB, ExitFreq);
2516     }
2517   }
2518 
2519   // In this loop we iterate every block in the loop chain and calculate the
2520   // cost assuming the block is the head of the loop chain. When the loop ends,
2521   // we should have found the best candidate as the loop chain's head.
2522   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2523             EndIter = LoopChain.end();
2524        Iter != EndIter; Iter++, TailIter++) {
2525     // TailIter is used to track the tail of the loop chain if the block we are
2526     // checking (pointed by Iter) is the head of the chain.
2527     if (TailIter == LoopChain.end())
2528       TailIter = LoopChain.begin();
2529 
2530     auto TailBB = *TailIter;
2531 
2532     // Calculate the cost by putting this BB to the top.
2533     BlockFrequency Cost = BlockFrequency(0);
2534 
2535     // If the current BB is the loop header, we need to take into account the
2536     // cost of the missed fall through edge from outside of the loop to the
2537     // header.
2538     if (Iter != LoopChain.begin())
2539       Cost += HeaderFallThroughCost;
2540 
2541     // Collect the loop exit cost by summing up frequencies of all exit edges
2542     // except the one from the chain tail.
2543     for (auto &ExitWithFreq : ExitsWithFreq)
2544       if (TailBB != ExitWithFreq.first)
2545         Cost += ExitWithFreq.second;
2546 
2547     // The cost of breaking the once fall-through edge from the tail to the top
2548     // of the loop chain. Here we need to consider three cases:
2549     // 1. If the tail node has only one successor, then we will get an
2550     //    additional jmp instruction. So the cost here is (MisfetchCost +
2551     //    JumpInstCost) * tail node frequency.
2552     // 2. If the tail node has two successors, then we may still get an
2553     //    additional jmp instruction if the layout successor after the loop
2554     //    chain is not its CFG successor. Note that the more frequently executed
2555     //    jmp instruction will be put ahead of the other one. Assume the
2556     //    frequency of those two branches are x and y, where x is the frequency
2557     //    of the edge to the chain head, then the cost will be
2558     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2559     // 3. If the tail node has more than two successors (this rarely happens),
2560     //    we won't consider any additional cost.
2561     if (TailBB->isSuccessor(*Iter)) {
2562       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2563       if (TailBB->succ_size() == 1)
2564         Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost);
2565       else if (TailBB->succ_size() == 2) {
2566         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2567         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2568         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2569                                   ? TailBBFreq * TailToHeadProb.getCompl()
2570                                   : TailToHeadFreq;
2571         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2572                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2573       }
2574     }
2575 
2576     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2577                       << getBlockName(*Iter) << " to the top: "
2578                       << printBlockFreq(MBFI->getMBFI(), Cost) << "\n");
2579 
2580     if (Cost < SmallestRotationCost) {
2581       SmallestRotationCost = Cost;
2582       RotationPos = Iter;
2583     }
2584   }
2585 
2586   if (RotationPos != LoopChain.end()) {
2587     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2588                       << " to the top\n");
2589     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2590   }
2591 }
2592 
2593 /// Collect blocks in the given loop that are to be placed.
2594 ///
2595 /// When profile data is available, exclude cold blocks from the returned set;
2596 /// otherwise, collect all blocks in the loop.
2597 MachineBlockPlacement::BlockFilterSet
2598 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2599   // Collect the blocks in a set ordered by block number, as this gives the same
2600   // order as they appear in the function.
2601   struct MBBCompare {
2602     bool operator()(const MachineBasicBlock *X,
2603                     const MachineBasicBlock *Y) const {
2604       return X->getNumber() < Y->getNumber();
2605     }
2606   };
2607   std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet;
2608 
2609   // Filter cold blocks off from LoopBlockSet when profile data is available.
2610   // Collect the sum of frequencies of incoming edges to the loop header from
2611   // outside. If we treat the loop as a super block, this is the frequency of
2612   // the loop. Then for each block in the loop, we calculate the ratio between
2613   // its frequency and the frequency of the loop block. When it is too small,
2614   // don't add it to the loop chain. If there are outer loops, then this block
2615   // will be merged into the first outer loop chain for which this block is not
2616   // cold anymore. This needs precise profile data and we only do this when
2617   // profile data is available.
2618   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2619     BlockFrequency LoopFreq(0);
2620     for (auto *LoopPred : L.getHeader()->predecessors())
2621       if (!L.contains(LoopPred))
2622         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2623                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2624 
2625     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2626       if (LoopBlockSet.count(LoopBB))
2627         continue;
2628       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2629       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2630         continue;
2631       BlockChain *Chain = BlockToChain[LoopBB];
2632       for (MachineBasicBlock *ChainBB : *Chain)
2633         LoopBlockSet.insert(ChainBB);
2634     }
2635   } else
2636     LoopBlockSet.insert(L.block_begin(), L.block_end());
2637 
2638   // Copy the blocks into a BlockFilterSet, as iterating it is faster than
2639   // std::set. We will only remove blocks and never insert them, which will
2640   // preserve the ordering.
2641   BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end());
2642   return Ret;
2643 }
2644 
2645 /// Forms basic block chains from the natural loop structures.
2646 ///
2647 /// These chains are designed to preserve the existing *structure* of the code
2648 /// as much as possible. We can then stitch the chains together in a way which
2649 /// both preserves the topological structure and minimizes taken conditional
2650 /// branches.
2651 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2652   // First recurse through any nested loops, building chains for those inner
2653   // loops.
2654   for (const MachineLoop *InnerLoop : L)
2655     buildLoopChains(*InnerLoop);
2656 
2657   assert(BlockWorkList.empty() &&
2658          "BlockWorkList not empty when starting to build loop chains.");
2659   assert(EHPadWorkList.empty() &&
2660          "EHPadWorkList not empty when starting to build loop chains.");
2661   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2662 
2663   // Check if we have profile data for this function. If yes, we will rotate
2664   // this loop by modeling costs more precisely which requires the profile data
2665   // for better layout.
2666   bool RotateLoopWithProfile =
2667       ForcePreciseRotationCost ||
2668       (PreciseRotationCost && F->getFunction().hasProfileData());
2669 
2670   // First check to see if there is an obviously preferable top block for the
2671   // loop. This will default to the header, but may end up as one of the
2672   // predecessors to the header if there is one which will result in strictly
2673   // fewer branches in the loop body.
2674   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2675 
2676   // If we selected just the header for the loop top, look for a potentially
2677   // profitable exit block in the event that rotating the loop can eliminate
2678   // branches by placing an exit edge at the bottom.
2679   //
2680   // Loops are processed innermost to uttermost, make sure we clear
2681   // PreferredLoopExit before processing a new loop.
2682   PreferredLoopExit = nullptr;
2683   BlockFrequency ExitFreq;
2684   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2685     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2686 
2687   BlockChain &LoopChain = *BlockToChain[LoopTop];
2688 
2689   // FIXME: This is a really lame way of walking the chains in the loop: we
2690   // walk the blocks, and use a set to prevent visiting a particular chain
2691   // twice.
2692   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2693   assert(LoopChain.UnscheduledPredecessors == 0 &&
2694          "LoopChain should not have unscheduled predecessors.");
2695   UpdatedPreds.insert(&LoopChain);
2696 
2697   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2698     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2699 
2700   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2701 
2702   if (RotateLoopWithProfile)
2703     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2704   else
2705     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2706 
2707   LLVM_DEBUG({
2708     // Crash at the end so we get all of the debugging output first.
2709     bool BadLoop = false;
2710     if (LoopChain.UnscheduledPredecessors) {
2711       BadLoop = true;
2712       dbgs() << "Loop chain contains a block without its preds placed!\n"
2713              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2714              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2715     }
2716     for (MachineBasicBlock *ChainBB : LoopChain) {
2717       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2718       if (!LoopBlockSet.remove(ChainBB)) {
2719         // We don't mark the loop as bad here because there are real situations
2720         // where this can occur. For example, with an unanalyzable fallthrough
2721         // from a loop block to a non-loop block or vice versa.
2722         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2723                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2724                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2725                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2726       }
2727     }
2728 
2729     if (!LoopBlockSet.empty()) {
2730       BadLoop = true;
2731       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2732         dbgs() << "Loop contains blocks never placed into a chain!\n"
2733                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2734                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2735                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2736     }
2737     assert(!BadLoop && "Detected problems with the placement of this loop.");
2738   });
2739 
2740   BlockWorkList.clear();
2741   EHPadWorkList.clear();
2742 }
2743 
2744 void MachineBlockPlacement::buildCFGChains() {
2745   // Ensure that every BB in the function has an associated chain to simplify
2746   // the assumptions of the remaining algorithm.
2747   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2748   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2749        ++FI) {
2750     MachineBasicBlock *BB = &*FI;
2751     BlockChain *Chain =
2752         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2753     // Also, merge any blocks which we cannot reason about and must preserve
2754     // the exact fallthrough behavior for.
2755     while (true) {
2756       Cond.clear();
2757       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2758       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2759         break;
2760 
2761       MachineFunction::iterator NextFI = std::next(FI);
2762       MachineBasicBlock *NextBB = &*NextFI;
2763       // Ensure that the layout successor is a viable block, as we know that
2764       // fallthrough is a possibility.
2765       assert(NextFI != FE && "Can't fallthrough past the last block.");
2766       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2767                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2768                         << "\n");
2769       Chain->merge(NextBB, nullptr);
2770 #ifndef NDEBUG
2771       BlocksWithUnanalyzableExits.insert(&*BB);
2772 #endif
2773       FI = NextFI;
2774       BB = NextBB;
2775     }
2776   }
2777 
2778   // Build any loop-based chains.
2779   PreferredLoopExit = nullptr;
2780   for (MachineLoop *L : *MLI)
2781     buildLoopChains(*L);
2782 
2783   assert(BlockWorkList.empty() &&
2784          "BlockWorkList should be empty before building final chain.");
2785   assert(EHPadWorkList.empty() &&
2786          "EHPadWorkList should be empty before building final chain.");
2787 
2788   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2789   for (MachineBasicBlock &MBB : *F)
2790     fillWorkLists(&MBB, UpdatedPreds);
2791 
2792   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2793   buildChain(&F->front(), FunctionChain);
2794 
2795 #ifndef NDEBUG
2796   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2797 #endif
2798   LLVM_DEBUG({
2799     // Crash at the end so we get all of the debugging output first.
2800     bool BadFunc = false;
2801     FunctionBlockSetType FunctionBlockSet;
2802     for (MachineBasicBlock &MBB : *F)
2803       FunctionBlockSet.insert(&MBB);
2804 
2805     for (MachineBasicBlock *ChainBB : FunctionChain)
2806       if (!FunctionBlockSet.erase(ChainBB)) {
2807         BadFunc = true;
2808         dbgs() << "Function chain contains a block not in the function!\n"
2809                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2810       }
2811 
2812     if (!FunctionBlockSet.empty()) {
2813       BadFunc = true;
2814       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2815         dbgs() << "Function contains blocks never placed into a chain!\n"
2816                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2817     }
2818     assert(!BadFunc && "Detected problems with the block placement.");
2819   });
2820 
2821   // Remember original layout ordering, so we can update terminators after
2822   // reordering to point to the original layout successor.
2823   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2824       F->getNumBlockIDs());
2825   {
2826     MachineBasicBlock *LastMBB = nullptr;
2827     for (auto &MBB : *F) {
2828       if (LastMBB != nullptr)
2829         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2830       LastMBB = &MBB;
2831     }
2832     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2833   }
2834 
2835   // Splice the blocks into place.
2836   MachineFunction::iterator InsertPos = F->begin();
2837   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2838   for (MachineBasicBlock *ChainBB : FunctionChain) {
2839     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2840                                                             : "          ... ")
2841                       << getBlockName(ChainBB) << "\n");
2842     if (InsertPos != MachineFunction::iterator(ChainBB))
2843       F->splice(InsertPos, ChainBB);
2844     else
2845       ++InsertPos;
2846 
2847     // Update the terminator of the previous block.
2848     if (ChainBB == *FunctionChain.begin())
2849       continue;
2850     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2851 
2852     // FIXME: It would be awesome of updateTerminator would just return rather
2853     // than assert when the branch cannot be analyzed in order to remove this
2854     // boiler plate.
2855     Cond.clear();
2856     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2857 
2858 #ifndef NDEBUG
2859     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2860       // Given the exact block placement we chose, we may actually not _need_ to
2861       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2862       // do that at this point is a bug.
2863       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2864               !PrevBB->canFallThrough()) &&
2865              "Unexpected block with un-analyzable fallthrough!");
2866       Cond.clear();
2867       TBB = FBB = nullptr;
2868     }
2869 #endif
2870 
2871     // The "PrevBB" is not yet updated to reflect current code layout, so,
2872     //   o. it may fall-through to a block without explicit "goto" instruction
2873     //      before layout, and no longer fall-through it after layout; or
2874     //   o. just opposite.
2875     //
2876     // analyzeBranch() may return erroneous value for FBB when these two
2877     // situations take place. For the first scenario FBB is mistakenly set NULL;
2878     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2879     // mistakenly pointing to "*BI".
2880     // Thus, if the future change needs to use FBB before the layout is set, it
2881     // has to correct FBB first by using the code similar to the following:
2882     //
2883     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2884     //   PrevBB->updateTerminator();
2885     //   Cond.clear();
2886     //   TBB = FBB = nullptr;
2887     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2888     //     // FIXME: This should never take place.
2889     //     TBB = FBB = nullptr;
2890     //   }
2891     // }
2892     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2893       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2894     }
2895   }
2896 
2897   // Fixup the last block.
2898   Cond.clear();
2899   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2900   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2901     MachineBasicBlock *PrevBB = &F->back();
2902     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2903   }
2904 
2905   BlockWorkList.clear();
2906   EHPadWorkList.clear();
2907 }
2908 
2909 void MachineBlockPlacement::optimizeBranches() {
2910   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2911   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2912 
2913   // Now that all the basic blocks in the chain have the proper layout,
2914   // make a final call to analyzeBranch with AllowModify set.
2915   // Indeed, the target may be able to optimize the branches in a way we
2916   // cannot because all branches may not be analyzable.
2917   // E.g., the target may be able to remove an unconditional branch to
2918   // a fallthrough when it occurs after predicated terminators.
2919   for (MachineBasicBlock *ChainBB : FunctionChain) {
2920     Cond.clear();
2921     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2922     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2923       // If PrevBB has a two-way branch, try to re-order the branches
2924       // such that we branch to the successor with higher probability first.
2925       if (TBB && !Cond.empty() && FBB &&
2926           MBPI->getEdgeProbability(ChainBB, FBB) >
2927               MBPI->getEdgeProbability(ChainBB, TBB) &&
2928           !TII->reverseBranchCondition(Cond)) {
2929         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2930                           << getBlockName(ChainBB) << "\n");
2931         LLVM_DEBUG(dbgs() << "    Edge probability: "
2932                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2933                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2934         DebugLoc dl; // FIXME: this is nowhere
2935         TII->removeBranch(*ChainBB);
2936         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2937       }
2938     }
2939   }
2940 }
2941 
2942 void MachineBlockPlacement::alignBlocks() {
2943   // Walk through the backedges of the function now that we have fully laid out
2944   // the basic blocks and align the destination of each backedge. We don't rely
2945   // exclusively on the loop info here so that we can align backedges in
2946   // unnatural CFGs and backedges that were introduced purely because of the
2947   // loop rotations done during this layout pass.
2948   if (!AlignAllBlock && !AlignAllNonFallThruBlocks) {
2949     if (F->getFunction().hasMinSize() ||
2950         (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2951       return;
2952   }
2953 
2954   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2955   // Empty chain.
2956   if (FunctionChain.begin() == FunctionChain.end())
2957     return;
2958 
2959   const BranchProbability ColdProb(1, 5); // 20%
2960   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2961   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2962   for (MachineBasicBlock *ChainBB : FunctionChain) {
2963     if (ChainBB == *FunctionChain.begin())
2964       continue;
2965 
2966     // Don't align non-looping basic blocks. These are unlikely to execute
2967     // enough times to matter in practice. Note that we'll still handle
2968     // unnatural CFGs inside of a natural outer loop (the common case) and
2969     // rotated loops.
2970     MachineLoop *L = MLI->getLoopFor(ChainBB);
2971     if (!L)
2972       continue;
2973 
2974     const Align TLIAlign = TLI->getPrefLoopAlignment(L);
2975     unsigned MDAlign = 1;
2976     MDNode *LoopID = L->getLoopID();
2977     if (LoopID) {
2978       for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
2979         MDNode *MD = dyn_cast<MDNode>(MDO);
2980         if (MD == nullptr)
2981           continue;
2982         MDString *S = dyn_cast<MDString>(MD->getOperand(0));
2983         if (S == nullptr)
2984           continue;
2985         if (S->getString() == "llvm.loop.align") {
2986           assert(MD->getNumOperands() == 2 &&
2987                  "per-loop align metadata should have two operands.");
2988           MDAlign =
2989               mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
2990           assert(MDAlign >= 1 && "per-loop align value must be positive.");
2991         }
2992       }
2993     }
2994 
2995     // Use max of the TLIAlign and MDAlign
2996     const Align LoopAlign = std::max(TLIAlign, Align(MDAlign));
2997     if (LoopAlign == 1)
2998       continue; // Don't care about loop alignment.
2999 
3000     // If the block is cold relative to the function entry don't waste space
3001     // aligning it.
3002     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
3003     if (Freq < WeightedEntryFreq)
3004       continue;
3005 
3006     // If the block is cold relative to its loop header, don't align it
3007     // regardless of what edges into the block exist.
3008     MachineBasicBlock *LoopHeader = L->getHeader();
3009     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
3010     if (Freq < (LoopHeaderFreq * ColdProb))
3011       continue;
3012 
3013     // If the global profiles indicates so, don't align it.
3014     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
3015         !TLI->alignLoopsWithOptSize())
3016       continue;
3017 
3018     // Check for the existence of a non-layout predecessor which would benefit
3019     // from aligning this block.
3020     MachineBasicBlock *LayoutPred =
3021         &*std::prev(MachineFunction::iterator(ChainBB));
3022 
3023     auto DetermineMaxAlignmentPadding = [&]() {
3024       // Set the maximum bytes allowed to be emitted for alignment.
3025       unsigned MaxBytes;
3026       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
3027         MaxBytes = MaxBytesForAlignmentOverride;
3028       else
3029         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
3030       ChainBB->setMaxBytesForAlignment(MaxBytes);
3031     };
3032 
3033     // Force alignment if all the predecessors are jumps. We already checked
3034     // that the block isn't cold above.
3035     if (!LayoutPred->isSuccessor(ChainBB)) {
3036       ChainBB->setAlignment(LoopAlign);
3037       DetermineMaxAlignmentPadding();
3038       continue;
3039     }
3040 
3041     // Align this block if the layout predecessor's edge into this block is
3042     // cold relative to the block. When this is true, other predecessors make up
3043     // all of the hot entries into the block and thus alignment is likely to be
3044     // important.
3045     BranchProbability LayoutProb =
3046         MBPI->getEdgeProbability(LayoutPred, ChainBB);
3047     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
3048     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
3049       ChainBB->setAlignment(LoopAlign);
3050       DetermineMaxAlignmentPadding();
3051     }
3052   }
3053 
3054   const bool HasMaxBytesOverride =
3055       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3056 
3057   if (AlignAllBlock)
3058     // Align all of the blocks in the function to a specific alignment.
3059     for (MachineBasicBlock &MBB : *F) {
3060       if (HasMaxBytesOverride)
3061         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3062                          MaxBytesForAlignmentOverride);
3063       else
3064         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3065     }
3066   else if (AlignAllNonFallThruBlocks) {
3067     // Align all of the blocks that have no fall-through predecessors to a
3068     // specific alignment.
3069     for (auto MBI = std::next(F->begin()), MBE = F->end(); MBI != MBE; ++MBI) {
3070       auto LayoutPred = std::prev(MBI);
3071       if (!LayoutPred->isSuccessor(&*MBI)) {
3072         if (HasMaxBytesOverride)
3073           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3074                             MaxBytesForAlignmentOverride);
3075         else
3076           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3077       }
3078     }
3079   }
3080 }
3081 
3082 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
3083 /// it was duplicated into its chain predecessor and removed.
3084 /// \p BB    - Basic block that may be duplicated.
3085 ///
3086 /// \p LPred - Chosen layout predecessor of \p BB.
3087 ///            Updated to be the chain end if LPred is removed.
3088 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3089 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3090 ///                  Used to identify which blocks to update predecessor
3091 ///                  counts.
3092 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3093 ///                          chosen in the given order due to unnatural CFG
3094 ///                          only needed if \p BB is removed and
3095 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3096 /// @return true if \p BB was removed.
3097 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
3098     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
3099     const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
3100     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3101     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) {
3102   bool Removed, DuplicatedToLPred;
3103   bool DuplicatedToOriginalLPred;
3104   Removed = maybeTailDuplicateBlock(
3105       BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3106       PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3107   if (!Removed)
3108     return false;
3109   DuplicatedToOriginalLPred = DuplicatedToLPred;
3110   // Iteratively try to duplicate again. It can happen that a block that is
3111   // duplicated into is still small enough to be duplicated again.
3112   // No need to call markBlockSuccessors in this case, as the blocks being
3113   // duplicated from here on are already scheduled.
3114   while (DuplicatedToLPred && Removed) {
3115     MachineBasicBlock *DupBB, *DupPred;
3116     // The removal callback causes Chain.end() to be updated when a block is
3117     // removed. On the first pass through the loop, the chain end should be the
3118     // same as it was on function entry. On subsequent passes, because we are
3119     // duplicating the block at the end of the chain, if it is removed the
3120     // chain will have shrunk by one block.
3121     BlockChain::iterator ChainEnd = Chain.end();
3122     DupBB = *(--ChainEnd);
3123     // Now try to duplicate again.
3124     if (ChainEnd == Chain.begin())
3125       break;
3126     DupPred = *std::prev(ChainEnd);
3127     Removed = maybeTailDuplicateBlock(
3128         DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3129         PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3130   }
3131   // If BB was duplicated into LPred, it is now scheduled. But because it was
3132   // removed, markChainSuccessors won't be called for its chain. Instead we
3133   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3134   // at the end because repeating the tail duplication can increase the number
3135   // of unscheduled predecessors.
3136   LPred = *std::prev(Chain.end());
3137   if (DuplicatedToOriginalLPred)
3138     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3139   return true;
3140 }
3141 
3142 /// Tail duplicate \p BB into (some) predecessors if profitable.
3143 /// \p BB    - Basic block that may be duplicated
3144 /// \p LPred - Chosen layout predecessor of \p BB
3145 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3146 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3147 ///                  Used to identify which blocks to update predecessor
3148 ///                  counts.
3149 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3150 ///                          chosen in the given order due to unnatural CFG
3151 ///                          only needed if \p BB is removed and
3152 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3153 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3154 /// \return  - True if the block was duplicated into all preds and removed.
3155 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3156     MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain,
3157     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3158     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
3159     bool &DuplicatedToLPred) {
3160   DuplicatedToLPred = false;
3161   if (!shouldTailDuplicate(BB))
3162     return false;
3163 
3164   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3165                     << "\n");
3166 
3167   // This has to be a callback because none of it can be done after
3168   // BB is deleted.
3169   bool Removed = false;
3170   auto RemovalCallback = [&](MachineBasicBlock *RemBB) {
3171     // Signal to outer function
3172     Removed = true;
3173 
3174     // Conservative default.
3175     bool InWorkList = true;
3176     // Remove from the Chain and Chain Map
3177     if (BlockToChain.count(RemBB)) {
3178       BlockChain *Chain = BlockToChain[RemBB];
3179       InWorkList = Chain->UnscheduledPredecessors == 0;
3180       Chain->remove(RemBB);
3181       BlockToChain.erase(RemBB);
3182     }
3183 
3184     // Handle the unplaced block iterator
3185     if (&(*PrevUnplacedBlockIt) == RemBB) {
3186       PrevUnplacedBlockIt++;
3187     }
3188 
3189     // Handle the Work Lists
3190     if (InWorkList) {
3191       SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3192       if (RemBB->isEHPad())
3193         RemoveList = EHPadWorkList;
3194       llvm::erase(RemoveList, RemBB);
3195     }
3196 
3197     // Handle the filter set
3198     if (BlockFilter) {
3199       auto It = llvm::find(*BlockFilter, RemBB);
3200       // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt
3201       // pointing to the same element as before.
3202       if (It != BlockFilter->end()) {
3203         if (It < PrevUnplacedBlockInFilterIt) {
3204           const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt;
3205           // BlockFilter is a SmallVector so all elements after RemBB are
3206           // shifted to the front by 1 after its deletion.
3207           auto Distance = PrevUnplacedBlockInFilterIt - It - 1;
3208           PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance;
3209           assert(*PrevUnplacedBlockInFilterIt == PrevBB);
3210           (void)PrevBB;
3211         } else if (It == PrevUnplacedBlockInFilterIt)
3212           // The block pointed by PrevUnplacedBlockInFilterIt is erased, we
3213           // have to set it to the next element.
3214           PrevUnplacedBlockInFilterIt = BlockFilter->erase(It);
3215         else
3216           BlockFilter->erase(It);
3217       }
3218     }
3219 
3220     // Remove the block from loop info.
3221     MLI->removeBlock(RemBB);
3222     if (RemBB == PreferredLoopExit)
3223       PreferredLoopExit = nullptr;
3224 
3225     LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " << getBlockName(RemBB)
3226                       << "\n");
3227   };
3228   auto RemovalCallbackRef =
3229       function_ref<void(MachineBasicBlock *)>(RemovalCallback);
3230 
3231   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3232   bool IsSimple = TailDup.isSimpleBB(BB);
3233   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3234   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3235   if (F->getFunction().hasProfileData()) {
3236     // We can do partial duplication with precise profile information.
3237     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3238     if (CandidatePreds.size() == 0)
3239       return false;
3240     if (CandidatePreds.size() < BB->pred_size())
3241       CandidatePtr = &CandidatePreds;
3242   }
3243   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3244                                  &RemovalCallbackRef, CandidatePtr);
3245 
3246   // Update UnscheduledPredecessors to reflect tail-duplication.
3247   DuplicatedToLPred = false;
3248   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3249     // We're only looking for unscheduled predecessors that match the filter.
3250     BlockChain *PredChain = BlockToChain[Pred];
3251     if (Pred == LPred)
3252       DuplicatedToLPred = true;
3253     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) ||
3254         PredChain == &Chain)
3255       continue;
3256     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3257       if (BlockFilter && !BlockFilter->count(NewSucc))
3258         continue;
3259       BlockChain *NewChain = BlockToChain[NewSucc];
3260       if (NewChain != &Chain && NewChain != PredChain)
3261         NewChain->UnscheduledPredecessors++;
3262     }
3263   }
3264   return Removed;
3265 }
3266 
3267 // Count the number of actual machine instructions.
3268 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3269   uint64_t InstrCount = 0;
3270   for (MachineInstr &MI : *MBB) {
3271     if (!MI.isPHI() && !MI.isMetaInstruction())
3272       InstrCount += 1;
3273   }
3274   return InstrCount;
3275 }
3276 
3277 // The size cost of duplication is the instruction size of the duplicated block.
3278 // So we should scale the threshold accordingly. But the instruction size is not
3279 // available on all targets, so we use the number of instructions instead.
3280 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3281   return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB));
3282 }
3283 
3284 // Returns true if BB is Pred's best successor.
3285 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3286                                             MachineBasicBlock *Pred,
3287                                             BlockFilterSet *BlockFilter) {
3288   if (BB == Pred)
3289     return false;
3290   if (BlockFilter && !BlockFilter->count(Pred))
3291     return false;
3292   BlockChain *PredChain = BlockToChain[Pred];
3293   if (PredChain && (Pred != *std::prev(PredChain->end())))
3294     return false;
3295 
3296   // Find the successor with largest probability excluding BB.
3297   BranchProbability BestProb = BranchProbability::getZero();
3298   for (MachineBasicBlock *Succ : Pred->successors())
3299     if (Succ != BB) {
3300       if (BlockFilter && !BlockFilter->count(Succ))
3301         continue;
3302       BlockChain *SuccChain = BlockToChain[Succ];
3303       if (SuccChain && (Succ != *SuccChain->begin()))
3304         continue;
3305       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3306       if (SuccProb > BestProb)
3307         BestProb = SuccProb;
3308     }
3309 
3310   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3311   if (BBProb <= BestProb)
3312     return false;
3313 
3314   // Compute the number of reduced taken branches if Pred falls through to BB
3315   // instead of another successor. Then compare it with threshold.
3316   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3317   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3318   return Gain > scaleThreshold(BB);
3319 }
3320 
3321 // Find out the predecessors of BB and BB can be beneficially duplicated into
3322 // them.
3323 void MachineBlockPlacement::findDuplicateCandidates(
3324     SmallVectorImpl<MachineBasicBlock *> &Candidates, MachineBasicBlock *BB,
3325     BlockFilterSet *BlockFilter) {
3326   MachineBasicBlock *Fallthrough = nullptr;
3327   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3328   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3329   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3330   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3331 
3332   // Sort for highest frequency.
3333   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3334     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3335   };
3336   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3337     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3338   };
3339   llvm::stable_sort(Succs, CmpSucc);
3340   llvm::stable_sort(Preds, CmpPred);
3341 
3342   auto SuccIt = Succs.begin();
3343   if (SuccIt != Succs.end()) {
3344     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3345   }
3346 
3347   // For each predecessors of BB, compute the benefit of duplicating BB,
3348   // if it is larger than the threshold, add it into Candidates.
3349   //
3350   // If we have following control flow.
3351   //
3352   //     PB1 PB2 PB3 PB4
3353   //      \   |  /    /\
3354   //       \  | /    /  \
3355   //        \ |/    /    \
3356   //         BB----/     OB
3357   //         /\
3358   //        /  \
3359   //      SB1 SB2
3360   //
3361   // And it can be partially duplicated as
3362   //
3363   //   PB2+BB
3364   //      |  PB1 PB3 PB4
3365   //      |   |  /    /\
3366   //      |   | /    /  \
3367   //      |   |/    /    \
3368   //      |  BB----/     OB
3369   //      |\ /|
3370   //      | X |
3371   //      |/ \|
3372   //     SB2 SB1
3373   //
3374   // The benefit of duplicating into a predecessor is defined as
3375   //         Orig_taken_branch - Duplicated_taken_branch
3376   //
3377   // The Orig_taken_branch is computed with the assumption that predecessor
3378   // jumps to BB and the most possible successor is laid out after BB.
3379   //
3380   // The Duplicated_taken_branch is computed with the assumption that BB is
3381   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3382   // SB2 for PB2 in our case). If there is no available successor, the combined
3383   // block jumps to all BB's successor, like PB3 in this example.
3384   //
3385   // If a predecessor has multiple successors, so BB can't be duplicated into
3386   // it. But it can beneficially fall through to BB, and duplicate BB into other
3387   // predecessors.
3388   for (MachineBasicBlock *Pred : Preds) {
3389     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3390 
3391     if (!TailDup.canTailDuplicate(BB, Pred)) {
3392       // BB can't be duplicated into Pred, but it is possible to be layout
3393       // below Pred.
3394       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3395         Fallthrough = Pred;
3396         if (SuccIt != Succs.end())
3397           SuccIt++;
3398       }
3399       continue;
3400     }
3401 
3402     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3403     BlockFrequency DupCost;
3404     if (SuccIt == Succs.end()) {
3405       // Jump to all successors;
3406       if (Succs.size() > 0)
3407         DupCost += PredFreq;
3408     } else {
3409       // Fallthrough to *SuccIt, jump to all other successors;
3410       DupCost += PredFreq;
3411       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3412     }
3413 
3414     assert(OrigCost >= DupCost);
3415     OrigCost -= DupCost;
3416     if (OrigCost > BBDupThreshold) {
3417       Candidates.push_back(Pred);
3418       if (SuccIt != Succs.end())
3419         SuccIt++;
3420     }
3421   }
3422 
3423   // No predecessors can optimally fallthrough to BB.
3424   // So we can change one duplication into fallthrough.
3425   if (!Fallthrough) {
3426     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3427       Candidates[0] = Candidates.back();
3428       Candidates.pop_back();
3429     }
3430   }
3431 }
3432 
3433 void MachineBlockPlacement::initTailDupThreshold() {
3434   DupThreshold = BlockFrequency(0);
3435   if (F->getFunction().hasProfileData()) {
3436     // We prefer to use prifile count.
3437     uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3438     if (HotThreshold != UINT64_MAX) {
3439       UseProfileCount = true;
3440       DupThreshold =
3441           BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100);
3442     } else {
3443       // Profile count is not available, we can use block frequency instead.
3444       BlockFrequency MaxFreq = BlockFrequency(0);
3445       for (MachineBasicBlock &MBB : *F) {
3446         BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3447         if (Freq > MaxFreq)
3448           MaxFreq = Freq;
3449       }
3450 
3451       BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3452       DupThreshold = BlockFrequency(MaxFreq * ThresholdProb);
3453       UseProfileCount = false;
3454     }
3455   }
3456 
3457   TailDupSize = TailDupPlacementThreshold;
3458   // If only the aggressive threshold is explicitly set, use it.
3459   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3460       TailDupPlacementThreshold.getNumOccurrences() == 0)
3461     TailDupSize = TailDupPlacementAggressiveThreshold;
3462 
3463   // For aggressive optimization, we can adjust some thresholds to be less
3464   // conservative.
3465   if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) {
3466     // At O3 we should be more willing to copy blocks for tail duplication. This
3467     // increases size pressure, so we only do it at O3
3468     // Do this unless only the regular threshold is explicitly set.
3469     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3470         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3471       TailDupSize = TailDupPlacementAggressiveThreshold;
3472   }
3473 
3474   // If there's no threshold provided through options, query the target
3475   // information for a threshold instead.
3476   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3477       (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive ||
3478        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3479     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3480 }
3481 
3482 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3483   if (skipFunction(MF.getFunction()))
3484     return false;
3485 
3486   // Check for single-block functions and skip them.
3487   if (std::next(MF.begin()) == MF.end())
3488     return false;
3489 
3490   F = &MF;
3491   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3492   MBFI = std::make_unique<MBFIWrapper>(
3493       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI());
3494   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
3495   TII = MF.getSubtarget().getInstrInfo();
3496   TLI = MF.getSubtarget().getTargetLowering();
3497   MPDT = nullptr;
3498   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3499   PassConfig = &getAnalysis<TargetPassConfig>();
3500 
3501   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3502   // there are no MachineLoops.
3503   PreferredLoopExit = nullptr;
3504 
3505   assert(BlockToChain.empty() &&
3506          "BlockToChain map should be empty before starting placement.");
3507   assert(ComputedEdges.empty() &&
3508          "Computed Edge map should be empty before starting placement.");
3509 
3510   // Initialize tail duplication thresholds.
3511   initTailDupThreshold();
3512 
3513   const bool OptForSize =
3514       MF.getFunction().hasOptSize() ||
3515       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3516   // Determine whether to use ext-tsp for perf/size optimization. The method
3517   // is beneficial only for instances with at least 3 basic blocks and it can be
3518   // disabled for huge functions (exceeding a certain size).
3519   bool UseExtTspForPerf = false;
3520   bool UseExtTspForSize = false;
3521   if (3 <= MF.size() && MF.size() <= ExtTspBlockPlacementMaxBlocks) {
3522     UseExtTspForPerf =
3523         EnableExtTspBlockPlacement &&
3524         (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData());
3525     UseExtTspForSize = OptForSize && ApplyExtTspForSize;
3526   }
3527 
3528   // Apply tail duplication.
3529   if (allowTailDupPlacement()) {
3530     MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
3531     if (OptForSize)
3532       TailDupSize = 1;
3533     const bool PreRegAlloc = false;
3534     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3535                    /* LayoutMode */ true, TailDupSize);
3536     if (!UseExtTspForSize)
3537       precomputeTriangleChains();
3538   }
3539 
3540   // Run the main block placement.
3541   if (!UseExtTspForSize)
3542     buildCFGChains();
3543 
3544   // Changing the layout can create new tail merging opportunities.
3545   // TailMerge can create jump into if branches that make CFG irreducible for
3546   // HW that requires structured CFG.
3547   const bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3548                                PassConfig->getEnableTailMerge() &&
3549                                BranchFoldPlacement && MF.size() > 3;
3550   // No tail merging opportunities if the block number is less than four.
3551   if (EnableTailMerge) {
3552     const unsigned TailMergeSize = TailDupSize + 1;
3553     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3554                     *MBFI, *MBPI, PSI, TailMergeSize);
3555 
3556     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3557                             /*AfterPlacement=*/true)) {
3558       // Redo the layout if tail merging creates/removes/moves blocks.
3559       BlockToChain.clear();
3560       ComputedEdges.clear();
3561       // Must redo the post-dominator tree if blocks were changed.
3562       if (MPDT)
3563         MPDT->recalculate(MF);
3564       ChainAllocator.DestroyAll();
3565       buildCFGChains();
3566     }
3567   }
3568 
3569   // Apply a post-processing optimizing block placement:
3570   // - find a new placement and modify the layout of the blocks in the function;
3571   // - re-create CFG chains so that we can optimizeBranches and alignBlocks.
3572   if (UseExtTspForPerf || UseExtTspForSize) {
3573     assert(
3574         !(UseExtTspForPerf && UseExtTspForSize) &&
3575         "UseExtTspForPerf and UseExtTspForSize can not be set simultaneously");
3576     applyExtTsp(/*OptForSize=*/UseExtTspForSize);
3577     createCFGChainExtTsp();
3578   }
3579 
3580   optimizeBranches();
3581   alignBlocks();
3582 
3583   BlockToChain.clear();
3584   ComputedEdges.clear();
3585   ChainAllocator.DestroyAll();
3586 
3587   // View the function.
3588   if (ViewBlockLayoutWithBFI != GVDT_None &&
3589       (ViewBlockFreqFuncName.empty() ||
3590        F->getFunction().getName() == ViewBlockFreqFuncName)) {
3591     if (RenumberBlocksBeforeView)
3592       MF.RenumberBlocks();
3593     MBFI->view("MBP." + MF.getName(), false);
3594   }
3595 
3596   // We always return true as we have no way to track whether the final order
3597   // differs from the original order.
3598   return true;
3599 }
3600 
3601 void MachineBlockPlacement::applyExtTsp(bool OptForSize) {
3602   // Prepare data; blocks are indexed by their index in the current ordering.
3603   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3604   BlockIndex.reserve(F->size());
3605   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3606   CurrentBlockOrder.reserve(F->size());
3607   size_t NumBlocks = 0;
3608   for (const MachineBasicBlock &MBB : *F) {
3609     BlockIndex[&MBB] = NumBlocks++;
3610     CurrentBlockOrder.push_back(&MBB);
3611   }
3612 
3613   SmallVector<uint64_t, 0> BlockCounts(F->size());
3614   SmallVector<uint64_t, 0> BlockSizes(F->size());
3615   SmallVector<codelayout::EdgeCount, 0> JumpCounts;
3616   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
3617   SmallVector<const MachineBasicBlock *, 4> Succs;
3618   for (MachineBasicBlock &MBB : *F) {
3619     // Getting the block frequency.
3620     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3621     BlockCounts[BlockIndex[&MBB]] = OptForSize ? 1 : BlockFreq.getFrequency();
3622     // Getting the block size:
3623     // - approximate the size of an instruction by 4 bytes, and
3624     // - ignore debug instructions.
3625     // Note: getting the exact size of each block is target-dependent and can be
3626     // done by extending the interface of MCCodeEmitter. Experimentally we do
3627     // not see a perf improvement with the exact block sizes.
3628     auto NonDbgInsts =
3629         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3630     size_t NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3631     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3632 
3633     // Getting jump frequencies.
3634     if (OptForSize) {
3635       Cond.clear();
3636       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
3637       if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3638         continue;
3639 
3640       const MachineBasicBlock *FTB = MBB.getFallThrough();
3641       // Succs is a collection of distinct destinations of the block reachable
3642       // from MBB via a jump instruction; initialize the list using the three
3643       // (non-necessarily distinct) blocks, FTB, TBB, and FBB.
3644       Succs.clear();
3645       if (TBB && TBB != FTB)
3646         Succs.push_back(TBB);
3647       if (FBB && FBB != FTB)
3648         Succs.push_back(FBB);
3649       if (FTB)
3650         Succs.push_back(FTB);
3651       // Absolute magnitude of non-zero counts does not matter for the
3652       // optimization; prioritize slightly jumps with a single successor, since
3653       // the corresponding jump instruction will be removed from the binary.
3654       const uint64_t Freq = Succs.size() == 1 ? 110 : 100;
3655       for (const MachineBasicBlock *Succ : Succs)
3656         JumpCounts.push_back({BlockIndex[&MBB], BlockIndex[Succ], Freq});
3657     } else {
3658       for (MachineBasicBlock *Succ : MBB.successors()) {
3659         auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3660         BlockFrequency JumpFreq = BlockFreq * EP;
3661         JumpCounts.push_back(
3662             {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()});
3663       }
3664     }
3665   }
3666 
3667   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3668                     << " with profile = " << F->getFunction().hasProfileData()
3669                     << " (" << F->getName() << ")" << "\n");
3670 
3671   const double OrgScore = calcExtTspScore(BlockSizes, JumpCounts);
3672   LLVM_DEBUG(dbgs() << format("  original  layout score: %0.2f\n", OrgScore));
3673 
3674   // Run the layout algorithm.
3675   auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3676   std::vector<const MachineBasicBlock *> NewBlockOrder;
3677   NewBlockOrder.reserve(F->size());
3678   for (uint64_t Node : NewOrder) {
3679     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3680   }
3681   const double OptScore = calcExtTspScore(NewOrder, BlockSizes, JumpCounts);
3682   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n", OptScore));
3683 
3684   // If the optimization is unsuccessful, fall back to the original block order.
3685   if (OptForSize && OrgScore > OptScore)
3686     assignBlockOrder(CurrentBlockOrder);
3687   else
3688     assignBlockOrder(NewBlockOrder);
3689 }
3690 
3691 void MachineBlockPlacement::assignBlockOrder(
3692     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3693   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3694   F->RenumberBlocks();
3695   // At this point, we possibly removed blocks from the function, so we can't
3696   // renumber the domtree. At this point, we don't need it anymore, though.
3697   // TODO: move this to the point where the dominator tree is actually
3698   // invalidated (i.e., where blocks are removed without updating the domtree).
3699   MPDT = nullptr;
3700 
3701   bool HasChanges = false;
3702   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3703     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3704       HasChanges = true;
3705       break;
3706     }
3707   }
3708   // Stop early if the new block order is identical to the existing one.
3709   if (!HasChanges)
3710     return;
3711 
3712   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3713   for (auto &MBB : *F) {
3714     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3715   }
3716 
3717   // Sort basic blocks in the function according to the computed order.
3718   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3719   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3720     NewIndex[MBB] = NewIndex.size();
3721   }
3722   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3723     return NewIndex[&L] < NewIndex[&R];
3724   });
3725 
3726   // Update basic block branches by inserting explicit fallthrough branches
3727   // when required and re-optimize branches when possible.
3728   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3729   SmallVector<MachineOperand, 4> Cond;
3730   for (auto &MBB : *F) {
3731     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3732     MachineFunction::iterator EndIt = MBB.getParent()->end();
3733     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3734     // If this block had a fallthrough before we need an explicit unconditional
3735     // branch to that block if the fallthrough block is not adjacent to the
3736     // block in the new order.
3737     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3738       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3739     }
3740 
3741     // It might be possible to optimize branches by flipping the condition.
3742     Cond.clear();
3743     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3744     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3745       continue;
3746     MBB.updateTerminator(FTMBB);
3747   }
3748 }
3749 
3750 void MachineBlockPlacement::createCFGChainExtTsp() {
3751   BlockToChain.clear();
3752   ComputedEdges.clear();
3753   ChainAllocator.DestroyAll();
3754 
3755   MachineBasicBlock *HeadBB = &F->front();
3756   BlockChain *FunctionChain =
3757       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3758 
3759   for (MachineBasicBlock &MBB : *F) {
3760     if (HeadBB == &MBB)
3761       continue; // Ignore head of the chain
3762     FunctionChain->merge(&MBB, nullptr);
3763   }
3764 }
3765 
3766 namespace {
3767 
3768 /// A pass to compute block placement statistics.
3769 ///
3770 /// A separate pass to compute interesting statistics for evaluating block
3771 /// placement. This is separate from the actual placement pass so that they can
3772 /// be computed in the absence of any placement transformations or when using
3773 /// alternative placement strategies.
3774 class MachineBlockPlacementStats : public MachineFunctionPass {
3775   /// A handle to the branch probability pass.
3776   const MachineBranchProbabilityInfo *MBPI;
3777 
3778   /// A handle to the function-wide block frequency pass.
3779   const MachineBlockFrequencyInfo *MBFI;
3780 
3781 public:
3782   static char ID; // Pass identification, replacement for typeid
3783 
3784   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3785     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3786   }
3787 
3788   bool runOnMachineFunction(MachineFunction &F) override;
3789 
3790   void getAnalysisUsage(AnalysisUsage &AU) const override {
3791     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
3792     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
3793     AU.setPreservesAll();
3794     MachineFunctionPass::getAnalysisUsage(AU);
3795   }
3796 };
3797 
3798 } // end anonymous namespace
3799 
3800 char MachineBlockPlacementStats::ID = 0;
3801 
3802 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3803 
3804 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3805                       "Basic Block Placement Stats", false, false)
3806 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
3807 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
3808 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3809                     "Basic Block Placement Stats", false, false)
3810 
3811 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3812   // Check for single-block functions and skip them.
3813   if (std::next(F.begin()) == F.end())
3814     return false;
3815 
3816   if (!isFunctionInPrintList(F.getName()))
3817     return false;
3818 
3819   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3820   MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
3821 
3822   for (MachineBasicBlock &MBB : F) {
3823     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3824     Statistic &NumBranches =
3825         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3826     Statistic &BranchTakenFreq =
3827         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3828     for (MachineBasicBlock *Succ : MBB.successors()) {
3829       // Skip if this successor is a fallthrough.
3830       if (MBB.isLayoutSuccessor(Succ))
3831         continue;
3832 
3833       BlockFrequency EdgeFreq =
3834           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3835       ++NumBranches;
3836       BranchTakenFreq += EdgeFreq.getFrequency();
3837     }
3838   }
3839 
3840   return false;
3841 }
3842