xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision c68f71eb37c2b6ffcf29e865d443a910e73083bd)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Transforms/Utils/CodeLayout.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "block-placement"
78 
79 STATISTIC(NumCondBranches, "Number of conditional branches");
80 STATISTIC(NumUncondBranches, "Number of unconditional branches");
81 STATISTIC(CondBranchTakenFreq,
82           "Potential frequency of taking conditional branches");
83 STATISTIC(UncondBranchTakenFreq,
84           "Potential frequency of taking unconditional branches");
85 
86 static cl::opt<unsigned> AlignAllBlock(
87     "align-all-blocks",
88     cl::desc("Force the alignment of all blocks in the function in log2 format "
89              "(e.g 4 means align on 16B boundaries)."),
90     cl::init(0), cl::Hidden);
91 
92 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
93     "align-all-nofallthru-blocks",
94     cl::desc("Force the alignment of all blocks that have no fall-through "
95              "predecessors (i.e. don't add nops that are executed). In log2 "
96              "format (e.g 4 means align on 16B boundaries)."),
97     cl::init(0), cl::Hidden);
98 
99 // FIXME: Find a good default for this flag and remove the flag.
100 static cl::opt<unsigned> ExitBlockBias(
101     "block-placement-exit-block-bias",
102     cl::desc("Block frequency percentage a loop exit block needs "
103              "over the original exit to be considered the new exit."),
104     cl::init(0), cl::Hidden);
105 
106 // Definition:
107 // - Outlining: placement of a basic block outside the chain or hot path.
108 
109 static cl::opt<unsigned> LoopToColdBlockRatio(
110     "loop-to-cold-block-ratio",
111     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
112              "(frequency of block) is greater than this ratio"),
113     cl::init(5), cl::Hidden);
114 
115 static cl::opt<bool> ForceLoopColdBlock(
116     "force-loop-cold-block",
117     cl::desc("Force outlining cold blocks from loops."),
118     cl::init(false), cl::Hidden);
119 
120 static cl::opt<bool>
121     PreciseRotationCost("precise-rotation-cost",
122                         cl::desc("Model the cost of loop rotation more "
123                                  "precisely by using profile data."),
124                         cl::init(false), cl::Hidden);
125 
126 static cl::opt<bool>
127     ForcePreciseRotationCost("force-precise-rotation-cost",
128                              cl::desc("Force the use of precise cost "
129                                       "loop rotation strategy."),
130                              cl::init(false), cl::Hidden);
131 
132 static cl::opt<unsigned> MisfetchCost(
133     "misfetch-cost",
134     cl::desc("Cost that models the probabilistic risk of an instruction "
135              "misfetch due to a jump comparing to falling through, whose cost "
136              "is zero."),
137     cl::init(1), cl::Hidden);
138 
139 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
140                                       cl::desc("Cost of jump instructions."),
141                                       cl::init(1), cl::Hidden);
142 static cl::opt<bool>
143 TailDupPlacement("tail-dup-placement",
144               cl::desc("Perform tail duplication during placement. "
145                        "Creates more fallthrough opportunites in "
146                        "outline branches."),
147               cl::init(true), cl::Hidden);
148 
149 static cl::opt<bool>
150 BranchFoldPlacement("branch-fold-placement",
151               cl::desc("Perform branch folding during placement. "
152                        "Reduces code size."),
153               cl::init(true), cl::Hidden);
154 
155 // Heuristic for tail duplication.
156 static cl::opt<unsigned> TailDupPlacementThreshold(
157     "tail-dup-placement-threshold",
158     cl::desc("Instruction cutoff for tail duplication during layout. "
159              "Tail merging during layout is forced to have a threshold "
160              "that won't conflict."), cl::init(2),
161     cl::Hidden);
162 
163 // Heuristic for aggressive tail duplication.
164 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
165     "tail-dup-placement-aggressive-threshold",
166     cl::desc("Instruction cutoff for aggressive tail duplication during "
167              "layout. Used at -O3. Tail merging during layout is forced to "
168              "have a threshold that won't conflict."), cl::init(4),
169     cl::Hidden);
170 
171 // Heuristic for tail duplication.
172 static cl::opt<unsigned> TailDupPlacementPenalty(
173     "tail-dup-placement-penalty",
174     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
175              "Copying can increase fallthrough, but it also increases icache "
176              "pressure. This parameter controls the penalty to account for that. "
177              "Percent as integer."),
178     cl::init(2),
179     cl::Hidden);
180 
181 // Heuristic for tail duplication if profile count is used in cost model.
182 static cl::opt<unsigned> TailDupProfilePercentThreshold(
183     "tail-dup-profile-percent-threshold",
184     cl::desc("If profile count information is used in tail duplication cost "
185              "model, the gained fall through number from tail duplication "
186              "should be at least this percent of hot count."),
187     cl::init(50), cl::Hidden);
188 
189 // Heuristic for triangle chains.
190 static cl::opt<unsigned> TriangleChainCount(
191     "triangle-chain-count",
192     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
193              "triangle tail duplication heuristic to kick in. 0 to disable."),
194     cl::init(2),
195     cl::Hidden);
196 
197 static cl::opt<bool> EnableExtTspBlockPlacement(
198     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
199     cl::desc("Enable machine block placement based on the ext-tsp model, "
200              "optimizing I-cache utilization."));
201 
202 namespace llvm {
203 extern cl::opt<unsigned> StaticLikelyProb;
204 extern cl::opt<unsigned> ProfileLikelyProb;
205 
206 // Internal option used to control BFI display only after MBP pass.
207 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
208 // -view-block-layout-with-bfi=
209 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
210 
211 // Command line option to specify the name of the function for CFG dump
212 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
213 extern cl::opt<std::string> ViewBlockFreqFuncName;
214 } // namespace llvm
215 
216 namespace {
217 
218 class BlockChain;
219 
220 /// Type for our function-wide basic block -> block chain mapping.
221 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
222 
223 /// A chain of blocks which will be laid out contiguously.
224 ///
225 /// This is the datastructure representing a chain of consecutive blocks that
226 /// are profitable to layout together in order to maximize fallthrough
227 /// probabilities and code locality. We also can use a block chain to represent
228 /// a sequence of basic blocks which have some external (correctness)
229 /// requirement for sequential layout.
230 ///
231 /// Chains can be built around a single basic block and can be merged to grow
232 /// them. They participate in a block-to-chain mapping, which is updated
233 /// automatically as chains are merged together.
234 class BlockChain {
235   /// The sequence of blocks belonging to this chain.
236   ///
237   /// This is the sequence of blocks for a particular chain. These will be laid
238   /// out in-order within the function.
239   SmallVector<MachineBasicBlock *, 4> Blocks;
240 
241   /// A handle to the function-wide basic block to block chain mapping.
242   ///
243   /// This is retained in each block chain to simplify the computation of child
244   /// block chains for SCC-formation and iteration. We store the edges to child
245   /// basic blocks, and map them back to their associated chains using this
246   /// structure.
247   BlockToChainMapType &BlockToChain;
248 
249 public:
250   /// Construct a new BlockChain.
251   ///
252   /// This builds a new block chain representing a single basic block in the
253   /// function. It also registers itself as the chain that block participates
254   /// in with the BlockToChain mapping.
255   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
256       : Blocks(1, BB), BlockToChain(BlockToChain) {
257     assert(BB && "Cannot create a chain with a null basic block");
258     BlockToChain[BB] = this;
259   }
260 
261   /// Iterator over blocks within the chain.
262   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
263   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
264 
265   /// Beginning of blocks within the chain.
266   iterator begin() { return Blocks.begin(); }
267   const_iterator begin() const { return Blocks.begin(); }
268 
269   /// End of blocks within the chain.
270   iterator end() { return Blocks.end(); }
271   const_iterator end() const { return Blocks.end(); }
272 
273   bool remove(MachineBasicBlock* BB) {
274     for(iterator i = begin(); i != end(); ++i) {
275       if (*i == BB) {
276         Blocks.erase(i);
277         return true;
278       }
279     }
280     return false;
281   }
282 
283   /// Merge a block chain into this one.
284   ///
285   /// This routine merges a block chain into this one. It takes care of forming
286   /// a contiguous sequence of basic blocks, updating the edge list, and
287   /// updating the block -> chain mapping. It does not free or tear down the
288   /// old chain, but the old chain's block list is no longer valid.
289   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
290     assert(BB && "Can't merge a null block.");
291     assert(!Blocks.empty() && "Can't merge into an empty chain.");
292 
293     // Fast path in case we don't have a chain already.
294     if (!Chain) {
295       assert(!BlockToChain[BB] &&
296              "Passed chain is null, but BB has entry in BlockToChain.");
297       Blocks.push_back(BB);
298       BlockToChain[BB] = this;
299       return;
300     }
301 
302     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
303     assert(Chain->begin() != Chain->end());
304 
305     // Update the incoming blocks to point to this chain, and add them to the
306     // chain structure.
307     for (MachineBasicBlock *ChainBB : *Chain) {
308       Blocks.push_back(ChainBB);
309       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
310       BlockToChain[ChainBB] = this;
311     }
312   }
313 
314 #ifndef NDEBUG
315   /// Dump the blocks in this chain.
316   LLVM_DUMP_METHOD void dump() {
317     for (MachineBasicBlock *MBB : *this)
318       MBB->dump();
319   }
320 #endif // NDEBUG
321 
322   /// Count of predecessors of any block within the chain which have not
323   /// yet been scheduled.  In general, we will delay scheduling this chain
324   /// until those predecessors are scheduled (or we find a sufficiently good
325   /// reason to override this heuristic.)  Note that when forming loop chains,
326   /// blocks outside the loop are ignored and treated as if they were already
327   /// scheduled.
328   ///
329   /// Note: This field is reinitialized multiple times - once for each loop,
330   /// and then once for the function as a whole.
331   unsigned UnscheduledPredecessors = 0;
332 };
333 
334 class MachineBlockPlacement : public MachineFunctionPass {
335   /// A type for a block filter set.
336   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
337 
338   /// Pair struct containing basic block and taildup profitability
339   struct BlockAndTailDupResult {
340     MachineBasicBlock *BB;
341     bool ShouldTailDup;
342   };
343 
344   /// Triple struct containing edge weight and the edge.
345   struct WeightedEdge {
346     BlockFrequency Weight;
347     MachineBasicBlock *Src;
348     MachineBasicBlock *Dest;
349   };
350 
351   /// work lists of blocks that are ready to be laid out
352   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
353   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
354 
355   /// Edges that have already been computed as optimal.
356   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
357 
358   /// Machine Function
359   MachineFunction *F;
360 
361   /// A handle to the branch probability pass.
362   const MachineBranchProbabilityInfo *MBPI;
363 
364   /// A handle to the function-wide block frequency pass.
365   std::unique_ptr<MBFIWrapper> MBFI;
366 
367   /// A handle to the loop info.
368   MachineLoopInfo *MLI;
369 
370   /// Preferred loop exit.
371   /// Member variable for convenience. It may be removed by duplication deep
372   /// in the call stack.
373   MachineBasicBlock *PreferredLoopExit;
374 
375   /// A handle to the target's instruction info.
376   const TargetInstrInfo *TII;
377 
378   /// A handle to the target's lowering info.
379   const TargetLoweringBase *TLI;
380 
381   /// A handle to the post dominator tree.
382   MachinePostDominatorTree *MPDT;
383 
384   ProfileSummaryInfo *PSI;
385 
386   /// Duplicator used to duplicate tails during placement.
387   ///
388   /// Placement decisions can open up new tail duplication opportunities, but
389   /// since tail duplication affects placement decisions of later blocks, it
390   /// must be done inline.
391   TailDuplicator TailDup;
392 
393   /// Partial tail duplication threshold.
394   BlockFrequency DupThreshold;
395 
396   /// True:  use block profile count to compute tail duplication cost.
397   /// False: use block frequency to compute tail duplication cost.
398   bool UseProfileCount;
399 
400   /// Allocator and owner of BlockChain structures.
401   ///
402   /// We build BlockChains lazily while processing the loop structure of
403   /// a function. To reduce malloc traffic, we allocate them using this
404   /// slab-like allocator, and destroy them after the pass completes. An
405   /// important guarantee is that this allocator produces stable pointers to
406   /// the chains.
407   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
408 
409   /// Function wide BasicBlock to BlockChain mapping.
410   ///
411   /// This mapping allows efficiently moving from any given basic block to the
412   /// BlockChain it participates in, if any. We use it to, among other things,
413   /// allow implicitly defining edges between chains as the existing edges
414   /// between basic blocks.
415   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
416 
417 #ifndef NDEBUG
418   /// The set of basic blocks that have terminators that cannot be fully
419   /// analyzed.  These basic blocks cannot be re-ordered safely by
420   /// MachineBlockPlacement, and we must preserve physical layout of these
421   /// blocks and their successors through the pass.
422   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
423 #endif
424 
425   /// Get block profile count or frequency according to UseProfileCount.
426   /// The return value is used to model tail duplication cost.
427   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
428     if (UseProfileCount) {
429       auto Count = MBFI->getBlockProfileCount(BB);
430       if (Count)
431         return *Count;
432       else
433         return 0;
434     } else
435       return MBFI->getBlockFreq(BB);
436   }
437 
438   /// Scale the DupThreshold according to basic block size.
439   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
440   void initDupThreshold();
441 
442   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
443   /// if the count goes to 0, add them to the appropriate work list.
444   void markChainSuccessors(
445       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
446       const BlockFilterSet *BlockFilter = nullptr);
447 
448   /// Decrease the UnscheduledPredecessors count for a single block, and
449   /// if the count goes to 0, add them to the appropriate work list.
450   void markBlockSuccessors(
451       const BlockChain &Chain, const MachineBasicBlock *BB,
452       const MachineBasicBlock *LoopHeaderBB,
453       const BlockFilterSet *BlockFilter = nullptr);
454 
455   BranchProbability
456   collectViableSuccessors(
457       const MachineBasicBlock *BB, const BlockChain &Chain,
458       const BlockFilterSet *BlockFilter,
459       SmallVector<MachineBasicBlock *, 4> &Successors);
460   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
461                        BlockFilterSet *BlockFilter);
462   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
463                                MachineBasicBlock *BB,
464                                BlockFilterSet *BlockFilter);
465   bool repeatedlyTailDuplicateBlock(
466       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
467       const MachineBasicBlock *LoopHeaderBB,
468       BlockChain &Chain, BlockFilterSet *BlockFilter,
469       MachineFunction::iterator &PrevUnplacedBlockIt);
470   bool maybeTailDuplicateBlock(
471       MachineBasicBlock *BB, MachineBasicBlock *LPred,
472       BlockChain &Chain, BlockFilterSet *BlockFilter,
473       MachineFunction::iterator &PrevUnplacedBlockIt,
474       bool &DuplicatedToLPred);
475   bool hasBetterLayoutPredecessor(
476       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
477       const BlockChain &SuccChain, BranchProbability SuccProb,
478       BranchProbability RealSuccProb, const BlockChain &Chain,
479       const BlockFilterSet *BlockFilter);
480   BlockAndTailDupResult selectBestSuccessor(
481       const MachineBasicBlock *BB, const BlockChain &Chain,
482       const BlockFilterSet *BlockFilter);
483   MachineBasicBlock *selectBestCandidateBlock(
484       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
485   MachineBasicBlock *getFirstUnplacedBlock(
486       const BlockChain &PlacedChain,
487       MachineFunction::iterator &PrevUnplacedBlockIt,
488       const BlockFilterSet *BlockFilter);
489 
490   /// Add a basic block to the work list if it is appropriate.
491   ///
492   /// If the optional parameter BlockFilter is provided, only MBB
493   /// present in the set will be added to the worklist. If nullptr
494   /// is provided, no filtering occurs.
495   void fillWorkLists(const MachineBasicBlock *MBB,
496                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
497                      const BlockFilterSet *BlockFilter);
498 
499   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
500                   BlockFilterSet *BlockFilter = nullptr);
501   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
502                                const MachineBasicBlock *OldTop);
503   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
504                                const BlockFilterSet &LoopBlockSet);
505   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
506                                     const BlockFilterSet &LoopBlockSet);
507   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
508                                   const MachineBasicBlock *OldTop,
509                                   const MachineBasicBlock *ExitBB,
510                                   const BlockFilterSet &LoopBlockSet);
511   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
512       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
513   MachineBasicBlock *findBestLoopTop(
514       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
515   MachineBasicBlock *findBestLoopExit(
516       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
517       BlockFrequency &ExitFreq);
518   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
519   void buildLoopChains(const MachineLoop &L);
520   void rotateLoop(
521       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
522       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
523   void rotateLoopWithProfile(
524       BlockChain &LoopChain, const MachineLoop &L,
525       const BlockFilterSet &LoopBlockSet);
526   void buildCFGChains();
527   void optimizeBranches();
528   void alignBlocks();
529   /// Returns true if a block should be tail-duplicated to increase fallthrough
530   /// opportunities.
531   bool shouldTailDuplicate(MachineBasicBlock *BB);
532   /// Check the edge frequencies to see if tail duplication will increase
533   /// fallthroughs.
534   bool isProfitableToTailDup(
535     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
536     BranchProbability QProb,
537     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
538 
539   /// Check for a trellis layout.
540   bool isTrellis(const MachineBasicBlock *BB,
541                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
542                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
543 
544   /// Get the best successor given a trellis layout.
545   BlockAndTailDupResult getBestTrellisSuccessor(
546       const MachineBasicBlock *BB,
547       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
548       BranchProbability AdjustedSumProb, const BlockChain &Chain,
549       const BlockFilterSet *BlockFilter);
550 
551   /// Get the best pair of non-conflicting edges.
552   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
553       const MachineBasicBlock *BB,
554       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
555 
556   /// Returns true if a block can tail duplicate into all unplaced
557   /// predecessors. Filters based on loop.
558   bool canTailDuplicateUnplacedPreds(
559       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
560       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
561 
562   /// Find chains of triangles to tail-duplicate where a global analysis works,
563   /// but a local analysis would not find them.
564   void precomputeTriangleChains();
565 
566   /// Apply a post-processing step optimizing block placement.
567   void applyExtTsp();
568 
569   /// Modify the existing block placement in the function and adjust all jumps.
570   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
571 
572   /// Create a single CFG chain from the current block order.
573   void createCFGChainExtTsp();
574 
575 public:
576   static char ID; // Pass identification, replacement for typeid
577 
578   MachineBlockPlacement() : MachineFunctionPass(ID) {
579     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
580   }
581 
582   bool runOnMachineFunction(MachineFunction &F) override;
583 
584   bool allowTailDupPlacement() const {
585     assert(F);
586     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
587   }
588 
589   void getAnalysisUsage(AnalysisUsage &AU) const override {
590     AU.addRequired<MachineBranchProbabilityInfo>();
591     AU.addRequired<MachineBlockFrequencyInfo>();
592     if (TailDupPlacement)
593       AU.addRequired<MachinePostDominatorTree>();
594     AU.addRequired<MachineLoopInfo>();
595     AU.addRequired<ProfileSummaryInfoWrapperPass>();
596     AU.addRequired<TargetPassConfig>();
597     MachineFunctionPass::getAnalysisUsage(AU);
598   }
599 };
600 
601 } // end anonymous namespace
602 
603 char MachineBlockPlacement::ID = 0;
604 
605 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
606 
607 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
608                       "Branch Probability Basic Block Placement", false, false)
609 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
610 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
611 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
612 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
613 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
614 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
615                     "Branch Probability Basic Block Placement", false, false)
616 
617 #ifndef NDEBUG
618 /// Helper to print the name of a MBB.
619 ///
620 /// Only used by debug logging.
621 static std::string getBlockName(const MachineBasicBlock *BB) {
622   std::string Result;
623   raw_string_ostream OS(Result);
624   OS << printMBBReference(*BB);
625   OS << " ('" << BB->getName() << "')";
626   OS.flush();
627   return Result;
628 }
629 #endif
630 
631 /// Mark a chain's successors as having one fewer preds.
632 ///
633 /// When a chain is being merged into the "placed" chain, this routine will
634 /// quickly walk the successors of each block in the chain and mark them as
635 /// having one fewer active predecessor. It also adds any successors of this
636 /// chain which reach the zero-predecessor state to the appropriate worklist.
637 void MachineBlockPlacement::markChainSuccessors(
638     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
639     const BlockFilterSet *BlockFilter) {
640   // Walk all the blocks in this chain, marking their successors as having
641   // a predecessor placed.
642   for (MachineBasicBlock *MBB : Chain) {
643     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
644   }
645 }
646 
647 /// Mark a single block's successors as having one fewer preds.
648 ///
649 /// Under normal circumstances, this is only called by markChainSuccessors,
650 /// but if a block that was to be placed is completely tail-duplicated away,
651 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
652 /// for just that block.
653 void MachineBlockPlacement::markBlockSuccessors(
654     const BlockChain &Chain, const MachineBasicBlock *MBB,
655     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
656   // Add any successors for which this is the only un-placed in-loop
657   // predecessor to the worklist as a viable candidate for CFG-neutral
658   // placement. No subsequent placement of this block will violate the CFG
659   // shape, so we get to use heuristics to choose a favorable placement.
660   for (MachineBasicBlock *Succ : MBB->successors()) {
661     if (BlockFilter && !BlockFilter->count(Succ))
662       continue;
663     BlockChain &SuccChain = *BlockToChain[Succ];
664     // Disregard edges within a fixed chain, or edges to the loop header.
665     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
666       continue;
667 
668     // This is a cross-chain edge that is within the loop, so decrement the
669     // loop predecessor count of the destination chain.
670     if (SuccChain.UnscheduledPredecessors == 0 ||
671         --SuccChain.UnscheduledPredecessors > 0)
672       continue;
673 
674     auto *NewBB = *SuccChain.begin();
675     if (NewBB->isEHPad())
676       EHPadWorkList.push_back(NewBB);
677     else
678       BlockWorkList.push_back(NewBB);
679   }
680 }
681 
682 /// This helper function collects the set of successors of block
683 /// \p BB that are allowed to be its layout successors, and return
684 /// the total branch probability of edges from \p BB to those
685 /// blocks.
686 BranchProbability MachineBlockPlacement::collectViableSuccessors(
687     const MachineBasicBlock *BB, const BlockChain &Chain,
688     const BlockFilterSet *BlockFilter,
689     SmallVector<MachineBasicBlock *, 4> &Successors) {
690   // Adjust edge probabilities by excluding edges pointing to blocks that is
691   // either not in BlockFilter or is already in the current chain. Consider the
692   // following CFG:
693   //
694   //     --->A
695   //     |  / \
696   //     | B   C
697   //     |  \ / \
698   //     ----D   E
699   //
700   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
701   // A->C is chosen as a fall-through, D won't be selected as a successor of C
702   // due to CFG constraint (the probability of C->D is not greater than
703   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
704   // when calculating the probability of C->D, D will be selected and we
705   // will get A C D B as the layout of this loop.
706   auto AdjustedSumProb = BranchProbability::getOne();
707   for (MachineBasicBlock *Succ : BB->successors()) {
708     bool SkipSucc = false;
709     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
710       SkipSucc = true;
711     } else {
712       BlockChain *SuccChain = BlockToChain[Succ];
713       if (SuccChain == &Chain) {
714         SkipSucc = true;
715       } else if (Succ != *SuccChain->begin()) {
716         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
717                           << " -> Mid chain!\n");
718         continue;
719       }
720     }
721     if (SkipSucc)
722       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
723     else
724       Successors.push_back(Succ);
725   }
726 
727   return AdjustedSumProb;
728 }
729 
730 /// The helper function returns the branch probability that is adjusted
731 /// or normalized over the new total \p AdjustedSumProb.
732 static BranchProbability
733 getAdjustedProbability(BranchProbability OrigProb,
734                        BranchProbability AdjustedSumProb) {
735   BranchProbability SuccProb;
736   uint32_t SuccProbN = OrigProb.getNumerator();
737   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
738   if (SuccProbN >= SuccProbD)
739     SuccProb = BranchProbability::getOne();
740   else
741     SuccProb = BranchProbability(SuccProbN, SuccProbD);
742 
743   return SuccProb;
744 }
745 
746 /// Check if \p BB has exactly the successors in \p Successors.
747 static bool
748 hasSameSuccessors(MachineBasicBlock &BB,
749                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
750   if (BB.succ_size() != Successors.size())
751     return false;
752   // We don't want to count self-loops
753   if (Successors.count(&BB))
754     return false;
755   for (MachineBasicBlock *Succ : BB.successors())
756     if (!Successors.count(Succ))
757       return false;
758   return true;
759 }
760 
761 /// Check if a block should be tail duplicated to increase fallthrough
762 /// opportunities.
763 /// \p BB Block to check.
764 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
765   // Blocks with single successors don't create additional fallthrough
766   // opportunities. Don't duplicate them. TODO: When conditional exits are
767   // analyzable, allow them to be duplicated.
768   bool IsSimple = TailDup.isSimpleBB(BB);
769 
770   if (BB->succ_size() == 1)
771     return false;
772   return TailDup.shouldTailDuplicate(IsSimple, *BB);
773 }
774 
775 /// Compare 2 BlockFrequency's with a small penalty for \p A.
776 /// In order to be conservative, we apply a X% penalty to account for
777 /// increased icache pressure and static heuristics. For small frequencies
778 /// we use only the numerators to improve accuracy. For simplicity, we assume the
779 /// penalty is less than 100%
780 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
781 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
782                             uint64_t EntryFreq) {
783   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
784   BlockFrequency Gain = A - B;
785   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
786 }
787 
788 /// Check the edge frequencies to see if tail duplication will increase
789 /// fallthroughs. It only makes sense to call this function when
790 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
791 /// always locally profitable if we would have picked \p Succ without
792 /// considering duplication.
793 bool MachineBlockPlacement::isProfitableToTailDup(
794     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
795     BranchProbability QProb,
796     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
797   // We need to do a probability calculation to make sure this is profitable.
798   // First: does succ have a successor that post-dominates? This affects the
799   // calculation. The 2 relevant cases are:
800   //    BB         BB
801   //    | \Qout    | \Qout
802   //   P|  C       |P C
803   //    =   C'     =   C'
804   //    |  /Qin    |  /Qin
805   //    | /        | /
806   //    Succ       Succ
807   //    / \        | \  V
808   //  U/   =V      |U \
809   //  /     \      =   D
810   //  D      E     |  /
811   //               | /
812   //               |/
813   //               PDom
814   //  '=' : Branch taken for that CFG edge
815   // In the second case, Placing Succ while duplicating it into C prevents the
816   // fallthrough of Succ into either D or PDom, because they now have C as an
817   // unplaced predecessor
818 
819   // Start by figuring out which case we fall into
820   MachineBasicBlock *PDom = nullptr;
821   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
822   // Only scan the relevant successors
823   auto AdjustedSuccSumProb =
824       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
825   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
826   auto BBFreq = MBFI->getBlockFreq(BB);
827   auto SuccFreq = MBFI->getBlockFreq(Succ);
828   BlockFrequency P = BBFreq * PProb;
829   BlockFrequency Qout = BBFreq * QProb;
830   uint64_t EntryFreq = MBFI->getEntryFreq();
831   // If there are no more successors, it is profitable to copy, as it strictly
832   // increases fallthrough.
833   if (SuccSuccs.size() == 0)
834     return greaterWithBias(P, Qout, EntryFreq);
835 
836   auto BestSuccSucc = BranchProbability::getZero();
837   // Find the PDom or the best Succ if no PDom exists.
838   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
839     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
840     if (Prob > BestSuccSucc)
841       BestSuccSucc = Prob;
842     if (PDom == nullptr)
843       if (MPDT->dominates(SuccSucc, Succ)) {
844         PDom = SuccSucc;
845         break;
846       }
847   }
848   // For the comparisons, we need to know Succ's best incoming edge that isn't
849   // from BB.
850   auto SuccBestPred = BlockFrequency(0);
851   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
852     if (SuccPred == Succ || SuccPred == BB
853         || BlockToChain[SuccPred] == &Chain
854         || (BlockFilter && !BlockFilter->count(SuccPred)))
855       continue;
856     auto Freq = MBFI->getBlockFreq(SuccPred)
857         * MBPI->getEdgeProbability(SuccPred, Succ);
858     if (Freq > SuccBestPred)
859       SuccBestPred = Freq;
860   }
861   // Qin is Succ's best unplaced incoming edge that isn't BB
862   BlockFrequency Qin = SuccBestPred;
863   // If it doesn't have a post-dominating successor, here is the calculation:
864   //    BB        BB
865   //    | \Qout   |  \
866   //   P|  C      |   =
867   //    =   C'    |    C
868   //    |  /Qin   |     |
869   //    | /       |     C' (+Succ)
870   //    Succ      Succ /|
871   //    / \       |  \/ |
872   //  U/   =V     |  == |
873   //  /     \     | /  \|
874   //  D      E    D     E
875   //  '=' : Branch taken for that CFG edge
876   //  Cost in the first case is: P + V
877   //  For this calculation, we always assume P > Qout. If Qout > P
878   //  The result of this function will be ignored at the caller.
879   //  Let F = SuccFreq - Qin
880   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
881 
882   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
883     BranchProbability UProb = BestSuccSucc;
884     BranchProbability VProb = AdjustedSuccSumProb - UProb;
885     BlockFrequency F = SuccFreq - Qin;
886     BlockFrequency V = SuccFreq * VProb;
887     BlockFrequency QinU = std::min(Qin, F) * UProb;
888     BlockFrequency BaseCost = P + V;
889     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
890     return greaterWithBias(BaseCost, DupCost, EntryFreq);
891   }
892   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
893   BranchProbability VProb = AdjustedSuccSumProb - UProb;
894   BlockFrequency U = SuccFreq * UProb;
895   BlockFrequency V = SuccFreq * VProb;
896   BlockFrequency F = SuccFreq - Qin;
897   // If there is a post-dominating successor, here is the calculation:
898   // BB         BB                 BB          BB
899   // | \Qout    |   \               | \Qout     |  \
900   // |P C       |    =              |P C        |   =
901   // =   C'     |P    C             =   C'      |P   C
902   // |  /Qin    |      |            |  /Qin     |     |
903   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
904   // Succ       Succ  /|            Succ        Succ /|
905   // | \  V     |   \/ |            | \  V      |  \/ |
906   // |U \       |U  /\ =?           |U =        |U /\ |
907   // =   D      = =  =?|            |   D       | =  =|
908   // |  /       |/     D            |  /        |/    D
909   // | /        |     /             | =         |    /
910   // |/         |    /              |/          |   =
911   // Dom         Dom                Dom         Dom
912   //  '=' : Branch taken for that CFG edge
913   // The cost for taken branches in the first case is P + U
914   // Let F = SuccFreq - Qin
915   // The cost in the second case (assuming independence), given the layout:
916   // BB, Succ, (C+Succ), D, Dom or the layout:
917   // BB, Succ, D, Dom, (C+Succ)
918   // is Qout + max(F, Qin) * U + min(F, Qin)
919   // compare P + U vs Qout + P * U + Qin.
920   //
921   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
922   //
923   // For the 3rd case, the cost is P + 2 * V
924   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
925   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
926   if (UProb > AdjustedSuccSumProb / 2 &&
927       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
928                                   Chain, BlockFilter))
929     // Cases 3 & 4
930     return greaterWithBias(
931         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
932         EntryFreq);
933   // Cases 1 & 2
934   return greaterWithBias((P + U),
935                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
936                           std::max(Qin, F) * UProb),
937                          EntryFreq);
938 }
939 
940 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
941 /// successors form the lower part of a trellis. A successor set S forms the
942 /// lower part of a trellis if all of the predecessors of S are either in S or
943 /// have all of S as successors. We ignore trellises where BB doesn't have 2
944 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
945 /// are very uncommon and complex to compute optimally. Allowing edges within S
946 /// is not strictly a trellis, but the same algorithm works, so we allow it.
947 bool MachineBlockPlacement::isTrellis(
948     const MachineBasicBlock *BB,
949     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
950     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
951   // Technically BB could form a trellis with branching factor higher than 2.
952   // But that's extremely uncommon.
953   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
954     return false;
955 
956   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
957                                                        BB->succ_end());
958   // To avoid reviewing the same predecessors twice.
959   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
960 
961   for (MachineBasicBlock *Succ : ViableSuccs) {
962     int PredCount = 0;
963     for (auto SuccPred : Succ->predecessors()) {
964       // Allow triangle successors, but don't count them.
965       if (Successors.count(SuccPred)) {
966         // Make sure that it is actually a triangle.
967         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
968           if (!Successors.count(CheckSucc))
969             return false;
970         continue;
971       }
972       const BlockChain *PredChain = BlockToChain[SuccPred];
973       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
974           PredChain == &Chain || PredChain == BlockToChain[Succ])
975         continue;
976       ++PredCount;
977       // Perform the successor check only once.
978       if (!SeenPreds.insert(SuccPred).second)
979         continue;
980       if (!hasSameSuccessors(*SuccPred, Successors))
981         return false;
982     }
983     // If one of the successors has only BB as a predecessor, it is not a
984     // trellis.
985     if (PredCount < 1)
986       return false;
987   }
988   return true;
989 }
990 
991 /// Pick the highest total weight pair of edges that can both be laid out.
992 /// The edges in \p Edges[0] are assumed to have a different destination than
993 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
994 /// the individual highest weight edges to the 2 different destinations, or in
995 /// case of a conflict, one of them should be replaced with a 2nd best edge.
996 std::pair<MachineBlockPlacement::WeightedEdge,
997           MachineBlockPlacement::WeightedEdge>
998 MachineBlockPlacement::getBestNonConflictingEdges(
999     const MachineBasicBlock *BB,
1000     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1001         Edges) {
1002   // Sort the edges, and then for each successor, find the best incoming
1003   // predecessor. If the best incoming predecessors aren't the same,
1004   // then that is clearly the best layout. If there is a conflict, one of the
1005   // successors will have to fallthrough from the second best predecessor. We
1006   // compare which combination is better overall.
1007 
1008   // Sort for highest frequency.
1009   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1010 
1011   llvm::stable_sort(Edges[0], Cmp);
1012   llvm::stable_sort(Edges[1], Cmp);
1013   auto BestA = Edges[0].begin();
1014   auto BestB = Edges[1].begin();
1015   // Arrange for the correct answer to be in BestA and BestB
1016   // If the 2 best edges don't conflict, the answer is already there.
1017   if (BestA->Src == BestB->Src) {
1018     // Compare the total fallthrough of (Best + Second Best) for both pairs
1019     auto SecondBestA = std::next(BestA);
1020     auto SecondBestB = std::next(BestB);
1021     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1022     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1023     if (BestAScore < BestBScore)
1024       BestA = SecondBestA;
1025     else
1026       BestB = SecondBestB;
1027   }
1028   // Arrange for the BB edge to be in BestA if it exists.
1029   if (BestB->Src == BB)
1030     std::swap(BestA, BestB);
1031   return std::make_pair(*BestA, *BestB);
1032 }
1033 
1034 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1035 /// We only handle trellises with 2 successors, so the algorithm is
1036 /// straightforward: Find the best pair of edges that don't conflict. We find
1037 /// the best incoming edge for each successor in the trellis. If those conflict,
1038 /// we consider which of them should be replaced with the second best.
1039 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1040 /// comes from \p BB, it will be in \p BestEdges[0]
1041 MachineBlockPlacement::BlockAndTailDupResult
1042 MachineBlockPlacement::getBestTrellisSuccessor(
1043     const MachineBasicBlock *BB,
1044     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1045     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1046     const BlockFilterSet *BlockFilter) {
1047 
1048   BlockAndTailDupResult Result = {nullptr, false};
1049   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1050                                                        BB->succ_end());
1051 
1052   // We assume size 2 because it's common. For general n, we would have to do
1053   // the Hungarian algorithm, but it's not worth the complexity because more
1054   // than 2 successors is fairly uncommon, and a trellis even more so.
1055   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1056     return Result;
1057 
1058   // Collect the edge frequencies of all edges that form the trellis.
1059   SmallVector<WeightedEdge, 8> Edges[2];
1060   int SuccIndex = 0;
1061   for (auto Succ : ViableSuccs) {
1062     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1063       // Skip any placed predecessors that are not BB
1064       if (SuccPred != BB)
1065         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1066             BlockToChain[SuccPred] == &Chain ||
1067             BlockToChain[SuccPred] == BlockToChain[Succ])
1068           continue;
1069       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1070                                 MBPI->getEdgeProbability(SuccPred, Succ);
1071       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1072     }
1073     ++SuccIndex;
1074   }
1075 
1076   // Pick the best combination of 2 edges from all the edges in the trellis.
1077   WeightedEdge BestA, BestB;
1078   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1079 
1080   if (BestA.Src != BB) {
1081     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1082     // we shouldn't choose any successor. We've already looked and there's a
1083     // better fallthrough edge for all the successors.
1084     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1085     return Result;
1086   }
1087 
1088   // Did we pick the triangle edge? If tail-duplication is profitable, do
1089   // that instead. Otherwise merge the triangle edge now while we know it is
1090   // optimal.
1091   if (BestA.Dest == BestB.Src) {
1092     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1093     // would be better.
1094     MachineBasicBlock *Succ1 = BestA.Dest;
1095     MachineBasicBlock *Succ2 = BestB.Dest;
1096     // Check to see if tail-duplication would be profitable.
1097     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1098         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1099         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1100                               Chain, BlockFilter)) {
1101       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1102                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1103                  dbgs() << "    Selected: " << getBlockName(Succ2)
1104                         << ", probability: " << Succ2Prob
1105                         << " (Tail Duplicate)\n");
1106       Result.BB = Succ2;
1107       Result.ShouldTailDup = true;
1108       return Result;
1109     }
1110   }
1111   // We have already computed the optimal edge for the other side of the
1112   // trellis.
1113   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1114 
1115   auto TrellisSucc = BestA.Dest;
1116   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1117                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1118              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1119                     << ", probability: " << SuccProb << " (Trellis)\n");
1120   Result.BB = TrellisSucc;
1121   return Result;
1122 }
1123 
1124 /// When the option allowTailDupPlacement() is on, this method checks if the
1125 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1126 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1127 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1128     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1129     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1130   if (!shouldTailDuplicate(Succ))
1131     return false;
1132 
1133   // The result of canTailDuplicate.
1134   bool Duplicate = true;
1135   // Number of possible duplication.
1136   unsigned int NumDup = 0;
1137 
1138   // For CFG checking.
1139   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1140                                                        BB->succ_end());
1141   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1142     // Make sure all unplaced and unfiltered predecessors can be
1143     // tail-duplicated into.
1144     // Skip any blocks that are already placed or not in this loop.
1145     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1146         || BlockToChain[Pred] == &Chain)
1147       continue;
1148     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1149       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1150         // This will result in a trellis after tail duplication, so we don't
1151         // need to copy Succ into this predecessor. In the presence
1152         // of a trellis tail duplication can continue to be profitable.
1153         // For example:
1154         // A            A
1155         // |\           |\
1156         // | \          | \
1157         // |  C         |  C+BB
1158         // | /          |  |
1159         // |/           |  |
1160         // BB    =>     BB |
1161         // |\           |\/|
1162         // | \          |/\|
1163         // |  D         |  D
1164         // | /          | /
1165         // |/           |/
1166         // Succ         Succ
1167         //
1168         // After BB was duplicated into C, the layout looks like the one on the
1169         // right. BB and C now have the same successors. When considering
1170         // whether Succ can be duplicated into all its unplaced predecessors, we
1171         // ignore C.
1172         // We can do this because C already has a profitable fallthrough, namely
1173         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1174         // duplication and for this test.
1175         //
1176         // This allows trellises to be laid out in 2 separate chains
1177         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1178         // because it allows the creation of 2 fallthrough paths with links
1179         // between them, and we correctly identify the best layout for these
1180         // CFGs. We want to extend trellises that the user created in addition
1181         // to trellises created by tail-duplication, so we just look for the
1182         // CFG.
1183         continue;
1184       Duplicate = false;
1185       continue;
1186     }
1187     NumDup++;
1188   }
1189 
1190   // No possible duplication in current filter set.
1191   if (NumDup == 0)
1192     return false;
1193 
1194   // If profile information is available, findDuplicateCandidates can do more
1195   // precise benefit analysis.
1196   if (F->getFunction().hasProfileData())
1197     return true;
1198 
1199   // This is mainly for function exit BB.
1200   // The integrated tail duplication is really designed for increasing
1201   // fallthrough from predecessors from Succ to its successors. We may need
1202   // other machanism to handle different cases.
1203   if (Succ->succ_empty())
1204     return true;
1205 
1206   // Plus the already placed predecessor.
1207   NumDup++;
1208 
1209   // If the duplication candidate has more unplaced predecessors than
1210   // successors, the extra duplication can't bring more fallthrough.
1211   //
1212   //     Pred1 Pred2 Pred3
1213   //         \   |   /
1214   //          \  |  /
1215   //           \ | /
1216   //            Dup
1217   //            / \
1218   //           /   \
1219   //       Succ1  Succ2
1220   //
1221   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1222   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1223   // but the duplication into Pred3 can't increase fallthrough.
1224   //
1225   // A small number of extra duplication may not hurt too much. We need a better
1226   // heuristic to handle it.
1227   if ((NumDup > Succ->succ_size()) || !Duplicate)
1228     return false;
1229 
1230   return true;
1231 }
1232 
1233 /// Find chains of triangles where we believe it would be profitable to
1234 /// tail-duplicate them all, but a local analysis would not find them.
1235 /// There are 3 ways this can be profitable:
1236 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1237 ///    longer chains)
1238 /// 2) The chains are statically correlated. Branch probabilities have a very
1239 ///    U-shaped distribution.
1240 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1241 ///    If the branches in a chain are likely to be from the same side of the
1242 ///    distribution as their predecessor, but are independent at runtime, this
1243 ///    transformation is profitable. (Because the cost of being wrong is a small
1244 ///    fixed cost, unlike the standard triangle layout where the cost of being
1245 ///    wrong scales with the # of triangles.)
1246 /// 3) The chains are dynamically correlated. If the probability that a previous
1247 ///    branch was taken positively influences whether the next branch will be
1248 ///    taken
1249 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1250 void MachineBlockPlacement::precomputeTriangleChains() {
1251   struct TriangleChain {
1252     std::vector<MachineBasicBlock *> Edges;
1253 
1254     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1255         : Edges({src, dst}) {}
1256 
1257     void append(MachineBasicBlock *dst) {
1258       assert(getKey()->isSuccessor(dst) &&
1259              "Attempting to append a block that is not a successor.");
1260       Edges.push_back(dst);
1261     }
1262 
1263     unsigned count() const { return Edges.size() - 1; }
1264 
1265     MachineBasicBlock *getKey() const {
1266       return Edges.back();
1267     }
1268   };
1269 
1270   if (TriangleChainCount == 0)
1271     return;
1272 
1273   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1274   // Map from last block to the chain that contains it. This allows us to extend
1275   // chains as we find new triangles.
1276   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1277   for (MachineBasicBlock &BB : *F) {
1278     // If BB doesn't have 2 successors, it doesn't start a triangle.
1279     if (BB.succ_size() != 2)
1280       continue;
1281     MachineBasicBlock *PDom = nullptr;
1282     for (MachineBasicBlock *Succ : BB.successors()) {
1283       if (!MPDT->dominates(Succ, &BB))
1284         continue;
1285       PDom = Succ;
1286       break;
1287     }
1288     // If BB doesn't have a post-dominating successor, it doesn't form a
1289     // triangle.
1290     if (PDom == nullptr)
1291       continue;
1292     // If PDom has a hint that it is low probability, skip this triangle.
1293     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1294       continue;
1295     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1296     // we're looking for.
1297     if (!shouldTailDuplicate(PDom))
1298       continue;
1299     bool CanTailDuplicate = true;
1300     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1301     // isn't the kind of triangle we're looking for.
1302     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1303       if (Pred == &BB)
1304         continue;
1305       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1306         CanTailDuplicate = false;
1307         break;
1308       }
1309     }
1310     // If we can't tail-duplicate PDom to its predecessors, then skip this
1311     // triangle.
1312     if (!CanTailDuplicate)
1313       continue;
1314 
1315     // Now we have an interesting triangle. Insert it if it's not part of an
1316     // existing chain.
1317     // Note: This cannot be replaced with a call insert() or emplace() because
1318     // the find key is BB, but the insert/emplace key is PDom.
1319     auto Found = TriangleChainMap.find(&BB);
1320     // If it is, remove the chain from the map, grow it, and put it back in the
1321     // map with the end as the new key.
1322     if (Found != TriangleChainMap.end()) {
1323       TriangleChain Chain = std::move(Found->second);
1324       TriangleChainMap.erase(Found);
1325       Chain.append(PDom);
1326       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1327     } else {
1328       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1329       assert(InsertResult.second && "Block seen twice.");
1330       (void)InsertResult;
1331     }
1332   }
1333 
1334   // Iterating over a DenseMap is safe here, because the only thing in the body
1335   // of the loop is inserting into another DenseMap (ComputedEdges).
1336   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1337   for (auto &ChainPair : TriangleChainMap) {
1338     TriangleChain &Chain = ChainPair.second;
1339     // Benchmarking has shown that due to branch correlation duplicating 2 or
1340     // more triangles is profitable, despite the calculations assuming
1341     // independence.
1342     if (Chain.count() < TriangleChainCount)
1343       continue;
1344     MachineBasicBlock *dst = Chain.Edges.back();
1345     Chain.Edges.pop_back();
1346     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1347       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1348                         << getBlockName(dst)
1349                         << " as pre-computed based on triangles.\n");
1350 
1351       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1352       assert(InsertResult.second && "Block seen twice.");
1353       (void)InsertResult;
1354 
1355       dst = src;
1356     }
1357   }
1358 }
1359 
1360 // When profile is not present, return the StaticLikelyProb.
1361 // When profile is available, we need to handle the triangle-shape CFG.
1362 static BranchProbability getLayoutSuccessorProbThreshold(
1363       const MachineBasicBlock *BB) {
1364   if (!BB->getParent()->getFunction().hasProfileData())
1365     return BranchProbability(StaticLikelyProb, 100);
1366   if (BB->succ_size() == 2) {
1367     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1368     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1369     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1370       /* See case 1 below for the cost analysis. For BB->Succ to
1371        * be taken with smaller cost, the following needs to hold:
1372        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1373        *   So the threshold T in the calculation below
1374        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1375        *   So T / (1 - T) = 2, Yielding T = 2/3
1376        * Also adding user specified branch bias, we have
1377        *   T = (2/3)*(ProfileLikelyProb/50)
1378        *     = (2*ProfileLikelyProb)/150)
1379        */
1380       return BranchProbability(2 * ProfileLikelyProb, 150);
1381     }
1382   }
1383   return BranchProbability(ProfileLikelyProb, 100);
1384 }
1385 
1386 /// Checks to see if the layout candidate block \p Succ has a better layout
1387 /// predecessor than \c BB. If yes, returns true.
1388 /// \p SuccProb: The probability adjusted for only remaining blocks.
1389 ///   Only used for logging
1390 /// \p RealSuccProb: The un-adjusted probability.
1391 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1392 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1393 ///    considered
1394 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1395     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1396     const BlockChain &SuccChain, BranchProbability SuccProb,
1397     BranchProbability RealSuccProb, const BlockChain &Chain,
1398     const BlockFilterSet *BlockFilter) {
1399 
1400   // There isn't a better layout when there are no unscheduled predecessors.
1401   if (SuccChain.UnscheduledPredecessors == 0)
1402     return false;
1403 
1404   // There are two basic scenarios here:
1405   // -------------------------------------
1406   // Case 1: triangular shape CFG (if-then):
1407   //     BB
1408   //     | \
1409   //     |  \
1410   //     |   Pred
1411   //     |   /
1412   //     Succ
1413   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1414   // set Succ as the layout successor of BB. Picking Succ as BB's
1415   // successor breaks the CFG constraints (FIXME: define these constraints).
1416   // With this layout, Pred BB
1417   // is forced to be outlined, so the overall cost will be cost of the
1418   // branch taken from BB to Pred, plus the cost of back taken branch
1419   // from Pred to Succ, as well as the additional cost associated
1420   // with the needed unconditional jump instruction from Pred To Succ.
1421 
1422   // The cost of the topological order layout is the taken branch cost
1423   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1424   // must hold:
1425   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1426   //      < freq(BB->Succ) *  taken_branch_cost.
1427   // Ignoring unconditional jump cost, we get
1428   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1429   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1430   //
1431   // When real profile data is available, we can precisely compute the
1432   // probability threshold that is needed for edge BB->Succ to be considered.
1433   // Without profile data, the heuristic requires the branch bias to be
1434   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1435   // -----------------------------------------------------------------
1436   // Case 2: diamond like CFG (if-then-else):
1437   //     S
1438   //    / \
1439   //   |   \
1440   //  BB    Pred
1441   //   \    /
1442   //    Succ
1443   //    ..
1444   //
1445   // The current block is BB and edge BB->Succ is now being evaluated.
1446   // Note that edge S->BB was previously already selected because
1447   // prob(S->BB) > prob(S->Pred).
1448   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1449   // choose Pred, we will have a topological ordering as shown on the left
1450   // in the picture below. If we choose Succ, we have the solution as shown
1451   // on the right:
1452   //
1453   //   topo-order:
1454   //
1455   //       S-----                             ---S
1456   //       |    |                             |  |
1457   //    ---BB   |                             |  BB
1458   //    |       |                             |  |
1459   //    |  Pred--                             |  Succ--
1460   //    |  |                                  |       |
1461   //    ---Succ                               ---Pred--
1462   //
1463   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1464   //      = freq(S->Pred) + freq(S->BB)
1465   //
1466   // If we have profile data (i.e, branch probabilities can be trusted), the
1467   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1468   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1469   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1470   // means the cost of topological order is greater.
1471   // When profile data is not available, however, we need to be more
1472   // conservative. If the branch prediction is wrong, breaking the topo-order
1473   // will actually yield a layout with large cost. For this reason, we need
1474   // strong biased branch at block S with Prob(S->BB) in order to select
1475   // BB->Succ. This is equivalent to looking the CFG backward with backward
1476   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1477   // profile data).
1478   // --------------------------------------------------------------------------
1479   // Case 3: forked diamond
1480   //       S
1481   //      / \
1482   //     /   \
1483   //   BB    Pred
1484   //   | \   / |
1485   //   |  \ /  |
1486   //   |   X   |
1487   //   |  / \  |
1488   //   | /   \ |
1489   //   S1     S2
1490   //
1491   // The current block is BB and edge BB->S1 is now being evaluated.
1492   // As above S->BB was already selected because
1493   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1494   //
1495   // topo-order:
1496   //
1497   //     S-------|                     ---S
1498   //     |       |                     |  |
1499   //  ---BB      |                     |  BB
1500   //  |          |                     |  |
1501   //  |  Pred----|                     |  S1----
1502   //  |  |                             |       |
1503   //  --(S1 or S2)                     ---Pred--
1504   //                                        |
1505   //                                       S2
1506   //
1507   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1508   //    + min(freq(Pred->S1), freq(Pred->S2))
1509   // Non-topo-order cost:
1510   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1511   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1512   // is 0. Then the non topo layout is better when
1513   // freq(S->Pred) < freq(BB->S1).
1514   // This is exactly what is checked below.
1515   // Note there are other shapes that apply (Pred may not be a single block,
1516   // but they all fit this general pattern.)
1517   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1518 
1519   // Make sure that a hot successor doesn't have a globally more
1520   // important predecessor.
1521   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1522   bool BadCFGConflict = false;
1523 
1524   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1525     BlockChain *PredChain = BlockToChain[Pred];
1526     if (Pred == Succ || PredChain == &SuccChain ||
1527         (BlockFilter && !BlockFilter->count(Pred)) ||
1528         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1529         // This check is redundant except for look ahead. This function is
1530         // called for lookahead by isProfitableToTailDup when BB hasn't been
1531         // placed yet.
1532         (Pred == BB))
1533       continue;
1534     // Do backward checking.
1535     // For all cases above, we need a backward checking to filter out edges that
1536     // are not 'strongly' biased.
1537     // BB  Pred
1538     //  \ /
1539     //  Succ
1540     // We select edge BB->Succ if
1541     //      freq(BB->Succ) > freq(Succ) * HotProb
1542     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1543     //      HotProb
1544     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1545     // Case 1 is covered too, because the first equation reduces to:
1546     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1547     BlockFrequency PredEdgeFreq =
1548         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1549     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1550       BadCFGConflict = true;
1551       break;
1552     }
1553   }
1554 
1555   if (BadCFGConflict) {
1556     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1557                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1558     return true;
1559   }
1560 
1561   return false;
1562 }
1563 
1564 /// Select the best successor for a block.
1565 ///
1566 /// This looks across all successors of a particular block and attempts to
1567 /// select the "best" one to be the layout successor. It only considers direct
1568 /// successors which also pass the block filter. It will attempt to avoid
1569 /// breaking CFG structure, but cave and break such structures in the case of
1570 /// very hot successor edges.
1571 ///
1572 /// \returns The best successor block found, or null if none are viable, along
1573 /// with a boolean indicating if tail duplication is necessary.
1574 MachineBlockPlacement::BlockAndTailDupResult
1575 MachineBlockPlacement::selectBestSuccessor(
1576     const MachineBasicBlock *BB, const BlockChain &Chain,
1577     const BlockFilterSet *BlockFilter) {
1578   const BranchProbability HotProb(StaticLikelyProb, 100);
1579 
1580   BlockAndTailDupResult BestSucc = { nullptr, false };
1581   auto BestProb = BranchProbability::getZero();
1582 
1583   SmallVector<MachineBasicBlock *, 4> Successors;
1584   auto AdjustedSumProb =
1585       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1586 
1587   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1588                     << "\n");
1589 
1590   // if we already precomputed the best successor for BB, return that if still
1591   // applicable.
1592   auto FoundEdge = ComputedEdges.find(BB);
1593   if (FoundEdge != ComputedEdges.end()) {
1594     MachineBasicBlock *Succ = FoundEdge->second.BB;
1595     ComputedEdges.erase(FoundEdge);
1596     BlockChain *SuccChain = BlockToChain[Succ];
1597     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1598         SuccChain != &Chain && Succ == *SuccChain->begin())
1599       return FoundEdge->second;
1600   }
1601 
1602   // if BB is part of a trellis, Use the trellis to determine the optimal
1603   // fallthrough edges
1604   if (isTrellis(BB, Successors, Chain, BlockFilter))
1605     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1606                                    BlockFilter);
1607 
1608   // For blocks with CFG violations, we may be able to lay them out anyway with
1609   // tail-duplication. We keep this vector so we can perform the probability
1610   // calculations the minimum number of times.
1611   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1612       DupCandidates;
1613   for (MachineBasicBlock *Succ : Successors) {
1614     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1615     BranchProbability SuccProb =
1616         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1617 
1618     BlockChain &SuccChain = *BlockToChain[Succ];
1619     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1620     // predecessor that yields lower global cost.
1621     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1622                                    Chain, BlockFilter)) {
1623       // If tail duplication would make Succ profitable, place it.
1624       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1625         DupCandidates.emplace_back(SuccProb, Succ);
1626       continue;
1627     }
1628 
1629     LLVM_DEBUG(
1630         dbgs() << "    Candidate: " << getBlockName(Succ)
1631                << ", probability: " << SuccProb
1632                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1633                << "\n");
1634 
1635     if (BestSucc.BB && BestProb >= SuccProb) {
1636       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1637       continue;
1638     }
1639 
1640     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1641     BestSucc.BB = Succ;
1642     BestProb = SuccProb;
1643   }
1644   // Handle the tail duplication candidates in order of decreasing probability.
1645   // Stop at the first one that is profitable. Also stop if they are less
1646   // profitable than BestSucc. Position is important because we preserve it and
1647   // prefer first best match. Here we aren't comparing in order, so we capture
1648   // the position instead.
1649   llvm::stable_sort(DupCandidates,
1650                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1651                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1652                       return std::get<0>(L) > std::get<0>(R);
1653                     });
1654   for (auto &Tup : DupCandidates) {
1655     BranchProbability DupProb;
1656     MachineBasicBlock *Succ;
1657     std::tie(DupProb, Succ) = Tup;
1658     if (DupProb < BestProb)
1659       break;
1660     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1661         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1662       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1663                         << ", probability: " << DupProb
1664                         << " (Tail Duplicate)\n");
1665       BestSucc.BB = Succ;
1666       BestSucc.ShouldTailDup = true;
1667       break;
1668     }
1669   }
1670 
1671   if (BestSucc.BB)
1672     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1673 
1674   return BestSucc;
1675 }
1676 
1677 /// Select the best block from a worklist.
1678 ///
1679 /// This looks through the provided worklist as a list of candidate basic
1680 /// blocks and select the most profitable one to place. The definition of
1681 /// profitable only really makes sense in the context of a loop. This returns
1682 /// the most frequently visited block in the worklist, which in the case of
1683 /// a loop, is the one most desirable to be physically close to the rest of the
1684 /// loop body in order to improve i-cache behavior.
1685 ///
1686 /// \returns The best block found, or null if none are viable.
1687 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1688     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1689   // Once we need to walk the worklist looking for a candidate, cleanup the
1690   // worklist of already placed entries.
1691   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1692   // some code complexity) into the loop below.
1693   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1694     return BlockToChain.lookup(BB) == &Chain;
1695   });
1696 
1697   if (WorkList.empty())
1698     return nullptr;
1699 
1700   bool IsEHPad = WorkList[0]->isEHPad();
1701 
1702   MachineBasicBlock *BestBlock = nullptr;
1703   BlockFrequency BestFreq;
1704   for (MachineBasicBlock *MBB : WorkList) {
1705     assert(MBB->isEHPad() == IsEHPad &&
1706            "EHPad mismatch between block and work list.");
1707 
1708     BlockChain &SuccChain = *BlockToChain[MBB];
1709     if (&SuccChain == &Chain)
1710       continue;
1711 
1712     assert(SuccChain.UnscheduledPredecessors == 0 &&
1713            "Found CFG-violating block");
1714 
1715     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1716     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1717                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1718 
1719     // For ehpad, we layout the least probable first as to avoid jumping back
1720     // from least probable landingpads to more probable ones.
1721     //
1722     // FIXME: Using probability is probably (!) not the best way to achieve
1723     // this. We should probably have a more principled approach to layout
1724     // cleanup code.
1725     //
1726     // The goal is to get:
1727     //
1728     //                 +--------------------------+
1729     //                 |                          V
1730     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1731     //
1732     // Rather than:
1733     //
1734     //                 +-------------------------------------+
1735     //                 V                                     |
1736     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1737     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1738       continue;
1739 
1740     BestBlock = MBB;
1741     BestFreq = CandidateFreq;
1742   }
1743 
1744   return BestBlock;
1745 }
1746 
1747 /// Retrieve the first unplaced basic block.
1748 ///
1749 /// This routine is called when we are unable to use the CFG to walk through
1750 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1751 /// We walk through the function's blocks in order, starting from the
1752 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1753 /// re-scanning the entire sequence on repeated calls to this routine.
1754 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1755     const BlockChain &PlacedChain,
1756     MachineFunction::iterator &PrevUnplacedBlockIt,
1757     const BlockFilterSet *BlockFilter) {
1758   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1759        ++I) {
1760     if (BlockFilter && !BlockFilter->count(&*I))
1761       continue;
1762     if (BlockToChain[&*I] != &PlacedChain) {
1763       PrevUnplacedBlockIt = I;
1764       // Now select the head of the chain to which the unplaced block belongs
1765       // as the block to place. This will force the entire chain to be placed,
1766       // and satisfies the requirements of merging chains.
1767       return *BlockToChain[&*I]->begin();
1768     }
1769   }
1770   return nullptr;
1771 }
1772 
1773 void MachineBlockPlacement::fillWorkLists(
1774     const MachineBasicBlock *MBB,
1775     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1776     const BlockFilterSet *BlockFilter = nullptr) {
1777   BlockChain &Chain = *BlockToChain[MBB];
1778   if (!UpdatedPreds.insert(&Chain).second)
1779     return;
1780 
1781   assert(
1782       Chain.UnscheduledPredecessors == 0 &&
1783       "Attempting to place block with unscheduled predecessors in worklist.");
1784   for (MachineBasicBlock *ChainBB : Chain) {
1785     assert(BlockToChain[ChainBB] == &Chain &&
1786            "Block in chain doesn't match BlockToChain map.");
1787     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1788       if (BlockFilter && !BlockFilter->count(Pred))
1789         continue;
1790       if (BlockToChain[Pred] == &Chain)
1791         continue;
1792       ++Chain.UnscheduledPredecessors;
1793     }
1794   }
1795 
1796   if (Chain.UnscheduledPredecessors != 0)
1797     return;
1798 
1799   MachineBasicBlock *BB = *Chain.begin();
1800   if (BB->isEHPad())
1801     EHPadWorkList.push_back(BB);
1802   else
1803     BlockWorkList.push_back(BB);
1804 }
1805 
1806 void MachineBlockPlacement::buildChain(
1807     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1808     BlockFilterSet *BlockFilter) {
1809   assert(HeadBB && "BB must not be null.\n");
1810   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1811   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1812 
1813   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1814   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1815   MachineBasicBlock *BB = *std::prev(Chain.end());
1816   while (true) {
1817     assert(BB && "null block found at end of chain in loop.");
1818     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1819     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1820 
1821 
1822     // Look for the best viable successor if there is one to place immediately
1823     // after this block.
1824     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1825     MachineBasicBlock* BestSucc = Result.BB;
1826     bool ShouldTailDup = Result.ShouldTailDup;
1827     if (allowTailDupPlacement())
1828       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1829                                                                   Chain,
1830                                                                   BlockFilter));
1831 
1832     // If an immediate successor isn't available, look for the best viable
1833     // block among those we've identified as not violating the loop's CFG at
1834     // this point. This won't be a fallthrough, but it will increase locality.
1835     if (!BestSucc)
1836       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1837     if (!BestSucc)
1838       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1839 
1840     if (!BestSucc) {
1841       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1842       if (!BestSucc)
1843         break;
1844 
1845       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1846                            "layout successor until the CFG reduces\n");
1847     }
1848 
1849     // Placement may have changed tail duplication opportunities.
1850     // Check for that now.
1851     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1852       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1853                                        BlockFilter, PrevUnplacedBlockIt);
1854       // If the chosen successor was duplicated into BB, don't bother laying
1855       // it out, just go round the loop again with BB as the chain end.
1856       if (!BB->isSuccessor(BestSucc))
1857         continue;
1858     }
1859 
1860     // Place this block, updating the datastructures to reflect its placement.
1861     BlockChain &SuccChain = *BlockToChain[BestSucc];
1862     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1863     // we selected a successor that didn't fit naturally into the CFG.
1864     SuccChain.UnscheduledPredecessors = 0;
1865     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1866                       << getBlockName(BestSucc) << "\n");
1867     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1868     Chain.merge(BestSucc, &SuccChain);
1869     BB = *std::prev(Chain.end());
1870   }
1871 
1872   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1873                     << getBlockName(*Chain.begin()) << "\n");
1874 }
1875 
1876 // If bottom of block BB has only one successor OldTop, in most cases it is
1877 // profitable to move it before OldTop, except the following case:
1878 //
1879 //     -->OldTop<-
1880 //     |    .    |
1881 //     |    .    |
1882 //     |    .    |
1883 //     ---Pred   |
1884 //          |    |
1885 //         BB-----
1886 //
1887 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1888 // layout the other successor below it, so it can't reduce taken branch.
1889 // In this case we keep its original layout.
1890 bool
1891 MachineBlockPlacement::canMoveBottomBlockToTop(
1892     const MachineBasicBlock *BottomBlock,
1893     const MachineBasicBlock *OldTop) {
1894   if (BottomBlock->pred_size() != 1)
1895     return true;
1896   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1897   if (Pred->succ_size() != 2)
1898     return true;
1899 
1900   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1901   if (OtherBB == BottomBlock)
1902     OtherBB = *Pred->succ_rbegin();
1903   if (OtherBB == OldTop)
1904     return false;
1905 
1906   return true;
1907 }
1908 
1909 // Find out the possible fall through frequence to the top of a loop.
1910 BlockFrequency
1911 MachineBlockPlacement::TopFallThroughFreq(
1912     const MachineBasicBlock *Top,
1913     const BlockFilterSet &LoopBlockSet) {
1914   BlockFrequency MaxFreq = 0;
1915   for (MachineBasicBlock *Pred : Top->predecessors()) {
1916     BlockChain *PredChain = BlockToChain[Pred];
1917     if (!LoopBlockSet.count(Pred) &&
1918         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1919       // Found a Pred block can be placed before Top.
1920       // Check if Top is the best successor of Pred.
1921       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1922       bool TopOK = true;
1923       for (MachineBasicBlock *Succ : Pred->successors()) {
1924         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1925         BlockChain *SuccChain = BlockToChain[Succ];
1926         // Check if Succ can be placed after Pred.
1927         // Succ should not be in any chain, or it is the head of some chain.
1928         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1929             (!SuccChain || Succ == *SuccChain->begin())) {
1930           TopOK = false;
1931           break;
1932         }
1933       }
1934       if (TopOK) {
1935         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1936                                   MBPI->getEdgeProbability(Pred, Top);
1937         if (EdgeFreq > MaxFreq)
1938           MaxFreq = EdgeFreq;
1939       }
1940     }
1941   }
1942   return MaxFreq;
1943 }
1944 
1945 // Compute the fall through gains when move NewTop before OldTop.
1946 //
1947 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1948 // marked as "+" are increased fallthrough, this function computes
1949 //
1950 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1951 //
1952 //              |
1953 //              | -
1954 //              V
1955 //        --->OldTop
1956 //        |     .
1957 //        |     .
1958 //       +|     .    +
1959 //        |   Pred --->
1960 //        |     |-
1961 //        |     V
1962 //        --- NewTop <---
1963 //              |-
1964 //              V
1965 //
1966 BlockFrequency
1967 MachineBlockPlacement::FallThroughGains(
1968     const MachineBasicBlock *NewTop,
1969     const MachineBasicBlock *OldTop,
1970     const MachineBasicBlock *ExitBB,
1971     const BlockFilterSet &LoopBlockSet) {
1972   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1973   BlockFrequency FallThrough2Exit = 0;
1974   if (ExitBB)
1975     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1976         MBPI->getEdgeProbability(NewTop, ExitBB);
1977   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1978       MBPI->getEdgeProbability(NewTop, OldTop);
1979 
1980   // Find the best Pred of NewTop.
1981    MachineBasicBlock *BestPred = nullptr;
1982    BlockFrequency FallThroughFromPred = 0;
1983    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1984      if (!LoopBlockSet.count(Pred))
1985        continue;
1986      BlockChain *PredChain = BlockToChain[Pred];
1987      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1988        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1989            MBPI->getEdgeProbability(Pred, NewTop);
1990        if (EdgeFreq > FallThroughFromPred) {
1991          FallThroughFromPred = EdgeFreq;
1992          BestPred = Pred;
1993        }
1994      }
1995    }
1996 
1997    // If NewTop is not placed after Pred, another successor can be placed
1998    // after Pred.
1999    BlockFrequency NewFreq = 0;
2000    if (BestPred) {
2001      for (MachineBasicBlock *Succ : BestPred->successors()) {
2002        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2003          continue;
2004        if (ComputedEdges.find(Succ) != ComputedEdges.end())
2005          continue;
2006        BlockChain *SuccChain = BlockToChain[Succ];
2007        if ((SuccChain && (Succ != *SuccChain->begin())) ||
2008            (SuccChain == BlockToChain[BestPred]))
2009          continue;
2010        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2011            MBPI->getEdgeProbability(BestPred, Succ);
2012        if (EdgeFreq > NewFreq)
2013          NewFreq = EdgeFreq;
2014      }
2015      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2016          MBPI->getEdgeProbability(BestPred, NewTop);
2017      if (NewFreq > OrigEdgeFreq) {
2018        // If NewTop is not the best successor of Pred, then Pred doesn't
2019        // fallthrough to NewTop. So there is no FallThroughFromPred and
2020        // NewFreq.
2021        NewFreq = 0;
2022        FallThroughFromPred = 0;
2023      }
2024    }
2025 
2026    BlockFrequency Result = 0;
2027    BlockFrequency Gains = BackEdgeFreq + NewFreq;
2028    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2029        FallThroughFromPred;
2030    if (Gains > Lost)
2031      Result = Gains - Lost;
2032    return Result;
2033 }
2034 
2035 /// Helper function of findBestLoopTop. Find the best loop top block
2036 /// from predecessors of old top.
2037 ///
2038 /// Look for a block which is strictly better than the old top for laying
2039 /// out before the old top of the loop. This looks for only two patterns:
2040 ///
2041 ///     1. a block has only one successor, the old loop top
2042 ///
2043 ///        Because such a block will always result in an unconditional jump,
2044 ///        rotating it in front of the old top is always profitable.
2045 ///
2046 ///     2. a block has two successors, one is old top, another is exit
2047 ///        and it has more than one predecessors
2048 ///
2049 ///        If it is below one of its predecessors P, only P can fall through to
2050 ///        it, all other predecessors need a jump to it, and another conditional
2051 ///        jump to loop header. If it is moved before loop header, all its
2052 ///        predecessors jump to it, then fall through to loop header. So all its
2053 ///        predecessors except P can reduce one taken branch.
2054 ///        At the same time, move it before old top increases the taken branch
2055 ///        to loop exit block, so the reduced taken branch will be compared with
2056 ///        the increased taken branch to the loop exit block.
2057 MachineBasicBlock *
2058 MachineBlockPlacement::findBestLoopTopHelper(
2059     MachineBasicBlock *OldTop,
2060     const MachineLoop &L,
2061     const BlockFilterSet &LoopBlockSet) {
2062   // Check that the header hasn't been fused with a preheader block due to
2063   // crazy branches. If it has, we need to start with the header at the top to
2064   // prevent pulling the preheader into the loop body.
2065   BlockChain &HeaderChain = *BlockToChain[OldTop];
2066   if (!LoopBlockSet.count(*HeaderChain.begin()))
2067     return OldTop;
2068   if (OldTop != *HeaderChain.begin())
2069     return OldTop;
2070 
2071   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2072                     << "\n");
2073 
2074   BlockFrequency BestGains = 0;
2075   MachineBasicBlock *BestPred = nullptr;
2076   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2077     if (!LoopBlockSet.count(Pred))
2078       continue;
2079     if (Pred == L.getHeader())
2080       continue;
2081     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2082                       << Pred->succ_size() << " successors, ";
2083                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2084     if (Pred->succ_size() > 2)
2085       continue;
2086 
2087     MachineBasicBlock *OtherBB = nullptr;
2088     if (Pred->succ_size() == 2) {
2089       OtherBB = *Pred->succ_begin();
2090       if (OtherBB == OldTop)
2091         OtherBB = *Pred->succ_rbegin();
2092     }
2093 
2094     if (!canMoveBottomBlockToTop(Pred, OldTop))
2095       continue;
2096 
2097     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2098                                             LoopBlockSet);
2099     if ((Gains > 0) && (Gains > BestGains ||
2100         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2101       BestPred = Pred;
2102       BestGains = Gains;
2103     }
2104   }
2105 
2106   // If no direct predecessor is fine, just use the loop header.
2107   if (!BestPred) {
2108     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2109     return OldTop;
2110   }
2111 
2112   // Walk backwards through any straight line of predecessors.
2113   while (BestPred->pred_size() == 1 &&
2114          (*BestPred->pred_begin())->succ_size() == 1 &&
2115          *BestPred->pred_begin() != L.getHeader())
2116     BestPred = *BestPred->pred_begin();
2117 
2118   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2119   return BestPred;
2120 }
2121 
2122 /// Find the best loop top block for layout.
2123 ///
2124 /// This function iteratively calls findBestLoopTopHelper, until no new better
2125 /// BB can be found.
2126 MachineBasicBlock *
2127 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2128                                        const BlockFilterSet &LoopBlockSet) {
2129   // Placing the latch block before the header may introduce an extra branch
2130   // that skips this block the first time the loop is executed, which we want
2131   // to avoid when optimising for size.
2132   // FIXME: in theory there is a case that does not introduce a new branch,
2133   // i.e. when the layout predecessor does not fallthrough to the loop header.
2134   // In practice this never happens though: there always seems to be a preheader
2135   // that can fallthrough and that is also placed before the header.
2136   bool OptForSize = F->getFunction().hasOptSize() ||
2137                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2138   if (OptForSize)
2139     return L.getHeader();
2140 
2141   MachineBasicBlock *OldTop = nullptr;
2142   MachineBasicBlock *NewTop = L.getHeader();
2143   while (NewTop != OldTop) {
2144     OldTop = NewTop;
2145     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2146     if (NewTop != OldTop)
2147       ComputedEdges[NewTop] = { OldTop, false };
2148   }
2149   return NewTop;
2150 }
2151 
2152 /// Find the best loop exiting block for layout.
2153 ///
2154 /// This routine implements the logic to analyze the loop looking for the best
2155 /// block to layout at the top of the loop. Typically this is done to maximize
2156 /// fallthrough opportunities.
2157 MachineBasicBlock *
2158 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2159                                         const BlockFilterSet &LoopBlockSet,
2160                                         BlockFrequency &ExitFreq) {
2161   // We don't want to layout the loop linearly in all cases. If the loop header
2162   // is just a normal basic block in the loop, we want to look for what block
2163   // within the loop is the best one to layout at the top. However, if the loop
2164   // header has be pre-merged into a chain due to predecessors not having
2165   // analyzable branches, *and* the predecessor it is merged with is *not* part
2166   // of the loop, rotating the header into the middle of the loop will create
2167   // a non-contiguous range of blocks which is Very Bad. So start with the
2168   // header and only rotate if safe.
2169   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2170   if (!LoopBlockSet.count(*HeaderChain.begin()))
2171     return nullptr;
2172 
2173   BlockFrequency BestExitEdgeFreq;
2174   unsigned BestExitLoopDepth = 0;
2175   MachineBasicBlock *ExitingBB = nullptr;
2176   // If there are exits to outer loops, loop rotation can severely limit
2177   // fallthrough opportunities unless it selects such an exit. Keep a set of
2178   // blocks where rotating to exit with that block will reach an outer loop.
2179   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2180 
2181   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2182                     << getBlockName(L.getHeader()) << "\n");
2183   for (MachineBasicBlock *MBB : L.getBlocks()) {
2184     BlockChain &Chain = *BlockToChain[MBB];
2185     // Ensure that this block is at the end of a chain; otherwise it could be
2186     // mid-way through an inner loop or a successor of an unanalyzable branch.
2187     if (MBB != *std::prev(Chain.end()))
2188       continue;
2189 
2190     // Now walk the successors. We need to establish whether this has a viable
2191     // exiting successor and whether it has a viable non-exiting successor.
2192     // We store the old exiting state and restore it if a viable looping
2193     // successor isn't found.
2194     MachineBasicBlock *OldExitingBB = ExitingBB;
2195     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2196     bool HasLoopingSucc = false;
2197     for (MachineBasicBlock *Succ : MBB->successors()) {
2198       if (Succ->isEHPad())
2199         continue;
2200       if (Succ == MBB)
2201         continue;
2202       BlockChain &SuccChain = *BlockToChain[Succ];
2203       // Don't split chains, either this chain or the successor's chain.
2204       if (&Chain == &SuccChain) {
2205         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2206                           << getBlockName(Succ) << " (chain conflict)\n");
2207         continue;
2208       }
2209 
2210       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2211       if (LoopBlockSet.count(Succ)) {
2212         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2213                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2214         HasLoopingSucc = true;
2215         continue;
2216       }
2217 
2218       unsigned SuccLoopDepth = 0;
2219       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2220         SuccLoopDepth = ExitLoop->getLoopDepth();
2221         if (ExitLoop->contains(&L))
2222           BlocksExitingToOuterLoop.insert(MBB);
2223       }
2224 
2225       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2226       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2227                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2228                         << "] (";
2229                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2230       // Note that we bias this toward an existing layout successor to retain
2231       // incoming order in the absence of better information. The exit must have
2232       // a frequency higher than the current exit before we consider breaking
2233       // the layout.
2234       BranchProbability Bias(100 - ExitBlockBias, 100);
2235       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2236           ExitEdgeFreq > BestExitEdgeFreq ||
2237           (MBB->isLayoutSuccessor(Succ) &&
2238            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2239         BestExitEdgeFreq = ExitEdgeFreq;
2240         ExitingBB = MBB;
2241       }
2242     }
2243 
2244     if (!HasLoopingSucc) {
2245       // Restore the old exiting state, no viable looping successor was found.
2246       ExitingBB = OldExitingBB;
2247       BestExitEdgeFreq = OldBestExitEdgeFreq;
2248     }
2249   }
2250   // Without a candidate exiting block or with only a single block in the
2251   // loop, just use the loop header to layout the loop.
2252   if (!ExitingBB) {
2253     LLVM_DEBUG(
2254         dbgs() << "    No other candidate exit blocks, using loop header\n");
2255     return nullptr;
2256   }
2257   if (L.getNumBlocks() == 1) {
2258     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2259     return nullptr;
2260   }
2261 
2262   // Also, if we have exit blocks which lead to outer loops but didn't select
2263   // one of them as the exiting block we are rotating toward, disable loop
2264   // rotation altogether.
2265   if (!BlocksExitingToOuterLoop.empty() &&
2266       !BlocksExitingToOuterLoop.count(ExitingBB))
2267     return nullptr;
2268 
2269   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2270                     << "\n");
2271   ExitFreq = BestExitEdgeFreq;
2272   return ExitingBB;
2273 }
2274 
2275 /// Check if there is a fallthrough to loop header Top.
2276 ///
2277 ///   1. Look for a Pred that can be layout before Top.
2278 ///   2. Check if Top is the most possible successor of Pred.
2279 bool
2280 MachineBlockPlacement::hasViableTopFallthrough(
2281     const MachineBasicBlock *Top,
2282     const BlockFilterSet &LoopBlockSet) {
2283   for (MachineBasicBlock *Pred : Top->predecessors()) {
2284     BlockChain *PredChain = BlockToChain[Pred];
2285     if (!LoopBlockSet.count(Pred) &&
2286         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2287       // Found a Pred block can be placed before Top.
2288       // Check if Top is the best successor of Pred.
2289       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2290       bool TopOK = true;
2291       for (MachineBasicBlock *Succ : Pred->successors()) {
2292         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2293         BlockChain *SuccChain = BlockToChain[Succ];
2294         // Check if Succ can be placed after Pred.
2295         // Succ should not be in any chain, or it is the head of some chain.
2296         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2297           TopOK = false;
2298           break;
2299         }
2300       }
2301       if (TopOK)
2302         return true;
2303     }
2304   }
2305   return false;
2306 }
2307 
2308 /// Attempt to rotate an exiting block to the bottom of the loop.
2309 ///
2310 /// Once we have built a chain, try to rotate it to line up the hot exit block
2311 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2312 /// branches. For example, if the loop has fallthrough into its header and out
2313 /// of its bottom already, don't rotate it.
2314 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2315                                        const MachineBasicBlock *ExitingBB,
2316                                        BlockFrequency ExitFreq,
2317                                        const BlockFilterSet &LoopBlockSet) {
2318   if (!ExitingBB)
2319     return;
2320 
2321   MachineBasicBlock *Top = *LoopChain.begin();
2322   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2323 
2324   // If ExitingBB is already the last one in a chain then nothing to do.
2325   if (Bottom == ExitingBB)
2326     return;
2327 
2328   // The entry block should always be the first BB in a function.
2329   if (Top->isEntryBlock())
2330     return;
2331 
2332   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2333 
2334   // If the header has viable fallthrough, check whether the current loop
2335   // bottom is a viable exiting block. If so, bail out as rotating will
2336   // introduce an unnecessary branch.
2337   if (ViableTopFallthrough) {
2338     for (MachineBasicBlock *Succ : Bottom->successors()) {
2339       BlockChain *SuccChain = BlockToChain[Succ];
2340       if (!LoopBlockSet.count(Succ) &&
2341           (!SuccChain || Succ == *SuccChain->begin()))
2342         return;
2343     }
2344 
2345     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2346     // frequency is larger than top fallthrough.
2347     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2348     if (FallThrough2Top >= ExitFreq)
2349       return;
2350   }
2351 
2352   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2353   if (ExitIt == LoopChain.end())
2354     return;
2355 
2356   // Rotating a loop exit to the bottom when there is a fallthrough to top
2357   // trades the entry fallthrough for an exit fallthrough.
2358   // If there is no bottom->top edge, but the chosen exit block does have
2359   // a fallthrough, we break that fallthrough for nothing in return.
2360 
2361   // Let's consider an example. We have a built chain of basic blocks
2362   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2363   // By doing a rotation we get
2364   // Bk+1, ..., Bn, B1, ..., Bk
2365   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2366   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2367   // It might be compensated by fallthrough Bn -> B1.
2368   // So we have a condition to avoid creation of extra branch by loop rotation.
2369   // All below must be true to avoid loop rotation:
2370   //   If there is a fallthrough to top (B1)
2371   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2372   //   There is no fallthrough from bottom (Bn) to top (B1).
2373   // Please note that there is no exit fallthrough from Bn because we checked it
2374   // above.
2375   if (ViableTopFallthrough) {
2376     assert(std::next(ExitIt) != LoopChain.end() &&
2377            "Exit should not be last BB");
2378     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2379     if (ExitingBB->isSuccessor(NextBlockInChain))
2380       if (!Bottom->isSuccessor(Top))
2381         return;
2382   }
2383 
2384   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2385                     << " at bottom\n");
2386   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2387 }
2388 
2389 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2390 ///
2391 /// With profile data, we can determine the cost in terms of missed fall through
2392 /// opportunities when rotating a loop chain and select the best rotation.
2393 /// Basically, there are three kinds of cost to consider for each rotation:
2394 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2395 ///    the loop to the loop header.
2396 ///    2. The possibly missed fall through edges (if they exist) from the loop
2397 ///    exits to BB out of the loop.
2398 ///    3. The missed fall through edge (if it exists) from the last BB to the
2399 ///    first BB in the loop chain.
2400 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2401 ///  We select the best rotation with the smallest cost.
2402 void MachineBlockPlacement::rotateLoopWithProfile(
2403     BlockChain &LoopChain, const MachineLoop &L,
2404     const BlockFilterSet &LoopBlockSet) {
2405   auto RotationPos = LoopChain.end();
2406   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2407 
2408   // The entry block should always be the first BB in a function.
2409   if (ChainHeaderBB->isEntryBlock())
2410     return;
2411 
2412   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2413 
2414   // A utility lambda that scales up a block frequency by dividing it by a
2415   // branch probability which is the reciprocal of the scale.
2416   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2417                                 unsigned Scale) -> BlockFrequency {
2418     if (Scale == 0)
2419       return 0;
2420     // Use operator / between BlockFrequency and BranchProbability to implement
2421     // saturating multiplication.
2422     return Freq / BranchProbability(1, Scale);
2423   };
2424 
2425   // Compute the cost of the missed fall-through edge to the loop header if the
2426   // chain head is not the loop header. As we only consider natural loops with
2427   // single header, this computation can be done only once.
2428   BlockFrequency HeaderFallThroughCost(0);
2429   for (auto *Pred : ChainHeaderBB->predecessors()) {
2430     BlockChain *PredChain = BlockToChain[Pred];
2431     if (!LoopBlockSet.count(Pred) &&
2432         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2433       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2434           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2435       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2436       // If the predecessor has only an unconditional jump to the header, we
2437       // need to consider the cost of this jump.
2438       if (Pred->succ_size() == 1)
2439         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2440       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2441     }
2442   }
2443 
2444   // Here we collect all exit blocks in the loop, and for each exit we find out
2445   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2446   // as the sum of frequencies of exit edges we collect here, excluding the exit
2447   // edge from the tail of the loop chain.
2448   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2449   for (auto BB : LoopChain) {
2450     auto LargestExitEdgeProb = BranchProbability::getZero();
2451     for (auto *Succ : BB->successors()) {
2452       BlockChain *SuccChain = BlockToChain[Succ];
2453       if (!LoopBlockSet.count(Succ) &&
2454           (!SuccChain || Succ == *SuccChain->begin())) {
2455         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2456         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2457       }
2458     }
2459     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2460       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2461       ExitsWithFreq.emplace_back(BB, ExitFreq);
2462     }
2463   }
2464 
2465   // In this loop we iterate every block in the loop chain and calculate the
2466   // cost assuming the block is the head of the loop chain. When the loop ends,
2467   // we should have found the best candidate as the loop chain's head.
2468   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2469             EndIter = LoopChain.end();
2470        Iter != EndIter; Iter++, TailIter++) {
2471     // TailIter is used to track the tail of the loop chain if the block we are
2472     // checking (pointed by Iter) is the head of the chain.
2473     if (TailIter == LoopChain.end())
2474       TailIter = LoopChain.begin();
2475 
2476     auto TailBB = *TailIter;
2477 
2478     // Calculate the cost by putting this BB to the top.
2479     BlockFrequency Cost = 0;
2480 
2481     // If the current BB is the loop header, we need to take into account the
2482     // cost of the missed fall through edge from outside of the loop to the
2483     // header.
2484     if (Iter != LoopChain.begin())
2485       Cost += HeaderFallThroughCost;
2486 
2487     // Collect the loop exit cost by summing up frequencies of all exit edges
2488     // except the one from the chain tail.
2489     for (auto &ExitWithFreq : ExitsWithFreq)
2490       if (TailBB != ExitWithFreq.first)
2491         Cost += ExitWithFreq.second;
2492 
2493     // The cost of breaking the once fall-through edge from the tail to the top
2494     // of the loop chain. Here we need to consider three cases:
2495     // 1. If the tail node has only one successor, then we will get an
2496     //    additional jmp instruction. So the cost here is (MisfetchCost +
2497     //    JumpInstCost) * tail node frequency.
2498     // 2. If the tail node has two successors, then we may still get an
2499     //    additional jmp instruction if the layout successor after the loop
2500     //    chain is not its CFG successor. Note that the more frequently executed
2501     //    jmp instruction will be put ahead of the other one. Assume the
2502     //    frequency of those two branches are x and y, where x is the frequency
2503     //    of the edge to the chain head, then the cost will be
2504     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2505     // 3. If the tail node has more than two successors (this rarely happens),
2506     //    we won't consider any additional cost.
2507     if (TailBB->isSuccessor(*Iter)) {
2508       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2509       if (TailBB->succ_size() == 1)
2510         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2511                                     MisfetchCost + JumpInstCost);
2512       else if (TailBB->succ_size() == 2) {
2513         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2514         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2515         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2516                                   ? TailBBFreq * TailToHeadProb.getCompl()
2517                                   : TailToHeadFreq;
2518         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2519                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2520       }
2521     }
2522 
2523     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2524                       << getBlockName(*Iter)
2525                       << " to the top: " << Cost.getFrequency() << "\n");
2526 
2527     if (Cost < SmallestRotationCost) {
2528       SmallestRotationCost = Cost;
2529       RotationPos = Iter;
2530     }
2531   }
2532 
2533   if (RotationPos != LoopChain.end()) {
2534     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2535                       << " to the top\n");
2536     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2537   }
2538 }
2539 
2540 /// Collect blocks in the given loop that are to be placed.
2541 ///
2542 /// When profile data is available, exclude cold blocks from the returned set;
2543 /// otherwise, collect all blocks in the loop.
2544 MachineBlockPlacement::BlockFilterSet
2545 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2546   BlockFilterSet LoopBlockSet;
2547 
2548   // Filter cold blocks off from LoopBlockSet when profile data is available.
2549   // Collect the sum of frequencies of incoming edges to the loop header from
2550   // outside. If we treat the loop as a super block, this is the frequency of
2551   // the loop. Then for each block in the loop, we calculate the ratio between
2552   // its frequency and the frequency of the loop block. When it is too small,
2553   // don't add it to the loop chain. If there are outer loops, then this block
2554   // will be merged into the first outer loop chain for which this block is not
2555   // cold anymore. This needs precise profile data and we only do this when
2556   // profile data is available.
2557   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2558     BlockFrequency LoopFreq(0);
2559     for (auto LoopPred : L.getHeader()->predecessors())
2560       if (!L.contains(LoopPred))
2561         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2562                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2563 
2564     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2565       if (LoopBlockSet.count(LoopBB))
2566         continue;
2567       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2568       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2569         continue;
2570       BlockChain *Chain = BlockToChain[LoopBB];
2571       for (MachineBasicBlock *ChainBB : *Chain)
2572         LoopBlockSet.insert(ChainBB);
2573     }
2574   } else
2575     LoopBlockSet.insert(L.block_begin(), L.block_end());
2576 
2577   return LoopBlockSet;
2578 }
2579 
2580 /// Forms basic block chains from the natural loop structures.
2581 ///
2582 /// These chains are designed to preserve the existing *structure* of the code
2583 /// as much as possible. We can then stitch the chains together in a way which
2584 /// both preserves the topological structure and minimizes taken conditional
2585 /// branches.
2586 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2587   // First recurse through any nested loops, building chains for those inner
2588   // loops.
2589   for (const MachineLoop *InnerLoop : L)
2590     buildLoopChains(*InnerLoop);
2591 
2592   assert(BlockWorkList.empty() &&
2593          "BlockWorkList not empty when starting to build loop chains.");
2594   assert(EHPadWorkList.empty() &&
2595          "EHPadWorkList not empty when starting to build loop chains.");
2596   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2597 
2598   // Check if we have profile data for this function. If yes, we will rotate
2599   // this loop by modeling costs more precisely which requires the profile data
2600   // for better layout.
2601   bool RotateLoopWithProfile =
2602       ForcePreciseRotationCost ||
2603       (PreciseRotationCost && F->getFunction().hasProfileData());
2604 
2605   // First check to see if there is an obviously preferable top block for the
2606   // loop. This will default to the header, but may end up as one of the
2607   // predecessors to the header if there is one which will result in strictly
2608   // fewer branches in the loop body.
2609   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2610 
2611   // If we selected just the header for the loop top, look for a potentially
2612   // profitable exit block in the event that rotating the loop can eliminate
2613   // branches by placing an exit edge at the bottom.
2614   //
2615   // Loops are processed innermost to uttermost, make sure we clear
2616   // PreferredLoopExit before processing a new loop.
2617   PreferredLoopExit = nullptr;
2618   BlockFrequency ExitFreq;
2619   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2620     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2621 
2622   BlockChain &LoopChain = *BlockToChain[LoopTop];
2623 
2624   // FIXME: This is a really lame way of walking the chains in the loop: we
2625   // walk the blocks, and use a set to prevent visiting a particular chain
2626   // twice.
2627   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2628   assert(LoopChain.UnscheduledPredecessors == 0 &&
2629          "LoopChain should not have unscheduled predecessors.");
2630   UpdatedPreds.insert(&LoopChain);
2631 
2632   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2633     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2634 
2635   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2636 
2637   if (RotateLoopWithProfile)
2638     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2639   else
2640     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2641 
2642   LLVM_DEBUG({
2643     // Crash at the end so we get all of the debugging output first.
2644     bool BadLoop = false;
2645     if (LoopChain.UnscheduledPredecessors) {
2646       BadLoop = true;
2647       dbgs() << "Loop chain contains a block without its preds placed!\n"
2648              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2649              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2650     }
2651     for (MachineBasicBlock *ChainBB : LoopChain) {
2652       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2653       if (!LoopBlockSet.remove(ChainBB)) {
2654         // We don't mark the loop as bad here because there are real situations
2655         // where this can occur. For example, with an unanalyzable fallthrough
2656         // from a loop block to a non-loop block or vice versa.
2657         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2658                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2659                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2660                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2661       }
2662     }
2663 
2664     if (!LoopBlockSet.empty()) {
2665       BadLoop = true;
2666       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2667         dbgs() << "Loop contains blocks never placed into a chain!\n"
2668                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2669                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2670                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2671     }
2672     assert(!BadLoop && "Detected problems with the placement of this loop.");
2673   });
2674 
2675   BlockWorkList.clear();
2676   EHPadWorkList.clear();
2677 }
2678 
2679 void MachineBlockPlacement::buildCFGChains() {
2680   // Ensure that every BB in the function has an associated chain to simplify
2681   // the assumptions of the remaining algorithm.
2682   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2683   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2684        ++FI) {
2685     MachineBasicBlock *BB = &*FI;
2686     BlockChain *Chain =
2687         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2688     // Also, merge any blocks which we cannot reason about and must preserve
2689     // the exact fallthrough behavior for.
2690     while (true) {
2691       Cond.clear();
2692       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2693       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2694         break;
2695 
2696       MachineFunction::iterator NextFI = std::next(FI);
2697       MachineBasicBlock *NextBB = &*NextFI;
2698       // Ensure that the layout successor is a viable block, as we know that
2699       // fallthrough is a possibility.
2700       assert(NextFI != FE && "Can't fallthrough past the last block.");
2701       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2702                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2703                         << "\n");
2704       Chain->merge(NextBB, nullptr);
2705 #ifndef NDEBUG
2706       BlocksWithUnanalyzableExits.insert(&*BB);
2707 #endif
2708       FI = NextFI;
2709       BB = NextBB;
2710     }
2711   }
2712 
2713   // Build any loop-based chains.
2714   PreferredLoopExit = nullptr;
2715   for (MachineLoop *L : *MLI)
2716     buildLoopChains(*L);
2717 
2718   assert(BlockWorkList.empty() &&
2719          "BlockWorkList should be empty before building final chain.");
2720   assert(EHPadWorkList.empty() &&
2721          "EHPadWorkList should be empty before building final chain.");
2722 
2723   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2724   for (MachineBasicBlock &MBB : *F)
2725     fillWorkLists(&MBB, UpdatedPreds);
2726 
2727   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2728   buildChain(&F->front(), FunctionChain);
2729 
2730 #ifndef NDEBUG
2731   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2732 #endif
2733   LLVM_DEBUG({
2734     // Crash at the end so we get all of the debugging output first.
2735     bool BadFunc = false;
2736     FunctionBlockSetType FunctionBlockSet;
2737     for (MachineBasicBlock &MBB : *F)
2738       FunctionBlockSet.insert(&MBB);
2739 
2740     for (MachineBasicBlock *ChainBB : FunctionChain)
2741       if (!FunctionBlockSet.erase(ChainBB)) {
2742         BadFunc = true;
2743         dbgs() << "Function chain contains a block not in the function!\n"
2744                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2745       }
2746 
2747     if (!FunctionBlockSet.empty()) {
2748       BadFunc = true;
2749       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2750         dbgs() << "Function contains blocks never placed into a chain!\n"
2751                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2752     }
2753     assert(!BadFunc && "Detected problems with the block placement.");
2754   });
2755 
2756   // Remember original layout ordering, so we can update terminators after
2757   // reordering to point to the original layout successor.
2758   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2759       F->getNumBlockIDs());
2760   {
2761     MachineBasicBlock *LastMBB = nullptr;
2762     for (auto &MBB : *F) {
2763       if (LastMBB != nullptr)
2764         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2765       LastMBB = &MBB;
2766     }
2767     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2768   }
2769 
2770   // Splice the blocks into place.
2771   MachineFunction::iterator InsertPos = F->begin();
2772   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2773   for (MachineBasicBlock *ChainBB : FunctionChain) {
2774     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2775                                                             : "          ... ")
2776                       << getBlockName(ChainBB) << "\n");
2777     if (InsertPos != MachineFunction::iterator(ChainBB))
2778       F->splice(InsertPos, ChainBB);
2779     else
2780       ++InsertPos;
2781 
2782     // Update the terminator of the previous block.
2783     if (ChainBB == *FunctionChain.begin())
2784       continue;
2785     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2786 
2787     // FIXME: It would be awesome of updateTerminator would just return rather
2788     // than assert when the branch cannot be analyzed in order to remove this
2789     // boiler plate.
2790     Cond.clear();
2791     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2792 
2793 #ifndef NDEBUG
2794     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2795       // Given the exact block placement we chose, we may actually not _need_ to
2796       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2797       // do that at this point is a bug.
2798       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2799               !PrevBB->canFallThrough()) &&
2800              "Unexpected block with un-analyzable fallthrough!");
2801       Cond.clear();
2802       TBB = FBB = nullptr;
2803     }
2804 #endif
2805 
2806     // The "PrevBB" is not yet updated to reflect current code layout, so,
2807     //   o. it may fall-through to a block without explicit "goto" instruction
2808     //      before layout, and no longer fall-through it after layout; or
2809     //   o. just opposite.
2810     //
2811     // analyzeBranch() may return erroneous value for FBB when these two
2812     // situations take place. For the first scenario FBB is mistakenly set NULL;
2813     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2814     // mistakenly pointing to "*BI".
2815     // Thus, if the future change needs to use FBB before the layout is set, it
2816     // has to correct FBB first by using the code similar to the following:
2817     //
2818     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2819     //   PrevBB->updateTerminator();
2820     //   Cond.clear();
2821     //   TBB = FBB = nullptr;
2822     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2823     //     // FIXME: This should never take place.
2824     //     TBB = FBB = nullptr;
2825     //   }
2826     // }
2827     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2828       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2829     }
2830   }
2831 
2832   // Fixup the last block.
2833   Cond.clear();
2834   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2835   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2836     MachineBasicBlock *PrevBB = &F->back();
2837     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2838   }
2839 
2840   BlockWorkList.clear();
2841   EHPadWorkList.clear();
2842 }
2843 
2844 void MachineBlockPlacement::optimizeBranches() {
2845   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2846   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2847 
2848   // Now that all the basic blocks in the chain have the proper layout,
2849   // make a final call to analyzeBranch with AllowModify set.
2850   // Indeed, the target may be able to optimize the branches in a way we
2851   // cannot because all branches may not be analyzable.
2852   // E.g., the target may be able to remove an unconditional branch to
2853   // a fallthrough when it occurs after predicated terminators.
2854   for (MachineBasicBlock *ChainBB : FunctionChain) {
2855     Cond.clear();
2856     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2857     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2858       // If PrevBB has a two-way branch, try to re-order the branches
2859       // such that we branch to the successor with higher probability first.
2860       if (TBB && !Cond.empty() && FBB &&
2861           MBPI->getEdgeProbability(ChainBB, FBB) >
2862               MBPI->getEdgeProbability(ChainBB, TBB) &&
2863           !TII->reverseBranchCondition(Cond)) {
2864         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2865                           << getBlockName(ChainBB) << "\n");
2866         LLVM_DEBUG(dbgs() << "    Edge probability: "
2867                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2868                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2869         DebugLoc dl; // FIXME: this is nowhere
2870         TII->removeBranch(*ChainBB);
2871         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2872       }
2873     }
2874   }
2875 }
2876 
2877 void MachineBlockPlacement::alignBlocks() {
2878   // Walk through the backedges of the function now that we have fully laid out
2879   // the basic blocks and align the destination of each backedge. We don't rely
2880   // exclusively on the loop info here so that we can align backedges in
2881   // unnatural CFGs and backedges that were introduced purely because of the
2882   // loop rotations done during this layout pass.
2883   if (F->getFunction().hasMinSize() ||
2884       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2885     return;
2886   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2887   if (FunctionChain.begin() == FunctionChain.end())
2888     return; // Empty chain.
2889 
2890   const BranchProbability ColdProb(1, 5); // 20%
2891   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2892   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2893   for (MachineBasicBlock *ChainBB : FunctionChain) {
2894     if (ChainBB == *FunctionChain.begin())
2895       continue;
2896 
2897     // Don't align non-looping basic blocks. These are unlikely to execute
2898     // enough times to matter in practice. Note that we'll still handle
2899     // unnatural CFGs inside of a natural outer loop (the common case) and
2900     // rotated loops.
2901     MachineLoop *L = MLI->getLoopFor(ChainBB);
2902     if (!L)
2903       continue;
2904 
2905     const Align Align = TLI->getPrefLoopAlignment(L);
2906     if (Align == 1)
2907       continue; // Don't care about loop alignment.
2908 
2909     // If the block is cold relative to the function entry don't waste space
2910     // aligning it.
2911     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2912     if (Freq < WeightedEntryFreq)
2913       continue;
2914 
2915     // If the block is cold relative to its loop header, don't align it
2916     // regardless of what edges into the block exist.
2917     MachineBasicBlock *LoopHeader = L->getHeader();
2918     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2919     if (Freq < (LoopHeaderFreq * ColdProb))
2920       continue;
2921 
2922     // If the global profiles indicates so, don't align it.
2923     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2924         !TLI->alignLoopsWithOptSize())
2925       continue;
2926 
2927     // Check for the existence of a non-layout predecessor which would benefit
2928     // from aligning this block.
2929     MachineBasicBlock *LayoutPred =
2930         &*std::prev(MachineFunction::iterator(ChainBB));
2931 
2932     // Force alignment if all the predecessors are jumps. We already checked
2933     // that the block isn't cold above.
2934     if (!LayoutPred->isSuccessor(ChainBB)) {
2935       ChainBB->setAlignment(Align);
2936       continue;
2937     }
2938 
2939     // Align this block if the layout predecessor's edge into this block is
2940     // cold relative to the block. When this is true, other predecessors make up
2941     // all of the hot entries into the block and thus alignment is likely to be
2942     // important.
2943     BranchProbability LayoutProb =
2944         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2945     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2946     if (LayoutEdgeFreq <= (Freq * ColdProb))
2947       ChainBB->setAlignment(Align);
2948   }
2949 }
2950 
2951 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2952 /// it was duplicated into its chain predecessor and removed.
2953 /// \p BB    - Basic block that may be duplicated.
2954 ///
2955 /// \p LPred - Chosen layout predecessor of \p BB.
2956 ///            Updated to be the chain end if LPred is removed.
2957 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2958 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2959 ///                  Used to identify which blocks to update predecessor
2960 ///                  counts.
2961 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2962 ///                          chosen in the given order due to unnatural CFG
2963 ///                          only needed if \p BB is removed and
2964 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2965 /// @return true if \p BB was removed.
2966 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2967     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2968     const MachineBasicBlock *LoopHeaderBB,
2969     BlockChain &Chain, BlockFilterSet *BlockFilter,
2970     MachineFunction::iterator &PrevUnplacedBlockIt) {
2971   bool Removed, DuplicatedToLPred;
2972   bool DuplicatedToOriginalLPred;
2973   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2974                                     PrevUnplacedBlockIt,
2975                                     DuplicatedToLPred);
2976   if (!Removed)
2977     return false;
2978   DuplicatedToOriginalLPred = DuplicatedToLPred;
2979   // Iteratively try to duplicate again. It can happen that a block that is
2980   // duplicated into is still small enough to be duplicated again.
2981   // No need to call markBlockSuccessors in this case, as the blocks being
2982   // duplicated from here on are already scheduled.
2983   while (DuplicatedToLPred && Removed) {
2984     MachineBasicBlock *DupBB, *DupPred;
2985     // The removal callback causes Chain.end() to be updated when a block is
2986     // removed. On the first pass through the loop, the chain end should be the
2987     // same as it was on function entry. On subsequent passes, because we are
2988     // duplicating the block at the end of the chain, if it is removed the
2989     // chain will have shrunk by one block.
2990     BlockChain::iterator ChainEnd = Chain.end();
2991     DupBB = *(--ChainEnd);
2992     // Now try to duplicate again.
2993     if (ChainEnd == Chain.begin())
2994       break;
2995     DupPred = *std::prev(ChainEnd);
2996     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2997                                       PrevUnplacedBlockIt,
2998                                       DuplicatedToLPred);
2999   }
3000   // If BB was duplicated into LPred, it is now scheduled. But because it was
3001   // removed, markChainSuccessors won't be called for its chain. Instead we
3002   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3003   // at the end because repeating the tail duplication can increase the number
3004   // of unscheduled predecessors.
3005   LPred = *std::prev(Chain.end());
3006   if (DuplicatedToOriginalLPred)
3007     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3008   return true;
3009 }
3010 
3011 /// Tail duplicate \p BB into (some) predecessors if profitable.
3012 /// \p BB    - Basic block that may be duplicated
3013 /// \p LPred - Chosen layout predecessor of \p BB
3014 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3015 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3016 ///                  Used to identify which blocks to update predecessor
3017 ///                  counts.
3018 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3019 ///                          chosen in the given order due to unnatural CFG
3020 ///                          only needed if \p BB is removed and
3021 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3022 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3023 /// \return  - True if the block was duplicated into all preds and removed.
3024 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3025     MachineBasicBlock *BB, MachineBasicBlock *LPred,
3026     BlockChain &Chain, BlockFilterSet *BlockFilter,
3027     MachineFunction::iterator &PrevUnplacedBlockIt,
3028     bool &DuplicatedToLPred) {
3029   DuplicatedToLPred = false;
3030   if (!shouldTailDuplicate(BB))
3031     return false;
3032 
3033   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3034                     << "\n");
3035 
3036   // This has to be a callback because none of it can be done after
3037   // BB is deleted.
3038   bool Removed = false;
3039   auto RemovalCallback =
3040       [&](MachineBasicBlock *RemBB) {
3041         // Signal to outer function
3042         Removed = true;
3043 
3044         // Conservative default.
3045         bool InWorkList = true;
3046         // Remove from the Chain and Chain Map
3047         if (BlockToChain.count(RemBB)) {
3048           BlockChain *Chain = BlockToChain[RemBB];
3049           InWorkList = Chain->UnscheduledPredecessors == 0;
3050           Chain->remove(RemBB);
3051           BlockToChain.erase(RemBB);
3052         }
3053 
3054         // Handle the unplaced block iterator
3055         if (&(*PrevUnplacedBlockIt) == RemBB) {
3056           PrevUnplacedBlockIt++;
3057         }
3058 
3059         // Handle the Work Lists
3060         if (InWorkList) {
3061           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3062           if (RemBB->isEHPad())
3063             RemoveList = EHPadWorkList;
3064           llvm::erase_value(RemoveList, RemBB);
3065         }
3066 
3067         // Handle the filter set
3068         if (BlockFilter) {
3069           BlockFilter->remove(RemBB);
3070         }
3071 
3072         // Remove the block from loop info.
3073         MLI->removeBlock(RemBB);
3074         if (RemBB == PreferredLoopExit)
3075           PreferredLoopExit = nullptr;
3076 
3077         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3078                           << getBlockName(RemBB) << "\n");
3079       };
3080   auto RemovalCallbackRef =
3081       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3082 
3083   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3084   bool IsSimple = TailDup.isSimpleBB(BB);
3085   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3086   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3087   if (F->getFunction().hasProfileData()) {
3088     // We can do partial duplication with precise profile information.
3089     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3090     if (CandidatePreds.size() == 0)
3091       return false;
3092     if (CandidatePreds.size() < BB->pred_size())
3093       CandidatePtr = &CandidatePreds;
3094   }
3095   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3096                                  &RemovalCallbackRef, CandidatePtr);
3097 
3098   // Update UnscheduledPredecessors to reflect tail-duplication.
3099   DuplicatedToLPred = false;
3100   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3101     // We're only looking for unscheduled predecessors that match the filter.
3102     BlockChain* PredChain = BlockToChain[Pred];
3103     if (Pred == LPred)
3104       DuplicatedToLPred = true;
3105     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3106         || PredChain == &Chain)
3107       continue;
3108     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3109       if (BlockFilter && !BlockFilter->count(NewSucc))
3110         continue;
3111       BlockChain *NewChain = BlockToChain[NewSucc];
3112       if (NewChain != &Chain && NewChain != PredChain)
3113         NewChain->UnscheduledPredecessors++;
3114     }
3115   }
3116   return Removed;
3117 }
3118 
3119 // Count the number of actual machine instructions.
3120 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3121   uint64_t InstrCount = 0;
3122   for (MachineInstr &MI : *MBB) {
3123     if (!MI.isPHI() && !MI.isMetaInstruction())
3124       InstrCount += 1;
3125   }
3126   return InstrCount;
3127 }
3128 
3129 // The size cost of duplication is the instruction size of the duplicated block.
3130 // So we should scale the threshold accordingly. But the instruction size is not
3131 // available on all targets, so we use the number of instructions instead.
3132 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3133   return DupThreshold.getFrequency() * countMBBInstruction(BB);
3134 }
3135 
3136 // Returns true if BB is Pred's best successor.
3137 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3138                                             MachineBasicBlock *Pred,
3139                                             BlockFilterSet *BlockFilter) {
3140   if (BB == Pred)
3141     return false;
3142   if (BlockFilter && !BlockFilter->count(Pred))
3143     return false;
3144   BlockChain *PredChain = BlockToChain[Pred];
3145   if (PredChain && (Pred != *std::prev(PredChain->end())))
3146     return false;
3147 
3148   // Find the successor with largest probability excluding BB.
3149   BranchProbability BestProb = BranchProbability::getZero();
3150   for (MachineBasicBlock *Succ : Pred->successors())
3151     if (Succ != BB) {
3152       if (BlockFilter && !BlockFilter->count(Succ))
3153         continue;
3154       BlockChain *SuccChain = BlockToChain[Succ];
3155       if (SuccChain && (Succ != *SuccChain->begin()))
3156         continue;
3157       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3158       if (SuccProb > BestProb)
3159         BestProb = SuccProb;
3160     }
3161 
3162   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3163   if (BBProb <= BestProb)
3164     return false;
3165 
3166   // Compute the number of reduced taken branches if Pred falls through to BB
3167   // instead of another successor. Then compare it with threshold.
3168   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3169   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3170   return Gain > scaleThreshold(BB);
3171 }
3172 
3173 // Find out the predecessors of BB and BB can be beneficially duplicated into
3174 // them.
3175 void MachineBlockPlacement::findDuplicateCandidates(
3176     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3177     MachineBasicBlock *BB,
3178     BlockFilterSet *BlockFilter) {
3179   MachineBasicBlock *Fallthrough = nullptr;
3180   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3181   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3182   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3183   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3184 
3185   // Sort for highest frequency.
3186   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3187     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3188   };
3189   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3190     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3191   };
3192   llvm::stable_sort(Succs, CmpSucc);
3193   llvm::stable_sort(Preds, CmpPred);
3194 
3195   auto SuccIt = Succs.begin();
3196   if (SuccIt != Succs.end()) {
3197     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3198   }
3199 
3200   // For each predecessors of BB, compute the benefit of duplicating BB,
3201   // if it is larger than the threshold, add it into Candidates.
3202   //
3203   // If we have following control flow.
3204   //
3205   //     PB1 PB2 PB3 PB4
3206   //      \   |  /    /\
3207   //       \  | /    /  \
3208   //        \ |/    /    \
3209   //         BB----/     OB
3210   //         /\
3211   //        /  \
3212   //      SB1 SB2
3213   //
3214   // And it can be partially duplicated as
3215   //
3216   //   PB2+BB
3217   //      |  PB1 PB3 PB4
3218   //      |   |  /    /\
3219   //      |   | /    /  \
3220   //      |   |/    /    \
3221   //      |  BB----/     OB
3222   //      |\ /|
3223   //      | X |
3224   //      |/ \|
3225   //     SB2 SB1
3226   //
3227   // The benefit of duplicating into a predecessor is defined as
3228   //         Orig_taken_branch - Duplicated_taken_branch
3229   //
3230   // The Orig_taken_branch is computed with the assumption that predecessor
3231   // jumps to BB and the most possible successor is laid out after BB.
3232   //
3233   // The Duplicated_taken_branch is computed with the assumption that BB is
3234   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3235   // SB2 for PB2 in our case). If there is no available successor, the combined
3236   // block jumps to all BB's successor, like PB3 in this example.
3237   //
3238   // If a predecessor has multiple successors, so BB can't be duplicated into
3239   // it. But it can beneficially fall through to BB, and duplicate BB into other
3240   // predecessors.
3241   for (MachineBasicBlock *Pred : Preds) {
3242     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3243 
3244     if (!TailDup.canTailDuplicate(BB, Pred)) {
3245       // BB can't be duplicated into Pred, but it is possible to be layout
3246       // below Pred.
3247       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3248         Fallthrough = Pred;
3249         if (SuccIt != Succs.end())
3250           SuccIt++;
3251       }
3252       continue;
3253     }
3254 
3255     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3256     BlockFrequency DupCost;
3257     if (SuccIt == Succs.end()) {
3258       // Jump to all successors;
3259       if (Succs.size() > 0)
3260         DupCost += PredFreq;
3261     } else {
3262       // Fallthrough to *SuccIt, jump to all other successors;
3263       DupCost += PredFreq;
3264       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3265     }
3266 
3267     assert(OrigCost >= DupCost);
3268     OrigCost -= DupCost;
3269     if (OrigCost > BBDupThreshold) {
3270       Candidates.push_back(Pred);
3271       if (SuccIt != Succs.end())
3272         SuccIt++;
3273     }
3274   }
3275 
3276   // No predecessors can optimally fallthrough to BB.
3277   // So we can change one duplication into fallthrough.
3278   if (!Fallthrough) {
3279     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3280       Candidates[0] = Candidates.back();
3281       Candidates.pop_back();
3282     }
3283   }
3284 }
3285 
3286 void MachineBlockPlacement::initDupThreshold() {
3287   DupThreshold = 0;
3288   if (!F->getFunction().hasProfileData())
3289     return;
3290 
3291   // We prefer to use prifile count.
3292   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3293   if (HotThreshold != UINT64_MAX) {
3294     UseProfileCount = true;
3295     DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3296     return;
3297   }
3298 
3299   // Profile count is not available, we can use block frequency instead.
3300   BlockFrequency MaxFreq = 0;
3301   for (MachineBasicBlock &MBB : *F) {
3302     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3303     if (Freq > MaxFreq)
3304       MaxFreq = Freq;
3305   }
3306 
3307   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3308   DupThreshold = MaxFreq * ThresholdProb;
3309   UseProfileCount = false;
3310 }
3311 
3312 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3313   if (skipFunction(MF.getFunction()))
3314     return false;
3315 
3316   // Check for single-block functions and skip them.
3317   if (std::next(MF.begin()) == MF.end())
3318     return false;
3319 
3320   F = &MF;
3321   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3322   MBFI = std::make_unique<MBFIWrapper>(
3323       getAnalysis<MachineBlockFrequencyInfo>());
3324   MLI = &getAnalysis<MachineLoopInfo>();
3325   TII = MF.getSubtarget().getInstrInfo();
3326   TLI = MF.getSubtarget().getTargetLowering();
3327   MPDT = nullptr;
3328   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3329 
3330   initDupThreshold();
3331 
3332   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3333   // there are no MachineLoops.
3334   PreferredLoopExit = nullptr;
3335 
3336   assert(BlockToChain.empty() &&
3337          "BlockToChain map should be empty before starting placement.");
3338   assert(ComputedEdges.empty() &&
3339          "Computed Edge map should be empty before starting placement.");
3340 
3341   unsigned TailDupSize = TailDupPlacementThreshold;
3342   // If only the aggressive threshold is explicitly set, use it.
3343   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3344       TailDupPlacementThreshold.getNumOccurrences() == 0)
3345     TailDupSize = TailDupPlacementAggressiveThreshold;
3346 
3347   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3348   // For aggressive optimization, we can adjust some thresholds to be less
3349   // conservative.
3350   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3351     // At O3 we should be more willing to copy blocks for tail duplication. This
3352     // increases size pressure, so we only do it at O3
3353     // Do this unless only the regular threshold is explicitly set.
3354     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3355         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3356       TailDupSize = TailDupPlacementAggressiveThreshold;
3357   }
3358 
3359   // If there's no threshold provided through options, query the target
3360   // information for a threshold instead.
3361   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3362       (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3363        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3364     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3365 
3366   if (allowTailDupPlacement()) {
3367     MPDT = &getAnalysis<MachinePostDominatorTree>();
3368     bool OptForSize = MF.getFunction().hasOptSize() ||
3369                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3370     if (OptForSize)
3371       TailDupSize = 1;
3372     bool PreRegAlloc = false;
3373     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3374                    /* LayoutMode */ true, TailDupSize);
3375     precomputeTriangleChains();
3376   }
3377 
3378   buildCFGChains();
3379 
3380   // Changing the layout can create new tail merging opportunities.
3381   // TailMerge can create jump into if branches that make CFG irreducible for
3382   // HW that requires structured CFG.
3383   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3384                          PassConfig->getEnableTailMerge() &&
3385                          BranchFoldPlacement;
3386   // No tail merging opportunities if the block number is less than four.
3387   if (MF.size() > 3 && EnableTailMerge) {
3388     unsigned TailMergeSize = TailDupSize + 1;
3389     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3390                     *MBFI, *MBPI, PSI, TailMergeSize);
3391 
3392     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3393                             /*AfterPlacement=*/true)) {
3394       // Redo the layout if tail merging creates/removes/moves blocks.
3395       BlockToChain.clear();
3396       ComputedEdges.clear();
3397       // Must redo the post-dominator tree if blocks were changed.
3398       if (MPDT)
3399         MPDT->runOnMachineFunction(MF);
3400       ChainAllocator.DestroyAll();
3401       buildCFGChains();
3402     }
3403   }
3404 
3405   // Apply a post-processing optimizing block placement.
3406   if (MF.size() >= 3 && EnableExtTspBlockPlacement) {
3407     // Find a new placement and modify the layout of the blocks in the function.
3408     applyExtTsp();
3409 
3410     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3411     createCFGChainExtTsp();
3412   }
3413 
3414   optimizeBranches();
3415   alignBlocks();
3416 
3417   BlockToChain.clear();
3418   ComputedEdges.clear();
3419   ChainAllocator.DestroyAll();
3420 
3421   if (AlignAllBlock)
3422     // Align all of the blocks in the function to a specific alignment.
3423     for (MachineBasicBlock &MBB : MF)
3424       MBB.setAlignment(Align(1ULL << AlignAllBlock));
3425   else if (AlignAllNonFallThruBlocks) {
3426     // Align all of the blocks that have no fall-through predecessors to a
3427     // specific alignment.
3428     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3429       auto LayoutPred = std::prev(MBI);
3430       if (!LayoutPred->isSuccessor(&*MBI))
3431         MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3432     }
3433   }
3434   if (ViewBlockLayoutWithBFI != GVDT_None &&
3435       (ViewBlockFreqFuncName.empty() ||
3436        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3437     MBFI->view("MBP." + MF.getName(), false);
3438   }
3439 
3440   // We always return true as we have no way to track whether the final order
3441   // differs from the original order.
3442   return true;
3443 }
3444 
3445 void MachineBlockPlacement::applyExtTsp() {
3446   // Prepare data; blocks are indexed by their index in the current ordering.
3447   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3448   BlockIndex.reserve(F->size());
3449   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3450   CurrentBlockOrder.reserve(F->size());
3451   size_t NumBlocks = 0;
3452   for (const MachineBasicBlock &MBB : *F) {
3453     BlockIndex[&MBB] = NumBlocks++;
3454     CurrentBlockOrder.push_back(&MBB);
3455   }
3456 
3457   auto BlockSizes = std::vector<uint64_t>(F->size());
3458   auto BlockCounts = std::vector<uint64_t>(F->size());
3459   DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> JumpCounts;
3460   for (MachineBasicBlock &MBB : *F) {
3461     // Getting the block frequency.
3462     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3463     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3464     // Getting the block size:
3465     // - approximate the size of an instruction by 4 bytes, and
3466     // - ignore debug instructions.
3467     // Note: getting the exact size of each block is target-dependent and can be
3468     // done by extending the interface of MCCodeEmitter. Experimentally we do
3469     // not see a perf improvement with the exact block sizes.
3470     auto NonDbgInsts =
3471         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3472     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3473     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3474     // Getting jump frequencies.
3475     for (MachineBasicBlock *Succ : MBB.successors()) {
3476       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3477       BlockFrequency EdgeFreq = BlockFreq * EP;
3478       auto Edge = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3479       JumpCounts[Edge] = EdgeFreq.getFrequency();
3480     }
3481   }
3482 
3483   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3484                     << " with profile = " << F->getFunction().hasProfileData()
3485                     << " (" << F->getName().str() << ")"
3486                     << "\n");
3487   LLVM_DEBUG(
3488       dbgs() << format("  original  layout score: %0.2f\n",
3489                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3490 
3491   // Run the layout algorithm.
3492   auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3493   std::vector<const MachineBasicBlock *> NewBlockOrder;
3494   NewBlockOrder.reserve(F->size());
3495   for (uint64_t Node : NewOrder) {
3496     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3497   }
3498   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3499                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3500                                               JumpCounts)));
3501 
3502   // Assign new block order.
3503   assignBlockOrder(NewBlockOrder);
3504 }
3505 
3506 void MachineBlockPlacement::assignBlockOrder(
3507     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3508   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3509   F->RenumberBlocks();
3510 
3511   bool HasChanges = false;
3512   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3513     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3514       HasChanges = true;
3515       break;
3516     }
3517   }
3518   // Stop early if the new block order is identical to the existing one.
3519   if (!HasChanges)
3520     return;
3521 
3522   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3523   for (auto &MBB : *F) {
3524     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3525   }
3526 
3527   // Sort basic blocks in the function according to the computed order.
3528   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3529   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3530     NewIndex[MBB] = NewIndex.size();
3531   }
3532   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3533     return NewIndex[&L] < NewIndex[&R];
3534   });
3535 
3536   // Update basic block branches by inserting explicit fallthrough branches
3537   // when required and re-optimize branches when possible.
3538   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3539   SmallVector<MachineOperand, 4> Cond;
3540   for (auto &MBB : *F) {
3541     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3542     MachineFunction::iterator EndIt = MBB.getParent()->end();
3543     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3544     // If this block had a fallthrough before we need an explicit unconditional
3545     // branch to that block if the fallthrough block is not adjacent to the
3546     // block in the new order.
3547     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3548       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3549     }
3550 
3551     // It might be possible to optimize branches by flipping the condition.
3552     Cond.clear();
3553     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3554     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3555       continue;
3556     MBB.updateTerminator(FTMBB);
3557   }
3558 
3559 #ifndef NDEBUG
3560   // Make sure we correctly constructed all branches.
3561   F->verify(this, "After optimized block reordering");
3562 #endif
3563 }
3564 
3565 void MachineBlockPlacement::createCFGChainExtTsp() {
3566   BlockToChain.clear();
3567   ComputedEdges.clear();
3568   ChainAllocator.DestroyAll();
3569 
3570   MachineBasicBlock *HeadBB = &F->front();
3571   BlockChain *FunctionChain =
3572       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3573 
3574   for (MachineBasicBlock &MBB : *F) {
3575     if (HeadBB == &MBB)
3576       continue; // Ignore head of the chain
3577     FunctionChain->merge(&MBB, nullptr);
3578   }
3579 }
3580 
3581 namespace {
3582 
3583 /// A pass to compute block placement statistics.
3584 ///
3585 /// A separate pass to compute interesting statistics for evaluating block
3586 /// placement. This is separate from the actual placement pass so that they can
3587 /// be computed in the absence of any placement transformations or when using
3588 /// alternative placement strategies.
3589 class MachineBlockPlacementStats : public MachineFunctionPass {
3590   /// A handle to the branch probability pass.
3591   const MachineBranchProbabilityInfo *MBPI;
3592 
3593   /// A handle to the function-wide block frequency pass.
3594   const MachineBlockFrequencyInfo *MBFI;
3595 
3596 public:
3597   static char ID; // Pass identification, replacement for typeid
3598 
3599   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3600     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3601   }
3602 
3603   bool runOnMachineFunction(MachineFunction &F) override;
3604 
3605   void getAnalysisUsage(AnalysisUsage &AU) const override {
3606     AU.addRequired<MachineBranchProbabilityInfo>();
3607     AU.addRequired<MachineBlockFrequencyInfo>();
3608     AU.setPreservesAll();
3609     MachineFunctionPass::getAnalysisUsage(AU);
3610   }
3611 };
3612 
3613 } // end anonymous namespace
3614 
3615 char MachineBlockPlacementStats::ID = 0;
3616 
3617 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3618 
3619 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3620                       "Basic Block Placement Stats", false, false)
3621 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3622 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3623 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3624                     "Basic Block Placement Stats", false, false)
3625 
3626 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3627   // Check for single-block functions and skip them.
3628   if (std::next(F.begin()) == F.end())
3629     return false;
3630 
3631   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3632   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3633 
3634   for (MachineBasicBlock &MBB : F) {
3635     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3636     Statistic &NumBranches =
3637         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3638     Statistic &BranchTakenFreq =
3639         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3640     for (MachineBasicBlock *Succ : MBB.successors()) {
3641       // Skip if this successor is a fallthrough.
3642       if (MBB.isLayoutSuccessor(Succ))
3643         continue;
3644 
3645       BlockFrequency EdgeFreq =
3646           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3647       ++NumBranches;
3648       BranchTakenFreq += EdgeFreq.getFrequency();
3649     }
3650   }
3651 
3652   return false;
3653 }
3654