xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision c01919e796709519595df68ca64b4027b4ea423f)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "block-placement"
52 
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59 
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64 
65 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
66     "align-all-nofallthru-blocks",
67     cl::desc("Force the alignment of all "
68              "blocks that have no fall-through predecessors (i.e. don't add "
69              "nops that are executed)."),
70     cl::init(0), cl::Hidden);
71 
72 // FIXME: Find a good default for this flag and remove the flag.
73 static cl::opt<unsigned> ExitBlockBias(
74     "block-placement-exit-block-bias",
75     cl::desc("Block frequency percentage a loop exit block needs "
76              "over the original exit to be considered the new exit."),
77     cl::init(0), cl::Hidden);
78 
79 static cl::opt<bool> OutlineOptionalBranches(
80     "outline-optional-branches",
81     cl::desc("Put completely optional branches, i.e. branches with a common "
82              "post dominator, out of line."),
83     cl::init(false), cl::Hidden);
84 
85 static cl::opt<unsigned> OutlineOptionalThreshold(
86     "outline-optional-threshold",
87     cl::desc("Don't outline optional branches that are a single block with an "
88              "instruction count below this threshold"),
89     cl::init(4), cl::Hidden);
90 
91 static cl::opt<unsigned> LoopToColdBlockRatio(
92     "loop-to-cold-block-ratio",
93     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
94              "(frequency of block) is greater than this ratio"),
95     cl::init(5), cl::Hidden);
96 
97 static cl::opt<bool>
98     PreciseRotationCost("precise-rotation-cost",
99                         cl::desc("Model the cost of loop rotation more "
100                                  "precisely by using profile data."),
101                         cl::init(false), cl::Hidden);
102 static cl::opt<bool>
103     ForcePreciseRotationCost("force-precise-rotation-cost",
104                              cl::desc("Force the use of precise cost "
105                                       "loop rotation strategy."),
106                              cl::init(false), cl::Hidden);
107 
108 static cl::opt<unsigned> MisfetchCost(
109     "misfetch-cost",
110     cl::desc("Cost that models the probablistic risk of an instruction "
111              "misfetch due to a jump comparing to falling through, whose cost "
112              "is zero."),
113     cl::init(1), cl::Hidden);
114 
115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
116                                       cl::desc("Cost of jump instructions."),
117                                       cl::init(1), cl::Hidden);
118 
119 namespace {
120 class BlockChain;
121 /// \brief Type for our function-wide basic block -> block chain mapping.
122 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
123 }
124 
125 namespace {
126 /// \brief A chain of blocks which will be laid out contiguously.
127 ///
128 /// This is the datastructure representing a chain of consecutive blocks that
129 /// are profitable to layout together in order to maximize fallthrough
130 /// probabilities and code locality. We also can use a block chain to represent
131 /// a sequence of basic blocks which have some external (correctness)
132 /// requirement for sequential layout.
133 ///
134 /// Chains can be built around a single basic block and can be merged to grow
135 /// them. They participate in a block-to-chain mapping, which is updated
136 /// automatically as chains are merged together.
137 class BlockChain {
138   /// \brief The sequence of blocks belonging to this chain.
139   ///
140   /// This is the sequence of blocks for a particular chain. These will be laid
141   /// out in-order within the function.
142   SmallVector<MachineBasicBlock *, 4> Blocks;
143 
144   /// \brief A handle to the function-wide basic block to block chain mapping.
145   ///
146   /// This is retained in each block chain to simplify the computation of child
147   /// block chains for SCC-formation and iteration. We store the edges to child
148   /// basic blocks, and map them back to their associated chains using this
149   /// structure.
150   BlockToChainMapType &BlockToChain;
151 
152 public:
153   /// \brief Construct a new BlockChain.
154   ///
155   /// This builds a new block chain representing a single basic block in the
156   /// function. It also registers itself as the chain that block participates
157   /// in with the BlockToChain mapping.
158   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
159       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
160     assert(BB && "Cannot create a chain with a null basic block");
161     BlockToChain[BB] = this;
162   }
163 
164   /// \brief Iterator over blocks within the chain.
165   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
166 
167   /// \brief Beginning of blocks within the chain.
168   iterator begin() { return Blocks.begin(); }
169 
170   /// \brief End of blocks within the chain.
171   iterator end() { return Blocks.end(); }
172 
173   /// \brief Merge a block chain into this one.
174   ///
175   /// This routine merges a block chain into this one. It takes care of forming
176   /// a contiguous sequence of basic blocks, updating the edge list, and
177   /// updating the block -> chain mapping. It does not free or tear down the
178   /// old chain, but the old chain's block list is no longer valid.
179   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
180     assert(BB);
181     assert(!Blocks.empty());
182 
183     // Fast path in case we don't have a chain already.
184     if (!Chain) {
185       assert(!BlockToChain[BB]);
186       Blocks.push_back(BB);
187       BlockToChain[BB] = this;
188       return;
189     }
190 
191     assert(BB == *Chain->begin());
192     assert(Chain->begin() != Chain->end());
193 
194     // Update the incoming blocks to point to this chain, and add them to the
195     // chain structure.
196     for (MachineBasicBlock *ChainBB : *Chain) {
197       Blocks.push_back(ChainBB);
198       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
199       BlockToChain[ChainBB] = this;
200     }
201   }
202 
203 #ifndef NDEBUG
204   /// \brief Dump the blocks in this chain.
205   LLVM_DUMP_METHOD void dump() {
206     for (MachineBasicBlock *MBB : *this)
207       MBB->dump();
208   }
209 #endif // NDEBUG
210 
211   /// \brief Count of predecessors of any block within the chain which have not
212   /// yet been scheduled.  In general, we will delay scheduling this chain
213   /// until those predecessors are scheduled (or we find a sufficiently good
214   /// reason to override this heuristic.)  Note that when forming loop chains,
215   /// blocks outside the loop are ignored and treated as if they were already
216   /// scheduled.
217   ///
218   /// Note: This field is reinitialized multiple times - once for each loop,
219   /// and then once for the function as a whole.
220   unsigned UnscheduledPredecessors;
221 };
222 }
223 
224 namespace {
225 class MachineBlockPlacement : public MachineFunctionPass {
226   /// \brief A typedef for a block filter set.
227   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
228 
229   /// \brief A handle to the branch probability pass.
230   const MachineBranchProbabilityInfo *MBPI;
231 
232   /// \brief A handle to the function-wide block frequency pass.
233   const MachineBlockFrequencyInfo *MBFI;
234 
235   /// \brief A handle to the loop info.
236   const MachineLoopInfo *MLI;
237 
238   /// \brief A handle to the target's instruction info.
239   const TargetInstrInfo *TII;
240 
241   /// \brief A handle to the target's lowering info.
242   const TargetLoweringBase *TLI;
243 
244   /// \brief A handle to the post dominator tree.
245   MachineDominatorTree *MDT;
246 
247   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
248   /// all terminators of the MachineFunction.
249   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
250 
251   /// \brief Allocator and owner of BlockChain structures.
252   ///
253   /// We build BlockChains lazily while processing the loop structure of
254   /// a function. To reduce malloc traffic, we allocate them using this
255   /// slab-like allocator, and destroy them after the pass completes. An
256   /// important guarantee is that this allocator produces stable pointers to
257   /// the chains.
258   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
259 
260   /// \brief Function wide BasicBlock to BlockChain mapping.
261   ///
262   /// This mapping allows efficiently moving from any given basic block to the
263   /// BlockChain it participates in, if any. We use it to, among other things,
264   /// allow implicitly defining edges between chains as the existing edges
265   /// between basic blocks.
266   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
267 
268   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
269                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
270                            SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
271                            const BlockFilterSet *BlockFilter = nullptr);
272   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
273                                          BlockChain &Chain,
274                                          const BlockFilterSet *BlockFilter);
275   MachineBasicBlock *
276   selectBestCandidateBlock(BlockChain &Chain,
277                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
278   MachineBasicBlock *
279   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
280                         MachineFunction::iterator &PrevUnplacedBlockIt,
281                         const BlockFilterSet *BlockFilter);
282 
283   /// \brief Add a basic block to the work list if it is apropriate.
284   ///
285   /// If the optional parameter BlockFilter is provided, only MBB
286   /// present in the set will be added to the worklist. If nullptr
287   /// is provided, no filtering occurs.
288   void fillWorkLists(MachineBasicBlock *MBB,
289                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
290                      SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
291                      SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
292                      const BlockFilterSet *BlockFilter);
293   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
294                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
295                   SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
296                   const BlockFilterSet *BlockFilter = nullptr);
297   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
298                                      const BlockFilterSet &LoopBlockSet);
299   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
300                                       const BlockFilterSet &LoopBlockSet);
301   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
302   void buildLoopChains(MachineFunction &F, MachineLoop &L);
303   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
304                   const BlockFilterSet &LoopBlockSet);
305   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
306                              const BlockFilterSet &LoopBlockSet);
307   void buildCFGChains(MachineFunction &F);
308   void alignBlocks(MachineFunction &F);
309 
310 public:
311   static char ID; // Pass identification, replacement for typeid
312   MachineBlockPlacement() : MachineFunctionPass(ID) {
313     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
314   }
315 
316   bool runOnMachineFunction(MachineFunction &F) override;
317 
318   void getAnalysisUsage(AnalysisUsage &AU) const override {
319     AU.addRequired<MachineBranchProbabilityInfo>();
320     AU.addRequired<MachineBlockFrequencyInfo>();
321     AU.addRequired<MachineDominatorTree>();
322     AU.addRequired<MachineLoopInfo>();
323     MachineFunctionPass::getAnalysisUsage(AU);
324   }
325 };
326 }
327 
328 char MachineBlockPlacement::ID = 0;
329 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
330 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
331                       "Branch Probability Basic Block Placement", false, false)
332 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
333 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
334 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
336 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
337                     "Branch Probability Basic Block Placement", false, false)
338 
339 #ifndef NDEBUG
340 /// \brief Helper to print the name of a MBB.
341 ///
342 /// Only used by debug logging.
343 static std::string getBlockName(MachineBasicBlock *BB) {
344   std::string Result;
345   raw_string_ostream OS(Result);
346   OS << "BB#" << BB->getNumber();
347   OS << " ('" << BB->getName() << "')";
348   OS.flush();
349   return Result;
350 }
351 #endif
352 
353 /// \brief Mark a chain's successors as having one fewer preds.
354 ///
355 /// When a chain is being merged into the "placed" chain, this routine will
356 /// quickly walk the successors of each block in the chain and mark them as
357 /// having one fewer active predecessor. It also adds any successors of this
358 /// chain which reach the zero-predecessor state to the worklist passed in.
359 void MachineBlockPlacement::markChainSuccessors(
360     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
361     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
362     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
363     const BlockFilterSet *BlockFilter) {
364   // Walk all the blocks in this chain, marking their successors as having
365   // a predecessor placed.
366   for (MachineBasicBlock *MBB : Chain) {
367     // Add any successors for which this is the only un-placed in-loop
368     // predecessor to the worklist as a viable candidate for CFG-neutral
369     // placement. No subsequent placement of this block will violate the CFG
370     // shape, so we get to use heuristics to choose a favorable placement.
371     for (MachineBasicBlock *Succ : MBB->successors()) {
372       if (BlockFilter && !BlockFilter->count(Succ))
373         continue;
374       BlockChain &SuccChain = *BlockToChain[Succ];
375       // Disregard edges within a fixed chain, or edges to the loop header.
376       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
377         continue;
378 
379       // This is a cross-chain edge that is within the loop, so decrement the
380       // loop predecessor count of the destination chain.
381       if (SuccChain.UnscheduledPredecessors == 0 ||
382           --SuccChain.UnscheduledPredecessors > 0)
383         continue;
384 
385       auto *MBB = *SuccChain.begin();
386       if (MBB->isEHPad())
387         EHPadWorkList.push_back(MBB);
388       else
389         BlockWorkList.push_back(MBB);
390     }
391   }
392 }
393 
394 /// \brief Select the best successor for a block.
395 ///
396 /// This looks across all successors of a particular block and attempts to
397 /// select the "best" one to be the layout successor. It only considers direct
398 /// successors which also pass the block filter. It will attempt to avoid
399 /// breaking CFG structure, but cave and break such structures in the case of
400 /// very hot successor edges.
401 ///
402 /// \returns The best successor block found, or null if none are viable.
403 MachineBasicBlock *
404 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
405                                            BlockChain &Chain,
406                                            const BlockFilterSet *BlockFilter) {
407   const BranchProbability HotProb(4, 5); // 80%
408 
409   MachineBasicBlock *BestSucc = nullptr;
410   auto BestProb = BranchProbability::getZero();
411 
412   // Adjust edge probabilities by excluding edges pointing to blocks that is
413   // either not in BlockFilter or is already in the current chain. Consider the
414   // following CFG:
415   //
416   //     --->A
417   //     |  / \
418   //     | B   C
419   //     |  \ / \
420   //     ----D   E
421   //
422   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
423   // A->C is chosen as a fall-through, D won't be selected as a successor of C
424   // due to CFG constraint (the probability of C->D is not greater than
425   // HotProb). If we exclude E that is not in BlockFilter when calculating the
426   // probability of C->D, D will be selected and we will get A C D B as the
427   // layout of this loop.
428   auto AdjustedSumProb = BranchProbability::getOne();
429   SmallVector<MachineBasicBlock *, 4> Successors;
430   for (MachineBasicBlock *Succ : BB->successors()) {
431     bool SkipSucc = false;
432     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
433       SkipSucc = true;
434     } else {
435       BlockChain *SuccChain = BlockToChain[Succ];
436       if (SuccChain == &Chain) {
437         SkipSucc = true;
438       } else if (Succ != *SuccChain->begin()) {
439         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
440         continue;
441       }
442     }
443     if (SkipSucc)
444       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
445     else
446       Successors.push_back(Succ);
447   }
448 
449   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
450   for (MachineBasicBlock *Succ : Successors) {
451     BranchProbability SuccProb;
452     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
453     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
454     if (SuccProbN >= SuccProbD)
455       SuccProb = BranchProbability::getOne();
456     else
457       SuccProb = BranchProbability(SuccProbN, SuccProbD);
458 
459     // If we outline optional branches, look whether Succ is unavoidable, i.e.
460     // dominates all terminators of the MachineFunction. If it does, other
461     // successors must be optional. Don't do this for cold branches.
462     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
463         UnavoidableBlocks.count(Succ) > 0) {
464       auto HasShortOptionalBranch = [&]() {
465         for (MachineBasicBlock *Pred : Succ->predecessors()) {
466           // Check whether there is an unplaced optional branch.
467           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
468               BlockToChain[Pred] == &Chain)
469             continue;
470           // Check whether the optional branch has exactly one BB.
471           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
472             continue;
473           // Check whether the optional branch is small.
474           if (Pred->size() < OutlineOptionalThreshold)
475             return true;
476         }
477         return false;
478       };
479       if (!HasShortOptionalBranch())
480         return Succ;
481     }
482 
483     // Only consider successors which are either "hot", or wouldn't violate
484     // any CFG constraints.
485     BlockChain &SuccChain = *BlockToChain[Succ];
486     if (SuccChain.UnscheduledPredecessors != 0) {
487       if (SuccProb < HotProb) {
488         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
489                      << " (prob) (CFG conflict)\n");
490         continue;
491       }
492 
493       // Make sure that a hot successor doesn't have a globally more
494       // important predecessor.
495       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
496       BlockFrequency CandidateEdgeFreq =
497           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
498       bool BadCFGConflict = false;
499       for (MachineBasicBlock *Pred : Succ->predecessors()) {
500         if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
501             (BlockFilter && !BlockFilter->count(Pred)) ||
502             BlockToChain[Pred] == &Chain)
503           continue;
504         BlockFrequency PredEdgeFreq =
505             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
506         if (PredEdgeFreq >= CandidateEdgeFreq) {
507           BadCFGConflict = true;
508           break;
509         }
510       }
511       if (BadCFGConflict) {
512         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
513                      << " (prob) (non-cold CFG conflict)\n");
514         continue;
515       }
516     }
517 
518     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
519                  << " (prob)"
520                  << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
521                  << "\n");
522     if (BestSucc && BestProb >= SuccProb)
523       continue;
524     BestSucc = Succ;
525     BestProb = SuccProb;
526   }
527   return BestSucc;
528 }
529 
530 /// \brief Select the best block from a worklist.
531 ///
532 /// This looks through the provided worklist as a list of candidate basic
533 /// blocks and select the most profitable one to place. The definition of
534 /// profitable only really makes sense in the context of a loop. This returns
535 /// the most frequently visited block in the worklist, which in the case of
536 /// a loop, is the one most desirable to be physically close to the rest of the
537 /// loop body in order to improve icache behavior.
538 ///
539 /// \returns The best block found, or null if none are viable.
540 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
541     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
542   // Once we need to walk the worklist looking for a candidate, cleanup the
543   // worklist of already placed entries.
544   // FIXME: If this shows up on profiles, it could be folded (at the cost of
545   // some code complexity) into the loop below.
546   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
547                                 [&](MachineBasicBlock *BB) {
548                                   return BlockToChain.lookup(BB) == &Chain;
549                                 }),
550                  WorkList.end());
551 
552   if (WorkList.empty())
553     return nullptr;
554 
555   bool IsEHPad = WorkList[0]->isEHPad();
556 
557   MachineBasicBlock *BestBlock = nullptr;
558   BlockFrequency BestFreq;
559   for (MachineBasicBlock *MBB : WorkList) {
560     assert(MBB->isEHPad() == IsEHPad);
561 
562     BlockChain &SuccChain = *BlockToChain[MBB];
563     if (&SuccChain == &Chain)
564       continue;
565 
566     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
567 
568     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
569     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
570           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
571 
572     // For ehpad, we layout the least probable first as to avoid jumping back
573     // from least probable landingpads to more probable ones.
574     //
575     // FIXME: Using probability is probably (!) not the best way to achieve
576     // this. We should probably have a more principled approach to layout
577     // cleanup code.
578     //
579     // The goal is to get:
580     //
581     //                 +--------------------------+
582     //                 |                          V
583     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
584     //
585     // Rather than:
586     //
587     //                 +-------------------------------------+
588     //                 V                                     |
589     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
590     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
591       continue;
592 
593     BestBlock = MBB;
594     BestFreq = CandidateFreq;
595   }
596 
597   return BestBlock;
598 }
599 
600 /// \brief Retrieve the first unplaced basic block.
601 ///
602 /// This routine is called when we are unable to use the CFG to walk through
603 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
604 /// We walk through the function's blocks in order, starting from the
605 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
606 /// re-scanning the entire sequence on repeated calls to this routine.
607 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
608     MachineFunction &F, const BlockChain &PlacedChain,
609     MachineFunction::iterator &PrevUnplacedBlockIt,
610     const BlockFilterSet *BlockFilter) {
611   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
612        ++I) {
613     if (BlockFilter && !BlockFilter->count(&*I))
614       continue;
615     if (BlockToChain[&*I] != &PlacedChain) {
616       PrevUnplacedBlockIt = I;
617       // Now select the head of the chain to which the unplaced block belongs
618       // as the block to place. This will force the entire chain to be placed,
619       // and satisfies the requirements of merging chains.
620       return *BlockToChain[&*I]->begin();
621     }
622   }
623   return nullptr;
624 }
625 
626 void MachineBlockPlacement::fillWorkLists(
627     MachineBasicBlock *MBB,
628     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
629     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
630     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
631     const BlockFilterSet *BlockFilter = nullptr) {
632   BlockChain &Chain = *BlockToChain[MBB];
633   if (!UpdatedPreds.insert(&Chain).second)
634     return;
635 
636   assert(Chain.UnscheduledPredecessors == 0);
637   for (MachineBasicBlock *ChainBB : Chain) {
638     assert(BlockToChain[ChainBB] == &Chain);
639     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
640       if (BlockFilter && !BlockFilter->count(Pred))
641         continue;
642       if (BlockToChain[Pred] == &Chain)
643         continue;
644       ++Chain.UnscheduledPredecessors;
645     }
646   }
647 
648   if (Chain.UnscheduledPredecessors != 0)
649     return;
650 
651   MBB = *Chain.begin();
652   if (MBB->isEHPad())
653     EHPadWorkList.push_back(MBB);
654   else
655     BlockWorkList.push_back(MBB);
656 }
657 
658 void MachineBlockPlacement::buildChain(
659     MachineBasicBlock *BB, BlockChain &Chain,
660     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
661     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
662     const BlockFilterSet *BlockFilter) {
663   assert(BB);
664   assert(BlockToChain[BB] == &Chain);
665   MachineFunction &F = *BB->getParent();
666   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
667 
668   MachineBasicBlock *LoopHeaderBB = BB;
669   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
670                       BlockFilter);
671   BB = *std::prev(Chain.end());
672   for (;;) {
673     assert(BB);
674     assert(BlockToChain[BB] == &Chain);
675     assert(*std::prev(Chain.end()) == BB);
676 
677     // Look for the best viable successor if there is one to place immediately
678     // after this block.
679     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
680 
681     // If an immediate successor isn't available, look for the best viable
682     // block among those we've identified as not violating the loop's CFG at
683     // this point. This won't be a fallthrough, but it will increase locality.
684     if (!BestSucc)
685       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
686     if (!BestSucc)
687       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
688 
689     if (!BestSucc) {
690       BestSucc =
691           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
692       if (!BestSucc)
693         break;
694 
695       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
696                       "layout successor until the CFG reduces\n");
697     }
698 
699     // Place this block, updating the datastructures to reflect its placement.
700     BlockChain &SuccChain = *BlockToChain[BestSucc];
701     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
702     // we selected a successor that didn't fit naturally into the CFG.
703     SuccChain.UnscheduledPredecessors = 0;
704     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
705                  << getBlockName(BestSucc) << "\n");
706     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
707                         BlockFilter);
708     Chain.merge(BestSucc, &SuccChain);
709     BB = *std::prev(Chain.end());
710   }
711 
712   DEBUG(dbgs() << "Finished forming chain for header block "
713                << getBlockName(*Chain.begin()) << "\n");
714 }
715 
716 /// \brief Find the best loop top block for layout.
717 ///
718 /// Look for a block which is strictly better than the loop header for laying
719 /// out at the top of the loop. This looks for one and only one pattern:
720 /// a latch block with no conditional exit. This block will cause a conditional
721 /// jump around it or will be the bottom of the loop if we lay it out in place,
722 /// but if it it doesn't end up at the bottom of the loop for any reason,
723 /// rotation alone won't fix it. Because such a block will always result in an
724 /// unconditional jump (for the backedge) rotating it in front of the loop
725 /// header is always profitable.
726 MachineBasicBlock *
727 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
728                                        const BlockFilterSet &LoopBlockSet) {
729   // Check that the header hasn't been fused with a preheader block due to
730   // crazy branches. If it has, we need to start with the header at the top to
731   // prevent pulling the preheader into the loop body.
732   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
733   if (!LoopBlockSet.count(*HeaderChain.begin()))
734     return L.getHeader();
735 
736   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
737                << "\n");
738 
739   BlockFrequency BestPredFreq;
740   MachineBasicBlock *BestPred = nullptr;
741   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
742     if (!LoopBlockSet.count(Pred))
743       continue;
744     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
745                  << Pred->succ_size() << " successors, ";
746           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
747     if (Pred->succ_size() > 1)
748       continue;
749 
750     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
751     if (!BestPred || PredFreq > BestPredFreq ||
752         (!(PredFreq < BestPredFreq) &&
753          Pred->isLayoutSuccessor(L.getHeader()))) {
754       BestPred = Pred;
755       BestPredFreq = PredFreq;
756     }
757   }
758 
759   // If no direct predecessor is fine, just use the loop header.
760   if (!BestPred) {
761     DEBUG(dbgs() << "    final top unchanged\n");
762     return L.getHeader();
763   }
764 
765   // Walk backwards through any straight line of predecessors.
766   while (BestPred->pred_size() == 1 &&
767          (*BestPred->pred_begin())->succ_size() == 1 &&
768          *BestPred->pred_begin() != L.getHeader())
769     BestPred = *BestPred->pred_begin();
770 
771   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
772   return BestPred;
773 }
774 
775 /// \brief Find the best loop exiting block for layout.
776 ///
777 /// This routine implements the logic to analyze the loop looking for the best
778 /// block to layout at the top of the loop. Typically this is done to maximize
779 /// fallthrough opportunities.
780 MachineBasicBlock *
781 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
782                                         const BlockFilterSet &LoopBlockSet) {
783   // We don't want to layout the loop linearly in all cases. If the loop header
784   // is just a normal basic block in the loop, we want to look for what block
785   // within the loop is the best one to layout at the top. However, if the loop
786   // header has be pre-merged into a chain due to predecessors not having
787   // analyzable branches, *and* the predecessor it is merged with is *not* part
788   // of the loop, rotating the header into the middle of the loop will create
789   // a non-contiguous range of blocks which is Very Bad. So start with the
790   // header and only rotate if safe.
791   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
792   if (!LoopBlockSet.count(*HeaderChain.begin()))
793     return nullptr;
794 
795   BlockFrequency BestExitEdgeFreq;
796   unsigned BestExitLoopDepth = 0;
797   MachineBasicBlock *ExitingBB = nullptr;
798   // If there are exits to outer loops, loop rotation can severely limit
799   // fallthrough opportunites unless it selects such an exit. Keep a set of
800   // blocks where rotating to exit with that block will reach an outer loop.
801   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
802 
803   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
804                << "\n");
805   for (MachineBasicBlock *MBB : L.getBlocks()) {
806     BlockChain &Chain = *BlockToChain[MBB];
807     // Ensure that this block is at the end of a chain; otherwise it could be
808     // mid-way through an inner loop or a successor of an unanalyzable branch.
809     if (MBB != *std::prev(Chain.end()))
810       continue;
811 
812     // Now walk the successors. We need to establish whether this has a viable
813     // exiting successor and whether it has a viable non-exiting successor.
814     // We store the old exiting state and restore it if a viable looping
815     // successor isn't found.
816     MachineBasicBlock *OldExitingBB = ExitingBB;
817     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
818     bool HasLoopingSucc = false;
819     for (MachineBasicBlock *Succ : MBB->successors()) {
820       if (Succ->isEHPad())
821         continue;
822       if (Succ == MBB)
823         continue;
824       BlockChain &SuccChain = *BlockToChain[Succ];
825       // Don't split chains, either this chain or the successor's chain.
826       if (&Chain == &SuccChain) {
827         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
828                      << getBlockName(Succ) << " (chain conflict)\n");
829         continue;
830       }
831 
832       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
833       if (LoopBlockSet.count(Succ)) {
834         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
835                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
836         HasLoopingSucc = true;
837         continue;
838       }
839 
840       unsigned SuccLoopDepth = 0;
841       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
842         SuccLoopDepth = ExitLoop->getLoopDepth();
843         if (ExitLoop->contains(&L))
844           BlocksExitingToOuterLoop.insert(MBB);
845       }
846 
847       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
848       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
849                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
850             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
851       // Note that we bias this toward an existing layout successor to retain
852       // incoming order in the absence of better information. The exit must have
853       // a frequency higher than the current exit before we consider breaking
854       // the layout.
855       BranchProbability Bias(100 - ExitBlockBias, 100);
856       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
857           ExitEdgeFreq > BestExitEdgeFreq ||
858           (MBB->isLayoutSuccessor(Succ) &&
859            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
860         BestExitEdgeFreq = ExitEdgeFreq;
861         ExitingBB = MBB;
862       }
863     }
864 
865     if (!HasLoopingSucc) {
866       // Restore the old exiting state, no viable looping successor was found.
867       ExitingBB = OldExitingBB;
868       BestExitEdgeFreq = OldBestExitEdgeFreq;
869     }
870   }
871   // Without a candidate exiting block or with only a single block in the
872   // loop, just use the loop header to layout the loop.
873   if (!ExitingBB || L.getNumBlocks() == 1)
874     return nullptr;
875 
876   // Also, if we have exit blocks which lead to outer loops but didn't select
877   // one of them as the exiting block we are rotating toward, disable loop
878   // rotation altogether.
879   if (!BlocksExitingToOuterLoop.empty() &&
880       !BlocksExitingToOuterLoop.count(ExitingBB))
881     return nullptr;
882 
883   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
884   return ExitingBB;
885 }
886 
887 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
888 ///
889 /// Once we have built a chain, try to rotate it to line up the hot exit block
890 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
891 /// branches. For example, if the loop has fallthrough into its header and out
892 /// of its bottom already, don't rotate it.
893 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
894                                        MachineBasicBlock *ExitingBB,
895                                        const BlockFilterSet &LoopBlockSet) {
896   if (!ExitingBB)
897     return;
898 
899   MachineBasicBlock *Top = *LoopChain.begin();
900   bool ViableTopFallthrough = false;
901   for (MachineBasicBlock *Pred : Top->predecessors()) {
902     BlockChain *PredChain = BlockToChain[Pred];
903     if (!LoopBlockSet.count(Pred) &&
904         (!PredChain || Pred == *std::prev(PredChain->end()))) {
905       ViableTopFallthrough = true;
906       break;
907     }
908   }
909 
910   // If the header has viable fallthrough, check whether the current loop
911   // bottom is a viable exiting block. If so, bail out as rotating will
912   // introduce an unnecessary branch.
913   if (ViableTopFallthrough) {
914     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
915     for (MachineBasicBlock *Succ : Bottom->successors()) {
916       BlockChain *SuccChain = BlockToChain[Succ];
917       if (!LoopBlockSet.count(Succ) &&
918           (!SuccChain || Succ == *SuccChain->begin()))
919         return;
920     }
921   }
922 
923   BlockChain::iterator ExitIt =
924       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
925   if (ExitIt == LoopChain.end())
926     return;
927 
928   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
929 }
930 
931 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
932 ///
933 /// With profile data, we can determine the cost in terms of missed fall through
934 /// opportunities when rotating a loop chain and select the best rotation.
935 /// Basically, there are three kinds of cost to consider for each rotation:
936 ///    1. The possibly missed fall through edge (if it exists) from BB out of
937 ///    the loop to the loop header.
938 ///    2. The possibly missed fall through edges (if they exist) from the loop
939 ///    exits to BB out of the loop.
940 ///    3. The missed fall through edge (if it exists) from the last BB to the
941 ///    first BB in the loop chain.
942 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
943 ///  We select the best rotation with the smallest cost.
944 void MachineBlockPlacement::rotateLoopWithProfile(
945     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
946   auto HeaderBB = L.getHeader();
947   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
948   auto RotationPos = LoopChain.end();
949 
950   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
951 
952   // A utility lambda that scales up a block frequency by dividing it by a
953   // branch probability which is the reciprocal of the scale.
954   auto ScaleBlockFrequency = [](BlockFrequency Freq,
955                                 unsigned Scale) -> BlockFrequency {
956     if (Scale == 0)
957       return 0;
958     // Use operator / between BlockFrequency and BranchProbability to implement
959     // saturating multiplication.
960     return Freq / BranchProbability(1, Scale);
961   };
962 
963   // Compute the cost of the missed fall-through edge to the loop header if the
964   // chain head is not the loop header. As we only consider natural loops with
965   // single header, this computation can be done only once.
966   BlockFrequency HeaderFallThroughCost(0);
967   for (auto *Pred : HeaderBB->predecessors()) {
968     BlockChain *PredChain = BlockToChain[Pred];
969     if (!LoopBlockSet.count(Pred) &&
970         (!PredChain || Pred == *std::prev(PredChain->end()))) {
971       auto EdgeFreq =
972           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
973       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
974       // If the predecessor has only an unconditional jump to the header, we
975       // need to consider the cost of this jump.
976       if (Pred->succ_size() == 1)
977         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
978       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
979     }
980   }
981 
982   // Here we collect all exit blocks in the loop, and for each exit we find out
983   // its hottest exit edge. For each loop rotation, we define the loop exit cost
984   // as the sum of frequencies of exit edges we collect here, excluding the exit
985   // edge from the tail of the loop chain.
986   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
987   for (auto BB : LoopChain) {
988     auto LargestExitEdgeProb = BranchProbability::getZero();
989     for (auto *Succ : BB->successors()) {
990       BlockChain *SuccChain = BlockToChain[Succ];
991       if (!LoopBlockSet.count(Succ) &&
992           (!SuccChain || Succ == *SuccChain->begin())) {
993         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
994         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
995       }
996     }
997     if (LargestExitEdgeProb > BranchProbability::getZero()) {
998       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
999       ExitsWithFreq.emplace_back(BB, ExitFreq);
1000     }
1001   }
1002 
1003   // In this loop we iterate every block in the loop chain and calculate the
1004   // cost assuming the block is the head of the loop chain. When the loop ends,
1005   // we should have found the best candidate as the loop chain's head.
1006   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1007             EndIter = LoopChain.end();
1008        Iter != EndIter; Iter++, TailIter++) {
1009     // TailIter is used to track the tail of the loop chain if the block we are
1010     // checking (pointed by Iter) is the head of the chain.
1011     if (TailIter == LoopChain.end())
1012       TailIter = LoopChain.begin();
1013 
1014     auto TailBB = *TailIter;
1015 
1016     // Calculate the cost by putting this BB to the top.
1017     BlockFrequency Cost = 0;
1018 
1019     // If the current BB is the loop header, we need to take into account the
1020     // cost of the missed fall through edge from outside of the loop to the
1021     // header.
1022     if (Iter != HeaderIter)
1023       Cost += HeaderFallThroughCost;
1024 
1025     // Collect the loop exit cost by summing up frequencies of all exit edges
1026     // except the one from the chain tail.
1027     for (auto &ExitWithFreq : ExitsWithFreq)
1028       if (TailBB != ExitWithFreq.first)
1029         Cost += ExitWithFreq.second;
1030 
1031     // The cost of breaking the once fall-through edge from the tail to the top
1032     // of the loop chain. Here we need to consider three cases:
1033     // 1. If the tail node has only one successor, then we will get an
1034     //    additional jmp instruction. So the cost here is (MisfetchCost +
1035     //    JumpInstCost) * tail node frequency.
1036     // 2. If the tail node has two successors, then we may still get an
1037     //    additional jmp instruction if the layout successor after the loop
1038     //    chain is not its CFG successor. Note that the more frequently executed
1039     //    jmp instruction will be put ahead of the other one. Assume the
1040     //    frequency of those two branches are x and y, where x is the frequency
1041     //    of the edge to the chain head, then the cost will be
1042     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1043     // 3. If the tail node has more than two successors (this rarely happens),
1044     //    we won't consider any additional cost.
1045     if (TailBB->isSuccessor(*Iter)) {
1046       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1047       if (TailBB->succ_size() == 1)
1048         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1049                                     MisfetchCost + JumpInstCost);
1050       else if (TailBB->succ_size() == 2) {
1051         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1052         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1053         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1054                                   ? TailBBFreq * TailToHeadProb.getCompl()
1055                                   : TailToHeadFreq;
1056         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1057                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1058       }
1059     }
1060 
1061     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1062                  << " to the top: " << Cost.getFrequency() << "\n");
1063 
1064     if (Cost < SmallestRotationCost) {
1065       SmallestRotationCost = Cost;
1066       RotationPos = Iter;
1067     }
1068   }
1069 
1070   if (RotationPos != LoopChain.end()) {
1071     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1072                  << " to the top\n");
1073     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1074   }
1075 }
1076 
1077 /// \brief Collect blocks in the given loop that are to be placed.
1078 ///
1079 /// When profile data is available, exclude cold blocks from the returned set;
1080 /// otherwise, collect all blocks in the loop.
1081 MachineBlockPlacement::BlockFilterSet
1082 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
1083   BlockFilterSet LoopBlockSet;
1084 
1085   // Filter cold blocks off from LoopBlockSet when profile data is available.
1086   // Collect the sum of frequencies of incoming edges to the loop header from
1087   // outside. If we treat the loop as a super block, this is the frequency of
1088   // the loop. Then for each block in the loop, we calculate the ratio between
1089   // its frequency and the frequency of the loop block. When it is too small,
1090   // don't add it to the loop chain. If there are outer loops, then this block
1091   // will be merged into the first outer loop chain for which this block is not
1092   // cold anymore. This needs precise profile data and we only do this when
1093   // profile data is available.
1094   if (F.getFunction()->getEntryCount()) {
1095     BlockFrequency LoopFreq(0);
1096     for (auto LoopPred : L.getHeader()->predecessors())
1097       if (!L.contains(LoopPred))
1098         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1099                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1100 
1101     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1102       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1103       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1104         continue;
1105       LoopBlockSet.insert(LoopBB);
1106     }
1107   } else
1108     LoopBlockSet.insert(L.block_begin(), L.block_end());
1109 
1110   return LoopBlockSet;
1111 }
1112 
1113 /// \brief Forms basic block chains from the natural loop structures.
1114 ///
1115 /// These chains are designed to preserve the existing *structure* of the code
1116 /// as much as possible. We can then stitch the chains together in a way which
1117 /// both preserves the topological structure and minimizes taken conditional
1118 /// branches.
1119 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1120                                             MachineLoop &L) {
1121   // First recurse through any nested loops, building chains for those inner
1122   // loops.
1123   for (MachineLoop *InnerLoop : L)
1124     buildLoopChains(F, *InnerLoop);
1125 
1126   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1127   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1128   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1129 
1130   // Check if we have profile data for this function. If yes, we will rotate
1131   // this loop by modeling costs more precisely which requires the profile data
1132   // for better layout.
1133   bool RotateLoopWithProfile =
1134       ForcePreciseRotationCost ||
1135       (PreciseRotationCost && F.getFunction()->getEntryCount());
1136 
1137   // First check to see if there is an obviously preferable top block for the
1138   // loop. This will default to the header, but may end up as one of the
1139   // predecessors to the header if there is one which will result in strictly
1140   // fewer branches in the loop body.
1141   // When we use profile data to rotate the loop, this is unnecessary.
1142   MachineBasicBlock *LoopTop =
1143       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1144 
1145   // If we selected just the header for the loop top, look for a potentially
1146   // profitable exit block in the event that rotating the loop can eliminate
1147   // branches by placing an exit edge at the bottom.
1148   MachineBasicBlock *ExitingBB = nullptr;
1149   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1150     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1151 
1152   BlockChain &LoopChain = *BlockToChain[LoopTop];
1153 
1154   // FIXME: This is a really lame way of walking the chains in the loop: we
1155   // walk the blocks, and use a set to prevent visiting a particular chain
1156   // twice.
1157   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1158   assert(LoopChain.UnscheduledPredecessors == 0);
1159   UpdatedPreds.insert(&LoopChain);
1160 
1161   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1162     fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
1163                   &LoopBlockSet);
1164 
1165   buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
1166 
1167   if (RotateLoopWithProfile)
1168     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1169   else
1170     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1171 
1172   DEBUG({
1173     // Crash at the end so we get all of the debugging output first.
1174     bool BadLoop = false;
1175     if (LoopChain.UnscheduledPredecessors) {
1176       BadLoop = true;
1177       dbgs() << "Loop chain contains a block without its preds placed!\n"
1178              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1179              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1180     }
1181     for (MachineBasicBlock *ChainBB : LoopChain) {
1182       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1183       if (!LoopBlockSet.erase(ChainBB)) {
1184         // We don't mark the loop as bad here because there are real situations
1185         // where this can occur. For example, with an unanalyzable fallthrough
1186         // from a loop block to a non-loop block or vice versa.
1187         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1188                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1189                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1190                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1191       }
1192     }
1193 
1194     if (!LoopBlockSet.empty()) {
1195       BadLoop = true;
1196       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1197         dbgs() << "Loop contains blocks never placed into a chain!\n"
1198                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1199                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1200                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1201     }
1202     assert(!BadLoop && "Detected problems with the placement of this loop.");
1203   });
1204 }
1205 
1206 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1207   // Ensure that every BB in the function has an associated chain to simplify
1208   // the assumptions of the remaining algorithm.
1209   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1210   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1211     MachineBasicBlock *BB = &*FI;
1212     BlockChain *Chain =
1213         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1214     // Also, merge any blocks which we cannot reason about and must preserve
1215     // the exact fallthrough behavior for.
1216     for (;;) {
1217       Cond.clear();
1218       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1219       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1220         break;
1221 
1222       MachineFunction::iterator NextFI = std::next(FI);
1223       MachineBasicBlock *NextBB = &*NextFI;
1224       // Ensure that the layout successor is a viable block, as we know that
1225       // fallthrough is a possibility.
1226       assert(NextFI != FE && "Can't fallthrough past the last block.");
1227       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1228                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1229                    << "\n");
1230       Chain->merge(NextBB, nullptr);
1231       FI = NextFI;
1232       BB = NextBB;
1233     }
1234   }
1235 
1236   if (OutlineOptionalBranches) {
1237     // Find the nearest common dominator of all of F's terminators.
1238     MachineBasicBlock *Terminator = nullptr;
1239     for (MachineBasicBlock &MBB : F) {
1240       if (MBB.succ_size() == 0) {
1241         if (Terminator == nullptr)
1242           Terminator = &MBB;
1243         else
1244           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1245       }
1246     }
1247 
1248     // MBBs dominating this common dominator are unavoidable.
1249     UnavoidableBlocks.clear();
1250     for (MachineBasicBlock &MBB : F) {
1251       if (MDT->dominates(&MBB, Terminator)) {
1252         UnavoidableBlocks.insert(&MBB);
1253       }
1254     }
1255   }
1256 
1257   // Build any loop-based chains.
1258   for (MachineLoop *L : *MLI)
1259     buildLoopChains(F, *L);
1260 
1261   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1262   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1263 
1264   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1265   for (MachineBasicBlock &MBB : F)
1266     fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
1267 
1268   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1269   buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList);
1270 
1271 #ifndef NDEBUG
1272   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1273 #endif
1274   DEBUG({
1275     // Crash at the end so we get all of the debugging output first.
1276     bool BadFunc = false;
1277     FunctionBlockSetType FunctionBlockSet;
1278     for (MachineBasicBlock &MBB : F)
1279       FunctionBlockSet.insert(&MBB);
1280 
1281     for (MachineBasicBlock *ChainBB : FunctionChain)
1282       if (!FunctionBlockSet.erase(ChainBB)) {
1283         BadFunc = true;
1284         dbgs() << "Function chain contains a block not in the function!\n"
1285                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1286       }
1287 
1288     if (!FunctionBlockSet.empty()) {
1289       BadFunc = true;
1290       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1291         dbgs() << "Function contains blocks never placed into a chain!\n"
1292                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1293     }
1294     assert(!BadFunc && "Detected problems with the block placement.");
1295   });
1296 
1297   // Splice the blocks into place.
1298   MachineFunction::iterator InsertPos = F.begin();
1299   for (MachineBasicBlock *ChainBB : FunctionChain) {
1300     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1301                                                        : "          ... ")
1302                  << getBlockName(ChainBB) << "\n");
1303     if (InsertPos != MachineFunction::iterator(ChainBB))
1304       F.splice(InsertPos, ChainBB);
1305     else
1306       ++InsertPos;
1307 
1308     // Update the terminator of the previous block.
1309     if (ChainBB == *FunctionChain.begin())
1310       continue;
1311     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1312 
1313     // FIXME: It would be awesome of updateTerminator would just return rather
1314     // than assert when the branch cannot be analyzed in order to remove this
1315     // boiler plate.
1316     Cond.clear();
1317     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1318     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1319       // The "PrevBB" is not yet updated to reflect current code layout, so,
1320       //   o. it may fall-through to a block without explict "goto" instruction
1321       //      before layout, and no longer fall-through it after layout; or
1322       //   o. just opposite.
1323       //
1324       // AnalyzeBranch() may return erroneous value for FBB when these two
1325       // situations take place. For the first scenario FBB is mistakenly set
1326       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1327       // is mistakenly pointing to "*BI".
1328       //
1329       bool needUpdateBr = true;
1330       if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1331         PrevBB->updateTerminator();
1332         needUpdateBr = false;
1333         Cond.clear();
1334         TBB = FBB = nullptr;
1335         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1336           // FIXME: This should never take place.
1337           TBB = FBB = nullptr;
1338         }
1339       }
1340 
1341       // If PrevBB has a two-way branch, try to re-order the branches
1342       // such that we branch to the successor with higher probability first.
1343       if (TBB && !Cond.empty() && FBB &&
1344           MBPI->getEdgeProbability(PrevBB, FBB) >
1345               MBPI->getEdgeProbability(PrevBB, TBB) &&
1346           !TII->ReverseBranchCondition(Cond)) {
1347         DEBUG(dbgs() << "Reverse order of the two branches: "
1348                      << getBlockName(PrevBB) << "\n");
1349         DEBUG(dbgs() << "    Edge probability: "
1350                      << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
1351                      << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
1352         DebugLoc dl; // FIXME: this is nowhere
1353         TII->RemoveBranch(*PrevBB);
1354         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1355         needUpdateBr = true;
1356       }
1357       if (needUpdateBr)
1358         PrevBB->updateTerminator();
1359     }
1360   }
1361 
1362   // Fixup the last block.
1363   Cond.clear();
1364   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1365   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1366     F.back().updateTerminator();
1367 
1368   // Now that all the basic blocks in the chain have the proper layout,
1369   // make a final call to AnalyzeBranch with AllowModify set.
1370   // Indeed, the target may be able to optimize the branches in a way we
1371   // cannot because all branches may not be analyzable.
1372   // E.g., the target may be able to remove an unconditional branch to
1373   // a fallthrough when it occurs after predicated terminators.
1374   for (MachineBasicBlock *ChainBB : FunctionChain) {
1375     Cond.clear();
1376     TBB = nullptr;
1377     FBB = nullptr; // For AnalyzeBranch.
1378     (void)TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true);
1379   }
1380 }
1381 
1382 void MachineBlockPlacement::alignBlocks(MachineFunction &F) {
1383   // Walk through the backedges of the function now that we have fully laid out
1384   // the basic blocks and align the destination of each backedge. We don't rely
1385   // exclusively on the loop info here so that we can align backedges in
1386   // unnatural CFGs and backedges that were introduced purely because of the
1387   // loop rotations done during this layout pass.
1388   if (F.getFunction()->optForSize())
1389     return;
1390   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1391   if (FunctionChain.begin() == FunctionChain.end())
1392     return; // Empty chain.
1393 
1394   const BranchProbability ColdProb(1, 5); // 20%
1395   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1396   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1397   for (MachineBasicBlock *ChainBB : FunctionChain) {
1398     if (ChainBB == *FunctionChain.begin())
1399       continue;
1400 
1401     // Don't align non-looping basic blocks. These are unlikely to execute
1402     // enough times to matter in practice. Note that we'll still handle
1403     // unnatural CFGs inside of a natural outer loop (the common case) and
1404     // rotated loops.
1405     MachineLoop *L = MLI->getLoopFor(ChainBB);
1406     if (!L)
1407       continue;
1408 
1409     unsigned Align = TLI->getPrefLoopAlignment(L);
1410     if (!Align)
1411       continue; // Don't care about loop alignment.
1412 
1413     // If the block is cold relative to the function entry don't waste space
1414     // aligning it.
1415     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1416     if (Freq < WeightedEntryFreq)
1417       continue;
1418 
1419     // If the block is cold relative to its loop header, don't align it
1420     // regardless of what edges into the block exist.
1421     MachineBasicBlock *LoopHeader = L->getHeader();
1422     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1423     if (Freq < (LoopHeaderFreq * ColdProb))
1424       continue;
1425 
1426     // Check for the existence of a non-layout predecessor which would benefit
1427     // from aligning this block.
1428     MachineBasicBlock *LayoutPred =
1429         &*std::prev(MachineFunction::iterator(ChainBB));
1430 
1431     // Force alignment if all the predecessors are jumps. We already checked
1432     // that the block isn't cold above.
1433     if (!LayoutPred->isSuccessor(ChainBB)) {
1434       ChainBB->setAlignment(Align);
1435       continue;
1436     }
1437 
1438     // Align this block if the layout predecessor's edge into this block is
1439     // cold relative to the block. When this is true, other predecessors make up
1440     // all of the hot entries into the block and thus alignment is likely to be
1441     // important.
1442     BranchProbability LayoutProb =
1443         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1444     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1445     if (LayoutEdgeFreq <= (Freq * ColdProb))
1446       ChainBB->setAlignment(Align);
1447   }
1448 }
1449 
1450 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1451   if (skipFunction(*F.getFunction()))
1452     return false;
1453 
1454   // Check for single-block functions and skip them.
1455   if (std::next(F.begin()) == F.end())
1456     return false;
1457 
1458   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1459   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1460   MLI = &getAnalysis<MachineLoopInfo>();
1461   TII = F.getSubtarget().getInstrInfo();
1462   TLI = F.getSubtarget().getTargetLowering();
1463   MDT = &getAnalysis<MachineDominatorTree>();
1464   assert(BlockToChain.empty());
1465 
1466   buildCFGChains(F);
1467   alignBlocks(F);
1468 
1469   BlockToChain.clear();
1470   ChainAllocator.DestroyAll();
1471 
1472   if (AlignAllBlock)
1473     // Align all of the blocks in the function to a specific alignment.
1474     for (MachineBasicBlock &MBB : F)
1475       MBB.setAlignment(AlignAllBlock);
1476   else if (AlignAllNonFallThruBlocks) {
1477     // Align all of the blocks that have no fall-through predecessors to a
1478     // specific alignment.
1479     for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) {
1480       auto LayoutPred = std::prev(MBI);
1481       if (!LayoutPred->isSuccessor(&*MBI))
1482         MBI->setAlignment(AlignAllNonFallThruBlocks);
1483     }
1484   }
1485 
1486   // We always return true as we have no way to track whether the final order
1487   // differs from the original order.
1488   return true;
1489 }
1490 
1491 namespace {
1492 /// \brief A pass to compute block placement statistics.
1493 ///
1494 /// A separate pass to compute interesting statistics for evaluating block
1495 /// placement. This is separate from the actual placement pass so that they can
1496 /// be computed in the absence of any placement transformations or when using
1497 /// alternative placement strategies.
1498 class MachineBlockPlacementStats : public MachineFunctionPass {
1499   /// \brief A handle to the branch probability pass.
1500   const MachineBranchProbabilityInfo *MBPI;
1501 
1502   /// \brief A handle to the function-wide block frequency pass.
1503   const MachineBlockFrequencyInfo *MBFI;
1504 
1505 public:
1506   static char ID; // Pass identification, replacement for typeid
1507   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1508     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1509   }
1510 
1511   bool runOnMachineFunction(MachineFunction &F) override;
1512 
1513   void getAnalysisUsage(AnalysisUsage &AU) const override {
1514     AU.addRequired<MachineBranchProbabilityInfo>();
1515     AU.addRequired<MachineBlockFrequencyInfo>();
1516     AU.setPreservesAll();
1517     MachineFunctionPass::getAnalysisUsage(AU);
1518   }
1519 };
1520 }
1521 
1522 char MachineBlockPlacementStats::ID = 0;
1523 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1524 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1525                       "Basic Block Placement Stats", false, false)
1526 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1527 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1528 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1529                     "Basic Block Placement Stats", false, false)
1530 
1531 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1532   // Check for single-block functions and skip them.
1533   if (std::next(F.begin()) == F.end())
1534     return false;
1535 
1536   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1537   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1538 
1539   for (MachineBasicBlock &MBB : F) {
1540     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1541     Statistic &NumBranches =
1542         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1543     Statistic &BranchTakenFreq =
1544         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1545     for (MachineBasicBlock *Succ : MBB.successors()) {
1546       // Skip if this successor is a fallthrough.
1547       if (MBB.isLayoutSuccessor(Succ))
1548         continue;
1549 
1550       BlockFrequency EdgeFreq =
1551           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1552       ++NumBranches;
1553       BranchTakenFreq += EdgeFreq.getFrequency();
1554     }
1555   }
1556 
1557   return false;
1558 }
1559