1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 static cl::opt<bool> 103 ForcePreciseRotationCost("force-precise-rotation-cost", 104 cl::desc("Force the use of precise cost " 105 "loop rotation strategy."), 106 cl::init(false), cl::Hidden); 107 108 static cl::opt<unsigned> MisfetchCost( 109 "misfetch-cost", 110 cl::desc("Cost that models the probablistic risk of an instruction " 111 "misfetch due to a jump comparing to falling through, whose cost " 112 "is zero."), 113 cl::init(1), cl::Hidden); 114 115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 116 cl::desc("Cost of jump instructions."), 117 cl::init(1), cl::Hidden); 118 119 namespace { 120 class BlockChain; 121 /// \brief Type for our function-wide basic block -> block chain mapping. 122 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 123 } 124 125 namespace { 126 /// \brief A chain of blocks which will be laid out contiguously. 127 /// 128 /// This is the datastructure representing a chain of consecutive blocks that 129 /// are profitable to layout together in order to maximize fallthrough 130 /// probabilities and code locality. We also can use a block chain to represent 131 /// a sequence of basic blocks which have some external (correctness) 132 /// requirement for sequential layout. 133 /// 134 /// Chains can be built around a single basic block and can be merged to grow 135 /// them. They participate in a block-to-chain mapping, which is updated 136 /// automatically as chains are merged together. 137 class BlockChain { 138 /// \brief The sequence of blocks belonging to this chain. 139 /// 140 /// This is the sequence of blocks for a particular chain. These will be laid 141 /// out in-order within the function. 142 SmallVector<MachineBasicBlock *, 4> Blocks; 143 144 /// \brief A handle to the function-wide basic block to block chain mapping. 145 /// 146 /// This is retained in each block chain to simplify the computation of child 147 /// block chains for SCC-formation and iteration. We store the edges to child 148 /// basic blocks, and map them back to their associated chains using this 149 /// structure. 150 BlockToChainMapType &BlockToChain; 151 152 public: 153 /// \brief Construct a new BlockChain. 154 /// 155 /// This builds a new block chain representing a single basic block in the 156 /// function. It also registers itself as the chain that block participates 157 /// in with the BlockToChain mapping. 158 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 159 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 160 assert(BB && "Cannot create a chain with a null basic block"); 161 BlockToChain[BB] = this; 162 } 163 164 /// \brief Iterator over blocks within the chain. 165 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 166 167 /// \brief Beginning of blocks within the chain. 168 iterator begin() { return Blocks.begin(); } 169 170 /// \brief End of blocks within the chain. 171 iterator end() { return Blocks.end(); } 172 173 /// \brief Merge a block chain into this one. 174 /// 175 /// This routine merges a block chain into this one. It takes care of forming 176 /// a contiguous sequence of basic blocks, updating the edge list, and 177 /// updating the block -> chain mapping. It does not free or tear down the 178 /// old chain, but the old chain's block list is no longer valid. 179 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 180 assert(BB); 181 assert(!Blocks.empty()); 182 183 // Fast path in case we don't have a chain already. 184 if (!Chain) { 185 assert(!BlockToChain[BB]); 186 Blocks.push_back(BB); 187 BlockToChain[BB] = this; 188 return; 189 } 190 191 assert(BB == *Chain->begin()); 192 assert(Chain->begin() != Chain->end()); 193 194 // Update the incoming blocks to point to this chain, and add them to the 195 // chain structure. 196 for (MachineBasicBlock *ChainBB : *Chain) { 197 Blocks.push_back(ChainBB); 198 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 199 BlockToChain[ChainBB] = this; 200 } 201 } 202 203 #ifndef NDEBUG 204 /// \brief Dump the blocks in this chain. 205 LLVM_DUMP_METHOD void dump() { 206 for (MachineBasicBlock *MBB : *this) 207 MBB->dump(); 208 } 209 #endif // NDEBUG 210 211 /// \brief Count of predecessors of any block within the chain which have not 212 /// yet been scheduled. In general, we will delay scheduling this chain 213 /// until those predecessors are scheduled (or we find a sufficiently good 214 /// reason to override this heuristic.) Note that when forming loop chains, 215 /// blocks outside the loop are ignored and treated as if they were already 216 /// scheduled. 217 /// 218 /// Note: This field is reinitialized multiple times - once for each loop, 219 /// and then once for the function as a whole. 220 unsigned UnscheduledPredecessors; 221 }; 222 } 223 224 namespace { 225 class MachineBlockPlacement : public MachineFunctionPass { 226 /// \brief A typedef for a block filter set. 227 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 228 229 /// \brief A handle to the branch probability pass. 230 const MachineBranchProbabilityInfo *MBPI; 231 232 /// \brief A handle to the function-wide block frequency pass. 233 const MachineBlockFrequencyInfo *MBFI; 234 235 /// \brief A handle to the loop info. 236 const MachineLoopInfo *MLI; 237 238 /// \brief A handle to the target's instruction info. 239 const TargetInstrInfo *TII; 240 241 /// \brief A handle to the target's lowering info. 242 const TargetLoweringBase *TLI; 243 244 /// \brief A handle to the post dominator tree. 245 MachineDominatorTree *MDT; 246 247 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 248 /// all terminators of the MachineFunction. 249 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 250 251 /// \brief Allocator and owner of BlockChain structures. 252 /// 253 /// We build BlockChains lazily while processing the loop structure of 254 /// a function. To reduce malloc traffic, we allocate them using this 255 /// slab-like allocator, and destroy them after the pass completes. An 256 /// important guarantee is that this allocator produces stable pointers to 257 /// the chains. 258 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 259 260 /// \brief Function wide BasicBlock to BlockChain mapping. 261 /// 262 /// This mapping allows efficiently moving from any given basic block to the 263 /// BlockChain it participates in, if any. We use it to, among other things, 264 /// allow implicitly defining edges between chains as the existing edges 265 /// between basic blocks. 266 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 267 268 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 269 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 270 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 271 const BlockFilterSet *BlockFilter = nullptr); 272 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 273 BlockChain &Chain, 274 const BlockFilterSet *BlockFilter); 275 MachineBasicBlock * 276 selectBestCandidateBlock(BlockChain &Chain, 277 SmallVectorImpl<MachineBasicBlock *> &WorkList); 278 MachineBasicBlock * 279 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 280 MachineFunction::iterator &PrevUnplacedBlockIt, 281 const BlockFilterSet *BlockFilter); 282 283 /// \brief Add a basic block to the work list if it is apropriate. 284 /// 285 /// If the optional parameter BlockFilter is provided, only MBB 286 /// present in the set will be added to the worklist. If nullptr 287 /// is provided, no filtering occurs. 288 void fillWorkLists(MachineBasicBlock *MBB, 289 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 290 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 291 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 292 const BlockFilterSet *BlockFilter); 293 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 294 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 295 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 296 const BlockFilterSet *BlockFilter = nullptr); 297 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 298 const BlockFilterSet &LoopBlockSet); 299 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 300 const BlockFilterSet &LoopBlockSet); 301 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 302 void buildLoopChains(MachineFunction &F, MachineLoop &L); 303 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 304 const BlockFilterSet &LoopBlockSet); 305 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 306 const BlockFilterSet &LoopBlockSet); 307 void buildCFGChains(MachineFunction &F); 308 void alignBlocks(MachineFunction &F); 309 310 public: 311 static char ID; // Pass identification, replacement for typeid 312 MachineBlockPlacement() : MachineFunctionPass(ID) { 313 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 314 } 315 316 bool runOnMachineFunction(MachineFunction &F) override; 317 318 void getAnalysisUsage(AnalysisUsage &AU) const override { 319 AU.addRequired<MachineBranchProbabilityInfo>(); 320 AU.addRequired<MachineBlockFrequencyInfo>(); 321 AU.addRequired<MachineDominatorTree>(); 322 AU.addRequired<MachineLoopInfo>(); 323 MachineFunctionPass::getAnalysisUsage(AU); 324 } 325 }; 326 } 327 328 char MachineBlockPlacement::ID = 0; 329 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 330 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 331 "Branch Probability Basic Block Placement", false, false) 332 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 333 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 334 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 336 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 337 "Branch Probability Basic Block Placement", false, false) 338 339 #ifndef NDEBUG 340 /// \brief Helper to print the name of a MBB. 341 /// 342 /// Only used by debug logging. 343 static std::string getBlockName(MachineBasicBlock *BB) { 344 std::string Result; 345 raw_string_ostream OS(Result); 346 OS << "BB#" << BB->getNumber(); 347 OS << " ('" << BB->getName() << "')"; 348 OS.flush(); 349 return Result; 350 } 351 #endif 352 353 /// \brief Mark a chain's successors as having one fewer preds. 354 /// 355 /// When a chain is being merged into the "placed" chain, this routine will 356 /// quickly walk the successors of each block in the chain and mark them as 357 /// having one fewer active predecessor. It also adds any successors of this 358 /// chain which reach the zero-predecessor state to the worklist passed in. 359 void MachineBlockPlacement::markChainSuccessors( 360 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 361 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 362 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 363 const BlockFilterSet *BlockFilter) { 364 // Walk all the blocks in this chain, marking their successors as having 365 // a predecessor placed. 366 for (MachineBasicBlock *MBB : Chain) { 367 // Add any successors for which this is the only un-placed in-loop 368 // predecessor to the worklist as a viable candidate for CFG-neutral 369 // placement. No subsequent placement of this block will violate the CFG 370 // shape, so we get to use heuristics to choose a favorable placement. 371 for (MachineBasicBlock *Succ : MBB->successors()) { 372 if (BlockFilter && !BlockFilter->count(Succ)) 373 continue; 374 BlockChain &SuccChain = *BlockToChain[Succ]; 375 // Disregard edges within a fixed chain, or edges to the loop header. 376 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 377 continue; 378 379 // This is a cross-chain edge that is within the loop, so decrement the 380 // loop predecessor count of the destination chain. 381 if (SuccChain.UnscheduledPredecessors == 0 || 382 --SuccChain.UnscheduledPredecessors > 0) 383 continue; 384 385 auto *MBB = *SuccChain.begin(); 386 if (MBB->isEHPad()) 387 EHPadWorkList.push_back(MBB); 388 else 389 BlockWorkList.push_back(MBB); 390 } 391 } 392 } 393 394 /// \brief Select the best successor for a block. 395 /// 396 /// This looks across all successors of a particular block and attempts to 397 /// select the "best" one to be the layout successor. It only considers direct 398 /// successors which also pass the block filter. It will attempt to avoid 399 /// breaking CFG structure, but cave and break such structures in the case of 400 /// very hot successor edges. 401 /// 402 /// \returns The best successor block found, or null if none are viable. 403 MachineBasicBlock * 404 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 405 BlockChain &Chain, 406 const BlockFilterSet *BlockFilter) { 407 const BranchProbability HotProb(4, 5); // 80% 408 409 MachineBasicBlock *BestSucc = nullptr; 410 auto BestProb = BranchProbability::getZero(); 411 412 // Adjust edge probabilities by excluding edges pointing to blocks that is 413 // either not in BlockFilter or is already in the current chain. Consider the 414 // following CFG: 415 // 416 // --->A 417 // | / \ 418 // | B C 419 // | \ / \ 420 // ----D E 421 // 422 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 423 // A->C is chosen as a fall-through, D won't be selected as a successor of C 424 // due to CFG constraint (the probability of C->D is not greater than 425 // HotProb). If we exclude E that is not in BlockFilter when calculating the 426 // probability of C->D, D will be selected and we will get A C D B as the 427 // layout of this loop. 428 auto AdjustedSumProb = BranchProbability::getOne(); 429 SmallVector<MachineBasicBlock *, 4> Successors; 430 for (MachineBasicBlock *Succ : BB->successors()) { 431 bool SkipSucc = false; 432 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 433 SkipSucc = true; 434 } else { 435 BlockChain *SuccChain = BlockToChain[Succ]; 436 if (SuccChain == &Chain) { 437 SkipSucc = true; 438 } else if (Succ != *SuccChain->begin()) { 439 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 440 continue; 441 } 442 } 443 if (SkipSucc) 444 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 445 else 446 Successors.push_back(Succ); 447 } 448 449 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 450 for (MachineBasicBlock *Succ : Successors) { 451 BranchProbability SuccProb; 452 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 453 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 454 if (SuccProbN >= SuccProbD) 455 SuccProb = BranchProbability::getOne(); 456 else 457 SuccProb = BranchProbability(SuccProbN, SuccProbD); 458 459 // If we outline optional branches, look whether Succ is unavoidable, i.e. 460 // dominates all terminators of the MachineFunction. If it does, other 461 // successors must be optional. Don't do this for cold branches. 462 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 463 UnavoidableBlocks.count(Succ) > 0) { 464 auto HasShortOptionalBranch = [&]() { 465 for (MachineBasicBlock *Pred : Succ->predecessors()) { 466 // Check whether there is an unplaced optional branch. 467 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 468 BlockToChain[Pred] == &Chain) 469 continue; 470 // Check whether the optional branch has exactly one BB. 471 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 472 continue; 473 // Check whether the optional branch is small. 474 if (Pred->size() < OutlineOptionalThreshold) 475 return true; 476 } 477 return false; 478 }; 479 if (!HasShortOptionalBranch()) 480 return Succ; 481 } 482 483 // Only consider successors which are either "hot", or wouldn't violate 484 // any CFG constraints. 485 BlockChain &SuccChain = *BlockToChain[Succ]; 486 if (SuccChain.UnscheduledPredecessors != 0) { 487 if (SuccProb < HotProb) { 488 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 489 << " (prob) (CFG conflict)\n"); 490 continue; 491 } 492 493 // Make sure that a hot successor doesn't have a globally more 494 // important predecessor. 495 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 496 BlockFrequency CandidateEdgeFreq = 497 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 498 bool BadCFGConflict = false; 499 for (MachineBasicBlock *Pred : Succ->predecessors()) { 500 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 501 (BlockFilter && !BlockFilter->count(Pred)) || 502 BlockToChain[Pred] == &Chain) 503 continue; 504 BlockFrequency PredEdgeFreq = 505 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 506 if (PredEdgeFreq >= CandidateEdgeFreq) { 507 BadCFGConflict = true; 508 break; 509 } 510 } 511 if (BadCFGConflict) { 512 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 513 << " (prob) (non-cold CFG conflict)\n"); 514 continue; 515 } 516 } 517 518 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 519 << " (prob)" 520 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 521 << "\n"); 522 if (BestSucc && BestProb >= SuccProb) 523 continue; 524 BestSucc = Succ; 525 BestProb = SuccProb; 526 } 527 return BestSucc; 528 } 529 530 /// \brief Select the best block from a worklist. 531 /// 532 /// This looks through the provided worklist as a list of candidate basic 533 /// blocks and select the most profitable one to place. The definition of 534 /// profitable only really makes sense in the context of a loop. This returns 535 /// the most frequently visited block in the worklist, which in the case of 536 /// a loop, is the one most desirable to be physically close to the rest of the 537 /// loop body in order to improve icache behavior. 538 /// 539 /// \returns The best block found, or null if none are viable. 540 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 541 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 542 // Once we need to walk the worklist looking for a candidate, cleanup the 543 // worklist of already placed entries. 544 // FIXME: If this shows up on profiles, it could be folded (at the cost of 545 // some code complexity) into the loop below. 546 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 547 [&](MachineBasicBlock *BB) { 548 return BlockToChain.lookup(BB) == &Chain; 549 }), 550 WorkList.end()); 551 552 if (WorkList.empty()) 553 return nullptr; 554 555 bool IsEHPad = WorkList[0]->isEHPad(); 556 557 MachineBasicBlock *BestBlock = nullptr; 558 BlockFrequency BestFreq; 559 for (MachineBasicBlock *MBB : WorkList) { 560 assert(MBB->isEHPad() == IsEHPad); 561 562 BlockChain &SuccChain = *BlockToChain[MBB]; 563 if (&SuccChain == &Chain) 564 continue; 565 566 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 567 568 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 569 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 570 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 571 572 // For ehpad, we layout the least probable first as to avoid jumping back 573 // from least probable landingpads to more probable ones. 574 // 575 // FIXME: Using probability is probably (!) not the best way to achieve 576 // this. We should probably have a more principled approach to layout 577 // cleanup code. 578 // 579 // The goal is to get: 580 // 581 // +--------------------------+ 582 // | V 583 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 584 // 585 // Rather than: 586 // 587 // +-------------------------------------+ 588 // V | 589 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 590 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 591 continue; 592 593 BestBlock = MBB; 594 BestFreq = CandidateFreq; 595 } 596 597 return BestBlock; 598 } 599 600 /// \brief Retrieve the first unplaced basic block. 601 /// 602 /// This routine is called when we are unable to use the CFG to walk through 603 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 604 /// We walk through the function's blocks in order, starting from the 605 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 606 /// re-scanning the entire sequence on repeated calls to this routine. 607 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 608 MachineFunction &F, const BlockChain &PlacedChain, 609 MachineFunction::iterator &PrevUnplacedBlockIt, 610 const BlockFilterSet *BlockFilter) { 611 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 612 ++I) { 613 if (BlockFilter && !BlockFilter->count(&*I)) 614 continue; 615 if (BlockToChain[&*I] != &PlacedChain) { 616 PrevUnplacedBlockIt = I; 617 // Now select the head of the chain to which the unplaced block belongs 618 // as the block to place. This will force the entire chain to be placed, 619 // and satisfies the requirements of merging chains. 620 return *BlockToChain[&*I]->begin(); 621 } 622 } 623 return nullptr; 624 } 625 626 void MachineBlockPlacement::fillWorkLists( 627 MachineBasicBlock *MBB, 628 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 629 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 630 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 631 const BlockFilterSet *BlockFilter = nullptr) { 632 BlockChain &Chain = *BlockToChain[MBB]; 633 if (!UpdatedPreds.insert(&Chain).second) 634 return; 635 636 assert(Chain.UnscheduledPredecessors == 0); 637 for (MachineBasicBlock *ChainBB : Chain) { 638 assert(BlockToChain[ChainBB] == &Chain); 639 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 640 if (BlockFilter && !BlockFilter->count(Pred)) 641 continue; 642 if (BlockToChain[Pred] == &Chain) 643 continue; 644 ++Chain.UnscheduledPredecessors; 645 } 646 } 647 648 if (Chain.UnscheduledPredecessors != 0) 649 return; 650 651 MBB = *Chain.begin(); 652 if (MBB->isEHPad()) 653 EHPadWorkList.push_back(MBB); 654 else 655 BlockWorkList.push_back(MBB); 656 } 657 658 void MachineBlockPlacement::buildChain( 659 MachineBasicBlock *BB, BlockChain &Chain, 660 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 661 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 662 const BlockFilterSet *BlockFilter) { 663 assert(BB); 664 assert(BlockToChain[BB] == &Chain); 665 MachineFunction &F = *BB->getParent(); 666 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 667 668 MachineBasicBlock *LoopHeaderBB = BB; 669 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 670 BlockFilter); 671 BB = *std::prev(Chain.end()); 672 for (;;) { 673 assert(BB); 674 assert(BlockToChain[BB] == &Chain); 675 assert(*std::prev(Chain.end()) == BB); 676 677 // Look for the best viable successor if there is one to place immediately 678 // after this block. 679 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 680 681 // If an immediate successor isn't available, look for the best viable 682 // block among those we've identified as not violating the loop's CFG at 683 // this point. This won't be a fallthrough, but it will increase locality. 684 if (!BestSucc) 685 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 686 if (!BestSucc) 687 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 688 689 if (!BestSucc) { 690 BestSucc = 691 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 692 if (!BestSucc) 693 break; 694 695 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 696 "layout successor until the CFG reduces\n"); 697 } 698 699 // Place this block, updating the datastructures to reflect its placement. 700 BlockChain &SuccChain = *BlockToChain[BestSucc]; 701 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 702 // we selected a successor that didn't fit naturally into the CFG. 703 SuccChain.UnscheduledPredecessors = 0; 704 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 705 << getBlockName(BestSucc) << "\n"); 706 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 707 BlockFilter); 708 Chain.merge(BestSucc, &SuccChain); 709 BB = *std::prev(Chain.end()); 710 } 711 712 DEBUG(dbgs() << "Finished forming chain for header block " 713 << getBlockName(*Chain.begin()) << "\n"); 714 } 715 716 /// \brief Find the best loop top block for layout. 717 /// 718 /// Look for a block which is strictly better than the loop header for laying 719 /// out at the top of the loop. This looks for one and only one pattern: 720 /// a latch block with no conditional exit. This block will cause a conditional 721 /// jump around it or will be the bottom of the loop if we lay it out in place, 722 /// but if it it doesn't end up at the bottom of the loop for any reason, 723 /// rotation alone won't fix it. Because such a block will always result in an 724 /// unconditional jump (for the backedge) rotating it in front of the loop 725 /// header is always profitable. 726 MachineBasicBlock * 727 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 728 const BlockFilterSet &LoopBlockSet) { 729 // Check that the header hasn't been fused with a preheader block due to 730 // crazy branches. If it has, we need to start with the header at the top to 731 // prevent pulling the preheader into the loop body. 732 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 733 if (!LoopBlockSet.count(*HeaderChain.begin())) 734 return L.getHeader(); 735 736 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 737 << "\n"); 738 739 BlockFrequency BestPredFreq; 740 MachineBasicBlock *BestPred = nullptr; 741 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 742 if (!LoopBlockSet.count(Pred)) 743 continue; 744 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 745 << Pred->succ_size() << " successors, "; 746 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 747 if (Pred->succ_size() > 1) 748 continue; 749 750 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 751 if (!BestPred || PredFreq > BestPredFreq || 752 (!(PredFreq < BestPredFreq) && 753 Pred->isLayoutSuccessor(L.getHeader()))) { 754 BestPred = Pred; 755 BestPredFreq = PredFreq; 756 } 757 } 758 759 // If no direct predecessor is fine, just use the loop header. 760 if (!BestPred) { 761 DEBUG(dbgs() << " final top unchanged\n"); 762 return L.getHeader(); 763 } 764 765 // Walk backwards through any straight line of predecessors. 766 while (BestPred->pred_size() == 1 && 767 (*BestPred->pred_begin())->succ_size() == 1 && 768 *BestPred->pred_begin() != L.getHeader()) 769 BestPred = *BestPred->pred_begin(); 770 771 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 772 return BestPred; 773 } 774 775 /// \brief Find the best loop exiting block for layout. 776 /// 777 /// This routine implements the logic to analyze the loop looking for the best 778 /// block to layout at the top of the loop. Typically this is done to maximize 779 /// fallthrough opportunities. 780 MachineBasicBlock * 781 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 782 const BlockFilterSet &LoopBlockSet) { 783 // We don't want to layout the loop linearly in all cases. If the loop header 784 // is just a normal basic block in the loop, we want to look for what block 785 // within the loop is the best one to layout at the top. However, if the loop 786 // header has be pre-merged into a chain due to predecessors not having 787 // analyzable branches, *and* the predecessor it is merged with is *not* part 788 // of the loop, rotating the header into the middle of the loop will create 789 // a non-contiguous range of blocks which is Very Bad. So start with the 790 // header and only rotate if safe. 791 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 792 if (!LoopBlockSet.count(*HeaderChain.begin())) 793 return nullptr; 794 795 BlockFrequency BestExitEdgeFreq; 796 unsigned BestExitLoopDepth = 0; 797 MachineBasicBlock *ExitingBB = nullptr; 798 // If there are exits to outer loops, loop rotation can severely limit 799 // fallthrough opportunites unless it selects such an exit. Keep a set of 800 // blocks where rotating to exit with that block will reach an outer loop. 801 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 802 803 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 804 << "\n"); 805 for (MachineBasicBlock *MBB : L.getBlocks()) { 806 BlockChain &Chain = *BlockToChain[MBB]; 807 // Ensure that this block is at the end of a chain; otherwise it could be 808 // mid-way through an inner loop or a successor of an unanalyzable branch. 809 if (MBB != *std::prev(Chain.end())) 810 continue; 811 812 // Now walk the successors. We need to establish whether this has a viable 813 // exiting successor and whether it has a viable non-exiting successor. 814 // We store the old exiting state and restore it if a viable looping 815 // successor isn't found. 816 MachineBasicBlock *OldExitingBB = ExitingBB; 817 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 818 bool HasLoopingSucc = false; 819 for (MachineBasicBlock *Succ : MBB->successors()) { 820 if (Succ->isEHPad()) 821 continue; 822 if (Succ == MBB) 823 continue; 824 BlockChain &SuccChain = *BlockToChain[Succ]; 825 // Don't split chains, either this chain or the successor's chain. 826 if (&Chain == &SuccChain) { 827 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 828 << getBlockName(Succ) << " (chain conflict)\n"); 829 continue; 830 } 831 832 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 833 if (LoopBlockSet.count(Succ)) { 834 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 835 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 836 HasLoopingSucc = true; 837 continue; 838 } 839 840 unsigned SuccLoopDepth = 0; 841 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 842 SuccLoopDepth = ExitLoop->getLoopDepth(); 843 if (ExitLoop->contains(&L)) 844 BlocksExitingToOuterLoop.insert(MBB); 845 } 846 847 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 848 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 849 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 850 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 851 // Note that we bias this toward an existing layout successor to retain 852 // incoming order in the absence of better information. The exit must have 853 // a frequency higher than the current exit before we consider breaking 854 // the layout. 855 BranchProbability Bias(100 - ExitBlockBias, 100); 856 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 857 ExitEdgeFreq > BestExitEdgeFreq || 858 (MBB->isLayoutSuccessor(Succ) && 859 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 860 BestExitEdgeFreq = ExitEdgeFreq; 861 ExitingBB = MBB; 862 } 863 } 864 865 if (!HasLoopingSucc) { 866 // Restore the old exiting state, no viable looping successor was found. 867 ExitingBB = OldExitingBB; 868 BestExitEdgeFreq = OldBestExitEdgeFreq; 869 } 870 } 871 // Without a candidate exiting block or with only a single block in the 872 // loop, just use the loop header to layout the loop. 873 if (!ExitingBB || L.getNumBlocks() == 1) 874 return nullptr; 875 876 // Also, if we have exit blocks which lead to outer loops but didn't select 877 // one of them as the exiting block we are rotating toward, disable loop 878 // rotation altogether. 879 if (!BlocksExitingToOuterLoop.empty() && 880 !BlocksExitingToOuterLoop.count(ExitingBB)) 881 return nullptr; 882 883 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 884 return ExitingBB; 885 } 886 887 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 888 /// 889 /// Once we have built a chain, try to rotate it to line up the hot exit block 890 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 891 /// branches. For example, if the loop has fallthrough into its header and out 892 /// of its bottom already, don't rotate it. 893 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 894 MachineBasicBlock *ExitingBB, 895 const BlockFilterSet &LoopBlockSet) { 896 if (!ExitingBB) 897 return; 898 899 MachineBasicBlock *Top = *LoopChain.begin(); 900 bool ViableTopFallthrough = false; 901 for (MachineBasicBlock *Pred : Top->predecessors()) { 902 BlockChain *PredChain = BlockToChain[Pred]; 903 if (!LoopBlockSet.count(Pred) && 904 (!PredChain || Pred == *std::prev(PredChain->end()))) { 905 ViableTopFallthrough = true; 906 break; 907 } 908 } 909 910 // If the header has viable fallthrough, check whether the current loop 911 // bottom is a viable exiting block. If so, bail out as rotating will 912 // introduce an unnecessary branch. 913 if (ViableTopFallthrough) { 914 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 915 for (MachineBasicBlock *Succ : Bottom->successors()) { 916 BlockChain *SuccChain = BlockToChain[Succ]; 917 if (!LoopBlockSet.count(Succ) && 918 (!SuccChain || Succ == *SuccChain->begin())) 919 return; 920 } 921 } 922 923 BlockChain::iterator ExitIt = 924 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 925 if (ExitIt == LoopChain.end()) 926 return; 927 928 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 929 } 930 931 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 932 /// 933 /// With profile data, we can determine the cost in terms of missed fall through 934 /// opportunities when rotating a loop chain and select the best rotation. 935 /// Basically, there are three kinds of cost to consider for each rotation: 936 /// 1. The possibly missed fall through edge (if it exists) from BB out of 937 /// the loop to the loop header. 938 /// 2. The possibly missed fall through edges (if they exist) from the loop 939 /// exits to BB out of the loop. 940 /// 3. The missed fall through edge (if it exists) from the last BB to the 941 /// first BB in the loop chain. 942 /// Therefore, the cost for a given rotation is the sum of costs listed above. 943 /// We select the best rotation with the smallest cost. 944 void MachineBlockPlacement::rotateLoopWithProfile( 945 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 946 auto HeaderBB = L.getHeader(); 947 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 948 auto RotationPos = LoopChain.end(); 949 950 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 951 952 // A utility lambda that scales up a block frequency by dividing it by a 953 // branch probability which is the reciprocal of the scale. 954 auto ScaleBlockFrequency = [](BlockFrequency Freq, 955 unsigned Scale) -> BlockFrequency { 956 if (Scale == 0) 957 return 0; 958 // Use operator / between BlockFrequency and BranchProbability to implement 959 // saturating multiplication. 960 return Freq / BranchProbability(1, Scale); 961 }; 962 963 // Compute the cost of the missed fall-through edge to the loop header if the 964 // chain head is not the loop header. As we only consider natural loops with 965 // single header, this computation can be done only once. 966 BlockFrequency HeaderFallThroughCost(0); 967 for (auto *Pred : HeaderBB->predecessors()) { 968 BlockChain *PredChain = BlockToChain[Pred]; 969 if (!LoopBlockSet.count(Pred) && 970 (!PredChain || Pred == *std::prev(PredChain->end()))) { 971 auto EdgeFreq = 972 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 973 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 974 // If the predecessor has only an unconditional jump to the header, we 975 // need to consider the cost of this jump. 976 if (Pred->succ_size() == 1) 977 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 978 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 979 } 980 } 981 982 // Here we collect all exit blocks in the loop, and for each exit we find out 983 // its hottest exit edge. For each loop rotation, we define the loop exit cost 984 // as the sum of frequencies of exit edges we collect here, excluding the exit 985 // edge from the tail of the loop chain. 986 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 987 for (auto BB : LoopChain) { 988 auto LargestExitEdgeProb = BranchProbability::getZero(); 989 for (auto *Succ : BB->successors()) { 990 BlockChain *SuccChain = BlockToChain[Succ]; 991 if (!LoopBlockSet.count(Succ) && 992 (!SuccChain || Succ == *SuccChain->begin())) { 993 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 994 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 995 } 996 } 997 if (LargestExitEdgeProb > BranchProbability::getZero()) { 998 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 999 ExitsWithFreq.emplace_back(BB, ExitFreq); 1000 } 1001 } 1002 1003 // In this loop we iterate every block in the loop chain and calculate the 1004 // cost assuming the block is the head of the loop chain. When the loop ends, 1005 // we should have found the best candidate as the loop chain's head. 1006 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1007 EndIter = LoopChain.end(); 1008 Iter != EndIter; Iter++, TailIter++) { 1009 // TailIter is used to track the tail of the loop chain if the block we are 1010 // checking (pointed by Iter) is the head of the chain. 1011 if (TailIter == LoopChain.end()) 1012 TailIter = LoopChain.begin(); 1013 1014 auto TailBB = *TailIter; 1015 1016 // Calculate the cost by putting this BB to the top. 1017 BlockFrequency Cost = 0; 1018 1019 // If the current BB is the loop header, we need to take into account the 1020 // cost of the missed fall through edge from outside of the loop to the 1021 // header. 1022 if (Iter != HeaderIter) 1023 Cost += HeaderFallThroughCost; 1024 1025 // Collect the loop exit cost by summing up frequencies of all exit edges 1026 // except the one from the chain tail. 1027 for (auto &ExitWithFreq : ExitsWithFreq) 1028 if (TailBB != ExitWithFreq.first) 1029 Cost += ExitWithFreq.second; 1030 1031 // The cost of breaking the once fall-through edge from the tail to the top 1032 // of the loop chain. Here we need to consider three cases: 1033 // 1. If the tail node has only one successor, then we will get an 1034 // additional jmp instruction. So the cost here is (MisfetchCost + 1035 // JumpInstCost) * tail node frequency. 1036 // 2. If the tail node has two successors, then we may still get an 1037 // additional jmp instruction if the layout successor after the loop 1038 // chain is not its CFG successor. Note that the more frequently executed 1039 // jmp instruction will be put ahead of the other one. Assume the 1040 // frequency of those two branches are x and y, where x is the frequency 1041 // of the edge to the chain head, then the cost will be 1042 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1043 // 3. If the tail node has more than two successors (this rarely happens), 1044 // we won't consider any additional cost. 1045 if (TailBB->isSuccessor(*Iter)) { 1046 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1047 if (TailBB->succ_size() == 1) 1048 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1049 MisfetchCost + JumpInstCost); 1050 else if (TailBB->succ_size() == 2) { 1051 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1052 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1053 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1054 ? TailBBFreq * TailToHeadProb.getCompl() 1055 : TailToHeadFreq; 1056 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1057 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1058 } 1059 } 1060 1061 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1062 << " to the top: " << Cost.getFrequency() << "\n"); 1063 1064 if (Cost < SmallestRotationCost) { 1065 SmallestRotationCost = Cost; 1066 RotationPos = Iter; 1067 } 1068 } 1069 1070 if (RotationPos != LoopChain.end()) { 1071 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1072 << " to the top\n"); 1073 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1074 } 1075 } 1076 1077 /// \brief Collect blocks in the given loop that are to be placed. 1078 /// 1079 /// When profile data is available, exclude cold blocks from the returned set; 1080 /// otherwise, collect all blocks in the loop. 1081 MachineBlockPlacement::BlockFilterSet 1082 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1083 BlockFilterSet LoopBlockSet; 1084 1085 // Filter cold blocks off from LoopBlockSet when profile data is available. 1086 // Collect the sum of frequencies of incoming edges to the loop header from 1087 // outside. If we treat the loop as a super block, this is the frequency of 1088 // the loop. Then for each block in the loop, we calculate the ratio between 1089 // its frequency and the frequency of the loop block. When it is too small, 1090 // don't add it to the loop chain. If there are outer loops, then this block 1091 // will be merged into the first outer loop chain for which this block is not 1092 // cold anymore. This needs precise profile data and we only do this when 1093 // profile data is available. 1094 if (F.getFunction()->getEntryCount()) { 1095 BlockFrequency LoopFreq(0); 1096 for (auto LoopPred : L.getHeader()->predecessors()) 1097 if (!L.contains(LoopPred)) 1098 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1099 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1100 1101 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1102 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1103 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1104 continue; 1105 LoopBlockSet.insert(LoopBB); 1106 } 1107 } else 1108 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1109 1110 return LoopBlockSet; 1111 } 1112 1113 /// \brief Forms basic block chains from the natural loop structures. 1114 /// 1115 /// These chains are designed to preserve the existing *structure* of the code 1116 /// as much as possible. We can then stitch the chains together in a way which 1117 /// both preserves the topological structure and minimizes taken conditional 1118 /// branches. 1119 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1120 MachineLoop &L) { 1121 // First recurse through any nested loops, building chains for those inner 1122 // loops. 1123 for (MachineLoop *InnerLoop : L) 1124 buildLoopChains(F, *InnerLoop); 1125 1126 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1127 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1128 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1129 1130 // Check if we have profile data for this function. If yes, we will rotate 1131 // this loop by modeling costs more precisely which requires the profile data 1132 // for better layout. 1133 bool RotateLoopWithProfile = 1134 ForcePreciseRotationCost || 1135 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1136 1137 // First check to see if there is an obviously preferable top block for the 1138 // loop. This will default to the header, but may end up as one of the 1139 // predecessors to the header if there is one which will result in strictly 1140 // fewer branches in the loop body. 1141 // When we use profile data to rotate the loop, this is unnecessary. 1142 MachineBasicBlock *LoopTop = 1143 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1144 1145 // If we selected just the header for the loop top, look for a potentially 1146 // profitable exit block in the event that rotating the loop can eliminate 1147 // branches by placing an exit edge at the bottom. 1148 MachineBasicBlock *ExitingBB = nullptr; 1149 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1150 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1151 1152 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1153 1154 // FIXME: This is a really lame way of walking the chains in the loop: we 1155 // walk the blocks, and use a set to prevent visiting a particular chain 1156 // twice. 1157 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1158 assert(LoopChain.UnscheduledPredecessors == 0); 1159 UpdatedPreds.insert(&LoopChain); 1160 1161 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1162 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1163 &LoopBlockSet); 1164 1165 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1166 1167 if (RotateLoopWithProfile) 1168 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1169 else 1170 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1171 1172 DEBUG({ 1173 // Crash at the end so we get all of the debugging output first. 1174 bool BadLoop = false; 1175 if (LoopChain.UnscheduledPredecessors) { 1176 BadLoop = true; 1177 dbgs() << "Loop chain contains a block without its preds placed!\n" 1178 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1179 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1180 } 1181 for (MachineBasicBlock *ChainBB : LoopChain) { 1182 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1183 if (!LoopBlockSet.erase(ChainBB)) { 1184 // We don't mark the loop as bad here because there are real situations 1185 // where this can occur. For example, with an unanalyzable fallthrough 1186 // from a loop block to a non-loop block or vice versa. 1187 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1188 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1189 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1190 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1191 } 1192 } 1193 1194 if (!LoopBlockSet.empty()) { 1195 BadLoop = true; 1196 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1197 dbgs() << "Loop contains blocks never placed into a chain!\n" 1198 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1199 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1200 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1201 } 1202 assert(!BadLoop && "Detected problems with the placement of this loop."); 1203 }); 1204 } 1205 1206 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1207 // Ensure that every BB in the function has an associated chain to simplify 1208 // the assumptions of the remaining algorithm. 1209 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1210 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1211 MachineBasicBlock *BB = &*FI; 1212 BlockChain *Chain = 1213 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1214 // Also, merge any blocks which we cannot reason about and must preserve 1215 // the exact fallthrough behavior for. 1216 for (;;) { 1217 Cond.clear(); 1218 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1219 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1220 break; 1221 1222 MachineFunction::iterator NextFI = std::next(FI); 1223 MachineBasicBlock *NextBB = &*NextFI; 1224 // Ensure that the layout successor is a viable block, as we know that 1225 // fallthrough is a possibility. 1226 assert(NextFI != FE && "Can't fallthrough past the last block."); 1227 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1228 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1229 << "\n"); 1230 Chain->merge(NextBB, nullptr); 1231 FI = NextFI; 1232 BB = NextBB; 1233 } 1234 } 1235 1236 if (OutlineOptionalBranches) { 1237 // Find the nearest common dominator of all of F's terminators. 1238 MachineBasicBlock *Terminator = nullptr; 1239 for (MachineBasicBlock &MBB : F) { 1240 if (MBB.succ_size() == 0) { 1241 if (Terminator == nullptr) 1242 Terminator = &MBB; 1243 else 1244 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1245 } 1246 } 1247 1248 // MBBs dominating this common dominator are unavoidable. 1249 UnavoidableBlocks.clear(); 1250 for (MachineBasicBlock &MBB : F) { 1251 if (MDT->dominates(&MBB, Terminator)) { 1252 UnavoidableBlocks.insert(&MBB); 1253 } 1254 } 1255 } 1256 1257 // Build any loop-based chains. 1258 for (MachineLoop *L : *MLI) 1259 buildLoopChains(F, *L); 1260 1261 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1262 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1263 1264 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1265 for (MachineBasicBlock &MBB : F) 1266 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1267 1268 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1269 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1270 1271 #ifndef NDEBUG 1272 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1273 #endif 1274 DEBUG({ 1275 // Crash at the end so we get all of the debugging output first. 1276 bool BadFunc = false; 1277 FunctionBlockSetType FunctionBlockSet; 1278 for (MachineBasicBlock &MBB : F) 1279 FunctionBlockSet.insert(&MBB); 1280 1281 for (MachineBasicBlock *ChainBB : FunctionChain) 1282 if (!FunctionBlockSet.erase(ChainBB)) { 1283 BadFunc = true; 1284 dbgs() << "Function chain contains a block not in the function!\n" 1285 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1286 } 1287 1288 if (!FunctionBlockSet.empty()) { 1289 BadFunc = true; 1290 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1291 dbgs() << "Function contains blocks never placed into a chain!\n" 1292 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1293 } 1294 assert(!BadFunc && "Detected problems with the block placement."); 1295 }); 1296 1297 // Splice the blocks into place. 1298 MachineFunction::iterator InsertPos = F.begin(); 1299 for (MachineBasicBlock *ChainBB : FunctionChain) { 1300 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1301 : " ... ") 1302 << getBlockName(ChainBB) << "\n"); 1303 if (InsertPos != MachineFunction::iterator(ChainBB)) 1304 F.splice(InsertPos, ChainBB); 1305 else 1306 ++InsertPos; 1307 1308 // Update the terminator of the previous block. 1309 if (ChainBB == *FunctionChain.begin()) 1310 continue; 1311 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1312 1313 // FIXME: It would be awesome of updateTerminator would just return rather 1314 // than assert when the branch cannot be analyzed in order to remove this 1315 // boiler plate. 1316 Cond.clear(); 1317 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1318 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1319 // The "PrevBB" is not yet updated to reflect current code layout, so, 1320 // o. it may fall-through to a block without explict "goto" instruction 1321 // before layout, and no longer fall-through it after layout; or 1322 // o. just opposite. 1323 // 1324 // AnalyzeBranch() may return erroneous value for FBB when these two 1325 // situations take place. For the first scenario FBB is mistakenly set 1326 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1327 // is mistakenly pointing to "*BI". 1328 // 1329 bool needUpdateBr = true; 1330 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1331 PrevBB->updateTerminator(); 1332 needUpdateBr = false; 1333 Cond.clear(); 1334 TBB = FBB = nullptr; 1335 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1336 // FIXME: This should never take place. 1337 TBB = FBB = nullptr; 1338 } 1339 } 1340 1341 // If PrevBB has a two-way branch, try to re-order the branches 1342 // such that we branch to the successor with higher probability first. 1343 if (TBB && !Cond.empty() && FBB && 1344 MBPI->getEdgeProbability(PrevBB, FBB) > 1345 MBPI->getEdgeProbability(PrevBB, TBB) && 1346 !TII->ReverseBranchCondition(Cond)) { 1347 DEBUG(dbgs() << "Reverse order of the two branches: " 1348 << getBlockName(PrevBB) << "\n"); 1349 DEBUG(dbgs() << " Edge probability: " 1350 << MBPI->getEdgeProbability(PrevBB, FBB) << " vs " 1351 << MBPI->getEdgeProbability(PrevBB, TBB) << "\n"); 1352 DebugLoc dl; // FIXME: this is nowhere 1353 TII->RemoveBranch(*PrevBB); 1354 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1355 needUpdateBr = true; 1356 } 1357 if (needUpdateBr) 1358 PrevBB->updateTerminator(); 1359 } 1360 } 1361 1362 // Fixup the last block. 1363 Cond.clear(); 1364 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1365 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1366 F.back().updateTerminator(); 1367 1368 // Now that all the basic blocks in the chain have the proper layout, 1369 // make a final call to AnalyzeBranch with AllowModify set. 1370 // Indeed, the target may be able to optimize the branches in a way we 1371 // cannot because all branches may not be analyzable. 1372 // E.g., the target may be able to remove an unconditional branch to 1373 // a fallthrough when it occurs after predicated terminators. 1374 for (MachineBasicBlock *ChainBB : FunctionChain) { 1375 Cond.clear(); 1376 TBB = nullptr; 1377 FBB = nullptr; // For AnalyzeBranch. 1378 (void)TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true); 1379 } 1380 } 1381 1382 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1383 // Walk through the backedges of the function now that we have fully laid out 1384 // the basic blocks and align the destination of each backedge. We don't rely 1385 // exclusively on the loop info here so that we can align backedges in 1386 // unnatural CFGs and backedges that were introduced purely because of the 1387 // loop rotations done during this layout pass. 1388 if (F.getFunction()->optForSize()) 1389 return; 1390 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1391 if (FunctionChain.begin() == FunctionChain.end()) 1392 return; // Empty chain. 1393 1394 const BranchProbability ColdProb(1, 5); // 20% 1395 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1396 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1397 for (MachineBasicBlock *ChainBB : FunctionChain) { 1398 if (ChainBB == *FunctionChain.begin()) 1399 continue; 1400 1401 // Don't align non-looping basic blocks. These are unlikely to execute 1402 // enough times to matter in practice. Note that we'll still handle 1403 // unnatural CFGs inside of a natural outer loop (the common case) and 1404 // rotated loops. 1405 MachineLoop *L = MLI->getLoopFor(ChainBB); 1406 if (!L) 1407 continue; 1408 1409 unsigned Align = TLI->getPrefLoopAlignment(L); 1410 if (!Align) 1411 continue; // Don't care about loop alignment. 1412 1413 // If the block is cold relative to the function entry don't waste space 1414 // aligning it. 1415 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1416 if (Freq < WeightedEntryFreq) 1417 continue; 1418 1419 // If the block is cold relative to its loop header, don't align it 1420 // regardless of what edges into the block exist. 1421 MachineBasicBlock *LoopHeader = L->getHeader(); 1422 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1423 if (Freq < (LoopHeaderFreq * ColdProb)) 1424 continue; 1425 1426 // Check for the existence of a non-layout predecessor which would benefit 1427 // from aligning this block. 1428 MachineBasicBlock *LayoutPred = 1429 &*std::prev(MachineFunction::iterator(ChainBB)); 1430 1431 // Force alignment if all the predecessors are jumps. We already checked 1432 // that the block isn't cold above. 1433 if (!LayoutPred->isSuccessor(ChainBB)) { 1434 ChainBB->setAlignment(Align); 1435 continue; 1436 } 1437 1438 // Align this block if the layout predecessor's edge into this block is 1439 // cold relative to the block. When this is true, other predecessors make up 1440 // all of the hot entries into the block and thus alignment is likely to be 1441 // important. 1442 BranchProbability LayoutProb = 1443 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1444 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1445 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1446 ChainBB->setAlignment(Align); 1447 } 1448 } 1449 1450 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1451 if (skipFunction(*F.getFunction())) 1452 return false; 1453 1454 // Check for single-block functions and skip them. 1455 if (std::next(F.begin()) == F.end()) 1456 return false; 1457 1458 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1459 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1460 MLI = &getAnalysis<MachineLoopInfo>(); 1461 TII = F.getSubtarget().getInstrInfo(); 1462 TLI = F.getSubtarget().getTargetLowering(); 1463 MDT = &getAnalysis<MachineDominatorTree>(); 1464 assert(BlockToChain.empty()); 1465 1466 buildCFGChains(F); 1467 alignBlocks(F); 1468 1469 BlockToChain.clear(); 1470 ChainAllocator.DestroyAll(); 1471 1472 if (AlignAllBlock) 1473 // Align all of the blocks in the function to a specific alignment. 1474 for (MachineBasicBlock &MBB : F) 1475 MBB.setAlignment(AlignAllBlock); 1476 else if (AlignAllNonFallThruBlocks) { 1477 // Align all of the blocks that have no fall-through predecessors to a 1478 // specific alignment. 1479 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1480 auto LayoutPred = std::prev(MBI); 1481 if (!LayoutPred->isSuccessor(&*MBI)) 1482 MBI->setAlignment(AlignAllNonFallThruBlocks); 1483 } 1484 } 1485 1486 // We always return true as we have no way to track whether the final order 1487 // differs from the original order. 1488 return true; 1489 } 1490 1491 namespace { 1492 /// \brief A pass to compute block placement statistics. 1493 /// 1494 /// A separate pass to compute interesting statistics for evaluating block 1495 /// placement. This is separate from the actual placement pass so that they can 1496 /// be computed in the absence of any placement transformations or when using 1497 /// alternative placement strategies. 1498 class MachineBlockPlacementStats : public MachineFunctionPass { 1499 /// \brief A handle to the branch probability pass. 1500 const MachineBranchProbabilityInfo *MBPI; 1501 1502 /// \brief A handle to the function-wide block frequency pass. 1503 const MachineBlockFrequencyInfo *MBFI; 1504 1505 public: 1506 static char ID; // Pass identification, replacement for typeid 1507 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1508 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1509 } 1510 1511 bool runOnMachineFunction(MachineFunction &F) override; 1512 1513 void getAnalysisUsage(AnalysisUsage &AU) const override { 1514 AU.addRequired<MachineBranchProbabilityInfo>(); 1515 AU.addRequired<MachineBlockFrequencyInfo>(); 1516 AU.setPreservesAll(); 1517 MachineFunctionPass::getAnalysisUsage(AU); 1518 } 1519 }; 1520 } 1521 1522 char MachineBlockPlacementStats::ID = 0; 1523 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1524 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1525 "Basic Block Placement Stats", false, false) 1526 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1527 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1528 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1529 "Basic Block Placement Stats", false, false) 1530 1531 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1532 // Check for single-block functions and skip them. 1533 if (std::next(F.begin()) == F.end()) 1534 return false; 1535 1536 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1537 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1538 1539 for (MachineBasicBlock &MBB : F) { 1540 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1541 Statistic &NumBranches = 1542 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1543 Statistic &BranchTakenFreq = 1544 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1545 for (MachineBasicBlock *Succ : MBB.successors()) { 1546 // Skip if this successor is a fallthrough. 1547 if (MBB.isLayoutSuccessor(Succ)) 1548 continue; 1549 1550 BlockFrequency EdgeFreq = 1551 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1552 ++NumBranches; 1553 BranchTakenFreq += EdgeFreq.getFrequency(); 1554 } 1555 } 1556 1557 return false; 1558 } 1559