1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "BranchFolding.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachinePostDominators.h" 42 #include "llvm/CodeGen/Passes.h" 43 #include "llvm/CodeGen/TailDuplicator.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <functional> 54 #include <utility> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "block-placement" 58 59 STATISTIC(NumCondBranches, "Number of conditional branches"); 60 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 61 STATISTIC(CondBranchTakenFreq, 62 "Potential frequency of taking conditional branches"); 63 STATISTIC(UncondBranchTakenFreq, 64 "Potential frequency of taking unconditional branches"); 65 66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks in the function."), 69 cl::init(0), cl::Hidden); 70 71 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 72 "align-all-nofallthru-blocks", 73 cl::desc("Force the alignment of all " 74 "blocks that have no fall-through predecessors (i.e. don't add " 75 "nops that are executed)."), 76 cl::init(0), cl::Hidden); 77 78 // FIXME: Find a good default for this flag and remove the flag. 79 static cl::opt<unsigned> ExitBlockBias( 80 "block-placement-exit-block-bias", 81 cl::desc("Block frequency percentage a loop exit block needs " 82 "over the original exit to be considered the new exit."), 83 cl::init(0), cl::Hidden); 84 85 // Definition: 86 // - Outlining: placement of a basic block outside the chain or hot path. 87 88 static cl::opt<unsigned> LoopToColdBlockRatio( 89 "loop-to-cold-block-ratio", 90 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 91 "(frequency of block) is greater than this ratio"), 92 cl::init(5), cl::Hidden); 93 94 static cl::opt<bool> 95 PreciseRotationCost("precise-rotation-cost", 96 cl::desc("Model the cost of loop rotation more " 97 "precisely by using profile data."), 98 cl::init(false), cl::Hidden); 99 static cl::opt<bool> 100 ForcePreciseRotationCost("force-precise-rotation-cost", 101 cl::desc("Force the use of precise cost " 102 "loop rotation strategy."), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> MisfetchCost( 106 "misfetch-cost", 107 cl::desc("Cost that models the probabilistic risk of an instruction " 108 "misfetch due to a jump comparing to falling through, whose cost " 109 "is zero."), 110 cl::init(1), cl::Hidden); 111 112 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 113 cl::desc("Cost of jump instructions."), 114 cl::init(1), cl::Hidden); 115 static cl::opt<bool> 116 TailDupPlacement("tail-dup-placement", 117 cl::desc("Perform tail duplication during placement. " 118 "Creates more fallthrough opportunites in " 119 "outline branches."), 120 cl::init(true), cl::Hidden); 121 122 static cl::opt<bool> 123 BranchFoldPlacement("branch-fold-placement", 124 cl::desc("Perform branch folding during placement. " 125 "Reduces code size."), 126 cl::init(true), cl::Hidden); 127 128 // Heuristic for tail duplication. 129 static cl::opt<unsigned> TailDupPlacementThreshold( 130 "tail-dup-placement-threshold", 131 cl::desc("Instruction cutoff for tail duplication during layout. " 132 "Tail merging during layout is forced to have a threshold " 133 "that won't conflict."), cl::init(2), 134 cl::Hidden); 135 136 // Heuristic for aggressive tail duplication. 137 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 138 "tail-dup-placement-aggressive-threshold", 139 cl::desc("Instruction cutoff for aggressive tail duplication during " 140 "layout. Used at -O3. Tail merging during layout is forced to " 141 "have a threshold that won't conflict."), cl::init(3), 142 cl::Hidden); 143 144 // Heuristic for tail duplication. 145 static cl::opt<unsigned> TailDupPlacementPenalty( 146 "tail-dup-placement-penalty", 147 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 148 "Copying can increase fallthrough, but it also increases icache " 149 "pressure. This parameter controls the penalty to account for that. " 150 "Percent as integer."), 151 cl::init(2), 152 cl::Hidden); 153 154 // Heuristic for triangle chains. 155 static cl::opt<unsigned> TriangleChainCount( 156 "triangle-chain-count", 157 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 158 "triangle tail duplication heuristic to kick in. 0 to disable."), 159 cl::init(2), 160 cl::Hidden); 161 162 extern cl::opt<unsigned> StaticLikelyProb; 163 extern cl::opt<unsigned> ProfileLikelyProb; 164 165 // Internal option used to control BFI display only after MBP pass. 166 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 167 // -view-block-layout-with-bfi= 168 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 169 170 // Command line option to specify the name of the function for CFG dump 171 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 172 extern cl::opt<std::string> ViewBlockFreqFuncName; 173 174 namespace { 175 class BlockChain; 176 /// \brief Type for our function-wide basic block -> block chain mapping. 177 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 178 } 179 180 namespace { 181 /// \brief A chain of blocks which will be laid out contiguously. 182 /// 183 /// This is the datastructure representing a chain of consecutive blocks that 184 /// are profitable to layout together in order to maximize fallthrough 185 /// probabilities and code locality. We also can use a block chain to represent 186 /// a sequence of basic blocks which have some external (correctness) 187 /// requirement for sequential layout. 188 /// 189 /// Chains can be built around a single basic block and can be merged to grow 190 /// them. They participate in a block-to-chain mapping, which is updated 191 /// automatically as chains are merged together. 192 class BlockChain { 193 /// \brief The sequence of blocks belonging to this chain. 194 /// 195 /// This is the sequence of blocks for a particular chain. These will be laid 196 /// out in-order within the function. 197 SmallVector<MachineBasicBlock *, 4> Blocks; 198 199 /// \brief A handle to the function-wide basic block to block chain mapping. 200 /// 201 /// This is retained in each block chain to simplify the computation of child 202 /// block chains for SCC-formation and iteration. We store the edges to child 203 /// basic blocks, and map them back to their associated chains using this 204 /// structure. 205 BlockToChainMapType &BlockToChain; 206 207 public: 208 /// \brief Construct a new BlockChain. 209 /// 210 /// This builds a new block chain representing a single basic block in the 211 /// function. It also registers itself as the chain that block participates 212 /// in with the BlockToChain mapping. 213 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 214 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 215 assert(BB && "Cannot create a chain with a null basic block"); 216 BlockToChain[BB] = this; 217 } 218 219 /// \brief Iterator over blocks within the chain. 220 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 221 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 222 223 /// \brief Beginning of blocks within the chain. 224 iterator begin() { return Blocks.begin(); } 225 const_iterator begin() const { return Blocks.begin(); } 226 227 /// \brief End of blocks within the chain. 228 iterator end() { return Blocks.end(); } 229 const_iterator end() const { return Blocks.end(); } 230 231 bool remove(MachineBasicBlock* BB) { 232 for(iterator i = begin(); i != end(); ++i) { 233 if (*i == BB) { 234 Blocks.erase(i); 235 return true; 236 } 237 } 238 return false; 239 } 240 241 /// \brief Merge a block chain into this one. 242 /// 243 /// This routine merges a block chain into this one. It takes care of forming 244 /// a contiguous sequence of basic blocks, updating the edge list, and 245 /// updating the block -> chain mapping. It does not free or tear down the 246 /// old chain, but the old chain's block list is no longer valid. 247 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 248 assert(BB && "Can't merge a null block."); 249 assert(!Blocks.empty() && "Can't merge into an empty chain."); 250 251 // Fast path in case we don't have a chain already. 252 if (!Chain) { 253 assert(!BlockToChain[BB] && 254 "Passed chain is null, but BB has entry in BlockToChain."); 255 Blocks.push_back(BB); 256 BlockToChain[BB] = this; 257 return; 258 } 259 260 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 261 assert(Chain->begin() != Chain->end()); 262 263 // Update the incoming blocks to point to this chain, and add them to the 264 // chain structure. 265 for (MachineBasicBlock *ChainBB : *Chain) { 266 Blocks.push_back(ChainBB); 267 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 268 BlockToChain[ChainBB] = this; 269 } 270 } 271 272 #ifndef NDEBUG 273 /// \brief Dump the blocks in this chain. 274 LLVM_DUMP_METHOD void dump() { 275 for (MachineBasicBlock *MBB : *this) 276 MBB->dump(); 277 } 278 #endif // NDEBUG 279 280 /// \brief Count of predecessors of any block within the chain which have not 281 /// yet been scheduled. In general, we will delay scheduling this chain 282 /// until those predecessors are scheduled (or we find a sufficiently good 283 /// reason to override this heuristic.) Note that when forming loop chains, 284 /// blocks outside the loop are ignored and treated as if they were already 285 /// scheduled. 286 /// 287 /// Note: This field is reinitialized multiple times - once for each loop, 288 /// and then once for the function as a whole. 289 unsigned UnscheduledPredecessors; 290 }; 291 } 292 293 namespace { 294 class MachineBlockPlacement : public MachineFunctionPass { 295 /// \brief A typedef for a block filter set. 296 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 297 298 /// Pair struct containing basic block and taildup profitiability 299 struct BlockAndTailDupResult { 300 MachineBasicBlock *BB; 301 bool ShouldTailDup; 302 }; 303 304 /// Triple struct containing edge weight and the edge. 305 struct WeightedEdge { 306 BlockFrequency Weight; 307 MachineBasicBlock *Src; 308 MachineBasicBlock *Dest; 309 }; 310 311 /// \brief work lists of blocks that are ready to be laid out 312 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 313 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 314 315 /// Edges that have already been computed as optimal. 316 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 317 318 /// \brief Machine Function 319 MachineFunction *F; 320 321 /// \brief A handle to the branch probability pass. 322 const MachineBranchProbabilityInfo *MBPI; 323 324 /// \brief A handle to the function-wide block frequency pass. 325 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 326 327 /// \brief A handle to the loop info. 328 MachineLoopInfo *MLI; 329 330 /// \brief Preferred loop exit. 331 /// Member variable for convenience. It may be removed by duplication deep 332 /// in the call stack. 333 MachineBasicBlock *PreferredLoopExit; 334 335 /// \brief A handle to the target's instruction info. 336 const TargetInstrInfo *TII; 337 338 /// \brief A handle to the target's lowering info. 339 const TargetLoweringBase *TLI; 340 341 /// \brief A handle to the post dominator tree. 342 MachinePostDominatorTree *MPDT; 343 344 /// \brief Duplicator used to duplicate tails during placement. 345 /// 346 /// Placement decisions can open up new tail duplication opportunities, but 347 /// since tail duplication affects placement decisions of later blocks, it 348 /// must be done inline. 349 TailDuplicator TailDup; 350 351 /// \brief Allocator and owner of BlockChain structures. 352 /// 353 /// We build BlockChains lazily while processing the loop structure of 354 /// a function. To reduce malloc traffic, we allocate them using this 355 /// slab-like allocator, and destroy them after the pass completes. An 356 /// important guarantee is that this allocator produces stable pointers to 357 /// the chains. 358 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 359 360 /// \brief Function wide BasicBlock to BlockChain mapping. 361 /// 362 /// This mapping allows efficiently moving from any given basic block to the 363 /// BlockChain it participates in, if any. We use it to, among other things, 364 /// allow implicitly defining edges between chains as the existing edges 365 /// between basic blocks. 366 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 367 368 #ifndef NDEBUG 369 /// The set of basic blocks that have terminators that cannot be fully 370 /// analyzed. These basic blocks cannot be re-ordered safely by 371 /// MachineBlockPlacement, and we must preserve physical layout of these 372 /// blocks and their successors through the pass. 373 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 374 #endif 375 376 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 377 /// if the count goes to 0, add them to the appropriate work list. 378 void markChainSuccessors( 379 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 380 const BlockFilterSet *BlockFilter = nullptr); 381 382 /// Decrease the UnscheduledPredecessors count for a single block, and 383 /// if the count goes to 0, add them to the appropriate work list. 384 void markBlockSuccessors( 385 const BlockChain &Chain, const MachineBasicBlock *BB, 386 const MachineBasicBlock *LoopHeaderBB, 387 const BlockFilterSet *BlockFilter = nullptr); 388 389 BranchProbability 390 collectViableSuccessors( 391 const MachineBasicBlock *BB, const BlockChain &Chain, 392 const BlockFilterSet *BlockFilter, 393 SmallVector<MachineBasicBlock *, 4> &Successors); 394 bool shouldPredBlockBeOutlined( 395 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 396 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 397 BranchProbability SuccProb, BranchProbability HotProb); 398 bool repeatedlyTailDuplicateBlock( 399 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 400 const MachineBasicBlock *LoopHeaderBB, 401 BlockChain &Chain, BlockFilterSet *BlockFilter, 402 MachineFunction::iterator &PrevUnplacedBlockIt); 403 bool maybeTailDuplicateBlock( 404 MachineBasicBlock *BB, MachineBasicBlock *LPred, 405 BlockChain &Chain, BlockFilterSet *BlockFilter, 406 MachineFunction::iterator &PrevUnplacedBlockIt, 407 bool &DuplicatedToPred); 408 bool hasBetterLayoutPredecessor( 409 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 410 const BlockChain &SuccChain, BranchProbability SuccProb, 411 BranchProbability RealSuccProb, const BlockChain &Chain, 412 const BlockFilterSet *BlockFilter); 413 BlockAndTailDupResult selectBestSuccessor( 414 const MachineBasicBlock *BB, const BlockChain &Chain, 415 const BlockFilterSet *BlockFilter); 416 MachineBasicBlock *selectBestCandidateBlock( 417 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 418 MachineBasicBlock *getFirstUnplacedBlock( 419 const BlockChain &PlacedChain, 420 MachineFunction::iterator &PrevUnplacedBlockIt, 421 const BlockFilterSet *BlockFilter); 422 423 /// \brief Add a basic block to the work list if it is appropriate. 424 /// 425 /// If the optional parameter BlockFilter is provided, only MBB 426 /// present in the set will be added to the worklist. If nullptr 427 /// is provided, no filtering occurs. 428 void fillWorkLists(const MachineBasicBlock *MBB, 429 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 430 const BlockFilterSet *BlockFilter); 431 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 432 BlockFilterSet *BlockFilter = nullptr); 433 MachineBasicBlock *findBestLoopTop( 434 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 435 MachineBasicBlock *findBestLoopExit( 436 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 437 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 438 void buildLoopChains(const MachineLoop &L); 439 void rotateLoop( 440 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 441 const BlockFilterSet &LoopBlockSet); 442 void rotateLoopWithProfile( 443 BlockChain &LoopChain, const MachineLoop &L, 444 const BlockFilterSet &LoopBlockSet); 445 void buildCFGChains(); 446 void optimizeBranches(); 447 void alignBlocks(); 448 /// Returns true if a block should be tail-duplicated to increase fallthrough 449 /// opportunities. 450 bool shouldTailDuplicate(MachineBasicBlock *BB); 451 /// Check the edge frequencies to see if tail duplication will increase 452 /// fallthroughs. 453 bool isProfitableToTailDup( 454 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 455 BranchProbability AdjustedSumProb, 456 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 457 /// Check for a trellis layout. 458 bool isTrellis(const MachineBasicBlock *BB, 459 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 460 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 461 /// Get the best successor given a trellis layout. 462 BlockAndTailDupResult getBestTrellisSuccessor( 463 const MachineBasicBlock *BB, 464 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 465 BranchProbability AdjustedSumProb, const BlockChain &Chain, 466 const BlockFilterSet *BlockFilter); 467 /// Get the best pair of non-conflicting edges. 468 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 469 const MachineBasicBlock *BB, 470 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 471 /// Returns true if a block can tail duplicate into all unplaced 472 /// predecessors. Filters based on loop. 473 bool canTailDuplicateUnplacedPreds( 474 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 475 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 476 /// Find chains of triangles to tail-duplicate where a global analysis works, 477 /// but a local analysis would not find them. 478 void precomputeTriangleChains(); 479 480 public: 481 static char ID; // Pass identification, replacement for typeid 482 MachineBlockPlacement() : MachineFunctionPass(ID) { 483 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 484 } 485 486 bool runOnMachineFunction(MachineFunction &F) override; 487 488 void getAnalysisUsage(AnalysisUsage &AU) const override { 489 AU.addRequired<MachineBranchProbabilityInfo>(); 490 AU.addRequired<MachineBlockFrequencyInfo>(); 491 if (TailDupPlacement) 492 AU.addRequired<MachinePostDominatorTree>(); 493 AU.addRequired<MachineLoopInfo>(); 494 AU.addRequired<TargetPassConfig>(); 495 MachineFunctionPass::getAnalysisUsage(AU); 496 } 497 }; 498 } 499 500 char MachineBlockPlacement::ID = 0; 501 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 502 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 503 "Branch Probability Basic Block Placement", false, false) 504 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 505 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 506 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 507 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 508 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 509 "Branch Probability Basic Block Placement", false, false) 510 511 #ifndef NDEBUG 512 /// \brief Helper to print the name of a MBB. 513 /// 514 /// Only used by debug logging. 515 static std::string getBlockName(const MachineBasicBlock *BB) { 516 std::string Result; 517 raw_string_ostream OS(Result); 518 OS << "BB#" << BB->getNumber(); 519 OS << " ('" << BB->getName() << "')"; 520 OS.flush(); 521 return Result; 522 } 523 #endif 524 525 /// \brief Mark a chain's successors as having one fewer preds. 526 /// 527 /// When a chain is being merged into the "placed" chain, this routine will 528 /// quickly walk the successors of each block in the chain and mark them as 529 /// having one fewer active predecessor. It also adds any successors of this 530 /// chain which reach the zero-predecessor state to the appropriate worklist. 531 void MachineBlockPlacement::markChainSuccessors( 532 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 533 const BlockFilterSet *BlockFilter) { 534 // Walk all the blocks in this chain, marking their successors as having 535 // a predecessor placed. 536 for (MachineBasicBlock *MBB : Chain) { 537 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 538 } 539 } 540 541 /// \brief Mark a single block's successors as having one fewer preds. 542 /// 543 /// Under normal circumstances, this is only called by markChainSuccessors, 544 /// but if a block that was to be placed is completely tail-duplicated away, 545 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 546 /// for just that block. 547 void MachineBlockPlacement::markBlockSuccessors( 548 const BlockChain &Chain, const MachineBasicBlock *MBB, 549 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 550 // Add any successors for which this is the only un-placed in-loop 551 // predecessor to the worklist as a viable candidate for CFG-neutral 552 // placement. No subsequent placement of this block will violate the CFG 553 // shape, so we get to use heuristics to choose a favorable placement. 554 for (MachineBasicBlock *Succ : MBB->successors()) { 555 if (BlockFilter && !BlockFilter->count(Succ)) 556 continue; 557 BlockChain &SuccChain = *BlockToChain[Succ]; 558 // Disregard edges within a fixed chain, or edges to the loop header. 559 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 560 continue; 561 562 // This is a cross-chain edge that is within the loop, so decrement the 563 // loop predecessor count of the destination chain. 564 if (SuccChain.UnscheduledPredecessors == 0 || 565 --SuccChain.UnscheduledPredecessors > 0) 566 continue; 567 568 auto *NewBB = *SuccChain.begin(); 569 if (NewBB->isEHPad()) 570 EHPadWorkList.push_back(NewBB); 571 else 572 BlockWorkList.push_back(NewBB); 573 } 574 } 575 576 /// This helper function collects the set of successors of block 577 /// \p BB that are allowed to be its layout successors, and return 578 /// the total branch probability of edges from \p BB to those 579 /// blocks. 580 BranchProbability MachineBlockPlacement::collectViableSuccessors( 581 const MachineBasicBlock *BB, const BlockChain &Chain, 582 const BlockFilterSet *BlockFilter, 583 SmallVector<MachineBasicBlock *, 4> &Successors) { 584 // Adjust edge probabilities by excluding edges pointing to blocks that is 585 // either not in BlockFilter or is already in the current chain. Consider the 586 // following CFG: 587 // 588 // --->A 589 // | / \ 590 // | B C 591 // | \ / \ 592 // ----D E 593 // 594 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 595 // A->C is chosen as a fall-through, D won't be selected as a successor of C 596 // due to CFG constraint (the probability of C->D is not greater than 597 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 598 // when calculating the probability of C->D, D will be selected and we 599 // will get A C D B as the layout of this loop. 600 auto AdjustedSumProb = BranchProbability::getOne(); 601 for (MachineBasicBlock *Succ : BB->successors()) { 602 bool SkipSucc = false; 603 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 604 SkipSucc = true; 605 } else { 606 BlockChain *SuccChain = BlockToChain[Succ]; 607 if (SuccChain == &Chain) { 608 SkipSucc = true; 609 } else if (Succ != *SuccChain->begin()) { 610 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 611 continue; 612 } 613 } 614 if (SkipSucc) 615 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 616 else 617 Successors.push_back(Succ); 618 } 619 620 return AdjustedSumProb; 621 } 622 623 /// The helper function returns the branch probability that is adjusted 624 /// or normalized over the new total \p AdjustedSumProb. 625 static BranchProbability 626 getAdjustedProbability(BranchProbability OrigProb, 627 BranchProbability AdjustedSumProb) { 628 BranchProbability SuccProb; 629 uint32_t SuccProbN = OrigProb.getNumerator(); 630 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 631 if (SuccProbN >= SuccProbD) 632 SuccProb = BranchProbability::getOne(); 633 else 634 SuccProb = BranchProbability(SuccProbN, SuccProbD); 635 636 return SuccProb; 637 } 638 639 /// Check if \p BB has exactly the successors in \p Successors. 640 static bool 641 hasSameSuccessors(MachineBasicBlock &BB, 642 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 643 if (BB.succ_size() != Successors.size()) 644 return false; 645 // We don't want to count self-loops 646 if (Successors.count(&BB)) 647 return false; 648 for (MachineBasicBlock *Succ : BB.successors()) 649 if (!Successors.count(Succ)) 650 return false; 651 return true; 652 } 653 654 /// Check if a block should be tail duplicated to increase fallthrough 655 /// opportunities. 656 /// \p BB Block to check. 657 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 658 // Blocks with single successors don't create additional fallthrough 659 // opportunities. Don't duplicate them. TODO: When conditional exits are 660 // analyzable, allow them to be duplicated. 661 bool IsSimple = TailDup.isSimpleBB(BB); 662 663 if (BB->succ_size() == 1) 664 return false; 665 return TailDup.shouldTailDuplicate(IsSimple, *BB); 666 } 667 668 /// Compare 2 BlockFrequency's with a small penalty for \p A. 669 /// In order to be conservative, we apply a X% penalty to account for 670 /// increased icache pressure and static heuristics. For small frequencies 671 /// we use only the numerators to improve accuracy. For simplicity, we assume the 672 /// penalty is less than 100% 673 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 674 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 675 uint64_t EntryFreq) { 676 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 677 BlockFrequency Gain = A - B; 678 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 679 } 680 681 /// Check the edge frequencies to see if tail duplication will increase 682 /// fallthroughs. It only makes sense to call this function when 683 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 684 /// always locally profitable if we would have picked \p Succ without 685 /// considering duplication. 686 bool MachineBlockPlacement::isProfitableToTailDup( 687 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 688 BranchProbability QProb, 689 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 690 // We need to do a probability calculation to make sure this is profitable. 691 // First: does succ have a successor that post-dominates? This affects the 692 // calculation. The 2 relevant cases are: 693 // BB BB 694 // | \Qout | \Qout 695 // P| C |P C 696 // = C' = C' 697 // | /Qin | /Qin 698 // | / | / 699 // Succ Succ 700 // / \ | \ V 701 // U/ =V |U \ 702 // / \ = D 703 // D E | / 704 // | / 705 // |/ 706 // PDom 707 // '=' : Branch taken for that CFG edge 708 // In the second case, Placing Succ while duplicating it into C prevents the 709 // fallthrough of Succ into either D or PDom, because they now have C as an 710 // unplaced predecessor 711 712 // Start by figuring out which case we fall into 713 MachineBasicBlock *PDom = nullptr; 714 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 715 // Only scan the relevant successors 716 auto AdjustedSuccSumProb = 717 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 718 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 719 auto BBFreq = MBFI->getBlockFreq(BB); 720 auto SuccFreq = MBFI->getBlockFreq(Succ); 721 BlockFrequency P = BBFreq * PProb; 722 BlockFrequency Qout = BBFreq * QProb; 723 uint64_t EntryFreq = MBFI->getEntryFreq(); 724 // If there are no more successors, it is profitable to copy, as it strictly 725 // increases fallthrough. 726 if (SuccSuccs.size() == 0) 727 return greaterWithBias(P, Qout, EntryFreq); 728 729 auto BestSuccSucc = BranchProbability::getZero(); 730 // Find the PDom or the best Succ if no PDom exists. 731 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 732 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 733 if (Prob > BestSuccSucc) 734 BestSuccSucc = Prob; 735 if (PDom == nullptr) 736 if (MPDT->dominates(SuccSucc, Succ)) { 737 PDom = SuccSucc; 738 break; 739 } 740 } 741 // For the comparisons, we need to know Succ's best incoming edge that isn't 742 // from BB. 743 auto SuccBestPred = BlockFrequency(0); 744 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 745 if (SuccPred == Succ || SuccPred == BB 746 || BlockToChain[SuccPred] == &Chain 747 || (BlockFilter && !BlockFilter->count(SuccPred))) 748 continue; 749 auto Freq = MBFI->getBlockFreq(SuccPred) 750 * MBPI->getEdgeProbability(SuccPred, Succ); 751 if (Freq > SuccBestPred) 752 SuccBestPred = Freq; 753 } 754 // Qin is Succ's best unplaced incoming edge that isn't BB 755 BlockFrequency Qin = SuccBestPred; 756 // If it doesn't have a post-dominating successor, here is the calculation: 757 // BB BB 758 // | \Qout | \ 759 // P| C | = 760 // = C' | C 761 // | /Qin | | 762 // | / | C' (+Succ) 763 // Succ Succ /| 764 // / \ | \/ | 765 // U/ =V | == | 766 // / \ | / \| 767 // D E D E 768 // '=' : Branch taken for that CFG edge 769 // Cost in the first case is: P + V 770 // For this calculation, we always assume P > Qout. If Qout > P 771 // The result of this function will be ignored at the caller. 772 // Let F = SuccFreq - Qin 773 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 774 775 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 776 BranchProbability UProb = BestSuccSucc; 777 BranchProbability VProb = AdjustedSuccSumProb - UProb; 778 BlockFrequency F = SuccFreq - Qin; 779 BlockFrequency V = SuccFreq * VProb; 780 BlockFrequency QinU = std::min(Qin, F) * UProb; 781 BlockFrequency BaseCost = P + V; 782 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 783 return greaterWithBias(BaseCost, DupCost, EntryFreq); 784 } 785 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 786 BranchProbability VProb = AdjustedSuccSumProb - UProb; 787 BlockFrequency U = SuccFreq * UProb; 788 BlockFrequency V = SuccFreq * VProb; 789 BlockFrequency F = SuccFreq - Qin; 790 // If there is a post-dominating successor, here is the calculation: 791 // BB BB BB BB 792 // | \Qout | \ | \Qout | \ 793 // |P C | = |P C | = 794 // = C' |P C = C' |P C 795 // | /Qin | | | /Qin | | 796 // | / | C' (+Succ) | / | C' (+Succ) 797 // Succ Succ /| Succ Succ /| 798 // | \ V | \/ | | \ V | \/ | 799 // |U \ |U /\ =? |U = |U /\ | 800 // = D = = =?| | D | = =| 801 // | / |/ D | / |/ D 802 // | / | / | = | / 803 // |/ | / |/ | = 804 // Dom Dom Dom Dom 805 // '=' : Branch taken for that CFG edge 806 // The cost for taken branches in the first case is P + U 807 // Let F = SuccFreq - Qin 808 // The cost in the second case (assuming independence), given the layout: 809 // BB, Succ, (C+Succ), D, Dom or the layout: 810 // BB, Succ, D, Dom, (C+Succ) 811 // is Qout + max(F, Qin) * U + min(F, Qin) 812 // compare P + U vs Qout + P * U + Qin. 813 // 814 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 815 // 816 // For the 3rd case, the cost is P + 2 * V 817 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 818 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 819 if (UProb > AdjustedSuccSumProb / 2 && 820 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 821 Chain, BlockFilter)) 822 // Cases 3 & 4 823 return greaterWithBias( 824 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 825 EntryFreq); 826 // Cases 1 & 2 827 return greaterWithBias((P + U), 828 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 829 std::max(Qin, F) * UProb), 830 EntryFreq); 831 } 832 833 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 834 /// successors form the lower part of a trellis. A successor set S forms the 835 /// lower part of a trellis if all of the predecessors of S are either in S or 836 /// have all of S as successors. We ignore trellises where BB doesn't have 2 837 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 838 /// are very uncommon and complex to compute optimally. Allowing edges within S 839 /// is not strictly a trellis, but the same algorithm works, so we allow it. 840 bool MachineBlockPlacement::isTrellis( 841 const MachineBasicBlock *BB, 842 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 843 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 844 // Technically BB could form a trellis with branching factor higher than 2. 845 // But that's extremely uncommon. 846 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 847 return false; 848 849 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 850 BB->succ_end()); 851 // To avoid reviewing the same predecessors twice. 852 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 853 854 for (MachineBasicBlock *Succ : ViableSuccs) { 855 int PredCount = 0; 856 for (auto SuccPred : Succ->predecessors()) { 857 // Allow triangle successors, but don't count them. 858 if (Successors.count(SuccPred)) { 859 // Make sure that it is actually a triangle. 860 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 861 if (!Successors.count(CheckSucc)) 862 return false; 863 continue; 864 } 865 const BlockChain *PredChain = BlockToChain[SuccPred]; 866 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 867 PredChain == &Chain || PredChain == BlockToChain[Succ]) 868 continue; 869 ++PredCount; 870 // Perform the successor check only once. 871 if (!SeenPreds.insert(SuccPred).second) 872 continue; 873 if (!hasSameSuccessors(*SuccPred, Successors)) 874 return false; 875 } 876 // If one of the successors has only BB as a predecessor, it is not a 877 // trellis. 878 if (PredCount < 1) 879 return false; 880 } 881 return true; 882 } 883 884 /// Pick the highest total weight pair of edges that can both be laid out. 885 /// The edges in \p Edges[0] are assumed to have a different destination than 886 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 887 /// the individual highest weight edges to the 2 different destinations, or in 888 /// case of a conflict, one of them should be replaced with a 2nd best edge. 889 std::pair<MachineBlockPlacement::WeightedEdge, 890 MachineBlockPlacement::WeightedEdge> 891 MachineBlockPlacement::getBestNonConflictingEdges( 892 const MachineBasicBlock *BB, 893 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 894 Edges) { 895 // Sort the edges, and then for each successor, find the best incoming 896 // predecessor. If the best incoming predecessors aren't the same, 897 // then that is clearly the best layout. If there is a conflict, one of the 898 // successors will have to fallthrough from the second best predecessor. We 899 // compare which combination is better overall. 900 901 // Sort for highest frequency. 902 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 903 904 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 905 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 906 auto BestA = Edges[0].begin(); 907 auto BestB = Edges[1].begin(); 908 // Arrange for the correct answer to be in BestA and BestB 909 // If the 2 best edges don't conflict, the answer is already there. 910 if (BestA->Src == BestB->Src) { 911 // Compare the total fallthrough of (Best + Second Best) for both pairs 912 auto SecondBestA = std::next(BestA); 913 auto SecondBestB = std::next(BestB); 914 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 915 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 916 if (BestAScore < BestBScore) 917 BestA = SecondBestA; 918 else 919 BestB = SecondBestB; 920 } 921 // Arrange for the BB edge to be in BestA if it exists. 922 if (BestB->Src == BB) 923 std::swap(BestA, BestB); 924 return std::make_pair(*BestA, *BestB); 925 } 926 927 /// Get the best successor from \p BB based on \p BB being part of a trellis. 928 /// We only handle trellises with 2 successors, so the algorithm is 929 /// straightforward: Find the best pair of edges that don't conflict. We find 930 /// the best incoming edge for each successor in the trellis. If those conflict, 931 /// we consider which of them should be replaced with the second best. 932 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 933 /// comes from \p BB, it will be in \p BestEdges[0] 934 MachineBlockPlacement::BlockAndTailDupResult 935 MachineBlockPlacement::getBestTrellisSuccessor( 936 const MachineBasicBlock *BB, 937 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 938 BranchProbability AdjustedSumProb, const BlockChain &Chain, 939 const BlockFilterSet *BlockFilter) { 940 941 BlockAndTailDupResult Result = {nullptr, false}; 942 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 943 BB->succ_end()); 944 945 // We assume size 2 because it's common. For general n, we would have to do 946 // the Hungarian algorithm, but it's not worth the complexity because more 947 // than 2 successors is fairly uncommon, and a trellis even more so. 948 if (Successors.size() != 2 || ViableSuccs.size() != 2) 949 return Result; 950 951 // Collect the edge frequencies of all edges that form the trellis. 952 SmallVector<WeightedEdge, 8> Edges[2]; 953 int SuccIndex = 0; 954 for (auto Succ : ViableSuccs) { 955 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 956 // Skip any placed predecessors that are not BB 957 if (SuccPred != BB) 958 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 959 BlockToChain[SuccPred] == &Chain || 960 BlockToChain[SuccPred] == BlockToChain[Succ]) 961 continue; 962 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 963 MBPI->getEdgeProbability(SuccPred, Succ); 964 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 965 } 966 ++SuccIndex; 967 } 968 969 // Pick the best combination of 2 edges from all the edges in the trellis. 970 WeightedEdge BestA, BestB; 971 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 972 973 if (BestA.Src != BB) { 974 // If we have a trellis, and BB doesn't have the best fallthrough edges, 975 // we shouldn't choose any successor. We've already looked and there's a 976 // better fallthrough edge for all the successors. 977 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 978 return Result; 979 } 980 981 // Did we pick the triangle edge? If tail-duplication is profitable, do 982 // that instead. Otherwise merge the triangle edge now while we know it is 983 // optimal. 984 if (BestA.Dest == BestB.Src) { 985 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 986 // would be better. 987 MachineBasicBlock *Succ1 = BestA.Dest; 988 MachineBasicBlock *Succ2 = BestB.Dest; 989 // Check to see if tail-duplication would be profitable. 990 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 991 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 992 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 993 Chain, BlockFilter)) { 994 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 995 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 996 dbgs() << " Selected: " << getBlockName(Succ2) 997 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 998 Result.BB = Succ2; 999 Result.ShouldTailDup = true; 1000 return Result; 1001 } 1002 } 1003 // We have already computed the optimal edge for the other side of the 1004 // trellis. 1005 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1006 1007 auto TrellisSucc = BestA.Dest; 1008 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1009 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1010 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1011 << ", probability: " << SuccProb << " (Trellis)\n"); 1012 Result.BB = TrellisSucc; 1013 return Result; 1014 } 1015 1016 /// When the option TailDupPlacement is on, this method checks if the 1017 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1018 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1019 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1020 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1021 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1022 if (!shouldTailDuplicate(Succ)) 1023 return false; 1024 1025 // For CFG checking. 1026 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1027 BB->succ_end()); 1028 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1029 // Make sure all unplaced and unfiltered predecessors can be 1030 // tail-duplicated into. 1031 // Skip any blocks that are already placed or not in this loop. 1032 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1033 || BlockToChain[Pred] == &Chain) 1034 continue; 1035 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1036 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1037 // This will result in a trellis after tail duplication, so we don't 1038 // need to copy Succ into this predecessor. In the presence 1039 // of a trellis tail duplication can continue to be profitable. 1040 // For example: 1041 // A A 1042 // |\ |\ 1043 // | \ | \ 1044 // | C | C+BB 1045 // | / | | 1046 // |/ | | 1047 // BB => BB | 1048 // |\ |\/| 1049 // | \ |/\| 1050 // | D | D 1051 // | / | / 1052 // |/ |/ 1053 // Succ Succ 1054 // 1055 // After BB was duplicated into C, the layout looks like the one on the 1056 // right. BB and C now have the same successors. When considering 1057 // whether Succ can be duplicated into all its unplaced predecessors, we 1058 // ignore C. 1059 // We can do this because C already has a profitable fallthrough, namely 1060 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1061 // duplication and for this test. 1062 // 1063 // This allows trellises to be laid out in 2 separate chains 1064 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1065 // because it allows the creation of 2 fallthrough paths with links 1066 // between them, and we correctly identify the best layout for these 1067 // CFGs. We want to extend trellises that the user created in addition 1068 // to trellises created by tail-duplication, so we just look for the 1069 // CFG. 1070 continue; 1071 return false; 1072 } 1073 } 1074 return true; 1075 } 1076 1077 /// Find chains of triangles where we believe it would be profitable to 1078 /// tail-duplicate them all, but a local analysis would not find them. 1079 /// There are 3 ways this can be profitable: 1080 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1081 /// longer chains) 1082 /// 2) The chains are statically correlated. Branch probabilities have a very 1083 /// U-shaped distribution. 1084 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1085 /// If the branches in a chain are likely to be from the same side of the 1086 /// distribution as their predecessor, but are independent at runtime, this 1087 /// transformation is profitable. (Because the cost of being wrong is a small 1088 /// fixed cost, unlike the standard triangle layout where the cost of being 1089 /// wrong scales with the # of triangles.) 1090 /// 3) The chains are dynamically correlated. If the probability that a previous 1091 /// branch was taken positively influences whether the next branch will be 1092 /// taken 1093 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1094 void MachineBlockPlacement::precomputeTriangleChains() { 1095 struct TriangleChain { 1096 std::vector<MachineBasicBlock *> Edges; 1097 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1098 : Edges({src, dst}) {} 1099 1100 void append(MachineBasicBlock *dst) { 1101 assert(getKey()->isSuccessor(dst) && 1102 "Attempting to append a block that is not a successor."); 1103 Edges.push_back(dst); 1104 } 1105 1106 unsigned count() const { return Edges.size() - 1; } 1107 1108 MachineBasicBlock *getKey() const { 1109 return Edges.back(); 1110 } 1111 }; 1112 1113 if (TriangleChainCount == 0) 1114 return; 1115 1116 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1117 // Map from last block to the chain that contains it. This allows us to extend 1118 // chains as we find new triangles. 1119 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1120 for (MachineBasicBlock &BB : *F) { 1121 // If BB doesn't have 2 successors, it doesn't start a triangle. 1122 if (BB.succ_size() != 2) 1123 continue; 1124 MachineBasicBlock *PDom = nullptr; 1125 for (MachineBasicBlock *Succ : BB.successors()) { 1126 if (!MPDT->dominates(Succ, &BB)) 1127 continue; 1128 PDom = Succ; 1129 break; 1130 } 1131 // If BB doesn't have a post-dominating successor, it doesn't form a 1132 // triangle. 1133 if (PDom == nullptr) 1134 continue; 1135 // If PDom has a hint that it is low probability, skip this triangle. 1136 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1137 continue; 1138 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1139 // we're looking for. 1140 if (!shouldTailDuplicate(PDom)) 1141 continue; 1142 bool CanTailDuplicate = true; 1143 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1144 // isn't the kind of triangle we're looking for. 1145 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1146 if (Pred == &BB) 1147 continue; 1148 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1149 CanTailDuplicate = false; 1150 break; 1151 } 1152 } 1153 // If we can't tail-duplicate PDom to its predecessors, then skip this 1154 // triangle. 1155 if (!CanTailDuplicate) 1156 continue; 1157 1158 // Now we have an interesting triangle. Insert it if it's not part of an 1159 // existing chain. 1160 // Note: This cannot be replaced with a call insert() or emplace() because 1161 // the find key is BB, but the insert/emplace key is PDom. 1162 auto Found = TriangleChainMap.find(&BB); 1163 // If it is, remove the chain from the map, grow it, and put it back in the 1164 // map with the end as the new key. 1165 if (Found != TriangleChainMap.end()) { 1166 TriangleChain Chain = std::move(Found->second); 1167 TriangleChainMap.erase(Found); 1168 Chain.append(PDom); 1169 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1170 } else { 1171 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1172 assert(InsertResult.second && "Block seen twice."); 1173 (void)InsertResult; 1174 } 1175 } 1176 1177 // Iterating over a DenseMap is safe here, because the only thing in the body 1178 // of the loop is inserting into another DenseMap (ComputedEdges). 1179 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1180 for (auto &ChainPair : TriangleChainMap) { 1181 TriangleChain &Chain = ChainPair.second; 1182 // Benchmarking has shown that due to branch correlation duplicating 2 or 1183 // more triangles is profitable, despite the calculations assuming 1184 // independence. 1185 if (Chain.count() < TriangleChainCount) 1186 continue; 1187 MachineBasicBlock *dst = Chain.Edges.back(); 1188 Chain.Edges.pop_back(); 1189 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1190 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1191 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1192 1193 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1194 assert(InsertResult.second && "Block seen twice."); 1195 (void)InsertResult; 1196 1197 dst = src; 1198 } 1199 } 1200 } 1201 1202 // When profile is not present, return the StaticLikelyProb. 1203 // When profile is available, we need to handle the triangle-shape CFG. 1204 static BranchProbability getLayoutSuccessorProbThreshold( 1205 const MachineBasicBlock *BB) { 1206 if (!BB->getParent()->getFunction()->getEntryCount()) 1207 return BranchProbability(StaticLikelyProb, 100); 1208 if (BB->succ_size() == 2) { 1209 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1210 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1211 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1212 /* See case 1 below for the cost analysis. For BB->Succ to 1213 * be taken with smaller cost, the following needs to hold: 1214 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1215 * So the threshold T in the calculation below 1216 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1217 * So T / (1 - T) = 2, Yielding T = 2/3 1218 * Also adding user specified branch bias, we have 1219 * T = (2/3)*(ProfileLikelyProb/50) 1220 * = (2*ProfileLikelyProb)/150) 1221 */ 1222 return BranchProbability(2 * ProfileLikelyProb, 150); 1223 } 1224 } 1225 return BranchProbability(ProfileLikelyProb, 100); 1226 } 1227 1228 /// Checks to see if the layout candidate block \p Succ has a better layout 1229 /// predecessor than \c BB. If yes, returns true. 1230 /// \p SuccProb: The probability adjusted for only remaining blocks. 1231 /// Only used for logging 1232 /// \p RealSuccProb: The un-adjusted probability. 1233 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1234 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1235 /// considered 1236 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1237 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1238 const BlockChain &SuccChain, BranchProbability SuccProb, 1239 BranchProbability RealSuccProb, const BlockChain &Chain, 1240 const BlockFilterSet *BlockFilter) { 1241 1242 // There isn't a better layout when there are no unscheduled predecessors. 1243 if (SuccChain.UnscheduledPredecessors == 0) 1244 return false; 1245 1246 // There are two basic scenarios here: 1247 // ------------------------------------- 1248 // Case 1: triangular shape CFG (if-then): 1249 // BB 1250 // | \ 1251 // | \ 1252 // | Pred 1253 // | / 1254 // Succ 1255 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1256 // set Succ as the layout successor of BB. Picking Succ as BB's 1257 // successor breaks the CFG constraints (FIXME: define these constraints). 1258 // With this layout, Pred BB 1259 // is forced to be outlined, so the overall cost will be cost of the 1260 // branch taken from BB to Pred, plus the cost of back taken branch 1261 // from Pred to Succ, as well as the additional cost associated 1262 // with the needed unconditional jump instruction from Pred To Succ. 1263 1264 // The cost of the topological order layout is the taken branch cost 1265 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1266 // must hold: 1267 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1268 // < freq(BB->Succ) * taken_branch_cost. 1269 // Ignoring unconditional jump cost, we get 1270 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1271 // prob(BB->Succ) > 2 * prob(BB->Pred) 1272 // 1273 // When real profile data is available, we can precisely compute the 1274 // probability threshold that is needed for edge BB->Succ to be considered. 1275 // Without profile data, the heuristic requires the branch bias to be 1276 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1277 // ----------------------------------------------------------------- 1278 // Case 2: diamond like CFG (if-then-else): 1279 // S 1280 // / \ 1281 // | \ 1282 // BB Pred 1283 // \ / 1284 // Succ 1285 // .. 1286 // 1287 // The current block is BB and edge BB->Succ is now being evaluated. 1288 // Note that edge S->BB was previously already selected because 1289 // prob(S->BB) > prob(S->Pred). 1290 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1291 // choose Pred, we will have a topological ordering as shown on the left 1292 // in the picture below. If we choose Succ, we have the solution as shown 1293 // on the right: 1294 // 1295 // topo-order: 1296 // 1297 // S----- ---S 1298 // | | | | 1299 // ---BB | | BB 1300 // | | | | 1301 // | Pred-- | Succ-- 1302 // | | | | 1303 // ---Succ ---Pred-- 1304 // 1305 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1306 // = freq(S->Pred) + freq(S->BB) 1307 // 1308 // If we have profile data (i.e, branch probabilities can be trusted), the 1309 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1310 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1311 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1312 // means the cost of topological order is greater. 1313 // When profile data is not available, however, we need to be more 1314 // conservative. If the branch prediction is wrong, breaking the topo-order 1315 // will actually yield a layout with large cost. For this reason, we need 1316 // strong biased branch at block S with Prob(S->BB) in order to select 1317 // BB->Succ. This is equivalent to looking the CFG backward with backward 1318 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1319 // profile data). 1320 // -------------------------------------------------------------------------- 1321 // Case 3: forked diamond 1322 // S 1323 // / \ 1324 // / \ 1325 // BB Pred 1326 // | \ / | 1327 // | \ / | 1328 // | X | 1329 // | / \ | 1330 // | / \ | 1331 // S1 S2 1332 // 1333 // The current block is BB and edge BB->S1 is now being evaluated. 1334 // As above S->BB was already selected because 1335 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1336 // 1337 // topo-order: 1338 // 1339 // S-------| ---S 1340 // | | | | 1341 // ---BB | | BB 1342 // | | | | 1343 // | Pred----| | S1---- 1344 // | | | | 1345 // --(S1 or S2) ---Pred-- 1346 // | 1347 // S2 1348 // 1349 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1350 // + min(freq(Pred->S1), freq(Pred->S2)) 1351 // Non-topo-order cost: 1352 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1353 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1354 // is 0. Then the non topo layout is better when 1355 // freq(S->Pred) < freq(BB->S1). 1356 // This is exactly what is checked below. 1357 // Note there are other shapes that apply (Pred may not be a single block, 1358 // but they all fit this general pattern.) 1359 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1360 1361 // Make sure that a hot successor doesn't have a globally more 1362 // important predecessor. 1363 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1364 bool BadCFGConflict = false; 1365 1366 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1367 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1368 (BlockFilter && !BlockFilter->count(Pred)) || 1369 BlockToChain[Pred] == &Chain || 1370 // This check is redundant except for look ahead. This function is 1371 // called for lookahead by isProfitableToTailDup when BB hasn't been 1372 // placed yet. 1373 (Pred == BB)) 1374 continue; 1375 // Do backward checking. 1376 // For all cases above, we need a backward checking to filter out edges that 1377 // are not 'strongly' biased. 1378 // BB Pred 1379 // \ / 1380 // Succ 1381 // We select edge BB->Succ if 1382 // freq(BB->Succ) > freq(Succ) * HotProb 1383 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1384 // HotProb 1385 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1386 // Case 1 is covered too, because the first equation reduces to: 1387 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1388 BlockFrequency PredEdgeFreq = 1389 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1390 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1391 BadCFGConflict = true; 1392 break; 1393 } 1394 } 1395 1396 if (BadCFGConflict) { 1397 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1398 << " (prob) (non-cold CFG conflict)\n"); 1399 return true; 1400 } 1401 1402 return false; 1403 } 1404 1405 /// \brief Select the best successor for a block. 1406 /// 1407 /// This looks across all successors of a particular block and attempts to 1408 /// select the "best" one to be the layout successor. It only considers direct 1409 /// successors which also pass the block filter. It will attempt to avoid 1410 /// breaking CFG structure, but cave and break such structures in the case of 1411 /// very hot successor edges. 1412 /// 1413 /// \returns The best successor block found, or null if none are viable, along 1414 /// with a boolean indicating if tail duplication is necessary. 1415 MachineBlockPlacement::BlockAndTailDupResult 1416 MachineBlockPlacement::selectBestSuccessor( 1417 const MachineBasicBlock *BB, const BlockChain &Chain, 1418 const BlockFilterSet *BlockFilter) { 1419 const BranchProbability HotProb(StaticLikelyProb, 100); 1420 1421 BlockAndTailDupResult BestSucc = { nullptr, false }; 1422 auto BestProb = BranchProbability::getZero(); 1423 1424 SmallVector<MachineBasicBlock *, 4> Successors; 1425 auto AdjustedSumProb = 1426 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1427 1428 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1429 1430 // if we already precomputed the best successor for BB, return that if still 1431 // applicable. 1432 auto FoundEdge = ComputedEdges.find(BB); 1433 if (FoundEdge != ComputedEdges.end()) { 1434 MachineBasicBlock *Succ = FoundEdge->second.BB; 1435 ComputedEdges.erase(FoundEdge); 1436 BlockChain *SuccChain = BlockToChain[Succ]; 1437 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1438 SuccChain != &Chain && Succ == *SuccChain->begin()) 1439 return FoundEdge->second; 1440 } 1441 1442 // if BB is part of a trellis, Use the trellis to determine the optimal 1443 // fallthrough edges 1444 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1445 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1446 BlockFilter); 1447 1448 // For blocks with CFG violations, we may be able to lay them out anyway with 1449 // tail-duplication. We keep this vector so we can perform the probability 1450 // calculations the minimum number of times. 1451 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1452 DupCandidates; 1453 for (MachineBasicBlock *Succ : Successors) { 1454 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1455 BranchProbability SuccProb = 1456 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1457 1458 BlockChain &SuccChain = *BlockToChain[Succ]; 1459 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1460 // predecessor that yields lower global cost. 1461 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1462 Chain, BlockFilter)) { 1463 // If tail duplication would make Succ profitable, place it. 1464 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1465 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1466 continue; 1467 } 1468 1469 DEBUG( 1470 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1471 << SuccProb 1472 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1473 << "\n"); 1474 1475 if (BestSucc.BB && BestProb >= SuccProb) { 1476 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1477 continue; 1478 } 1479 1480 DEBUG(dbgs() << " Setting it as best candidate\n"); 1481 BestSucc.BB = Succ; 1482 BestProb = SuccProb; 1483 } 1484 // Handle the tail duplication candidates in order of decreasing probability. 1485 // Stop at the first one that is profitable. Also stop if they are less 1486 // profitable than BestSucc. Position is important because we preserve it and 1487 // prefer first best match. Here we aren't comparing in order, so we capture 1488 // the position instead. 1489 if (DupCandidates.size() != 0) { 1490 auto cmp = 1491 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1492 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1493 return std::get<0>(a) > std::get<0>(b); 1494 }; 1495 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1496 } 1497 for(auto &Tup : DupCandidates) { 1498 BranchProbability DupProb; 1499 MachineBasicBlock *Succ; 1500 std::tie(DupProb, Succ) = Tup; 1501 if (DupProb < BestProb) 1502 break; 1503 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1504 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1505 DEBUG( 1506 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1507 << DupProb 1508 << " (Tail Duplicate)\n"); 1509 BestSucc.BB = Succ; 1510 BestSucc.ShouldTailDup = true; 1511 break; 1512 } 1513 } 1514 1515 if (BestSucc.BB) 1516 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1517 1518 return BestSucc; 1519 } 1520 1521 /// \brief Select the best block from a worklist. 1522 /// 1523 /// This looks through the provided worklist as a list of candidate basic 1524 /// blocks and select the most profitable one to place. The definition of 1525 /// profitable only really makes sense in the context of a loop. This returns 1526 /// the most frequently visited block in the worklist, which in the case of 1527 /// a loop, is the one most desirable to be physically close to the rest of the 1528 /// loop body in order to improve i-cache behavior. 1529 /// 1530 /// \returns The best block found, or null if none are viable. 1531 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1532 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1533 // Once we need to walk the worklist looking for a candidate, cleanup the 1534 // worklist of already placed entries. 1535 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1536 // some code complexity) into the loop below. 1537 WorkList.erase(remove_if(WorkList, 1538 [&](MachineBasicBlock *BB) { 1539 return BlockToChain.lookup(BB) == &Chain; 1540 }), 1541 WorkList.end()); 1542 1543 if (WorkList.empty()) 1544 return nullptr; 1545 1546 bool IsEHPad = WorkList[0]->isEHPad(); 1547 1548 MachineBasicBlock *BestBlock = nullptr; 1549 BlockFrequency BestFreq; 1550 for (MachineBasicBlock *MBB : WorkList) { 1551 assert(MBB->isEHPad() == IsEHPad && 1552 "EHPad mismatch between block and work list."); 1553 1554 BlockChain &SuccChain = *BlockToChain[MBB]; 1555 if (&SuccChain == &Chain) 1556 continue; 1557 1558 assert(SuccChain.UnscheduledPredecessors == 0 && 1559 "Found CFG-violating block"); 1560 1561 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1562 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1563 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1564 1565 // For ehpad, we layout the least probable first as to avoid jumping back 1566 // from least probable landingpads to more probable ones. 1567 // 1568 // FIXME: Using probability is probably (!) not the best way to achieve 1569 // this. We should probably have a more principled approach to layout 1570 // cleanup code. 1571 // 1572 // The goal is to get: 1573 // 1574 // +--------------------------+ 1575 // | V 1576 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1577 // 1578 // Rather than: 1579 // 1580 // +-------------------------------------+ 1581 // V | 1582 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1583 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1584 continue; 1585 1586 BestBlock = MBB; 1587 BestFreq = CandidateFreq; 1588 } 1589 1590 return BestBlock; 1591 } 1592 1593 /// \brief Retrieve the first unplaced basic block. 1594 /// 1595 /// This routine is called when we are unable to use the CFG to walk through 1596 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1597 /// We walk through the function's blocks in order, starting from the 1598 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1599 /// re-scanning the entire sequence on repeated calls to this routine. 1600 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1601 const BlockChain &PlacedChain, 1602 MachineFunction::iterator &PrevUnplacedBlockIt, 1603 const BlockFilterSet *BlockFilter) { 1604 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1605 ++I) { 1606 if (BlockFilter && !BlockFilter->count(&*I)) 1607 continue; 1608 if (BlockToChain[&*I] != &PlacedChain) { 1609 PrevUnplacedBlockIt = I; 1610 // Now select the head of the chain to which the unplaced block belongs 1611 // as the block to place. This will force the entire chain to be placed, 1612 // and satisfies the requirements of merging chains. 1613 return *BlockToChain[&*I]->begin(); 1614 } 1615 } 1616 return nullptr; 1617 } 1618 1619 void MachineBlockPlacement::fillWorkLists( 1620 const MachineBasicBlock *MBB, 1621 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1622 const BlockFilterSet *BlockFilter = nullptr) { 1623 BlockChain &Chain = *BlockToChain[MBB]; 1624 if (!UpdatedPreds.insert(&Chain).second) 1625 return; 1626 1627 assert( 1628 Chain.UnscheduledPredecessors == 0 && 1629 "Attempting to place block with unscheduled predecessors in worklist."); 1630 for (MachineBasicBlock *ChainBB : Chain) { 1631 assert(BlockToChain[ChainBB] == &Chain && 1632 "Block in chain doesn't match BlockToChain map."); 1633 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1634 if (BlockFilter && !BlockFilter->count(Pred)) 1635 continue; 1636 if (BlockToChain[Pred] == &Chain) 1637 continue; 1638 ++Chain.UnscheduledPredecessors; 1639 } 1640 } 1641 1642 if (Chain.UnscheduledPredecessors != 0) 1643 return; 1644 1645 MachineBasicBlock *BB = *Chain.begin(); 1646 if (BB->isEHPad()) 1647 EHPadWorkList.push_back(BB); 1648 else 1649 BlockWorkList.push_back(BB); 1650 } 1651 1652 void MachineBlockPlacement::buildChain( 1653 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1654 BlockFilterSet *BlockFilter) { 1655 assert(HeadBB && "BB must not be null.\n"); 1656 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1657 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1658 1659 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1660 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1661 MachineBasicBlock *BB = *std::prev(Chain.end()); 1662 for (;;) { 1663 assert(BB && "null block found at end of chain in loop."); 1664 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1665 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1666 1667 1668 // Look for the best viable successor if there is one to place immediately 1669 // after this block. 1670 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1671 MachineBasicBlock* BestSucc = Result.BB; 1672 bool ShouldTailDup = Result.ShouldTailDup; 1673 if (TailDupPlacement) 1674 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1675 1676 // If an immediate successor isn't available, look for the best viable 1677 // block among those we've identified as not violating the loop's CFG at 1678 // this point. This won't be a fallthrough, but it will increase locality. 1679 if (!BestSucc) 1680 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1681 if (!BestSucc) 1682 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1683 1684 if (!BestSucc) { 1685 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1686 if (!BestSucc) 1687 break; 1688 1689 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1690 "layout successor until the CFG reduces\n"); 1691 } 1692 1693 // Placement may have changed tail duplication opportunities. 1694 // Check for that now. 1695 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1696 // If the chosen successor was duplicated into all its predecessors, 1697 // don't bother laying it out, just go round the loop again with BB as 1698 // the chain end. 1699 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1700 BlockFilter, PrevUnplacedBlockIt)) 1701 continue; 1702 } 1703 1704 // Place this block, updating the datastructures to reflect its placement. 1705 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1706 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1707 // we selected a successor that didn't fit naturally into the CFG. 1708 SuccChain.UnscheduledPredecessors = 0; 1709 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1710 << getBlockName(BestSucc) << "\n"); 1711 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1712 Chain.merge(BestSucc, &SuccChain); 1713 BB = *std::prev(Chain.end()); 1714 } 1715 1716 DEBUG(dbgs() << "Finished forming chain for header block " 1717 << getBlockName(*Chain.begin()) << "\n"); 1718 } 1719 1720 /// \brief Find the best loop top block for layout. 1721 /// 1722 /// Look for a block which is strictly better than the loop header for laying 1723 /// out at the top of the loop. This looks for one and only one pattern: 1724 /// a latch block with no conditional exit. This block will cause a conditional 1725 /// jump around it or will be the bottom of the loop if we lay it out in place, 1726 /// but if it it doesn't end up at the bottom of the loop for any reason, 1727 /// rotation alone won't fix it. Because such a block will always result in an 1728 /// unconditional jump (for the backedge) rotating it in front of the loop 1729 /// header is always profitable. 1730 MachineBasicBlock * 1731 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1732 const BlockFilterSet &LoopBlockSet) { 1733 // Placing the latch block before the header may introduce an extra branch 1734 // that skips this block the first time the loop is executed, which we want 1735 // to avoid when optimising for size. 1736 // FIXME: in theory there is a case that does not introduce a new branch, 1737 // i.e. when the layout predecessor does not fallthrough to the loop header. 1738 // In practice this never happens though: there always seems to be a preheader 1739 // that can fallthrough and that is also placed before the header. 1740 if (F->getFunction()->optForSize()) 1741 return L.getHeader(); 1742 1743 // Check that the header hasn't been fused with a preheader block due to 1744 // crazy branches. If it has, we need to start with the header at the top to 1745 // prevent pulling the preheader into the loop body. 1746 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1747 if (!LoopBlockSet.count(*HeaderChain.begin())) 1748 return L.getHeader(); 1749 1750 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1751 << "\n"); 1752 1753 BlockFrequency BestPredFreq; 1754 MachineBasicBlock *BestPred = nullptr; 1755 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1756 if (!LoopBlockSet.count(Pred)) 1757 continue; 1758 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1759 << Pred->succ_size() << " successors, "; 1760 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1761 if (Pred->succ_size() > 1) 1762 continue; 1763 1764 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1765 if (!BestPred || PredFreq > BestPredFreq || 1766 (!(PredFreq < BestPredFreq) && 1767 Pred->isLayoutSuccessor(L.getHeader()))) { 1768 BestPred = Pred; 1769 BestPredFreq = PredFreq; 1770 } 1771 } 1772 1773 // If no direct predecessor is fine, just use the loop header. 1774 if (!BestPred) { 1775 DEBUG(dbgs() << " final top unchanged\n"); 1776 return L.getHeader(); 1777 } 1778 1779 // Walk backwards through any straight line of predecessors. 1780 while (BestPred->pred_size() == 1 && 1781 (*BestPred->pred_begin())->succ_size() == 1 && 1782 *BestPred->pred_begin() != L.getHeader()) 1783 BestPred = *BestPred->pred_begin(); 1784 1785 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1786 return BestPred; 1787 } 1788 1789 /// \brief Find the best loop exiting block for layout. 1790 /// 1791 /// This routine implements the logic to analyze the loop looking for the best 1792 /// block to layout at the top of the loop. Typically this is done to maximize 1793 /// fallthrough opportunities. 1794 MachineBasicBlock * 1795 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1796 const BlockFilterSet &LoopBlockSet) { 1797 // We don't want to layout the loop linearly in all cases. If the loop header 1798 // is just a normal basic block in the loop, we want to look for what block 1799 // within the loop is the best one to layout at the top. However, if the loop 1800 // header has be pre-merged into a chain due to predecessors not having 1801 // analyzable branches, *and* the predecessor it is merged with is *not* part 1802 // of the loop, rotating the header into the middle of the loop will create 1803 // a non-contiguous range of blocks which is Very Bad. So start with the 1804 // header and only rotate if safe. 1805 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1806 if (!LoopBlockSet.count(*HeaderChain.begin())) 1807 return nullptr; 1808 1809 BlockFrequency BestExitEdgeFreq; 1810 unsigned BestExitLoopDepth = 0; 1811 MachineBasicBlock *ExitingBB = nullptr; 1812 // If there are exits to outer loops, loop rotation can severely limit 1813 // fallthrough opportunities unless it selects such an exit. Keep a set of 1814 // blocks where rotating to exit with that block will reach an outer loop. 1815 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1816 1817 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1818 << "\n"); 1819 for (MachineBasicBlock *MBB : L.getBlocks()) { 1820 BlockChain &Chain = *BlockToChain[MBB]; 1821 // Ensure that this block is at the end of a chain; otherwise it could be 1822 // mid-way through an inner loop or a successor of an unanalyzable branch. 1823 if (MBB != *std::prev(Chain.end())) 1824 continue; 1825 1826 // Now walk the successors. We need to establish whether this has a viable 1827 // exiting successor and whether it has a viable non-exiting successor. 1828 // We store the old exiting state and restore it if a viable looping 1829 // successor isn't found. 1830 MachineBasicBlock *OldExitingBB = ExitingBB; 1831 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1832 bool HasLoopingSucc = false; 1833 for (MachineBasicBlock *Succ : MBB->successors()) { 1834 if (Succ->isEHPad()) 1835 continue; 1836 if (Succ == MBB) 1837 continue; 1838 BlockChain &SuccChain = *BlockToChain[Succ]; 1839 // Don't split chains, either this chain or the successor's chain. 1840 if (&Chain == &SuccChain) { 1841 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1842 << getBlockName(Succ) << " (chain conflict)\n"); 1843 continue; 1844 } 1845 1846 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1847 if (LoopBlockSet.count(Succ)) { 1848 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1849 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1850 HasLoopingSucc = true; 1851 continue; 1852 } 1853 1854 unsigned SuccLoopDepth = 0; 1855 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1856 SuccLoopDepth = ExitLoop->getLoopDepth(); 1857 if (ExitLoop->contains(&L)) 1858 BlocksExitingToOuterLoop.insert(MBB); 1859 } 1860 1861 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1862 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1863 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1864 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1865 // Note that we bias this toward an existing layout successor to retain 1866 // incoming order in the absence of better information. The exit must have 1867 // a frequency higher than the current exit before we consider breaking 1868 // the layout. 1869 BranchProbability Bias(100 - ExitBlockBias, 100); 1870 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1871 ExitEdgeFreq > BestExitEdgeFreq || 1872 (MBB->isLayoutSuccessor(Succ) && 1873 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1874 BestExitEdgeFreq = ExitEdgeFreq; 1875 ExitingBB = MBB; 1876 } 1877 } 1878 1879 if (!HasLoopingSucc) { 1880 // Restore the old exiting state, no viable looping successor was found. 1881 ExitingBB = OldExitingBB; 1882 BestExitEdgeFreq = OldBestExitEdgeFreq; 1883 } 1884 } 1885 // Without a candidate exiting block or with only a single block in the 1886 // loop, just use the loop header to layout the loop. 1887 if (!ExitingBB) { 1888 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1889 return nullptr; 1890 } 1891 if (L.getNumBlocks() == 1) { 1892 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1893 return nullptr; 1894 } 1895 1896 // Also, if we have exit blocks which lead to outer loops but didn't select 1897 // one of them as the exiting block we are rotating toward, disable loop 1898 // rotation altogether. 1899 if (!BlocksExitingToOuterLoop.empty() && 1900 !BlocksExitingToOuterLoop.count(ExitingBB)) 1901 return nullptr; 1902 1903 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1904 return ExitingBB; 1905 } 1906 1907 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1908 /// 1909 /// Once we have built a chain, try to rotate it to line up the hot exit block 1910 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1911 /// branches. For example, if the loop has fallthrough into its header and out 1912 /// of its bottom already, don't rotate it. 1913 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1914 const MachineBasicBlock *ExitingBB, 1915 const BlockFilterSet &LoopBlockSet) { 1916 if (!ExitingBB) 1917 return; 1918 1919 MachineBasicBlock *Top = *LoopChain.begin(); 1920 bool ViableTopFallthrough = false; 1921 for (MachineBasicBlock *Pred : Top->predecessors()) { 1922 BlockChain *PredChain = BlockToChain[Pred]; 1923 if (!LoopBlockSet.count(Pred) && 1924 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1925 ViableTopFallthrough = true; 1926 break; 1927 } 1928 } 1929 1930 // If the header has viable fallthrough, check whether the current loop 1931 // bottom is a viable exiting block. If so, bail out as rotating will 1932 // introduce an unnecessary branch. 1933 if (ViableTopFallthrough) { 1934 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1935 for (MachineBasicBlock *Succ : Bottom->successors()) { 1936 BlockChain *SuccChain = BlockToChain[Succ]; 1937 if (!LoopBlockSet.count(Succ) && 1938 (!SuccChain || Succ == *SuccChain->begin())) 1939 return; 1940 } 1941 } 1942 1943 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1944 if (ExitIt == LoopChain.end()) 1945 return; 1946 1947 // Rotating a loop exit to the bottom when there is a fallthrough to top 1948 // trades the entry fallthrough for an exit fallthrough. 1949 // If there is no bottom->top edge, but the chosen exit block does have 1950 // a fallthrough, we break that fallthrough for nothing in return. 1951 1952 // Let's consider an example. We have a built chain of basic blocks 1953 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 1954 // By doing a rotation we get 1955 // Bk+1, ..., Bn, B1, ..., Bk 1956 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 1957 // If we had a fallthrough Bk -> Bk+1 it is broken now. 1958 // It might be compensated by fallthrough Bn -> B1. 1959 // So we have a condition to avoid creation of extra branch by loop rotation. 1960 // All below must be true to avoid loop rotation: 1961 // If there is a fallthrough to top (B1) 1962 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 1963 // There is no fallthrough from bottom (Bn) to top (B1). 1964 // Please note that there is no exit fallthrough from Bn because we checked it 1965 // above. 1966 if (ViableTopFallthrough) { 1967 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 1968 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1969 if (NextBlockInChain->isPredecessor(ExitingBB)) 1970 if (!Top->isPredecessor(Bottom)) 1971 return; 1972 } 1973 1974 DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 1975 << " at bottom\n"); 1976 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1977 } 1978 1979 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1980 /// 1981 /// With profile data, we can determine the cost in terms of missed fall through 1982 /// opportunities when rotating a loop chain and select the best rotation. 1983 /// Basically, there are three kinds of cost to consider for each rotation: 1984 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1985 /// the loop to the loop header. 1986 /// 2. The possibly missed fall through edges (if they exist) from the loop 1987 /// exits to BB out of the loop. 1988 /// 3. The missed fall through edge (if it exists) from the last BB to the 1989 /// first BB in the loop chain. 1990 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1991 /// We select the best rotation with the smallest cost. 1992 void MachineBlockPlacement::rotateLoopWithProfile( 1993 BlockChain &LoopChain, const MachineLoop &L, 1994 const BlockFilterSet &LoopBlockSet) { 1995 auto HeaderBB = L.getHeader(); 1996 auto HeaderIter = find(LoopChain, HeaderBB); 1997 auto RotationPos = LoopChain.end(); 1998 1999 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2000 2001 // A utility lambda that scales up a block frequency by dividing it by a 2002 // branch probability which is the reciprocal of the scale. 2003 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2004 unsigned Scale) -> BlockFrequency { 2005 if (Scale == 0) 2006 return 0; 2007 // Use operator / between BlockFrequency and BranchProbability to implement 2008 // saturating multiplication. 2009 return Freq / BranchProbability(1, Scale); 2010 }; 2011 2012 // Compute the cost of the missed fall-through edge to the loop header if the 2013 // chain head is not the loop header. As we only consider natural loops with 2014 // single header, this computation can be done only once. 2015 BlockFrequency HeaderFallThroughCost(0); 2016 for (auto *Pred : HeaderBB->predecessors()) { 2017 BlockChain *PredChain = BlockToChain[Pred]; 2018 if (!LoopBlockSet.count(Pred) && 2019 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2020 auto EdgeFreq = 2021 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2022 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2023 // If the predecessor has only an unconditional jump to the header, we 2024 // need to consider the cost of this jump. 2025 if (Pred->succ_size() == 1) 2026 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2027 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2028 } 2029 } 2030 2031 // Here we collect all exit blocks in the loop, and for each exit we find out 2032 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2033 // as the sum of frequencies of exit edges we collect here, excluding the exit 2034 // edge from the tail of the loop chain. 2035 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2036 for (auto BB : LoopChain) { 2037 auto LargestExitEdgeProb = BranchProbability::getZero(); 2038 for (auto *Succ : BB->successors()) { 2039 BlockChain *SuccChain = BlockToChain[Succ]; 2040 if (!LoopBlockSet.count(Succ) && 2041 (!SuccChain || Succ == *SuccChain->begin())) { 2042 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2043 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2044 } 2045 } 2046 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2047 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2048 ExitsWithFreq.emplace_back(BB, ExitFreq); 2049 } 2050 } 2051 2052 // In this loop we iterate every block in the loop chain and calculate the 2053 // cost assuming the block is the head of the loop chain. When the loop ends, 2054 // we should have found the best candidate as the loop chain's head. 2055 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2056 EndIter = LoopChain.end(); 2057 Iter != EndIter; Iter++, TailIter++) { 2058 // TailIter is used to track the tail of the loop chain if the block we are 2059 // checking (pointed by Iter) is the head of the chain. 2060 if (TailIter == LoopChain.end()) 2061 TailIter = LoopChain.begin(); 2062 2063 auto TailBB = *TailIter; 2064 2065 // Calculate the cost by putting this BB to the top. 2066 BlockFrequency Cost = 0; 2067 2068 // If the current BB is the loop header, we need to take into account the 2069 // cost of the missed fall through edge from outside of the loop to the 2070 // header. 2071 if (Iter != HeaderIter) 2072 Cost += HeaderFallThroughCost; 2073 2074 // Collect the loop exit cost by summing up frequencies of all exit edges 2075 // except the one from the chain tail. 2076 for (auto &ExitWithFreq : ExitsWithFreq) 2077 if (TailBB != ExitWithFreq.first) 2078 Cost += ExitWithFreq.second; 2079 2080 // The cost of breaking the once fall-through edge from the tail to the top 2081 // of the loop chain. Here we need to consider three cases: 2082 // 1. If the tail node has only one successor, then we will get an 2083 // additional jmp instruction. So the cost here is (MisfetchCost + 2084 // JumpInstCost) * tail node frequency. 2085 // 2. If the tail node has two successors, then we may still get an 2086 // additional jmp instruction if the layout successor after the loop 2087 // chain is not its CFG successor. Note that the more frequently executed 2088 // jmp instruction will be put ahead of the other one. Assume the 2089 // frequency of those two branches are x and y, where x is the frequency 2090 // of the edge to the chain head, then the cost will be 2091 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2092 // 3. If the tail node has more than two successors (this rarely happens), 2093 // we won't consider any additional cost. 2094 if (TailBB->isSuccessor(*Iter)) { 2095 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2096 if (TailBB->succ_size() == 1) 2097 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2098 MisfetchCost + JumpInstCost); 2099 else if (TailBB->succ_size() == 2) { 2100 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2101 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2102 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2103 ? TailBBFreq * TailToHeadProb.getCompl() 2104 : TailToHeadFreq; 2105 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2106 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2107 } 2108 } 2109 2110 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2111 << " to the top: " << Cost.getFrequency() << "\n"); 2112 2113 if (Cost < SmallestRotationCost) { 2114 SmallestRotationCost = Cost; 2115 RotationPos = Iter; 2116 } 2117 } 2118 2119 if (RotationPos != LoopChain.end()) { 2120 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2121 << " to the top\n"); 2122 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2123 } 2124 } 2125 2126 /// \brief Collect blocks in the given loop that are to be placed. 2127 /// 2128 /// When profile data is available, exclude cold blocks from the returned set; 2129 /// otherwise, collect all blocks in the loop. 2130 MachineBlockPlacement::BlockFilterSet 2131 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2132 BlockFilterSet LoopBlockSet; 2133 2134 // Filter cold blocks off from LoopBlockSet when profile data is available. 2135 // Collect the sum of frequencies of incoming edges to the loop header from 2136 // outside. If we treat the loop as a super block, this is the frequency of 2137 // the loop. Then for each block in the loop, we calculate the ratio between 2138 // its frequency and the frequency of the loop block. When it is too small, 2139 // don't add it to the loop chain. If there are outer loops, then this block 2140 // will be merged into the first outer loop chain for which this block is not 2141 // cold anymore. This needs precise profile data and we only do this when 2142 // profile data is available. 2143 if (F->getFunction()->getEntryCount()) { 2144 BlockFrequency LoopFreq(0); 2145 for (auto LoopPred : L.getHeader()->predecessors()) 2146 if (!L.contains(LoopPred)) 2147 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2148 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2149 2150 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2151 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2152 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2153 continue; 2154 LoopBlockSet.insert(LoopBB); 2155 } 2156 } else 2157 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2158 2159 return LoopBlockSet; 2160 } 2161 2162 /// \brief Forms basic block chains from the natural loop structures. 2163 /// 2164 /// These chains are designed to preserve the existing *structure* of the code 2165 /// as much as possible. We can then stitch the chains together in a way which 2166 /// both preserves the topological structure and minimizes taken conditional 2167 /// branches. 2168 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2169 // First recurse through any nested loops, building chains for those inner 2170 // loops. 2171 for (const MachineLoop *InnerLoop : L) 2172 buildLoopChains(*InnerLoop); 2173 2174 assert(BlockWorkList.empty() && 2175 "BlockWorkList not empty when starting to build loop chains."); 2176 assert(EHPadWorkList.empty() && 2177 "EHPadWorkList not empty when starting to build loop chains."); 2178 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2179 2180 // Check if we have profile data for this function. If yes, we will rotate 2181 // this loop by modeling costs more precisely which requires the profile data 2182 // for better layout. 2183 bool RotateLoopWithProfile = 2184 ForcePreciseRotationCost || 2185 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2186 2187 // First check to see if there is an obviously preferable top block for the 2188 // loop. This will default to the header, but may end up as one of the 2189 // predecessors to the header if there is one which will result in strictly 2190 // fewer branches in the loop body. 2191 // When we use profile data to rotate the loop, this is unnecessary. 2192 MachineBasicBlock *LoopTop = 2193 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2194 2195 // If we selected just the header for the loop top, look for a potentially 2196 // profitable exit block in the event that rotating the loop can eliminate 2197 // branches by placing an exit edge at the bottom. 2198 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2199 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2200 2201 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2202 2203 // FIXME: This is a really lame way of walking the chains in the loop: we 2204 // walk the blocks, and use a set to prevent visiting a particular chain 2205 // twice. 2206 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2207 assert(LoopChain.UnscheduledPredecessors == 0 && 2208 "LoopChain should not have unscheduled predecessors."); 2209 UpdatedPreds.insert(&LoopChain); 2210 2211 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2212 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2213 2214 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2215 2216 if (RotateLoopWithProfile) 2217 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2218 else 2219 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2220 2221 DEBUG({ 2222 // Crash at the end so we get all of the debugging output first. 2223 bool BadLoop = false; 2224 if (LoopChain.UnscheduledPredecessors) { 2225 BadLoop = true; 2226 dbgs() << "Loop chain contains a block without its preds placed!\n" 2227 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2228 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2229 } 2230 for (MachineBasicBlock *ChainBB : LoopChain) { 2231 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2232 if (!LoopBlockSet.remove(ChainBB)) { 2233 // We don't mark the loop as bad here because there are real situations 2234 // where this can occur. For example, with an unanalyzable fallthrough 2235 // from a loop block to a non-loop block or vice versa. 2236 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2237 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2238 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2239 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2240 } 2241 } 2242 2243 if (!LoopBlockSet.empty()) { 2244 BadLoop = true; 2245 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2246 dbgs() << "Loop contains blocks never placed into a chain!\n" 2247 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2248 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2249 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2250 } 2251 assert(!BadLoop && "Detected problems with the placement of this loop."); 2252 }); 2253 2254 BlockWorkList.clear(); 2255 EHPadWorkList.clear(); 2256 } 2257 2258 void MachineBlockPlacement::buildCFGChains() { 2259 // Ensure that every BB in the function has an associated chain to simplify 2260 // the assumptions of the remaining algorithm. 2261 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2262 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2263 ++FI) { 2264 MachineBasicBlock *BB = &*FI; 2265 BlockChain *Chain = 2266 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2267 // Also, merge any blocks which we cannot reason about and must preserve 2268 // the exact fallthrough behavior for. 2269 for (;;) { 2270 Cond.clear(); 2271 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2272 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2273 break; 2274 2275 MachineFunction::iterator NextFI = std::next(FI); 2276 MachineBasicBlock *NextBB = &*NextFI; 2277 // Ensure that the layout successor is a viable block, as we know that 2278 // fallthrough is a possibility. 2279 assert(NextFI != FE && "Can't fallthrough past the last block."); 2280 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2281 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2282 << "\n"); 2283 Chain->merge(NextBB, nullptr); 2284 #ifndef NDEBUG 2285 BlocksWithUnanalyzableExits.insert(&*BB); 2286 #endif 2287 FI = NextFI; 2288 BB = NextBB; 2289 } 2290 } 2291 2292 // Build any loop-based chains. 2293 PreferredLoopExit = nullptr; 2294 for (MachineLoop *L : *MLI) 2295 buildLoopChains(*L); 2296 2297 assert(BlockWorkList.empty() && 2298 "BlockWorkList should be empty before building final chain."); 2299 assert(EHPadWorkList.empty() && 2300 "EHPadWorkList should be empty before building final chain."); 2301 2302 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2303 for (MachineBasicBlock &MBB : *F) 2304 fillWorkLists(&MBB, UpdatedPreds); 2305 2306 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2307 buildChain(&F->front(), FunctionChain); 2308 2309 #ifndef NDEBUG 2310 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2311 #endif 2312 DEBUG({ 2313 // Crash at the end so we get all of the debugging output first. 2314 bool BadFunc = false; 2315 FunctionBlockSetType FunctionBlockSet; 2316 for (MachineBasicBlock &MBB : *F) 2317 FunctionBlockSet.insert(&MBB); 2318 2319 for (MachineBasicBlock *ChainBB : FunctionChain) 2320 if (!FunctionBlockSet.erase(ChainBB)) { 2321 BadFunc = true; 2322 dbgs() << "Function chain contains a block not in the function!\n" 2323 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2324 } 2325 2326 if (!FunctionBlockSet.empty()) { 2327 BadFunc = true; 2328 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2329 dbgs() << "Function contains blocks never placed into a chain!\n" 2330 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2331 } 2332 assert(!BadFunc && "Detected problems with the block placement."); 2333 }); 2334 2335 // Splice the blocks into place. 2336 MachineFunction::iterator InsertPos = F->begin(); 2337 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2338 for (MachineBasicBlock *ChainBB : FunctionChain) { 2339 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2340 : " ... ") 2341 << getBlockName(ChainBB) << "\n"); 2342 if (InsertPos != MachineFunction::iterator(ChainBB)) 2343 F->splice(InsertPos, ChainBB); 2344 else 2345 ++InsertPos; 2346 2347 // Update the terminator of the previous block. 2348 if (ChainBB == *FunctionChain.begin()) 2349 continue; 2350 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2351 2352 // FIXME: It would be awesome of updateTerminator would just return rather 2353 // than assert when the branch cannot be analyzed in order to remove this 2354 // boiler plate. 2355 Cond.clear(); 2356 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2357 2358 #ifndef NDEBUG 2359 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2360 // Given the exact block placement we chose, we may actually not _need_ to 2361 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2362 // do that at this point is a bug. 2363 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2364 !PrevBB->canFallThrough()) && 2365 "Unexpected block with un-analyzable fallthrough!"); 2366 Cond.clear(); 2367 TBB = FBB = nullptr; 2368 } 2369 #endif 2370 2371 // The "PrevBB" is not yet updated to reflect current code layout, so, 2372 // o. it may fall-through to a block without explicit "goto" instruction 2373 // before layout, and no longer fall-through it after layout; or 2374 // o. just opposite. 2375 // 2376 // analyzeBranch() may return erroneous value for FBB when these two 2377 // situations take place. For the first scenario FBB is mistakenly set NULL; 2378 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2379 // mistakenly pointing to "*BI". 2380 // Thus, if the future change needs to use FBB before the layout is set, it 2381 // has to correct FBB first by using the code similar to the following: 2382 // 2383 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2384 // PrevBB->updateTerminator(); 2385 // Cond.clear(); 2386 // TBB = FBB = nullptr; 2387 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2388 // // FIXME: This should never take place. 2389 // TBB = FBB = nullptr; 2390 // } 2391 // } 2392 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2393 PrevBB->updateTerminator(); 2394 } 2395 2396 // Fixup the last block. 2397 Cond.clear(); 2398 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2399 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2400 F->back().updateTerminator(); 2401 2402 BlockWorkList.clear(); 2403 EHPadWorkList.clear(); 2404 } 2405 2406 void MachineBlockPlacement::optimizeBranches() { 2407 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2408 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2409 2410 // Now that all the basic blocks in the chain have the proper layout, 2411 // make a final call to AnalyzeBranch with AllowModify set. 2412 // Indeed, the target may be able to optimize the branches in a way we 2413 // cannot because all branches may not be analyzable. 2414 // E.g., the target may be able to remove an unconditional branch to 2415 // a fallthrough when it occurs after predicated terminators. 2416 for (MachineBasicBlock *ChainBB : FunctionChain) { 2417 Cond.clear(); 2418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2419 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2420 // If PrevBB has a two-way branch, try to re-order the branches 2421 // such that we branch to the successor with higher probability first. 2422 if (TBB && !Cond.empty() && FBB && 2423 MBPI->getEdgeProbability(ChainBB, FBB) > 2424 MBPI->getEdgeProbability(ChainBB, TBB) && 2425 !TII->reverseBranchCondition(Cond)) { 2426 DEBUG(dbgs() << "Reverse order of the two branches: " 2427 << getBlockName(ChainBB) << "\n"); 2428 DEBUG(dbgs() << " Edge probability: " 2429 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2430 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2431 DebugLoc dl; // FIXME: this is nowhere 2432 TII->removeBranch(*ChainBB); 2433 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2434 ChainBB->updateTerminator(); 2435 } 2436 } 2437 } 2438 } 2439 2440 void MachineBlockPlacement::alignBlocks() { 2441 // Walk through the backedges of the function now that we have fully laid out 2442 // the basic blocks and align the destination of each backedge. We don't rely 2443 // exclusively on the loop info here so that we can align backedges in 2444 // unnatural CFGs and backedges that were introduced purely because of the 2445 // loop rotations done during this layout pass. 2446 if (F->getFunction()->optForSize()) 2447 return; 2448 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2449 if (FunctionChain.begin() == FunctionChain.end()) 2450 return; // Empty chain. 2451 2452 const BranchProbability ColdProb(1, 5); // 20% 2453 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2454 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2455 for (MachineBasicBlock *ChainBB : FunctionChain) { 2456 if (ChainBB == *FunctionChain.begin()) 2457 continue; 2458 2459 // Don't align non-looping basic blocks. These are unlikely to execute 2460 // enough times to matter in practice. Note that we'll still handle 2461 // unnatural CFGs inside of a natural outer loop (the common case) and 2462 // rotated loops. 2463 MachineLoop *L = MLI->getLoopFor(ChainBB); 2464 if (!L) 2465 continue; 2466 2467 unsigned Align = TLI->getPrefLoopAlignment(L); 2468 if (!Align) 2469 continue; // Don't care about loop alignment. 2470 2471 // If the block is cold relative to the function entry don't waste space 2472 // aligning it. 2473 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2474 if (Freq < WeightedEntryFreq) 2475 continue; 2476 2477 // If the block is cold relative to its loop header, don't align it 2478 // regardless of what edges into the block exist. 2479 MachineBasicBlock *LoopHeader = L->getHeader(); 2480 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2481 if (Freq < (LoopHeaderFreq * ColdProb)) 2482 continue; 2483 2484 // Check for the existence of a non-layout predecessor which would benefit 2485 // from aligning this block. 2486 MachineBasicBlock *LayoutPred = 2487 &*std::prev(MachineFunction::iterator(ChainBB)); 2488 2489 // Force alignment if all the predecessors are jumps. We already checked 2490 // that the block isn't cold above. 2491 if (!LayoutPred->isSuccessor(ChainBB)) { 2492 ChainBB->setAlignment(Align); 2493 continue; 2494 } 2495 2496 // Align this block if the layout predecessor's edge into this block is 2497 // cold relative to the block. When this is true, other predecessors make up 2498 // all of the hot entries into the block and thus alignment is likely to be 2499 // important. 2500 BranchProbability LayoutProb = 2501 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2502 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2503 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2504 ChainBB->setAlignment(Align); 2505 } 2506 } 2507 2508 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2509 /// it was duplicated into its chain predecessor and removed. 2510 /// \p BB - Basic block that may be duplicated. 2511 /// 2512 /// \p LPred - Chosen layout predecessor of \p BB. 2513 /// Updated to be the chain end if LPred is removed. 2514 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2515 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2516 /// Used to identify which blocks to update predecessor 2517 /// counts. 2518 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2519 /// chosen in the given order due to unnatural CFG 2520 /// only needed if \p BB is removed and 2521 /// \p PrevUnplacedBlockIt pointed to \p BB. 2522 /// @return true if \p BB was removed. 2523 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2524 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2525 const MachineBasicBlock *LoopHeaderBB, 2526 BlockChain &Chain, BlockFilterSet *BlockFilter, 2527 MachineFunction::iterator &PrevUnplacedBlockIt) { 2528 bool Removed, DuplicatedToLPred; 2529 bool DuplicatedToOriginalLPred; 2530 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2531 PrevUnplacedBlockIt, 2532 DuplicatedToLPred); 2533 if (!Removed) 2534 return false; 2535 DuplicatedToOriginalLPred = DuplicatedToLPred; 2536 // Iteratively try to duplicate again. It can happen that a block that is 2537 // duplicated into is still small enough to be duplicated again. 2538 // No need to call markBlockSuccessors in this case, as the blocks being 2539 // duplicated from here on are already scheduled. 2540 // Note that DuplicatedToLPred always implies Removed. 2541 while (DuplicatedToLPred) { 2542 assert (Removed && "Block must have been removed to be duplicated into its " 2543 "layout predecessor."); 2544 MachineBasicBlock *DupBB, *DupPred; 2545 // The removal callback causes Chain.end() to be updated when a block is 2546 // removed. On the first pass through the loop, the chain end should be the 2547 // same as it was on function entry. On subsequent passes, because we are 2548 // duplicating the block at the end of the chain, if it is removed the 2549 // chain will have shrunk by one block. 2550 BlockChain::iterator ChainEnd = Chain.end(); 2551 DupBB = *(--ChainEnd); 2552 // Now try to duplicate again. 2553 if (ChainEnd == Chain.begin()) 2554 break; 2555 DupPred = *std::prev(ChainEnd); 2556 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2557 PrevUnplacedBlockIt, 2558 DuplicatedToLPred); 2559 } 2560 // If BB was duplicated into LPred, it is now scheduled. But because it was 2561 // removed, markChainSuccessors won't be called for its chain. Instead we 2562 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2563 // at the end because repeating the tail duplication can increase the number 2564 // of unscheduled predecessors. 2565 LPred = *std::prev(Chain.end()); 2566 if (DuplicatedToOriginalLPred) 2567 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2568 return true; 2569 } 2570 2571 /// Tail duplicate \p BB into (some) predecessors if profitable. 2572 /// \p BB - Basic block that may be duplicated 2573 /// \p LPred - Chosen layout predecessor of \p BB 2574 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2575 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2576 /// Used to identify which blocks to update predecessor 2577 /// counts. 2578 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2579 /// chosen in the given order due to unnatural CFG 2580 /// only needed if \p BB is removed and 2581 /// \p PrevUnplacedBlockIt pointed to \p BB. 2582 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2583 /// only be true if the block was removed. 2584 /// \return - True if the block was duplicated into all preds and removed. 2585 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2586 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2587 BlockChain &Chain, BlockFilterSet *BlockFilter, 2588 MachineFunction::iterator &PrevUnplacedBlockIt, 2589 bool &DuplicatedToLPred) { 2590 DuplicatedToLPred = false; 2591 if (!shouldTailDuplicate(BB)) 2592 return false; 2593 2594 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2595 << BB->getNumber() << "\n"); 2596 2597 // This has to be a callback because none of it can be done after 2598 // BB is deleted. 2599 bool Removed = false; 2600 auto RemovalCallback = 2601 [&](MachineBasicBlock *RemBB) { 2602 // Signal to outer function 2603 Removed = true; 2604 2605 // Conservative default. 2606 bool InWorkList = true; 2607 // Remove from the Chain and Chain Map 2608 if (BlockToChain.count(RemBB)) { 2609 BlockChain *Chain = BlockToChain[RemBB]; 2610 InWorkList = Chain->UnscheduledPredecessors == 0; 2611 Chain->remove(RemBB); 2612 BlockToChain.erase(RemBB); 2613 } 2614 2615 // Handle the unplaced block iterator 2616 if (&(*PrevUnplacedBlockIt) == RemBB) { 2617 PrevUnplacedBlockIt++; 2618 } 2619 2620 // Handle the Work Lists 2621 if (InWorkList) { 2622 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2623 if (RemBB->isEHPad()) 2624 RemoveList = EHPadWorkList; 2625 RemoveList.erase( 2626 remove_if(RemoveList, 2627 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2628 RemoveList.end()); 2629 } 2630 2631 // Handle the filter set 2632 if (BlockFilter) { 2633 BlockFilter->remove(RemBB); 2634 } 2635 2636 // Remove the block from loop info. 2637 MLI->removeBlock(RemBB); 2638 if (RemBB == PreferredLoopExit) 2639 PreferredLoopExit = nullptr; 2640 2641 DEBUG(dbgs() << "TailDuplicator deleted block: " 2642 << getBlockName(RemBB) << "\n"); 2643 }; 2644 auto RemovalCallbackRef = 2645 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2646 2647 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2648 bool IsSimple = TailDup.isSimpleBB(BB); 2649 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2650 &DuplicatedPreds, &RemovalCallbackRef); 2651 2652 // Update UnscheduledPredecessors to reflect tail-duplication. 2653 DuplicatedToLPred = false; 2654 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2655 // We're only looking for unscheduled predecessors that match the filter. 2656 BlockChain* PredChain = BlockToChain[Pred]; 2657 if (Pred == LPred) 2658 DuplicatedToLPred = true; 2659 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2660 || PredChain == &Chain) 2661 continue; 2662 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2663 if (BlockFilter && !BlockFilter->count(NewSucc)) 2664 continue; 2665 BlockChain *NewChain = BlockToChain[NewSucc]; 2666 if (NewChain != &Chain && NewChain != PredChain) 2667 NewChain->UnscheduledPredecessors++; 2668 } 2669 } 2670 return Removed; 2671 } 2672 2673 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2674 if (skipFunction(*MF.getFunction())) 2675 return false; 2676 2677 // Check for single-block functions and skip them. 2678 if (std::next(MF.begin()) == MF.end()) 2679 return false; 2680 2681 F = &MF; 2682 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2683 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2684 getAnalysis<MachineBlockFrequencyInfo>()); 2685 MLI = &getAnalysis<MachineLoopInfo>(); 2686 TII = MF.getSubtarget().getInstrInfo(); 2687 TLI = MF.getSubtarget().getTargetLowering(); 2688 MPDT = nullptr; 2689 2690 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2691 // there are no MachineLoops. 2692 PreferredLoopExit = nullptr; 2693 2694 assert(BlockToChain.empty() && 2695 "BlockToChain map should be empty before starting placement."); 2696 assert(ComputedEdges.empty() && 2697 "Computed Edge map should be empty before starting placement."); 2698 2699 unsigned TailDupSize = TailDupPlacementThreshold; 2700 // If only the aggressive threshold is explicitly set, use it. 2701 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2702 TailDupPlacementThreshold.getNumOccurrences() == 0) 2703 TailDupSize = TailDupPlacementAggressiveThreshold; 2704 2705 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2706 // For agressive optimization, we can adjust some thresholds to be less 2707 // conservative. 2708 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2709 // At O3 we should be more willing to copy blocks for tail duplication. This 2710 // increases size pressure, so we only do it at O3 2711 // Do this unless only the regular threshold is explicitly set. 2712 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2713 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2714 TailDupSize = TailDupPlacementAggressiveThreshold; 2715 } 2716 2717 if (TailDupPlacement) { 2718 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2719 if (MF.getFunction()->optForSize()) 2720 TailDupSize = 1; 2721 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2722 precomputeTriangleChains(); 2723 } 2724 2725 buildCFGChains(); 2726 2727 // Changing the layout can create new tail merging opportunities. 2728 // TailMerge can create jump into if branches that make CFG irreducible for 2729 // HW that requires structured CFG. 2730 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2731 PassConfig->getEnableTailMerge() && 2732 BranchFoldPlacement; 2733 // No tail merging opportunities if the block number is less than four. 2734 if (MF.size() > 3 && EnableTailMerge) { 2735 unsigned TailMergeSize = TailDupSize + 1; 2736 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2737 *MBPI, TailMergeSize); 2738 2739 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2740 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2741 /*AfterBlockPlacement=*/true)) { 2742 // Redo the layout if tail merging creates/removes/moves blocks. 2743 BlockToChain.clear(); 2744 ComputedEdges.clear(); 2745 // Must redo the post-dominator tree if blocks were changed. 2746 if (MPDT) 2747 MPDT->runOnMachineFunction(MF); 2748 ChainAllocator.DestroyAll(); 2749 buildCFGChains(); 2750 } 2751 } 2752 2753 optimizeBranches(); 2754 alignBlocks(); 2755 2756 BlockToChain.clear(); 2757 ComputedEdges.clear(); 2758 ChainAllocator.DestroyAll(); 2759 2760 if (AlignAllBlock) 2761 // Align all of the blocks in the function to a specific alignment. 2762 for (MachineBasicBlock &MBB : MF) 2763 MBB.setAlignment(AlignAllBlock); 2764 else if (AlignAllNonFallThruBlocks) { 2765 // Align all of the blocks that have no fall-through predecessors to a 2766 // specific alignment. 2767 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2768 auto LayoutPred = std::prev(MBI); 2769 if (!LayoutPred->isSuccessor(&*MBI)) 2770 MBI->setAlignment(AlignAllNonFallThruBlocks); 2771 } 2772 } 2773 if (ViewBlockLayoutWithBFI != GVDT_None && 2774 (ViewBlockFreqFuncName.empty() || 2775 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2776 MBFI->view("MBP." + MF.getName(), false); 2777 } 2778 2779 2780 // We always return true as we have no way to track whether the final order 2781 // differs from the original order. 2782 return true; 2783 } 2784 2785 namespace { 2786 /// \brief A pass to compute block placement statistics. 2787 /// 2788 /// A separate pass to compute interesting statistics for evaluating block 2789 /// placement. This is separate from the actual placement pass so that they can 2790 /// be computed in the absence of any placement transformations or when using 2791 /// alternative placement strategies. 2792 class MachineBlockPlacementStats : public MachineFunctionPass { 2793 /// \brief A handle to the branch probability pass. 2794 const MachineBranchProbabilityInfo *MBPI; 2795 2796 /// \brief A handle to the function-wide block frequency pass. 2797 const MachineBlockFrequencyInfo *MBFI; 2798 2799 public: 2800 static char ID; // Pass identification, replacement for typeid 2801 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2802 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2803 } 2804 2805 bool runOnMachineFunction(MachineFunction &F) override; 2806 2807 void getAnalysisUsage(AnalysisUsage &AU) const override { 2808 AU.addRequired<MachineBranchProbabilityInfo>(); 2809 AU.addRequired<MachineBlockFrequencyInfo>(); 2810 AU.setPreservesAll(); 2811 MachineFunctionPass::getAnalysisUsage(AU); 2812 } 2813 }; 2814 } 2815 2816 char MachineBlockPlacementStats::ID = 0; 2817 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2818 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2819 "Basic Block Placement Stats", false, false) 2820 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2821 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2822 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2823 "Basic Block Placement Stats", false, false) 2824 2825 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2826 // Check for single-block functions and skip them. 2827 if (std::next(F.begin()) == F.end()) 2828 return false; 2829 2830 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2831 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2832 2833 for (MachineBasicBlock &MBB : F) { 2834 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2835 Statistic &NumBranches = 2836 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2837 Statistic &BranchTakenFreq = 2838 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2839 for (MachineBasicBlock *Succ : MBB.successors()) { 2840 // Skip if this successor is a fallthrough. 2841 if (MBB.isLayoutSuccessor(Succ)) 2842 continue; 2843 2844 BlockFrequency EdgeFreq = 2845 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2846 ++NumBranches; 2847 BranchTakenFreq += EdgeFreq.getFrequency(); 2848 } 2849 } 2850 2851 return false; 2852 } 2853