xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision b01fff06edf673e276a8a324748a20a01f9ec7aa)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "BranchFolding.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachinePostDominators.h"
42 #include "llvm/CodeGen/Passes.h"
43 #include "llvm/CodeGen/TailDuplicator.h"
44 #include "llvm/CodeGen/TargetPassConfig.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetSubtargetInfo.h"
52 #include <algorithm>
53 #include <functional>
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "block-placement"
58 
59 STATISTIC(NumCondBranches, "Number of conditional branches");
60 STATISTIC(NumUncondBranches, "Number of unconditional branches");
61 STATISTIC(CondBranchTakenFreq,
62           "Potential frequency of taking conditional branches");
63 STATISTIC(UncondBranchTakenFreq,
64           "Potential frequency of taking unconditional branches");
65 
66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
67                                        cl::desc("Force the alignment of all "
68                                                 "blocks in the function."),
69                                        cl::init(0), cl::Hidden);
70 
71 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
72     "align-all-nofallthru-blocks",
73     cl::desc("Force the alignment of all "
74              "blocks that have no fall-through predecessors (i.e. don't add "
75              "nops that are executed)."),
76     cl::init(0), cl::Hidden);
77 
78 // FIXME: Find a good default for this flag and remove the flag.
79 static cl::opt<unsigned> ExitBlockBias(
80     "block-placement-exit-block-bias",
81     cl::desc("Block frequency percentage a loop exit block needs "
82              "over the original exit to be considered the new exit."),
83     cl::init(0), cl::Hidden);
84 
85 // Definition:
86 // - Outlining: placement of a basic block outside the chain or hot path.
87 
88 static cl::opt<unsigned> LoopToColdBlockRatio(
89     "loop-to-cold-block-ratio",
90     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
91              "(frequency of block) is greater than this ratio"),
92     cl::init(5), cl::Hidden);
93 
94 static cl::opt<bool>
95     PreciseRotationCost("precise-rotation-cost",
96                         cl::desc("Model the cost of loop rotation more "
97                                  "precisely by using profile data."),
98                         cl::init(false), cl::Hidden);
99 static cl::opt<bool>
100     ForcePreciseRotationCost("force-precise-rotation-cost",
101                              cl::desc("Force the use of precise cost "
102                                       "loop rotation strategy."),
103                              cl::init(false), cl::Hidden);
104 
105 static cl::opt<unsigned> MisfetchCost(
106     "misfetch-cost",
107     cl::desc("Cost that models the probabilistic risk of an instruction "
108              "misfetch due to a jump comparing to falling through, whose cost "
109              "is zero."),
110     cl::init(1), cl::Hidden);
111 
112 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
113                                       cl::desc("Cost of jump instructions."),
114                                       cl::init(1), cl::Hidden);
115 static cl::opt<bool>
116 TailDupPlacement("tail-dup-placement",
117               cl::desc("Perform tail duplication during placement. "
118                        "Creates more fallthrough opportunites in "
119                        "outline branches."),
120               cl::init(true), cl::Hidden);
121 
122 static cl::opt<bool>
123 BranchFoldPlacement("branch-fold-placement",
124               cl::desc("Perform branch folding during placement. "
125                        "Reduces code size."),
126               cl::init(true), cl::Hidden);
127 
128 // Heuristic for tail duplication.
129 static cl::opt<unsigned> TailDupPlacementThreshold(
130     "tail-dup-placement-threshold",
131     cl::desc("Instruction cutoff for tail duplication during layout. "
132              "Tail merging during layout is forced to have a threshold "
133              "that won't conflict."), cl::init(2),
134     cl::Hidden);
135 
136 // Heuristic for aggressive tail duplication.
137 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
138     "tail-dup-placement-aggressive-threshold",
139     cl::desc("Instruction cutoff for aggressive tail duplication during "
140              "layout. Used at -O3. Tail merging during layout is forced to "
141              "have a threshold that won't conflict."), cl::init(3),
142     cl::Hidden);
143 
144 // Heuristic for tail duplication.
145 static cl::opt<unsigned> TailDupPlacementPenalty(
146     "tail-dup-placement-penalty",
147     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
148              "Copying can increase fallthrough, but it also increases icache "
149              "pressure. This parameter controls the penalty to account for that. "
150              "Percent as integer."),
151     cl::init(2),
152     cl::Hidden);
153 
154 // Heuristic for triangle chains.
155 static cl::opt<unsigned> TriangleChainCount(
156     "triangle-chain-count",
157     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
158              "triangle tail duplication heuristic to kick in. 0 to disable."),
159     cl::init(2),
160     cl::Hidden);
161 
162 extern cl::opt<unsigned> StaticLikelyProb;
163 extern cl::opt<unsigned> ProfileLikelyProb;
164 
165 // Internal option used to control BFI display only after MBP pass.
166 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
167 // -view-block-layout-with-bfi=
168 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
169 
170 // Command line option to specify the name of the function for CFG dump
171 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
172 extern cl::opt<std::string> ViewBlockFreqFuncName;
173 
174 namespace {
175 class BlockChain;
176 /// \brief Type for our function-wide basic block -> block chain mapping.
177 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
178 }
179 
180 namespace {
181 /// \brief A chain of blocks which will be laid out contiguously.
182 ///
183 /// This is the datastructure representing a chain of consecutive blocks that
184 /// are profitable to layout together in order to maximize fallthrough
185 /// probabilities and code locality. We also can use a block chain to represent
186 /// a sequence of basic blocks which have some external (correctness)
187 /// requirement for sequential layout.
188 ///
189 /// Chains can be built around a single basic block and can be merged to grow
190 /// them. They participate in a block-to-chain mapping, which is updated
191 /// automatically as chains are merged together.
192 class BlockChain {
193   /// \brief The sequence of blocks belonging to this chain.
194   ///
195   /// This is the sequence of blocks for a particular chain. These will be laid
196   /// out in-order within the function.
197   SmallVector<MachineBasicBlock *, 4> Blocks;
198 
199   /// \brief A handle to the function-wide basic block to block chain mapping.
200   ///
201   /// This is retained in each block chain to simplify the computation of child
202   /// block chains for SCC-formation and iteration. We store the edges to child
203   /// basic blocks, and map them back to their associated chains using this
204   /// structure.
205   BlockToChainMapType &BlockToChain;
206 
207 public:
208   /// \brief Construct a new BlockChain.
209   ///
210   /// This builds a new block chain representing a single basic block in the
211   /// function. It also registers itself as the chain that block participates
212   /// in with the BlockToChain mapping.
213   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
214       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
215     assert(BB && "Cannot create a chain with a null basic block");
216     BlockToChain[BB] = this;
217   }
218 
219   /// \brief Iterator over blocks within the chain.
220   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
221   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
222 
223   /// \brief Beginning of blocks within the chain.
224   iterator begin() { return Blocks.begin(); }
225   const_iterator begin() const { return Blocks.begin(); }
226 
227   /// \brief End of blocks within the chain.
228   iterator end() { return Blocks.end(); }
229   const_iterator end() const { return Blocks.end(); }
230 
231   bool remove(MachineBasicBlock* BB) {
232     for(iterator i = begin(); i != end(); ++i) {
233       if (*i == BB) {
234         Blocks.erase(i);
235         return true;
236       }
237     }
238     return false;
239   }
240 
241   /// \brief Merge a block chain into this one.
242   ///
243   /// This routine merges a block chain into this one. It takes care of forming
244   /// a contiguous sequence of basic blocks, updating the edge list, and
245   /// updating the block -> chain mapping. It does not free or tear down the
246   /// old chain, but the old chain's block list is no longer valid.
247   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
248     assert(BB && "Can't merge a null block.");
249     assert(!Blocks.empty() && "Can't merge into an empty chain.");
250 
251     // Fast path in case we don't have a chain already.
252     if (!Chain) {
253       assert(!BlockToChain[BB] &&
254              "Passed chain is null, but BB has entry in BlockToChain.");
255       Blocks.push_back(BB);
256       BlockToChain[BB] = this;
257       return;
258     }
259 
260     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
261     assert(Chain->begin() != Chain->end());
262 
263     // Update the incoming blocks to point to this chain, and add them to the
264     // chain structure.
265     for (MachineBasicBlock *ChainBB : *Chain) {
266       Blocks.push_back(ChainBB);
267       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
268       BlockToChain[ChainBB] = this;
269     }
270   }
271 
272 #ifndef NDEBUG
273   /// \brief Dump the blocks in this chain.
274   LLVM_DUMP_METHOD void dump() {
275     for (MachineBasicBlock *MBB : *this)
276       MBB->dump();
277   }
278 #endif // NDEBUG
279 
280   /// \brief Count of predecessors of any block within the chain which have not
281   /// yet been scheduled.  In general, we will delay scheduling this chain
282   /// until those predecessors are scheduled (or we find a sufficiently good
283   /// reason to override this heuristic.)  Note that when forming loop chains,
284   /// blocks outside the loop are ignored and treated as if they were already
285   /// scheduled.
286   ///
287   /// Note: This field is reinitialized multiple times - once for each loop,
288   /// and then once for the function as a whole.
289   unsigned UnscheduledPredecessors;
290 };
291 }
292 
293 namespace {
294 class MachineBlockPlacement : public MachineFunctionPass {
295   /// \brief A typedef for a block filter set.
296   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
297 
298   /// Pair struct containing basic block and taildup profitiability
299   struct BlockAndTailDupResult {
300     MachineBasicBlock *BB;
301     bool ShouldTailDup;
302   };
303 
304   /// Triple struct containing edge weight and the edge.
305   struct WeightedEdge {
306     BlockFrequency Weight;
307     MachineBasicBlock *Src;
308     MachineBasicBlock *Dest;
309   };
310 
311   /// \brief work lists of blocks that are ready to be laid out
312   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
313   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
314 
315   /// Edges that have already been computed as optimal.
316   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
317 
318   /// \brief Machine Function
319   MachineFunction *F;
320 
321   /// \brief A handle to the branch probability pass.
322   const MachineBranchProbabilityInfo *MBPI;
323 
324   /// \brief A handle to the function-wide block frequency pass.
325   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
326 
327   /// \brief A handle to the loop info.
328   MachineLoopInfo *MLI;
329 
330   /// \brief Preferred loop exit.
331   /// Member variable for convenience. It may be removed by duplication deep
332   /// in the call stack.
333   MachineBasicBlock *PreferredLoopExit;
334 
335   /// \brief A handle to the target's instruction info.
336   const TargetInstrInfo *TII;
337 
338   /// \brief A handle to the target's lowering info.
339   const TargetLoweringBase *TLI;
340 
341   /// \brief A handle to the post dominator tree.
342   MachinePostDominatorTree *MPDT;
343 
344   /// \brief Duplicator used to duplicate tails during placement.
345   ///
346   /// Placement decisions can open up new tail duplication opportunities, but
347   /// since tail duplication affects placement decisions of later blocks, it
348   /// must be done inline.
349   TailDuplicator TailDup;
350 
351   /// \brief Allocator and owner of BlockChain structures.
352   ///
353   /// We build BlockChains lazily while processing the loop structure of
354   /// a function. To reduce malloc traffic, we allocate them using this
355   /// slab-like allocator, and destroy them after the pass completes. An
356   /// important guarantee is that this allocator produces stable pointers to
357   /// the chains.
358   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
359 
360   /// \brief Function wide BasicBlock to BlockChain mapping.
361   ///
362   /// This mapping allows efficiently moving from any given basic block to the
363   /// BlockChain it participates in, if any. We use it to, among other things,
364   /// allow implicitly defining edges between chains as the existing edges
365   /// between basic blocks.
366   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
367 
368 #ifndef NDEBUG
369   /// The set of basic blocks that have terminators that cannot be fully
370   /// analyzed.  These basic blocks cannot be re-ordered safely by
371   /// MachineBlockPlacement, and we must preserve physical layout of these
372   /// blocks and their successors through the pass.
373   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
374 #endif
375 
376   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
377   /// if the count goes to 0, add them to the appropriate work list.
378   void markChainSuccessors(
379       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
380       const BlockFilterSet *BlockFilter = nullptr);
381 
382   /// Decrease the UnscheduledPredecessors count for a single block, and
383   /// if the count goes to 0, add them to the appropriate work list.
384   void markBlockSuccessors(
385       const BlockChain &Chain, const MachineBasicBlock *BB,
386       const MachineBasicBlock *LoopHeaderBB,
387       const BlockFilterSet *BlockFilter = nullptr);
388 
389   BranchProbability
390   collectViableSuccessors(
391       const MachineBasicBlock *BB, const BlockChain &Chain,
392       const BlockFilterSet *BlockFilter,
393       SmallVector<MachineBasicBlock *, 4> &Successors);
394   bool shouldPredBlockBeOutlined(
395       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
396       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
397       BranchProbability SuccProb, BranchProbability HotProb);
398   bool repeatedlyTailDuplicateBlock(
399       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
400       const MachineBasicBlock *LoopHeaderBB,
401       BlockChain &Chain, BlockFilterSet *BlockFilter,
402       MachineFunction::iterator &PrevUnplacedBlockIt);
403   bool maybeTailDuplicateBlock(
404       MachineBasicBlock *BB, MachineBasicBlock *LPred,
405       BlockChain &Chain, BlockFilterSet *BlockFilter,
406       MachineFunction::iterator &PrevUnplacedBlockIt,
407       bool &DuplicatedToPred);
408   bool hasBetterLayoutPredecessor(
409       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
410       const BlockChain &SuccChain, BranchProbability SuccProb,
411       BranchProbability RealSuccProb, const BlockChain &Chain,
412       const BlockFilterSet *BlockFilter);
413   BlockAndTailDupResult selectBestSuccessor(
414       const MachineBasicBlock *BB, const BlockChain &Chain,
415       const BlockFilterSet *BlockFilter);
416   MachineBasicBlock *selectBestCandidateBlock(
417       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
418   MachineBasicBlock *getFirstUnplacedBlock(
419       const BlockChain &PlacedChain,
420       MachineFunction::iterator &PrevUnplacedBlockIt,
421       const BlockFilterSet *BlockFilter);
422 
423   /// \brief Add a basic block to the work list if it is appropriate.
424   ///
425   /// If the optional parameter BlockFilter is provided, only MBB
426   /// present in the set will be added to the worklist. If nullptr
427   /// is provided, no filtering occurs.
428   void fillWorkLists(const MachineBasicBlock *MBB,
429                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
430                      const BlockFilterSet *BlockFilter);
431   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
432                   BlockFilterSet *BlockFilter = nullptr);
433   MachineBasicBlock *findBestLoopTop(
434       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
435   MachineBasicBlock *findBestLoopExit(
436       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
437   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
438   void buildLoopChains(const MachineLoop &L);
439   void rotateLoop(
440       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
441       const BlockFilterSet &LoopBlockSet);
442   void rotateLoopWithProfile(
443       BlockChain &LoopChain, const MachineLoop &L,
444       const BlockFilterSet &LoopBlockSet);
445   void buildCFGChains();
446   void optimizeBranches();
447   void alignBlocks();
448   /// Returns true if a block should be tail-duplicated to increase fallthrough
449   /// opportunities.
450   bool shouldTailDuplicate(MachineBasicBlock *BB);
451   /// Check the edge frequencies to see if tail duplication will increase
452   /// fallthroughs.
453   bool isProfitableToTailDup(
454     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
455     BranchProbability AdjustedSumProb,
456     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
457   /// Check for a trellis layout.
458   bool isTrellis(const MachineBasicBlock *BB,
459                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
460                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
461   /// Get the best successor given a trellis layout.
462   BlockAndTailDupResult getBestTrellisSuccessor(
463       const MachineBasicBlock *BB,
464       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
465       BranchProbability AdjustedSumProb, const BlockChain &Chain,
466       const BlockFilterSet *BlockFilter);
467   /// Get the best pair of non-conflicting edges.
468   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
469       const MachineBasicBlock *BB,
470       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
471   /// Returns true if a block can tail duplicate into all unplaced
472   /// predecessors. Filters based on loop.
473   bool canTailDuplicateUnplacedPreds(
474       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
475       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
476   /// Find chains of triangles to tail-duplicate where a global analysis works,
477   /// but a local analysis would not find them.
478   void precomputeTriangleChains();
479 
480 public:
481   static char ID; // Pass identification, replacement for typeid
482   MachineBlockPlacement() : MachineFunctionPass(ID) {
483     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
484   }
485 
486   bool runOnMachineFunction(MachineFunction &F) override;
487 
488   void getAnalysisUsage(AnalysisUsage &AU) const override {
489     AU.addRequired<MachineBranchProbabilityInfo>();
490     AU.addRequired<MachineBlockFrequencyInfo>();
491     if (TailDupPlacement)
492       AU.addRequired<MachinePostDominatorTree>();
493     AU.addRequired<MachineLoopInfo>();
494     AU.addRequired<TargetPassConfig>();
495     MachineFunctionPass::getAnalysisUsage(AU);
496   }
497 };
498 }
499 
500 char MachineBlockPlacement::ID = 0;
501 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
502 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
503                       "Branch Probability Basic Block Placement", false, false)
504 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
505 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
506 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
507 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
508 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
509                     "Branch Probability Basic Block Placement", false, false)
510 
511 #ifndef NDEBUG
512 /// \brief Helper to print the name of a MBB.
513 ///
514 /// Only used by debug logging.
515 static std::string getBlockName(const MachineBasicBlock *BB) {
516   std::string Result;
517   raw_string_ostream OS(Result);
518   OS << "BB#" << BB->getNumber();
519   OS << " ('" << BB->getName() << "')";
520   OS.flush();
521   return Result;
522 }
523 #endif
524 
525 /// \brief Mark a chain's successors as having one fewer preds.
526 ///
527 /// When a chain is being merged into the "placed" chain, this routine will
528 /// quickly walk the successors of each block in the chain and mark them as
529 /// having one fewer active predecessor. It also adds any successors of this
530 /// chain which reach the zero-predecessor state to the appropriate worklist.
531 void MachineBlockPlacement::markChainSuccessors(
532     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
533     const BlockFilterSet *BlockFilter) {
534   // Walk all the blocks in this chain, marking their successors as having
535   // a predecessor placed.
536   for (MachineBasicBlock *MBB : Chain) {
537     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
538   }
539 }
540 
541 /// \brief Mark a single block's successors as having one fewer preds.
542 ///
543 /// Under normal circumstances, this is only called by markChainSuccessors,
544 /// but if a block that was to be placed is completely tail-duplicated away,
545 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
546 /// for just that block.
547 void MachineBlockPlacement::markBlockSuccessors(
548     const BlockChain &Chain, const MachineBasicBlock *MBB,
549     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
550   // Add any successors for which this is the only un-placed in-loop
551   // predecessor to the worklist as a viable candidate for CFG-neutral
552   // placement. No subsequent placement of this block will violate the CFG
553   // shape, so we get to use heuristics to choose a favorable placement.
554   for (MachineBasicBlock *Succ : MBB->successors()) {
555     if (BlockFilter && !BlockFilter->count(Succ))
556       continue;
557     BlockChain &SuccChain = *BlockToChain[Succ];
558     // Disregard edges within a fixed chain, or edges to the loop header.
559     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
560       continue;
561 
562     // This is a cross-chain edge that is within the loop, so decrement the
563     // loop predecessor count of the destination chain.
564     if (SuccChain.UnscheduledPredecessors == 0 ||
565         --SuccChain.UnscheduledPredecessors > 0)
566       continue;
567 
568     auto *NewBB = *SuccChain.begin();
569     if (NewBB->isEHPad())
570       EHPadWorkList.push_back(NewBB);
571     else
572       BlockWorkList.push_back(NewBB);
573   }
574 }
575 
576 /// This helper function collects the set of successors of block
577 /// \p BB that are allowed to be its layout successors, and return
578 /// the total branch probability of edges from \p BB to those
579 /// blocks.
580 BranchProbability MachineBlockPlacement::collectViableSuccessors(
581     const MachineBasicBlock *BB, const BlockChain &Chain,
582     const BlockFilterSet *BlockFilter,
583     SmallVector<MachineBasicBlock *, 4> &Successors) {
584   // Adjust edge probabilities by excluding edges pointing to blocks that is
585   // either not in BlockFilter or is already in the current chain. Consider the
586   // following CFG:
587   //
588   //     --->A
589   //     |  / \
590   //     | B   C
591   //     |  \ / \
592   //     ----D   E
593   //
594   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
595   // A->C is chosen as a fall-through, D won't be selected as a successor of C
596   // due to CFG constraint (the probability of C->D is not greater than
597   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
598   // when calculating the probability of C->D, D will be selected and we
599   // will get A C D B as the layout of this loop.
600   auto AdjustedSumProb = BranchProbability::getOne();
601   for (MachineBasicBlock *Succ : BB->successors()) {
602     bool SkipSucc = false;
603     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
604       SkipSucc = true;
605     } else {
606       BlockChain *SuccChain = BlockToChain[Succ];
607       if (SuccChain == &Chain) {
608         SkipSucc = true;
609       } else if (Succ != *SuccChain->begin()) {
610         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
611         continue;
612       }
613     }
614     if (SkipSucc)
615       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
616     else
617       Successors.push_back(Succ);
618   }
619 
620   return AdjustedSumProb;
621 }
622 
623 /// The helper function returns the branch probability that is adjusted
624 /// or normalized over the new total \p AdjustedSumProb.
625 static BranchProbability
626 getAdjustedProbability(BranchProbability OrigProb,
627                        BranchProbability AdjustedSumProb) {
628   BranchProbability SuccProb;
629   uint32_t SuccProbN = OrigProb.getNumerator();
630   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
631   if (SuccProbN >= SuccProbD)
632     SuccProb = BranchProbability::getOne();
633   else
634     SuccProb = BranchProbability(SuccProbN, SuccProbD);
635 
636   return SuccProb;
637 }
638 
639 /// Check if \p BB has exactly the successors in \p Successors.
640 static bool
641 hasSameSuccessors(MachineBasicBlock &BB,
642                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
643   if (BB.succ_size() != Successors.size())
644     return false;
645   // We don't want to count self-loops
646   if (Successors.count(&BB))
647     return false;
648   for (MachineBasicBlock *Succ : BB.successors())
649     if (!Successors.count(Succ))
650       return false;
651   return true;
652 }
653 
654 /// Check if a block should be tail duplicated to increase fallthrough
655 /// opportunities.
656 /// \p BB Block to check.
657 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
658   // Blocks with single successors don't create additional fallthrough
659   // opportunities. Don't duplicate them. TODO: When conditional exits are
660   // analyzable, allow them to be duplicated.
661   bool IsSimple = TailDup.isSimpleBB(BB);
662 
663   if (BB->succ_size() == 1)
664     return false;
665   return TailDup.shouldTailDuplicate(IsSimple, *BB);
666 }
667 
668 /// Compare 2 BlockFrequency's with a small penalty for \p A.
669 /// In order to be conservative, we apply a X% penalty to account for
670 /// increased icache pressure and static heuristics. For small frequencies
671 /// we use only the numerators to improve accuracy. For simplicity, we assume the
672 /// penalty is less than 100%
673 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
674 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
675                             uint64_t EntryFreq) {
676   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
677   BlockFrequency Gain = A - B;
678   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
679 }
680 
681 /// Check the edge frequencies to see if tail duplication will increase
682 /// fallthroughs. It only makes sense to call this function when
683 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
684 /// always locally profitable if we would have picked \p Succ without
685 /// considering duplication.
686 bool MachineBlockPlacement::isProfitableToTailDup(
687     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
688     BranchProbability QProb,
689     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
690   // We need to do a probability calculation to make sure this is profitable.
691   // First: does succ have a successor that post-dominates? This affects the
692   // calculation. The 2 relevant cases are:
693   //    BB         BB
694   //    | \Qout    | \Qout
695   //   P|  C       |P C
696   //    =   C'     =   C'
697   //    |  /Qin    |  /Qin
698   //    | /        | /
699   //    Succ       Succ
700   //    / \        | \  V
701   //  U/   =V      |U \
702   //  /     \      =   D
703   //  D      E     |  /
704   //               | /
705   //               |/
706   //               PDom
707   //  '=' : Branch taken for that CFG edge
708   // In the second case, Placing Succ while duplicating it into C prevents the
709   // fallthrough of Succ into either D or PDom, because they now have C as an
710   // unplaced predecessor
711 
712   // Start by figuring out which case we fall into
713   MachineBasicBlock *PDom = nullptr;
714   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
715   // Only scan the relevant successors
716   auto AdjustedSuccSumProb =
717       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
718   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
719   auto BBFreq = MBFI->getBlockFreq(BB);
720   auto SuccFreq = MBFI->getBlockFreq(Succ);
721   BlockFrequency P = BBFreq * PProb;
722   BlockFrequency Qout = BBFreq * QProb;
723   uint64_t EntryFreq = MBFI->getEntryFreq();
724   // If there are no more successors, it is profitable to copy, as it strictly
725   // increases fallthrough.
726   if (SuccSuccs.size() == 0)
727     return greaterWithBias(P, Qout, EntryFreq);
728 
729   auto BestSuccSucc = BranchProbability::getZero();
730   // Find the PDom or the best Succ if no PDom exists.
731   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
732     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
733     if (Prob > BestSuccSucc)
734       BestSuccSucc = Prob;
735     if (PDom == nullptr)
736       if (MPDT->dominates(SuccSucc, Succ)) {
737         PDom = SuccSucc;
738         break;
739       }
740   }
741   // For the comparisons, we need to know Succ's best incoming edge that isn't
742   // from BB.
743   auto SuccBestPred = BlockFrequency(0);
744   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
745     if (SuccPred == Succ || SuccPred == BB
746         || BlockToChain[SuccPred] == &Chain
747         || (BlockFilter && !BlockFilter->count(SuccPred)))
748       continue;
749     auto Freq = MBFI->getBlockFreq(SuccPred)
750         * MBPI->getEdgeProbability(SuccPred, Succ);
751     if (Freq > SuccBestPred)
752       SuccBestPred = Freq;
753   }
754   // Qin is Succ's best unplaced incoming edge that isn't BB
755   BlockFrequency Qin = SuccBestPred;
756   // If it doesn't have a post-dominating successor, here is the calculation:
757   //    BB        BB
758   //    | \Qout   |  \
759   //   P|  C      |   =
760   //    =   C'    |    C
761   //    |  /Qin   |     |
762   //    | /       |     C' (+Succ)
763   //    Succ      Succ /|
764   //    / \       |  \/ |
765   //  U/   =V     |  == |
766   //  /     \     | /  \|
767   //  D      E    D     E
768   //  '=' : Branch taken for that CFG edge
769   //  Cost in the first case is: P + V
770   //  For this calculation, we always assume P > Qout. If Qout > P
771   //  The result of this function will be ignored at the caller.
772   //  Let F = SuccFreq - Qin
773   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
774 
775   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
776     BranchProbability UProb = BestSuccSucc;
777     BranchProbability VProb = AdjustedSuccSumProb - UProb;
778     BlockFrequency F = SuccFreq - Qin;
779     BlockFrequency V = SuccFreq * VProb;
780     BlockFrequency QinU = std::min(Qin, F) * UProb;
781     BlockFrequency BaseCost = P + V;
782     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
783     return greaterWithBias(BaseCost, DupCost, EntryFreq);
784   }
785   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
786   BranchProbability VProb = AdjustedSuccSumProb - UProb;
787   BlockFrequency U = SuccFreq * UProb;
788   BlockFrequency V = SuccFreq * VProb;
789   BlockFrequency F = SuccFreq - Qin;
790   // If there is a post-dominating successor, here is the calculation:
791   // BB         BB                 BB          BB
792   // | \Qout    |   \               | \Qout     |  \
793   // |P C       |    =              |P C        |   =
794   // =   C'     |P    C             =   C'      |P   C
795   // |  /Qin    |      |            |  /Qin     |     |
796   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
797   // Succ       Succ  /|            Succ        Succ /|
798   // | \  V     |   \/ |            | \  V      |  \/ |
799   // |U \       |U  /\ =?           |U =        |U /\ |
800   // =   D      = =  =?|            |   D       | =  =|
801   // |  /       |/     D            |  /        |/    D
802   // | /        |     /             | =         |    /
803   // |/         |    /              |/          |   =
804   // Dom         Dom                Dom         Dom
805   //  '=' : Branch taken for that CFG edge
806   // The cost for taken branches in the first case is P + U
807   // Let F = SuccFreq - Qin
808   // The cost in the second case (assuming independence), given the layout:
809   // BB, Succ, (C+Succ), D, Dom or the layout:
810   // BB, Succ, D, Dom, (C+Succ)
811   // is Qout + max(F, Qin) * U + min(F, Qin)
812   // compare P + U vs Qout + P * U + Qin.
813   //
814   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
815   //
816   // For the 3rd case, the cost is P + 2 * V
817   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
818   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
819   if (UProb > AdjustedSuccSumProb / 2 &&
820       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
821                                   Chain, BlockFilter))
822     // Cases 3 & 4
823     return greaterWithBias(
824         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
825         EntryFreq);
826   // Cases 1 & 2
827   return greaterWithBias((P + U),
828                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
829                           std::max(Qin, F) * UProb),
830                          EntryFreq);
831 }
832 
833 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
834 /// successors form the lower part of a trellis. A successor set S forms the
835 /// lower part of a trellis if all of the predecessors of S are either in S or
836 /// have all of S as successors. We ignore trellises where BB doesn't have 2
837 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
838 /// are very uncommon and complex to compute optimally. Allowing edges within S
839 /// is not strictly a trellis, but the same algorithm works, so we allow it.
840 bool MachineBlockPlacement::isTrellis(
841     const MachineBasicBlock *BB,
842     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
843     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
844   // Technically BB could form a trellis with branching factor higher than 2.
845   // But that's extremely uncommon.
846   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
847     return false;
848 
849   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
850                                                        BB->succ_end());
851   // To avoid reviewing the same predecessors twice.
852   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
853 
854   for (MachineBasicBlock *Succ : ViableSuccs) {
855     int PredCount = 0;
856     for (auto SuccPred : Succ->predecessors()) {
857       // Allow triangle successors, but don't count them.
858       if (Successors.count(SuccPred)) {
859         // Make sure that it is actually a triangle.
860         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
861           if (!Successors.count(CheckSucc))
862             return false;
863         continue;
864       }
865       const BlockChain *PredChain = BlockToChain[SuccPred];
866       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
867           PredChain == &Chain || PredChain == BlockToChain[Succ])
868         continue;
869       ++PredCount;
870       // Perform the successor check only once.
871       if (!SeenPreds.insert(SuccPred).second)
872         continue;
873       if (!hasSameSuccessors(*SuccPred, Successors))
874         return false;
875     }
876     // If one of the successors has only BB as a predecessor, it is not a
877     // trellis.
878     if (PredCount < 1)
879       return false;
880   }
881   return true;
882 }
883 
884 /// Pick the highest total weight pair of edges that can both be laid out.
885 /// The edges in \p Edges[0] are assumed to have a different destination than
886 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
887 /// the individual highest weight edges to the 2 different destinations, or in
888 /// case of a conflict, one of them should be replaced with a 2nd best edge.
889 std::pair<MachineBlockPlacement::WeightedEdge,
890           MachineBlockPlacement::WeightedEdge>
891 MachineBlockPlacement::getBestNonConflictingEdges(
892     const MachineBasicBlock *BB,
893     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
894         Edges) {
895   // Sort the edges, and then for each successor, find the best incoming
896   // predecessor. If the best incoming predecessors aren't the same,
897   // then that is clearly the best layout. If there is a conflict, one of the
898   // successors will have to fallthrough from the second best predecessor. We
899   // compare which combination is better overall.
900 
901   // Sort for highest frequency.
902   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
903 
904   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
905   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
906   auto BestA = Edges[0].begin();
907   auto BestB = Edges[1].begin();
908   // Arrange for the correct answer to be in BestA and BestB
909   // If the 2 best edges don't conflict, the answer is already there.
910   if (BestA->Src == BestB->Src) {
911     // Compare the total fallthrough of (Best + Second Best) for both pairs
912     auto SecondBestA = std::next(BestA);
913     auto SecondBestB = std::next(BestB);
914     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
915     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
916     if (BestAScore < BestBScore)
917       BestA = SecondBestA;
918     else
919       BestB = SecondBestB;
920   }
921   // Arrange for the BB edge to be in BestA if it exists.
922   if (BestB->Src == BB)
923     std::swap(BestA, BestB);
924   return std::make_pair(*BestA, *BestB);
925 }
926 
927 /// Get the best successor from \p BB based on \p BB being part of a trellis.
928 /// We only handle trellises with 2 successors, so the algorithm is
929 /// straightforward: Find the best pair of edges that don't conflict. We find
930 /// the best incoming edge for each successor in the trellis. If those conflict,
931 /// we consider which of them should be replaced with the second best.
932 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
933 /// comes from \p BB, it will be in \p BestEdges[0]
934 MachineBlockPlacement::BlockAndTailDupResult
935 MachineBlockPlacement::getBestTrellisSuccessor(
936     const MachineBasicBlock *BB,
937     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
938     BranchProbability AdjustedSumProb, const BlockChain &Chain,
939     const BlockFilterSet *BlockFilter) {
940 
941   BlockAndTailDupResult Result = {nullptr, false};
942   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
943                                                        BB->succ_end());
944 
945   // We assume size 2 because it's common. For general n, we would have to do
946   // the Hungarian algorithm, but it's not worth the complexity because more
947   // than 2 successors is fairly uncommon, and a trellis even more so.
948   if (Successors.size() != 2 || ViableSuccs.size() != 2)
949     return Result;
950 
951   // Collect the edge frequencies of all edges that form the trellis.
952   SmallVector<WeightedEdge, 8> Edges[2];
953   int SuccIndex = 0;
954   for (auto Succ : ViableSuccs) {
955     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
956       // Skip any placed predecessors that are not BB
957       if (SuccPred != BB)
958         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
959             BlockToChain[SuccPred] == &Chain ||
960             BlockToChain[SuccPred] == BlockToChain[Succ])
961           continue;
962       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
963                                 MBPI->getEdgeProbability(SuccPred, Succ);
964       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
965     }
966     ++SuccIndex;
967   }
968 
969   // Pick the best combination of 2 edges from all the edges in the trellis.
970   WeightedEdge BestA, BestB;
971   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
972 
973   if (BestA.Src != BB) {
974     // If we have a trellis, and BB doesn't have the best fallthrough edges,
975     // we shouldn't choose any successor. We've already looked and there's a
976     // better fallthrough edge for all the successors.
977     DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
978     return Result;
979   }
980 
981   // Did we pick the triangle edge? If tail-duplication is profitable, do
982   // that instead. Otherwise merge the triangle edge now while we know it is
983   // optimal.
984   if (BestA.Dest == BestB.Src) {
985     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
986     // would be better.
987     MachineBasicBlock *Succ1 = BestA.Dest;
988     MachineBasicBlock *Succ2 = BestB.Dest;
989     // Check to see if tail-duplication would be profitable.
990     if (TailDupPlacement && shouldTailDuplicate(Succ2) &&
991         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
992         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
993                               Chain, BlockFilter)) {
994       DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
995                 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
996             dbgs() << "    Selected: " << getBlockName(Succ2)
997                    << ", probability: " << Succ2Prob << " (Tail Duplicate)\n");
998       Result.BB = Succ2;
999       Result.ShouldTailDup = true;
1000       return Result;
1001     }
1002   }
1003   // We have already computed the optimal edge for the other side of the
1004   // trellis.
1005   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1006 
1007   auto TrellisSucc = BestA.Dest;
1008   DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1009             MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1010         dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1011                << ", probability: " << SuccProb << " (Trellis)\n");
1012   Result.BB = TrellisSucc;
1013   return Result;
1014 }
1015 
1016 /// When the option TailDupPlacement is on, this method checks if the
1017 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1018 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1019 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1020     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1021     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1022   if (!shouldTailDuplicate(Succ))
1023     return false;
1024 
1025   // For CFG checking.
1026   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1027                                                        BB->succ_end());
1028   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1029     // Make sure all unplaced and unfiltered predecessors can be
1030     // tail-duplicated into.
1031     // Skip any blocks that are already placed or not in this loop.
1032     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1033         || BlockToChain[Pred] == &Chain)
1034       continue;
1035     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1036       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1037         // This will result in a trellis after tail duplication, so we don't
1038         // need to copy Succ into this predecessor. In the presence
1039         // of a trellis tail duplication can continue to be profitable.
1040         // For example:
1041         // A            A
1042         // |\           |\
1043         // | \          | \
1044         // |  C         |  C+BB
1045         // | /          |  |
1046         // |/           |  |
1047         // BB    =>     BB |
1048         // |\           |\/|
1049         // | \          |/\|
1050         // |  D         |  D
1051         // | /          | /
1052         // |/           |/
1053         // Succ         Succ
1054         //
1055         // After BB was duplicated into C, the layout looks like the one on the
1056         // right. BB and C now have the same successors. When considering
1057         // whether Succ can be duplicated into all its unplaced predecessors, we
1058         // ignore C.
1059         // We can do this because C already has a profitable fallthrough, namely
1060         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1061         // duplication and for this test.
1062         //
1063         // This allows trellises to be laid out in 2 separate chains
1064         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1065         // because it allows the creation of 2 fallthrough paths with links
1066         // between them, and we correctly identify the best layout for these
1067         // CFGs. We want to extend trellises that the user created in addition
1068         // to trellises created by tail-duplication, so we just look for the
1069         // CFG.
1070         continue;
1071       return false;
1072     }
1073   }
1074   return true;
1075 }
1076 
1077 /// Find chains of triangles where we believe it would be profitable to
1078 /// tail-duplicate them all, but a local analysis would not find them.
1079 /// There are 3 ways this can be profitable:
1080 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1081 ///    longer chains)
1082 /// 2) The chains are statically correlated. Branch probabilities have a very
1083 ///    U-shaped distribution.
1084 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1085 ///    If the branches in a chain are likely to be from the same side of the
1086 ///    distribution as their predecessor, but are independent at runtime, this
1087 ///    transformation is profitable. (Because the cost of being wrong is a small
1088 ///    fixed cost, unlike the standard triangle layout where the cost of being
1089 ///    wrong scales with the # of triangles.)
1090 /// 3) The chains are dynamically correlated. If the probability that a previous
1091 ///    branch was taken positively influences whether the next branch will be
1092 ///    taken
1093 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1094 void MachineBlockPlacement::precomputeTriangleChains() {
1095   struct TriangleChain {
1096     std::vector<MachineBasicBlock *> Edges;
1097     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1098         : Edges({src, dst}) {}
1099 
1100     void append(MachineBasicBlock *dst) {
1101       assert(getKey()->isSuccessor(dst) &&
1102              "Attempting to append a block that is not a successor.");
1103       Edges.push_back(dst);
1104     }
1105 
1106     unsigned count() const { return Edges.size() - 1; }
1107 
1108     MachineBasicBlock *getKey() const {
1109       return Edges.back();
1110     }
1111   };
1112 
1113   if (TriangleChainCount == 0)
1114     return;
1115 
1116   DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1117   // Map from last block to the chain that contains it. This allows us to extend
1118   // chains as we find new triangles.
1119   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1120   for (MachineBasicBlock &BB : *F) {
1121     // If BB doesn't have 2 successors, it doesn't start a triangle.
1122     if (BB.succ_size() != 2)
1123       continue;
1124     MachineBasicBlock *PDom = nullptr;
1125     for (MachineBasicBlock *Succ : BB.successors()) {
1126       if (!MPDT->dominates(Succ, &BB))
1127         continue;
1128       PDom = Succ;
1129       break;
1130     }
1131     // If BB doesn't have a post-dominating successor, it doesn't form a
1132     // triangle.
1133     if (PDom == nullptr)
1134       continue;
1135     // If PDom has a hint that it is low probability, skip this triangle.
1136     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1137       continue;
1138     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1139     // we're looking for.
1140     if (!shouldTailDuplicate(PDom))
1141       continue;
1142     bool CanTailDuplicate = true;
1143     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1144     // isn't the kind of triangle we're looking for.
1145     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1146       if (Pred == &BB)
1147         continue;
1148       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1149         CanTailDuplicate = false;
1150         break;
1151       }
1152     }
1153     // If we can't tail-duplicate PDom to its predecessors, then skip this
1154     // triangle.
1155     if (!CanTailDuplicate)
1156       continue;
1157 
1158     // Now we have an interesting triangle. Insert it if it's not part of an
1159     // existing chain.
1160     // Note: This cannot be replaced with a call insert() or emplace() because
1161     // the find key is BB, but the insert/emplace key is PDom.
1162     auto Found = TriangleChainMap.find(&BB);
1163     // If it is, remove the chain from the map, grow it, and put it back in the
1164     // map with the end as the new key.
1165     if (Found != TriangleChainMap.end()) {
1166       TriangleChain Chain = std::move(Found->second);
1167       TriangleChainMap.erase(Found);
1168       Chain.append(PDom);
1169       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1170     } else {
1171       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1172       assert(InsertResult.second && "Block seen twice.");
1173       (void)InsertResult;
1174     }
1175   }
1176 
1177   // Iterating over a DenseMap is safe here, because the only thing in the body
1178   // of the loop is inserting into another DenseMap (ComputedEdges).
1179   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1180   for (auto &ChainPair : TriangleChainMap) {
1181     TriangleChain &Chain = ChainPair.second;
1182     // Benchmarking has shown that due to branch correlation duplicating 2 or
1183     // more triangles is profitable, despite the calculations assuming
1184     // independence.
1185     if (Chain.count() < TriangleChainCount)
1186       continue;
1187     MachineBasicBlock *dst = Chain.Edges.back();
1188     Chain.Edges.pop_back();
1189     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1190       DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" <<
1191             getBlockName(dst) << " as pre-computed based on triangles.\n");
1192 
1193       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1194       assert(InsertResult.second && "Block seen twice.");
1195       (void)InsertResult;
1196 
1197       dst = src;
1198     }
1199   }
1200 }
1201 
1202 // When profile is not present, return the StaticLikelyProb.
1203 // When profile is available, we need to handle the triangle-shape CFG.
1204 static BranchProbability getLayoutSuccessorProbThreshold(
1205       const MachineBasicBlock *BB) {
1206   if (!BB->getParent()->getFunction()->getEntryCount())
1207     return BranchProbability(StaticLikelyProb, 100);
1208   if (BB->succ_size() == 2) {
1209     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1210     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1211     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1212       /* See case 1 below for the cost analysis. For BB->Succ to
1213        * be taken with smaller cost, the following needs to hold:
1214        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1215        *   So the threshold T in the calculation below
1216        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1217        *   So T / (1 - T) = 2, Yielding T = 2/3
1218        * Also adding user specified branch bias, we have
1219        *   T = (2/3)*(ProfileLikelyProb/50)
1220        *     = (2*ProfileLikelyProb)/150)
1221        */
1222       return BranchProbability(2 * ProfileLikelyProb, 150);
1223     }
1224   }
1225   return BranchProbability(ProfileLikelyProb, 100);
1226 }
1227 
1228 /// Checks to see if the layout candidate block \p Succ has a better layout
1229 /// predecessor than \c BB. If yes, returns true.
1230 /// \p SuccProb: The probability adjusted for only remaining blocks.
1231 ///   Only used for logging
1232 /// \p RealSuccProb: The un-adjusted probability.
1233 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1234 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1235 ///    considered
1236 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1237     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1238     const BlockChain &SuccChain, BranchProbability SuccProb,
1239     BranchProbability RealSuccProb, const BlockChain &Chain,
1240     const BlockFilterSet *BlockFilter) {
1241 
1242   // There isn't a better layout when there are no unscheduled predecessors.
1243   if (SuccChain.UnscheduledPredecessors == 0)
1244     return false;
1245 
1246   // There are two basic scenarios here:
1247   // -------------------------------------
1248   // Case 1: triangular shape CFG (if-then):
1249   //     BB
1250   //     | \
1251   //     |  \
1252   //     |   Pred
1253   //     |   /
1254   //     Succ
1255   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1256   // set Succ as the layout successor of BB. Picking Succ as BB's
1257   // successor breaks the CFG constraints (FIXME: define these constraints).
1258   // With this layout, Pred BB
1259   // is forced to be outlined, so the overall cost will be cost of the
1260   // branch taken from BB to Pred, plus the cost of back taken branch
1261   // from Pred to Succ, as well as the additional cost associated
1262   // with the needed unconditional jump instruction from Pred To Succ.
1263 
1264   // The cost of the topological order layout is the taken branch cost
1265   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1266   // must hold:
1267   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1268   //      < freq(BB->Succ) *  taken_branch_cost.
1269   // Ignoring unconditional jump cost, we get
1270   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1271   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1272   //
1273   // When real profile data is available, we can precisely compute the
1274   // probability threshold that is needed for edge BB->Succ to be considered.
1275   // Without profile data, the heuristic requires the branch bias to be
1276   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1277   // -----------------------------------------------------------------
1278   // Case 2: diamond like CFG (if-then-else):
1279   //     S
1280   //    / \
1281   //   |   \
1282   //  BB    Pred
1283   //   \    /
1284   //    Succ
1285   //    ..
1286   //
1287   // The current block is BB and edge BB->Succ is now being evaluated.
1288   // Note that edge S->BB was previously already selected because
1289   // prob(S->BB) > prob(S->Pred).
1290   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1291   // choose Pred, we will have a topological ordering as shown on the left
1292   // in the picture below. If we choose Succ, we have the solution as shown
1293   // on the right:
1294   //
1295   //   topo-order:
1296   //
1297   //       S-----                             ---S
1298   //       |    |                             |  |
1299   //    ---BB   |                             |  BB
1300   //    |       |                             |  |
1301   //    |  Pred--                             |  Succ--
1302   //    |  |                                  |       |
1303   //    ---Succ                               ---Pred--
1304   //
1305   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1306   //      = freq(S->Pred) + freq(S->BB)
1307   //
1308   // If we have profile data (i.e, branch probabilities can be trusted), the
1309   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1310   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1311   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1312   // means the cost of topological order is greater.
1313   // When profile data is not available, however, we need to be more
1314   // conservative. If the branch prediction is wrong, breaking the topo-order
1315   // will actually yield a layout with large cost. For this reason, we need
1316   // strong biased branch at block S with Prob(S->BB) in order to select
1317   // BB->Succ. This is equivalent to looking the CFG backward with backward
1318   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1319   // profile data).
1320   // --------------------------------------------------------------------------
1321   // Case 3: forked diamond
1322   //       S
1323   //      / \
1324   //     /   \
1325   //   BB    Pred
1326   //   | \   / |
1327   //   |  \ /  |
1328   //   |   X   |
1329   //   |  / \  |
1330   //   | /   \ |
1331   //   S1     S2
1332   //
1333   // The current block is BB and edge BB->S1 is now being evaluated.
1334   // As above S->BB was already selected because
1335   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1336   //
1337   // topo-order:
1338   //
1339   //     S-------|                     ---S
1340   //     |       |                     |  |
1341   //  ---BB      |                     |  BB
1342   //  |          |                     |  |
1343   //  |  Pred----|                     |  S1----
1344   //  |  |                             |       |
1345   //  --(S1 or S2)                     ---Pred--
1346   //                                        |
1347   //                                       S2
1348   //
1349   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1350   //    + min(freq(Pred->S1), freq(Pred->S2))
1351   // Non-topo-order cost:
1352   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1353   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1354   // is 0. Then the non topo layout is better when
1355   // freq(S->Pred) < freq(BB->S1).
1356   // This is exactly what is checked below.
1357   // Note there are other shapes that apply (Pred may not be a single block,
1358   // but they all fit this general pattern.)
1359   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1360 
1361   // Make sure that a hot successor doesn't have a globally more
1362   // important predecessor.
1363   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1364   bool BadCFGConflict = false;
1365 
1366   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1367     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1368         (BlockFilter && !BlockFilter->count(Pred)) ||
1369         BlockToChain[Pred] == &Chain ||
1370         // This check is redundant except for look ahead. This function is
1371         // called for lookahead by isProfitableToTailDup when BB hasn't been
1372         // placed yet.
1373         (Pred == BB))
1374       continue;
1375     // Do backward checking.
1376     // For all cases above, we need a backward checking to filter out edges that
1377     // are not 'strongly' biased.
1378     // BB  Pred
1379     //  \ /
1380     //  Succ
1381     // We select edge BB->Succ if
1382     //      freq(BB->Succ) > freq(Succ) * HotProb
1383     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1384     //      HotProb
1385     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1386     // Case 1 is covered too, because the first equation reduces to:
1387     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1388     BlockFrequency PredEdgeFreq =
1389         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1390     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1391       BadCFGConflict = true;
1392       break;
1393     }
1394   }
1395 
1396   if (BadCFGConflict) {
1397     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1398                  << " (prob) (non-cold CFG conflict)\n");
1399     return true;
1400   }
1401 
1402   return false;
1403 }
1404 
1405 /// \brief Select the best successor for a block.
1406 ///
1407 /// This looks across all successors of a particular block and attempts to
1408 /// select the "best" one to be the layout successor. It only considers direct
1409 /// successors which also pass the block filter. It will attempt to avoid
1410 /// breaking CFG structure, but cave and break such structures in the case of
1411 /// very hot successor edges.
1412 ///
1413 /// \returns The best successor block found, or null if none are viable, along
1414 /// with a boolean indicating if tail duplication is necessary.
1415 MachineBlockPlacement::BlockAndTailDupResult
1416 MachineBlockPlacement::selectBestSuccessor(
1417     const MachineBasicBlock *BB, const BlockChain &Chain,
1418     const BlockFilterSet *BlockFilter) {
1419   const BranchProbability HotProb(StaticLikelyProb, 100);
1420 
1421   BlockAndTailDupResult BestSucc = { nullptr, false };
1422   auto BestProb = BranchProbability::getZero();
1423 
1424   SmallVector<MachineBasicBlock *, 4> Successors;
1425   auto AdjustedSumProb =
1426       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1427 
1428   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1429 
1430   // if we already precomputed the best successor for BB, return that if still
1431   // applicable.
1432   auto FoundEdge = ComputedEdges.find(BB);
1433   if (FoundEdge != ComputedEdges.end()) {
1434     MachineBasicBlock *Succ = FoundEdge->second.BB;
1435     ComputedEdges.erase(FoundEdge);
1436     BlockChain *SuccChain = BlockToChain[Succ];
1437     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1438         SuccChain != &Chain && Succ == *SuccChain->begin())
1439       return FoundEdge->second;
1440   }
1441 
1442   // if BB is part of a trellis, Use the trellis to determine the optimal
1443   // fallthrough edges
1444   if (isTrellis(BB, Successors, Chain, BlockFilter))
1445     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1446                                    BlockFilter);
1447 
1448   // For blocks with CFG violations, we may be able to lay them out anyway with
1449   // tail-duplication. We keep this vector so we can perform the probability
1450   // calculations the minimum number of times.
1451   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1452       DupCandidates;
1453   for (MachineBasicBlock *Succ : Successors) {
1454     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1455     BranchProbability SuccProb =
1456         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1457 
1458     BlockChain &SuccChain = *BlockToChain[Succ];
1459     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1460     // predecessor that yields lower global cost.
1461     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1462                                    Chain, BlockFilter)) {
1463       // If tail duplication would make Succ profitable, place it.
1464       if (TailDupPlacement && shouldTailDuplicate(Succ))
1465         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1466       continue;
1467     }
1468 
1469     DEBUG(
1470         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1471                << SuccProb
1472                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1473                << "\n");
1474 
1475     if (BestSucc.BB && BestProb >= SuccProb) {
1476       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1477       continue;
1478     }
1479 
1480     DEBUG(dbgs() << "    Setting it as best candidate\n");
1481     BestSucc.BB = Succ;
1482     BestProb = SuccProb;
1483   }
1484   // Handle the tail duplication candidates in order of decreasing probability.
1485   // Stop at the first one that is profitable. Also stop if they are less
1486   // profitable than BestSucc. Position is important because we preserve it and
1487   // prefer first best match. Here we aren't comparing in order, so we capture
1488   // the position instead.
1489   if (DupCandidates.size() != 0) {
1490     auto cmp =
1491         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1492            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1493           return std::get<0>(a) > std::get<0>(b);
1494         };
1495     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1496   }
1497   for(auto &Tup : DupCandidates) {
1498     BranchProbability DupProb;
1499     MachineBasicBlock *Succ;
1500     std::tie(DupProb, Succ) = Tup;
1501     if (DupProb < BestProb)
1502       break;
1503     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1504         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1505       DEBUG(
1506           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1507                  << DupProb
1508                  << " (Tail Duplicate)\n");
1509       BestSucc.BB = Succ;
1510       BestSucc.ShouldTailDup = true;
1511       break;
1512     }
1513   }
1514 
1515   if (BestSucc.BB)
1516     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1517 
1518   return BestSucc;
1519 }
1520 
1521 /// \brief Select the best block from a worklist.
1522 ///
1523 /// This looks through the provided worklist as a list of candidate basic
1524 /// blocks and select the most profitable one to place. The definition of
1525 /// profitable only really makes sense in the context of a loop. This returns
1526 /// the most frequently visited block in the worklist, which in the case of
1527 /// a loop, is the one most desirable to be physically close to the rest of the
1528 /// loop body in order to improve i-cache behavior.
1529 ///
1530 /// \returns The best block found, or null if none are viable.
1531 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1532     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1533   // Once we need to walk the worklist looking for a candidate, cleanup the
1534   // worklist of already placed entries.
1535   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1536   // some code complexity) into the loop below.
1537   WorkList.erase(remove_if(WorkList,
1538                            [&](MachineBasicBlock *BB) {
1539                              return BlockToChain.lookup(BB) == &Chain;
1540                            }),
1541                  WorkList.end());
1542 
1543   if (WorkList.empty())
1544     return nullptr;
1545 
1546   bool IsEHPad = WorkList[0]->isEHPad();
1547 
1548   MachineBasicBlock *BestBlock = nullptr;
1549   BlockFrequency BestFreq;
1550   for (MachineBasicBlock *MBB : WorkList) {
1551     assert(MBB->isEHPad() == IsEHPad &&
1552            "EHPad mismatch between block and work list.");
1553 
1554     BlockChain &SuccChain = *BlockToChain[MBB];
1555     if (&SuccChain == &Chain)
1556       continue;
1557 
1558     assert(SuccChain.UnscheduledPredecessors == 0 &&
1559            "Found CFG-violating block");
1560 
1561     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1562     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1563           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1564 
1565     // For ehpad, we layout the least probable first as to avoid jumping back
1566     // from least probable landingpads to more probable ones.
1567     //
1568     // FIXME: Using probability is probably (!) not the best way to achieve
1569     // this. We should probably have a more principled approach to layout
1570     // cleanup code.
1571     //
1572     // The goal is to get:
1573     //
1574     //                 +--------------------------+
1575     //                 |                          V
1576     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1577     //
1578     // Rather than:
1579     //
1580     //                 +-------------------------------------+
1581     //                 V                                     |
1582     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1583     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1584       continue;
1585 
1586     BestBlock = MBB;
1587     BestFreq = CandidateFreq;
1588   }
1589 
1590   return BestBlock;
1591 }
1592 
1593 /// \brief Retrieve the first unplaced basic block.
1594 ///
1595 /// This routine is called when we are unable to use the CFG to walk through
1596 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1597 /// We walk through the function's blocks in order, starting from the
1598 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1599 /// re-scanning the entire sequence on repeated calls to this routine.
1600 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1601     const BlockChain &PlacedChain,
1602     MachineFunction::iterator &PrevUnplacedBlockIt,
1603     const BlockFilterSet *BlockFilter) {
1604   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1605        ++I) {
1606     if (BlockFilter && !BlockFilter->count(&*I))
1607       continue;
1608     if (BlockToChain[&*I] != &PlacedChain) {
1609       PrevUnplacedBlockIt = I;
1610       // Now select the head of the chain to which the unplaced block belongs
1611       // as the block to place. This will force the entire chain to be placed,
1612       // and satisfies the requirements of merging chains.
1613       return *BlockToChain[&*I]->begin();
1614     }
1615   }
1616   return nullptr;
1617 }
1618 
1619 void MachineBlockPlacement::fillWorkLists(
1620     const MachineBasicBlock *MBB,
1621     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1622     const BlockFilterSet *BlockFilter = nullptr) {
1623   BlockChain &Chain = *BlockToChain[MBB];
1624   if (!UpdatedPreds.insert(&Chain).second)
1625     return;
1626 
1627   assert(
1628       Chain.UnscheduledPredecessors == 0 &&
1629       "Attempting to place block with unscheduled predecessors in worklist.");
1630   for (MachineBasicBlock *ChainBB : Chain) {
1631     assert(BlockToChain[ChainBB] == &Chain &&
1632            "Block in chain doesn't match BlockToChain map.");
1633     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1634       if (BlockFilter && !BlockFilter->count(Pred))
1635         continue;
1636       if (BlockToChain[Pred] == &Chain)
1637         continue;
1638       ++Chain.UnscheduledPredecessors;
1639     }
1640   }
1641 
1642   if (Chain.UnscheduledPredecessors != 0)
1643     return;
1644 
1645   MachineBasicBlock *BB = *Chain.begin();
1646   if (BB->isEHPad())
1647     EHPadWorkList.push_back(BB);
1648   else
1649     BlockWorkList.push_back(BB);
1650 }
1651 
1652 void MachineBlockPlacement::buildChain(
1653     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1654     BlockFilterSet *BlockFilter) {
1655   assert(HeadBB && "BB must not be null.\n");
1656   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1657   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1658 
1659   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1660   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1661   MachineBasicBlock *BB = *std::prev(Chain.end());
1662   for (;;) {
1663     assert(BB && "null block found at end of chain in loop.");
1664     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1665     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1666 
1667 
1668     // Look for the best viable successor if there is one to place immediately
1669     // after this block.
1670     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1671     MachineBasicBlock* BestSucc = Result.BB;
1672     bool ShouldTailDup = Result.ShouldTailDup;
1673     if (TailDupPlacement)
1674       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1675 
1676     // If an immediate successor isn't available, look for the best viable
1677     // block among those we've identified as not violating the loop's CFG at
1678     // this point. This won't be a fallthrough, but it will increase locality.
1679     if (!BestSucc)
1680       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1681     if (!BestSucc)
1682       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1683 
1684     if (!BestSucc) {
1685       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1686       if (!BestSucc)
1687         break;
1688 
1689       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1690                       "layout successor until the CFG reduces\n");
1691     }
1692 
1693     // Placement may have changed tail duplication opportunities.
1694     // Check for that now.
1695     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1696       // If the chosen successor was duplicated into all its predecessors,
1697       // don't bother laying it out, just go round the loop again with BB as
1698       // the chain end.
1699       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1700                                        BlockFilter, PrevUnplacedBlockIt))
1701         continue;
1702     }
1703 
1704     // Place this block, updating the datastructures to reflect its placement.
1705     BlockChain &SuccChain = *BlockToChain[BestSucc];
1706     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1707     // we selected a successor that didn't fit naturally into the CFG.
1708     SuccChain.UnscheduledPredecessors = 0;
1709     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1710                  << getBlockName(BestSucc) << "\n");
1711     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1712     Chain.merge(BestSucc, &SuccChain);
1713     BB = *std::prev(Chain.end());
1714   }
1715 
1716   DEBUG(dbgs() << "Finished forming chain for header block "
1717                << getBlockName(*Chain.begin()) << "\n");
1718 }
1719 
1720 /// \brief Find the best loop top block for layout.
1721 ///
1722 /// Look for a block which is strictly better than the loop header for laying
1723 /// out at the top of the loop. This looks for one and only one pattern:
1724 /// a latch block with no conditional exit. This block will cause a conditional
1725 /// jump around it or will be the bottom of the loop if we lay it out in place,
1726 /// but if it it doesn't end up at the bottom of the loop for any reason,
1727 /// rotation alone won't fix it. Because such a block will always result in an
1728 /// unconditional jump (for the backedge) rotating it in front of the loop
1729 /// header is always profitable.
1730 MachineBasicBlock *
1731 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1732                                        const BlockFilterSet &LoopBlockSet) {
1733   // Placing the latch block before the header may introduce an extra branch
1734   // that skips this block the first time the loop is executed, which we want
1735   // to avoid when optimising for size.
1736   // FIXME: in theory there is a case that does not introduce a new branch,
1737   // i.e. when the layout predecessor does not fallthrough to the loop header.
1738   // In practice this never happens though: there always seems to be a preheader
1739   // that can fallthrough and that is also placed before the header.
1740   if (F->getFunction()->optForSize())
1741     return L.getHeader();
1742 
1743   // Check that the header hasn't been fused with a preheader block due to
1744   // crazy branches. If it has, we need to start with the header at the top to
1745   // prevent pulling the preheader into the loop body.
1746   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1747   if (!LoopBlockSet.count(*HeaderChain.begin()))
1748     return L.getHeader();
1749 
1750   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1751                << "\n");
1752 
1753   BlockFrequency BestPredFreq;
1754   MachineBasicBlock *BestPred = nullptr;
1755   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1756     if (!LoopBlockSet.count(Pred))
1757       continue;
1758     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1759                  << Pred->succ_size() << " successors, ";
1760           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1761     if (Pred->succ_size() > 1)
1762       continue;
1763 
1764     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1765     if (!BestPred || PredFreq > BestPredFreq ||
1766         (!(PredFreq < BestPredFreq) &&
1767          Pred->isLayoutSuccessor(L.getHeader()))) {
1768       BestPred = Pred;
1769       BestPredFreq = PredFreq;
1770     }
1771   }
1772 
1773   // If no direct predecessor is fine, just use the loop header.
1774   if (!BestPred) {
1775     DEBUG(dbgs() << "    final top unchanged\n");
1776     return L.getHeader();
1777   }
1778 
1779   // Walk backwards through any straight line of predecessors.
1780   while (BestPred->pred_size() == 1 &&
1781          (*BestPred->pred_begin())->succ_size() == 1 &&
1782          *BestPred->pred_begin() != L.getHeader())
1783     BestPred = *BestPred->pred_begin();
1784 
1785   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1786   return BestPred;
1787 }
1788 
1789 /// \brief Find the best loop exiting block for layout.
1790 ///
1791 /// This routine implements the logic to analyze the loop looking for the best
1792 /// block to layout at the top of the loop. Typically this is done to maximize
1793 /// fallthrough opportunities.
1794 MachineBasicBlock *
1795 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1796                                         const BlockFilterSet &LoopBlockSet) {
1797   // We don't want to layout the loop linearly in all cases. If the loop header
1798   // is just a normal basic block in the loop, we want to look for what block
1799   // within the loop is the best one to layout at the top. However, if the loop
1800   // header has be pre-merged into a chain due to predecessors not having
1801   // analyzable branches, *and* the predecessor it is merged with is *not* part
1802   // of the loop, rotating the header into the middle of the loop will create
1803   // a non-contiguous range of blocks which is Very Bad. So start with the
1804   // header and only rotate if safe.
1805   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1806   if (!LoopBlockSet.count(*HeaderChain.begin()))
1807     return nullptr;
1808 
1809   BlockFrequency BestExitEdgeFreq;
1810   unsigned BestExitLoopDepth = 0;
1811   MachineBasicBlock *ExitingBB = nullptr;
1812   // If there are exits to outer loops, loop rotation can severely limit
1813   // fallthrough opportunities unless it selects such an exit. Keep a set of
1814   // blocks where rotating to exit with that block will reach an outer loop.
1815   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1816 
1817   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1818                << "\n");
1819   for (MachineBasicBlock *MBB : L.getBlocks()) {
1820     BlockChain &Chain = *BlockToChain[MBB];
1821     // Ensure that this block is at the end of a chain; otherwise it could be
1822     // mid-way through an inner loop or a successor of an unanalyzable branch.
1823     if (MBB != *std::prev(Chain.end()))
1824       continue;
1825 
1826     // Now walk the successors. We need to establish whether this has a viable
1827     // exiting successor and whether it has a viable non-exiting successor.
1828     // We store the old exiting state and restore it if a viable looping
1829     // successor isn't found.
1830     MachineBasicBlock *OldExitingBB = ExitingBB;
1831     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1832     bool HasLoopingSucc = false;
1833     for (MachineBasicBlock *Succ : MBB->successors()) {
1834       if (Succ->isEHPad())
1835         continue;
1836       if (Succ == MBB)
1837         continue;
1838       BlockChain &SuccChain = *BlockToChain[Succ];
1839       // Don't split chains, either this chain or the successor's chain.
1840       if (&Chain == &SuccChain) {
1841         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1842                      << getBlockName(Succ) << " (chain conflict)\n");
1843         continue;
1844       }
1845 
1846       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1847       if (LoopBlockSet.count(Succ)) {
1848         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1849                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1850         HasLoopingSucc = true;
1851         continue;
1852       }
1853 
1854       unsigned SuccLoopDepth = 0;
1855       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1856         SuccLoopDepth = ExitLoop->getLoopDepth();
1857         if (ExitLoop->contains(&L))
1858           BlocksExitingToOuterLoop.insert(MBB);
1859       }
1860 
1861       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1862       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1863                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1864             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1865       // Note that we bias this toward an existing layout successor to retain
1866       // incoming order in the absence of better information. The exit must have
1867       // a frequency higher than the current exit before we consider breaking
1868       // the layout.
1869       BranchProbability Bias(100 - ExitBlockBias, 100);
1870       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1871           ExitEdgeFreq > BestExitEdgeFreq ||
1872           (MBB->isLayoutSuccessor(Succ) &&
1873            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1874         BestExitEdgeFreq = ExitEdgeFreq;
1875         ExitingBB = MBB;
1876       }
1877     }
1878 
1879     if (!HasLoopingSucc) {
1880       // Restore the old exiting state, no viable looping successor was found.
1881       ExitingBB = OldExitingBB;
1882       BestExitEdgeFreq = OldBestExitEdgeFreq;
1883     }
1884   }
1885   // Without a candidate exiting block or with only a single block in the
1886   // loop, just use the loop header to layout the loop.
1887   if (!ExitingBB) {
1888     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1889     return nullptr;
1890   }
1891   if (L.getNumBlocks() == 1) {
1892     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1893     return nullptr;
1894   }
1895 
1896   // Also, if we have exit blocks which lead to outer loops but didn't select
1897   // one of them as the exiting block we are rotating toward, disable loop
1898   // rotation altogether.
1899   if (!BlocksExitingToOuterLoop.empty() &&
1900       !BlocksExitingToOuterLoop.count(ExitingBB))
1901     return nullptr;
1902 
1903   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1904   return ExitingBB;
1905 }
1906 
1907 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1908 ///
1909 /// Once we have built a chain, try to rotate it to line up the hot exit block
1910 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1911 /// branches. For example, if the loop has fallthrough into its header and out
1912 /// of its bottom already, don't rotate it.
1913 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1914                                        const MachineBasicBlock *ExitingBB,
1915                                        const BlockFilterSet &LoopBlockSet) {
1916   if (!ExitingBB)
1917     return;
1918 
1919   MachineBasicBlock *Top = *LoopChain.begin();
1920   bool ViableTopFallthrough = false;
1921   for (MachineBasicBlock *Pred : Top->predecessors()) {
1922     BlockChain *PredChain = BlockToChain[Pred];
1923     if (!LoopBlockSet.count(Pred) &&
1924         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1925       ViableTopFallthrough = true;
1926       break;
1927     }
1928   }
1929 
1930   // If the header has viable fallthrough, check whether the current loop
1931   // bottom is a viable exiting block. If so, bail out as rotating will
1932   // introduce an unnecessary branch.
1933   if (ViableTopFallthrough) {
1934     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1935     for (MachineBasicBlock *Succ : Bottom->successors()) {
1936       BlockChain *SuccChain = BlockToChain[Succ];
1937       if (!LoopBlockSet.count(Succ) &&
1938           (!SuccChain || Succ == *SuccChain->begin()))
1939         return;
1940     }
1941   }
1942 
1943   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1944   if (ExitIt == LoopChain.end())
1945     return;
1946 
1947   // Rotating a loop exit to the bottom when there is a fallthrough to top
1948   // trades the entry fallthrough for an exit fallthrough.
1949   // If there is no bottom->top edge, but the chosen exit block does have
1950   // a fallthrough, we break that fallthrough for nothing in return.
1951 
1952   // Let's consider an example. We have a built chain of basic blocks
1953   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
1954   // By doing a rotation we get
1955   // Bk+1, ..., Bn, B1, ..., Bk
1956   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
1957   // If we had a fallthrough Bk -> Bk+1 it is broken now.
1958   // It might be compensated by fallthrough Bn -> B1.
1959   // So we have a condition to avoid creation of extra branch by loop rotation.
1960   // All below must be true to avoid loop rotation:
1961   //   If there is a fallthrough to top (B1)
1962   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
1963   //   There is no fallthrough from bottom (Bn) to top (B1).
1964   // Please note that there is no exit fallthrough from Bn because we checked it
1965   // above.
1966   if (ViableTopFallthrough) {
1967     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
1968     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1969     if (NextBlockInChain->isPredecessor(ExitingBB))
1970       if (!Top->isPredecessor(Bottom))
1971         return;
1972   }
1973 
1974   DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
1975                << " at bottom\n");
1976   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1977 }
1978 
1979 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1980 ///
1981 /// With profile data, we can determine the cost in terms of missed fall through
1982 /// opportunities when rotating a loop chain and select the best rotation.
1983 /// Basically, there are three kinds of cost to consider for each rotation:
1984 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1985 ///    the loop to the loop header.
1986 ///    2. The possibly missed fall through edges (if they exist) from the loop
1987 ///    exits to BB out of the loop.
1988 ///    3. The missed fall through edge (if it exists) from the last BB to the
1989 ///    first BB in the loop chain.
1990 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1991 ///  We select the best rotation with the smallest cost.
1992 void MachineBlockPlacement::rotateLoopWithProfile(
1993     BlockChain &LoopChain, const MachineLoop &L,
1994     const BlockFilterSet &LoopBlockSet) {
1995   auto HeaderBB = L.getHeader();
1996   auto HeaderIter = find(LoopChain, HeaderBB);
1997   auto RotationPos = LoopChain.end();
1998 
1999   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2000 
2001   // A utility lambda that scales up a block frequency by dividing it by a
2002   // branch probability which is the reciprocal of the scale.
2003   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2004                                 unsigned Scale) -> BlockFrequency {
2005     if (Scale == 0)
2006       return 0;
2007     // Use operator / between BlockFrequency and BranchProbability to implement
2008     // saturating multiplication.
2009     return Freq / BranchProbability(1, Scale);
2010   };
2011 
2012   // Compute the cost of the missed fall-through edge to the loop header if the
2013   // chain head is not the loop header. As we only consider natural loops with
2014   // single header, this computation can be done only once.
2015   BlockFrequency HeaderFallThroughCost(0);
2016   for (auto *Pred : HeaderBB->predecessors()) {
2017     BlockChain *PredChain = BlockToChain[Pred];
2018     if (!LoopBlockSet.count(Pred) &&
2019         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2020       auto EdgeFreq =
2021           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
2022       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2023       // If the predecessor has only an unconditional jump to the header, we
2024       // need to consider the cost of this jump.
2025       if (Pred->succ_size() == 1)
2026         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2027       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2028     }
2029   }
2030 
2031   // Here we collect all exit blocks in the loop, and for each exit we find out
2032   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2033   // as the sum of frequencies of exit edges we collect here, excluding the exit
2034   // edge from the tail of the loop chain.
2035   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2036   for (auto BB : LoopChain) {
2037     auto LargestExitEdgeProb = BranchProbability::getZero();
2038     for (auto *Succ : BB->successors()) {
2039       BlockChain *SuccChain = BlockToChain[Succ];
2040       if (!LoopBlockSet.count(Succ) &&
2041           (!SuccChain || Succ == *SuccChain->begin())) {
2042         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2043         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2044       }
2045     }
2046     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2047       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2048       ExitsWithFreq.emplace_back(BB, ExitFreq);
2049     }
2050   }
2051 
2052   // In this loop we iterate every block in the loop chain and calculate the
2053   // cost assuming the block is the head of the loop chain. When the loop ends,
2054   // we should have found the best candidate as the loop chain's head.
2055   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2056             EndIter = LoopChain.end();
2057        Iter != EndIter; Iter++, TailIter++) {
2058     // TailIter is used to track the tail of the loop chain if the block we are
2059     // checking (pointed by Iter) is the head of the chain.
2060     if (TailIter == LoopChain.end())
2061       TailIter = LoopChain.begin();
2062 
2063     auto TailBB = *TailIter;
2064 
2065     // Calculate the cost by putting this BB to the top.
2066     BlockFrequency Cost = 0;
2067 
2068     // If the current BB is the loop header, we need to take into account the
2069     // cost of the missed fall through edge from outside of the loop to the
2070     // header.
2071     if (Iter != HeaderIter)
2072       Cost += HeaderFallThroughCost;
2073 
2074     // Collect the loop exit cost by summing up frequencies of all exit edges
2075     // except the one from the chain tail.
2076     for (auto &ExitWithFreq : ExitsWithFreq)
2077       if (TailBB != ExitWithFreq.first)
2078         Cost += ExitWithFreq.second;
2079 
2080     // The cost of breaking the once fall-through edge from the tail to the top
2081     // of the loop chain. Here we need to consider three cases:
2082     // 1. If the tail node has only one successor, then we will get an
2083     //    additional jmp instruction. So the cost here is (MisfetchCost +
2084     //    JumpInstCost) * tail node frequency.
2085     // 2. If the tail node has two successors, then we may still get an
2086     //    additional jmp instruction if the layout successor after the loop
2087     //    chain is not its CFG successor. Note that the more frequently executed
2088     //    jmp instruction will be put ahead of the other one. Assume the
2089     //    frequency of those two branches are x and y, where x is the frequency
2090     //    of the edge to the chain head, then the cost will be
2091     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2092     // 3. If the tail node has more than two successors (this rarely happens),
2093     //    we won't consider any additional cost.
2094     if (TailBB->isSuccessor(*Iter)) {
2095       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2096       if (TailBB->succ_size() == 1)
2097         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2098                                     MisfetchCost + JumpInstCost);
2099       else if (TailBB->succ_size() == 2) {
2100         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2101         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2102         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2103                                   ? TailBBFreq * TailToHeadProb.getCompl()
2104                                   : TailToHeadFreq;
2105         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2106                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2107       }
2108     }
2109 
2110     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
2111                  << " to the top: " << Cost.getFrequency() << "\n");
2112 
2113     if (Cost < SmallestRotationCost) {
2114       SmallestRotationCost = Cost;
2115       RotationPos = Iter;
2116     }
2117   }
2118 
2119   if (RotationPos != LoopChain.end()) {
2120     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2121                  << " to the top\n");
2122     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2123   }
2124 }
2125 
2126 /// \brief Collect blocks in the given loop that are to be placed.
2127 ///
2128 /// When profile data is available, exclude cold blocks from the returned set;
2129 /// otherwise, collect all blocks in the loop.
2130 MachineBlockPlacement::BlockFilterSet
2131 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2132   BlockFilterSet LoopBlockSet;
2133 
2134   // Filter cold blocks off from LoopBlockSet when profile data is available.
2135   // Collect the sum of frequencies of incoming edges to the loop header from
2136   // outside. If we treat the loop as a super block, this is the frequency of
2137   // the loop. Then for each block in the loop, we calculate the ratio between
2138   // its frequency and the frequency of the loop block. When it is too small,
2139   // don't add it to the loop chain. If there are outer loops, then this block
2140   // will be merged into the first outer loop chain for which this block is not
2141   // cold anymore. This needs precise profile data and we only do this when
2142   // profile data is available.
2143   if (F->getFunction()->getEntryCount()) {
2144     BlockFrequency LoopFreq(0);
2145     for (auto LoopPred : L.getHeader()->predecessors())
2146       if (!L.contains(LoopPred))
2147         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2148                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2149 
2150     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2151       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2152       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2153         continue;
2154       LoopBlockSet.insert(LoopBB);
2155     }
2156   } else
2157     LoopBlockSet.insert(L.block_begin(), L.block_end());
2158 
2159   return LoopBlockSet;
2160 }
2161 
2162 /// \brief Forms basic block chains from the natural loop structures.
2163 ///
2164 /// These chains are designed to preserve the existing *structure* of the code
2165 /// as much as possible. We can then stitch the chains together in a way which
2166 /// both preserves the topological structure and minimizes taken conditional
2167 /// branches.
2168 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2169   // First recurse through any nested loops, building chains for those inner
2170   // loops.
2171   for (const MachineLoop *InnerLoop : L)
2172     buildLoopChains(*InnerLoop);
2173 
2174   assert(BlockWorkList.empty() &&
2175          "BlockWorkList not empty when starting to build loop chains.");
2176   assert(EHPadWorkList.empty() &&
2177          "EHPadWorkList not empty when starting to build loop chains.");
2178   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2179 
2180   // Check if we have profile data for this function. If yes, we will rotate
2181   // this loop by modeling costs more precisely which requires the profile data
2182   // for better layout.
2183   bool RotateLoopWithProfile =
2184       ForcePreciseRotationCost ||
2185       (PreciseRotationCost && F->getFunction()->getEntryCount());
2186 
2187   // First check to see if there is an obviously preferable top block for the
2188   // loop. This will default to the header, but may end up as one of the
2189   // predecessors to the header if there is one which will result in strictly
2190   // fewer branches in the loop body.
2191   // When we use profile data to rotate the loop, this is unnecessary.
2192   MachineBasicBlock *LoopTop =
2193       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2194 
2195   // If we selected just the header for the loop top, look for a potentially
2196   // profitable exit block in the event that rotating the loop can eliminate
2197   // branches by placing an exit edge at the bottom.
2198   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2199     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2200 
2201   BlockChain &LoopChain = *BlockToChain[LoopTop];
2202 
2203   // FIXME: This is a really lame way of walking the chains in the loop: we
2204   // walk the blocks, and use a set to prevent visiting a particular chain
2205   // twice.
2206   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2207   assert(LoopChain.UnscheduledPredecessors == 0 &&
2208          "LoopChain should not have unscheduled predecessors.");
2209   UpdatedPreds.insert(&LoopChain);
2210 
2211   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2212     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2213 
2214   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2215 
2216   if (RotateLoopWithProfile)
2217     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2218   else
2219     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2220 
2221   DEBUG({
2222     // Crash at the end so we get all of the debugging output first.
2223     bool BadLoop = false;
2224     if (LoopChain.UnscheduledPredecessors) {
2225       BadLoop = true;
2226       dbgs() << "Loop chain contains a block without its preds placed!\n"
2227              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2228              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2229     }
2230     for (MachineBasicBlock *ChainBB : LoopChain) {
2231       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2232       if (!LoopBlockSet.remove(ChainBB)) {
2233         // We don't mark the loop as bad here because there are real situations
2234         // where this can occur. For example, with an unanalyzable fallthrough
2235         // from a loop block to a non-loop block or vice versa.
2236         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2237                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2238                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2239                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2240       }
2241     }
2242 
2243     if (!LoopBlockSet.empty()) {
2244       BadLoop = true;
2245       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2246         dbgs() << "Loop contains blocks never placed into a chain!\n"
2247                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2248                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2249                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2250     }
2251     assert(!BadLoop && "Detected problems with the placement of this loop.");
2252   });
2253 
2254   BlockWorkList.clear();
2255   EHPadWorkList.clear();
2256 }
2257 
2258 void MachineBlockPlacement::buildCFGChains() {
2259   // Ensure that every BB in the function has an associated chain to simplify
2260   // the assumptions of the remaining algorithm.
2261   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2262   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2263        ++FI) {
2264     MachineBasicBlock *BB = &*FI;
2265     BlockChain *Chain =
2266         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2267     // Also, merge any blocks which we cannot reason about and must preserve
2268     // the exact fallthrough behavior for.
2269     for (;;) {
2270       Cond.clear();
2271       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2272       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2273         break;
2274 
2275       MachineFunction::iterator NextFI = std::next(FI);
2276       MachineBasicBlock *NextBB = &*NextFI;
2277       // Ensure that the layout successor is a viable block, as we know that
2278       // fallthrough is a possibility.
2279       assert(NextFI != FE && "Can't fallthrough past the last block.");
2280       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2281                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
2282                    << "\n");
2283       Chain->merge(NextBB, nullptr);
2284 #ifndef NDEBUG
2285       BlocksWithUnanalyzableExits.insert(&*BB);
2286 #endif
2287       FI = NextFI;
2288       BB = NextBB;
2289     }
2290   }
2291 
2292   // Build any loop-based chains.
2293   PreferredLoopExit = nullptr;
2294   for (MachineLoop *L : *MLI)
2295     buildLoopChains(*L);
2296 
2297   assert(BlockWorkList.empty() &&
2298          "BlockWorkList should be empty before building final chain.");
2299   assert(EHPadWorkList.empty() &&
2300          "EHPadWorkList should be empty before building final chain.");
2301 
2302   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2303   for (MachineBasicBlock &MBB : *F)
2304     fillWorkLists(&MBB, UpdatedPreds);
2305 
2306   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2307   buildChain(&F->front(), FunctionChain);
2308 
2309 #ifndef NDEBUG
2310   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
2311 #endif
2312   DEBUG({
2313     // Crash at the end so we get all of the debugging output first.
2314     bool BadFunc = false;
2315     FunctionBlockSetType FunctionBlockSet;
2316     for (MachineBasicBlock &MBB : *F)
2317       FunctionBlockSet.insert(&MBB);
2318 
2319     for (MachineBasicBlock *ChainBB : FunctionChain)
2320       if (!FunctionBlockSet.erase(ChainBB)) {
2321         BadFunc = true;
2322         dbgs() << "Function chain contains a block not in the function!\n"
2323                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2324       }
2325 
2326     if (!FunctionBlockSet.empty()) {
2327       BadFunc = true;
2328       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2329         dbgs() << "Function contains blocks never placed into a chain!\n"
2330                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2331     }
2332     assert(!BadFunc && "Detected problems with the block placement.");
2333   });
2334 
2335   // Splice the blocks into place.
2336   MachineFunction::iterator InsertPos = F->begin();
2337   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
2338   for (MachineBasicBlock *ChainBB : FunctionChain) {
2339     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2340                                                        : "          ... ")
2341                  << getBlockName(ChainBB) << "\n");
2342     if (InsertPos != MachineFunction::iterator(ChainBB))
2343       F->splice(InsertPos, ChainBB);
2344     else
2345       ++InsertPos;
2346 
2347     // Update the terminator of the previous block.
2348     if (ChainBB == *FunctionChain.begin())
2349       continue;
2350     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2351 
2352     // FIXME: It would be awesome of updateTerminator would just return rather
2353     // than assert when the branch cannot be analyzed in order to remove this
2354     // boiler plate.
2355     Cond.clear();
2356     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2357 
2358 #ifndef NDEBUG
2359     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2360       // Given the exact block placement we chose, we may actually not _need_ to
2361       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2362       // do that at this point is a bug.
2363       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2364               !PrevBB->canFallThrough()) &&
2365              "Unexpected block with un-analyzable fallthrough!");
2366       Cond.clear();
2367       TBB = FBB = nullptr;
2368     }
2369 #endif
2370 
2371     // The "PrevBB" is not yet updated to reflect current code layout, so,
2372     //   o. it may fall-through to a block without explicit "goto" instruction
2373     //      before layout, and no longer fall-through it after layout; or
2374     //   o. just opposite.
2375     //
2376     // analyzeBranch() may return erroneous value for FBB when these two
2377     // situations take place. For the first scenario FBB is mistakenly set NULL;
2378     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2379     // mistakenly pointing to "*BI".
2380     // Thus, if the future change needs to use FBB before the layout is set, it
2381     // has to correct FBB first by using the code similar to the following:
2382     //
2383     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2384     //   PrevBB->updateTerminator();
2385     //   Cond.clear();
2386     //   TBB = FBB = nullptr;
2387     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2388     //     // FIXME: This should never take place.
2389     //     TBB = FBB = nullptr;
2390     //   }
2391     // }
2392     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2393       PrevBB->updateTerminator();
2394   }
2395 
2396   // Fixup the last block.
2397   Cond.clear();
2398   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2399   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2400     F->back().updateTerminator();
2401 
2402   BlockWorkList.clear();
2403   EHPadWorkList.clear();
2404 }
2405 
2406 void MachineBlockPlacement::optimizeBranches() {
2407   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2408   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2409 
2410   // Now that all the basic blocks in the chain have the proper layout,
2411   // make a final call to AnalyzeBranch with AllowModify set.
2412   // Indeed, the target may be able to optimize the branches in a way we
2413   // cannot because all branches may not be analyzable.
2414   // E.g., the target may be able to remove an unconditional branch to
2415   // a fallthrough when it occurs after predicated terminators.
2416   for (MachineBasicBlock *ChainBB : FunctionChain) {
2417     Cond.clear();
2418     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2419     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2420       // If PrevBB has a two-way branch, try to re-order the branches
2421       // such that we branch to the successor with higher probability first.
2422       if (TBB && !Cond.empty() && FBB &&
2423           MBPI->getEdgeProbability(ChainBB, FBB) >
2424               MBPI->getEdgeProbability(ChainBB, TBB) &&
2425           !TII->reverseBranchCondition(Cond)) {
2426         DEBUG(dbgs() << "Reverse order of the two branches: "
2427                      << getBlockName(ChainBB) << "\n");
2428         DEBUG(dbgs() << "    Edge probability: "
2429                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2430                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2431         DebugLoc dl; // FIXME: this is nowhere
2432         TII->removeBranch(*ChainBB);
2433         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2434         ChainBB->updateTerminator();
2435       }
2436     }
2437   }
2438 }
2439 
2440 void MachineBlockPlacement::alignBlocks() {
2441   // Walk through the backedges of the function now that we have fully laid out
2442   // the basic blocks and align the destination of each backedge. We don't rely
2443   // exclusively on the loop info here so that we can align backedges in
2444   // unnatural CFGs and backedges that were introduced purely because of the
2445   // loop rotations done during this layout pass.
2446   if (F->getFunction()->optForSize())
2447     return;
2448   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2449   if (FunctionChain.begin() == FunctionChain.end())
2450     return; // Empty chain.
2451 
2452   const BranchProbability ColdProb(1, 5); // 20%
2453   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2454   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2455   for (MachineBasicBlock *ChainBB : FunctionChain) {
2456     if (ChainBB == *FunctionChain.begin())
2457       continue;
2458 
2459     // Don't align non-looping basic blocks. These are unlikely to execute
2460     // enough times to matter in practice. Note that we'll still handle
2461     // unnatural CFGs inside of a natural outer loop (the common case) and
2462     // rotated loops.
2463     MachineLoop *L = MLI->getLoopFor(ChainBB);
2464     if (!L)
2465       continue;
2466 
2467     unsigned Align = TLI->getPrefLoopAlignment(L);
2468     if (!Align)
2469       continue; // Don't care about loop alignment.
2470 
2471     // If the block is cold relative to the function entry don't waste space
2472     // aligning it.
2473     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2474     if (Freq < WeightedEntryFreq)
2475       continue;
2476 
2477     // If the block is cold relative to its loop header, don't align it
2478     // regardless of what edges into the block exist.
2479     MachineBasicBlock *LoopHeader = L->getHeader();
2480     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2481     if (Freq < (LoopHeaderFreq * ColdProb))
2482       continue;
2483 
2484     // Check for the existence of a non-layout predecessor which would benefit
2485     // from aligning this block.
2486     MachineBasicBlock *LayoutPred =
2487         &*std::prev(MachineFunction::iterator(ChainBB));
2488 
2489     // Force alignment if all the predecessors are jumps. We already checked
2490     // that the block isn't cold above.
2491     if (!LayoutPred->isSuccessor(ChainBB)) {
2492       ChainBB->setAlignment(Align);
2493       continue;
2494     }
2495 
2496     // Align this block if the layout predecessor's edge into this block is
2497     // cold relative to the block. When this is true, other predecessors make up
2498     // all of the hot entries into the block and thus alignment is likely to be
2499     // important.
2500     BranchProbability LayoutProb =
2501         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2502     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2503     if (LayoutEdgeFreq <= (Freq * ColdProb))
2504       ChainBB->setAlignment(Align);
2505   }
2506 }
2507 
2508 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2509 /// it was duplicated into its chain predecessor and removed.
2510 /// \p BB    - Basic block that may be duplicated.
2511 ///
2512 /// \p LPred - Chosen layout predecessor of \p BB.
2513 ///            Updated to be the chain end if LPred is removed.
2514 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2515 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2516 ///                  Used to identify which blocks to update predecessor
2517 ///                  counts.
2518 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2519 ///                          chosen in the given order due to unnatural CFG
2520 ///                          only needed if \p BB is removed and
2521 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2522 /// @return true if \p BB was removed.
2523 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2524     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2525     const MachineBasicBlock *LoopHeaderBB,
2526     BlockChain &Chain, BlockFilterSet *BlockFilter,
2527     MachineFunction::iterator &PrevUnplacedBlockIt) {
2528   bool Removed, DuplicatedToLPred;
2529   bool DuplicatedToOriginalLPred;
2530   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2531                                     PrevUnplacedBlockIt,
2532                                     DuplicatedToLPred);
2533   if (!Removed)
2534     return false;
2535   DuplicatedToOriginalLPred = DuplicatedToLPred;
2536   // Iteratively try to duplicate again. It can happen that a block that is
2537   // duplicated into is still small enough to be duplicated again.
2538   // No need to call markBlockSuccessors in this case, as the blocks being
2539   // duplicated from here on are already scheduled.
2540   // Note that DuplicatedToLPred always implies Removed.
2541   while (DuplicatedToLPred) {
2542     assert (Removed && "Block must have been removed to be duplicated into its "
2543             "layout predecessor.");
2544     MachineBasicBlock *DupBB, *DupPred;
2545     // The removal callback causes Chain.end() to be updated when a block is
2546     // removed. On the first pass through the loop, the chain end should be the
2547     // same as it was on function entry. On subsequent passes, because we are
2548     // duplicating the block at the end of the chain, if it is removed the
2549     // chain will have shrunk by one block.
2550     BlockChain::iterator ChainEnd = Chain.end();
2551     DupBB = *(--ChainEnd);
2552     // Now try to duplicate again.
2553     if (ChainEnd == Chain.begin())
2554       break;
2555     DupPred = *std::prev(ChainEnd);
2556     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2557                                       PrevUnplacedBlockIt,
2558                                       DuplicatedToLPred);
2559   }
2560   // If BB was duplicated into LPred, it is now scheduled. But because it was
2561   // removed, markChainSuccessors won't be called for its chain. Instead we
2562   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2563   // at the end because repeating the tail duplication can increase the number
2564   // of unscheduled predecessors.
2565   LPred = *std::prev(Chain.end());
2566   if (DuplicatedToOriginalLPred)
2567     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2568   return true;
2569 }
2570 
2571 /// Tail duplicate \p BB into (some) predecessors if profitable.
2572 /// \p BB    - Basic block that may be duplicated
2573 /// \p LPred - Chosen layout predecessor of \p BB
2574 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2575 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2576 ///                  Used to identify which blocks to update predecessor
2577 ///                  counts.
2578 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2579 ///                          chosen in the given order due to unnatural CFG
2580 ///                          only needed if \p BB is removed and
2581 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2582 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2583 ///                        only be true if the block was removed.
2584 /// \return  - True if the block was duplicated into all preds and removed.
2585 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2586     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2587     BlockChain &Chain, BlockFilterSet *BlockFilter,
2588     MachineFunction::iterator &PrevUnplacedBlockIt,
2589     bool &DuplicatedToLPred) {
2590   DuplicatedToLPred = false;
2591   if (!shouldTailDuplicate(BB))
2592     return false;
2593 
2594   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2595         << BB->getNumber() << "\n");
2596 
2597   // This has to be a callback because none of it can be done after
2598   // BB is deleted.
2599   bool Removed = false;
2600   auto RemovalCallback =
2601       [&](MachineBasicBlock *RemBB) {
2602         // Signal to outer function
2603         Removed = true;
2604 
2605         // Conservative default.
2606         bool InWorkList = true;
2607         // Remove from the Chain and Chain Map
2608         if (BlockToChain.count(RemBB)) {
2609           BlockChain *Chain = BlockToChain[RemBB];
2610           InWorkList = Chain->UnscheduledPredecessors == 0;
2611           Chain->remove(RemBB);
2612           BlockToChain.erase(RemBB);
2613         }
2614 
2615         // Handle the unplaced block iterator
2616         if (&(*PrevUnplacedBlockIt) == RemBB) {
2617           PrevUnplacedBlockIt++;
2618         }
2619 
2620         // Handle the Work Lists
2621         if (InWorkList) {
2622           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2623           if (RemBB->isEHPad())
2624             RemoveList = EHPadWorkList;
2625           RemoveList.erase(
2626               remove_if(RemoveList,
2627                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2628               RemoveList.end());
2629         }
2630 
2631         // Handle the filter set
2632         if (BlockFilter) {
2633           BlockFilter->remove(RemBB);
2634         }
2635 
2636         // Remove the block from loop info.
2637         MLI->removeBlock(RemBB);
2638         if (RemBB == PreferredLoopExit)
2639           PreferredLoopExit = nullptr;
2640 
2641         DEBUG(dbgs() << "TailDuplicator deleted block: "
2642               << getBlockName(RemBB) << "\n");
2643       };
2644   auto RemovalCallbackRef =
2645       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2646 
2647   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2648   bool IsSimple = TailDup.isSimpleBB(BB);
2649   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2650                                  &DuplicatedPreds, &RemovalCallbackRef);
2651 
2652   // Update UnscheduledPredecessors to reflect tail-duplication.
2653   DuplicatedToLPred = false;
2654   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2655     // We're only looking for unscheduled predecessors that match the filter.
2656     BlockChain* PredChain = BlockToChain[Pred];
2657     if (Pred == LPred)
2658       DuplicatedToLPred = true;
2659     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2660         || PredChain == &Chain)
2661       continue;
2662     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2663       if (BlockFilter && !BlockFilter->count(NewSucc))
2664         continue;
2665       BlockChain *NewChain = BlockToChain[NewSucc];
2666       if (NewChain != &Chain && NewChain != PredChain)
2667         NewChain->UnscheduledPredecessors++;
2668     }
2669   }
2670   return Removed;
2671 }
2672 
2673 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2674   if (skipFunction(*MF.getFunction()))
2675     return false;
2676 
2677   // Check for single-block functions and skip them.
2678   if (std::next(MF.begin()) == MF.end())
2679     return false;
2680 
2681   F = &MF;
2682   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2683   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2684       getAnalysis<MachineBlockFrequencyInfo>());
2685   MLI = &getAnalysis<MachineLoopInfo>();
2686   TII = MF.getSubtarget().getInstrInfo();
2687   TLI = MF.getSubtarget().getTargetLowering();
2688   MPDT = nullptr;
2689 
2690   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2691   // there are no MachineLoops.
2692   PreferredLoopExit = nullptr;
2693 
2694   assert(BlockToChain.empty() &&
2695          "BlockToChain map should be empty before starting placement.");
2696   assert(ComputedEdges.empty() &&
2697          "Computed Edge map should be empty before starting placement.");
2698 
2699   unsigned TailDupSize = TailDupPlacementThreshold;
2700   // If only the aggressive threshold is explicitly set, use it.
2701   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
2702       TailDupPlacementThreshold.getNumOccurrences() == 0)
2703     TailDupSize = TailDupPlacementAggressiveThreshold;
2704 
2705   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2706   // For agressive optimization, we can adjust some thresholds to be less
2707   // conservative.
2708   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
2709     // At O3 we should be more willing to copy blocks for tail duplication. This
2710     // increases size pressure, so we only do it at O3
2711     // Do this unless only the regular threshold is explicitly set.
2712     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
2713         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
2714       TailDupSize = TailDupPlacementAggressiveThreshold;
2715   }
2716 
2717   if (TailDupPlacement) {
2718     MPDT = &getAnalysis<MachinePostDominatorTree>();
2719     if (MF.getFunction()->optForSize())
2720       TailDupSize = 1;
2721     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2722     precomputeTriangleChains();
2723   }
2724 
2725   buildCFGChains();
2726 
2727   // Changing the layout can create new tail merging opportunities.
2728   // TailMerge can create jump into if branches that make CFG irreducible for
2729   // HW that requires structured CFG.
2730   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2731                          PassConfig->getEnableTailMerge() &&
2732                          BranchFoldPlacement;
2733   // No tail merging opportunities if the block number is less than four.
2734   if (MF.size() > 3 && EnableTailMerge) {
2735     unsigned TailMergeSize = TailDupSize + 1;
2736     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2737                     *MBPI, TailMergeSize);
2738 
2739     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2740                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2741                             /*AfterBlockPlacement=*/true)) {
2742       // Redo the layout if tail merging creates/removes/moves blocks.
2743       BlockToChain.clear();
2744       ComputedEdges.clear();
2745       // Must redo the post-dominator tree if blocks were changed.
2746       if (MPDT)
2747         MPDT->runOnMachineFunction(MF);
2748       ChainAllocator.DestroyAll();
2749       buildCFGChains();
2750     }
2751   }
2752 
2753   optimizeBranches();
2754   alignBlocks();
2755 
2756   BlockToChain.clear();
2757   ComputedEdges.clear();
2758   ChainAllocator.DestroyAll();
2759 
2760   if (AlignAllBlock)
2761     // Align all of the blocks in the function to a specific alignment.
2762     for (MachineBasicBlock &MBB : MF)
2763       MBB.setAlignment(AlignAllBlock);
2764   else if (AlignAllNonFallThruBlocks) {
2765     // Align all of the blocks that have no fall-through predecessors to a
2766     // specific alignment.
2767     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2768       auto LayoutPred = std::prev(MBI);
2769       if (!LayoutPred->isSuccessor(&*MBI))
2770         MBI->setAlignment(AlignAllNonFallThruBlocks);
2771     }
2772   }
2773   if (ViewBlockLayoutWithBFI != GVDT_None &&
2774       (ViewBlockFreqFuncName.empty() ||
2775        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2776     MBFI->view("MBP." + MF.getName(), false);
2777   }
2778 
2779 
2780   // We always return true as we have no way to track whether the final order
2781   // differs from the original order.
2782   return true;
2783 }
2784 
2785 namespace {
2786 /// \brief A pass to compute block placement statistics.
2787 ///
2788 /// A separate pass to compute interesting statistics for evaluating block
2789 /// placement. This is separate from the actual placement pass so that they can
2790 /// be computed in the absence of any placement transformations or when using
2791 /// alternative placement strategies.
2792 class MachineBlockPlacementStats : public MachineFunctionPass {
2793   /// \brief A handle to the branch probability pass.
2794   const MachineBranchProbabilityInfo *MBPI;
2795 
2796   /// \brief A handle to the function-wide block frequency pass.
2797   const MachineBlockFrequencyInfo *MBFI;
2798 
2799 public:
2800   static char ID; // Pass identification, replacement for typeid
2801   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2802     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2803   }
2804 
2805   bool runOnMachineFunction(MachineFunction &F) override;
2806 
2807   void getAnalysisUsage(AnalysisUsage &AU) const override {
2808     AU.addRequired<MachineBranchProbabilityInfo>();
2809     AU.addRequired<MachineBlockFrequencyInfo>();
2810     AU.setPreservesAll();
2811     MachineFunctionPass::getAnalysisUsage(AU);
2812   }
2813 };
2814 }
2815 
2816 char MachineBlockPlacementStats::ID = 0;
2817 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2818 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2819                       "Basic Block Placement Stats", false, false)
2820 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2821 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2822 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2823                     "Basic Block Placement Stats", false, false)
2824 
2825 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2826   // Check for single-block functions and skip them.
2827   if (std::next(F.begin()) == F.end())
2828     return false;
2829 
2830   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2831   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2832 
2833   for (MachineBasicBlock &MBB : F) {
2834     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2835     Statistic &NumBranches =
2836         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2837     Statistic &BranchTakenFreq =
2838         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2839     for (MachineBasicBlock *Succ : MBB.successors()) {
2840       // Skip if this successor is a fallthrough.
2841       if (MBB.isLayoutSuccessor(Succ))
2842         continue;
2843 
2844       BlockFrequency EdgeFreq =
2845           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2846       ++NumBranches;
2847       BranchTakenFreq += EdgeFreq.getFrequency();
2848     }
2849   }
2850 
2851   return false;
2852 }
2853