1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probablistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 extern cl::opt<unsigned> ProfileLikelyProb; 129 130 namespace { 131 class BlockChain; 132 /// \brief Type for our function-wide basic block -> block chain mapping. 133 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 134 } 135 136 namespace { 137 /// \brief A chain of blocks which will be laid out contiguously. 138 /// 139 /// This is the datastructure representing a chain of consecutive blocks that 140 /// are profitable to layout together in order to maximize fallthrough 141 /// probabilities and code locality. We also can use a block chain to represent 142 /// a sequence of basic blocks which have some external (correctness) 143 /// requirement for sequential layout. 144 /// 145 /// Chains can be built around a single basic block and can be merged to grow 146 /// them. They participate in a block-to-chain mapping, which is updated 147 /// automatically as chains are merged together. 148 class BlockChain { 149 /// \brief The sequence of blocks belonging to this chain. 150 /// 151 /// This is the sequence of blocks for a particular chain. These will be laid 152 /// out in-order within the function. 153 SmallVector<MachineBasicBlock *, 4> Blocks; 154 155 /// \brief A handle to the function-wide basic block to block chain mapping. 156 /// 157 /// This is retained in each block chain to simplify the computation of child 158 /// block chains for SCC-formation and iteration. We store the edges to child 159 /// basic blocks, and map them back to their associated chains using this 160 /// structure. 161 BlockToChainMapType &BlockToChain; 162 163 public: 164 /// \brief Construct a new BlockChain. 165 /// 166 /// This builds a new block chain representing a single basic block in the 167 /// function. It also registers itself as the chain that block participates 168 /// in with the BlockToChain mapping. 169 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 170 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 171 assert(BB && "Cannot create a chain with a null basic block"); 172 BlockToChain[BB] = this; 173 } 174 175 /// \brief Iterator over blocks within the chain. 176 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 177 178 /// \brief Beginning of blocks within the chain. 179 iterator begin() { return Blocks.begin(); } 180 181 /// \brief End of blocks within the chain. 182 iterator end() { return Blocks.end(); } 183 184 /// \brief Merge a block chain into this one. 185 /// 186 /// This routine merges a block chain into this one. It takes care of forming 187 /// a contiguous sequence of basic blocks, updating the edge list, and 188 /// updating the block -> chain mapping. It does not free or tear down the 189 /// old chain, but the old chain's block list is no longer valid. 190 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 191 assert(BB); 192 assert(!Blocks.empty()); 193 194 // Fast path in case we don't have a chain already. 195 if (!Chain) { 196 assert(!BlockToChain[BB]); 197 Blocks.push_back(BB); 198 BlockToChain[BB] = this; 199 return; 200 } 201 202 assert(BB == *Chain->begin()); 203 assert(Chain->begin() != Chain->end()); 204 205 // Update the incoming blocks to point to this chain, and add them to the 206 // chain structure. 207 for (MachineBasicBlock *ChainBB : *Chain) { 208 Blocks.push_back(ChainBB); 209 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 210 BlockToChain[ChainBB] = this; 211 } 212 } 213 214 #ifndef NDEBUG 215 /// \brief Dump the blocks in this chain. 216 LLVM_DUMP_METHOD void dump() { 217 for (MachineBasicBlock *MBB : *this) 218 MBB->dump(); 219 } 220 #endif // NDEBUG 221 222 /// \brief Count of predecessors of any block within the chain which have not 223 /// yet been scheduled. In general, we will delay scheduling this chain 224 /// until those predecessors are scheduled (or we find a sufficiently good 225 /// reason to override this heuristic.) Note that when forming loop chains, 226 /// blocks outside the loop are ignored and treated as if they were already 227 /// scheduled. 228 /// 229 /// Note: This field is reinitialized multiple times - once for each loop, 230 /// and then once for the function as a whole. 231 unsigned UnscheduledPredecessors; 232 }; 233 } 234 235 namespace { 236 class MachineBlockPlacement : public MachineFunctionPass { 237 /// \brief A typedef for a block filter set. 238 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 239 240 /// \brief Machine Function 241 MachineFunction *F; 242 243 /// \brief A handle to the branch probability pass. 244 const MachineBranchProbabilityInfo *MBPI; 245 246 /// \brief A handle to the function-wide block frequency pass. 247 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 248 249 /// \brief A handle to the loop info. 250 MachineLoopInfo *MLI; 251 252 /// \brief A handle to the target's instruction info. 253 const TargetInstrInfo *TII; 254 255 /// \brief A handle to the target's lowering info. 256 const TargetLoweringBase *TLI; 257 258 /// \brief A handle to the post dominator tree. 259 MachineDominatorTree *MDT; 260 261 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 262 /// all terminators of the MachineFunction. 263 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 264 265 /// \brief Allocator and owner of BlockChain structures. 266 /// 267 /// We build BlockChains lazily while processing the loop structure of 268 /// a function. To reduce malloc traffic, we allocate them using this 269 /// slab-like allocator, and destroy them after the pass completes. An 270 /// important guarantee is that this allocator produces stable pointers to 271 /// the chains. 272 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 273 274 /// \brief Function wide BasicBlock to BlockChain mapping. 275 /// 276 /// This mapping allows efficiently moving from any given basic block to the 277 /// BlockChain it participates in, if any. We use it to, among other things, 278 /// allow implicitly defining edges between chains as the existing edges 279 /// between basic blocks. 280 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 281 282 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 283 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 284 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 285 const BlockFilterSet *BlockFilter = nullptr); 286 BranchProbability 287 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 288 const BlockFilterSet *BlockFilter, 289 SmallVector<MachineBasicBlock *, 4> &Successors); 290 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 291 BlockChain &Chain, 292 const BlockFilterSet *BlockFilter, 293 BranchProbability SuccProb, 294 BranchProbability HotProb); 295 bool 296 hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, 297 BlockChain &SuccChain, BranchProbability SuccProb, 298 BranchProbability RealSuccProb, BlockChain &Chain, 299 const BlockFilterSet *BlockFilter); 300 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 301 BlockChain &Chain, 302 const BlockFilterSet *BlockFilter); 303 MachineBasicBlock * 304 selectBestCandidateBlock(BlockChain &Chain, 305 SmallVectorImpl<MachineBasicBlock *> &WorkList); 306 MachineBasicBlock * 307 getFirstUnplacedBlock(const BlockChain &PlacedChain, 308 MachineFunction::iterator &PrevUnplacedBlockIt, 309 const BlockFilterSet *BlockFilter); 310 311 /// \brief Add a basic block to the work list if it is apropriate. 312 /// 313 /// If the optional parameter BlockFilter is provided, only MBB 314 /// present in the set will be added to the worklist. If nullptr 315 /// is provided, no filtering occurs. 316 void fillWorkLists(MachineBasicBlock *MBB, 317 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 318 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 319 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 320 const BlockFilterSet *BlockFilter); 321 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 322 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 323 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 324 const BlockFilterSet *BlockFilter = nullptr); 325 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 326 const BlockFilterSet &LoopBlockSet); 327 MachineBasicBlock *findBestLoopExit(MachineLoop &L, 328 const BlockFilterSet &LoopBlockSet); 329 BlockFilterSet collectLoopBlockSet(MachineLoop &L); 330 void buildLoopChains(MachineLoop &L); 331 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 332 const BlockFilterSet &LoopBlockSet); 333 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 334 const BlockFilterSet &LoopBlockSet); 335 void collectMustExecuteBBs(); 336 void buildCFGChains(); 337 void optimizeBranches(); 338 void alignBlocks(); 339 340 public: 341 static char ID; // Pass identification, replacement for typeid 342 MachineBlockPlacement() : MachineFunctionPass(ID) { 343 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 344 } 345 346 bool runOnMachineFunction(MachineFunction &F) override; 347 348 void getAnalysisUsage(AnalysisUsage &AU) const override { 349 AU.addRequired<MachineBranchProbabilityInfo>(); 350 AU.addRequired<MachineBlockFrequencyInfo>(); 351 AU.addRequired<MachineDominatorTree>(); 352 AU.addRequired<MachineLoopInfo>(); 353 AU.addRequired<TargetPassConfig>(); 354 MachineFunctionPass::getAnalysisUsage(AU); 355 } 356 }; 357 } 358 359 char MachineBlockPlacement::ID = 0; 360 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 361 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 362 "Branch Probability Basic Block Placement", false, false) 363 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 364 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 365 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 366 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 367 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 368 "Branch Probability Basic Block Placement", false, false) 369 370 #ifndef NDEBUG 371 /// \brief Helper to print the name of a MBB. 372 /// 373 /// Only used by debug logging. 374 static std::string getBlockName(MachineBasicBlock *BB) { 375 std::string Result; 376 raw_string_ostream OS(Result); 377 OS << "BB#" << BB->getNumber(); 378 OS << " ('" << BB->getName() << "')"; 379 OS.flush(); 380 return Result; 381 } 382 #endif 383 384 /// \brief Mark a chain's successors as having one fewer preds. 385 /// 386 /// When a chain is being merged into the "placed" chain, this routine will 387 /// quickly walk the successors of each block in the chain and mark them as 388 /// having one fewer active predecessor. It also adds any successors of this 389 /// chain which reach the zero-predecessor state to the worklist passed in. 390 void MachineBlockPlacement::markChainSuccessors( 391 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 392 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 393 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 394 const BlockFilterSet *BlockFilter) { 395 // Walk all the blocks in this chain, marking their successors as having 396 // a predecessor placed. 397 for (MachineBasicBlock *MBB : Chain) { 398 // Add any successors for which this is the only un-placed in-loop 399 // predecessor to the worklist as a viable candidate for CFG-neutral 400 // placement. No subsequent placement of this block will violate the CFG 401 // shape, so we get to use heuristics to choose a favorable placement. 402 for (MachineBasicBlock *Succ : MBB->successors()) { 403 if (BlockFilter && !BlockFilter->count(Succ)) 404 continue; 405 BlockChain &SuccChain = *BlockToChain[Succ]; 406 // Disregard edges within a fixed chain, or edges to the loop header. 407 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 408 continue; 409 410 // This is a cross-chain edge that is within the loop, so decrement the 411 // loop predecessor count of the destination chain. 412 if (SuccChain.UnscheduledPredecessors == 0 || 413 --SuccChain.UnscheduledPredecessors > 0) 414 continue; 415 416 auto *MBB = *SuccChain.begin(); 417 if (MBB->isEHPad()) 418 EHPadWorkList.push_back(MBB); 419 else 420 BlockWorkList.push_back(MBB); 421 } 422 } 423 } 424 425 /// This helper function collects the set of successors of block 426 /// \p BB that are allowed to be its layout successors, and return 427 /// the total branch probability of edges from \p BB to those 428 /// blocks. 429 BranchProbability MachineBlockPlacement::collectViableSuccessors( 430 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 431 SmallVector<MachineBasicBlock *, 4> &Successors) { 432 // Adjust edge probabilities by excluding edges pointing to blocks that is 433 // either not in BlockFilter or is already in the current chain. Consider the 434 // following CFG: 435 // 436 // --->A 437 // | / \ 438 // | B C 439 // | \ / \ 440 // ----D E 441 // 442 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 443 // A->C is chosen as a fall-through, D won't be selected as a successor of C 444 // due to CFG constraint (the probability of C->D is not greater than 445 // HotProb to break top-oorder). If we exclude E that is not in BlockFilter 446 // when calculating the probability of C->D, D will be selected and we 447 // will get A C D B as the layout of this loop. 448 auto AdjustedSumProb = BranchProbability::getOne(); 449 for (MachineBasicBlock *Succ : BB->successors()) { 450 bool SkipSucc = false; 451 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 452 SkipSucc = true; 453 } else { 454 BlockChain *SuccChain = BlockToChain[Succ]; 455 if (SuccChain == &Chain) { 456 SkipSucc = true; 457 } else if (Succ != *SuccChain->begin()) { 458 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 459 continue; 460 } 461 } 462 if (SkipSucc) 463 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 464 else 465 Successors.push_back(Succ); 466 } 467 468 return AdjustedSumProb; 469 } 470 471 /// The helper function returns the branch probability that is adjusted 472 /// or normalized over the new total \p AdjustedSumProb. 473 474 static BranchProbability 475 getAdjustedProbability(BranchProbability OrigProb, 476 BranchProbability AdjustedSumProb) { 477 BranchProbability SuccProb; 478 uint32_t SuccProbN = OrigProb.getNumerator(); 479 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 480 if (SuccProbN >= SuccProbD) 481 SuccProb = BranchProbability::getOne(); 482 else 483 SuccProb = BranchProbability(SuccProbN, SuccProbD); 484 485 return SuccProb; 486 } 487 488 /// When the option OutlineOptionalBranches is on, this method 489 /// checks if the fallthrough candidate block \p Succ (of block 490 /// \p BB) also has other unscheduled predecessor blocks which 491 /// are also successors of \p BB (forming triagular shape CFG). 492 /// If none of such predecessors are small, it returns true. 493 /// The caller can choose to select \p Succ as the layout successors 494 /// so that \p Succ's predecessors (optional branches) can be 495 /// outlined. 496 /// FIXME: fold this with more general layout cost analysis. 497 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 498 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 499 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 500 BranchProbability HotProb) { 501 if (!OutlineOptionalBranches) 502 return false; 503 // If we outline optional branches, look whether Succ is unavoidable, i.e. 504 // dominates all terminators of the MachineFunction. If it does, other 505 // successors must be optional. Don't do this for cold branches. 506 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 507 for (MachineBasicBlock *Pred : Succ->predecessors()) { 508 // Check whether there is an unplaced optional branch. 509 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 510 BlockToChain[Pred] == &Chain) 511 continue; 512 // Check whether the optional branch has exactly one BB. 513 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 514 continue; 515 // Check whether the optional branch is small. 516 if (Pred->size() < OutlineOptionalThreshold) 517 return false; 518 } 519 return true; 520 } else 521 return false; 522 } 523 524 // When profile is not present, return the StaticLikelyProb. 525 // When profile is available, we need to handle the triangle-shape CFG. 526 static BranchProbability getLayoutSuccessorProbThreshold( 527 MachineBasicBlock *BB) { 528 if (!BB->getParent()->getFunction()->getEntryCount()) 529 return BranchProbability(StaticLikelyProb, 100); 530 if (BB->succ_size() == 2) { 531 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 532 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 533 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) 534 return BranchProbability( 535 200 - 2 * ProfileLikelyProb, 200 - ProfileLikelyProb); 536 } 537 return BranchProbability(ProfileLikelyProb, 100); 538 } 539 540 /// Checks to see if the layout candidate block \p Succ has a better layout 541 /// predecessor than \c BB. If yes, returns true. 542 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 543 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, 544 BranchProbability SuccProb, BranchProbability RealSuccProb, 545 BlockChain &Chain, const BlockFilterSet *BlockFilter) { 546 547 // This is no global conflict, just return false. 548 if (SuccChain.UnscheduledPredecessors == 0) 549 return false; 550 551 // There are two basic scenarios here: 552 // ------------------------------------- 553 // Case 1: triagular shape CFG: 554 // BB 555 // | \ 556 // | \ 557 // | Pred 558 // | / 559 // Succ 560 // In this case, we are evaluating whether to select edge -> Succ, e.g. 561 // set Succ as the layout successor of BB. Picking Succ as BB's 562 // successor breaks the CFG constraints. With this layout, Pred BB 563 // is forced to be outlined, so the overall cost will be cost of the 564 // branch taken from BB to Pred, plus the cost of back taken branch 565 // from Pred to Succ, as well as the additional cost asssociated 566 // with the needed unconditional jump instruction from Pred To Succ. 567 // The cost of the topological order layout is the taken branch cost 568 // from BB to Succ, so to make BB->Succ a viable candidate, the following 569 // must hold: 570 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 571 // < freq(BB->Succ) * taken_branch_cost. 572 // Ignoring unconditional jump cost, we get 573 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 574 // prob(BB->Succ) > 2 * prob(BB->Pred) 575 // 576 // When real profile data is available, we can precisely compute the the 577 // probabililty threshold that is needed for edge BB->Succ to be considered. 578 // With out profile data, the heuristic requires the branch bias to be 579 // a lot larger to make sure the signal is very strong (e.g. 80% default). 580 // ----------------------------------------------------------------- 581 // Case 2: diamond like CFG: 582 // S 583 // / \ 584 // | \ 585 // BB Pred 586 // \ / 587 // Succ 588 // .. 589 // In this case, edge S->BB has already been selected, and we are evaluating 590 // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB) 591 // is no less than prob(S->Pred). When real profile data is *available*, if 592 // the condition is true, it will be always better to continue the trace with 593 // edge BB->Succ instead of laying out with topological order (i.e. laying 594 // Pred first). The cost of S->BB->Succ is 2 * freq (S->Pred), while with 595 // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger. 596 // When profile data is not available, however, we need to be more 597 // conservative. If the branch prediction is wrong, breaking the topo-order 598 // will actually yield a layout with large cost. For this reason, we need 599 // strong biaaed branch at block S with Prob(S->BB) in order to select 600 // BB->Succ. This is equialant to looking the CFG backward with backward 601 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 602 // profile data). 603 604 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 605 606 // Forward checking. For case 2, SuccProb will be 1. 607 if (SuccProb < HotProb) { 608 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 609 << " (prob) (CFG conflict)\n"); 610 return true; 611 } 612 613 // Make sure that a hot successor doesn't have a globally more 614 // important predecessor. 615 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 616 bool BadCFGConflict = false; 617 618 for (MachineBasicBlock *Pred : Succ->predecessors()) { 619 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 620 (BlockFilter && !BlockFilter->count(Pred)) || 621 BlockToChain[Pred] == &Chain) 622 continue; 623 // Do backward checking. For case 1, it is actually redundant check. For 624 // case 2 above, we need a backward checking to filter out edges that are 625 // not 'strongly' biased. With profile data available, the check is mostly 626 // redundant too (when threshold prob is set at 50%) unless S has more than 627 // two successors. 628 // BB Pred 629 // \ / 630 // Succ 631 // We select edgee BB->Succ if 632 // freq(BB->Succ) > freq(Succ) * HotProb 633 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 634 // HotProb 635 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 636 BlockFrequency PredEdgeFreq = 637 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 638 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 639 BadCFGConflict = true; 640 break; 641 } 642 } 643 644 if (BadCFGConflict) { 645 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 646 << " (prob) (non-cold CFG conflict)\n"); 647 return true; 648 } 649 650 return false; 651 } 652 653 /// \brief Select the best successor for a block. 654 /// 655 /// This looks across all successors of a particular block and attempts to 656 /// select the "best" one to be the layout successor. It only considers direct 657 /// successors which also pass the block filter. It will attempt to avoid 658 /// breaking CFG structure, but cave and break such structures in the case of 659 /// very hot successor edges. 660 /// 661 /// \returns The best successor block found, or null if none are viable. 662 MachineBasicBlock * 663 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 664 BlockChain &Chain, 665 const BlockFilterSet *BlockFilter) { 666 const BranchProbability HotProb(StaticLikelyProb, 100); 667 668 MachineBasicBlock *BestSucc = nullptr; 669 auto BestProb = BranchProbability::getZero(); 670 671 SmallVector<MachineBasicBlock *, 4> Successors; 672 auto AdjustedSumProb = 673 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 674 675 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 676 for (MachineBasicBlock *Succ : Successors) { 677 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 678 BranchProbability SuccProb = 679 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 680 681 // This heuristic is off by default. 682 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 683 HotProb)) 684 return Succ; 685 686 BlockChain &SuccChain = *BlockToChain[Succ]; 687 // Skip the edge \c BB->Succ if block \c Succ has a better layout 688 // predecessor that yields lower global cost. 689 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 690 Chain, BlockFilter)) 691 continue; 692 693 DEBUG( 694 dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 695 << " (prob)" 696 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 697 << "\n"); 698 if (BestSucc && BestProb >= SuccProb) 699 continue; 700 BestSucc = Succ; 701 BestProb = SuccProb; 702 } 703 return BestSucc; 704 } 705 706 /// \brief Select the best block from a worklist. 707 /// 708 /// This looks through the provided worklist as a list of candidate basic 709 /// blocks and select the most profitable one to place. The definition of 710 /// profitable only really makes sense in the context of a loop. This returns 711 /// the most frequently visited block in the worklist, which in the case of 712 /// a loop, is the one most desirable to be physically close to the rest of the 713 /// loop body in order to improve icache behavior. 714 /// 715 /// \returns The best block found, or null if none are viable. 716 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 717 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 718 // Once we need to walk the worklist looking for a candidate, cleanup the 719 // worklist of already placed entries. 720 // FIXME: If this shows up on profiles, it could be folded (at the cost of 721 // some code complexity) into the loop below. 722 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 723 [&](MachineBasicBlock *BB) { 724 return BlockToChain.lookup(BB) == &Chain; 725 }), 726 WorkList.end()); 727 728 if (WorkList.empty()) 729 return nullptr; 730 731 bool IsEHPad = WorkList[0]->isEHPad(); 732 733 MachineBasicBlock *BestBlock = nullptr; 734 BlockFrequency BestFreq; 735 for (MachineBasicBlock *MBB : WorkList) { 736 assert(MBB->isEHPad() == IsEHPad); 737 738 BlockChain &SuccChain = *BlockToChain[MBB]; 739 if (&SuccChain == &Chain) 740 continue; 741 742 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 743 744 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 745 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 746 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 747 748 // For ehpad, we layout the least probable first as to avoid jumping back 749 // from least probable landingpads to more probable ones. 750 // 751 // FIXME: Using probability is probably (!) not the best way to achieve 752 // this. We should probably have a more principled approach to layout 753 // cleanup code. 754 // 755 // The goal is to get: 756 // 757 // +--------------------------+ 758 // | V 759 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 760 // 761 // Rather than: 762 // 763 // +-------------------------------------+ 764 // V | 765 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 766 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 767 continue; 768 769 BestBlock = MBB; 770 BestFreq = CandidateFreq; 771 } 772 773 return BestBlock; 774 } 775 776 /// \brief Retrieve the first unplaced basic block. 777 /// 778 /// This routine is called when we are unable to use the CFG to walk through 779 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 780 /// We walk through the function's blocks in order, starting from the 781 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 782 /// re-scanning the entire sequence on repeated calls to this routine. 783 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 784 const BlockChain &PlacedChain, 785 MachineFunction::iterator &PrevUnplacedBlockIt, 786 const BlockFilterSet *BlockFilter) { 787 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 788 ++I) { 789 if (BlockFilter && !BlockFilter->count(&*I)) 790 continue; 791 if (BlockToChain[&*I] != &PlacedChain) { 792 PrevUnplacedBlockIt = I; 793 // Now select the head of the chain to which the unplaced block belongs 794 // as the block to place. This will force the entire chain to be placed, 795 // and satisfies the requirements of merging chains. 796 return *BlockToChain[&*I]->begin(); 797 } 798 } 799 return nullptr; 800 } 801 802 void MachineBlockPlacement::fillWorkLists( 803 MachineBasicBlock *MBB, 804 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 805 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 806 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 807 const BlockFilterSet *BlockFilter = nullptr) { 808 BlockChain &Chain = *BlockToChain[MBB]; 809 if (!UpdatedPreds.insert(&Chain).second) 810 return; 811 812 assert(Chain.UnscheduledPredecessors == 0); 813 for (MachineBasicBlock *ChainBB : Chain) { 814 assert(BlockToChain[ChainBB] == &Chain); 815 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 816 if (BlockFilter && !BlockFilter->count(Pred)) 817 continue; 818 if (BlockToChain[Pred] == &Chain) 819 continue; 820 ++Chain.UnscheduledPredecessors; 821 } 822 } 823 824 if (Chain.UnscheduledPredecessors != 0) 825 return; 826 827 MBB = *Chain.begin(); 828 if (MBB->isEHPad()) 829 EHPadWorkList.push_back(MBB); 830 else 831 BlockWorkList.push_back(MBB); 832 } 833 834 void MachineBlockPlacement::buildChain( 835 MachineBasicBlock *BB, BlockChain &Chain, 836 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 837 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 838 const BlockFilterSet *BlockFilter) { 839 assert(BB); 840 assert(BlockToChain[BB] == &Chain); 841 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 842 843 MachineBasicBlock *LoopHeaderBB = BB; 844 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 845 BlockFilter); 846 BB = *std::prev(Chain.end()); 847 for (;;) { 848 assert(BB); 849 assert(BlockToChain[BB] == &Chain); 850 assert(*std::prev(Chain.end()) == BB); 851 852 // Look for the best viable successor if there is one to place immediately 853 // after this block. 854 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 855 856 // If an immediate successor isn't available, look for the best viable 857 // block among those we've identified as not violating the loop's CFG at 858 // this point. This won't be a fallthrough, but it will increase locality. 859 if (!BestSucc) 860 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 861 if (!BestSucc) 862 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 863 864 if (!BestSucc) { 865 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 866 if (!BestSucc) 867 break; 868 869 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 870 "layout successor until the CFG reduces\n"); 871 } 872 873 // Place this block, updating the datastructures to reflect its placement. 874 BlockChain &SuccChain = *BlockToChain[BestSucc]; 875 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 876 // we selected a successor that didn't fit naturally into the CFG. 877 SuccChain.UnscheduledPredecessors = 0; 878 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 879 << getBlockName(BestSucc) << "\n"); 880 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 881 BlockFilter); 882 Chain.merge(BestSucc, &SuccChain); 883 BB = *std::prev(Chain.end()); 884 } 885 886 DEBUG(dbgs() << "Finished forming chain for header block " 887 << getBlockName(*Chain.begin()) << "\n"); 888 } 889 890 /// \brief Find the best loop top block for layout. 891 /// 892 /// Look for a block which is strictly better than the loop header for laying 893 /// out at the top of the loop. This looks for one and only one pattern: 894 /// a latch block with no conditional exit. This block will cause a conditional 895 /// jump around it or will be the bottom of the loop if we lay it out in place, 896 /// but if it it doesn't end up at the bottom of the loop for any reason, 897 /// rotation alone won't fix it. Because such a block will always result in an 898 /// unconditional jump (for the backedge) rotating it in front of the loop 899 /// header is always profitable. 900 MachineBasicBlock * 901 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 902 const BlockFilterSet &LoopBlockSet) { 903 // Check that the header hasn't been fused with a preheader block due to 904 // crazy branches. If it has, we need to start with the header at the top to 905 // prevent pulling the preheader into the loop body. 906 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 907 if (!LoopBlockSet.count(*HeaderChain.begin())) 908 return L.getHeader(); 909 910 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 911 << "\n"); 912 913 BlockFrequency BestPredFreq; 914 MachineBasicBlock *BestPred = nullptr; 915 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 916 if (!LoopBlockSet.count(Pred)) 917 continue; 918 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 919 << Pred->succ_size() << " successors, "; 920 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 921 if (Pred->succ_size() > 1) 922 continue; 923 924 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 925 if (!BestPred || PredFreq > BestPredFreq || 926 (!(PredFreq < BestPredFreq) && 927 Pred->isLayoutSuccessor(L.getHeader()))) { 928 BestPred = Pred; 929 BestPredFreq = PredFreq; 930 } 931 } 932 933 // If no direct predecessor is fine, just use the loop header. 934 if (!BestPred) { 935 DEBUG(dbgs() << " final top unchanged\n"); 936 return L.getHeader(); 937 } 938 939 // Walk backwards through any straight line of predecessors. 940 while (BestPred->pred_size() == 1 && 941 (*BestPred->pred_begin())->succ_size() == 1 && 942 *BestPred->pred_begin() != L.getHeader()) 943 BestPred = *BestPred->pred_begin(); 944 945 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 946 return BestPred; 947 } 948 949 /// \brief Find the best loop exiting block for layout. 950 /// 951 /// This routine implements the logic to analyze the loop looking for the best 952 /// block to layout at the top of the loop. Typically this is done to maximize 953 /// fallthrough opportunities. 954 MachineBasicBlock * 955 MachineBlockPlacement::findBestLoopExit(MachineLoop &L, 956 const BlockFilterSet &LoopBlockSet) { 957 // We don't want to layout the loop linearly in all cases. If the loop header 958 // is just a normal basic block in the loop, we want to look for what block 959 // within the loop is the best one to layout at the top. However, if the loop 960 // header has be pre-merged into a chain due to predecessors not having 961 // analyzable branches, *and* the predecessor it is merged with is *not* part 962 // of the loop, rotating the header into the middle of the loop will create 963 // a non-contiguous range of blocks which is Very Bad. So start with the 964 // header and only rotate if safe. 965 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 966 if (!LoopBlockSet.count(*HeaderChain.begin())) 967 return nullptr; 968 969 BlockFrequency BestExitEdgeFreq; 970 unsigned BestExitLoopDepth = 0; 971 MachineBasicBlock *ExitingBB = nullptr; 972 // If there are exits to outer loops, loop rotation can severely limit 973 // fallthrough opportunites unless it selects such an exit. Keep a set of 974 // blocks where rotating to exit with that block will reach an outer loop. 975 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 976 977 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 978 << "\n"); 979 for (MachineBasicBlock *MBB : L.getBlocks()) { 980 BlockChain &Chain = *BlockToChain[MBB]; 981 // Ensure that this block is at the end of a chain; otherwise it could be 982 // mid-way through an inner loop or a successor of an unanalyzable branch. 983 if (MBB != *std::prev(Chain.end())) 984 continue; 985 986 // Now walk the successors. We need to establish whether this has a viable 987 // exiting successor and whether it has a viable non-exiting successor. 988 // We store the old exiting state and restore it if a viable looping 989 // successor isn't found. 990 MachineBasicBlock *OldExitingBB = ExitingBB; 991 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 992 bool HasLoopingSucc = false; 993 for (MachineBasicBlock *Succ : MBB->successors()) { 994 if (Succ->isEHPad()) 995 continue; 996 if (Succ == MBB) 997 continue; 998 BlockChain &SuccChain = *BlockToChain[Succ]; 999 // Don't split chains, either this chain or the successor's chain. 1000 if (&Chain == &SuccChain) { 1001 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1002 << getBlockName(Succ) << " (chain conflict)\n"); 1003 continue; 1004 } 1005 1006 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1007 if (LoopBlockSet.count(Succ)) { 1008 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1009 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1010 HasLoopingSucc = true; 1011 continue; 1012 } 1013 1014 unsigned SuccLoopDepth = 0; 1015 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1016 SuccLoopDepth = ExitLoop->getLoopDepth(); 1017 if (ExitLoop->contains(&L)) 1018 BlocksExitingToOuterLoop.insert(MBB); 1019 } 1020 1021 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1022 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1023 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1024 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1025 // Note that we bias this toward an existing layout successor to retain 1026 // incoming order in the absence of better information. The exit must have 1027 // a frequency higher than the current exit before we consider breaking 1028 // the layout. 1029 BranchProbability Bias(100 - ExitBlockBias, 100); 1030 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1031 ExitEdgeFreq > BestExitEdgeFreq || 1032 (MBB->isLayoutSuccessor(Succ) && 1033 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1034 BestExitEdgeFreq = ExitEdgeFreq; 1035 ExitingBB = MBB; 1036 } 1037 } 1038 1039 if (!HasLoopingSucc) { 1040 // Restore the old exiting state, no viable looping successor was found. 1041 ExitingBB = OldExitingBB; 1042 BestExitEdgeFreq = OldBestExitEdgeFreq; 1043 } 1044 } 1045 // Without a candidate exiting block or with only a single block in the 1046 // loop, just use the loop header to layout the loop. 1047 if (!ExitingBB || L.getNumBlocks() == 1) 1048 return nullptr; 1049 1050 // Also, if we have exit blocks which lead to outer loops but didn't select 1051 // one of them as the exiting block we are rotating toward, disable loop 1052 // rotation altogether. 1053 if (!BlocksExitingToOuterLoop.empty() && 1054 !BlocksExitingToOuterLoop.count(ExitingBB)) 1055 return nullptr; 1056 1057 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1058 return ExitingBB; 1059 } 1060 1061 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1062 /// 1063 /// Once we have built a chain, try to rotate it to line up the hot exit block 1064 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1065 /// branches. For example, if the loop has fallthrough into its header and out 1066 /// of its bottom already, don't rotate it. 1067 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1068 MachineBasicBlock *ExitingBB, 1069 const BlockFilterSet &LoopBlockSet) { 1070 if (!ExitingBB) 1071 return; 1072 1073 MachineBasicBlock *Top = *LoopChain.begin(); 1074 bool ViableTopFallthrough = false; 1075 for (MachineBasicBlock *Pred : Top->predecessors()) { 1076 BlockChain *PredChain = BlockToChain[Pred]; 1077 if (!LoopBlockSet.count(Pred) && 1078 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1079 ViableTopFallthrough = true; 1080 break; 1081 } 1082 } 1083 1084 // If the header has viable fallthrough, check whether the current loop 1085 // bottom is a viable exiting block. If so, bail out as rotating will 1086 // introduce an unnecessary branch. 1087 if (ViableTopFallthrough) { 1088 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1089 for (MachineBasicBlock *Succ : Bottom->successors()) { 1090 BlockChain *SuccChain = BlockToChain[Succ]; 1091 if (!LoopBlockSet.count(Succ) && 1092 (!SuccChain || Succ == *SuccChain->begin())) 1093 return; 1094 } 1095 } 1096 1097 BlockChain::iterator ExitIt = 1098 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 1099 if (ExitIt == LoopChain.end()) 1100 return; 1101 1102 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1103 } 1104 1105 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1106 /// 1107 /// With profile data, we can determine the cost in terms of missed fall through 1108 /// opportunities when rotating a loop chain and select the best rotation. 1109 /// Basically, there are three kinds of cost to consider for each rotation: 1110 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1111 /// the loop to the loop header. 1112 /// 2. The possibly missed fall through edges (if they exist) from the loop 1113 /// exits to BB out of the loop. 1114 /// 3. The missed fall through edge (if it exists) from the last BB to the 1115 /// first BB in the loop chain. 1116 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1117 /// We select the best rotation with the smallest cost. 1118 void MachineBlockPlacement::rotateLoopWithProfile( 1119 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1120 auto HeaderBB = L.getHeader(); 1121 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 1122 auto RotationPos = LoopChain.end(); 1123 1124 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1125 1126 // A utility lambda that scales up a block frequency by dividing it by a 1127 // branch probability which is the reciprocal of the scale. 1128 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1129 unsigned Scale) -> BlockFrequency { 1130 if (Scale == 0) 1131 return 0; 1132 // Use operator / between BlockFrequency and BranchProbability to implement 1133 // saturating multiplication. 1134 return Freq / BranchProbability(1, Scale); 1135 }; 1136 1137 // Compute the cost of the missed fall-through edge to the loop header if the 1138 // chain head is not the loop header. As we only consider natural loops with 1139 // single header, this computation can be done only once. 1140 BlockFrequency HeaderFallThroughCost(0); 1141 for (auto *Pred : HeaderBB->predecessors()) { 1142 BlockChain *PredChain = BlockToChain[Pred]; 1143 if (!LoopBlockSet.count(Pred) && 1144 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1145 auto EdgeFreq = 1146 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1147 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1148 // If the predecessor has only an unconditional jump to the header, we 1149 // need to consider the cost of this jump. 1150 if (Pred->succ_size() == 1) 1151 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1152 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1153 } 1154 } 1155 1156 // Here we collect all exit blocks in the loop, and for each exit we find out 1157 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1158 // as the sum of frequencies of exit edges we collect here, excluding the exit 1159 // edge from the tail of the loop chain. 1160 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1161 for (auto BB : LoopChain) { 1162 auto LargestExitEdgeProb = BranchProbability::getZero(); 1163 for (auto *Succ : BB->successors()) { 1164 BlockChain *SuccChain = BlockToChain[Succ]; 1165 if (!LoopBlockSet.count(Succ) && 1166 (!SuccChain || Succ == *SuccChain->begin())) { 1167 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1168 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1169 } 1170 } 1171 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1172 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1173 ExitsWithFreq.emplace_back(BB, ExitFreq); 1174 } 1175 } 1176 1177 // In this loop we iterate every block in the loop chain and calculate the 1178 // cost assuming the block is the head of the loop chain. When the loop ends, 1179 // we should have found the best candidate as the loop chain's head. 1180 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1181 EndIter = LoopChain.end(); 1182 Iter != EndIter; Iter++, TailIter++) { 1183 // TailIter is used to track the tail of the loop chain if the block we are 1184 // checking (pointed by Iter) is the head of the chain. 1185 if (TailIter == LoopChain.end()) 1186 TailIter = LoopChain.begin(); 1187 1188 auto TailBB = *TailIter; 1189 1190 // Calculate the cost by putting this BB to the top. 1191 BlockFrequency Cost = 0; 1192 1193 // If the current BB is the loop header, we need to take into account the 1194 // cost of the missed fall through edge from outside of the loop to the 1195 // header. 1196 if (Iter != HeaderIter) 1197 Cost += HeaderFallThroughCost; 1198 1199 // Collect the loop exit cost by summing up frequencies of all exit edges 1200 // except the one from the chain tail. 1201 for (auto &ExitWithFreq : ExitsWithFreq) 1202 if (TailBB != ExitWithFreq.first) 1203 Cost += ExitWithFreq.second; 1204 1205 // The cost of breaking the once fall-through edge from the tail to the top 1206 // of the loop chain. Here we need to consider three cases: 1207 // 1. If the tail node has only one successor, then we will get an 1208 // additional jmp instruction. So the cost here is (MisfetchCost + 1209 // JumpInstCost) * tail node frequency. 1210 // 2. If the tail node has two successors, then we may still get an 1211 // additional jmp instruction if the layout successor after the loop 1212 // chain is not its CFG successor. Note that the more frequently executed 1213 // jmp instruction will be put ahead of the other one. Assume the 1214 // frequency of those two branches are x and y, where x is the frequency 1215 // of the edge to the chain head, then the cost will be 1216 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1217 // 3. If the tail node has more than two successors (this rarely happens), 1218 // we won't consider any additional cost. 1219 if (TailBB->isSuccessor(*Iter)) { 1220 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1221 if (TailBB->succ_size() == 1) 1222 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1223 MisfetchCost + JumpInstCost); 1224 else if (TailBB->succ_size() == 2) { 1225 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1226 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1227 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1228 ? TailBBFreq * TailToHeadProb.getCompl() 1229 : TailToHeadFreq; 1230 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1231 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1232 } 1233 } 1234 1235 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1236 << " to the top: " << Cost.getFrequency() << "\n"); 1237 1238 if (Cost < SmallestRotationCost) { 1239 SmallestRotationCost = Cost; 1240 RotationPos = Iter; 1241 } 1242 } 1243 1244 if (RotationPos != LoopChain.end()) { 1245 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1246 << " to the top\n"); 1247 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1248 } 1249 } 1250 1251 /// \brief Collect blocks in the given loop that are to be placed. 1252 /// 1253 /// When profile data is available, exclude cold blocks from the returned set; 1254 /// otherwise, collect all blocks in the loop. 1255 MachineBlockPlacement::BlockFilterSet 1256 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { 1257 BlockFilterSet LoopBlockSet; 1258 1259 // Filter cold blocks off from LoopBlockSet when profile data is available. 1260 // Collect the sum of frequencies of incoming edges to the loop header from 1261 // outside. If we treat the loop as a super block, this is the frequency of 1262 // the loop. Then for each block in the loop, we calculate the ratio between 1263 // its frequency and the frequency of the loop block. When it is too small, 1264 // don't add it to the loop chain. If there are outer loops, then this block 1265 // will be merged into the first outer loop chain for which this block is not 1266 // cold anymore. This needs precise profile data and we only do this when 1267 // profile data is available. 1268 if (F->getFunction()->getEntryCount()) { 1269 BlockFrequency LoopFreq(0); 1270 for (auto LoopPred : L.getHeader()->predecessors()) 1271 if (!L.contains(LoopPred)) 1272 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1273 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1274 1275 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1276 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1277 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1278 continue; 1279 LoopBlockSet.insert(LoopBB); 1280 } 1281 } else 1282 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1283 1284 return LoopBlockSet; 1285 } 1286 1287 /// \brief Forms basic block chains from the natural loop structures. 1288 /// 1289 /// These chains are designed to preserve the existing *structure* of the code 1290 /// as much as possible. We can then stitch the chains together in a way which 1291 /// both preserves the topological structure and minimizes taken conditional 1292 /// branches. 1293 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { 1294 // First recurse through any nested loops, building chains for those inner 1295 // loops. 1296 for (MachineLoop *InnerLoop : L) 1297 buildLoopChains(*InnerLoop); 1298 1299 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1300 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1301 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 1302 1303 // Check if we have profile data for this function. If yes, we will rotate 1304 // this loop by modeling costs more precisely which requires the profile data 1305 // for better layout. 1306 bool RotateLoopWithProfile = 1307 ForcePreciseRotationCost || 1308 (PreciseRotationCost && F->getFunction()->getEntryCount()); 1309 1310 // First check to see if there is an obviously preferable top block for the 1311 // loop. This will default to the header, but may end up as one of the 1312 // predecessors to the header if there is one which will result in strictly 1313 // fewer branches in the loop body. 1314 // When we use profile data to rotate the loop, this is unnecessary. 1315 MachineBasicBlock *LoopTop = 1316 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1317 1318 // If we selected just the header for the loop top, look for a potentially 1319 // profitable exit block in the event that rotating the loop can eliminate 1320 // branches by placing an exit edge at the bottom. 1321 MachineBasicBlock *ExitingBB = nullptr; 1322 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1323 ExitingBB = findBestLoopExit(L, LoopBlockSet); 1324 1325 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1326 1327 // FIXME: This is a really lame way of walking the chains in the loop: we 1328 // walk the blocks, and use a set to prevent visiting a particular chain 1329 // twice. 1330 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1331 assert(LoopChain.UnscheduledPredecessors == 0); 1332 UpdatedPreds.insert(&LoopChain); 1333 1334 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1335 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1336 &LoopBlockSet); 1337 1338 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1339 1340 if (RotateLoopWithProfile) 1341 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1342 else 1343 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1344 1345 DEBUG({ 1346 // Crash at the end so we get all of the debugging output first. 1347 bool BadLoop = false; 1348 if (LoopChain.UnscheduledPredecessors) { 1349 BadLoop = true; 1350 dbgs() << "Loop chain contains a block without its preds placed!\n" 1351 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1352 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1353 } 1354 for (MachineBasicBlock *ChainBB : LoopChain) { 1355 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1356 if (!LoopBlockSet.erase(ChainBB)) { 1357 // We don't mark the loop as bad here because there are real situations 1358 // where this can occur. For example, with an unanalyzable fallthrough 1359 // from a loop block to a non-loop block or vice versa. 1360 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1361 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1362 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1363 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1364 } 1365 } 1366 1367 if (!LoopBlockSet.empty()) { 1368 BadLoop = true; 1369 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1370 dbgs() << "Loop contains blocks never placed into a chain!\n" 1371 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1372 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1373 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1374 } 1375 assert(!BadLoop && "Detected problems with the placement of this loop."); 1376 }); 1377 } 1378 1379 /// When OutlineOpitonalBranches is on, this method colects BBs that 1380 /// dominates all terminator blocks of the function \p F. 1381 void MachineBlockPlacement::collectMustExecuteBBs() { 1382 if (OutlineOptionalBranches) { 1383 // Find the nearest common dominator of all of F's terminators. 1384 MachineBasicBlock *Terminator = nullptr; 1385 for (MachineBasicBlock &MBB : *F) { 1386 if (MBB.succ_size() == 0) { 1387 if (Terminator == nullptr) 1388 Terminator = &MBB; 1389 else 1390 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1391 } 1392 } 1393 1394 // MBBs dominating this common dominator are unavoidable. 1395 UnavoidableBlocks.clear(); 1396 for (MachineBasicBlock &MBB : *F) { 1397 if (MDT->dominates(&MBB, Terminator)) { 1398 UnavoidableBlocks.insert(&MBB); 1399 } 1400 } 1401 } 1402 } 1403 1404 void MachineBlockPlacement::buildCFGChains() { 1405 // Ensure that every BB in the function has an associated chain to simplify 1406 // the assumptions of the remaining algorithm. 1407 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1408 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 1409 ++FI) { 1410 MachineBasicBlock *BB = &*FI; 1411 BlockChain *Chain = 1412 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1413 // Also, merge any blocks which we cannot reason about and must preserve 1414 // the exact fallthrough behavior for. 1415 for (;;) { 1416 Cond.clear(); 1417 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1418 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1419 break; 1420 1421 MachineFunction::iterator NextFI = std::next(FI); 1422 MachineBasicBlock *NextBB = &*NextFI; 1423 // Ensure that the layout successor is a viable block, as we know that 1424 // fallthrough is a possibility. 1425 assert(NextFI != FE && "Can't fallthrough past the last block."); 1426 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1427 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1428 << "\n"); 1429 Chain->merge(NextBB, nullptr); 1430 FI = NextFI; 1431 BB = NextBB; 1432 } 1433 } 1434 1435 // Turned on with OutlineOptionalBranches option 1436 collectMustExecuteBBs(); 1437 1438 // Build any loop-based chains. 1439 for (MachineLoop *L : *MLI) 1440 buildLoopChains(*L); 1441 1442 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1443 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1444 1445 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1446 for (MachineBasicBlock &MBB : *F) 1447 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1448 1449 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1450 buildChain(&F->front(), FunctionChain, BlockWorkList, EHPadWorkList); 1451 1452 #ifndef NDEBUG 1453 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1454 #endif 1455 DEBUG({ 1456 // Crash at the end so we get all of the debugging output first. 1457 bool BadFunc = false; 1458 FunctionBlockSetType FunctionBlockSet; 1459 for (MachineBasicBlock &MBB : *F) 1460 FunctionBlockSet.insert(&MBB); 1461 1462 for (MachineBasicBlock *ChainBB : FunctionChain) 1463 if (!FunctionBlockSet.erase(ChainBB)) { 1464 BadFunc = true; 1465 dbgs() << "Function chain contains a block not in the function!\n" 1466 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1467 } 1468 1469 if (!FunctionBlockSet.empty()) { 1470 BadFunc = true; 1471 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1472 dbgs() << "Function contains blocks never placed into a chain!\n" 1473 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1474 } 1475 assert(!BadFunc && "Detected problems with the block placement."); 1476 }); 1477 1478 // Splice the blocks into place. 1479 MachineFunction::iterator InsertPos = F->begin(); 1480 for (MachineBasicBlock *ChainBB : FunctionChain) { 1481 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1482 : " ... ") 1483 << getBlockName(ChainBB) << "\n"); 1484 if (InsertPos != MachineFunction::iterator(ChainBB)) 1485 F->splice(InsertPos, ChainBB); 1486 else 1487 ++InsertPos; 1488 1489 // Update the terminator of the previous block. 1490 if (ChainBB == *FunctionChain.begin()) 1491 continue; 1492 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1493 1494 // FIXME: It would be awesome of updateTerminator would just return rather 1495 // than assert when the branch cannot be analyzed in order to remove this 1496 // boiler plate. 1497 Cond.clear(); 1498 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1499 1500 // The "PrevBB" is not yet updated to reflect current code layout, so, 1501 // o. it may fall-through to a block without explict "goto" instruction 1502 // before layout, and no longer fall-through it after layout; or 1503 // o. just opposite. 1504 // 1505 // AnalyzeBranch() may return erroneous value for FBB when these two 1506 // situations take place. For the first scenario FBB is mistakenly set NULL; 1507 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1508 // mistakenly pointing to "*BI". 1509 // Thus, if the future change needs to use FBB before the layout is set, it 1510 // has to correct FBB first by using the code similar to the following: 1511 // 1512 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1513 // PrevBB->updateTerminator(); 1514 // Cond.clear(); 1515 // TBB = FBB = nullptr; 1516 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1517 // // FIXME: This should never take place. 1518 // TBB = FBB = nullptr; 1519 // } 1520 // } 1521 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1522 PrevBB->updateTerminator(); 1523 } 1524 1525 // Fixup the last block. 1526 Cond.clear(); 1527 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1528 if (!TII->AnalyzeBranch(F->back(), TBB, FBB, Cond)) 1529 F->back().updateTerminator(); 1530 } 1531 1532 void MachineBlockPlacement::optimizeBranches() { 1533 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1534 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1535 1536 // Now that all the basic blocks in the chain have the proper layout, 1537 // make a final call to AnalyzeBranch with AllowModify set. 1538 // Indeed, the target may be able to optimize the branches in a way we 1539 // cannot because all branches may not be analyzable. 1540 // E.g., the target may be able to remove an unconditional branch to 1541 // a fallthrough when it occurs after predicated terminators. 1542 for (MachineBasicBlock *ChainBB : FunctionChain) { 1543 Cond.clear(); 1544 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1545 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1546 // If PrevBB has a two-way branch, try to re-order the branches 1547 // such that we branch to the successor with higher probability first. 1548 if (TBB && !Cond.empty() && FBB && 1549 MBPI->getEdgeProbability(ChainBB, FBB) > 1550 MBPI->getEdgeProbability(ChainBB, TBB) && 1551 !TII->ReverseBranchCondition(Cond)) { 1552 DEBUG(dbgs() << "Reverse order of the two branches: " 1553 << getBlockName(ChainBB) << "\n"); 1554 DEBUG(dbgs() << " Edge probability: " 1555 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1556 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1557 DebugLoc dl; // FIXME: this is nowhere 1558 TII->RemoveBranch(*ChainBB); 1559 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1560 ChainBB->updateTerminator(); 1561 } 1562 } 1563 } 1564 } 1565 1566 void MachineBlockPlacement::alignBlocks() { 1567 // Walk through the backedges of the function now that we have fully laid out 1568 // the basic blocks and align the destination of each backedge. We don't rely 1569 // exclusively on the loop info here so that we can align backedges in 1570 // unnatural CFGs and backedges that were introduced purely because of the 1571 // loop rotations done during this layout pass. 1572 if (F->getFunction()->optForSize()) 1573 return; 1574 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 1575 if (FunctionChain.begin() == FunctionChain.end()) 1576 return; // Empty chain. 1577 1578 const BranchProbability ColdProb(1, 5); // 20% 1579 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 1580 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1581 for (MachineBasicBlock *ChainBB : FunctionChain) { 1582 if (ChainBB == *FunctionChain.begin()) 1583 continue; 1584 1585 // Don't align non-looping basic blocks. These are unlikely to execute 1586 // enough times to matter in practice. Note that we'll still handle 1587 // unnatural CFGs inside of a natural outer loop (the common case) and 1588 // rotated loops. 1589 MachineLoop *L = MLI->getLoopFor(ChainBB); 1590 if (!L) 1591 continue; 1592 1593 unsigned Align = TLI->getPrefLoopAlignment(L); 1594 if (!Align) 1595 continue; // Don't care about loop alignment. 1596 1597 // If the block is cold relative to the function entry don't waste space 1598 // aligning it. 1599 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1600 if (Freq < WeightedEntryFreq) 1601 continue; 1602 1603 // If the block is cold relative to its loop header, don't align it 1604 // regardless of what edges into the block exist. 1605 MachineBasicBlock *LoopHeader = L->getHeader(); 1606 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1607 if (Freq < (LoopHeaderFreq * ColdProb)) 1608 continue; 1609 1610 // Check for the existence of a non-layout predecessor which would benefit 1611 // from aligning this block. 1612 MachineBasicBlock *LayoutPred = 1613 &*std::prev(MachineFunction::iterator(ChainBB)); 1614 1615 // Force alignment if all the predecessors are jumps. We already checked 1616 // that the block isn't cold above. 1617 if (!LayoutPred->isSuccessor(ChainBB)) { 1618 ChainBB->setAlignment(Align); 1619 continue; 1620 } 1621 1622 // Align this block if the layout predecessor's edge into this block is 1623 // cold relative to the block. When this is true, other predecessors make up 1624 // all of the hot entries into the block and thus alignment is likely to be 1625 // important. 1626 BranchProbability LayoutProb = 1627 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1628 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1629 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1630 ChainBB->setAlignment(Align); 1631 } 1632 } 1633 1634 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 1635 if (skipFunction(*MF.getFunction())) 1636 return false; 1637 1638 // Check for single-block functions and skip them. 1639 if (std::next(MF.begin()) == MF.end()) 1640 return false; 1641 1642 F = &MF; 1643 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1644 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1645 getAnalysis<MachineBlockFrequencyInfo>()); 1646 MLI = &getAnalysis<MachineLoopInfo>(); 1647 TII = MF.getSubtarget().getInstrInfo(); 1648 TLI = MF.getSubtarget().getTargetLowering(); 1649 MDT = &getAnalysis<MachineDominatorTree>(); 1650 assert(BlockToChain.empty()); 1651 1652 buildCFGChains(); 1653 1654 // Changing the layout can create new tail merging opportunities. 1655 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1656 // TailMerge can create jump into if branches that make CFG irreducible for 1657 // HW that requires structurized CFG. 1658 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 1659 PassConfig->getEnableTailMerge() && 1660 BranchFoldPlacement; 1661 // No tail merging opportunities if the block number is less than four. 1662 if (MF.size() > 3 && EnableTailMerge) { 1663 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1664 *MBPI); 1665 1666 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 1667 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1668 /*AfterBlockPlacement=*/true)) { 1669 // Redo the layout if tail merging creates/removes/moves blocks. 1670 BlockToChain.clear(); 1671 ChainAllocator.DestroyAll(); 1672 buildCFGChains(); 1673 } 1674 } 1675 1676 optimizeBranches(); 1677 alignBlocks(); 1678 1679 BlockToChain.clear(); 1680 ChainAllocator.DestroyAll(); 1681 1682 if (AlignAllBlock) 1683 // Align all of the blocks in the function to a specific alignment. 1684 for (MachineBasicBlock &MBB : MF) 1685 MBB.setAlignment(AlignAllBlock); 1686 else if (AlignAllNonFallThruBlocks) { 1687 // Align all of the blocks that have no fall-through predecessors to a 1688 // specific alignment. 1689 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 1690 auto LayoutPred = std::prev(MBI); 1691 if (!LayoutPred->isSuccessor(&*MBI)) 1692 MBI->setAlignment(AlignAllNonFallThruBlocks); 1693 } 1694 } 1695 1696 // We always return true as we have no way to track whether the final order 1697 // differs from the original order. 1698 return true; 1699 } 1700 1701 namespace { 1702 /// \brief A pass to compute block placement statistics. 1703 /// 1704 /// A separate pass to compute interesting statistics for evaluating block 1705 /// placement. This is separate from the actual placement pass so that they can 1706 /// be computed in the absence of any placement transformations or when using 1707 /// alternative placement strategies. 1708 class MachineBlockPlacementStats : public MachineFunctionPass { 1709 /// \brief A handle to the branch probability pass. 1710 const MachineBranchProbabilityInfo *MBPI; 1711 1712 /// \brief A handle to the function-wide block frequency pass. 1713 const MachineBlockFrequencyInfo *MBFI; 1714 1715 public: 1716 static char ID; // Pass identification, replacement for typeid 1717 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1718 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1719 } 1720 1721 bool runOnMachineFunction(MachineFunction &F) override; 1722 1723 void getAnalysisUsage(AnalysisUsage &AU) const override { 1724 AU.addRequired<MachineBranchProbabilityInfo>(); 1725 AU.addRequired<MachineBlockFrequencyInfo>(); 1726 AU.setPreservesAll(); 1727 MachineFunctionPass::getAnalysisUsage(AU); 1728 } 1729 }; 1730 } 1731 1732 char MachineBlockPlacementStats::ID = 0; 1733 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1734 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1735 "Basic Block Placement Stats", false, false) 1736 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1737 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1738 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1739 "Basic Block Placement Stats", false, false) 1740 1741 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1742 // Check for single-block functions and skip them. 1743 if (std::next(F.begin()) == F.end()) 1744 return false; 1745 1746 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1747 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1748 1749 for (MachineBasicBlock &MBB : F) { 1750 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1751 Statistic &NumBranches = 1752 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1753 Statistic &BranchTakenFreq = 1754 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1755 for (MachineBasicBlock *Succ : MBB.successors()) { 1756 // Skip if this successor is a fallthrough. 1757 if (MBB.isLayoutSuccessor(Succ)) 1758 continue; 1759 1760 BlockFrequency EdgeFreq = 1761 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1762 ++NumBranches; 1763 BranchTakenFreq += EdgeFreq.getFrequency(); 1764 } 1765 } 1766 1767 return false; 1768 } 1769