xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 9f2bdfb40fd1bd1f8f450db079e93ad86dad8b1d)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "block-placement"
54 
55 STATISTIC(NumCondBranches, "Number of conditional branches");
56 STATISTIC(NumUncondBranches, "Number of unconditional branches");
57 STATISTIC(CondBranchTakenFreq,
58           "Potential frequency of taking conditional branches");
59 STATISTIC(UncondBranchTakenFreq,
60           "Potential frequency of taking unconditional branches");
61 
62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
63                                        cl::desc("Force the alignment of all "
64                                                 "blocks in the function."),
65                                        cl::init(0), cl::Hidden);
66 
67 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
68     "align-all-nofallthru-blocks",
69     cl::desc("Force the alignment of all "
70              "blocks that have no fall-through predecessors (i.e. don't add "
71              "nops that are executed)."),
72     cl::init(0), cl::Hidden);
73 
74 // FIXME: Find a good default for this flag and remove the flag.
75 static cl::opt<unsigned> ExitBlockBias(
76     "block-placement-exit-block-bias",
77     cl::desc("Block frequency percentage a loop exit block needs "
78              "over the original exit to be considered the new exit."),
79     cl::init(0), cl::Hidden);
80 
81 static cl::opt<bool> OutlineOptionalBranches(
82     "outline-optional-branches",
83     cl::desc("Put completely optional branches, i.e. branches with a common "
84              "post dominator, out of line."),
85     cl::init(false), cl::Hidden);
86 
87 static cl::opt<unsigned> OutlineOptionalThreshold(
88     "outline-optional-threshold",
89     cl::desc("Don't outline optional branches that are a single block with an "
90              "instruction count below this threshold"),
91     cl::init(4), cl::Hidden);
92 
93 static cl::opt<unsigned> LoopToColdBlockRatio(
94     "loop-to-cold-block-ratio",
95     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
96              "(frequency of block) is greater than this ratio"),
97     cl::init(5), cl::Hidden);
98 
99 static cl::opt<bool>
100     PreciseRotationCost("precise-rotation-cost",
101                         cl::desc("Model the cost of loop rotation more "
102                                  "precisely by using profile data."),
103                         cl::init(false), cl::Hidden);
104 static cl::opt<bool>
105     ForcePreciseRotationCost("force-precise-rotation-cost",
106                              cl::desc("Force the use of precise cost "
107                                       "loop rotation strategy."),
108                              cl::init(false), cl::Hidden);
109 
110 static cl::opt<unsigned> MisfetchCost(
111     "misfetch-cost",
112     cl::desc("Cost that models the probablistic risk of an instruction "
113              "misfetch due to a jump comparing to falling through, whose cost "
114              "is zero."),
115     cl::init(1), cl::Hidden);
116 
117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
118                                       cl::desc("Cost of jump instructions."),
119                                       cl::init(1), cl::Hidden);
120 
121 static cl::opt<bool>
122 BranchFoldPlacement("branch-fold-placement",
123               cl::desc("Perform branch folding during placement. "
124                        "Reduces code size."),
125               cl::init(true), cl::Hidden);
126 
127 extern cl::opt<unsigned> StaticLikelyProb;
128 extern cl::opt<unsigned> ProfileLikelyProb;
129 
130 namespace {
131 class BlockChain;
132 /// \brief Type for our function-wide basic block -> block chain mapping.
133 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
134 }
135 
136 namespace {
137 /// \brief A chain of blocks which will be laid out contiguously.
138 ///
139 /// This is the datastructure representing a chain of consecutive blocks that
140 /// are profitable to layout together in order to maximize fallthrough
141 /// probabilities and code locality. We also can use a block chain to represent
142 /// a sequence of basic blocks which have some external (correctness)
143 /// requirement for sequential layout.
144 ///
145 /// Chains can be built around a single basic block and can be merged to grow
146 /// them. They participate in a block-to-chain mapping, which is updated
147 /// automatically as chains are merged together.
148 class BlockChain {
149   /// \brief The sequence of blocks belonging to this chain.
150   ///
151   /// This is the sequence of blocks for a particular chain. These will be laid
152   /// out in-order within the function.
153   SmallVector<MachineBasicBlock *, 4> Blocks;
154 
155   /// \brief A handle to the function-wide basic block to block chain mapping.
156   ///
157   /// This is retained in each block chain to simplify the computation of child
158   /// block chains for SCC-formation and iteration. We store the edges to child
159   /// basic blocks, and map them back to their associated chains using this
160   /// structure.
161   BlockToChainMapType &BlockToChain;
162 
163 public:
164   /// \brief Construct a new BlockChain.
165   ///
166   /// This builds a new block chain representing a single basic block in the
167   /// function. It also registers itself as the chain that block participates
168   /// in with the BlockToChain mapping.
169   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
170       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
171     assert(BB && "Cannot create a chain with a null basic block");
172     BlockToChain[BB] = this;
173   }
174 
175   /// \brief Iterator over blocks within the chain.
176   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
177 
178   /// \brief Beginning of blocks within the chain.
179   iterator begin() { return Blocks.begin(); }
180 
181   /// \brief End of blocks within the chain.
182   iterator end() { return Blocks.end(); }
183 
184   /// \brief Merge a block chain into this one.
185   ///
186   /// This routine merges a block chain into this one. It takes care of forming
187   /// a contiguous sequence of basic blocks, updating the edge list, and
188   /// updating the block -> chain mapping. It does not free or tear down the
189   /// old chain, but the old chain's block list is no longer valid.
190   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
191     assert(BB);
192     assert(!Blocks.empty());
193 
194     // Fast path in case we don't have a chain already.
195     if (!Chain) {
196       assert(!BlockToChain[BB]);
197       Blocks.push_back(BB);
198       BlockToChain[BB] = this;
199       return;
200     }
201 
202     assert(BB == *Chain->begin());
203     assert(Chain->begin() != Chain->end());
204 
205     // Update the incoming blocks to point to this chain, and add them to the
206     // chain structure.
207     for (MachineBasicBlock *ChainBB : *Chain) {
208       Blocks.push_back(ChainBB);
209       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
210       BlockToChain[ChainBB] = this;
211     }
212   }
213 
214 #ifndef NDEBUG
215   /// \brief Dump the blocks in this chain.
216   LLVM_DUMP_METHOD void dump() {
217     for (MachineBasicBlock *MBB : *this)
218       MBB->dump();
219   }
220 #endif // NDEBUG
221 
222   /// \brief Count of predecessors of any block within the chain which have not
223   /// yet been scheduled.  In general, we will delay scheduling this chain
224   /// until those predecessors are scheduled (or we find a sufficiently good
225   /// reason to override this heuristic.)  Note that when forming loop chains,
226   /// blocks outside the loop are ignored and treated as if they were already
227   /// scheduled.
228   ///
229   /// Note: This field is reinitialized multiple times - once for each loop,
230   /// and then once for the function as a whole.
231   unsigned UnscheduledPredecessors;
232 };
233 }
234 
235 namespace {
236 class MachineBlockPlacement : public MachineFunctionPass {
237   /// \brief A typedef for a block filter set.
238   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
239 
240   /// \brief Machine Function
241   MachineFunction *F;
242 
243   /// \brief A handle to the branch probability pass.
244   const MachineBranchProbabilityInfo *MBPI;
245 
246   /// \brief A handle to the function-wide block frequency pass.
247   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
248 
249   /// \brief A handle to the loop info.
250   MachineLoopInfo *MLI;
251 
252   /// \brief A handle to the target's instruction info.
253   const TargetInstrInfo *TII;
254 
255   /// \brief A handle to the target's lowering info.
256   const TargetLoweringBase *TLI;
257 
258   /// \brief A handle to the post dominator tree.
259   MachineDominatorTree *MDT;
260 
261   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
262   /// all terminators of the MachineFunction.
263   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
264 
265   /// \brief Allocator and owner of BlockChain structures.
266   ///
267   /// We build BlockChains lazily while processing the loop structure of
268   /// a function. To reduce malloc traffic, we allocate them using this
269   /// slab-like allocator, and destroy them after the pass completes. An
270   /// important guarantee is that this allocator produces stable pointers to
271   /// the chains.
272   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
273 
274   /// \brief Function wide BasicBlock to BlockChain mapping.
275   ///
276   /// This mapping allows efficiently moving from any given basic block to the
277   /// BlockChain it participates in, if any. We use it to, among other things,
278   /// allow implicitly defining edges between chains as the existing edges
279   /// between basic blocks.
280   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
281 
282   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
283                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
284                            SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
285                            const BlockFilterSet *BlockFilter = nullptr);
286   BranchProbability
287   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
288                           const BlockFilterSet *BlockFilter,
289                           SmallVector<MachineBasicBlock *, 4> &Successors);
290   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
291                                  BlockChain &Chain,
292                                  const BlockFilterSet *BlockFilter,
293                                  BranchProbability SuccProb,
294                                  BranchProbability HotProb);
295   bool
296   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
297                              BlockChain &SuccChain, BranchProbability SuccProb,
298                              BranchProbability RealSuccProb, BlockChain &Chain,
299                              const BlockFilterSet *BlockFilter);
300   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
301                                          BlockChain &Chain,
302                                          const BlockFilterSet *BlockFilter);
303   MachineBasicBlock *
304   selectBestCandidateBlock(BlockChain &Chain,
305                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
306   MachineBasicBlock *
307   getFirstUnplacedBlock(const BlockChain &PlacedChain,
308                         MachineFunction::iterator &PrevUnplacedBlockIt,
309                         const BlockFilterSet *BlockFilter);
310 
311   /// \brief Add a basic block to the work list if it is apropriate.
312   ///
313   /// If the optional parameter BlockFilter is provided, only MBB
314   /// present in the set will be added to the worklist. If nullptr
315   /// is provided, no filtering occurs.
316   void fillWorkLists(MachineBasicBlock *MBB,
317                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
318                      SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
319                      SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
320                      const BlockFilterSet *BlockFilter);
321   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
322                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
323                   SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
324                   const BlockFilterSet *BlockFilter = nullptr);
325   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
326                                      const BlockFilterSet &LoopBlockSet);
327   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
328                                       const BlockFilterSet &LoopBlockSet);
329   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
330   void buildLoopChains(MachineLoop &L);
331   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
332                   const BlockFilterSet &LoopBlockSet);
333   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
334                              const BlockFilterSet &LoopBlockSet);
335   void collectMustExecuteBBs();
336   void buildCFGChains();
337   void optimizeBranches();
338   void alignBlocks();
339 
340 public:
341   static char ID; // Pass identification, replacement for typeid
342   MachineBlockPlacement() : MachineFunctionPass(ID) {
343     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
344   }
345 
346   bool runOnMachineFunction(MachineFunction &F) override;
347 
348   void getAnalysisUsage(AnalysisUsage &AU) const override {
349     AU.addRequired<MachineBranchProbabilityInfo>();
350     AU.addRequired<MachineBlockFrequencyInfo>();
351     AU.addRequired<MachineDominatorTree>();
352     AU.addRequired<MachineLoopInfo>();
353     AU.addRequired<TargetPassConfig>();
354     MachineFunctionPass::getAnalysisUsage(AU);
355   }
356 };
357 }
358 
359 char MachineBlockPlacement::ID = 0;
360 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
361 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
362                       "Branch Probability Basic Block Placement", false, false)
363 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
364 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
365 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
366 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
367 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
368                     "Branch Probability Basic Block Placement", false, false)
369 
370 #ifndef NDEBUG
371 /// \brief Helper to print the name of a MBB.
372 ///
373 /// Only used by debug logging.
374 static std::string getBlockName(MachineBasicBlock *BB) {
375   std::string Result;
376   raw_string_ostream OS(Result);
377   OS << "BB#" << BB->getNumber();
378   OS << " ('" << BB->getName() << "')";
379   OS.flush();
380   return Result;
381 }
382 #endif
383 
384 /// \brief Mark a chain's successors as having one fewer preds.
385 ///
386 /// When a chain is being merged into the "placed" chain, this routine will
387 /// quickly walk the successors of each block in the chain and mark them as
388 /// having one fewer active predecessor. It also adds any successors of this
389 /// chain which reach the zero-predecessor state to the worklist passed in.
390 void MachineBlockPlacement::markChainSuccessors(
391     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
392     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
393     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
394     const BlockFilterSet *BlockFilter) {
395   // Walk all the blocks in this chain, marking their successors as having
396   // a predecessor placed.
397   for (MachineBasicBlock *MBB : Chain) {
398     // Add any successors for which this is the only un-placed in-loop
399     // predecessor to the worklist as a viable candidate for CFG-neutral
400     // placement. No subsequent placement of this block will violate the CFG
401     // shape, so we get to use heuristics to choose a favorable placement.
402     for (MachineBasicBlock *Succ : MBB->successors()) {
403       if (BlockFilter && !BlockFilter->count(Succ))
404         continue;
405       BlockChain &SuccChain = *BlockToChain[Succ];
406       // Disregard edges within a fixed chain, or edges to the loop header.
407       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
408         continue;
409 
410       // This is a cross-chain edge that is within the loop, so decrement the
411       // loop predecessor count of the destination chain.
412       if (SuccChain.UnscheduledPredecessors == 0 ||
413           --SuccChain.UnscheduledPredecessors > 0)
414         continue;
415 
416       auto *MBB = *SuccChain.begin();
417       if (MBB->isEHPad())
418         EHPadWorkList.push_back(MBB);
419       else
420         BlockWorkList.push_back(MBB);
421     }
422   }
423 }
424 
425 /// This helper function collects the set of successors of block
426 /// \p BB that are allowed to be its layout successors, and return
427 /// the total branch probability of edges from \p BB to those
428 /// blocks.
429 BranchProbability MachineBlockPlacement::collectViableSuccessors(
430     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
431     SmallVector<MachineBasicBlock *, 4> &Successors) {
432   // Adjust edge probabilities by excluding edges pointing to blocks that is
433   // either not in BlockFilter or is already in the current chain. Consider the
434   // following CFG:
435   //
436   //     --->A
437   //     |  / \
438   //     | B   C
439   //     |  \ / \
440   //     ----D   E
441   //
442   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
443   // A->C is chosen as a fall-through, D won't be selected as a successor of C
444   // due to CFG constraint (the probability of C->D is not greater than
445   // HotProb to break top-oorder). If we exclude E that is not in BlockFilter
446   // when calculating the  probability of C->D, D will be selected and we
447   // will get A C D B as the layout of this loop.
448   auto AdjustedSumProb = BranchProbability::getOne();
449   for (MachineBasicBlock *Succ : BB->successors()) {
450     bool SkipSucc = false;
451     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
452       SkipSucc = true;
453     } else {
454       BlockChain *SuccChain = BlockToChain[Succ];
455       if (SuccChain == &Chain) {
456         SkipSucc = true;
457       } else if (Succ != *SuccChain->begin()) {
458         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
459         continue;
460       }
461     }
462     if (SkipSucc)
463       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
464     else
465       Successors.push_back(Succ);
466   }
467 
468   return AdjustedSumProb;
469 }
470 
471 /// The helper function returns the branch probability that is adjusted
472 /// or normalized over the new total \p AdjustedSumProb.
473 
474 static BranchProbability
475 getAdjustedProbability(BranchProbability OrigProb,
476                        BranchProbability AdjustedSumProb) {
477   BranchProbability SuccProb;
478   uint32_t SuccProbN = OrigProb.getNumerator();
479   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
480   if (SuccProbN >= SuccProbD)
481     SuccProb = BranchProbability::getOne();
482   else
483     SuccProb = BranchProbability(SuccProbN, SuccProbD);
484 
485   return SuccProb;
486 }
487 
488 /// When the option OutlineOptionalBranches is on, this method
489 /// checks if the fallthrough candidate block \p Succ (of block
490 /// \p BB) also has other unscheduled predecessor blocks which
491 /// are also successors of \p BB (forming triagular shape CFG).
492 /// If none of such predecessors are small, it returns true.
493 /// The caller can choose to select \p Succ as the layout successors
494 /// so that \p Succ's predecessors (optional branches) can be
495 /// outlined.
496 /// FIXME: fold this with more general layout cost analysis.
497 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
498     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
499     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
500     BranchProbability HotProb) {
501   if (!OutlineOptionalBranches)
502     return false;
503   // If we outline optional branches, look whether Succ is unavoidable, i.e.
504   // dominates all terminators of the MachineFunction. If it does, other
505   // successors must be optional. Don't do this for cold branches.
506   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
507     for (MachineBasicBlock *Pred : Succ->predecessors()) {
508       // Check whether there is an unplaced optional branch.
509       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
510           BlockToChain[Pred] == &Chain)
511         continue;
512       // Check whether the optional branch has exactly one BB.
513       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
514         continue;
515       // Check whether the optional branch is small.
516       if (Pred->size() < OutlineOptionalThreshold)
517         return false;
518     }
519     return true;
520   } else
521     return false;
522 }
523 
524 // When profile is not present, return the StaticLikelyProb.
525 // When profile is available, we need to handle the triangle-shape CFG.
526 static BranchProbability getLayoutSuccessorProbThreshold(
527       MachineBasicBlock *BB) {
528   if (!BB->getParent()->getFunction()->getEntryCount())
529     return BranchProbability(StaticLikelyProb, 100);
530   if (BB->succ_size() == 2) {
531     const MachineBasicBlock *Succ1 = *BB->succ_begin();
532     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
533     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1))
534       return BranchProbability(
535           200 - 2 * ProfileLikelyProb, 200 - ProfileLikelyProb);
536   }
537   return BranchProbability(ProfileLikelyProb, 100);
538 }
539 
540 /// Checks to see if the layout candidate block \p Succ has a better layout
541 /// predecessor than \c BB. If yes, returns true.
542 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
543     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
544     BranchProbability SuccProb, BranchProbability RealSuccProb,
545     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
546 
547   // This is no global conflict, just return false.
548   if (SuccChain.UnscheduledPredecessors == 0)
549     return false;
550 
551   // There are two basic scenarios here:
552   // -------------------------------------
553   // Case 1: triagular shape CFG:
554   //     BB
555   //     | \
556   //     |  \
557   //     |   Pred
558   //     |   /
559   //     Succ
560   // In this case, we are evaluating whether to select edge -> Succ, e.g.
561   // set Succ as the layout successor of BB. Picking Succ as BB's
562   // successor breaks the  CFG constraints. With this layout, Pred BB
563   // is forced to be outlined, so the overall cost will be cost of the
564   // branch taken from BB to Pred, plus the cost of back taken branch
565   // from Pred to Succ, as well as the additional cost asssociated
566   // with the needed unconditional jump instruction from Pred To Succ.
567   // The cost of the topological order layout is the taken branch cost
568   // from BB to Succ, so to make BB->Succ a viable candidate, the following
569   // must hold:
570   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
571   //      < freq(BB->Succ) *  taken_branch_cost.
572   // Ignoring unconditional jump cost, we get
573   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
574   //    prob(BB->Succ) > 2 * prob(BB->Pred)
575   //
576   // When real profile data is available, we can precisely compute the the
577   // probabililty threshold that is needed for edge BB->Succ to be considered.
578   // With out profile data, the heuristic requires the branch bias to be
579   // a lot larger to make sure the signal is very strong (e.g. 80% default).
580   // -----------------------------------------------------------------
581   // Case 2: diamond like CFG:
582   //     S
583   //    / \
584   //   |   \
585   //  BB    Pred
586   //   \    /
587   //    Succ
588   //    ..
589   // In this case, edge S->BB has already been selected, and we are evaluating
590   // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB)
591   // is no less than prob(S->Pred). When real profile data is *available*, if
592   // the condition is true, it will be always better to continue the trace with
593   // edge BB->Succ instead of laying out with topological order (i.e. laying
594   // Pred first).  The cost of S->BB->Succ is 2 * freq (S->Pred), while with
595   // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger.
596   // When profile data is not available, however, we need to be more
597   // conservative. If the branch prediction is wrong, breaking the topo-order
598   // will actually yield a layout with large cost. For this reason, we need
599   // strong biaaed branch at block S with Prob(S->BB) in order to select
600   // BB->Succ. This is equialant to looking the CFG backward with backward
601   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
602   // profile data).
603 
604   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
605 
606   // Forward checking. For case 2, SuccProb will be 1.
607   if (SuccProb < HotProb) {
608     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
609                  << " (prob) (CFG conflict)\n");
610     return true;
611   }
612 
613   // Make sure that a hot successor doesn't have a globally more
614   // important predecessor.
615   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
616   bool BadCFGConflict = false;
617 
618   for (MachineBasicBlock *Pred : Succ->predecessors()) {
619     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
620         (BlockFilter && !BlockFilter->count(Pred)) ||
621         BlockToChain[Pred] == &Chain)
622       continue;
623     // Do backward checking. For case 1, it is actually redundant check. For
624     // case 2 above, we need a backward checking to filter out edges that are
625     // not 'strongly' biased. With profile data available, the check is mostly
626     // redundant too (when threshold prob is set at 50%) unless S has more than
627     // two successors.
628     // BB  Pred
629     //  \ /
630     //  Succ
631     // We select edgee BB->Succ if
632     //      freq(BB->Succ) > freq(Succ) * HotProb
633     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
634     //      HotProb
635     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
636     BlockFrequency PredEdgeFreq =
637         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
638     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
639       BadCFGConflict = true;
640       break;
641     }
642   }
643 
644   if (BadCFGConflict) {
645     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
646                  << " (prob) (non-cold CFG conflict)\n");
647     return true;
648   }
649 
650   return false;
651 }
652 
653 /// \brief Select the best successor for a block.
654 ///
655 /// This looks across all successors of a particular block and attempts to
656 /// select the "best" one to be the layout successor. It only considers direct
657 /// successors which also pass the block filter. It will attempt to avoid
658 /// breaking CFG structure, but cave and break such structures in the case of
659 /// very hot successor edges.
660 ///
661 /// \returns The best successor block found, or null if none are viable.
662 MachineBasicBlock *
663 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
664                                            BlockChain &Chain,
665                                            const BlockFilterSet *BlockFilter) {
666   const BranchProbability HotProb(StaticLikelyProb, 100);
667 
668   MachineBasicBlock *BestSucc = nullptr;
669   auto BestProb = BranchProbability::getZero();
670 
671   SmallVector<MachineBasicBlock *, 4> Successors;
672   auto AdjustedSumProb =
673       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
674 
675   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
676   for (MachineBasicBlock *Succ : Successors) {
677     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
678     BranchProbability SuccProb =
679         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
680 
681     // This heuristic is off by default.
682     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
683                                   HotProb))
684       return Succ;
685 
686     BlockChain &SuccChain = *BlockToChain[Succ];
687     // Skip the edge \c BB->Succ if block \c Succ has a better layout
688     // predecessor that yields lower global cost.
689     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
690                                    Chain, BlockFilter))
691       continue;
692 
693     DEBUG(
694         dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
695                << " (prob)"
696                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
697                << "\n");
698     if (BestSucc && BestProb >= SuccProb)
699       continue;
700     BestSucc = Succ;
701     BestProb = SuccProb;
702   }
703   return BestSucc;
704 }
705 
706 /// \brief Select the best block from a worklist.
707 ///
708 /// This looks through the provided worklist as a list of candidate basic
709 /// blocks and select the most profitable one to place. The definition of
710 /// profitable only really makes sense in the context of a loop. This returns
711 /// the most frequently visited block in the worklist, which in the case of
712 /// a loop, is the one most desirable to be physically close to the rest of the
713 /// loop body in order to improve icache behavior.
714 ///
715 /// \returns The best block found, or null if none are viable.
716 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
717     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
718   // Once we need to walk the worklist looking for a candidate, cleanup the
719   // worklist of already placed entries.
720   // FIXME: If this shows up on profiles, it could be folded (at the cost of
721   // some code complexity) into the loop below.
722   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
723                                 [&](MachineBasicBlock *BB) {
724                                   return BlockToChain.lookup(BB) == &Chain;
725                                 }),
726                  WorkList.end());
727 
728   if (WorkList.empty())
729     return nullptr;
730 
731   bool IsEHPad = WorkList[0]->isEHPad();
732 
733   MachineBasicBlock *BestBlock = nullptr;
734   BlockFrequency BestFreq;
735   for (MachineBasicBlock *MBB : WorkList) {
736     assert(MBB->isEHPad() == IsEHPad);
737 
738     BlockChain &SuccChain = *BlockToChain[MBB];
739     if (&SuccChain == &Chain)
740       continue;
741 
742     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
743 
744     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
745     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
746           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
747 
748     // For ehpad, we layout the least probable first as to avoid jumping back
749     // from least probable landingpads to more probable ones.
750     //
751     // FIXME: Using probability is probably (!) not the best way to achieve
752     // this. We should probably have a more principled approach to layout
753     // cleanup code.
754     //
755     // The goal is to get:
756     //
757     //                 +--------------------------+
758     //                 |                          V
759     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
760     //
761     // Rather than:
762     //
763     //                 +-------------------------------------+
764     //                 V                                     |
765     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
766     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
767       continue;
768 
769     BestBlock = MBB;
770     BestFreq = CandidateFreq;
771   }
772 
773   return BestBlock;
774 }
775 
776 /// \brief Retrieve the first unplaced basic block.
777 ///
778 /// This routine is called when we are unable to use the CFG to walk through
779 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
780 /// We walk through the function's blocks in order, starting from the
781 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
782 /// re-scanning the entire sequence on repeated calls to this routine.
783 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
784     const BlockChain &PlacedChain,
785     MachineFunction::iterator &PrevUnplacedBlockIt,
786     const BlockFilterSet *BlockFilter) {
787   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
788        ++I) {
789     if (BlockFilter && !BlockFilter->count(&*I))
790       continue;
791     if (BlockToChain[&*I] != &PlacedChain) {
792       PrevUnplacedBlockIt = I;
793       // Now select the head of the chain to which the unplaced block belongs
794       // as the block to place. This will force the entire chain to be placed,
795       // and satisfies the requirements of merging chains.
796       return *BlockToChain[&*I]->begin();
797     }
798   }
799   return nullptr;
800 }
801 
802 void MachineBlockPlacement::fillWorkLists(
803     MachineBasicBlock *MBB,
804     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
805     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
806     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
807     const BlockFilterSet *BlockFilter = nullptr) {
808   BlockChain &Chain = *BlockToChain[MBB];
809   if (!UpdatedPreds.insert(&Chain).second)
810     return;
811 
812   assert(Chain.UnscheduledPredecessors == 0);
813   for (MachineBasicBlock *ChainBB : Chain) {
814     assert(BlockToChain[ChainBB] == &Chain);
815     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
816       if (BlockFilter && !BlockFilter->count(Pred))
817         continue;
818       if (BlockToChain[Pred] == &Chain)
819         continue;
820       ++Chain.UnscheduledPredecessors;
821     }
822   }
823 
824   if (Chain.UnscheduledPredecessors != 0)
825     return;
826 
827   MBB = *Chain.begin();
828   if (MBB->isEHPad())
829     EHPadWorkList.push_back(MBB);
830   else
831     BlockWorkList.push_back(MBB);
832 }
833 
834 void MachineBlockPlacement::buildChain(
835     MachineBasicBlock *BB, BlockChain &Chain,
836     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
837     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
838     const BlockFilterSet *BlockFilter) {
839   assert(BB);
840   assert(BlockToChain[BB] == &Chain);
841   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
842 
843   MachineBasicBlock *LoopHeaderBB = BB;
844   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
845                       BlockFilter);
846   BB = *std::prev(Chain.end());
847   for (;;) {
848     assert(BB);
849     assert(BlockToChain[BB] == &Chain);
850     assert(*std::prev(Chain.end()) == BB);
851 
852     // Look for the best viable successor if there is one to place immediately
853     // after this block.
854     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
855 
856     // If an immediate successor isn't available, look for the best viable
857     // block among those we've identified as not violating the loop's CFG at
858     // this point. This won't be a fallthrough, but it will increase locality.
859     if (!BestSucc)
860       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
861     if (!BestSucc)
862       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
863 
864     if (!BestSucc) {
865       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
866       if (!BestSucc)
867         break;
868 
869       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
870                       "layout successor until the CFG reduces\n");
871     }
872 
873     // Place this block, updating the datastructures to reflect its placement.
874     BlockChain &SuccChain = *BlockToChain[BestSucc];
875     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
876     // we selected a successor that didn't fit naturally into the CFG.
877     SuccChain.UnscheduledPredecessors = 0;
878     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
879                  << getBlockName(BestSucc) << "\n");
880     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
881                         BlockFilter);
882     Chain.merge(BestSucc, &SuccChain);
883     BB = *std::prev(Chain.end());
884   }
885 
886   DEBUG(dbgs() << "Finished forming chain for header block "
887                << getBlockName(*Chain.begin()) << "\n");
888 }
889 
890 /// \brief Find the best loop top block for layout.
891 ///
892 /// Look for a block which is strictly better than the loop header for laying
893 /// out at the top of the loop. This looks for one and only one pattern:
894 /// a latch block with no conditional exit. This block will cause a conditional
895 /// jump around it or will be the bottom of the loop if we lay it out in place,
896 /// but if it it doesn't end up at the bottom of the loop for any reason,
897 /// rotation alone won't fix it. Because such a block will always result in an
898 /// unconditional jump (for the backedge) rotating it in front of the loop
899 /// header is always profitable.
900 MachineBasicBlock *
901 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
902                                        const BlockFilterSet &LoopBlockSet) {
903   // Check that the header hasn't been fused with a preheader block due to
904   // crazy branches. If it has, we need to start with the header at the top to
905   // prevent pulling the preheader into the loop body.
906   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
907   if (!LoopBlockSet.count(*HeaderChain.begin()))
908     return L.getHeader();
909 
910   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
911                << "\n");
912 
913   BlockFrequency BestPredFreq;
914   MachineBasicBlock *BestPred = nullptr;
915   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
916     if (!LoopBlockSet.count(Pred))
917       continue;
918     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
919                  << Pred->succ_size() << " successors, ";
920           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
921     if (Pred->succ_size() > 1)
922       continue;
923 
924     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
925     if (!BestPred || PredFreq > BestPredFreq ||
926         (!(PredFreq < BestPredFreq) &&
927          Pred->isLayoutSuccessor(L.getHeader()))) {
928       BestPred = Pred;
929       BestPredFreq = PredFreq;
930     }
931   }
932 
933   // If no direct predecessor is fine, just use the loop header.
934   if (!BestPred) {
935     DEBUG(dbgs() << "    final top unchanged\n");
936     return L.getHeader();
937   }
938 
939   // Walk backwards through any straight line of predecessors.
940   while (BestPred->pred_size() == 1 &&
941          (*BestPred->pred_begin())->succ_size() == 1 &&
942          *BestPred->pred_begin() != L.getHeader())
943     BestPred = *BestPred->pred_begin();
944 
945   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
946   return BestPred;
947 }
948 
949 /// \brief Find the best loop exiting block for layout.
950 ///
951 /// This routine implements the logic to analyze the loop looking for the best
952 /// block to layout at the top of the loop. Typically this is done to maximize
953 /// fallthrough opportunities.
954 MachineBasicBlock *
955 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
956                                         const BlockFilterSet &LoopBlockSet) {
957   // We don't want to layout the loop linearly in all cases. If the loop header
958   // is just a normal basic block in the loop, we want to look for what block
959   // within the loop is the best one to layout at the top. However, if the loop
960   // header has be pre-merged into a chain due to predecessors not having
961   // analyzable branches, *and* the predecessor it is merged with is *not* part
962   // of the loop, rotating the header into the middle of the loop will create
963   // a non-contiguous range of blocks which is Very Bad. So start with the
964   // header and only rotate if safe.
965   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
966   if (!LoopBlockSet.count(*HeaderChain.begin()))
967     return nullptr;
968 
969   BlockFrequency BestExitEdgeFreq;
970   unsigned BestExitLoopDepth = 0;
971   MachineBasicBlock *ExitingBB = nullptr;
972   // If there are exits to outer loops, loop rotation can severely limit
973   // fallthrough opportunites unless it selects such an exit. Keep a set of
974   // blocks where rotating to exit with that block will reach an outer loop.
975   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
976 
977   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
978                << "\n");
979   for (MachineBasicBlock *MBB : L.getBlocks()) {
980     BlockChain &Chain = *BlockToChain[MBB];
981     // Ensure that this block is at the end of a chain; otherwise it could be
982     // mid-way through an inner loop or a successor of an unanalyzable branch.
983     if (MBB != *std::prev(Chain.end()))
984       continue;
985 
986     // Now walk the successors. We need to establish whether this has a viable
987     // exiting successor and whether it has a viable non-exiting successor.
988     // We store the old exiting state and restore it if a viable looping
989     // successor isn't found.
990     MachineBasicBlock *OldExitingBB = ExitingBB;
991     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
992     bool HasLoopingSucc = false;
993     for (MachineBasicBlock *Succ : MBB->successors()) {
994       if (Succ->isEHPad())
995         continue;
996       if (Succ == MBB)
997         continue;
998       BlockChain &SuccChain = *BlockToChain[Succ];
999       // Don't split chains, either this chain or the successor's chain.
1000       if (&Chain == &SuccChain) {
1001         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1002                      << getBlockName(Succ) << " (chain conflict)\n");
1003         continue;
1004       }
1005 
1006       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1007       if (LoopBlockSet.count(Succ)) {
1008         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1009                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1010         HasLoopingSucc = true;
1011         continue;
1012       }
1013 
1014       unsigned SuccLoopDepth = 0;
1015       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1016         SuccLoopDepth = ExitLoop->getLoopDepth();
1017         if (ExitLoop->contains(&L))
1018           BlocksExitingToOuterLoop.insert(MBB);
1019       }
1020 
1021       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1022       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1023                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1024             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1025       // Note that we bias this toward an existing layout successor to retain
1026       // incoming order in the absence of better information. The exit must have
1027       // a frequency higher than the current exit before we consider breaking
1028       // the layout.
1029       BranchProbability Bias(100 - ExitBlockBias, 100);
1030       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1031           ExitEdgeFreq > BestExitEdgeFreq ||
1032           (MBB->isLayoutSuccessor(Succ) &&
1033            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1034         BestExitEdgeFreq = ExitEdgeFreq;
1035         ExitingBB = MBB;
1036       }
1037     }
1038 
1039     if (!HasLoopingSucc) {
1040       // Restore the old exiting state, no viable looping successor was found.
1041       ExitingBB = OldExitingBB;
1042       BestExitEdgeFreq = OldBestExitEdgeFreq;
1043     }
1044   }
1045   // Without a candidate exiting block or with only a single block in the
1046   // loop, just use the loop header to layout the loop.
1047   if (!ExitingBB || L.getNumBlocks() == 1)
1048     return nullptr;
1049 
1050   // Also, if we have exit blocks which lead to outer loops but didn't select
1051   // one of them as the exiting block we are rotating toward, disable loop
1052   // rotation altogether.
1053   if (!BlocksExitingToOuterLoop.empty() &&
1054       !BlocksExitingToOuterLoop.count(ExitingBB))
1055     return nullptr;
1056 
1057   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1058   return ExitingBB;
1059 }
1060 
1061 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1062 ///
1063 /// Once we have built a chain, try to rotate it to line up the hot exit block
1064 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1065 /// branches. For example, if the loop has fallthrough into its header and out
1066 /// of its bottom already, don't rotate it.
1067 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1068                                        MachineBasicBlock *ExitingBB,
1069                                        const BlockFilterSet &LoopBlockSet) {
1070   if (!ExitingBB)
1071     return;
1072 
1073   MachineBasicBlock *Top = *LoopChain.begin();
1074   bool ViableTopFallthrough = false;
1075   for (MachineBasicBlock *Pred : Top->predecessors()) {
1076     BlockChain *PredChain = BlockToChain[Pred];
1077     if (!LoopBlockSet.count(Pred) &&
1078         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1079       ViableTopFallthrough = true;
1080       break;
1081     }
1082   }
1083 
1084   // If the header has viable fallthrough, check whether the current loop
1085   // bottom is a viable exiting block. If so, bail out as rotating will
1086   // introduce an unnecessary branch.
1087   if (ViableTopFallthrough) {
1088     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1089     for (MachineBasicBlock *Succ : Bottom->successors()) {
1090       BlockChain *SuccChain = BlockToChain[Succ];
1091       if (!LoopBlockSet.count(Succ) &&
1092           (!SuccChain || Succ == *SuccChain->begin()))
1093         return;
1094     }
1095   }
1096 
1097   BlockChain::iterator ExitIt =
1098       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
1099   if (ExitIt == LoopChain.end())
1100     return;
1101 
1102   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1103 }
1104 
1105 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1106 ///
1107 /// With profile data, we can determine the cost in terms of missed fall through
1108 /// opportunities when rotating a loop chain and select the best rotation.
1109 /// Basically, there are three kinds of cost to consider for each rotation:
1110 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1111 ///    the loop to the loop header.
1112 ///    2. The possibly missed fall through edges (if they exist) from the loop
1113 ///    exits to BB out of the loop.
1114 ///    3. The missed fall through edge (if it exists) from the last BB to the
1115 ///    first BB in the loop chain.
1116 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1117 ///  We select the best rotation with the smallest cost.
1118 void MachineBlockPlacement::rotateLoopWithProfile(
1119     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1120   auto HeaderBB = L.getHeader();
1121   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
1122   auto RotationPos = LoopChain.end();
1123 
1124   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1125 
1126   // A utility lambda that scales up a block frequency by dividing it by a
1127   // branch probability which is the reciprocal of the scale.
1128   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1129                                 unsigned Scale) -> BlockFrequency {
1130     if (Scale == 0)
1131       return 0;
1132     // Use operator / between BlockFrequency and BranchProbability to implement
1133     // saturating multiplication.
1134     return Freq / BranchProbability(1, Scale);
1135   };
1136 
1137   // Compute the cost of the missed fall-through edge to the loop header if the
1138   // chain head is not the loop header. As we only consider natural loops with
1139   // single header, this computation can be done only once.
1140   BlockFrequency HeaderFallThroughCost(0);
1141   for (auto *Pred : HeaderBB->predecessors()) {
1142     BlockChain *PredChain = BlockToChain[Pred];
1143     if (!LoopBlockSet.count(Pred) &&
1144         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1145       auto EdgeFreq =
1146           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1147       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1148       // If the predecessor has only an unconditional jump to the header, we
1149       // need to consider the cost of this jump.
1150       if (Pred->succ_size() == 1)
1151         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1152       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1153     }
1154   }
1155 
1156   // Here we collect all exit blocks in the loop, and for each exit we find out
1157   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1158   // as the sum of frequencies of exit edges we collect here, excluding the exit
1159   // edge from the tail of the loop chain.
1160   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1161   for (auto BB : LoopChain) {
1162     auto LargestExitEdgeProb = BranchProbability::getZero();
1163     for (auto *Succ : BB->successors()) {
1164       BlockChain *SuccChain = BlockToChain[Succ];
1165       if (!LoopBlockSet.count(Succ) &&
1166           (!SuccChain || Succ == *SuccChain->begin())) {
1167         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1168         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1169       }
1170     }
1171     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1172       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1173       ExitsWithFreq.emplace_back(BB, ExitFreq);
1174     }
1175   }
1176 
1177   // In this loop we iterate every block in the loop chain and calculate the
1178   // cost assuming the block is the head of the loop chain. When the loop ends,
1179   // we should have found the best candidate as the loop chain's head.
1180   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1181             EndIter = LoopChain.end();
1182        Iter != EndIter; Iter++, TailIter++) {
1183     // TailIter is used to track the tail of the loop chain if the block we are
1184     // checking (pointed by Iter) is the head of the chain.
1185     if (TailIter == LoopChain.end())
1186       TailIter = LoopChain.begin();
1187 
1188     auto TailBB = *TailIter;
1189 
1190     // Calculate the cost by putting this BB to the top.
1191     BlockFrequency Cost = 0;
1192 
1193     // If the current BB is the loop header, we need to take into account the
1194     // cost of the missed fall through edge from outside of the loop to the
1195     // header.
1196     if (Iter != HeaderIter)
1197       Cost += HeaderFallThroughCost;
1198 
1199     // Collect the loop exit cost by summing up frequencies of all exit edges
1200     // except the one from the chain tail.
1201     for (auto &ExitWithFreq : ExitsWithFreq)
1202       if (TailBB != ExitWithFreq.first)
1203         Cost += ExitWithFreq.second;
1204 
1205     // The cost of breaking the once fall-through edge from the tail to the top
1206     // of the loop chain. Here we need to consider three cases:
1207     // 1. If the tail node has only one successor, then we will get an
1208     //    additional jmp instruction. So the cost here is (MisfetchCost +
1209     //    JumpInstCost) * tail node frequency.
1210     // 2. If the tail node has two successors, then we may still get an
1211     //    additional jmp instruction if the layout successor after the loop
1212     //    chain is not its CFG successor. Note that the more frequently executed
1213     //    jmp instruction will be put ahead of the other one. Assume the
1214     //    frequency of those two branches are x and y, where x is the frequency
1215     //    of the edge to the chain head, then the cost will be
1216     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1217     // 3. If the tail node has more than two successors (this rarely happens),
1218     //    we won't consider any additional cost.
1219     if (TailBB->isSuccessor(*Iter)) {
1220       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1221       if (TailBB->succ_size() == 1)
1222         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1223                                     MisfetchCost + JumpInstCost);
1224       else if (TailBB->succ_size() == 2) {
1225         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1226         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1227         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1228                                   ? TailBBFreq * TailToHeadProb.getCompl()
1229                                   : TailToHeadFreq;
1230         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1231                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1232       }
1233     }
1234 
1235     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1236                  << " to the top: " << Cost.getFrequency() << "\n");
1237 
1238     if (Cost < SmallestRotationCost) {
1239       SmallestRotationCost = Cost;
1240       RotationPos = Iter;
1241     }
1242   }
1243 
1244   if (RotationPos != LoopChain.end()) {
1245     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1246                  << " to the top\n");
1247     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1248   }
1249 }
1250 
1251 /// \brief Collect blocks in the given loop that are to be placed.
1252 ///
1253 /// When profile data is available, exclude cold blocks from the returned set;
1254 /// otherwise, collect all blocks in the loop.
1255 MachineBlockPlacement::BlockFilterSet
1256 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1257   BlockFilterSet LoopBlockSet;
1258 
1259   // Filter cold blocks off from LoopBlockSet when profile data is available.
1260   // Collect the sum of frequencies of incoming edges to the loop header from
1261   // outside. If we treat the loop as a super block, this is the frequency of
1262   // the loop. Then for each block in the loop, we calculate the ratio between
1263   // its frequency and the frequency of the loop block. When it is too small,
1264   // don't add it to the loop chain. If there are outer loops, then this block
1265   // will be merged into the first outer loop chain for which this block is not
1266   // cold anymore. This needs precise profile data and we only do this when
1267   // profile data is available.
1268   if (F->getFunction()->getEntryCount()) {
1269     BlockFrequency LoopFreq(0);
1270     for (auto LoopPred : L.getHeader()->predecessors())
1271       if (!L.contains(LoopPred))
1272         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1273                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1274 
1275     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1276       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1277       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1278         continue;
1279       LoopBlockSet.insert(LoopBB);
1280     }
1281   } else
1282     LoopBlockSet.insert(L.block_begin(), L.block_end());
1283 
1284   return LoopBlockSet;
1285 }
1286 
1287 /// \brief Forms basic block chains from the natural loop structures.
1288 ///
1289 /// These chains are designed to preserve the existing *structure* of the code
1290 /// as much as possible. We can then stitch the chains together in a way which
1291 /// both preserves the topological structure and minimizes taken conditional
1292 /// branches.
1293 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1294   // First recurse through any nested loops, building chains for those inner
1295   // loops.
1296   for (MachineLoop *InnerLoop : L)
1297     buildLoopChains(*InnerLoop);
1298 
1299   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1300   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1301   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1302 
1303   // Check if we have profile data for this function. If yes, we will rotate
1304   // this loop by modeling costs more precisely which requires the profile data
1305   // for better layout.
1306   bool RotateLoopWithProfile =
1307       ForcePreciseRotationCost ||
1308       (PreciseRotationCost && F->getFunction()->getEntryCount());
1309 
1310   // First check to see if there is an obviously preferable top block for the
1311   // loop. This will default to the header, but may end up as one of the
1312   // predecessors to the header if there is one which will result in strictly
1313   // fewer branches in the loop body.
1314   // When we use profile data to rotate the loop, this is unnecessary.
1315   MachineBasicBlock *LoopTop =
1316       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1317 
1318   // If we selected just the header for the loop top, look for a potentially
1319   // profitable exit block in the event that rotating the loop can eliminate
1320   // branches by placing an exit edge at the bottom.
1321   MachineBasicBlock *ExitingBB = nullptr;
1322   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1323     ExitingBB = findBestLoopExit(L, LoopBlockSet);
1324 
1325   BlockChain &LoopChain = *BlockToChain[LoopTop];
1326 
1327   // FIXME: This is a really lame way of walking the chains in the loop: we
1328   // walk the blocks, and use a set to prevent visiting a particular chain
1329   // twice.
1330   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1331   assert(LoopChain.UnscheduledPredecessors == 0);
1332   UpdatedPreds.insert(&LoopChain);
1333 
1334   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1335     fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
1336                   &LoopBlockSet);
1337 
1338   buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
1339 
1340   if (RotateLoopWithProfile)
1341     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1342   else
1343     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1344 
1345   DEBUG({
1346     // Crash at the end so we get all of the debugging output first.
1347     bool BadLoop = false;
1348     if (LoopChain.UnscheduledPredecessors) {
1349       BadLoop = true;
1350       dbgs() << "Loop chain contains a block without its preds placed!\n"
1351              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1352              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1353     }
1354     for (MachineBasicBlock *ChainBB : LoopChain) {
1355       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1356       if (!LoopBlockSet.erase(ChainBB)) {
1357         // We don't mark the loop as bad here because there are real situations
1358         // where this can occur. For example, with an unanalyzable fallthrough
1359         // from a loop block to a non-loop block or vice versa.
1360         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1361                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1362                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1363                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1364       }
1365     }
1366 
1367     if (!LoopBlockSet.empty()) {
1368       BadLoop = true;
1369       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1370         dbgs() << "Loop contains blocks never placed into a chain!\n"
1371                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1372                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1373                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1374     }
1375     assert(!BadLoop && "Detected problems with the placement of this loop.");
1376   });
1377 }
1378 
1379 /// When OutlineOpitonalBranches is on, this method colects BBs that
1380 /// dominates all terminator blocks of the function \p F.
1381 void MachineBlockPlacement::collectMustExecuteBBs() {
1382   if (OutlineOptionalBranches) {
1383     // Find the nearest common dominator of all of F's terminators.
1384     MachineBasicBlock *Terminator = nullptr;
1385     for (MachineBasicBlock &MBB : *F) {
1386       if (MBB.succ_size() == 0) {
1387         if (Terminator == nullptr)
1388           Terminator = &MBB;
1389         else
1390           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1391       }
1392     }
1393 
1394     // MBBs dominating this common dominator are unavoidable.
1395     UnavoidableBlocks.clear();
1396     for (MachineBasicBlock &MBB : *F) {
1397       if (MDT->dominates(&MBB, Terminator)) {
1398         UnavoidableBlocks.insert(&MBB);
1399       }
1400     }
1401   }
1402 }
1403 
1404 void MachineBlockPlacement::buildCFGChains() {
1405   // Ensure that every BB in the function has an associated chain to simplify
1406   // the assumptions of the remaining algorithm.
1407   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1408   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1409        ++FI) {
1410     MachineBasicBlock *BB = &*FI;
1411     BlockChain *Chain =
1412         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1413     // Also, merge any blocks which we cannot reason about and must preserve
1414     // the exact fallthrough behavior for.
1415     for (;;) {
1416       Cond.clear();
1417       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1418       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1419         break;
1420 
1421       MachineFunction::iterator NextFI = std::next(FI);
1422       MachineBasicBlock *NextBB = &*NextFI;
1423       // Ensure that the layout successor is a viable block, as we know that
1424       // fallthrough is a possibility.
1425       assert(NextFI != FE && "Can't fallthrough past the last block.");
1426       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1427                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1428                    << "\n");
1429       Chain->merge(NextBB, nullptr);
1430       FI = NextFI;
1431       BB = NextBB;
1432     }
1433   }
1434 
1435   // Turned on with OutlineOptionalBranches option
1436   collectMustExecuteBBs();
1437 
1438   // Build any loop-based chains.
1439   for (MachineLoop *L : *MLI)
1440     buildLoopChains(*L);
1441 
1442   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1443   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1444 
1445   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1446   for (MachineBasicBlock &MBB : *F)
1447     fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
1448 
1449   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1450   buildChain(&F->front(), FunctionChain, BlockWorkList, EHPadWorkList);
1451 
1452 #ifndef NDEBUG
1453   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1454 #endif
1455   DEBUG({
1456     // Crash at the end so we get all of the debugging output first.
1457     bool BadFunc = false;
1458     FunctionBlockSetType FunctionBlockSet;
1459     for (MachineBasicBlock &MBB : *F)
1460       FunctionBlockSet.insert(&MBB);
1461 
1462     for (MachineBasicBlock *ChainBB : FunctionChain)
1463       if (!FunctionBlockSet.erase(ChainBB)) {
1464         BadFunc = true;
1465         dbgs() << "Function chain contains a block not in the function!\n"
1466                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1467       }
1468 
1469     if (!FunctionBlockSet.empty()) {
1470       BadFunc = true;
1471       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1472         dbgs() << "Function contains blocks never placed into a chain!\n"
1473                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1474     }
1475     assert(!BadFunc && "Detected problems with the block placement.");
1476   });
1477 
1478   // Splice the blocks into place.
1479   MachineFunction::iterator InsertPos = F->begin();
1480   for (MachineBasicBlock *ChainBB : FunctionChain) {
1481     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1482                                                        : "          ... ")
1483                  << getBlockName(ChainBB) << "\n");
1484     if (InsertPos != MachineFunction::iterator(ChainBB))
1485       F->splice(InsertPos, ChainBB);
1486     else
1487       ++InsertPos;
1488 
1489     // Update the terminator of the previous block.
1490     if (ChainBB == *FunctionChain.begin())
1491       continue;
1492     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1493 
1494     // FIXME: It would be awesome of updateTerminator would just return rather
1495     // than assert when the branch cannot be analyzed in order to remove this
1496     // boiler plate.
1497     Cond.clear();
1498     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1499 
1500     // The "PrevBB" is not yet updated to reflect current code layout, so,
1501     //   o. it may fall-through to a block without explict "goto" instruction
1502     //      before layout, and no longer fall-through it after layout; or
1503     //   o. just opposite.
1504     //
1505     // AnalyzeBranch() may return erroneous value for FBB when these two
1506     // situations take place. For the first scenario FBB is mistakenly set NULL;
1507     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1508     // mistakenly pointing to "*BI".
1509     // Thus, if the future change needs to use FBB before the layout is set, it
1510     // has to correct FBB first by using the code similar to the following:
1511     //
1512     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1513     //   PrevBB->updateTerminator();
1514     //   Cond.clear();
1515     //   TBB = FBB = nullptr;
1516     //   if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1517     //     // FIXME: This should never take place.
1518     //     TBB = FBB = nullptr;
1519     //   }
1520     // }
1521     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
1522       PrevBB->updateTerminator();
1523   }
1524 
1525   // Fixup the last block.
1526   Cond.clear();
1527   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1528   if (!TII->AnalyzeBranch(F->back(), TBB, FBB, Cond))
1529     F->back().updateTerminator();
1530 }
1531 
1532 void MachineBlockPlacement::optimizeBranches() {
1533   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1534   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1535 
1536   // Now that all the basic blocks in the chain have the proper layout,
1537   // make a final call to AnalyzeBranch with AllowModify set.
1538   // Indeed, the target may be able to optimize the branches in a way we
1539   // cannot because all branches may not be analyzable.
1540   // E.g., the target may be able to remove an unconditional branch to
1541   // a fallthrough when it occurs after predicated terminators.
1542   for (MachineBasicBlock *ChainBB : FunctionChain) {
1543     Cond.clear();
1544     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1545     if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1546       // If PrevBB has a two-way branch, try to re-order the branches
1547       // such that we branch to the successor with higher probability first.
1548       if (TBB && !Cond.empty() && FBB &&
1549           MBPI->getEdgeProbability(ChainBB, FBB) >
1550               MBPI->getEdgeProbability(ChainBB, TBB) &&
1551           !TII->ReverseBranchCondition(Cond)) {
1552         DEBUG(dbgs() << "Reverse order of the two branches: "
1553                      << getBlockName(ChainBB) << "\n");
1554         DEBUG(dbgs() << "    Edge probability: "
1555                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1556                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1557         DebugLoc dl; // FIXME: this is nowhere
1558         TII->RemoveBranch(*ChainBB);
1559         TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1560         ChainBB->updateTerminator();
1561       }
1562     }
1563   }
1564 }
1565 
1566 void MachineBlockPlacement::alignBlocks() {
1567   // Walk through the backedges of the function now that we have fully laid out
1568   // the basic blocks and align the destination of each backedge. We don't rely
1569   // exclusively on the loop info here so that we can align backedges in
1570   // unnatural CFGs and backedges that were introduced purely because of the
1571   // loop rotations done during this layout pass.
1572   if (F->getFunction()->optForSize())
1573     return;
1574   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1575   if (FunctionChain.begin() == FunctionChain.end())
1576     return; // Empty chain.
1577 
1578   const BranchProbability ColdProb(1, 5); // 20%
1579   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1580   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1581   for (MachineBasicBlock *ChainBB : FunctionChain) {
1582     if (ChainBB == *FunctionChain.begin())
1583       continue;
1584 
1585     // Don't align non-looping basic blocks. These are unlikely to execute
1586     // enough times to matter in practice. Note that we'll still handle
1587     // unnatural CFGs inside of a natural outer loop (the common case) and
1588     // rotated loops.
1589     MachineLoop *L = MLI->getLoopFor(ChainBB);
1590     if (!L)
1591       continue;
1592 
1593     unsigned Align = TLI->getPrefLoopAlignment(L);
1594     if (!Align)
1595       continue; // Don't care about loop alignment.
1596 
1597     // If the block is cold relative to the function entry don't waste space
1598     // aligning it.
1599     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1600     if (Freq < WeightedEntryFreq)
1601       continue;
1602 
1603     // If the block is cold relative to its loop header, don't align it
1604     // regardless of what edges into the block exist.
1605     MachineBasicBlock *LoopHeader = L->getHeader();
1606     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1607     if (Freq < (LoopHeaderFreq * ColdProb))
1608       continue;
1609 
1610     // Check for the existence of a non-layout predecessor which would benefit
1611     // from aligning this block.
1612     MachineBasicBlock *LayoutPred =
1613         &*std::prev(MachineFunction::iterator(ChainBB));
1614 
1615     // Force alignment if all the predecessors are jumps. We already checked
1616     // that the block isn't cold above.
1617     if (!LayoutPred->isSuccessor(ChainBB)) {
1618       ChainBB->setAlignment(Align);
1619       continue;
1620     }
1621 
1622     // Align this block if the layout predecessor's edge into this block is
1623     // cold relative to the block. When this is true, other predecessors make up
1624     // all of the hot entries into the block and thus alignment is likely to be
1625     // important.
1626     BranchProbability LayoutProb =
1627         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1628     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1629     if (LayoutEdgeFreq <= (Freq * ColdProb))
1630       ChainBB->setAlignment(Align);
1631   }
1632 }
1633 
1634 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1635   if (skipFunction(*MF.getFunction()))
1636     return false;
1637 
1638   // Check for single-block functions and skip them.
1639   if (std::next(MF.begin()) == MF.end())
1640     return false;
1641 
1642   F = &MF;
1643   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1644   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1645       getAnalysis<MachineBlockFrequencyInfo>());
1646   MLI = &getAnalysis<MachineLoopInfo>();
1647   TII = MF.getSubtarget().getInstrInfo();
1648   TLI = MF.getSubtarget().getTargetLowering();
1649   MDT = &getAnalysis<MachineDominatorTree>();
1650   assert(BlockToChain.empty());
1651 
1652   buildCFGChains();
1653 
1654   // Changing the layout can create new tail merging opportunities.
1655   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
1656   // TailMerge can create jump into if branches that make CFG irreducible for
1657   // HW that requires structurized CFG.
1658   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
1659                          PassConfig->getEnableTailMerge() &&
1660                          BranchFoldPlacement;
1661   // No tail merging opportunities if the block number is less than four.
1662   if (MF.size() > 3 && EnableTailMerge) {
1663     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
1664                     *MBPI);
1665 
1666     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
1667                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
1668                             /*AfterBlockPlacement=*/true)) {
1669       // Redo the layout if tail merging creates/removes/moves blocks.
1670       BlockToChain.clear();
1671       ChainAllocator.DestroyAll();
1672       buildCFGChains();
1673     }
1674   }
1675 
1676   optimizeBranches();
1677   alignBlocks();
1678 
1679   BlockToChain.clear();
1680   ChainAllocator.DestroyAll();
1681 
1682   if (AlignAllBlock)
1683     // Align all of the blocks in the function to a specific alignment.
1684     for (MachineBasicBlock &MBB : MF)
1685       MBB.setAlignment(AlignAllBlock);
1686   else if (AlignAllNonFallThruBlocks) {
1687     // Align all of the blocks that have no fall-through predecessors to a
1688     // specific alignment.
1689     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
1690       auto LayoutPred = std::prev(MBI);
1691       if (!LayoutPred->isSuccessor(&*MBI))
1692         MBI->setAlignment(AlignAllNonFallThruBlocks);
1693     }
1694   }
1695 
1696   // We always return true as we have no way to track whether the final order
1697   // differs from the original order.
1698   return true;
1699 }
1700 
1701 namespace {
1702 /// \brief A pass to compute block placement statistics.
1703 ///
1704 /// A separate pass to compute interesting statistics for evaluating block
1705 /// placement. This is separate from the actual placement pass so that they can
1706 /// be computed in the absence of any placement transformations or when using
1707 /// alternative placement strategies.
1708 class MachineBlockPlacementStats : public MachineFunctionPass {
1709   /// \brief A handle to the branch probability pass.
1710   const MachineBranchProbabilityInfo *MBPI;
1711 
1712   /// \brief A handle to the function-wide block frequency pass.
1713   const MachineBlockFrequencyInfo *MBFI;
1714 
1715 public:
1716   static char ID; // Pass identification, replacement for typeid
1717   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1718     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1719   }
1720 
1721   bool runOnMachineFunction(MachineFunction &F) override;
1722 
1723   void getAnalysisUsage(AnalysisUsage &AU) const override {
1724     AU.addRequired<MachineBranchProbabilityInfo>();
1725     AU.addRequired<MachineBlockFrequencyInfo>();
1726     AU.setPreservesAll();
1727     MachineFunctionPass::getAnalysisUsage(AU);
1728   }
1729 };
1730 }
1731 
1732 char MachineBlockPlacementStats::ID = 0;
1733 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1734 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1735                       "Basic Block Placement Stats", false, false)
1736 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1737 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1738 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1739                     "Basic Block Placement Stats", false, false)
1740 
1741 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1742   // Check for single-block functions and skip them.
1743   if (std::next(F.begin()) == F.end())
1744     return false;
1745 
1746   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1747   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1748 
1749   for (MachineBasicBlock &MBB : F) {
1750     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1751     Statistic &NumBranches =
1752         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1753     Statistic &BranchTakenFreq =
1754         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1755     for (MachineBasicBlock *Succ : MBB.successors()) {
1756       // Skip if this successor is a fallthrough.
1757       if (MBB.isLayoutSuccessor(Succ))
1758         continue;
1759 
1760       BlockFrequency EdgeFreq =
1761           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1762       ++NumBranches;
1763       BranchTakenFreq += EdgeFreq.getFrequency();
1764     }
1765   }
1766 
1767   return false;
1768 }
1769