1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MBFIWrapper.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/Transforms/Utils/CodeLayout.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "block-placement" 78 79 STATISTIC(NumCondBranches, "Number of conditional branches"); 80 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 81 STATISTIC(CondBranchTakenFreq, 82 "Potential frequency of taking conditional branches"); 83 STATISTIC(UncondBranchTakenFreq, 84 "Potential frequency of taking unconditional branches"); 85 86 static cl::opt<unsigned> AlignAllBlock( 87 "align-all-blocks", 88 cl::desc("Force the alignment of all blocks in the function in log2 format " 89 "(e.g 4 means align on 16B boundaries)."), 90 cl::init(0), cl::Hidden); 91 92 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 93 "align-all-nofallthru-blocks", 94 cl::desc("Force the alignment of all blocks that have no fall-through " 95 "predecessors (i.e. don't add nops that are executed). In log2 " 96 "format (e.g 4 means align on 16B boundaries)."), 97 cl::init(0), cl::Hidden); 98 99 static cl::opt<unsigned> MaxBytesForAlignmentOverride( 100 "max-bytes-for-alignment", 101 cl::desc("Forces the maximum bytes allowed to be emitted when padding for " 102 "alignment"), 103 cl::init(0), cl::Hidden); 104 105 // FIXME: Find a good default for this flag and remove the flag. 106 static cl::opt<unsigned> ExitBlockBias( 107 "block-placement-exit-block-bias", 108 cl::desc("Block frequency percentage a loop exit block needs " 109 "over the original exit to be considered the new exit."), 110 cl::init(0), cl::Hidden); 111 112 // Definition: 113 // - Outlining: placement of a basic block outside the chain or hot path. 114 115 static cl::opt<unsigned> LoopToColdBlockRatio( 116 "loop-to-cold-block-ratio", 117 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 118 "(frequency of block) is greater than this ratio"), 119 cl::init(5), cl::Hidden); 120 121 static cl::opt<bool> ForceLoopColdBlock( 122 "force-loop-cold-block", 123 cl::desc("Force outlining cold blocks from loops."), 124 cl::init(false), cl::Hidden); 125 126 static cl::opt<bool> 127 PreciseRotationCost("precise-rotation-cost", 128 cl::desc("Model the cost of loop rotation more " 129 "precisely by using profile data."), 130 cl::init(false), cl::Hidden); 131 132 static cl::opt<bool> 133 ForcePreciseRotationCost("force-precise-rotation-cost", 134 cl::desc("Force the use of precise cost " 135 "loop rotation strategy."), 136 cl::init(false), cl::Hidden); 137 138 static cl::opt<unsigned> MisfetchCost( 139 "misfetch-cost", 140 cl::desc("Cost that models the probabilistic risk of an instruction " 141 "misfetch due to a jump comparing to falling through, whose cost " 142 "is zero."), 143 cl::init(1), cl::Hidden); 144 145 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 146 cl::desc("Cost of jump instructions."), 147 cl::init(1), cl::Hidden); 148 static cl::opt<bool> 149 TailDupPlacement("tail-dup-placement", 150 cl::desc("Perform tail duplication during placement. " 151 "Creates more fallthrough opportunites in " 152 "outline branches."), 153 cl::init(true), cl::Hidden); 154 155 static cl::opt<bool> 156 BranchFoldPlacement("branch-fold-placement", 157 cl::desc("Perform branch folding during placement. " 158 "Reduces code size."), 159 cl::init(true), cl::Hidden); 160 161 // Heuristic for tail duplication. 162 static cl::opt<unsigned> TailDupPlacementThreshold( 163 "tail-dup-placement-threshold", 164 cl::desc("Instruction cutoff for tail duplication during layout. " 165 "Tail merging during layout is forced to have a threshold " 166 "that won't conflict."), cl::init(2), 167 cl::Hidden); 168 169 // Heuristic for aggressive tail duplication. 170 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 171 "tail-dup-placement-aggressive-threshold", 172 cl::desc("Instruction cutoff for aggressive tail duplication during " 173 "layout. Used at -O3. Tail merging during layout is forced to " 174 "have a threshold that won't conflict."), cl::init(4), 175 cl::Hidden); 176 177 // Heuristic for tail duplication. 178 static cl::opt<unsigned> TailDupPlacementPenalty( 179 "tail-dup-placement-penalty", 180 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 181 "Copying can increase fallthrough, but it also increases icache " 182 "pressure. This parameter controls the penalty to account for that. " 183 "Percent as integer."), 184 cl::init(2), 185 cl::Hidden); 186 187 // Heuristic for tail duplication if profile count is used in cost model. 188 static cl::opt<unsigned> TailDupProfilePercentThreshold( 189 "tail-dup-profile-percent-threshold", 190 cl::desc("If profile count information is used in tail duplication cost " 191 "model, the gained fall through number from tail duplication " 192 "should be at least this percent of hot count."), 193 cl::init(50), cl::Hidden); 194 195 // Heuristic for triangle chains. 196 static cl::opt<unsigned> TriangleChainCount( 197 "triangle-chain-count", 198 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 199 "triangle tail duplication heuristic to kick in. 0 to disable."), 200 cl::init(2), 201 cl::Hidden); 202 203 extern cl::opt<bool> EnableExtTspBlockPlacement; 204 extern cl::opt<bool> ApplyExtTspWithoutProfile; 205 206 namespace llvm { 207 extern cl::opt<unsigned> StaticLikelyProb; 208 extern cl::opt<unsigned> ProfileLikelyProb; 209 210 // Internal option used to control BFI display only after MBP pass. 211 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 212 // -view-block-layout-with-bfi= 213 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 214 215 // Command line option to specify the name of the function for CFG dump 216 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 217 extern cl::opt<std::string> ViewBlockFreqFuncName; 218 } // namespace llvm 219 220 namespace { 221 222 class BlockChain; 223 224 /// Type for our function-wide basic block -> block chain mapping. 225 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 226 227 /// A chain of blocks which will be laid out contiguously. 228 /// 229 /// This is the datastructure representing a chain of consecutive blocks that 230 /// are profitable to layout together in order to maximize fallthrough 231 /// probabilities and code locality. We also can use a block chain to represent 232 /// a sequence of basic blocks which have some external (correctness) 233 /// requirement for sequential layout. 234 /// 235 /// Chains can be built around a single basic block and can be merged to grow 236 /// them. They participate in a block-to-chain mapping, which is updated 237 /// automatically as chains are merged together. 238 class BlockChain { 239 /// The sequence of blocks belonging to this chain. 240 /// 241 /// This is the sequence of blocks for a particular chain. These will be laid 242 /// out in-order within the function. 243 SmallVector<MachineBasicBlock *, 4> Blocks; 244 245 /// A handle to the function-wide basic block to block chain mapping. 246 /// 247 /// This is retained in each block chain to simplify the computation of child 248 /// block chains for SCC-formation and iteration. We store the edges to child 249 /// basic blocks, and map them back to their associated chains using this 250 /// structure. 251 BlockToChainMapType &BlockToChain; 252 253 public: 254 /// Construct a new BlockChain. 255 /// 256 /// This builds a new block chain representing a single basic block in the 257 /// function. It also registers itself as the chain that block participates 258 /// in with the BlockToChain mapping. 259 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 260 : Blocks(1, BB), BlockToChain(BlockToChain) { 261 assert(BB && "Cannot create a chain with a null basic block"); 262 BlockToChain[BB] = this; 263 } 264 265 /// Iterator over blocks within the chain. 266 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 267 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 268 269 /// Beginning of blocks within the chain. 270 iterator begin() { return Blocks.begin(); } 271 const_iterator begin() const { return Blocks.begin(); } 272 273 /// End of blocks within the chain. 274 iterator end() { return Blocks.end(); } 275 const_iterator end() const { return Blocks.end(); } 276 277 bool remove(MachineBasicBlock* BB) { 278 for(iterator i = begin(); i != end(); ++i) { 279 if (*i == BB) { 280 Blocks.erase(i); 281 return true; 282 } 283 } 284 return false; 285 } 286 287 /// Merge a block chain into this one. 288 /// 289 /// This routine merges a block chain into this one. It takes care of forming 290 /// a contiguous sequence of basic blocks, updating the edge list, and 291 /// updating the block -> chain mapping. It does not free or tear down the 292 /// old chain, but the old chain's block list is no longer valid. 293 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 294 assert(BB && "Can't merge a null block."); 295 assert(!Blocks.empty() && "Can't merge into an empty chain."); 296 297 // Fast path in case we don't have a chain already. 298 if (!Chain) { 299 assert(!BlockToChain[BB] && 300 "Passed chain is null, but BB has entry in BlockToChain."); 301 Blocks.push_back(BB); 302 BlockToChain[BB] = this; 303 return; 304 } 305 306 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 307 assert(Chain->begin() != Chain->end()); 308 309 // Update the incoming blocks to point to this chain, and add them to the 310 // chain structure. 311 for (MachineBasicBlock *ChainBB : *Chain) { 312 Blocks.push_back(ChainBB); 313 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 314 BlockToChain[ChainBB] = this; 315 } 316 } 317 318 #ifndef NDEBUG 319 /// Dump the blocks in this chain. 320 LLVM_DUMP_METHOD void dump() { 321 for (MachineBasicBlock *MBB : *this) 322 MBB->dump(); 323 } 324 #endif // NDEBUG 325 326 /// Count of predecessors of any block within the chain which have not 327 /// yet been scheduled. In general, we will delay scheduling this chain 328 /// until those predecessors are scheduled (or we find a sufficiently good 329 /// reason to override this heuristic.) Note that when forming loop chains, 330 /// blocks outside the loop are ignored and treated as if they were already 331 /// scheduled. 332 /// 333 /// Note: This field is reinitialized multiple times - once for each loop, 334 /// and then once for the function as a whole. 335 unsigned UnscheduledPredecessors = 0; 336 }; 337 338 class MachineBlockPlacement : public MachineFunctionPass { 339 /// A type for a block filter set. 340 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 341 342 /// Pair struct containing basic block and taildup profitability 343 struct BlockAndTailDupResult { 344 MachineBasicBlock *BB; 345 bool ShouldTailDup; 346 }; 347 348 /// Triple struct containing edge weight and the edge. 349 struct WeightedEdge { 350 BlockFrequency Weight; 351 MachineBasicBlock *Src; 352 MachineBasicBlock *Dest; 353 }; 354 355 /// work lists of blocks that are ready to be laid out 356 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 357 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 358 359 /// Edges that have already been computed as optimal. 360 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 361 362 /// Machine Function 363 MachineFunction *F; 364 365 /// A handle to the branch probability pass. 366 const MachineBranchProbabilityInfo *MBPI; 367 368 /// A handle to the function-wide block frequency pass. 369 std::unique_ptr<MBFIWrapper> MBFI; 370 371 /// A handle to the loop info. 372 MachineLoopInfo *MLI; 373 374 /// Preferred loop exit. 375 /// Member variable for convenience. It may be removed by duplication deep 376 /// in the call stack. 377 MachineBasicBlock *PreferredLoopExit; 378 379 /// A handle to the target's instruction info. 380 const TargetInstrInfo *TII; 381 382 /// A handle to the target's lowering info. 383 const TargetLoweringBase *TLI; 384 385 /// A handle to the post dominator tree. 386 MachinePostDominatorTree *MPDT; 387 388 ProfileSummaryInfo *PSI; 389 390 /// Duplicator used to duplicate tails during placement. 391 /// 392 /// Placement decisions can open up new tail duplication opportunities, but 393 /// since tail duplication affects placement decisions of later blocks, it 394 /// must be done inline. 395 TailDuplicator TailDup; 396 397 /// Partial tail duplication threshold. 398 BlockFrequency DupThreshold; 399 400 /// True: use block profile count to compute tail duplication cost. 401 /// False: use block frequency to compute tail duplication cost. 402 bool UseProfileCount; 403 404 /// Allocator and owner of BlockChain structures. 405 /// 406 /// We build BlockChains lazily while processing the loop structure of 407 /// a function. To reduce malloc traffic, we allocate them using this 408 /// slab-like allocator, and destroy them after the pass completes. An 409 /// important guarantee is that this allocator produces stable pointers to 410 /// the chains. 411 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 412 413 /// Function wide BasicBlock to BlockChain mapping. 414 /// 415 /// This mapping allows efficiently moving from any given basic block to the 416 /// BlockChain it participates in, if any. We use it to, among other things, 417 /// allow implicitly defining edges between chains as the existing edges 418 /// between basic blocks. 419 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 420 421 #ifndef NDEBUG 422 /// The set of basic blocks that have terminators that cannot be fully 423 /// analyzed. These basic blocks cannot be re-ordered safely by 424 /// MachineBlockPlacement, and we must preserve physical layout of these 425 /// blocks and their successors through the pass. 426 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 427 #endif 428 429 /// Get block profile count or frequency according to UseProfileCount. 430 /// The return value is used to model tail duplication cost. 431 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 432 if (UseProfileCount) { 433 auto Count = MBFI->getBlockProfileCount(BB); 434 if (Count) 435 return *Count; 436 else 437 return 0; 438 } else 439 return MBFI->getBlockFreq(BB); 440 } 441 442 /// Scale the DupThreshold according to basic block size. 443 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 444 void initDupThreshold(); 445 446 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 447 /// if the count goes to 0, add them to the appropriate work list. 448 void markChainSuccessors( 449 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 450 const BlockFilterSet *BlockFilter = nullptr); 451 452 /// Decrease the UnscheduledPredecessors count for a single block, and 453 /// if the count goes to 0, add them to the appropriate work list. 454 void markBlockSuccessors( 455 const BlockChain &Chain, const MachineBasicBlock *BB, 456 const MachineBasicBlock *LoopHeaderBB, 457 const BlockFilterSet *BlockFilter = nullptr); 458 459 BranchProbability 460 collectViableSuccessors( 461 const MachineBasicBlock *BB, const BlockChain &Chain, 462 const BlockFilterSet *BlockFilter, 463 SmallVector<MachineBasicBlock *, 4> &Successors); 464 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 465 BlockFilterSet *BlockFilter); 466 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 467 MachineBasicBlock *BB, 468 BlockFilterSet *BlockFilter); 469 bool repeatedlyTailDuplicateBlock( 470 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 471 const MachineBasicBlock *LoopHeaderBB, 472 BlockChain &Chain, BlockFilterSet *BlockFilter, 473 MachineFunction::iterator &PrevUnplacedBlockIt); 474 bool maybeTailDuplicateBlock( 475 MachineBasicBlock *BB, MachineBasicBlock *LPred, 476 BlockChain &Chain, BlockFilterSet *BlockFilter, 477 MachineFunction::iterator &PrevUnplacedBlockIt, 478 bool &DuplicatedToLPred); 479 bool hasBetterLayoutPredecessor( 480 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 481 const BlockChain &SuccChain, BranchProbability SuccProb, 482 BranchProbability RealSuccProb, const BlockChain &Chain, 483 const BlockFilterSet *BlockFilter); 484 BlockAndTailDupResult selectBestSuccessor( 485 const MachineBasicBlock *BB, const BlockChain &Chain, 486 const BlockFilterSet *BlockFilter); 487 MachineBasicBlock *selectBestCandidateBlock( 488 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 489 MachineBasicBlock *getFirstUnplacedBlock( 490 const BlockChain &PlacedChain, 491 MachineFunction::iterator &PrevUnplacedBlockIt, 492 const BlockFilterSet *BlockFilter); 493 494 /// Add a basic block to the work list if it is appropriate. 495 /// 496 /// If the optional parameter BlockFilter is provided, only MBB 497 /// present in the set will be added to the worklist. If nullptr 498 /// is provided, no filtering occurs. 499 void fillWorkLists(const MachineBasicBlock *MBB, 500 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 501 const BlockFilterSet *BlockFilter); 502 503 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 504 BlockFilterSet *BlockFilter = nullptr); 505 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 506 const MachineBasicBlock *OldTop); 507 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 508 const BlockFilterSet &LoopBlockSet); 509 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 510 const BlockFilterSet &LoopBlockSet); 511 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 512 const MachineBasicBlock *OldTop, 513 const MachineBasicBlock *ExitBB, 514 const BlockFilterSet &LoopBlockSet); 515 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 516 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 517 MachineBasicBlock *findBestLoopTop( 518 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 519 MachineBasicBlock *findBestLoopExit( 520 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 521 BlockFrequency &ExitFreq); 522 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 523 void buildLoopChains(const MachineLoop &L); 524 void rotateLoop( 525 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 526 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 527 void rotateLoopWithProfile( 528 BlockChain &LoopChain, const MachineLoop &L, 529 const BlockFilterSet &LoopBlockSet); 530 void buildCFGChains(); 531 void optimizeBranches(); 532 void alignBlocks(); 533 /// Returns true if a block should be tail-duplicated to increase fallthrough 534 /// opportunities. 535 bool shouldTailDuplicate(MachineBasicBlock *BB); 536 /// Check the edge frequencies to see if tail duplication will increase 537 /// fallthroughs. 538 bool isProfitableToTailDup( 539 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 540 BranchProbability QProb, 541 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 542 543 /// Check for a trellis layout. 544 bool isTrellis(const MachineBasicBlock *BB, 545 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 546 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 547 548 /// Get the best successor given a trellis layout. 549 BlockAndTailDupResult getBestTrellisSuccessor( 550 const MachineBasicBlock *BB, 551 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 552 BranchProbability AdjustedSumProb, const BlockChain &Chain, 553 const BlockFilterSet *BlockFilter); 554 555 /// Get the best pair of non-conflicting edges. 556 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 557 const MachineBasicBlock *BB, 558 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 559 560 /// Returns true if a block can tail duplicate into all unplaced 561 /// predecessors. Filters based on loop. 562 bool canTailDuplicateUnplacedPreds( 563 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 564 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 565 566 /// Find chains of triangles to tail-duplicate where a global analysis works, 567 /// but a local analysis would not find them. 568 void precomputeTriangleChains(); 569 570 /// Apply a post-processing step optimizing block placement. 571 void applyExtTsp(); 572 573 /// Modify the existing block placement in the function and adjust all jumps. 574 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); 575 576 /// Create a single CFG chain from the current block order. 577 void createCFGChainExtTsp(); 578 579 public: 580 static char ID; // Pass identification, replacement for typeid 581 582 MachineBlockPlacement() : MachineFunctionPass(ID) { 583 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 584 } 585 586 bool runOnMachineFunction(MachineFunction &F) override; 587 588 bool allowTailDupPlacement() const { 589 assert(F); 590 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 591 } 592 593 void getAnalysisUsage(AnalysisUsage &AU) const override { 594 AU.addRequired<MachineBranchProbabilityInfo>(); 595 AU.addRequired<MachineBlockFrequencyInfo>(); 596 if (TailDupPlacement) 597 AU.addRequired<MachinePostDominatorTree>(); 598 AU.addRequired<MachineLoopInfo>(); 599 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 600 AU.addRequired<TargetPassConfig>(); 601 MachineFunctionPass::getAnalysisUsage(AU); 602 } 603 }; 604 605 } // end anonymous namespace 606 607 char MachineBlockPlacement::ID = 0; 608 609 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 610 611 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 612 "Branch Probability Basic Block Placement", false, false) 613 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 614 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 615 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 616 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 617 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 618 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 619 "Branch Probability Basic Block Placement", false, false) 620 621 #ifndef NDEBUG 622 /// Helper to print the name of a MBB. 623 /// 624 /// Only used by debug logging. 625 static std::string getBlockName(const MachineBasicBlock *BB) { 626 std::string Result; 627 raw_string_ostream OS(Result); 628 OS << printMBBReference(*BB); 629 OS << " ('" << BB->getName() << "')"; 630 OS.flush(); 631 return Result; 632 } 633 #endif 634 635 /// Mark a chain's successors as having one fewer preds. 636 /// 637 /// When a chain is being merged into the "placed" chain, this routine will 638 /// quickly walk the successors of each block in the chain and mark them as 639 /// having one fewer active predecessor. It also adds any successors of this 640 /// chain which reach the zero-predecessor state to the appropriate worklist. 641 void MachineBlockPlacement::markChainSuccessors( 642 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 643 const BlockFilterSet *BlockFilter) { 644 // Walk all the blocks in this chain, marking their successors as having 645 // a predecessor placed. 646 for (MachineBasicBlock *MBB : Chain) { 647 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 648 } 649 } 650 651 /// Mark a single block's successors as having one fewer preds. 652 /// 653 /// Under normal circumstances, this is only called by markChainSuccessors, 654 /// but if a block that was to be placed is completely tail-duplicated away, 655 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 656 /// for just that block. 657 void MachineBlockPlacement::markBlockSuccessors( 658 const BlockChain &Chain, const MachineBasicBlock *MBB, 659 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 660 // Add any successors for which this is the only un-placed in-loop 661 // predecessor to the worklist as a viable candidate for CFG-neutral 662 // placement. No subsequent placement of this block will violate the CFG 663 // shape, so we get to use heuristics to choose a favorable placement. 664 for (MachineBasicBlock *Succ : MBB->successors()) { 665 if (BlockFilter && !BlockFilter->count(Succ)) 666 continue; 667 BlockChain &SuccChain = *BlockToChain[Succ]; 668 // Disregard edges within a fixed chain, or edges to the loop header. 669 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 670 continue; 671 672 // This is a cross-chain edge that is within the loop, so decrement the 673 // loop predecessor count of the destination chain. 674 if (SuccChain.UnscheduledPredecessors == 0 || 675 --SuccChain.UnscheduledPredecessors > 0) 676 continue; 677 678 auto *NewBB = *SuccChain.begin(); 679 if (NewBB->isEHPad()) 680 EHPadWorkList.push_back(NewBB); 681 else 682 BlockWorkList.push_back(NewBB); 683 } 684 } 685 686 /// This helper function collects the set of successors of block 687 /// \p BB that are allowed to be its layout successors, and return 688 /// the total branch probability of edges from \p BB to those 689 /// blocks. 690 BranchProbability MachineBlockPlacement::collectViableSuccessors( 691 const MachineBasicBlock *BB, const BlockChain &Chain, 692 const BlockFilterSet *BlockFilter, 693 SmallVector<MachineBasicBlock *, 4> &Successors) { 694 // Adjust edge probabilities by excluding edges pointing to blocks that is 695 // either not in BlockFilter or is already in the current chain. Consider the 696 // following CFG: 697 // 698 // --->A 699 // | / \ 700 // | B C 701 // | \ / \ 702 // ----D E 703 // 704 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 705 // A->C is chosen as a fall-through, D won't be selected as a successor of C 706 // due to CFG constraint (the probability of C->D is not greater than 707 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 708 // when calculating the probability of C->D, D will be selected and we 709 // will get A C D B as the layout of this loop. 710 auto AdjustedSumProb = BranchProbability::getOne(); 711 for (MachineBasicBlock *Succ : BB->successors()) { 712 bool SkipSucc = false; 713 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 714 SkipSucc = true; 715 } else { 716 BlockChain *SuccChain = BlockToChain[Succ]; 717 if (SuccChain == &Chain) { 718 SkipSucc = true; 719 } else if (Succ != *SuccChain->begin()) { 720 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 721 << " -> Mid chain!\n"); 722 continue; 723 } 724 } 725 if (SkipSucc) 726 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 727 else 728 Successors.push_back(Succ); 729 } 730 731 return AdjustedSumProb; 732 } 733 734 /// The helper function returns the branch probability that is adjusted 735 /// or normalized over the new total \p AdjustedSumProb. 736 static BranchProbability 737 getAdjustedProbability(BranchProbability OrigProb, 738 BranchProbability AdjustedSumProb) { 739 BranchProbability SuccProb; 740 uint32_t SuccProbN = OrigProb.getNumerator(); 741 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 742 if (SuccProbN >= SuccProbD) 743 SuccProb = BranchProbability::getOne(); 744 else 745 SuccProb = BranchProbability(SuccProbN, SuccProbD); 746 747 return SuccProb; 748 } 749 750 /// Check if \p BB has exactly the successors in \p Successors. 751 static bool 752 hasSameSuccessors(MachineBasicBlock &BB, 753 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 754 if (BB.succ_size() != Successors.size()) 755 return false; 756 // We don't want to count self-loops 757 if (Successors.count(&BB)) 758 return false; 759 for (MachineBasicBlock *Succ : BB.successors()) 760 if (!Successors.count(Succ)) 761 return false; 762 return true; 763 } 764 765 /// Check if a block should be tail duplicated to increase fallthrough 766 /// opportunities. 767 /// \p BB Block to check. 768 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 769 // Blocks with single successors don't create additional fallthrough 770 // opportunities. Don't duplicate them. TODO: When conditional exits are 771 // analyzable, allow them to be duplicated. 772 bool IsSimple = TailDup.isSimpleBB(BB); 773 774 if (BB->succ_size() == 1) 775 return false; 776 return TailDup.shouldTailDuplicate(IsSimple, *BB); 777 } 778 779 /// Compare 2 BlockFrequency's with a small penalty for \p A. 780 /// In order to be conservative, we apply a X% penalty to account for 781 /// increased icache pressure and static heuristics. For small frequencies 782 /// we use only the numerators to improve accuracy. For simplicity, we assume the 783 /// penalty is less than 100% 784 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 785 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 786 uint64_t EntryFreq) { 787 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 788 BlockFrequency Gain = A - B; 789 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 790 } 791 792 /// Check the edge frequencies to see if tail duplication will increase 793 /// fallthroughs. It only makes sense to call this function when 794 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 795 /// always locally profitable if we would have picked \p Succ without 796 /// considering duplication. 797 bool MachineBlockPlacement::isProfitableToTailDup( 798 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 799 BranchProbability QProb, 800 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 801 // We need to do a probability calculation to make sure this is profitable. 802 // First: does succ have a successor that post-dominates? This affects the 803 // calculation. The 2 relevant cases are: 804 // BB BB 805 // | \Qout | \Qout 806 // P| C |P C 807 // = C' = C' 808 // | /Qin | /Qin 809 // | / | / 810 // Succ Succ 811 // / \ | \ V 812 // U/ =V |U \ 813 // / \ = D 814 // D E | / 815 // | / 816 // |/ 817 // PDom 818 // '=' : Branch taken for that CFG edge 819 // In the second case, Placing Succ while duplicating it into C prevents the 820 // fallthrough of Succ into either D or PDom, because they now have C as an 821 // unplaced predecessor 822 823 // Start by figuring out which case we fall into 824 MachineBasicBlock *PDom = nullptr; 825 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 826 // Only scan the relevant successors 827 auto AdjustedSuccSumProb = 828 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 829 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 830 auto BBFreq = MBFI->getBlockFreq(BB); 831 auto SuccFreq = MBFI->getBlockFreq(Succ); 832 BlockFrequency P = BBFreq * PProb; 833 BlockFrequency Qout = BBFreq * QProb; 834 uint64_t EntryFreq = MBFI->getEntryFreq(); 835 // If there are no more successors, it is profitable to copy, as it strictly 836 // increases fallthrough. 837 if (SuccSuccs.size() == 0) 838 return greaterWithBias(P, Qout, EntryFreq); 839 840 auto BestSuccSucc = BranchProbability::getZero(); 841 // Find the PDom or the best Succ if no PDom exists. 842 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 843 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 844 if (Prob > BestSuccSucc) 845 BestSuccSucc = Prob; 846 if (PDom == nullptr) 847 if (MPDT->dominates(SuccSucc, Succ)) { 848 PDom = SuccSucc; 849 break; 850 } 851 } 852 // For the comparisons, we need to know Succ's best incoming edge that isn't 853 // from BB. 854 auto SuccBestPred = BlockFrequency(0); 855 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 856 if (SuccPred == Succ || SuccPred == BB 857 || BlockToChain[SuccPred] == &Chain 858 || (BlockFilter && !BlockFilter->count(SuccPred))) 859 continue; 860 auto Freq = MBFI->getBlockFreq(SuccPred) 861 * MBPI->getEdgeProbability(SuccPred, Succ); 862 if (Freq > SuccBestPred) 863 SuccBestPred = Freq; 864 } 865 // Qin is Succ's best unplaced incoming edge that isn't BB 866 BlockFrequency Qin = SuccBestPred; 867 // If it doesn't have a post-dominating successor, here is the calculation: 868 // BB BB 869 // | \Qout | \ 870 // P| C | = 871 // = C' | C 872 // | /Qin | | 873 // | / | C' (+Succ) 874 // Succ Succ /| 875 // / \ | \/ | 876 // U/ =V | == | 877 // / \ | / \| 878 // D E D E 879 // '=' : Branch taken for that CFG edge 880 // Cost in the first case is: P + V 881 // For this calculation, we always assume P > Qout. If Qout > P 882 // The result of this function will be ignored at the caller. 883 // Let F = SuccFreq - Qin 884 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 885 886 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 887 BranchProbability UProb = BestSuccSucc; 888 BranchProbability VProb = AdjustedSuccSumProb - UProb; 889 BlockFrequency F = SuccFreq - Qin; 890 BlockFrequency V = SuccFreq * VProb; 891 BlockFrequency QinU = std::min(Qin, F) * UProb; 892 BlockFrequency BaseCost = P + V; 893 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 894 return greaterWithBias(BaseCost, DupCost, EntryFreq); 895 } 896 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 897 BranchProbability VProb = AdjustedSuccSumProb - UProb; 898 BlockFrequency U = SuccFreq * UProb; 899 BlockFrequency V = SuccFreq * VProb; 900 BlockFrequency F = SuccFreq - Qin; 901 // If there is a post-dominating successor, here is the calculation: 902 // BB BB BB BB 903 // | \Qout | \ | \Qout | \ 904 // |P C | = |P C | = 905 // = C' |P C = C' |P C 906 // | /Qin | | | /Qin | | 907 // | / | C' (+Succ) | / | C' (+Succ) 908 // Succ Succ /| Succ Succ /| 909 // | \ V | \/ | | \ V | \/ | 910 // |U \ |U /\ =? |U = |U /\ | 911 // = D = = =?| | D | = =| 912 // | / |/ D | / |/ D 913 // | / | / | = | / 914 // |/ | / |/ | = 915 // Dom Dom Dom Dom 916 // '=' : Branch taken for that CFG edge 917 // The cost for taken branches in the first case is P + U 918 // Let F = SuccFreq - Qin 919 // The cost in the second case (assuming independence), given the layout: 920 // BB, Succ, (C+Succ), D, Dom or the layout: 921 // BB, Succ, D, Dom, (C+Succ) 922 // is Qout + max(F, Qin) * U + min(F, Qin) 923 // compare P + U vs Qout + P * U + Qin. 924 // 925 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 926 // 927 // For the 3rd case, the cost is P + 2 * V 928 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 929 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 930 if (UProb > AdjustedSuccSumProb / 2 && 931 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 932 Chain, BlockFilter)) 933 // Cases 3 & 4 934 return greaterWithBias( 935 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 936 EntryFreq); 937 // Cases 1 & 2 938 return greaterWithBias((P + U), 939 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 940 std::max(Qin, F) * UProb), 941 EntryFreq); 942 } 943 944 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 945 /// successors form the lower part of a trellis. A successor set S forms the 946 /// lower part of a trellis if all of the predecessors of S are either in S or 947 /// have all of S as successors. We ignore trellises where BB doesn't have 2 948 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 949 /// are very uncommon and complex to compute optimally. Allowing edges within S 950 /// is not strictly a trellis, but the same algorithm works, so we allow it. 951 bool MachineBlockPlacement::isTrellis( 952 const MachineBasicBlock *BB, 953 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 954 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 955 // Technically BB could form a trellis with branching factor higher than 2. 956 // But that's extremely uncommon. 957 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 958 return false; 959 960 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 961 BB->succ_end()); 962 // To avoid reviewing the same predecessors twice. 963 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 964 965 for (MachineBasicBlock *Succ : ViableSuccs) { 966 int PredCount = 0; 967 for (auto SuccPred : Succ->predecessors()) { 968 // Allow triangle successors, but don't count them. 969 if (Successors.count(SuccPred)) { 970 // Make sure that it is actually a triangle. 971 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 972 if (!Successors.count(CheckSucc)) 973 return false; 974 continue; 975 } 976 const BlockChain *PredChain = BlockToChain[SuccPred]; 977 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 978 PredChain == &Chain || PredChain == BlockToChain[Succ]) 979 continue; 980 ++PredCount; 981 // Perform the successor check only once. 982 if (!SeenPreds.insert(SuccPred).second) 983 continue; 984 if (!hasSameSuccessors(*SuccPred, Successors)) 985 return false; 986 } 987 // If one of the successors has only BB as a predecessor, it is not a 988 // trellis. 989 if (PredCount < 1) 990 return false; 991 } 992 return true; 993 } 994 995 /// Pick the highest total weight pair of edges that can both be laid out. 996 /// The edges in \p Edges[0] are assumed to have a different destination than 997 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 998 /// the individual highest weight edges to the 2 different destinations, or in 999 /// case of a conflict, one of them should be replaced with a 2nd best edge. 1000 std::pair<MachineBlockPlacement::WeightedEdge, 1001 MachineBlockPlacement::WeightedEdge> 1002 MachineBlockPlacement::getBestNonConflictingEdges( 1003 const MachineBasicBlock *BB, 1004 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 1005 Edges) { 1006 // Sort the edges, and then for each successor, find the best incoming 1007 // predecessor. If the best incoming predecessors aren't the same, 1008 // then that is clearly the best layout. If there is a conflict, one of the 1009 // successors will have to fallthrough from the second best predecessor. We 1010 // compare which combination is better overall. 1011 1012 // Sort for highest frequency. 1013 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 1014 1015 llvm::stable_sort(Edges[0], Cmp); 1016 llvm::stable_sort(Edges[1], Cmp); 1017 auto BestA = Edges[0].begin(); 1018 auto BestB = Edges[1].begin(); 1019 // Arrange for the correct answer to be in BestA and BestB 1020 // If the 2 best edges don't conflict, the answer is already there. 1021 if (BestA->Src == BestB->Src) { 1022 // Compare the total fallthrough of (Best + Second Best) for both pairs 1023 auto SecondBestA = std::next(BestA); 1024 auto SecondBestB = std::next(BestB); 1025 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1026 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1027 if (BestAScore < BestBScore) 1028 BestA = SecondBestA; 1029 else 1030 BestB = SecondBestB; 1031 } 1032 // Arrange for the BB edge to be in BestA if it exists. 1033 if (BestB->Src == BB) 1034 std::swap(BestA, BestB); 1035 return std::make_pair(*BestA, *BestB); 1036 } 1037 1038 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1039 /// We only handle trellises with 2 successors, so the algorithm is 1040 /// straightforward: Find the best pair of edges that don't conflict. We find 1041 /// the best incoming edge for each successor in the trellis. If those conflict, 1042 /// we consider which of them should be replaced with the second best. 1043 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1044 /// comes from \p BB, it will be in \p BestEdges[0] 1045 MachineBlockPlacement::BlockAndTailDupResult 1046 MachineBlockPlacement::getBestTrellisSuccessor( 1047 const MachineBasicBlock *BB, 1048 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1049 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1050 const BlockFilterSet *BlockFilter) { 1051 1052 BlockAndTailDupResult Result = {nullptr, false}; 1053 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1054 BB->succ_end()); 1055 1056 // We assume size 2 because it's common. For general n, we would have to do 1057 // the Hungarian algorithm, but it's not worth the complexity because more 1058 // than 2 successors is fairly uncommon, and a trellis even more so. 1059 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1060 return Result; 1061 1062 // Collect the edge frequencies of all edges that form the trellis. 1063 SmallVector<WeightedEdge, 8> Edges[2]; 1064 int SuccIndex = 0; 1065 for (auto Succ : ViableSuccs) { 1066 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1067 // Skip any placed predecessors that are not BB 1068 if (SuccPred != BB) 1069 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1070 BlockToChain[SuccPred] == &Chain || 1071 BlockToChain[SuccPred] == BlockToChain[Succ]) 1072 continue; 1073 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1074 MBPI->getEdgeProbability(SuccPred, Succ); 1075 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1076 } 1077 ++SuccIndex; 1078 } 1079 1080 // Pick the best combination of 2 edges from all the edges in the trellis. 1081 WeightedEdge BestA, BestB; 1082 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1083 1084 if (BestA.Src != BB) { 1085 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1086 // we shouldn't choose any successor. We've already looked and there's a 1087 // better fallthrough edge for all the successors. 1088 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1089 return Result; 1090 } 1091 1092 // Did we pick the triangle edge? If tail-duplication is profitable, do 1093 // that instead. Otherwise merge the triangle edge now while we know it is 1094 // optimal. 1095 if (BestA.Dest == BestB.Src) { 1096 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1097 // would be better. 1098 MachineBasicBlock *Succ1 = BestA.Dest; 1099 MachineBasicBlock *Succ2 = BestB.Dest; 1100 // Check to see if tail-duplication would be profitable. 1101 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1102 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1103 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1104 Chain, BlockFilter)) { 1105 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1106 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1107 dbgs() << " Selected: " << getBlockName(Succ2) 1108 << ", probability: " << Succ2Prob 1109 << " (Tail Duplicate)\n"); 1110 Result.BB = Succ2; 1111 Result.ShouldTailDup = true; 1112 return Result; 1113 } 1114 } 1115 // We have already computed the optimal edge for the other side of the 1116 // trellis. 1117 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1118 1119 auto TrellisSucc = BestA.Dest; 1120 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1121 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1122 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1123 << ", probability: " << SuccProb << " (Trellis)\n"); 1124 Result.BB = TrellisSucc; 1125 return Result; 1126 } 1127 1128 /// When the option allowTailDupPlacement() is on, this method checks if the 1129 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1130 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1131 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1132 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1133 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1134 if (!shouldTailDuplicate(Succ)) 1135 return false; 1136 1137 // The result of canTailDuplicate. 1138 bool Duplicate = true; 1139 // Number of possible duplication. 1140 unsigned int NumDup = 0; 1141 1142 // For CFG checking. 1143 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1144 BB->succ_end()); 1145 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1146 // Make sure all unplaced and unfiltered predecessors can be 1147 // tail-duplicated into. 1148 // Skip any blocks that are already placed or not in this loop. 1149 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1150 || BlockToChain[Pred] == &Chain) 1151 continue; 1152 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1153 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1154 // This will result in a trellis after tail duplication, so we don't 1155 // need to copy Succ into this predecessor. In the presence 1156 // of a trellis tail duplication can continue to be profitable. 1157 // For example: 1158 // A A 1159 // |\ |\ 1160 // | \ | \ 1161 // | C | C+BB 1162 // | / | | 1163 // |/ | | 1164 // BB => BB | 1165 // |\ |\/| 1166 // | \ |/\| 1167 // | D | D 1168 // | / | / 1169 // |/ |/ 1170 // Succ Succ 1171 // 1172 // After BB was duplicated into C, the layout looks like the one on the 1173 // right. BB and C now have the same successors. When considering 1174 // whether Succ can be duplicated into all its unplaced predecessors, we 1175 // ignore C. 1176 // We can do this because C already has a profitable fallthrough, namely 1177 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1178 // duplication and for this test. 1179 // 1180 // This allows trellises to be laid out in 2 separate chains 1181 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1182 // because it allows the creation of 2 fallthrough paths with links 1183 // between them, and we correctly identify the best layout for these 1184 // CFGs. We want to extend trellises that the user created in addition 1185 // to trellises created by tail-duplication, so we just look for the 1186 // CFG. 1187 continue; 1188 Duplicate = false; 1189 continue; 1190 } 1191 NumDup++; 1192 } 1193 1194 // No possible duplication in current filter set. 1195 if (NumDup == 0) 1196 return false; 1197 1198 // If profile information is available, findDuplicateCandidates can do more 1199 // precise benefit analysis. 1200 if (F->getFunction().hasProfileData()) 1201 return true; 1202 1203 // This is mainly for function exit BB. 1204 // The integrated tail duplication is really designed for increasing 1205 // fallthrough from predecessors from Succ to its successors. We may need 1206 // other machanism to handle different cases. 1207 if (Succ->succ_empty()) 1208 return true; 1209 1210 // Plus the already placed predecessor. 1211 NumDup++; 1212 1213 // If the duplication candidate has more unplaced predecessors than 1214 // successors, the extra duplication can't bring more fallthrough. 1215 // 1216 // Pred1 Pred2 Pred3 1217 // \ | / 1218 // \ | / 1219 // \ | / 1220 // Dup 1221 // / \ 1222 // / \ 1223 // Succ1 Succ2 1224 // 1225 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1226 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1227 // but the duplication into Pred3 can't increase fallthrough. 1228 // 1229 // A small number of extra duplication may not hurt too much. We need a better 1230 // heuristic to handle it. 1231 if ((NumDup > Succ->succ_size()) || !Duplicate) 1232 return false; 1233 1234 return true; 1235 } 1236 1237 /// Find chains of triangles where we believe it would be profitable to 1238 /// tail-duplicate them all, but a local analysis would not find them. 1239 /// There are 3 ways this can be profitable: 1240 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1241 /// longer chains) 1242 /// 2) The chains are statically correlated. Branch probabilities have a very 1243 /// U-shaped distribution. 1244 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1245 /// If the branches in a chain are likely to be from the same side of the 1246 /// distribution as their predecessor, but are independent at runtime, this 1247 /// transformation is profitable. (Because the cost of being wrong is a small 1248 /// fixed cost, unlike the standard triangle layout where the cost of being 1249 /// wrong scales with the # of triangles.) 1250 /// 3) The chains are dynamically correlated. If the probability that a previous 1251 /// branch was taken positively influences whether the next branch will be 1252 /// taken 1253 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1254 void MachineBlockPlacement::precomputeTriangleChains() { 1255 struct TriangleChain { 1256 std::vector<MachineBasicBlock *> Edges; 1257 1258 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1259 : Edges({src, dst}) {} 1260 1261 void append(MachineBasicBlock *dst) { 1262 assert(getKey()->isSuccessor(dst) && 1263 "Attempting to append a block that is not a successor."); 1264 Edges.push_back(dst); 1265 } 1266 1267 unsigned count() const { return Edges.size() - 1; } 1268 1269 MachineBasicBlock *getKey() const { 1270 return Edges.back(); 1271 } 1272 }; 1273 1274 if (TriangleChainCount == 0) 1275 return; 1276 1277 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1278 // Map from last block to the chain that contains it. This allows us to extend 1279 // chains as we find new triangles. 1280 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1281 for (MachineBasicBlock &BB : *F) { 1282 // If BB doesn't have 2 successors, it doesn't start a triangle. 1283 if (BB.succ_size() != 2) 1284 continue; 1285 MachineBasicBlock *PDom = nullptr; 1286 for (MachineBasicBlock *Succ : BB.successors()) { 1287 if (!MPDT->dominates(Succ, &BB)) 1288 continue; 1289 PDom = Succ; 1290 break; 1291 } 1292 // If BB doesn't have a post-dominating successor, it doesn't form a 1293 // triangle. 1294 if (PDom == nullptr) 1295 continue; 1296 // If PDom has a hint that it is low probability, skip this triangle. 1297 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1298 continue; 1299 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1300 // we're looking for. 1301 if (!shouldTailDuplicate(PDom)) 1302 continue; 1303 bool CanTailDuplicate = true; 1304 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1305 // isn't the kind of triangle we're looking for. 1306 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1307 if (Pred == &BB) 1308 continue; 1309 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1310 CanTailDuplicate = false; 1311 break; 1312 } 1313 } 1314 // If we can't tail-duplicate PDom to its predecessors, then skip this 1315 // triangle. 1316 if (!CanTailDuplicate) 1317 continue; 1318 1319 // Now we have an interesting triangle. Insert it if it's not part of an 1320 // existing chain. 1321 // Note: This cannot be replaced with a call insert() or emplace() because 1322 // the find key is BB, but the insert/emplace key is PDom. 1323 auto Found = TriangleChainMap.find(&BB); 1324 // If it is, remove the chain from the map, grow it, and put it back in the 1325 // map with the end as the new key. 1326 if (Found != TriangleChainMap.end()) { 1327 TriangleChain Chain = std::move(Found->second); 1328 TriangleChainMap.erase(Found); 1329 Chain.append(PDom); 1330 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1331 } else { 1332 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1333 assert(InsertResult.second && "Block seen twice."); 1334 (void)InsertResult; 1335 } 1336 } 1337 1338 // Iterating over a DenseMap is safe here, because the only thing in the body 1339 // of the loop is inserting into another DenseMap (ComputedEdges). 1340 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1341 for (auto &ChainPair : TriangleChainMap) { 1342 TriangleChain &Chain = ChainPair.second; 1343 // Benchmarking has shown that due to branch correlation duplicating 2 or 1344 // more triangles is profitable, despite the calculations assuming 1345 // independence. 1346 if (Chain.count() < TriangleChainCount) 1347 continue; 1348 MachineBasicBlock *dst = Chain.Edges.back(); 1349 Chain.Edges.pop_back(); 1350 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1351 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1352 << getBlockName(dst) 1353 << " as pre-computed based on triangles.\n"); 1354 1355 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1356 assert(InsertResult.second && "Block seen twice."); 1357 (void)InsertResult; 1358 1359 dst = src; 1360 } 1361 } 1362 } 1363 1364 // When profile is not present, return the StaticLikelyProb. 1365 // When profile is available, we need to handle the triangle-shape CFG. 1366 static BranchProbability getLayoutSuccessorProbThreshold( 1367 const MachineBasicBlock *BB) { 1368 if (!BB->getParent()->getFunction().hasProfileData()) 1369 return BranchProbability(StaticLikelyProb, 100); 1370 if (BB->succ_size() == 2) { 1371 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1372 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1373 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1374 /* See case 1 below for the cost analysis. For BB->Succ to 1375 * be taken with smaller cost, the following needs to hold: 1376 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1377 * So the threshold T in the calculation below 1378 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1379 * So T / (1 - T) = 2, Yielding T = 2/3 1380 * Also adding user specified branch bias, we have 1381 * T = (2/3)*(ProfileLikelyProb/50) 1382 * = (2*ProfileLikelyProb)/150) 1383 */ 1384 return BranchProbability(2 * ProfileLikelyProb, 150); 1385 } 1386 } 1387 return BranchProbability(ProfileLikelyProb, 100); 1388 } 1389 1390 /// Checks to see if the layout candidate block \p Succ has a better layout 1391 /// predecessor than \c BB. If yes, returns true. 1392 /// \p SuccProb: The probability adjusted for only remaining blocks. 1393 /// Only used for logging 1394 /// \p RealSuccProb: The un-adjusted probability. 1395 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1396 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1397 /// considered 1398 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1399 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1400 const BlockChain &SuccChain, BranchProbability SuccProb, 1401 BranchProbability RealSuccProb, const BlockChain &Chain, 1402 const BlockFilterSet *BlockFilter) { 1403 1404 // There isn't a better layout when there are no unscheduled predecessors. 1405 if (SuccChain.UnscheduledPredecessors == 0) 1406 return false; 1407 1408 // There are two basic scenarios here: 1409 // ------------------------------------- 1410 // Case 1: triangular shape CFG (if-then): 1411 // BB 1412 // | \ 1413 // | \ 1414 // | Pred 1415 // | / 1416 // Succ 1417 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1418 // set Succ as the layout successor of BB. Picking Succ as BB's 1419 // successor breaks the CFG constraints (FIXME: define these constraints). 1420 // With this layout, Pred BB 1421 // is forced to be outlined, so the overall cost will be cost of the 1422 // branch taken from BB to Pred, plus the cost of back taken branch 1423 // from Pred to Succ, as well as the additional cost associated 1424 // with the needed unconditional jump instruction from Pred To Succ. 1425 1426 // The cost of the topological order layout is the taken branch cost 1427 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1428 // must hold: 1429 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1430 // < freq(BB->Succ) * taken_branch_cost. 1431 // Ignoring unconditional jump cost, we get 1432 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1433 // prob(BB->Succ) > 2 * prob(BB->Pred) 1434 // 1435 // When real profile data is available, we can precisely compute the 1436 // probability threshold that is needed for edge BB->Succ to be considered. 1437 // Without profile data, the heuristic requires the branch bias to be 1438 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1439 // ----------------------------------------------------------------- 1440 // Case 2: diamond like CFG (if-then-else): 1441 // S 1442 // / \ 1443 // | \ 1444 // BB Pred 1445 // \ / 1446 // Succ 1447 // .. 1448 // 1449 // The current block is BB and edge BB->Succ is now being evaluated. 1450 // Note that edge S->BB was previously already selected because 1451 // prob(S->BB) > prob(S->Pred). 1452 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1453 // choose Pred, we will have a topological ordering as shown on the left 1454 // in the picture below. If we choose Succ, we have the solution as shown 1455 // on the right: 1456 // 1457 // topo-order: 1458 // 1459 // S----- ---S 1460 // | | | | 1461 // ---BB | | BB 1462 // | | | | 1463 // | Pred-- | Succ-- 1464 // | | | | 1465 // ---Succ ---Pred-- 1466 // 1467 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1468 // = freq(S->Pred) + freq(S->BB) 1469 // 1470 // If we have profile data (i.e, branch probabilities can be trusted), the 1471 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1472 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1473 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1474 // means the cost of topological order is greater. 1475 // When profile data is not available, however, we need to be more 1476 // conservative. If the branch prediction is wrong, breaking the topo-order 1477 // will actually yield a layout with large cost. For this reason, we need 1478 // strong biased branch at block S with Prob(S->BB) in order to select 1479 // BB->Succ. This is equivalent to looking the CFG backward with backward 1480 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1481 // profile data). 1482 // -------------------------------------------------------------------------- 1483 // Case 3: forked diamond 1484 // S 1485 // / \ 1486 // / \ 1487 // BB Pred 1488 // | \ / | 1489 // | \ / | 1490 // | X | 1491 // | / \ | 1492 // | / \ | 1493 // S1 S2 1494 // 1495 // The current block is BB and edge BB->S1 is now being evaluated. 1496 // As above S->BB was already selected because 1497 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1498 // 1499 // topo-order: 1500 // 1501 // S-------| ---S 1502 // | | | | 1503 // ---BB | | BB 1504 // | | | | 1505 // | Pred----| | S1---- 1506 // | | | | 1507 // --(S1 or S2) ---Pred-- 1508 // | 1509 // S2 1510 // 1511 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1512 // + min(freq(Pred->S1), freq(Pred->S2)) 1513 // Non-topo-order cost: 1514 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1515 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1516 // is 0. Then the non topo layout is better when 1517 // freq(S->Pred) < freq(BB->S1). 1518 // This is exactly what is checked below. 1519 // Note there are other shapes that apply (Pred may not be a single block, 1520 // but they all fit this general pattern.) 1521 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1522 1523 // Make sure that a hot successor doesn't have a globally more 1524 // important predecessor. 1525 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1526 bool BadCFGConflict = false; 1527 1528 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1529 BlockChain *PredChain = BlockToChain[Pred]; 1530 if (Pred == Succ || PredChain == &SuccChain || 1531 (BlockFilter && !BlockFilter->count(Pred)) || 1532 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1533 // This check is redundant except for look ahead. This function is 1534 // called for lookahead by isProfitableToTailDup when BB hasn't been 1535 // placed yet. 1536 (Pred == BB)) 1537 continue; 1538 // Do backward checking. 1539 // For all cases above, we need a backward checking to filter out edges that 1540 // are not 'strongly' biased. 1541 // BB Pred 1542 // \ / 1543 // Succ 1544 // We select edge BB->Succ if 1545 // freq(BB->Succ) > freq(Succ) * HotProb 1546 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1547 // HotProb 1548 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1549 // Case 1 is covered too, because the first equation reduces to: 1550 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1551 BlockFrequency PredEdgeFreq = 1552 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1553 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1554 BadCFGConflict = true; 1555 break; 1556 } 1557 } 1558 1559 if (BadCFGConflict) { 1560 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1561 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1562 return true; 1563 } 1564 1565 return false; 1566 } 1567 1568 /// Select the best successor for a block. 1569 /// 1570 /// This looks across all successors of a particular block and attempts to 1571 /// select the "best" one to be the layout successor. It only considers direct 1572 /// successors which also pass the block filter. It will attempt to avoid 1573 /// breaking CFG structure, but cave and break such structures in the case of 1574 /// very hot successor edges. 1575 /// 1576 /// \returns The best successor block found, or null if none are viable, along 1577 /// with a boolean indicating if tail duplication is necessary. 1578 MachineBlockPlacement::BlockAndTailDupResult 1579 MachineBlockPlacement::selectBestSuccessor( 1580 const MachineBasicBlock *BB, const BlockChain &Chain, 1581 const BlockFilterSet *BlockFilter) { 1582 const BranchProbability HotProb(StaticLikelyProb, 100); 1583 1584 BlockAndTailDupResult BestSucc = { nullptr, false }; 1585 auto BestProb = BranchProbability::getZero(); 1586 1587 SmallVector<MachineBasicBlock *, 4> Successors; 1588 auto AdjustedSumProb = 1589 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1590 1591 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1592 << "\n"); 1593 1594 // if we already precomputed the best successor for BB, return that if still 1595 // applicable. 1596 auto FoundEdge = ComputedEdges.find(BB); 1597 if (FoundEdge != ComputedEdges.end()) { 1598 MachineBasicBlock *Succ = FoundEdge->second.BB; 1599 ComputedEdges.erase(FoundEdge); 1600 BlockChain *SuccChain = BlockToChain[Succ]; 1601 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1602 SuccChain != &Chain && Succ == *SuccChain->begin()) 1603 return FoundEdge->second; 1604 } 1605 1606 // if BB is part of a trellis, Use the trellis to determine the optimal 1607 // fallthrough edges 1608 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1609 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1610 BlockFilter); 1611 1612 // For blocks with CFG violations, we may be able to lay them out anyway with 1613 // tail-duplication. We keep this vector so we can perform the probability 1614 // calculations the minimum number of times. 1615 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1616 DupCandidates; 1617 for (MachineBasicBlock *Succ : Successors) { 1618 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1619 BranchProbability SuccProb = 1620 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1621 1622 BlockChain &SuccChain = *BlockToChain[Succ]; 1623 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1624 // predecessor that yields lower global cost. 1625 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1626 Chain, BlockFilter)) { 1627 // If tail duplication would make Succ profitable, place it. 1628 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1629 DupCandidates.emplace_back(SuccProb, Succ); 1630 continue; 1631 } 1632 1633 LLVM_DEBUG( 1634 dbgs() << " Candidate: " << getBlockName(Succ) 1635 << ", probability: " << SuccProb 1636 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1637 << "\n"); 1638 1639 if (BestSucc.BB && BestProb >= SuccProb) { 1640 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1641 continue; 1642 } 1643 1644 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1645 BestSucc.BB = Succ; 1646 BestProb = SuccProb; 1647 } 1648 // Handle the tail duplication candidates in order of decreasing probability. 1649 // Stop at the first one that is profitable. Also stop if they are less 1650 // profitable than BestSucc. Position is important because we preserve it and 1651 // prefer first best match. Here we aren't comparing in order, so we capture 1652 // the position instead. 1653 llvm::stable_sort(DupCandidates, 1654 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1655 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1656 return std::get<0>(L) > std::get<0>(R); 1657 }); 1658 for (auto &Tup : DupCandidates) { 1659 BranchProbability DupProb; 1660 MachineBasicBlock *Succ; 1661 std::tie(DupProb, Succ) = Tup; 1662 if (DupProb < BestProb) 1663 break; 1664 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1665 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1666 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1667 << ", probability: " << DupProb 1668 << " (Tail Duplicate)\n"); 1669 BestSucc.BB = Succ; 1670 BestSucc.ShouldTailDup = true; 1671 break; 1672 } 1673 } 1674 1675 if (BestSucc.BB) 1676 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1677 1678 return BestSucc; 1679 } 1680 1681 /// Select the best block from a worklist. 1682 /// 1683 /// This looks through the provided worklist as a list of candidate basic 1684 /// blocks and select the most profitable one to place. The definition of 1685 /// profitable only really makes sense in the context of a loop. This returns 1686 /// the most frequently visited block in the worklist, which in the case of 1687 /// a loop, is the one most desirable to be physically close to the rest of the 1688 /// loop body in order to improve i-cache behavior. 1689 /// 1690 /// \returns The best block found, or null if none are viable. 1691 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1692 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1693 // Once we need to walk the worklist looking for a candidate, cleanup the 1694 // worklist of already placed entries. 1695 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1696 // some code complexity) into the loop below. 1697 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1698 return BlockToChain.lookup(BB) == &Chain; 1699 }); 1700 1701 if (WorkList.empty()) 1702 return nullptr; 1703 1704 bool IsEHPad = WorkList[0]->isEHPad(); 1705 1706 MachineBasicBlock *BestBlock = nullptr; 1707 BlockFrequency BestFreq; 1708 for (MachineBasicBlock *MBB : WorkList) { 1709 assert(MBB->isEHPad() == IsEHPad && 1710 "EHPad mismatch between block and work list."); 1711 1712 BlockChain &SuccChain = *BlockToChain[MBB]; 1713 if (&SuccChain == &Chain) 1714 continue; 1715 1716 assert(SuccChain.UnscheduledPredecessors == 0 && 1717 "Found CFG-violating block"); 1718 1719 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1720 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1721 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1722 1723 // For ehpad, we layout the least probable first as to avoid jumping back 1724 // from least probable landingpads to more probable ones. 1725 // 1726 // FIXME: Using probability is probably (!) not the best way to achieve 1727 // this. We should probably have a more principled approach to layout 1728 // cleanup code. 1729 // 1730 // The goal is to get: 1731 // 1732 // +--------------------------+ 1733 // | V 1734 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1735 // 1736 // Rather than: 1737 // 1738 // +-------------------------------------+ 1739 // V | 1740 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1741 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1742 continue; 1743 1744 BestBlock = MBB; 1745 BestFreq = CandidateFreq; 1746 } 1747 1748 return BestBlock; 1749 } 1750 1751 /// Retrieve the first unplaced basic block. 1752 /// 1753 /// This routine is called when we are unable to use the CFG to walk through 1754 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1755 /// We walk through the function's blocks in order, starting from the 1756 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1757 /// re-scanning the entire sequence on repeated calls to this routine. 1758 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1759 const BlockChain &PlacedChain, 1760 MachineFunction::iterator &PrevUnplacedBlockIt, 1761 const BlockFilterSet *BlockFilter) { 1762 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1763 ++I) { 1764 if (BlockFilter && !BlockFilter->count(&*I)) 1765 continue; 1766 if (BlockToChain[&*I] != &PlacedChain) { 1767 PrevUnplacedBlockIt = I; 1768 // Now select the head of the chain to which the unplaced block belongs 1769 // as the block to place. This will force the entire chain to be placed, 1770 // and satisfies the requirements of merging chains. 1771 return *BlockToChain[&*I]->begin(); 1772 } 1773 } 1774 return nullptr; 1775 } 1776 1777 void MachineBlockPlacement::fillWorkLists( 1778 const MachineBasicBlock *MBB, 1779 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1780 const BlockFilterSet *BlockFilter = nullptr) { 1781 BlockChain &Chain = *BlockToChain[MBB]; 1782 if (!UpdatedPreds.insert(&Chain).second) 1783 return; 1784 1785 assert( 1786 Chain.UnscheduledPredecessors == 0 && 1787 "Attempting to place block with unscheduled predecessors in worklist."); 1788 for (MachineBasicBlock *ChainBB : Chain) { 1789 assert(BlockToChain[ChainBB] == &Chain && 1790 "Block in chain doesn't match BlockToChain map."); 1791 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1792 if (BlockFilter && !BlockFilter->count(Pred)) 1793 continue; 1794 if (BlockToChain[Pred] == &Chain) 1795 continue; 1796 ++Chain.UnscheduledPredecessors; 1797 } 1798 } 1799 1800 if (Chain.UnscheduledPredecessors != 0) 1801 return; 1802 1803 MachineBasicBlock *BB = *Chain.begin(); 1804 if (BB->isEHPad()) 1805 EHPadWorkList.push_back(BB); 1806 else 1807 BlockWorkList.push_back(BB); 1808 } 1809 1810 void MachineBlockPlacement::buildChain( 1811 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1812 BlockFilterSet *BlockFilter) { 1813 assert(HeadBB && "BB must not be null.\n"); 1814 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1815 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1816 1817 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1818 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1819 MachineBasicBlock *BB = *std::prev(Chain.end()); 1820 while (true) { 1821 assert(BB && "null block found at end of chain in loop."); 1822 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1823 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1824 1825 1826 // Look for the best viable successor if there is one to place immediately 1827 // after this block. 1828 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1829 MachineBasicBlock* BestSucc = Result.BB; 1830 bool ShouldTailDup = Result.ShouldTailDup; 1831 if (allowTailDupPlacement()) 1832 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1833 Chain, 1834 BlockFilter)); 1835 1836 // If an immediate successor isn't available, look for the best viable 1837 // block among those we've identified as not violating the loop's CFG at 1838 // this point. This won't be a fallthrough, but it will increase locality. 1839 if (!BestSucc) 1840 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1841 if (!BestSucc) 1842 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1843 1844 if (!BestSucc) { 1845 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1846 if (!BestSucc) 1847 break; 1848 1849 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1850 "layout successor until the CFG reduces\n"); 1851 } 1852 1853 // Placement may have changed tail duplication opportunities. 1854 // Check for that now. 1855 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1856 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1857 BlockFilter, PrevUnplacedBlockIt); 1858 // If the chosen successor was duplicated into BB, don't bother laying 1859 // it out, just go round the loop again with BB as the chain end. 1860 if (!BB->isSuccessor(BestSucc)) 1861 continue; 1862 } 1863 1864 // Place this block, updating the datastructures to reflect its placement. 1865 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1866 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1867 // we selected a successor that didn't fit naturally into the CFG. 1868 SuccChain.UnscheduledPredecessors = 0; 1869 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1870 << getBlockName(BestSucc) << "\n"); 1871 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1872 Chain.merge(BestSucc, &SuccChain); 1873 BB = *std::prev(Chain.end()); 1874 } 1875 1876 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1877 << getBlockName(*Chain.begin()) << "\n"); 1878 } 1879 1880 // If bottom of block BB has only one successor OldTop, in most cases it is 1881 // profitable to move it before OldTop, except the following case: 1882 // 1883 // -->OldTop<- 1884 // | . | 1885 // | . | 1886 // | . | 1887 // ---Pred | 1888 // | | 1889 // BB----- 1890 // 1891 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1892 // layout the other successor below it, so it can't reduce taken branch. 1893 // In this case we keep its original layout. 1894 bool 1895 MachineBlockPlacement::canMoveBottomBlockToTop( 1896 const MachineBasicBlock *BottomBlock, 1897 const MachineBasicBlock *OldTop) { 1898 if (BottomBlock->pred_size() != 1) 1899 return true; 1900 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1901 if (Pred->succ_size() != 2) 1902 return true; 1903 1904 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1905 if (OtherBB == BottomBlock) 1906 OtherBB = *Pred->succ_rbegin(); 1907 if (OtherBB == OldTop) 1908 return false; 1909 1910 return true; 1911 } 1912 1913 // Find out the possible fall through frequence to the top of a loop. 1914 BlockFrequency 1915 MachineBlockPlacement::TopFallThroughFreq( 1916 const MachineBasicBlock *Top, 1917 const BlockFilterSet &LoopBlockSet) { 1918 BlockFrequency MaxFreq = 0; 1919 for (MachineBasicBlock *Pred : Top->predecessors()) { 1920 BlockChain *PredChain = BlockToChain[Pred]; 1921 if (!LoopBlockSet.count(Pred) && 1922 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1923 // Found a Pred block can be placed before Top. 1924 // Check if Top is the best successor of Pred. 1925 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1926 bool TopOK = true; 1927 for (MachineBasicBlock *Succ : Pred->successors()) { 1928 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1929 BlockChain *SuccChain = BlockToChain[Succ]; 1930 // Check if Succ can be placed after Pred. 1931 // Succ should not be in any chain, or it is the head of some chain. 1932 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1933 (!SuccChain || Succ == *SuccChain->begin())) { 1934 TopOK = false; 1935 break; 1936 } 1937 } 1938 if (TopOK) { 1939 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1940 MBPI->getEdgeProbability(Pred, Top); 1941 if (EdgeFreq > MaxFreq) 1942 MaxFreq = EdgeFreq; 1943 } 1944 } 1945 } 1946 return MaxFreq; 1947 } 1948 1949 // Compute the fall through gains when move NewTop before OldTop. 1950 // 1951 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1952 // marked as "+" are increased fallthrough, this function computes 1953 // 1954 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1955 // 1956 // | 1957 // | - 1958 // V 1959 // --->OldTop 1960 // | . 1961 // | . 1962 // +| . + 1963 // | Pred ---> 1964 // | |- 1965 // | V 1966 // --- NewTop <--- 1967 // |- 1968 // V 1969 // 1970 BlockFrequency 1971 MachineBlockPlacement::FallThroughGains( 1972 const MachineBasicBlock *NewTop, 1973 const MachineBasicBlock *OldTop, 1974 const MachineBasicBlock *ExitBB, 1975 const BlockFilterSet &LoopBlockSet) { 1976 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1977 BlockFrequency FallThrough2Exit = 0; 1978 if (ExitBB) 1979 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1980 MBPI->getEdgeProbability(NewTop, ExitBB); 1981 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1982 MBPI->getEdgeProbability(NewTop, OldTop); 1983 1984 // Find the best Pred of NewTop. 1985 MachineBasicBlock *BestPred = nullptr; 1986 BlockFrequency FallThroughFromPred = 0; 1987 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1988 if (!LoopBlockSet.count(Pred)) 1989 continue; 1990 BlockChain *PredChain = BlockToChain[Pred]; 1991 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1992 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1993 MBPI->getEdgeProbability(Pred, NewTop); 1994 if (EdgeFreq > FallThroughFromPred) { 1995 FallThroughFromPred = EdgeFreq; 1996 BestPred = Pred; 1997 } 1998 } 1999 } 2000 2001 // If NewTop is not placed after Pred, another successor can be placed 2002 // after Pred. 2003 BlockFrequency NewFreq = 0; 2004 if (BestPred) { 2005 for (MachineBasicBlock *Succ : BestPred->successors()) { 2006 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 2007 continue; 2008 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 2009 continue; 2010 BlockChain *SuccChain = BlockToChain[Succ]; 2011 if ((SuccChain && (Succ != *SuccChain->begin())) || 2012 (SuccChain == BlockToChain[BestPred])) 2013 continue; 2014 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 2015 MBPI->getEdgeProbability(BestPred, Succ); 2016 if (EdgeFreq > NewFreq) 2017 NewFreq = EdgeFreq; 2018 } 2019 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2020 MBPI->getEdgeProbability(BestPred, NewTop); 2021 if (NewFreq > OrigEdgeFreq) { 2022 // If NewTop is not the best successor of Pred, then Pred doesn't 2023 // fallthrough to NewTop. So there is no FallThroughFromPred and 2024 // NewFreq. 2025 NewFreq = 0; 2026 FallThroughFromPred = 0; 2027 } 2028 } 2029 2030 BlockFrequency Result = 0; 2031 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2032 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 2033 FallThroughFromPred; 2034 if (Gains > Lost) 2035 Result = Gains - Lost; 2036 return Result; 2037 } 2038 2039 /// Helper function of findBestLoopTop. Find the best loop top block 2040 /// from predecessors of old top. 2041 /// 2042 /// Look for a block which is strictly better than the old top for laying 2043 /// out before the old top of the loop. This looks for only two patterns: 2044 /// 2045 /// 1. a block has only one successor, the old loop top 2046 /// 2047 /// Because such a block will always result in an unconditional jump, 2048 /// rotating it in front of the old top is always profitable. 2049 /// 2050 /// 2. a block has two successors, one is old top, another is exit 2051 /// and it has more than one predecessors 2052 /// 2053 /// If it is below one of its predecessors P, only P can fall through to 2054 /// it, all other predecessors need a jump to it, and another conditional 2055 /// jump to loop header. If it is moved before loop header, all its 2056 /// predecessors jump to it, then fall through to loop header. So all its 2057 /// predecessors except P can reduce one taken branch. 2058 /// At the same time, move it before old top increases the taken branch 2059 /// to loop exit block, so the reduced taken branch will be compared with 2060 /// the increased taken branch to the loop exit block. 2061 MachineBasicBlock * 2062 MachineBlockPlacement::findBestLoopTopHelper( 2063 MachineBasicBlock *OldTop, 2064 const MachineLoop &L, 2065 const BlockFilterSet &LoopBlockSet) { 2066 // Check that the header hasn't been fused with a preheader block due to 2067 // crazy branches. If it has, we need to start with the header at the top to 2068 // prevent pulling the preheader into the loop body. 2069 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2070 if (!LoopBlockSet.count(*HeaderChain.begin())) 2071 return OldTop; 2072 if (OldTop != *HeaderChain.begin()) 2073 return OldTop; 2074 2075 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2076 << "\n"); 2077 2078 BlockFrequency BestGains = 0; 2079 MachineBasicBlock *BestPred = nullptr; 2080 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2081 if (!LoopBlockSet.count(Pred)) 2082 continue; 2083 if (Pred == L.getHeader()) 2084 continue; 2085 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2086 << Pred->succ_size() << " successors, "; 2087 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2088 if (Pred->succ_size() > 2) 2089 continue; 2090 2091 MachineBasicBlock *OtherBB = nullptr; 2092 if (Pred->succ_size() == 2) { 2093 OtherBB = *Pred->succ_begin(); 2094 if (OtherBB == OldTop) 2095 OtherBB = *Pred->succ_rbegin(); 2096 } 2097 2098 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2099 continue; 2100 2101 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2102 LoopBlockSet); 2103 if ((Gains > 0) && (Gains > BestGains || 2104 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2105 BestPred = Pred; 2106 BestGains = Gains; 2107 } 2108 } 2109 2110 // If no direct predecessor is fine, just use the loop header. 2111 if (!BestPred) { 2112 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2113 return OldTop; 2114 } 2115 2116 // Walk backwards through any straight line of predecessors. 2117 while (BestPred->pred_size() == 1 && 2118 (*BestPred->pred_begin())->succ_size() == 1 && 2119 *BestPred->pred_begin() != L.getHeader()) 2120 BestPred = *BestPred->pred_begin(); 2121 2122 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2123 return BestPred; 2124 } 2125 2126 /// Find the best loop top block for layout. 2127 /// 2128 /// This function iteratively calls findBestLoopTopHelper, until no new better 2129 /// BB can be found. 2130 MachineBasicBlock * 2131 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2132 const BlockFilterSet &LoopBlockSet) { 2133 // Placing the latch block before the header may introduce an extra branch 2134 // that skips this block the first time the loop is executed, which we want 2135 // to avoid when optimising for size. 2136 // FIXME: in theory there is a case that does not introduce a new branch, 2137 // i.e. when the layout predecessor does not fallthrough to the loop header. 2138 // In practice this never happens though: there always seems to be a preheader 2139 // that can fallthrough and that is also placed before the header. 2140 bool OptForSize = F->getFunction().hasOptSize() || 2141 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2142 if (OptForSize) 2143 return L.getHeader(); 2144 2145 MachineBasicBlock *OldTop = nullptr; 2146 MachineBasicBlock *NewTop = L.getHeader(); 2147 while (NewTop != OldTop) { 2148 OldTop = NewTop; 2149 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2150 if (NewTop != OldTop) 2151 ComputedEdges[NewTop] = { OldTop, false }; 2152 } 2153 return NewTop; 2154 } 2155 2156 /// Find the best loop exiting block for layout. 2157 /// 2158 /// This routine implements the logic to analyze the loop looking for the best 2159 /// block to layout at the top of the loop. Typically this is done to maximize 2160 /// fallthrough opportunities. 2161 MachineBasicBlock * 2162 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2163 const BlockFilterSet &LoopBlockSet, 2164 BlockFrequency &ExitFreq) { 2165 // We don't want to layout the loop linearly in all cases. If the loop header 2166 // is just a normal basic block in the loop, we want to look for what block 2167 // within the loop is the best one to layout at the top. However, if the loop 2168 // header has be pre-merged into a chain due to predecessors not having 2169 // analyzable branches, *and* the predecessor it is merged with is *not* part 2170 // of the loop, rotating the header into the middle of the loop will create 2171 // a non-contiguous range of blocks which is Very Bad. So start with the 2172 // header and only rotate if safe. 2173 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2174 if (!LoopBlockSet.count(*HeaderChain.begin())) 2175 return nullptr; 2176 2177 BlockFrequency BestExitEdgeFreq; 2178 unsigned BestExitLoopDepth = 0; 2179 MachineBasicBlock *ExitingBB = nullptr; 2180 // If there are exits to outer loops, loop rotation can severely limit 2181 // fallthrough opportunities unless it selects such an exit. Keep a set of 2182 // blocks where rotating to exit with that block will reach an outer loop. 2183 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2184 2185 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2186 << getBlockName(L.getHeader()) << "\n"); 2187 for (MachineBasicBlock *MBB : L.getBlocks()) { 2188 BlockChain &Chain = *BlockToChain[MBB]; 2189 // Ensure that this block is at the end of a chain; otherwise it could be 2190 // mid-way through an inner loop or a successor of an unanalyzable branch. 2191 if (MBB != *std::prev(Chain.end())) 2192 continue; 2193 2194 // Now walk the successors. We need to establish whether this has a viable 2195 // exiting successor and whether it has a viable non-exiting successor. 2196 // We store the old exiting state and restore it if a viable looping 2197 // successor isn't found. 2198 MachineBasicBlock *OldExitingBB = ExitingBB; 2199 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2200 bool HasLoopingSucc = false; 2201 for (MachineBasicBlock *Succ : MBB->successors()) { 2202 if (Succ->isEHPad()) 2203 continue; 2204 if (Succ == MBB) 2205 continue; 2206 BlockChain &SuccChain = *BlockToChain[Succ]; 2207 // Don't split chains, either this chain or the successor's chain. 2208 if (&Chain == &SuccChain) { 2209 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2210 << getBlockName(Succ) << " (chain conflict)\n"); 2211 continue; 2212 } 2213 2214 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2215 if (LoopBlockSet.count(Succ)) { 2216 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2217 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2218 HasLoopingSucc = true; 2219 continue; 2220 } 2221 2222 unsigned SuccLoopDepth = 0; 2223 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2224 SuccLoopDepth = ExitLoop->getLoopDepth(); 2225 if (ExitLoop->contains(&L)) 2226 BlocksExitingToOuterLoop.insert(MBB); 2227 } 2228 2229 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2230 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2231 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2232 << "] ("; 2233 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2234 // Note that we bias this toward an existing layout successor to retain 2235 // incoming order in the absence of better information. The exit must have 2236 // a frequency higher than the current exit before we consider breaking 2237 // the layout. 2238 BranchProbability Bias(100 - ExitBlockBias, 100); 2239 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2240 ExitEdgeFreq > BestExitEdgeFreq || 2241 (MBB->isLayoutSuccessor(Succ) && 2242 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2243 BestExitEdgeFreq = ExitEdgeFreq; 2244 ExitingBB = MBB; 2245 } 2246 } 2247 2248 if (!HasLoopingSucc) { 2249 // Restore the old exiting state, no viable looping successor was found. 2250 ExitingBB = OldExitingBB; 2251 BestExitEdgeFreq = OldBestExitEdgeFreq; 2252 } 2253 } 2254 // Without a candidate exiting block or with only a single block in the 2255 // loop, just use the loop header to layout the loop. 2256 if (!ExitingBB) { 2257 LLVM_DEBUG( 2258 dbgs() << " No other candidate exit blocks, using loop header\n"); 2259 return nullptr; 2260 } 2261 if (L.getNumBlocks() == 1) { 2262 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2263 return nullptr; 2264 } 2265 2266 // Also, if we have exit blocks which lead to outer loops but didn't select 2267 // one of them as the exiting block we are rotating toward, disable loop 2268 // rotation altogether. 2269 if (!BlocksExitingToOuterLoop.empty() && 2270 !BlocksExitingToOuterLoop.count(ExitingBB)) 2271 return nullptr; 2272 2273 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2274 << "\n"); 2275 ExitFreq = BestExitEdgeFreq; 2276 return ExitingBB; 2277 } 2278 2279 /// Check if there is a fallthrough to loop header Top. 2280 /// 2281 /// 1. Look for a Pred that can be layout before Top. 2282 /// 2. Check if Top is the most possible successor of Pred. 2283 bool 2284 MachineBlockPlacement::hasViableTopFallthrough( 2285 const MachineBasicBlock *Top, 2286 const BlockFilterSet &LoopBlockSet) { 2287 for (MachineBasicBlock *Pred : Top->predecessors()) { 2288 BlockChain *PredChain = BlockToChain[Pred]; 2289 if (!LoopBlockSet.count(Pred) && 2290 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2291 // Found a Pred block can be placed before Top. 2292 // Check if Top is the best successor of Pred. 2293 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2294 bool TopOK = true; 2295 for (MachineBasicBlock *Succ : Pred->successors()) { 2296 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2297 BlockChain *SuccChain = BlockToChain[Succ]; 2298 // Check if Succ can be placed after Pred. 2299 // Succ should not be in any chain, or it is the head of some chain. 2300 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2301 TopOK = false; 2302 break; 2303 } 2304 } 2305 if (TopOK) 2306 return true; 2307 } 2308 } 2309 return false; 2310 } 2311 2312 /// Attempt to rotate an exiting block to the bottom of the loop. 2313 /// 2314 /// Once we have built a chain, try to rotate it to line up the hot exit block 2315 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2316 /// branches. For example, if the loop has fallthrough into its header and out 2317 /// of its bottom already, don't rotate it. 2318 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2319 const MachineBasicBlock *ExitingBB, 2320 BlockFrequency ExitFreq, 2321 const BlockFilterSet &LoopBlockSet) { 2322 if (!ExitingBB) 2323 return; 2324 2325 MachineBasicBlock *Top = *LoopChain.begin(); 2326 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2327 2328 // If ExitingBB is already the last one in a chain then nothing to do. 2329 if (Bottom == ExitingBB) 2330 return; 2331 2332 // The entry block should always be the first BB in a function. 2333 if (Top->isEntryBlock()) 2334 return; 2335 2336 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2337 2338 // If the header has viable fallthrough, check whether the current loop 2339 // bottom is a viable exiting block. If so, bail out as rotating will 2340 // introduce an unnecessary branch. 2341 if (ViableTopFallthrough) { 2342 for (MachineBasicBlock *Succ : Bottom->successors()) { 2343 BlockChain *SuccChain = BlockToChain[Succ]; 2344 if (!LoopBlockSet.count(Succ) && 2345 (!SuccChain || Succ == *SuccChain->begin())) 2346 return; 2347 } 2348 2349 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2350 // frequency is larger than top fallthrough. 2351 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2352 if (FallThrough2Top >= ExitFreq) 2353 return; 2354 } 2355 2356 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2357 if (ExitIt == LoopChain.end()) 2358 return; 2359 2360 // Rotating a loop exit to the bottom when there is a fallthrough to top 2361 // trades the entry fallthrough for an exit fallthrough. 2362 // If there is no bottom->top edge, but the chosen exit block does have 2363 // a fallthrough, we break that fallthrough for nothing in return. 2364 2365 // Let's consider an example. We have a built chain of basic blocks 2366 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2367 // By doing a rotation we get 2368 // Bk+1, ..., Bn, B1, ..., Bk 2369 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2370 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2371 // It might be compensated by fallthrough Bn -> B1. 2372 // So we have a condition to avoid creation of extra branch by loop rotation. 2373 // All below must be true to avoid loop rotation: 2374 // If there is a fallthrough to top (B1) 2375 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2376 // There is no fallthrough from bottom (Bn) to top (B1). 2377 // Please note that there is no exit fallthrough from Bn because we checked it 2378 // above. 2379 if (ViableTopFallthrough) { 2380 assert(std::next(ExitIt) != LoopChain.end() && 2381 "Exit should not be last BB"); 2382 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2383 if (ExitingBB->isSuccessor(NextBlockInChain)) 2384 if (!Bottom->isSuccessor(Top)) 2385 return; 2386 } 2387 2388 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2389 << " at bottom\n"); 2390 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2391 } 2392 2393 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2394 /// 2395 /// With profile data, we can determine the cost in terms of missed fall through 2396 /// opportunities when rotating a loop chain and select the best rotation. 2397 /// Basically, there are three kinds of cost to consider for each rotation: 2398 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2399 /// the loop to the loop header. 2400 /// 2. The possibly missed fall through edges (if they exist) from the loop 2401 /// exits to BB out of the loop. 2402 /// 3. The missed fall through edge (if it exists) from the last BB to the 2403 /// first BB in the loop chain. 2404 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2405 /// We select the best rotation with the smallest cost. 2406 void MachineBlockPlacement::rotateLoopWithProfile( 2407 BlockChain &LoopChain, const MachineLoop &L, 2408 const BlockFilterSet &LoopBlockSet) { 2409 auto RotationPos = LoopChain.end(); 2410 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2411 2412 // The entry block should always be the first BB in a function. 2413 if (ChainHeaderBB->isEntryBlock()) 2414 return; 2415 2416 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2417 2418 // A utility lambda that scales up a block frequency by dividing it by a 2419 // branch probability which is the reciprocal of the scale. 2420 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2421 unsigned Scale) -> BlockFrequency { 2422 if (Scale == 0) 2423 return 0; 2424 // Use operator / between BlockFrequency and BranchProbability to implement 2425 // saturating multiplication. 2426 return Freq / BranchProbability(1, Scale); 2427 }; 2428 2429 // Compute the cost of the missed fall-through edge to the loop header if the 2430 // chain head is not the loop header. As we only consider natural loops with 2431 // single header, this computation can be done only once. 2432 BlockFrequency HeaderFallThroughCost(0); 2433 for (auto *Pred : ChainHeaderBB->predecessors()) { 2434 BlockChain *PredChain = BlockToChain[Pred]; 2435 if (!LoopBlockSet.count(Pred) && 2436 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2437 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2438 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2439 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2440 // If the predecessor has only an unconditional jump to the header, we 2441 // need to consider the cost of this jump. 2442 if (Pred->succ_size() == 1) 2443 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2444 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2445 } 2446 } 2447 2448 // Here we collect all exit blocks in the loop, and for each exit we find out 2449 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2450 // as the sum of frequencies of exit edges we collect here, excluding the exit 2451 // edge from the tail of the loop chain. 2452 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2453 for (auto BB : LoopChain) { 2454 auto LargestExitEdgeProb = BranchProbability::getZero(); 2455 for (auto *Succ : BB->successors()) { 2456 BlockChain *SuccChain = BlockToChain[Succ]; 2457 if (!LoopBlockSet.count(Succ) && 2458 (!SuccChain || Succ == *SuccChain->begin())) { 2459 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2460 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2461 } 2462 } 2463 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2464 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2465 ExitsWithFreq.emplace_back(BB, ExitFreq); 2466 } 2467 } 2468 2469 // In this loop we iterate every block in the loop chain and calculate the 2470 // cost assuming the block is the head of the loop chain. When the loop ends, 2471 // we should have found the best candidate as the loop chain's head. 2472 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2473 EndIter = LoopChain.end(); 2474 Iter != EndIter; Iter++, TailIter++) { 2475 // TailIter is used to track the tail of the loop chain if the block we are 2476 // checking (pointed by Iter) is the head of the chain. 2477 if (TailIter == LoopChain.end()) 2478 TailIter = LoopChain.begin(); 2479 2480 auto TailBB = *TailIter; 2481 2482 // Calculate the cost by putting this BB to the top. 2483 BlockFrequency Cost = 0; 2484 2485 // If the current BB is the loop header, we need to take into account the 2486 // cost of the missed fall through edge from outside of the loop to the 2487 // header. 2488 if (Iter != LoopChain.begin()) 2489 Cost += HeaderFallThroughCost; 2490 2491 // Collect the loop exit cost by summing up frequencies of all exit edges 2492 // except the one from the chain tail. 2493 for (auto &ExitWithFreq : ExitsWithFreq) 2494 if (TailBB != ExitWithFreq.first) 2495 Cost += ExitWithFreq.second; 2496 2497 // The cost of breaking the once fall-through edge from the tail to the top 2498 // of the loop chain. Here we need to consider three cases: 2499 // 1. If the tail node has only one successor, then we will get an 2500 // additional jmp instruction. So the cost here is (MisfetchCost + 2501 // JumpInstCost) * tail node frequency. 2502 // 2. If the tail node has two successors, then we may still get an 2503 // additional jmp instruction if the layout successor after the loop 2504 // chain is not its CFG successor. Note that the more frequently executed 2505 // jmp instruction will be put ahead of the other one. Assume the 2506 // frequency of those two branches are x and y, where x is the frequency 2507 // of the edge to the chain head, then the cost will be 2508 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2509 // 3. If the tail node has more than two successors (this rarely happens), 2510 // we won't consider any additional cost. 2511 if (TailBB->isSuccessor(*Iter)) { 2512 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2513 if (TailBB->succ_size() == 1) 2514 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2515 MisfetchCost + JumpInstCost); 2516 else if (TailBB->succ_size() == 2) { 2517 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2518 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2519 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2520 ? TailBBFreq * TailToHeadProb.getCompl() 2521 : TailToHeadFreq; 2522 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2523 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2524 } 2525 } 2526 2527 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2528 << getBlockName(*Iter) 2529 << " to the top: " << Cost.getFrequency() << "\n"); 2530 2531 if (Cost < SmallestRotationCost) { 2532 SmallestRotationCost = Cost; 2533 RotationPos = Iter; 2534 } 2535 } 2536 2537 if (RotationPos != LoopChain.end()) { 2538 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2539 << " to the top\n"); 2540 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2541 } 2542 } 2543 2544 /// Collect blocks in the given loop that are to be placed. 2545 /// 2546 /// When profile data is available, exclude cold blocks from the returned set; 2547 /// otherwise, collect all blocks in the loop. 2548 MachineBlockPlacement::BlockFilterSet 2549 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2550 BlockFilterSet LoopBlockSet; 2551 2552 // Filter cold blocks off from LoopBlockSet when profile data is available. 2553 // Collect the sum of frequencies of incoming edges to the loop header from 2554 // outside. If we treat the loop as a super block, this is the frequency of 2555 // the loop. Then for each block in the loop, we calculate the ratio between 2556 // its frequency and the frequency of the loop block. When it is too small, 2557 // don't add it to the loop chain. If there are outer loops, then this block 2558 // will be merged into the first outer loop chain for which this block is not 2559 // cold anymore. This needs precise profile data and we only do this when 2560 // profile data is available. 2561 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2562 BlockFrequency LoopFreq(0); 2563 for (auto LoopPred : L.getHeader()->predecessors()) 2564 if (!L.contains(LoopPred)) 2565 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2566 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2567 2568 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2569 if (LoopBlockSet.count(LoopBB)) 2570 continue; 2571 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2572 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2573 continue; 2574 BlockChain *Chain = BlockToChain[LoopBB]; 2575 for (MachineBasicBlock *ChainBB : *Chain) 2576 LoopBlockSet.insert(ChainBB); 2577 } 2578 } else 2579 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2580 2581 return LoopBlockSet; 2582 } 2583 2584 /// Forms basic block chains from the natural loop structures. 2585 /// 2586 /// These chains are designed to preserve the existing *structure* of the code 2587 /// as much as possible. We can then stitch the chains together in a way which 2588 /// both preserves the topological structure and minimizes taken conditional 2589 /// branches. 2590 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2591 // First recurse through any nested loops, building chains for those inner 2592 // loops. 2593 for (const MachineLoop *InnerLoop : L) 2594 buildLoopChains(*InnerLoop); 2595 2596 assert(BlockWorkList.empty() && 2597 "BlockWorkList not empty when starting to build loop chains."); 2598 assert(EHPadWorkList.empty() && 2599 "EHPadWorkList not empty when starting to build loop chains."); 2600 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2601 2602 // Check if we have profile data for this function. If yes, we will rotate 2603 // this loop by modeling costs more precisely which requires the profile data 2604 // for better layout. 2605 bool RotateLoopWithProfile = 2606 ForcePreciseRotationCost || 2607 (PreciseRotationCost && F->getFunction().hasProfileData()); 2608 2609 // First check to see if there is an obviously preferable top block for the 2610 // loop. This will default to the header, but may end up as one of the 2611 // predecessors to the header if there is one which will result in strictly 2612 // fewer branches in the loop body. 2613 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2614 2615 // If we selected just the header for the loop top, look for a potentially 2616 // profitable exit block in the event that rotating the loop can eliminate 2617 // branches by placing an exit edge at the bottom. 2618 // 2619 // Loops are processed innermost to uttermost, make sure we clear 2620 // PreferredLoopExit before processing a new loop. 2621 PreferredLoopExit = nullptr; 2622 BlockFrequency ExitFreq; 2623 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2624 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2625 2626 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2627 2628 // FIXME: This is a really lame way of walking the chains in the loop: we 2629 // walk the blocks, and use a set to prevent visiting a particular chain 2630 // twice. 2631 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2632 assert(LoopChain.UnscheduledPredecessors == 0 && 2633 "LoopChain should not have unscheduled predecessors."); 2634 UpdatedPreds.insert(&LoopChain); 2635 2636 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2637 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2638 2639 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2640 2641 if (RotateLoopWithProfile) 2642 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2643 else 2644 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2645 2646 LLVM_DEBUG({ 2647 // Crash at the end so we get all of the debugging output first. 2648 bool BadLoop = false; 2649 if (LoopChain.UnscheduledPredecessors) { 2650 BadLoop = true; 2651 dbgs() << "Loop chain contains a block without its preds placed!\n" 2652 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2653 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2654 } 2655 for (MachineBasicBlock *ChainBB : LoopChain) { 2656 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2657 if (!LoopBlockSet.remove(ChainBB)) { 2658 // We don't mark the loop as bad here because there are real situations 2659 // where this can occur. For example, with an unanalyzable fallthrough 2660 // from a loop block to a non-loop block or vice versa. 2661 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2662 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2663 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2664 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2665 } 2666 } 2667 2668 if (!LoopBlockSet.empty()) { 2669 BadLoop = true; 2670 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2671 dbgs() << "Loop contains blocks never placed into a chain!\n" 2672 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2673 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2674 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2675 } 2676 assert(!BadLoop && "Detected problems with the placement of this loop."); 2677 }); 2678 2679 BlockWorkList.clear(); 2680 EHPadWorkList.clear(); 2681 } 2682 2683 void MachineBlockPlacement::buildCFGChains() { 2684 // Ensure that every BB in the function has an associated chain to simplify 2685 // the assumptions of the remaining algorithm. 2686 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2687 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2688 ++FI) { 2689 MachineBasicBlock *BB = &*FI; 2690 BlockChain *Chain = 2691 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2692 // Also, merge any blocks which we cannot reason about and must preserve 2693 // the exact fallthrough behavior for. 2694 while (true) { 2695 Cond.clear(); 2696 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2697 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2698 break; 2699 2700 MachineFunction::iterator NextFI = std::next(FI); 2701 MachineBasicBlock *NextBB = &*NextFI; 2702 // Ensure that the layout successor is a viable block, as we know that 2703 // fallthrough is a possibility. 2704 assert(NextFI != FE && "Can't fallthrough past the last block."); 2705 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2706 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2707 << "\n"); 2708 Chain->merge(NextBB, nullptr); 2709 #ifndef NDEBUG 2710 BlocksWithUnanalyzableExits.insert(&*BB); 2711 #endif 2712 FI = NextFI; 2713 BB = NextBB; 2714 } 2715 } 2716 2717 // Build any loop-based chains. 2718 PreferredLoopExit = nullptr; 2719 for (MachineLoop *L : *MLI) 2720 buildLoopChains(*L); 2721 2722 assert(BlockWorkList.empty() && 2723 "BlockWorkList should be empty before building final chain."); 2724 assert(EHPadWorkList.empty() && 2725 "EHPadWorkList should be empty before building final chain."); 2726 2727 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2728 for (MachineBasicBlock &MBB : *F) 2729 fillWorkLists(&MBB, UpdatedPreds); 2730 2731 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2732 buildChain(&F->front(), FunctionChain); 2733 2734 #ifndef NDEBUG 2735 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2736 #endif 2737 LLVM_DEBUG({ 2738 // Crash at the end so we get all of the debugging output first. 2739 bool BadFunc = false; 2740 FunctionBlockSetType FunctionBlockSet; 2741 for (MachineBasicBlock &MBB : *F) 2742 FunctionBlockSet.insert(&MBB); 2743 2744 for (MachineBasicBlock *ChainBB : FunctionChain) 2745 if (!FunctionBlockSet.erase(ChainBB)) { 2746 BadFunc = true; 2747 dbgs() << "Function chain contains a block not in the function!\n" 2748 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2749 } 2750 2751 if (!FunctionBlockSet.empty()) { 2752 BadFunc = true; 2753 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2754 dbgs() << "Function contains blocks never placed into a chain!\n" 2755 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2756 } 2757 assert(!BadFunc && "Detected problems with the block placement."); 2758 }); 2759 2760 // Remember original layout ordering, so we can update terminators after 2761 // reordering to point to the original layout successor. 2762 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2763 F->getNumBlockIDs()); 2764 { 2765 MachineBasicBlock *LastMBB = nullptr; 2766 for (auto &MBB : *F) { 2767 if (LastMBB != nullptr) 2768 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2769 LastMBB = &MBB; 2770 } 2771 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2772 } 2773 2774 // Splice the blocks into place. 2775 MachineFunction::iterator InsertPos = F->begin(); 2776 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2777 for (MachineBasicBlock *ChainBB : FunctionChain) { 2778 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2779 : " ... ") 2780 << getBlockName(ChainBB) << "\n"); 2781 if (InsertPos != MachineFunction::iterator(ChainBB)) 2782 F->splice(InsertPos, ChainBB); 2783 else 2784 ++InsertPos; 2785 2786 // Update the terminator of the previous block. 2787 if (ChainBB == *FunctionChain.begin()) 2788 continue; 2789 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2790 2791 // FIXME: It would be awesome of updateTerminator would just return rather 2792 // than assert when the branch cannot be analyzed in order to remove this 2793 // boiler plate. 2794 Cond.clear(); 2795 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2796 2797 #ifndef NDEBUG 2798 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2799 // Given the exact block placement we chose, we may actually not _need_ to 2800 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2801 // do that at this point is a bug. 2802 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2803 !PrevBB->canFallThrough()) && 2804 "Unexpected block with un-analyzable fallthrough!"); 2805 Cond.clear(); 2806 TBB = FBB = nullptr; 2807 } 2808 #endif 2809 2810 // The "PrevBB" is not yet updated to reflect current code layout, so, 2811 // o. it may fall-through to a block without explicit "goto" instruction 2812 // before layout, and no longer fall-through it after layout; or 2813 // o. just opposite. 2814 // 2815 // analyzeBranch() may return erroneous value for FBB when these two 2816 // situations take place. For the first scenario FBB is mistakenly set NULL; 2817 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2818 // mistakenly pointing to "*BI". 2819 // Thus, if the future change needs to use FBB before the layout is set, it 2820 // has to correct FBB first by using the code similar to the following: 2821 // 2822 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2823 // PrevBB->updateTerminator(); 2824 // Cond.clear(); 2825 // TBB = FBB = nullptr; 2826 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2827 // // FIXME: This should never take place. 2828 // TBB = FBB = nullptr; 2829 // } 2830 // } 2831 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2832 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2833 } 2834 } 2835 2836 // Fixup the last block. 2837 Cond.clear(); 2838 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2839 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2840 MachineBasicBlock *PrevBB = &F->back(); 2841 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2842 } 2843 2844 BlockWorkList.clear(); 2845 EHPadWorkList.clear(); 2846 } 2847 2848 void MachineBlockPlacement::optimizeBranches() { 2849 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2850 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2851 2852 // Now that all the basic blocks in the chain have the proper layout, 2853 // make a final call to analyzeBranch with AllowModify set. 2854 // Indeed, the target may be able to optimize the branches in a way we 2855 // cannot because all branches may not be analyzable. 2856 // E.g., the target may be able to remove an unconditional branch to 2857 // a fallthrough when it occurs after predicated terminators. 2858 for (MachineBasicBlock *ChainBB : FunctionChain) { 2859 Cond.clear(); 2860 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2861 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2862 // If PrevBB has a two-way branch, try to re-order the branches 2863 // such that we branch to the successor with higher probability first. 2864 if (TBB && !Cond.empty() && FBB && 2865 MBPI->getEdgeProbability(ChainBB, FBB) > 2866 MBPI->getEdgeProbability(ChainBB, TBB) && 2867 !TII->reverseBranchCondition(Cond)) { 2868 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2869 << getBlockName(ChainBB) << "\n"); 2870 LLVM_DEBUG(dbgs() << " Edge probability: " 2871 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2872 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2873 DebugLoc dl; // FIXME: this is nowhere 2874 TII->removeBranch(*ChainBB); 2875 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2876 } 2877 } 2878 } 2879 } 2880 2881 void MachineBlockPlacement::alignBlocks() { 2882 // Walk through the backedges of the function now that we have fully laid out 2883 // the basic blocks and align the destination of each backedge. We don't rely 2884 // exclusively on the loop info here so that we can align backedges in 2885 // unnatural CFGs and backedges that were introduced purely because of the 2886 // loop rotations done during this layout pass. 2887 if (F->getFunction().hasMinSize() || 2888 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2889 return; 2890 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2891 if (FunctionChain.begin() == FunctionChain.end()) 2892 return; // Empty chain. 2893 2894 const BranchProbability ColdProb(1, 5); // 20% 2895 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2896 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2897 for (MachineBasicBlock *ChainBB : FunctionChain) { 2898 if (ChainBB == *FunctionChain.begin()) 2899 continue; 2900 2901 // Don't align non-looping basic blocks. These are unlikely to execute 2902 // enough times to matter in practice. Note that we'll still handle 2903 // unnatural CFGs inside of a natural outer loop (the common case) and 2904 // rotated loops. 2905 MachineLoop *L = MLI->getLoopFor(ChainBB); 2906 if (!L) 2907 continue; 2908 2909 const Align Align = TLI->getPrefLoopAlignment(L); 2910 if (Align == 1) 2911 continue; // Don't care about loop alignment. 2912 2913 // If the block is cold relative to the function entry don't waste space 2914 // aligning it. 2915 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2916 if (Freq < WeightedEntryFreq) 2917 continue; 2918 2919 // If the block is cold relative to its loop header, don't align it 2920 // regardless of what edges into the block exist. 2921 MachineBasicBlock *LoopHeader = L->getHeader(); 2922 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2923 if (Freq < (LoopHeaderFreq * ColdProb)) 2924 continue; 2925 2926 // If the global profiles indicates so, don't align it. 2927 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2928 !TLI->alignLoopsWithOptSize()) 2929 continue; 2930 2931 // Check for the existence of a non-layout predecessor which would benefit 2932 // from aligning this block. 2933 MachineBasicBlock *LayoutPred = 2934 &*std::prev(MachineFunction::iterator(ChainBB)); 2935 2936 auto DetermineMaxAlignmentPadding = [&]() { 2937 // Set the maximum bytes allowed to be emitted for alignment. 2938 unsigned MaxBytes; 2939 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) 2940 MaxBytes = MaxBytesForAlignmentOverride; 2941 else 2942 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB); 2943 ChainBB->setMaxBytesForAlignment(MaxBytes); 2944 }; 2945 2946 // Force alignment if all the predecessors are jumps. We already checked 2947 // that the block isn't cold above. 2948 if (!LayoutPred->isSuccessor(ChainBB)) { 2949 ChainBB->setAlignment(Align); 2950 DetermineMaxAlignmentPadding(); 2951 continue; 2952 } 2953 2954 // Align this block if the layout predecessor's edge into this block is 2955 // cold relative to the block. When this is true, other predecessors make up 2956 // all of the hot entries into the block and thus alignment is likely to be 2957 // important. 2958 BranchProbability LayoutProb = 2959 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2960 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2961 if (LayoutEdgeFreq <= (Freq * ColdProb)) { 2962 ChainBB->setAlignment(Align); 2963 DetermineMaxAlignmentPadding(); 2964 } 2965 } 2966 } 2967 2968 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2969 /// it was duplicated into its chain predecessor and removed. 2970 /// \p BB - Basic block that may be duplicated. 2971 /// 2972 /// \p LPred - Chosen layout predecessor of \p BB. 2973 /// Updated to be the chain end if LPred is removed. 2974 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2975 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2976 /// Used to identify which blocks to update predecessor 2977 /// counts. 2978 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2979 /// chosen in the given order due to unnatural CFG 2980 /// only needed if \p BB is removed and 2981 /// \p PrevUnplacedBlockIt pointed to \p BB. 2982 /// @return true if \p BB was removed. 2983 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2984 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2985 const MachineBasicBlock *LoopHeaderBB, 2986 BlockChain &Chain, BlockFilterSet *BlockFilter, 2987 MachineFunction::iterator &PrevUnplacedBlockIt) { 2988 bool Removed, DuplicatedToLPred; 2989 bool DuplicatedToOriginalLPred; 2990 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2991 PrevUnplacedBlockIt, 2992 DuplicatedToLPred); 2993 if (!Removed) 2994 return false; 2995 DuplicatedToOriginalLPred = DuplicatedToLPred; 2996 // Iteratively try to duplicate again. It can happen that a block that is 2997 // duplicated into is still small enough to be duplicated again. 2998 // No need to call markBlockSuccessors in this case, as the blocks being 2999 // duplicated from here on are already scheduled. 3000 while (DuplicatedToLPred && Removed) { 3001 MachineBasicBlock *DupBB, *DupPred; 3002 // The removal callback causes Chain.end() to be updated when a block is 3003 // removed. On the first pass through the loop, the chain end should be the 3004 // same as it was on function entry. On subsequent passes, because we are 3005 // duplicating the block at the end of the chain, if it is removed the 3006 // chain will have shrunk by one block. 3007 BlockChain::iterator ChainEnd = Chain.end(); 3008 DupBB = *(--ChainEnd); 3009 // Now try to duplicate again. 3010 if (ChainEnd == Chain.begin()) 3011 break; 3012 DupPred = *std::prev(ChainEnd); 3013 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 3014 PrevUnplacedBlockIt, 3015 DuplicatedToLPred); 3016 } 3017 // If BB was duplicated into LPred, it is now scheduled. But because it was 3018 // removed, markChainSuccessors won't be called for its chain. Instead we 3019 // call markBlockSuccessors for LPred to achieve the same effect. This must go 3020 // at the end because repeating the tail duplication can increase the number 3021 // of unscheduled predecessors. 3022 LPred = *std::prev(Chain.end()); 3023 if (DuplicatedToOriginalLPred) 3024 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 3025 return true; 3026 } 3027 3028 /// Tail duplicate \p BB into (some) predecessors if profitable. 3029 /// \p BB - Basic block that may be duplicated 3030 /// \p LPred - Chosen layout predecessor of \p BB 3031 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3032 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3033 /// Used to identify which blocks to update predecessor 3034 /// counts. 3035 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3036 /// chosen in the given order due to unnatural CFG 3037 /// only needed if \p BB is removed and 3038 /// \p PrevUnplacedBlockIt pointed to \p BB. 3039 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3040 /// \return - True if the block was duplicated into all preds and removed. 3041 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3042 MachineBasicBlock *BB, MachineBasicBlock *LPred, 3043 BlockChain &Chain, BlockFilterSet *BlockFilter, 3044 MachineFunction::iterator &PrevUnplacedBlockIt, 3045 bool &DuplicatedToLPred) { 3046 DuplicatedToLPred = false; 3047 if (!shouldTailDuplicate(BB)) 3048 return false; 3049 3050 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3051 << "\n"); 3052 3053 // This has to be a callback because none of it can be done after 3054 // BB is deleted. 3055 bool Removed = false; 3056 auto RemovalCallback = 3057 [&](MachineBasicBlock *RemBB) { 3058 // Signal to outer function 3059 Removed = true; 3060 3061 // Conservative default. 3062 bool InWorkList = true; 3063 // Remove from the Chain and Chain Map 3064 if (BlockToChain.count(RemBB)) { 3065 BlockChain *Chain = BlockToChain[RemBB]; 3066 InWorkList = Chain->UnscheduledPredecessors == 0; 3067 Chain->remove(RemBB); 3068 BlockToChain.erase(RemBB); 3069 } 3070 3071 // Handle the unplaced block iterator 3072 if (&(*PrevUnplacedBlockIt) == RemBB) { 3073 PrevUnplacedBlockIt++; 3074 } 3075 3076 // Handle the Work Lists 3077 if (InWorkList) { 3078 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3079 if (RemBB->isEHPad()) 3080 RemoveList = EHPadWorkList; 3081 llvm::erase_value(RemoveList, RemBB); 3082 } 3083 3084 // Handle the filter set 3085 if (BlockFilter) { 3086 BlockFilter->remove(RemBB); 3087 } 3088 3089 // Remove the block from loop info. 3090 MLI->removeBlock(RemBB); 3091 if (RemBB == PreferredLoopExit) 3092 PreferredLoopExit = nullptr; 3093 3094 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3095 << getBlockName(RemBB) << "\n"); 3096 }; 3097 auto RemovalCallbackRef = 3098 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3099 3100 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3101 bool IsSimple = TailDup.isSimpleBB(BB); 3102 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3103 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3104 if (F->getFunction().hasProfileData()) { 3105 // We can do partial duplication with precise profile information. 3106 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3107 if (CandidatePreds.size() == 0) 3108 return false; 3109 if (CandidatePreds.size() < BB->pred_size()) 3110 CandidatePtr = &CandidatePreds; 3111 } 3112 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3113 &RemovalCallbackRef, CandidatePtr); 3114 3115 // Update UnscheduledPredecessors to reflect tail-duplication. 3116 DuplicatedToLPred = false; 3117 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3118 // We're only looking for unscheduled predecessors that match the filter. 3119 BlockChain* PredChain = BlockToChain[Pred]; 3120 if (Pred == LPred) 3121 DuplicatedToLPred = true; 3122 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3123 || PredChain == &Chain) 3124 continue; 3125 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3126 if (BlockFilter && !BlockFilter->count(NewSucc)) 3127 continue; 3128 BlockChain *NewChain = BlockToChain[NewSucc]; 3129 if (NewChain != &Chain && NewChain != PredChain) 3130 NewChain->UnscheduledPredecessors++; 3131 } 3132 } 3133 return Removed; 3134 } 3135 3136 // Count the number of actual machine instructions. 3137 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3138 uint64_t InstrCount = 0; 3139 for (MachineInstr &MI : *MBB) { 3140 if (!MI.isPHI() && !MI.isMetaInstruction()) 3141 InstrCount += 1; 3142 } 3143 return InstrCount; 3144 } 3145 3146 // The size cost of duplication is the instruction size of the duplicated block. 3147 // So we should scale the threshold accordingly. But the instruction size is not 3148 // available on all targets, so we use the number of instructions instead. 3149 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3150 return DupThreshold.getFrequency() * countMBBInstruction(BB); 3151 } 3152 3153 // Returns true if BB is Pred's best successor. 3154 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3155 MachineBasicBlock *Pred, 3156 BlockFilterSet *BlockFilter) { 3157 if (BB == Pred) 3158 return false; 3159 if (BlockFilter && !BlockFilter->count(Pred)) 3160 return false; 3161 BlockChain *PredChain = BlockToChain[Pred]; 3162 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3163 return false; 3164 3165 // Find the successor with largest probability excluding BB. 3166 BranchProbability BestProb = BranchProbability::getZero(); 3167 for (MachineBasicBlock *Succ : Pred->successors()) 3168 if (Succ != BB) { 3169 if (BlockFilter && !BlockFilter->count(Succ)) 3170 continue; 3171 BlockChain *SuccChain = BlockToChain[Succ]; 3172 if (SuccChain && (Succ != *SuccChain->begin())) 3173 continue; 3174 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3175 if (SuccProb > BestProb) 3176 BestProb = SuccProb; 3177 } 3178 3179 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3180 if (BBProb <= BestProb) 3181 return false; 3182 3183 // Compute the number of reduced taken branches if Pred falls through to BB 3184 // instead of another successor. Then compare it with threshold. 3185 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3186 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3187 return Gain > scaleThreshold(BB); 3188 } 3189 3190 // Find out the predecessors of BB and BB can be beneficially duplicated into 3191 // them. 3192 void MachineBlockPlacement::findDuplicateCandidates( 3193 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3194 MachineBasicBlock *BB, 3195 BlockFilterSet *BlockFilter) { 3196 MachineBasicBlock *Fallthrough = nullptr; 3197 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3198 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3199 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3200 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3201 3202 // Sort for highest frequency. 3203 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3204 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3205 }; 3206 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3207 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3208 }; 3209 llvm::stable_sort(Succs, CmpSucc); 3210 llvm::stable_sort(Preds, CmpPred); 3211 3212 auto SuccIt = Succs.begin(); 3213 if (SuccIt != Succs.end()) { 3214 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3215 } 3216 3217 // For each predecessors of BB, compute the benefit of duplicating BB, 3218 // if it is larger than the threshold, add it into Candidates. 3219 // 3220 // If we have following control flow. 3221 // 3222 // PB1 PB2 PB3 PB4 3223 // \ | / /\ 3224 // \ | / / \ 3225 // \ |/ / \ 3226 // BB----/ OB 3227 // /\ 3228 // / \ 3229 // SB1 SB2 3230 // 3231 // And it can be partially duplicated as 3232 // 3233 // PB2+BB 3234 // | PB1 PB3 PB4 3235 // | | / /\ 3236 // | | / / \ 3237 // | |/ / \ 3238 // | BB----/ OB 3239 // |\ /| 3240 // | X | 3241 // |/ \| 3242 // SB2 SB1 3243 // 3244 // The benefit of duplicating into a predecessor is defined as 3245 // Orig_taken_branch - Duplicated_taken_branch 3246 // 3247 // The Orig_taken_branch is computed with the assumption that predecessor 3248 // jumps to BB and the most possible successor is laid out after BB. 3249 // 3250 // The Duplicated_taken_branch is computed with the assumption that BB is 3251 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3252 // SB2 for PB2 in our case). If there is no available successor, the combined 3253 // block jumps to all BB's successor, like PB3 in this example. 3254 // 3255 // If a predecessor has multiple successors, so BB can't be duplicated into 3256 // it. But it can beneficially fall through to BB, and duplicate BB into other 3257 // predecessors. 3258 for (MachineBasicBlock *Pred : Preds) { 3259 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3260 3261 if (!TailDup.canTailDuplicate(BB, Pred)) { 3262 // BB can't be duplicated into Pred, but it is possible to be layout 3263 // below Pred. 3264 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3265 Fallthrough = Pred; 3266 if (SuccIt != Succs.end()) 3267 SuccIt++; 3268 } 3269 continue; 3270 } 3271 3272 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3273 BlockFrequency DupCost; 3274 if (SuccIt == Succs.end()) { 3275 // Jump to all successors; 3276 if (Succs.size() > 0) 3277 DupCost += PredFreq; 3278 } else { 3279 // Fallthrough to *SuccIt, jump to all other successors; 3280 DupCost += PredFreq; 3281 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3282 } 3283 3284 assert(OrigCost >= DupCost); 3285 OrigCost -= DupCost; 3286 if (OrigCost > BBDupThreshold) { 3287 Candidates.push_back(Pred); 3288 if (SuccIt != Succs.end()) 3289 SuccIt++; 3290 } 3291 } 3292 3293 // No predecessors can optimally fallthrough to BB. 3294 // So we can change one duplication into fallthrough. 3295 if (!Fallthrough) { 3296 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3297 Candidates[0] = Candidates.back(); 3298 Candidates.pop_back(); 3299 } 3300 } 3301 } 3302 3303 void MachineBlockPlacement::initDupThreshold() { 3304 DupThreshold = 0; 3305 if (!F->getFunction().hasProfileData()) 3306 return; 3307 3308 // We prefer to use prifile count. 3309 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3310 if (HotThreshold != UINT64_MAX) { 3311 UseProfileCount = true; 3312 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100; 3313 return; 3314 } 3315 3316 // Profile count is not available, we can use block frequency instead. 3317 BlockFrequency MaxFreq = 0; 3318 for (MachineBasicBlock &MBB : *F) { 3319 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3320 if (Freq > MaxFreq) 3321 MaxFreq = Freq; 3322 } 3323 3324 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3325 DupThreshold = MaxFreq * ThresholdProb; 3326 UseProfileCount = false; 3327 } 3328 3329 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3330 if (skipFunction(MF.getFunction())) 3331 return false; 3332 3333 // Check for single-block functions and skip them. 3334 if (std::next(MF.begin()) == MF.end()) 3335 return false; 3336 3337 F = &MF; 3338 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3339 MBFI = std::make_unique<MBFIWrapper>( 3340 getAnalysis<MachineBlockFrequencyInfo>()); 3341 MLI = &getAnalysis<MachineLoopInfo>(); 3342 TII = MF.getSubtarget().getInstrInfo(); 3343 TLI = MF.getSubtarget().getTargetLowering(); 3344 MPDT = nullptr; 3345 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3346 3347 initDupThreshold(); 3348 3349 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3350 // there are no MachineLoops. 3351 PreferredLoopExit = nullptr; 3352 3353 assert(BlockToChain.empty() && 3354 "BlockToChain map should be empty before starting placement."); 3355 assert(ComputedEdges.empty() && 3356 "Computed Edge map should be empty before starting placement."); 3357 3358 unsigned TailDupSize = TailDupPlacementThreshold; 3359 // If only the aggressive threshold is explicitly set, use it. 3360 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3361 TailDupPlacementThreshold.getNumOccurrences() == 0) 3362 TailDupSize = TailDupPlacementAggressiveThreshold; 3363 3364 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3365 // For aggressive optimization, we can adjust some thresholds to be less 3366 // conservative. 3367 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3368 // At O3 we should be more willing to copy blocks for tail duplication. This 3369 // increases size pressure, so we only do it at O3 3370 // Do this unless only the regular threshold is explicitly set. 3371 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3372 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3373 TailDupSize = TailDupPlacementAggressiveThreshold; 3374 } 3375 3376 // If there's no threshold provided through options, query the target 3377 // information for a threshold instead. 3378 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3379 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive || 3380 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3381 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3382 3383 if (allowTailDupPlacement()) { 3384 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3385 bool OptForSize = MF.getFunction().hasOptSize() || 3386 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3387 if (OptForSize) 3388 TailDupSize = 1; 3389 bool PreRegAlloc = false; 3390 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3391 /* LayoutMode */ true, TailDupSize); 3392 precomputeTriangleChains(); 3393 } 3394 3395 buildCFGChains(); 3396 3397 // Changing the layout can create new tail merging opportunities. 3398 // TailMerge can create jump into if branches that make CFG irreducible for 3399 // HW that requires structured CFG. 3400 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3401 PassConfig->getEnableTailMerge() && 3402 BranchFoldPlacement; 3403 // No tail merging opportunities if the block number is less than four. 3404 if (MF.size() > 3 && EnableTailMerge) { 3405 unsigned TailMergeSize = TailDupSize + 1; 3406 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3407 *MBFI, *MBPI, PSI, TailMergeSize); 3408 3409 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3410 /*AfterPlacement=*/true)) { 3411 // Redo the layout if tail merging creates/removes/moves blocks. 3412 BlockToChain.clear(); 3413 ComputedEdges.clear(); 3414 // Must redo the post-dominator tree if blocks were changed. 3415 if (MPDT) 3416 MPDT->runOnMachineFunction(MF); 3417 ChainAllocator.DestroyAll(); 3418 buildCFGChains(); 3419 } 3420 } 3421 3422 // Apply a post-processing optimizing block placement. 3423 if (MF.size() >= 3 && EnableExtTspBlockPlacement && 3424 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData())) { 3425 // Find a new placement and modify the layout of the blocks in the function. 3426 applyExtTsp(); 3427 3428 // Re-create CFG chain so that we can optimizeBranches and alignBlocks. 3429 createCFGChainExtTsp(); 3430 } 3431 3432 optimizeBranches(); 3433 alignBlocks(); 3434 3435 BlockToChain.clear(); 3436 ComputedEdges.clear(); 3437 ChainAllocator.DestroyAll(); 3438 3439 bool HasMaxBytesOverride = 3440 MaxBytesForAlignmentOverride.getNumOccurrences() > 0; 3441 3442 if (AlignAllBlock) 3443 // Align all of the blocks in the function to a specific alignment. 3444 for (MachineBasicBlock &MBB : MF) { 3445 if (HasMaxBytesOverride) 3446 MBB.setAlignment(Align(1ULL << AlignAllBlock), 3447 MaxBytesForAlignmentOverride); 3448 else 3449 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3450 } 3451 else if (AlignAllNonFallThruBlocks) { 3452 // Align all of the blocks that have no fall-through predecessors to a 3453 // specific alignment. 3454 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3455 auto LayoutPred = std::prev(MBI); 3456 if (!LayoutPred->isSuccessor(&*MBI)) { 3457 if (HasMaxBytesOverride) 3458 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks), 3459 MaxBytesForAlignmentOverride); 3460 else 3461 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3462 } 3463 } 3464 } 3465 if (ViewBlockLayoutWithBFI != GVDT_None && 3466 (ViewBlockFreqFuncName.empty() || 3467 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3468 MBFI->view("MBP." + MF.getName(), false); 3469 } 3470 3471 // We always return true as we have no way to track whether the final order 3472 // differs from the original order. 3473 return true; 3474 } 3475 3476 void MachineBlockPlacement::applyExtTsp() { 3477 // Prepare data; blocks are indexed by their index in the current ordering. 3478 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; 3479 BlockIndex.reserve(F->size()); 3480 std::vector<const MachineBasicBlock *> CurrentBlockOrder; 3481 CurrentBlockOrder.reserve(F->size()); 3482 size_t NumBlocks = 0; 3483 for (const MachineBasicBlock &MBB : *F) { 3484 BlockIndex[&MBB] = NumBlocks++; 3485 CurrentBlockOrder.push_back(&MBB); 3486 } 3487 3488 auto BlockSizes = std::vector<uint64_t>(F->size()); 3489 auto BlockCounts = std::vector<uint64_t>(F->size()); 3490 DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> JumpCounts; 3491 for (MachineBasicBlock &MBB : *F) { 3492 // Getting the block frequency. 3493 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3494 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency(); 3495 // Getting the block size: 3496 // - approximate the size of an instruction by 4 bytes, and 3497 // - ignore debug instructions. 3498 // Note: getting the exact size of each block is target-dependent and can be 3499 // done by extending the interface of MCCodeEmitter. Experimentally we do 3500 // not see a perf improvement with the exact block sizes. 3501 auto NonDbgInsts = 3502 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end()); 3503 int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end()); 3504 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; 3505 // Getting jump frequencies. 3506 for (MachineBasicBlock *Succ : MBB.successors()) { 3507 auto EP = MBPI->getEdgeProbability(&MBB, Succ); 3508 BlockFrequency EdgeFreq = BlockFreq * EP; 3509 auto Edge = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]); 3510 JumpCounts[Edge] = EdgeFreq.getFrequency(); 3511 } 3512 } 3513 3514 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() 3515 << " with profile = " << F->getFunction().hasProfileData() 3516 << " (" << F->getName().str() << ")" 3517 << "\n"); 3518 LLVM_DEBUG( 3519 dbgs() << format(" original layout score: %0.2f\n", 3520 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts))); 3521 3522 // Run the layout algorithm. 3523 auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts); 3524 std::vector<const MachineBasicBlock *> NewBlockOrder; 3525 NewBlockOrder.reserve(F->size()); 3526 for (uint64_t Node : NewOrder) { 3527 NewBlockOrder.push_back(CurrentBlockOrder[Node]); 3528 } 3529 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n", 3530 calcExtTspScore(NewOrder, BlockSizes, BlockCounts, 3531 JumpCounts))); 3532 3533 // Assign new block order. 3534 assignBlockOrder(NewBlockOrder); 3535 } 3536 3537 void MachineBlockPlacement::assignBlockOrder( 3538 const std::vector<const MachineBasicBlock *> &NewBlockOrder) { 3539 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order"); 3540 F->RenumberBlocks(); 3541 3542 bool HasChanges = false; 3543 for (size_t I = 0; I < NewBlockOrder.size(); I++) { 3544 if (NewBlockOrder[I] != F->getBlockNumbered(I)) { 3545 HasChanges = true; 3546 break; 3547 } 3548 } 3549 // Stop early if the new block order is identical to the existing one. 3550 if (!HasChanges) 3551 return; 3552 3553 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); 3554 for (auto &MBB : *F) { 3555 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 3556 } 3557 3558 // Sort basic blocks in the function according to the computed order. 3559 DenseMap<const MachineBasicBlock *, size_t> NewIndex; 3560 for (const MachineBasicBlock *MBB : NewBlockOrder) { 3561 NewIndex[MBB] = NewIndex.size(); 3562 } 3563 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) { 3564 return NewIndex[&L] < NewIndex[&R]; 3565 }); 3566 3567 // Update basic block branches by inserting explicit fallthrough branches 3568 // when required and re-optimize branches when possible. 3569 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); 3570 SmallVector<MachineOperand, 4> Cond; 3571 for (auto &MBB : *F) { 3572 MachineFunction::iterator NextMBB = std::next(MBB.getIterator()); 3573 MachineFunction::iterator EndIt = MBB.getParent()->end(); 3574 auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; 3575 // If this block had a fallthrough before we need an explicit unconditional 3576 // branch to that block if the fallthrough block is not adjacent to the 3577 // block in the new order. 3578 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { 3579 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 3580 } 3581 3582 // It might be possible to optimize branches by flipping the condition. 3583 Cond.clear(); 3584 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 3585 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 3586 continue; 3587 MBB.updateTerminator(FTMBB); 3588 } 3589 3590 #ifndef NDEBUG 3591 // Make sure we correctly constructed all branches. 3592 F->verify(this, "After optimized block reordering"); 3593 #endif 3594 } 3595 3596 void MachineBlockPlacement::createCFGChainExtTsp() { 3597 BlockToChain.clear(); 3598 ComputedEdges.clear(); 3599 ChainAllocator.DestroyAll(); 3600 3601 MachineBasicBlock *HeadBB = &F->front(); 3602 BlockChain *FunctionChain = 3603 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); 3604 3605 for (MachineBasicBlock &MBB : *F) { 3606 if (HeadBB == &MBB) 3607 continue; // Ignore head of the chain 3608 FunctionChain->merge(&MBB, nullptr); 3609 } 3610 } 3611 3612 namespace { 3613 3614 /// A pass to compute block placement statistics. 3615 /// 3616 /// A separate pass to compute interesting statistics for evaluating block 3617 /// placement. This is separate from the actual placement pass so that they can 3618 /// be computed in the absence of any placement transformations or when using 3619 /// alternative placement strategies. 3620 class MachineBlockPlacementStats : public MachineFunctionPass { 3621 /// A handle to the branch probability pass. 3622 const MachineBranchProbabilityInfo *MBPI; 3623 3624 /// A handle to the function-wide block frequency pass. 3625 const MachineBlockFrequencyInfo *MBFI; 3626 3627 public: 3628 static char ID; // Pass identification, replacement for typeid 3629 3630 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3631 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3632 } 3633 3634 bool runOnMachineFunction(MachineFunction &F) override; 3635 3636 void getAnalysisUsage(AnalysisUsage &AU) const override { 3637 AU.addRequired<MachineBranchProbabilityInfo>(); 3638 AU.addRequired<MachineBlockFrequencyInfo>(); 3639 AU.setPreservesAll(); 3640 MachineFunctionPass::getAnalysisUsage(AU); 3641 } 3642 }; 3643 3644 } // end anonymous namespace 3645 3646 char MachineBlockPlacementStats::ID = 0; 3647 3648 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3649 3650 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3651 "Basic Block Placement Stats", false, false) 3652 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3653 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3654 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3655 "Basic Block Placement Stats", false, false) 3656 3657 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3658 // Check for single-block functions and skip them. 3659 if (std::next(F.begin()) == F.end()) 3660 return false; 3661 3662 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3663 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3664 3665 for (MachineBasicBlock &MBB : F) { 3666 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3667 Statistic &NumBranches = 3668 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3669 Statistic &BranchTakenFreq = 3670 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3671 for (MachineBasicBlock *Succ : MBB.successors()) { 3672 // Skip if this successor is a fallthrough. 3673 if (MBB.isLayoutSuccessor(Succ)) 3674 continue; 3675 3676 BlockFrequency EdgeFreq = 3677 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3678 ++NumBranches; 3679 BranchTakenFreq += EdgeFreq.getFrequency(); 3680 } 3681 } 3682 3683 return false; 3684 } 3685