xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 90a55651e6222d52da2ffbae87e3e25194a60afd)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "block-placement"
52 
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59 
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64 
65 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
66     "align-all-nofallthru-blocks",
67     cl::desc("Force the alignment of all "
68              "blocks that have no fall-through predecessors (i.e. don't add "
69              "nops that are executed)."),
70     cl::init(0), cl::Hidden);
71 
72 // FIXME: Find a good default for this flag and remove the flag.
73 static cl::opt<unsigned> ExitBlockBias(
74     "block-placement-exit-block-bias",
75     cl::desc("Block frequency percentage a loop exit block needs "
76              "over the original exit to be considered the new exit."),
77     cl::init(0), cl::Hidden);
78 
79 static cl::opt<bool> OutlineOptionalBranches(
80     "outline-optional-branches",
81     cl::desc("Put completely optional branches, i.e. branches with a common "
82              "post dominator, out of line."),
83     cl::init(false), cl::Hidden);
84 
85 static cl::opt<unsigned> OutlineOptionalThreshold(
86     "outline-optional-threshold",
87     cl::desc("Don't outline optional branches that are a single block with an "
88              "instruction count below this threshold"),
89     cl::init(4), cl::Hidden);
90 
91 static cl::opt<unsigned> LoopToColdBlockRatio(
92     "loop-to-cold-block-ratio",
93     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
94              "(frequency of block) is greater than this ratio"),
95     cl::init(5), cl::Hidden);
96 
97 static cl::opt<bool>
98     PreciseRotationCost("precise-rotation-cost",
99                         cl::desc("Model the cost of loop rotation more "
100                                  "precisely by using profile data."),
101                         cl::init(false), cl::Hidden);
102 static cl::opt<bool>
103     ForcePreciseRotationCost("force-precise-rotation-cost",
104                              cl::desc("Force the use of precise cost "
105                                       "loop rotation strategy."),
106                              cl::init(false), cl::Hidden);
107 
108 static cl::opt<unsigned> MisfetchCost(
109     "misfetch-cost",
110     cl::desc("Cost that models the probablistic risk of an instruction "
111              "misfetch due to a jump comparing to falling through, whose cost "
112              "is zero."),
113     cl::init(1), cl::Hidden);
114 
115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
116                                       cl::desc("Cost of jump instructions."),
117                                       cl::init(1), cl::Hidden);
118 
119 namespace {
120 class BlockChain;
121 /// \brief Type for our function-wide basic block -> block chain mapping.
122 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
123 }
124 
125 namespace {
126 /// \brief A chain of blocks which will be laid out contiguously.
127 ///
128 /// This is the datastructure representing a chain of consecutive blocks that
129 /// are profitable to layout together in order to maximize fallthrough
130 /// probabilities and code locality. We also can use a block chain to represent
131 /// a sequence of basic blocks which have some external (correctness)
132 /// requirement for sequential layout.
133 ///
134 /// Chains can be built around a single basic block and can be merged to grow
135 /// them. They participate in a block-to-chain mapping, which is updated
136 /// automatically as chains are merged together.
137 class BlockChain {
138   /// \brief The sequence of blocks belonging to this chain.
139   ///
140   /// This is the sequence of blocks for a particular chain. These will be laid
141   /// out in-order within the function.
142   SmallVector<MachineBasicBlock *, 4> Blocks;
143 
144   /// \brief A handle to the function-wide basic block to block chain mapping.
145   ///
146   /// This is retained in each block chain to simplify the computation of child
147   /// block chains for SCC-formation and iteration. We store the edges to child
148   /// basic blocks, and map them back to their associated chains using this
149   /// structure.
150   BlockToChainMapType &BlockToChain;
151 
152 public:
153   /// \brief Construct a new BlockChain.
154   ///
155   /// This builds a new block chain representing a single basic block in the
156   /// function. It also registers itself as the chain that block participates
157   /// in with the BlockToChain mapping.
158   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
159       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
160     assert(BB && "Cannot create a chain with a null basic block");
161     BlockToChain[BB] = this;
162   }
163 
164   /// \brief Iterator over blocks within the chain.
165   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
166 
167   /// \brief Beginning of blocks within the chain.
168   iterator begin() { return Blocks.begin(); }
169 
170   /// \brief End of blocks within the chain.
171   iterator end() { return Blocks.end(); }
172 
173   /// \brief Merge a block chain into this one.
174   ///
175   /// This routine merges a block chain into this one. It takes care of forming
176   /// a contiguous sequence of basic blocks, updating the edge list, and
177   /// updating the block -> chain mapping. It does not free or tear down the
178   /// old chain, but the old chain's block list is no longer valid.
179   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
180     assert(BB);
181     assert(!Blocks.empty());
182 
183     // Fast path in case we don't have a chain already.
184     if (!Chain) {
185       assert(!BlockToChain[BB]);
186       Blocks.push_back(BB);
187       BlockToChain[BB] = this;
188       return;
189     }
190 
191     assert(BB == *Chain->begin());
192     assert(Chain->begin() != Chain->end());
193 
194     // Update the incoming blocks to point to this chain, and add them to the
195     // chain structure.
196     for (MachineBasicBlock *ChainBB : *Chain) {
197       Blocks.push_back(ChainBB);
198       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
199       BlockToChain[ChainBB] = this;
200     }
201   }
202 
203 #ifndef NDEBUG
204   /// \brief Dump the blocks in this chain.
205   LLVM_DUMP_METHOD void dump() {
206     for (MachineBasicBlock *MBB : *this)
207       MBB->dump();
208   }
209 #endif // NDEBUG
210 
211   /// \brief Count of predecessors of any block within the chain which have not
212   /// yet been scheduled.  In general, we will delay scheduling this chain
213   /// until those predecessors are scheduled (or we find a sufficiently good
214   /// reason to override this heuristic.)  Note that when forming loop chains,
215   /// blocks outside the loop are ignored and treated as if they were already
216   /// scheduled.
217   ///
218   /// Note: This field is reinitialized multiple times - once for each loop,
219   /// and then once for the function as a whole.
220   unsigned UnscheduledPredecessors;
221 };
222 }
223 
224 namespace {
225 class MachineBlockPlacement : public MachineFunctionPass {
226   /// \brief A typedef for a block filter set.
227   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
228 
229   /// \brief A handle to the branch probability pass.
230   const MachineBranchProbabilityInfo *MBPI;
231 
232   /// \brief A handle to the function-wide block frequency pass.
233   const MachineBlockFrequencyInfo *MBFI;
234 
235   /// \brief A handle to the loop info.
236   const MachineLoopInfo *MLI;
237 
238   /// \brief A handle to the target's instruction info.
239   const TargetInstrInfo *TII;
240 
241   /// \brief A handle to the target's lowering info.
242   const TargetLoweringBase *TLI;
243 
244   /// \brief A handle to the post dominator tree.
245   MachineDominatorTree *MDT;
246 
247   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
248   /// all terminators of the MachineFunction.
249   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
250 
251   /// \brief Allocator and owner of BlockChain structures.
252   ///
253   /// We build BlockChains lazily while processing the loop structure of
254   /// a function. To reduce malloc traffic, we allocate them using this
255   /// slab-like allocator, and destroy them after the pass completes. An
256   /// important guarantee is that this allocator produces stable pointers to
257   /// the chains.
258   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
259 
260   /// \brief Function wide BasicBlock to BlockChain mapping.
261   ///
262   /// This mapping allows efficiently moving from any given basic block to the
263   /// BlockChain it participates in, if any. We use it to, among other things,
264   /// allow implicitly defining edges between chains as the existing edges
265   /// between basic blocks.
266   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
267 
268   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
269                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
270                            SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
271                            const BlockFilterSet *BlockFilter = nullptr);
272   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
273                                          BlockChain &Chain,
274                                          const BlockFilterSet *BlockFilter);
275   MachineBasicBlock *
276   selectBestCandidateBlock(BlockChain &Chain,
277                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
278   MachineBasicBlock *
279   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
280                         MachineFunction::iterator &PrevUnplacedBlockIt,
281                         const BlockFilterSet *BlockFilter);
282 
283   /// \brief Add a basic block to the work list if it is apropriate.
284   ///
285   /// If the optional parameter BlockFilter is provided, only MBB
286   /// present in the set will be added to the worklist. If nullptr
287   /// is provided, no filtering occurs.
288   void fillWorkLists(MachineBasicBlock *MBB,
289                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
290                      SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
291                      SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
292                      const BlockFilterSet *BlockFilter);
293   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
294                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
295                   SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
296                   const BlockFilterSet *BlockFilter = nullptr);
297   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
298                                      const BlockFilterSet &LoopBlockSet);
299   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
300                                       const BlockFilterSet &LoopBlockSet);
301   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
302   void buildLoopChains(MachineFunction &F, MachineLoop &L);
303   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
304                   const BlockFilterSet &LoopBlockSet);
305   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
306                              const BlockFilterSet &LoopBlockSet);
307   void buildCFGChains(MachineFunction &F);
308   void optimizeBranches(MachineFunction &F);
309   void alignBlocks(MachineFunction &F);
310 
311 public:
312   static char ID; // Pass identification, replacement for typeid
313   MachineBlockPlacement() : MachineFunctionPass(ID) {
314     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
315   }
316 
317   bool runOnMachineFunction(MachineFunction &F) override;
318 
319   void getAnalysisUsage(AnalysisUsage &AU) const override {
320     AU.addRequired<MachineBranchProbabilityInfo>();
321     AU.addRequired<MachineBlockFrequencyInfo>();
322     AU.addRequired<MachineDominatorTree>();
323     AU.addRequired<MachineLoopInfo>();
324     MachineFunctionPass::getAnalysisUsage(AU);
325   }
326 };
327 }
328 
329 char MachineBlockPlacement::ID = 0;
330 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
331 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
332                       "Branch Probability Basic Block Placement", false, false)
333 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
334 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
335 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
336 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
337 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
338                     "Branch Probability Basic Block Placement", false, false)
339 
340 #ifndef NDEBUG
341 /// \brief Helper to print the name of a MBB.
342 ///
343 /// Only used by debug logging.
344 static std::string getBlockName(MachineBasicBlock *BB) {
345   std::string Result;
346   raw_string_ostream OS(Result);
347   OS << "BB#" << BB->getNumber();
348   OS << " ('" << BB->getName() << "')";
349   OS.flush();
350   return Result;
351 }
352 #endif
353 
354 /// \brief Mark a chain's successors as having one fewer preds.
355 ///
356 /// When a chain is being merged into the "placed" chain, this routine will
357 /// quickly walk the successors of each block in the chain and mark them as
358 /// having one fewer active predecessor. It also adds any successors of this
359 /// chain which reach the zero-predecessor state to the worklist passed in.
360 void MachineBlockPlacement::markChainSuccessors(
361     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
362     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
363     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
364     const BlockFilterSet *BlockFilter) {
365   // Walk all the blocks in this chain, marking their successors as having
366   // a predecessor placed.
367   for (MachineBasicBlock *MBB : Chain) {
368     // Add any successors for which this is the only un-placed in-loop
369     // predecessor to the worklist as a viable candidate for CFG-neutral
370     // placement. No subsequent placement of this block will violate the CFG
371     // shape, so we get to use heuristics to choose a favorable placement.
372     for (MachineBasicBlock *Succ : MBB->successors()) {
373       if (BlockFilter && !BlockFilter->count(Succ))
374         continue;
375       BlockChain &SuccChain = *BlockToChain[Succ];
376       // Disregard edges within a fixed chain, or edges to the loop header.
377       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
378         continue;
379 
380       // This is a cross-chain edge that is within the loop, so decrement the
381       // loop predecessor count of the destination chain.
382       if (SuccChain.UnscheduledPredecessors == 0 ||
383           --SuccChain.UnscheduledPredecessors > 0)
384         continue;
385 
386       auto *MBB = *SuccChain.begin();
387       if (MBB->isEHPad())
388         EHPadWorkList.push_back(MBB);
389       else
390         BlockWorkList.push_back(MBB);
391     }
392   }
393 }
394 
395 /// \brief Select the best successor for a block.
396 ///
397 /// This looks across all successors of a particular block and attempts to
398 /// select the "best" one to be the layout successor. It only considers direct
399 /// successors which also pass the block filter. It will attempt to avoid
400 /// breaking CFG structure, but cave and break such structures in the case of
401 /// very hot successor edges.
402 ///
403 /// \returns The best successor block found, or null if none are viable.
404 MachineBasicBlock *
405 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
406                                            BlockChain &Chain,
407                                            const BlockFilterSet *BlockFilter) {
408   const BranchProbability HotProb(4, 5); // 80%
409 
410   MachineBasicBlock *BestSucc = nullptr;
411   auto BestProb = BranchProbability::getZero();
412 
413   // Adjust edge probabilities by excluding edges pointing to blocks that is
414   // either not in BlockFilter or is already in the current chain. Consider the
415   // following CFG:
416   //
417   //     --->A
418   //     |  / \
419   //     | B   C
420   //     |  \ / \
421   //     ----D   E
422   //
423   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
424   // A->C is chosen as a fall-through, D won't be selected as a successor of C
425   // due to CFG constraint (the probability of C->D is not greater than
426   // HotProb). If we exclude E that is not in BlockFilter when calculating the
427   // probability of C->D, D will be selected and we will get A C D B as the
428   // layout of this loop.
429   auto AdjustedSumProb = BranchProbability::getOne();
430   SmallVector<MachineBasicBlock *, 4> Successors;
431   for (MachineBasicBlock *Succ : BB->successors()) {
432     bool SkipSucc = false;
433     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
434       SkipSucc = true;
435     } else {
436       BlockChain *SuccChain = BlockToChain[Succ];
437       if (SuccChain == &Chain) {
438         SkipSucc = true;
439       } else if (Succ != *SuccChain->begin()) {
440         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
441         continue;
442       }
443     }
444     if (SkipSucc)
445       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
446     else
447       Successors.push_back(Succ);
448   }
449 
450   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
451   for (MachineBasicBlock *Succ : Successors) {
452     BranchProbability SuccProb;
453     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
454     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
455     if (SuccProbN >= SuccProbD)
456       SuccProb = BranchProbability::getOne();
457     else
458       SuccProb = BranchProbability(SuccProbN, SuccProbD);
459 
460     // If we outline optional branches, look whether Succ is unavoidable, i.e.
461     // dominates all terminators of the MachineFunction. If it does, other
462     // successors must be optional. Don't do this for cold branches.
463     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
464         UnavoidableBlocks.count(Succ) > 0) {
465       auto HasShortOptionalBranch = [&]() {
466         for (MachineBasicBlock *Pred : Succ->predecessors()) {
467           // Check whether there is an unplaced optional branch.
468           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
469               BlockToChain[Pred] == &Chain)
470             continue;
471           // Check whether the optional branch has exactly one BB.
472           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
473             continue;
474           // Check whether the optional branch is small.
475           if (Pred->size() < OutlineOptionalThreshold)
476             return true;
477         }
478         return false;
479       };
480       if (!HasShortOptionalBranch())
481         return Succ;
482     }
483 
484     // Only consider successors which are either "hot", or wouldn't violate
485     // any CFG constraints.
486     BlockChain &SuccChain = *BlockToChain[Succ];
487     if (SuccChain.UnscheduledPredecessors != 0) {
488       if (SuccProb < HotProb) {
489         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
490                      << " (prob) (CFG conflict)\n");
491         continue;
492       }
493 
494       // Make sure that a hot successor doesn't have a globally more
495       // important predecessor.
496       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
497       BlockFrequency CandidateEdgeFreq =
498           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
499       bool BadCFGConflict = false;
500       for (MachineBasicBlock *Pred : Succ->predecessors()) {
501         if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
502             (BlockFilter && !BlockFilter->count(Pred)) ||
503             BlockToChain[Pred] == &Chain)
504           continue;
505         BlockFrequency PredEdgeFreq =
506             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
507         if (PredEdgeFreq >= CandidateEdgeFreq) {
508           BadCFGConflict = true;
509           break;
510         }
511       }
512       if (BadCFGConflict) {
513         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
514                      << " (prob) (non-cold CFG conflict)\n");
515         continue;
516       }
517     }
518 
519     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
520                  << " (prob)"
521                  << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
522                  << "\n");
523     if (BestSucc && BestProb >= SuccProb)
524       continue;
525     BestSucc = Succ;
526     BestProb = SuccProb;
527   }
528   return BestSucc;
529 }
530 
531 /// \brief Select the best block from a worklist.
532 ///
533 /// This looks through the provided worklist as a list of candidate basic
534 /// blocks and select the most profitable one to place. The definition of
535 /// profitable only really makes sense in the context of a loop. This returns
536 /// the most frequently visited block in the worklist, which in the case of
537 /// a loop, is the one most desirable to be physically close to the rest of the
538 /// loop body in order to improve icache behavior.
539 ///
540 /// \returns The best block found, or null if none are viable.
541 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
542     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
543   // Once we need to walk the worklist looking for a candidate, cleanup the
544   // worklist of already placed entries.
545   // FIXME: If this shows up on profiles, it could be folded (at the cost of
546   // some code complexity) into the loop below.
547   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
548                                 [&](MachineBasicBlock *BB) {
549                                   return BlockToChain.lookup(BB) == &Chain;
550                                 }),
551                  WorkList.end());
552 
553   if (WorkList.empty())
554     return nullptr;
555 
556   bool IsEHPad = WorkList[0]->isEHPad();
557 
558   MachineBasicBlock *BestBlock = nullptr;
559   BlockFrequency BestFreq;
560   for (MachineBasicBlock *MBB : WorkList) {
561     assert(MBB->isEHPad() == IsEHPad);
562 
563     BlockChain &SuccChain = *BlockToChain[MBB];
564     if (&SuccChain == &Chain)
565       continue;
566 
567     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
568 
569     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
570     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
571           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
572 
573     // For ehpad, we layout the least probable first as to avoid jumping back
574     // from least probable landingpads to more probable ones.
575     //
576     // FIXME: Using probability is probably (!) not the best way to achieve
577     // this. We should probably have a more principled approach to layout
578     // cleanup code.
579     //
580     // The goal is to get:
581     //
582     //                 +--------------------------+
583     //                 |                          V
584     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
585     //
586     // Rather than:
587     //
588     //                 +-------------------------------------+
589     //                 V                                     |
590     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
591     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
592       continue;
593 
594     BestBlock = MBB;
595     BestFreq = CandidateFreq;
596   }
597 
598   return BestBlock;
599 }
600 
601 /// \brief Retrieve the first unplaced basic block.
602 ///
603 /// This routine is called when we are unable to use the CFG to walk through
604 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
605 /// We walk through the function's blocks in order, starting from the
606 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
607 /// re-scanning the entire sequence on repeated calls to this routine.
608 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
609     MachineFunction &F, const BlockChain &PlacedChain,
610     MachineFunction::iterator &PrevUnplacedBlockIt,
611     const BlockFilterSet *BlockFilter) {
612   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
613        ++I) {
614     if (BlockFilter && !BlockFilter->count(&*I))
615       continue;
616     if (BlockToChain[&*I] != &PlacedChain) {
617       PrevUnplacedBlockIt = I;
618       // Now select the head of the chain to which the unplaced block belongs
619       // as the block to place. This will force the entire chain to be placed,
620       // and satisfies the requirements of merging chains.
621       return *BlockToChain[&*I]->begin();
622     }
623   }
624   return nullptr;
625 }
626 
627 void MachineBlockPlacement::fillWorkLists(
628     MachineBasicBlock *MBB,
629     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
630     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
631     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
632     const BlockFilterSet *BlockFilter = nullptr) {
633   BlockChain &Chain = *BlockToChain[MBB];
634   if (!UpdatedPreds.insert(&Chain).second)
635     return;
636 
637   assert(Chain.UnscheduledPredecessors == 0);
638   for (MachineBasicBlock *ChainBB : Chain) {
639     assert(BlockToChain[ChainBB] == &Chain);
640     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
641       if (BlockFilter && !BlockFilter->count(Pred))
642         continue;
643       if (BlockToChain[Pred] == &Chain)
644         continue;
645       ++Chain.UnscheduledPredecessors;
646     }
647   }
648 
649   if (Chain.UnscheduledPredecessors != 0)
650     return;
651 
652   MBB = *Chain.begin();
653   if (MBB->isEHPad())
654     EHPadWorkList.push_back(MBB);
655   else
656     BlockWorkList.push_back(MBB);
657 }
658 
659 void MachineBlockPlacement::buildChain(
660     MachineBasicBlock *BB, BlockChain &Chain,
661     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
662     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
663     const BlockFilterSet *BlockFilter) {
664   assert(BB);
665   assert(BlockToChain[BB] == &Chain);
666   MachineFunction &F = *BB->getParent();
667   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
668 
669   MachineBasicBlock *LoopHeaderBB = BB;
670   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
671                       BlockFilter);
672   BB = *std::prev(Chain.end());
673   for (;;) {
674     assert(BB);
675     assert(BlockToChain[BB] == &Chain);
676     assert(*std::prev(Chain.end()) == BB);
677 
678     // Look for the best viable successor if there is one to place immediately
679     // after this block.
680     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
681 
682     // If an immediate successor isn't available, look for the best viable
683     // block among those we've identified as not violating the loop's CFG at
684     // this point. This won't be a fallthrough, but it will increase locality.
685     if (!BestSucc)
686       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
687     if (!BestSucc)
688       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
689 
690     if (!BestSucc) {
691       BestSucc =
692           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
693       if (!BestSucc)
694         break;
695 
696       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
697                       "layout successor until the CFG reduces\n");
698     }
699 
700     // Place this block, updating the datastructures to reflect its placement.
701     BlockChain &SuccChain = *BlockToChain[BestSucc];
702     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
703     // we selected a successor that didn't fit naturally into the CFG.
704     SuccChain.UnscheduledPredecessors = 0;
705     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
706                  << getBlockName(BestSucc) << "\n");
707     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
708                         BlockFilter);
709     Chain.merge(BestSucc, &SuccChain);
710     BB = *std::prev(Chain.end());
711   }
712 
713   DEBUG(dbgs() << "Finished forming chain for header block "
714                << getBlockName(*Chain.begin()) << "\n");
715 }
716 
717 /// \brief Find the best loop top block for layout.
718 ///
719 /// Look for a block which is strictly better than the loop header for laying
720 /// out at the top of the loop. This looks for one and only one pattern:
721 /// a latch block with no conditional exit. This block will cause a conditional
722 /// jump around it or will be the bottom of the loop if we lay it out in place,
723 /// but if it it doesn't end up at the bottom of the loop for any reason,
724 /// rotation alone won't fix it. Because such a block will always result in an
725 /// unconditional jump (for the backedge) rotating it in front of the loop
726 /// header is always profitable.
727 MachineBasicBlock *
728 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
729                                        const BlockFilterSet &LoopBlockSet) {
730   // Check that the header hasn't been fused with a preheader block due to
731   // crazy branches. If it has, we need to start with the header at the top to
732   // prevent pulling the preheader into the loop body.
733   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
734   if (!LoopBlockSet.count(*HeaderChain.begin()))
735     return L.getHeader();
736 
737   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
738                << "\n");
739 
740   BlockFrequency BestPredFreq;
741   MachineBasicBlock *BestPred = nullptr;
742   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
743     if (!LoopBlockSet.count(Pred))
744       continue;
745     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
746                  << Pred->succ_size() << " successors, ";
747           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
748     if (Pred->succ_size() > 1)
749       continue;
750 
751     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
752     if (!BestPred || PredFreq > BestPredFreq ||
753         (!(PredFreq < BestPredFreq) &&
754          Pred->isLayoutSuccessor(L.getHeader()))) {
755       BestPred = Pred;
756       BestPredFreq = PredFreq;
757     }
758   }
759 
760   // If no direct predecessor is fine, just use the loop header.
761   if (!BestPred) {
762     DEBUG(dbgs() << "    final top unchanged\n");
763     return L.getHeader();
764   }
765 
766   // Walk backwards through any straight line of predecessors.
767   while (BestPred->pred_size() == 1 &&
768          (*BestPred->pred_begin())->succ_size() == 1 &&
769          *BestPred->pred_begin() != L.getHeader())
770     BestPred = *BestPred->pred_begin();
771 
772   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
773   return BestPred;
774 }
775 
776 /// \brief Find the best loop exiting block for layout.
777 ///
778 /// This routine implements the logic to analyze the loop looking for the best
779 /// block to layout at the top of the loop. Typically this is done to maximize
780 /// fallthrough opportunities.
781 MachineBasicBlock *
782 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
783                                         const BlockFilterSet &LoopBlockSet) {
784   // We don't want to layout the loop linearly in all cases. If the loop header
785   // is just a normal basic block in the loop, we want to look for what block
786   // within the loop is the best one to layout at the top. However, if the loop
787   // header has be pre-merged into a chain due to predecessors not having
788   // analyzable branches, *and* the predecessor it is merged with is *not* part
789   // of the loop, rotating the header into the middle of the loop will create
790   // a non-contiguous range of blocks which is Very Bad. So start with the
791   // header and only rotate if safe.
792   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
793   if (!LoopBlockSet.count(*HeaderChain.begin()))
794     return nullptr;
795 
796   BlockFrequency BestExitEdgeFreq;
797   unsigned BestExitLoopDepth = 0;
798   MachineBasicBlock *ExitingBB = nullptr;
799   // If there are exits to outer loops, loop rotation can severely limit
800   // fallthrough opportunites unless it selects such an exit. Keep a set of
801   // blocks where rotating to exit with that block will reach an outer loop.
802   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
803 
804   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
805                << "\n");
806   for (MachineBasicBlock *MBB : L.getBlocks()) {
807     BlockChain &Chain = *BlockToChain[MBB];
808     // Ensure that this block is at the end of a chain; otherwise it could be
809     // mid-way through an inner loop or a successor of an unanalyzable branch.
810     if (MBB != *std::prev(Chain.end()))
811       continue;
812 
813     // Now walk the successors. We need to establish whether this has a viable
814     // exiting successor and whether it has a viable non-exiting successor.
815     // We store the old exiting state and restore it if a viable looping
816     // successor isn't found.
817     MachineBasicBlock *OldExitingBB = ExitingBB;
818     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
819     bool HasLoopingSucc = false;
820     for (MachineBasicBlock *Succ : MBB->successors()) {
821       if (Succ->isEHPad())
822         continue;
823       if (Succ == MBB)
824         continue;
825       BlockChain &SuccChain = *BlockToChain[Succ];
826       // Don't split chains, either this chain or the successor's chain.
827       if (&Chain == &SuccChain) {
828         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
829                      << getBlockName(Succ) << " (chain conflict)\n");
830         continue;
831       }
832 
833       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
834       if (LoopBlockSet.count(Succ)) {
835         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
836                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
837         HasLoopingSucc = true;
838         continue;
839       }
840 
841       unsigned SuccLoopDepth = 0;
842       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
843         SuccLoopDepth = ExitLoop->getLoopDepth();
844         if (ExitLoop->contains(&L))
845           BlocksExitingToOuterLoop.insert(MBB);
846       }
847 
848       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
849       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
850                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
851             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
852       // Note that we bias this toward an existing layout successor to retain
853       // incoming order in the absence of better information. The exit must have
854       // a frequency higher than the current exit before we consider breaking
855       // the layout.
856       BranchProbability Bias(100 - ExitBlockBias, 100);
857       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
858           ExitEdgeFreq > BestExitEdgeFreq ||
859           (MBB->isLayoutSuccessor(Succ) &&
860            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
861         BestExitEdgeFreq = ExitEdgeFreq;
862         ExitingBB = MBB;
863       }
864     }
865 
866     if (!HasLoopingSucc) {
867       // Restore the old exiting state, no viable looping successor was found.
868       ExitingBB = OldExitingBB;
869       BestExitEdgeFreq = OldBestExitEdgeFreq;
870     }
871   }
872   // Without a candidate exiting block or with only a single block in the
873   // loop, just use the loop header to layout the loop.
874   if (!ExitingBB || L.getNumBlocks() == 1)
875     return nullptr;
876 
877   // Also, if we have exit blocks which lead to outer loops but didn't select
878   // one of them as the exiting block we are rotating toward, disable loop
879   // rotation altogether.
880   if (!BlocksExitingToOuterLoop.empty() &&
881       !BlocksExitingToOuterLoop.count(ExitingBB))
882     return nullptr;
883 
884   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
885   return ExitingBB;
886 }
887 
888 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
889 ///
890 /// Once we have built a chain, try to rotate it to line up the hot exit block
891 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
892 /// branches. For example, if the loop has fallthrough into its header and out
893 /// of its bottom already, don't rotate it.
894 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
895                                        MachineBasicBlock *ExitingBB,
896                                        const BlockFilterSet &LoopBlockSet) {
897   if (!ExitingBB)
898     return;
899 
900   MachineBasicBlock *Top = *LoopChain.begin();
901   bool ViableTopFallthrough = false;
902   for (MachineBasicBlock *Pred : Top->predecessors()) {
903     BlockChain *PredChain = BlockToChain[Pred];
904     if (!LoopBlockSet.count(Pred) &&
905         (!PredChain || Pred == *std::prev(PredChain->end()))) {
906       ViableTopFallthrough = true;
907       break;
908     }
909   }
910 
911   // If the header has viable fallthrough, check whether the current loop
912   // bottom is a viable exiting block. If so, bail out as rotating will
913   // introduce an unnecessary branch.
914   if (ViableTopFallthrough) {
915     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
916     for (MachineBasicBlock *Succ : Bottom->successors()) {
917       BlockChain *SuccChain = BlockToChain[Succ];
918       if (!LoopBlockSet.count(Succ) &&
919           (!SuccChain || Succ == *SuccChain->begin()))
920         return;
921     }
922   }
923 
924   BlockChain::iterator ExitIt =
925       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
926   if (ExitIt == LoopChain.end())
927     return;
928 
929   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
930 }
931 
932 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
933 ///
934 /// With profile data, we can determine the cost in terms of missed fall through
935 /// opportunities when rotating a loop chain and select the best rotation.
936 /// Basically, there are three kinds of cost to consider for each rotation:
937 ///    1. The possibly missed fall through edge (if it exists) from BB out of
938 ///    the loop to the loop header.
939 ///    2. The possibly missed fall through edges (if they exist) from the loop
940 ///    exits to BB out of the loop.
941 ///    3. The missed fall through edge (if it exists) from the last BB to the
942 ///    first BB in the loop chain.
943 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
944 ///  We select the best rotation with the smallest cost.
945 void MachineBlockPlacement::rotateLoopWithProfile(
946     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
947   auto HeaderBB = L.getHeader();
948   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
949   auto RotationPos = LoopChain.end();
950 
951   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
952 
953   // A utility lambda that scales up a block frequency by dividing it by a
954   // branch probability which is the reciprocal of the scale.
955   auto ScaleBlockFrequency = [](BlockFrequency Freq,
956                                 unsigned Scale) -> BlockFrequency {
957     if (Scale == 0)
958       return 0;
959     // Use operator / between BlockFrequency and BranchProbability to implement
960     // saturating multiplication.
961     return Freq / BranchProbability(1, Scale);
962   };
963 
964   // Compute the cost of the missed fall-through edge to the loop header if the
965   // chain head is not the loop header. As we only consider natural loops with
966   // single header, this computation can be done only once.
967   BlockFrequency HeaderFallThroughCost(0);
968   for (auto *Pred : HeaderBB->predecessors()) {
969     BlockChain *PredChain = BlockToChain[Pred];
970     if (!LoopBlockSet.count(Pred) &&
971         (!PredChain || Pred == *std::prev(PredChain->end()))) {
972       auto EdgeFreq =
973           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
974       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
975       // If the predecessor has only an unconditional jump to the header, we
976       // need to consider the cost of this jump.
977       if (Pred->succ_size() == 1)
978         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
979       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
980     }
981   }
982 
983   // Here we collect all exit blocks in the loop, and for each exit we find out
984   // its hottest exit edge. For each loop rotation, we define the loop exit cost
985   // as the sum of frequencies of exit edges we collect here, excluding the exit
986   // edge from the tail of the loop chain.
987   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
988   for (auto BB : LoopChain) {
989     auto LargestExitEdgeProb = BranchProbability::getZero();
990     for (auto *Succ : BB->successors()) {
991       BlockChain *SuccChain = BlockToChain[Succ];
992       if (!LoopBlockSet.count(Succ) &&
993           (!SuccChain || Succ == *SuccChain->begin())) {
994         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
995         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
996       }
997     }
998     if (LargestExitEdgeProb > BranchProbability::getZero()) {
999       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1000       ExitsWithFreq.emplace_back(BB, ExitFreq);
1001     }
1002   }
1003 
1004   // In this loop we iterate every block in the loop chain and calculate the
1005   // cost assuming the block is the head of the loop chain. When the loop ends,
1006   // we should have found the best candidate as the loop chain's head.
1007   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1008             EndIter = LoopChain.end();
1009        Iter != EndIter; Iter++, TailIter++) {
1010     // TailIter is used to track the tail of the loop chain if the block we are
1011     // checking (pointed by Iter) is the head of the chain.
1012     if (TailIter == LoopChain.end())
1013       TailIter = LoopChain.begin();
1014 
1015     auto TailBB = *TailIter;
1016 
1017     // Calculate the cost by putting this BB to the top.
1018     BlockFrequency Cost = 0;
1019 
1020     // If the current BB is the loop header, we need to take into account the
1021     // cost of the missed fall through edge from outside of the loop to the
1022     // header.
1023     if (Iter != HeaderIter)
1024       Cost += HeaderFallThroughCost;
1025 
1026     // Collect the loop exit cost by summing up frequencies of all exit edges
1027     // except the one from the chain tail.
1028     for (auto &ExitWithFreq : ExitsWithFreq)
1029       if (TailBB != ExitWithFreq.first)
1030         Cost += ExitWithFreq.second;
1031 
1032     // The cost of breaking the once fall-through edge from the tail to the top
1033     // of the loop chain. Here we need to consider three cases:
1034     // 1. If the tail node has only one successor, then we will get an
1035     //    additional jmp instruction. So the cost here is (MisfetchCost +
1036     //    JumpInstCost) * tail node frequency.
1037     // 2. If the tail node has two successors, then we may still get an
1038     //    additional jmp instruction if the layout successor after the loop
1039     //    chain is not its CFG successor. Note that the more frequently executed
1040     //    jmp instruction will be put ahead of the other one. Assume the
1041     //    frequency of those two branches are x and y, where x is the frequency
1042     //    of the edge to the chain head, then the cost will be
1043     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1044     // 3. If the tail node has more than two successors (this rarely happens),
1045     //    we won't consider any additional cost.
1046     if (TailBB->isSuccessor(*Iter)) {
1047       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1048       if (TailBB->succ_size() == 1)
1049         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1050                                     MisfetchCost + JumpInstCost);
1051       else if (TailBB->succ_size() == 2) {
1052         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1053         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1054         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1055                                   ? TailBBFreq * TailToHeadProb.getCompl()
1056                                   : TailToHeadFreq;
1057         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1058                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1059       }
1060     }
1061 
1062     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1063                  << " to the top: " << Cost.getFrequency() << "\n");
1064 
1065     if (Cost < SmallestRotationCost) {
1066       SmallestRotationCost = Cost;
1067       RotationPos = Iter;
1068     }
1069   }
1070 
1071   if (RotationPos != LoopChain.end()) {
1072     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1073                  << " to the top\n");
1074     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1075   }
1076 }
1077 
1078 /// \brief Collect blocks in the given loop that are to be placed.
1079 ///
1080 /// When profile data is available, exclude cold blocks from the returned set;
1081 /// otherwise, collect all blocks in the loop.
1082 MachineBlockPlacement::BlockFilterSet
1083 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
1084   BlockFilterSet LoopBlockSet;
1085 
1086   // Filter cold blocks off from LoopBlockSet when profile data is available.
1087   // Collect the sum of frequencies of incoming edges to the loop header from
1088   // outside. If we treat the loop as a super block, this is the frequency of
1089   // the loop. Then for each block in the loop, we calculate the ratio between
1090   // its frequency and the frequency of the loop block. When it is too small,
1091   // don't add it to the loop chain. If there are outer loops, then this block
1092   // will be merged into the first outer loop chain for which this block is not
1093   // cold anymore. This needs precise profile data and we only do this when
1094   // profile data is available.
1095   if (F.getFunction()->getEntryCount()) {
1096     BlockFrequency LoopFreq(0);
1097     for (auto LoopPred : L.getHeader()->predecessors())
1098       if (!L.contains(LoopPred))
1099         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1100                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1101 
1102     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1103       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1104       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1105         continue;
1106       LoopBlockSet.insert(LoopBB);
1107     }
1108   } else
1109     LoopBlockSet.insert(L.block_begin(), L.block_end());
1110 
1111   return LoopBlockSet;
1112 }
1113 
1114 /// \brief Forms basic block chains from the natural loop structures.
1115 ///
1116 /// These chains are designed to preserve the existing *structure* of the code
1117 /// as much as possible. We can then stitch the chains together in a way which
1118 /// both preserves the topological structure and minimizes taken conditional
1119 /// branches.
1120 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1121                                             MachineLoop &L) {
1122   // First recurse through any nested loops, building chains for those inner
1123   // loops.
1124   for (MachineLoop *InnerLoop : L)
1125     buildLoopChains(F, *InnerLoop);
1126 
1127   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1128   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1129   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1130 
1131   // Check if we have profile data for this function. If yes, we will rotate
1132   // this loop by modeling costs more precisely which requires the profile data
1133   // for better layout.
1134   bool RotateLoopWithProfile =
1135       ForcePreciseRotationCost ||
1136       (PreciseRotationCost && F.getFunction()->getEntryCount());
1137 
1138   // First check to see if there is an obviously preferable top block for the
1139   // loop. This will default to the header, but may end up as one of the
1140   // predecessors to the header if there is one which will result in strictly
1141   // fewer branches in the loop body.
1142   // When we use profile data to rotate the loop, this is unnecessary.
1143   MachineBasicBlock *LoopTop =
1144       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1145 
1146   // If we selected just the header for the loop top, look for a potentially
1147   // profitable exit block in the event that rotating the loop can eliminate
1148   // branches by placing an exit edge at the bottom.
1149   MachineBasicBlock *ExitingBB = nullptr;
1150   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1151     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1152 
1153   BlockChain &LoopChain = *BlockToChain[LoopTop];
1154 
1155   // FIXME: This is a really lame way of walking the chains in the loop: we
1156   // walk the blocks, and use a set to prevent visiting a particular chain
1157   // twice.
1158   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1159   assert(LoopChain.UnscheduledPredecessors == 0);
1160   UpdatedPreds.insert(&LoopChain);
1161 
1162   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1163     fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
1164                   &LoopBlockSet);
1165 
1166   buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
1167 
1168   if (RotateLoopWithProfile)
1169     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1170   else
1171     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1172 
1173   DEBUG({
1174     // Crash at the end so we get all of the debugging output first.
1175     bool BadLoop = false;
1176     if (LoopChain.UnscheduledPredecessors) {
1177       BadLoop = true;
1178       dbgs() << "Loop chain contains a block without its preds placed!\n"
1179              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1180              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1181     }
1182     for (MachineBasicBlock *ChainBB : LoopChain) {
1183       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1184       if (!LoopBlockSet.erase(ChainBB)) {
1185         // We don't mark the loop as bad here because there are real situations
1186         // where this can occur. For example, with an unanalyzable fallthrough
1187         // from a loop block to a non-loop block or vice versa.
1188         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1189                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1190                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1191                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1192       }
1193     }
1194 
1195     if (!LoopBlockSet.empty()) {
1196       BadLoop = true;
1197       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1198         dbgs() << "Loop contains blocks never placed into a chain!\n"
1199                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1200                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1201                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1202     }
1203     assert(!BadLoop && "Detected problems with the placement of this loop.");
1204   });
1205 }
1206 
1207 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1208   // Ensure that every BB in the function has an associated chain to simplify
1209   // the assumptions of the remaining algorithm.
1210   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1211   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1212     MachineBasicBlock *BB = &*FI;
1213     BlockChain *Chain =
1214         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1215     // Also, merge any blocks which we cannot reason about and must preserve
1216     // the exact fallthrough behavior for.
1217     for (;;) {
1218       Cond.clear();
1219       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1220       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1221         break;
1222 
1223       MachineFunction::iterator NextFI = std::next(FI);
1224       MachineBasicBlock *NextBB = &*NextFI;
1225       // Ensure that the layout successor is a viable block, as we know that
1226       // fallthrough is a possibility.
1227       assert(NextFI != FE && "Can't fallthrough past the last block.");
1228       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1229                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1230                    << "\n");
1231       Chain->merge(NextBB, nullptr);
1232       FI = NextFI;
1233       BB = NextBB;
1234     }
1235   }
1236 
1237   if (OutlineOptionalBranches) {
1238     // Find the nearest common dominator of all of F's terminators.
1239     MachineBasicBlock *Terminator = nullptr;
1240     for (MachineBasicBlock &MBB : F) {
1241       if (MBB.succ_size() == 0) {
1242         if (Terminator == nullptr)
1243           Terminator = &MBB;
1244         else
1245           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1246       }
1247     }
1248 
1249     // MBBs dominating this common dominator are unavoidable.
1250     UnavoidableBlocks.clear();
1251     for (MachineBasicBlock &MBB : F) {
1252       if (MDT->dominates(&MBB, Terminator)) {
1253         UnavoidableBlocks.insert(&MBB);
1254       }
1255     }
1256   }
1257 
1258   // Build any loop-based chains.
1259   for (MachineLoop *L : *MLI)
1260     buildLoopChains(F, *L);
1261 
1262   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1263   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1264 
1265   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1266   for (MachineBasicBlock &MBB : F)
1267     fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
1268 
1269   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1270   buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList);
1271 
1272 #ifndef NDEBUG
1273   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1274 #endif
1275   DEBUG({
1276     // Crash at the end so we get all of the debugging output first.
1277     bool BadFunc = false;
1278     FunctionBlockSetType FunctionBlockSet;
1279     for (MachineBasicBlock &MBB : F)
1280       FunctionBlockSet.insert(&MBB);
1281 
1282     for (MachineBasicBlock *ChainBB : FunctionChain)
1283       if (!FunctionBlockSet.erase(ChainBB)) {
1284         BadFunc = true;
1285         dbgs() << "Function chain contains a block not in the function!\n"
1286                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1287       }
1288 
1289     if (!FunctionBlockSet.empty()) {
1290       BadFunc = true;
1291       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1292         dbgs() << "Function contains blocks never placed into a chain!\n"
1293                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1294     }
1295     assert(!BadFunc && "Detected problems with the block placement.");
1296   });
1297 
1298   // Splice the blocks into place.
1299   MachineFunction::iterator InsertPos = F.begin();
1300   for (MachineBasicBlock *ChainBB : FunctionChain) {
1301     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1302                                                        : "          ... ")
1303                  << getBlockName(ChainBB) << "\n");
1304     if (InsertPos != MachineFunction::iterator(ChainBB))
1305       F.splice(InsertPos, ChainBB);
1306     else
1307       ++InsertPos;
1308 
1309     // Update the terminator of the previous block.
1310     if (ChainBB == *FunctionChain.begin())
1311       continue;
1312     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1313 
1314     // FIXME: It would be awesome of updateTerminator would just return rather
1315     // than assert when the branch cannot be analyzed in order to remove this
1316     // boiler plate.
1317     Cond.clear();
1318     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1319 
1320     // The "PrevBB" is not yet updated to reflect current code layout, so,
1321     //   o. it may fall-through to a block without explict "goto" instruction
1322     //      before layout, and no longer fall-through it after layout; or
1323     //   o. just opposite.
1324     //
1325     // AnalyzeBranch() may return erroneous value for FBB when these two
1326     // situations take place. For the first scenario FBB is mistakenly set NULL;
1327     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1328     // mistakenly pointing to "*BI".
1329     // Thus, if the future change needs to use FBB before the layout is set, it
1330     // has to correct FBB first by using the code similar to the following:
1331     //
1332     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1333     //   PrevBB->updateTerminator();
1334     //   Cond.clear();
1335     //   TBB = FBB = nullptr;
1336     //   if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1337     //     // FIXME: This should never take place.
1338     //     TBB = FBB = nullptr;
1339     //   }
1340     // }
1341     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
1342       PrevBB->updateTerminator();
1343   }
1344 
1345   // Fixup the last block.
1346   Cond.clear();
1347   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1348   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1349     F.back().updateTerminator();
1350 }
1351 
1352 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) {
1353   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1354   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1355 
1356   // Now that all the basic blocks in the chain have the proper layout,
1357   // make a final call to AnalyzeBranch with AllowModify set.
1358   // Indeed, the target may be able to optimize the branches in a way we
1359   // cannot because all branches may not be analyzable.
1360   // E.g., the target may be able to remove an unconditional branch to
1361   // a fallthrough when it occurs after predicated terminators.
1362   for (MachineBasicBlock *ChainBB : FunctionChain) {
1363     Cond.clear();
1364     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1365     if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1366       // If PrevBB has a two-way branch, try to re-order the branches
1367       // such that we branch to the successor with higher probability first.
1368       if (TBB && !Cond.empty() && FBB &&
1369           MBPI->getEdgeProbability(ChainBB, FBB) >
1370               MBPI->getEdgeProbability(ChainBB, TBB) &&
1371           !TII->ReverseBranchCondition(Cond)) {
1372         DEBUG(dbgs() << "Reverse order of the two branches: "
1373                      << getBlockName(ChainBB) << "\n");
1374         DEBUG(dbgs() << "    Edge probability: "
1375                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1376                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1377         DebugLoc dl; // FIXME: this is nowhere
1378         TII->RemoveBranch(*ChainBB);
1379         TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1380         ChainBB->updateTerminator();
1381       }
1382     }
1383   }
1384 }
1385 
1386 void MachineBlockPlacement::alignBlocks(MachineFunction &F) {
1387   // Walk through the backedges of the function now that we have fully laid out
1388   // the basic blocks and align the destination of each backedge. We don't rely
1389   // exclusively on the loop info here so that we can align backedges in
1390   // unnatural CFGs and backedges that were introduced purely because of the
1391   // loop rotations done during this layout pass.
1392   if (F.getFunction()->optForSize())
1393     return;
1394   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1395   if (FunctionChain.begin() == FunctionChain.end())
1396     return; // Empty chain.
1397 
1398   const BranchProbability ColdProb(1, 5); // 20%
1399   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1400   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1401   for (MachineBasicBlock *ChainBB : FunctionChain) {
1402     if (ChainBB == *FunctionChain.begin())
1403       continue;
1404 
1405     // Don't align non-looping basic blocks. These are unlikely to execute
1406     // enough times to matter in practice. Note that we'll still handle
1407     // unnatural CFGs inside of a natural outer loop (the common case) and
1408     // rotated loops.
1409     MachineLoop *L = MLI->getLoopFor(ChainBB);
1410     if (!L)
1411       continue;
1412 
1413     unsigned Align = TLI->getPrefLoopAlignment(L);
1414     if (!Align)
1415       continue; // Don't care about loop alignment.
1416 
1417     // If the block is cold relative to the function entry don't waste space
1418     // aligning it.
1419     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1420     if (Freq < WeightedEntryFreq)
1421       continue;
1422 
1423     // If the block is cold relative to its loop header, don't align it
1424     // regardless of what edges into the block exist.
1425     MachineBasicBlock *LoopHeader = L->getHeader();
1426     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1427     if (Freq < (LoopHeaderFreq * ColdProb))
1428       continue;
1429 
1430     // Check for the existence of a non-layout predecessor which would benefit
1431     // from aligning this block.
1432     MachineBasicBlock *LayoutPred =
1433         &*std::prev(MachineFunction::iterator(ChainBB));
1434 
1435     // Force alignment if all the predecessors are jumps. We already checked
1436     // that the block isn't cold above.
1437     if (!LayoutPred->isSuccessor(ChainBB)) {
1438       ChainBB->setAlignment(Align);
1439       continue;
1440     }
1441 
1442     // Align this block if the layout predecessor's edge into this block is
1443     // cold relative to the block. When this is true, other predecessors make up
1444     // all of the hot entries into the block and thus alignment is likely to be
1445     // important.
1446     BranchProbability LayoutProb =
1447         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1448     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1449     if (LayoutEdgeFreq <= (Freq * ColdProb))
1450       ChainBB->setAlignment(Align);
1451   }
1452 }
1453 
1454 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1455   if (skipFunction(*F.getFunction()))
1456     return false;
1457 
1458   // Check for single-block functions and skip them.
1459   if (std::next(F.begin()) == F.end())
1460     return false;
1461 
1462   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1463   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1464   MLI = &getAnalysis<MachineLoopInfo>();
1465   TII = F.getSubtarget().getInstrInfo();
1466   TLI = F.getSubtarget().getTargetLowering();
1467   MDT = &getAnalysis<MachineDominatorTree>();
1468   assert(BlockToChain.empty());
1469 
1470   buildCFGChains(F);
1471   optimizeBranches(F);
1472   alignBlocks(F);
1473 
1474   BlockToChain.clear();
1475   ChainAllocator.DestroyAll();
1476 
1477   if (AlignAllBlock)
1478     // Align all of the blocks in the function to a specific alignment.
1479     for (MachineBasicBlock &MBB : F)
1480       MBB.setAlignment(AlignAllBlock);
1481   else if (AlignAllNonFallThruBlocks) {
1482     // Align all of the blocks that have no fall-through predecessors to a
1483     // specific alignment.
1484     for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) {
1485       auto LayoutPred = std::prev(MBI);
1486       if (!LayoutPred->isSuccessor(&*MBI))
1487         MBI->setAlignment(AlignAllNonFallThruBlocks);
1488     }
1489   }
1490 
1491   // We always return true as we have no way to track whether the final order
1492   // differs from the original order.
1493   return true;
1494 }
1495 
1496 namespace {
1497 /// \brief A pass to compute block placement statistics.
1498 ///
1499 /// A separate pass to compute interesting statistics for evaluating block
1500 /// placement. This is separate from the actual placement pass so that they can
1501 /// be computed in the absence of any placement transformations or when using
1502 /// alternative placement strategies.
1503 class MachineBlockPlacementStats : public MachineFunctionPass {
1504   /// \brief A handle to the branch probability pass.
1505   const MachineBranchProbabilityInfo *MBPI;
1506 
1507   /// \brief A handle to the function-wide block frequency pass.
1508   const MachineBlockFrequencyInfo *MBFI;
1509 
1510 public:
1511   static char ID; // Pass identification, replacement for typeid
1512   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1513     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1514   }
1515 
1516   bool runOnMachineFunction(MachineFunction &F) override;
1517 
1518   void getAnalysisUsage(AnalysisUsage &AU) const override {
1519     AU.addRequired<MachineBranchProbabilityInfo>();
1520     AU.addRequired<MachineBlockFrequencyInfo>();
1521     AU.setPreservesAll();
1522     MachineFunctionPass::getAnalysisUsage(AU);
1523   }
1524 };
1525 }
1526 
1527 char MachineBlockPlacementStats::ID = 0;
1528 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1529 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1530                       "Basic Block Placement Stats", false, false)
1531 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1532 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1533 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1534                     "Basic Block Placement Stats", false, false)
1535 
1536 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1537   // Check for single-block functions and skip them.
1538   if (std::next(F.begin()) == F.end())
1539     return false;
1540 
1541   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1542   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1543 
1544   for (MachineBasicBlock &MBB : F) {
1545     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1546     Statistic &NumBranches =
1547         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1548     Statistic &BranchTakenFreq =
1549         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1550     for (MachineBasicBlock *Succ : MBB.successors()) {
1551       // Skip if this successor is a fallthrough.
1552       if (MBB.isLayoutSuccessor(Succ))
1553         continue;
1554 
1555       BlockFrequency EdgeFreq =
1556           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1557       ++NumBranches;
1558       BranchTakenFreq += EdgeFreq.getFrequency();
1559     }
1560   }
1561 
1562   return false;
1563 }
1564