1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 static cl::opt<bool> 103 ForcePreciseRotationCost("force-precise-rotation-cost", 104 cl::desc("Force the use of precise cost " 105 "loop rotation strategy."), 106 cl::init(false), cl::Hidden); 107 108 static cl::opt<unsigned> MisfetchCost( 109 "misfetch-cost", 110 cl::desc("Cost that models the probablistic risk of an instruction " 111 "misfetch due to a jump comparing to falling through, whose cost " 112 "is zero."), 113 cl::init(1), cl::Hidden); 114 115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 116 cl::desc("Cost of jump instructions."), 117 cl::init(1), cl::Hidden); 118 119 namespace { 120 class BlockChain; 121 /// \brief Type for our function-wide basic block -> block chain mapping. 122 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 123 } 124 125 namespace { 126 /// \brief A chain of blocks which will be laid out contiguously. 127 /// 128 /// This is the datastructure representing a chain of consecutive blocks that 129 /// are profitable to layout together in order to maximize fallthrough 130 /// probabilities and code locality. We also can use a block chain to represent 131 /// a sequence of basic blocks which have some external (correctness) 132 /// requirement for sequential layout. 133 /// 134 /// Chains can be built around a single basic block and can be merged to grow 135 /// them. They participate in a block-to-chain mapping, which is updated 136 /// automatically as chains are merged together. 137 class BlockChain { 138 /// \brief The sequence of blocks belonging to this chain. 139 /// 140 /// This is the sequence of blocks for a particular chain. These will be laid 141 /// out in-order within the function. 142 SmallVector<MachineBasicBlock *, 4> Blocks; 143 144 /// \brief A handle to the function-wide basic block to block chain mapping. 145 /// 146 /// This is retained in each block chain to simplify the computation of child 147 /// block chains for SCC-formation and iteration. We store the edges to child 148 /// basic blocks, and map them back to their associated chains using this 149 /// structure. 150 BlockToChainMapType &BlockToChain; 151 152 public: 153 /// \brief Construct a new BlockChain. 154 /// 155 /// This builds a new block chain representing a single basic block in the 156 /// function. It also registers itself as the chain that block participates 157 /// in with the BlockToChain mapping. 158 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 159 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 160 assert(BB && "Cannot create a chain with a null basic block"); 161 BlockToChain[BB] = this; 162 } 163 164 /// \brief Iterator over blocks within the chain. 165 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 166 167 /// \brief Beginning of blocks within the chain. 168 iterator begin() { return Blocks.begin(); } 169 170 /// \brief End of blocks within the chain. 171 iterator end() { return Blocks.end(); } 172 173 /// \brief Merge a block chain into this one. 174 /// 175 /// This routine merges a block chain into this one. It takes care of forming 176 /// a contiguous sequence of basic blocks, updating the edge list, and 177 /// updating the block -> chain mapping. It does not free or tear down the 178 /// old chain, but the old chain's block list is no longer valid. 179 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 180 assert(BB); 181 assert(!Blocks.empty()); 182 183 // Fast path in case we don't have a chain already. 184 if (!Chain) { 185 assert(!BlockToChain[BB]); 186 Blocks.push_back(BB); 187 BlockToChain[BB] = this; 188 return; 189 } 190 191 assert(BB == *Chain->begin()); 192 assert(Chain->begin() != Chain->end()); 193 194 // Update the incoming blocks to point to this chain, and add them to the 195 // chain structure. 196 for (MachineBasicBlock *ChainBB : *Chain) { 197 Blocks.push_back(ChainBB); 198 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 199 BlockToChain[ChainBB] = this; 200 } 201 } 202 203 #ifndef NDEBUG 204 /// \brief Dump the blocks in this chain. 205 LLVM_DUMP_METHOD void dump() { 206 for (MachineBasicBlock *MBB : *this) 207 MBB->dump(); 208 } 209 #endif // NDEBUG 210 211 /// \brief Count of predecessors of any block within the chain which have not 212 /// yet been scheduled. In general, we will delay scheduling this chain 213 /// until those predecessors are scheduled (or we find a sufficiently good 214 /// reason to override this heuristic.) Note that when forming loop chains, 215 /// blocks outside the loop are ignored and treated as if they were already 216 /// scheduled. 217 /// 218 /// Note: This field is reinitialized multiple times - once for each loop, 219 /// and then once for the function as a whole. 220 unsigned UnscheduledPredecessors; 221 }; 222 } 223 224 namespace { 225 class MachineBlockPlacement : public MachineFunctionPass { 226 /// \brief A typedef for a block filter set. 227 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 228 229 /// \brief A handle to the branch probability pass. 230 const MachineBranchProbabilityInfo *MBPI; 231 232 /// \brief A handle to the function-wide block frequency pass. 233 const MachineBlockFrequencyInfo *MBFI; 234 235 /// \brief A handle to the loop info. 236 const MachineLoopInfo *MLI; 237 238 /// \brief A handle to the target's instruction info. 239 const TargetInstrInfo *TII; 240 241 /// \brief A handle to the target's lowering info. 242 const TargetLoweringBase *TLI; 243 244 /// \brief A handle to the post dominator tree. 245 MachineDominatorTree *MDT; 246 247 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 248 /// all terminators of the MachineFunction. 249 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 250 251 /// \brief Allocator and owner of BlockChain structures. 252 /// 253 /// We build BlockChains lazily while processing the loop structure of 254 /// a function. To reduce malloc traffic, we allocate them using this 255 /// slab-like allocator, and destroy them after the pass completes. An 256 /// important guarantee is that this allocator produces stable pointers to 257 /// the chains. 258 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 259 260 /// \brief Function wide BasicBlock to BlockChain mapping. 261 /// 262 /// This mapping allows efficiently moving from any given basic block to the 263 /// BlockChain it participates in, if any. We use it to, among other things, 264 /// allow implicitly defining edges between chains as the existing edges 265 /// between basic blocks. 266 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 267 268 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 269 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 270 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 271 const BlockFilterSet *BlockFilter = nullptr); 272 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 273 BlockChain &Chain, 274 const BlockFilterSet *BlockFilter); 275 MachineBasicBlock * 276 selectBestCandidateBlock(BlockChain &Chain, 277 SmallVectorImpl<MachineBasicBlock *> &WorkList); 278 MachineBasicBlock * 279 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 280 MachineFunction::iterator &PrevUnplacedBlockIt, 281 const BlockFilterSet *BlockFilter); 282 283 /// \brief Add a basic block to the work list if it is apropriate. 284 /// 285 /// If the optional parameter BlockFilter is provided, only MBB 286 /// present in the set will be added to the worklist. If nullptr 287 /// is provided, no filtering occurs. 288 void fillWorkLists(MachineBasicBlock *MBB, 289 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 290 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 291 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 292 const BlockFilterSet *BlockFilter); 293 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 294 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 295 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 296 const BlockFilterSet *BlockFilter = nullptr); 297 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 298 const BlockFilterSet &LoopBlockSet); 299 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 300 const BlockFilterSet &LoopBlockSet); 301 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 302 void buildLoopChains(MachineFunction &F, MachineLoop &L); 303 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 304 const BlockFilterSet &LoopBlockSet); 305 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 306 const BlockFilterSet &LoopBlockSet); 307 void buildCFGChains(MachineFunction &F); 308 void optimizeBranches(MachineFunction &F); 309 void alignBlocks(MachineFunction &F); 310 311 public: 312 static char ID; // Pass identification, replacement for typeid 313 MachineBlockPlacement() : MachineFunctionPass(ID) { 314 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 315 } 316 317 bool runOnMachineFunction(MachineFunction &F) override; 318 319 void getAnalysisUsage(AnalysisUsage &AU) const override { 320 AU.addRequired<MachineBranchProbabilityInfo>(); 321 AU.addRequired<MachineBlockFrequencyInfo>(); 322 AU.addRequired<MachineDominatorTree>(); 323 AU.addRequired<MachineLoopInfo>(); 324 MachineFunctionPass::getAnalysisUsage(AU); 325 } 326 }; 327 } 328 329 char MachineBlockPlacement::ID = 0; 330 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 331 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 332 "Branch Probability Basic Block Placement", false, false) 333 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 334 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 335 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 336 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 337 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 338 "Branch Probability Basic Block Placement", false, false) 339 340 #ifndef NDEBUG 341 /// \brief Helper to print the name of a MBB. 342 /// 343 /// Only used by debug logging. 344 static std::string getBlockName(MachineBasicBlock *BB) { 345 std::string Result; 346 raw_string_ostream OS(Result); 347 OS << "BB#" << BB->getNumber(); 348 OS << " ('" << BB->getName() << "')"; 349 OS.flush(); 350 return Result; 351 } 352 #endif 353 354 /// \brief Mark a chain's successors as having one fewer preds. 355 /// 356 /// When a chain is being merged into the "placed" chain, this routine will 357 /// quickly walk the successors of each block in the chain and mark them as 358 /// having one fewer active predecessor. It also adds any successors of this 359 /// chain which reach the zero-predecessor state to the worklist passed in. 360 void MachineBlockPlacement::markChainSuccessors( 361 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 362 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 363 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 364 const BlockFilterSet *BlockFilter) { 365 // Walk all the blocks in this chain, marking their successors as having 366 // a predecessor placed. 367 for (MachineBasicBlock *MBB : Chain) { 368 // Add any successors for which this is the only un-placed in-loop 369 // predecessor to the worklist as a viable candidate for CFG-neutral 370 // placement. No subsequent placement of this block will violate the CFG 371 // shape, so we get to use heuristics to choose a favorable placement. 372 for (MachineBasicBlock *Succ : MBB->successors()) { 373 if (BlockFilter && !BlockFilter->count(Succ)) 374 continue; 375 BlockChain &SuccChain = *BlockToChain[Succ]; 376 // Disregard edges within a fixed chain, or edges to the loop header. 377 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 378 continue; 379 380 // This is a cross-chain edge that is within the loop, so decrement the 381 // loop predecessor count of the destination chain. 382 if (SuccChain.UnscheduledPredecessors == 0 || 383 --SuccChain.UnscheduledPredecessors > 0) 384 continue; 385 386 auto *MBB = *SuccChain.begin(); 387 if (MBB->isEHPad()) 388 EHPadWorkList.push_back(MBB); 389 else 390 BlockWorkList.push_back(MBB); 391 } 392 } 393 } 394 395 /// \brief Select the best successor for a block. 396 /// 397 /// This looks across all successors of a particular block and attempts to 398 /// select the "best" one to be the layout successor. It only considers direct 399 /// successors which also pass the block filter. It will attempt to avoid 400 /// breaking CFG structure, but cave and break such structures in the case of 401 /// very hot successor edges. 402 /// 403 /// \returns The best successor block found, or null if none are viable. 404 MachineBasicBlock * 405 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 406 BlockChain &Chain, 407 const BlockFilterSet *BlockFilter) { 408 const BranchProbability HotProb(4, 5); // 80% 409 410 MachineBasicBlock *BestSucc = nullptr; 411 auto BestProb = BranchProbability::getZero(); 412 413 // Adjust edge probabilities by excluding edges pointing to blocks that is 414 // either not in BlockFilter or is already in the current chain. Consider the 415 // following CFG: 416 // 417 // --->A 418 // | / \ 419 // | B C 420 // | \ / \ 421 // ----D E 422 // 423 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 424 // A->C is chosen as a fall-through, D won't be selected as a successor of C 425 // due to CFG constraint (the probability of C->D is not greater than 426 // HotProb). If we exclude E that is not in BlockFilter when calculating the 427 // probability of C->D, D will be selected and we will get A C D B as the 428 // layout of this loop. 429 auto AdjustedSumProb = BranchProbability::getOne(); 430 SmallVector<MachineBasicBlock *, 4> Successors; 431 for (MachineBasicBlock *Succ : BB->successors()) { 432 bool SkipSucc = false; 433 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 434 SkipSucc = true; 435 } else { 436 BlockChain *SuccChain = BlockToChain[Succ]; 437 if (SuccChain == &Chain) { 438 SkipSucc = true; 439 } else if (Succ != *SuccChain->begin()) { 440 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 441 continue; 442 } 443 } 444 if (SkipSucc) 445 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 446 else 447 Successors.push_back(Succ); 448 } 449 450 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 451 for (MachineBasicBlock *Succ : Successors) { 452 BranchProbability SuccProb; 453 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 454 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 455 if (SuccProbN >= SuccProbD) 456 SuccProb = BranchProbability::getOne(); 457 else 458 SuccProb = BranchProbability(SuccProbN, SuccProbD); 459 460 // If we outline optional branches, look whether Succ is unavoidable, i.e. 461 // dominates all terminators of the MachineFunction. If it does, other 462 // successors must be optional. Don't do this for cold branches. 463 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 464 UnavoidableBlocks.count(Succ) > 0) { 465 auto HasShortOptionalBranch = [&]() { 466 for (MachineBasicBlock *Pred : Succ->predecessors()) { 467 // Check whether there is an unplaced optional branch. 468 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 469 BlockToChain[Pred] == &Chain) 470 continue; 471 // Check whether the optional branch has exactly one BB. 472 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 473 continue; 474 // Check whether the optional branch is small. 475 if (Pred->size() < OutlineOptionalThreshold) 476 return true; 477 } 478 return false; 479 }; 480 if (!HasShortOptionalBranch()) 481 return Succ; 482 } 483 484 // Only consider successors which are either "hot", or wouldn't violate 485 // any CFG constraints. 486 BlockChain &SuccChain = *BlockToChain[Succ]; 487 if (SuccChain.UnscheduledPredecessors != 0) { 488 if (SuccProb < HotProb) { 489 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 490 << " (prob) (CFG conflict)\n"); 491 continue; 492 } 493 494 // Make sure that a hot successor doesn't have a globally more 495 // important predecessor. 496 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 497 BlockFrequency CandidateEdgeFreq = 498 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 499 bool BadCFGConflict = false; 500 for (MachineBasicBlock *Pred : Succ->predecessors()) { 501 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 502 (BlockFilter && !BlockFilter->count(Pred)) || 503 BlockToChain[Pred] == &Chain) 504 continue; 505 BlockFrequency PredEdgeFreq = 506 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 507 if (PredEdgeFreq >= CandidateEdgeFreq) { 508 BadCFGConflict = true; 509 break; 510 } 511 } 512 if (BadCFGConflict) { 513 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 514 << " (prob) (non-cold CFG conflict)\n"); 515 continue; 516 } 517 } 518 519 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 520 << " (prob)" 521 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 522 << "\n"); 523 if (BestSucc && BestProb >= SuccProb) 524 continue; 525 BestSucc = Succ; 526 BestProb = SuccProb; 527 } 528 return BestSucc; 529 } 530 531 /// \brief Select the best block from a worklist. 532 /// 533 /// This looks through the provided worklist as a list of candidate basic 534 /// blocks and select the most profitable one to place. The definition of 535 /// profitable only really makes sense in the context of a loop. This returns 536 /// the most frequently visited block in the worklist, which in the case of 537 /// a loop, is the one most desirable to be physically close to the rest of the 538 /// loop body in order to improve icache behavior. 539 /// 540 /// \returns The best block found, or null if none are viable. 541 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 542 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 543 // Once we need to walk the worklist looking for a candidate, cleanup the 544 // worklist of already placed entries. 545 // FIXME: If this shows up on profiles, it could be folded (at the cost of 546 // some code complexity) into the loop below. 547 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 548 [&](MachineBasicBlock *BB) { 549 return BlockToChain.lookup(BB) == &Chain; 550 }), 551 WorkList.end()); 552 553 if (WorkList.empty()) 554 return nullptr; 555 556 bool IsEHPad = WorkList[0]->isEHPad(); 557 558 MachineBasicBlock *BestBlock = nullptr; 559 BlockFrequency BestFreq; 560 for (MachineBasicBlock *MBB : WorkList) { 561 assert(MBB->isEHPad() == IsEHPad); 562 563 BlockChain &SuccChain = *BlockToChain[MBB]; 564 if (&SuccChain == &Chain) 565 continue; 566 567 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 568 569 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 570 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 571 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 572 573 // For ehpad, we layout the least probable first as to avoid jumping back 574 // from least probable landingpads to more probable ones. 575 // 576 // FIXME: Using probability is probably (!) not the best way to achieve 577 // this. We should probably have a more principled approach to layout 578 // cleanup code. 579 // 580 // The goal is to get: 581 // 582 // +--------------------------+ 583 // | V 584 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 585 // 586 // Rather than: 587 // 588 // +-------------------------------------+ 589 // V | 590 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 591 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 592 continue; 593 594 BestBlock = MBB; 595 BestFreq = CandidateFreq; 596 } 597 598 return BestBlock; 599 } 600 601 /// \brief Retrieve the first unplaced basic block. 602 /// 603 /// This routine is called when we are unable to use the CFG to walk through 604 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 605 /// We walk through the function's blocks in order, starting from the 606 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 607 /// re-scanning the entire sequence on repeated calls to this routine. 608 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 609 MachineFunction &F, const BlockChain &PlacedChain, 610 MachineFunction::iterator &PrevUnplacedBlockIt, 611 const BlockFilterSet *BlockFilter) { 612 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 613 ++I) { 614 if (BlockFilter && !BlockFilter->count(&*I)) 615 continue; 616 if (BlockToChain[&*I] != &PlacedChain) { 617 PrevUnplacedBlockIt = I; 618 // Now select the head of the chain to which the unplaced block belongs 619 // as the block to place. This will force the entire chain to be placed, 620 // and satisfies the requirements of merging chains. 621 return *BlockToChain[&*I]->begin(); 622 } 623 } 624 return nullptr; 625 } 626 627 void MachineBlockPlacement::fillWorkLists( 628 MachineBasicBlock *MBB, 629 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 630 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 631 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 632 const BlockFilterSet *BlockFilter = nullptr) { 633 BlockChain &Chain = *BlockToChain[MBB]; 634 if (!UpdatedPreds.insert(&Chain).second) 635 return; 636 637 assert(Chain.UnscheduledPredecessors == 0); 638 for (MachineBasicBlock *ChainBB : Chain) { 639 assert(BlockToChain[ChainBB] == &Chain); 640 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 641 if (BlockFilter && !BlockFilter->count(Pred)) 642 continue; 643 if (BlockToChain[Pred] == &Chain) 644 continue; 645 ++Chain.UnscheduledPredecessors; 646 } 647 } 648 649 if (Chain.UnscheduledPredecessors != 0) 650 return; 651 652 MBB = *Chain.begin(); 653 if (MBB->isEHPad()) 654 EHPadWorkList.push_back(MBB); 655 else 656 BlockWorkList.push_back(MBB); 657 } 658 659 void MachineBlockPlacement::buildChain( 660 MachineBasicBlock *BB, BlockChain &Chain, 661 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 662 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 663 const BlockFilterSet *BlockFilter) { 664 assert(BB); 665 assert(BlockToChain[BB] == &Chain); 666 MachineFunction &F = *BB->getParent(); 667 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 668 669 MachineBasicBlock *LoopHeaderBB = BB; 670 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 671 BlockFilter); 672 BB = *std::prev(Chain.end()); 673 for (;;) { 674 assert(BB); 675 assert(BlockToChain[BB] == &Chain); 676 assert(*std::prev(Chain.end()) == BB); 677 678 // Look for the best viable successor if there is one to place immediately 679 // after this block. 680 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 681 682 // If an immediate successor isn't available, look for the best viable 683 // block among those we've identified as not violating the loop's CFG at 684 // this point. This won't be a fallthrough, but it will increase locality. 685 if (!BestSucc) 686 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 687 if (!BestSucc) 688 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 689 690 if (!BestSucc) { 691 BestSucc = 692 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 693 if (!BestSucc) 694 break; 695 696 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 697 "layout successor until the CFG reduces\n"); 698 } 699 700 // Place this block, updating the datastructures to reflect its placement. 701 BlockChain &SuccChain = *BlockToChain[BestSucc]; 702 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 703 // we selected a successor that didn't fit naturally into the CFG. 704 SuccChain.UnscheduledPredecessors = 0; 705 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 706 << getBlockName(BestSucc) << "\n"); 707 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 708 BlockFilter); 709 Chain.merge(BestSucc, &SuccChain); 710 BB = *std::prev(Chain.end()); 711 } 712 713 DEBUG(dbgs() << "Finished forming chain for header block " 714 << getBlockName(*Chain.begin()) << "\n"); 715 } 716 717 /// \brief Find the best loop top block for layout. 718 /// 719 /// Look for a block which is strictly better than the loop header for laying 720 /// out at the top of the loop. This looks for one and only one pattern: 721 /// a latch block with no conditional exit. This block will cause a conditional 722 /// jump around it or will be the bottom of the loop if we lay it out in place, 723 /// but if it it doesn't end up at the bottom of the loop for any reason, 724 /// rotation alone won't fix it. Because such a block will always result in an 725 /// unconditional jump (for the backedge) rotating it in front of the loop 726 /// header is always profitable. 727 MachineBasicBlock * 728 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 729 const BlockFilterSet &LoopBlockSet) { 730 // Check that the header hasn't been fused with a preheader block due to 731 // crazy branches. If it has, we need to start with the header at the top to 732 // prevent pulling the preheader into the loop body. 733 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 734 if (!LoopBlockSet.count(*HeaderChain.begin())) 735 return L.getHeader(); 736 737 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 738 << "\n"); 739 740 BlockFrequency BestPredFreq; 741 MachineBasicBlock *BestPred = nullptr; 742 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 743 if (!LoopBlockSet.count(Pred)) 744 continue; 745 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 746 << Pred->succ_size() << " successors, "; 747 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 748 if (Pred->succ_size() > 1) 749 continue; 750 751 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 752 if (!BestPred || PredFreq > BestPredFreq || 753 (!(PredFreq < BestPredFreq) && 754 Pred->isLayoutSuccessor(L.getHeader()))) { 755 BestPred = Pred; 756 BestPredFreq = PredFreq; 757 } 758 } 759 760 // If no direct predecessor is fine, just use the loop header. 761 if (!BestPred) { 762 DEBUG(dbgs() << " final top unchanged\n"); 763 return L.getHeader(); 764 } 765 766 // Walk backwards through any straight line of predecessors. 767 while (BestPred->pred_size() == 1 && 768 (*BestPred->pred_begin())->succ_size() == 1 && 769 *BestPred->pred_begin() != L.getHeader()) 770 BestPred = *BestPred->pred_begin(); 771 772 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 773 return BestPred; 774 } 775 776 /// \brief Find the best loop exiting block for layout. 777 /// 778 /// This routine implements the logic to analyze the loop looking for the best 779 /// block to layout at the top of the loop. Typically this is done to maximize 780 /// fallthrough opportunities. 781 MachineBasicBlock * 782 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 783 const BlockFilterSet &LoopBlockSet) { 784 // We don't want to layout the loop linearly in all cases. If the loop header 785 // is just a normal basic block in the loop, we want to look for what block 786 // within the loop is the best one to layout at the top. However, if the loop 787 // header has be pre-merged into a chain due to predecessors not having 788 // analyzable branches, *and* the predecessor it is merged with is *not* part 789 // of the loop, rotating the header into the middle of the loop will create 790 // a non-contiguous range of blocks which is Very Bad. So start with the 791 // header and only rotate if safe. 792 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 793 if (!LoopBlockSet.count(*HeaderChain.begin())) 794 return nullptr; 795 796 BlockFrequency BestExitEdgeFreq; 797 unsigned BestExitLoopDepth = 0; 798 MachineBasicBlock *ExitingBB = nullptr; 799 // If there are exits to outer loops, loop rotation can severely limit 800 // fallthrough opportunites unless it selects such an exit. Keep a set of 801 // blocks where rotating to exit with that block will reach an outer loop. 802 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 803 804 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 805 << "\n"); 806 for (MachineBasicBlock *MBB : L.getBlocks()) { 807 BlockChain &Chain = *BlockToChain[MBB]; 808 // Ensure that this block is at the end of a chain; otherwise it could be 809 // mid-way through an inner loop or a successor of an unanalyzable branch. 810 if (MBB != *std::prev(Chain.end())) 811 continue; 812 813 // Now walk the successors. We need to establish whether this has a viable 814 // exiting successor and whether it has a viable non-exiting successor. 815 // We store the old exiting state and restore it if a viable looping 816 // successor isn't found. 817 MachineBasicBlock *OldExitingBB = ExitingBB; 818 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 819 bool HasLoopingSucc = false; 820 for (MachineBasicBlock *Succ : MBB->successors()) { 821 if (Succ->isEHPad()) 822 continue; 823 if (Succ == MBB) 824 continue; 825 BlockChain &SuccChain = *BlockToChain[Succ]; 826 // Don't split chains, either this chain or the successor's chain. 827 if (&Chain == &SuccChain) { 828 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 829 << getBlockName(Succ) << " (chain conflict)\n"); 830 continue; 831 } 832 833 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 834 if (LoopBlockSet.count(Succ)) { 835 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 836 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 837 HasLoopingSucc = true; 838 continue; 839 } 840 841 unsigned SuccLoopDepth = 0; 842 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 843 SuccLoopDepth = ExitLoop->getLoopDepth(); 844 if (ExitLoop->contains(&L)) 845 BlocksExitingToOuterLoop.insert(MBB); 846 } 847 848 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 849 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 850 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 851 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 852 // Note that we bias this toward an existing layout successor to retain 853 // incoming order in the absence of better information. The exit must have 854 // a frequency higher than the current exit before we consider breaking 855 // the layout. 856 BranchProbability Bias(100 - ExitBlockBias, 100); 857 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 858 ExitEdgeFreq > BestExitEdgeFreq || 859 (MBB->isLayoutSuccessor(Succ) && 860 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 861 BestExitEdgeFreq = ExitEdgeFreq; 862 ExitingBB = MBB; 863 } 864 } 865 866 if (!HasLoopingSucc) { 867 // Restore the old exiting state, no viable looping successor was found. 868 ExitingBB = OldExitingBB; 869 BestExitEdgeFreq = OldBestExitEdgeFreq; 870 } 871 } 872 // Without a candidate exiting block or with only a single block in the 873 // loop, just use the loop header to layout the loop. 874 if (!ExitingBB || L.getNumBlocks() == 1) 875 return nullptr; 876 877 // Also, if we have exit blocks which lead to outer loops but didn't select 878 // one of them as the exiting block we are rotating toward, disable loop 879 // rotation altogether. 880 if (!BlocksExitingToOuterLoop.empty() && 881 !BlocksExitingToOuterLoop.count(ExitingBB)) 882 return nullptr; 883 884 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 885 return ExitingBB; 886 } 887 888 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 889 /// 890 /// Once we have built a chain, try to rotate it to line up the hot exit block 891 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 892 /// branches. For example, if the loop has fallthrough into its header and out 893 /// of its bottom already, don't rotate it. 894 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 895 MachineBasicBlock *ExitingBB, 896 const BlockFilterSet &LoopBlockSet) { 897 if (!ExitingBB) 898 return; 899 900 MachineBasicBlock *Top = *LoopChain.begin(); 901 bool ViableTopFallthrough = false; 902 for (MachineBasicBlock *Pred : Top->predecessors()) { 903 BlockChain *PredChain = BlockToChain[Pred]; 904 if (!LoopBlockSet.count(Pred) && 905 (!PredChain || Pred == *std::prev(PredChain->end()))) { 906 ViableTopFallthrough = true; 907 break; 908 } 909 } 910 911 // If the header has viable fallthrough, check whether the current loop 912 // bottom is a viable exiting block. If so, bail out as rotating will 913 // introduce an unnecessary branch. 914 if (ViableTopFallthrough) { 915 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 916 for (MachineBasicBlock *Succ : Bottom->successors()) { 917 BlockChain *SuccChain = BlockToChain[Succ]; 918 if (!LoopBlockSet.count(Succ) && 919 (!SuccChain || Succ == *SuccChain->begin())) 920 return; 921 } 922 } 923 924 BlockChain::iterator ExitIt = 925 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 926 if (ExitIt == LoopChain.end()) 927 return; 928 929 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 930 } 931 932 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 933 /// 934 /// With profile data, we can determine the cost in terms of missed fall through 935 /// opportunities when rotating a loop chain and select the best rotation. 936 /// Basically, there are three kinds of cost to consider for each rotation: 937 /// 1. The possibly missed fall through edge (if it exists) from BB out of 938 /// the loop to the loop header. 939 /// 2. The possibly missed fall through edges (if they exist) from the loop 940 /// exits to BB out of the loop. 941 /// 3. The missed fall through edge (if it exists) from the last BB to the 942 /// first BB in the loop chain. 943 /// Therefore, the cost for a given rotation is the sum of costs listed above. 944 /// We select the best rotation with the smallest cost. 945 void MachineBlockPlacement::rotateLoopWithProfile( 946 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 947 auto HeaderBB = L.getHeader(); 948 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 949 auto RotationPos = LoopChain.end(); 950 951 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 952 953 // A utility lambda that scales up a block frequency by dividing it by a 954 // branch probability which is the reciprocal of the scale. 955 auto ScaleBlockFrequency = [](BlockFrequency Freq, 956 unsigned Scale) -> BlockFrequency { 957 if (Scale == 0) 958 return 0; 959 // Use operator / between BlockFrequency and BranchProbability to implement 960 // saturating multiplication. 961 return Freq / BranchProbability(1, Scale); 962 }; 963 964 // Compute the cost of the missed fall-through edge to the loop header if the 965 // chain head is not the loop header. As we only consider natural loops with 966 // single header, this computation can be done only once. 967 BlockFrequency HeaderFallThroughCost(0); 968 for (auto *Pred : HeaderBB->predecessors()) { 969 BlockChain *PredChain = BlockToChain[Pred]; 970 if (!LoopBlockSet.count(Pred) && 971 (!PredChain || Pred == *std::prev(PredChain->end()))) { 972 auto EdgeFreq = 973 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 974 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 975 // If the predecessor has only an unconditional jump to the header, we 976 // need to consider the cost of this jump. 977 if (Pred->succ_size() == 1) 978 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 979 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 980 } 981 } 982 983 // Here we collect all exit blocks in the loop, and for each exit we find out 984 // its hottest exit edge. For each loop rotation, we define the loop exit cost 985 // as the sum of frequencies of exit edges we collect here, excluding the exit 986 // edge from the tail of the loop chain. 987 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 988 for (auto BB : LoopChain) { 989 auto LargestExitEdgeProb = BranchProbability::getZero(); 990 for (auto *Succ : BB->successors()) { 991 BlockChain *SuccChain = BlockToChain[Succ]; 992 if (!LoopBlockSet.count(Succ) && 993 (!SuccChain || Succ == *SuccChain->begin())) { 994 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 995 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 996 } 997 } 998 if (LargestExitEdgeProb > BranchProbability::getZero()) { 999 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1000 ExitsWithFreq.emplace_back(BB, ExitFreq); 1001 } 1002 } 1003 1004 // In this loop we iterate every block in the loop chain and calculate the 1005 // cost assuming the block is the head of the loop chain. When the loop ends, 1006 // we should have found the best candidate as the loop chain's head. 1007 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1008 EndIter = LoopChain.end(); 1009 Iter != EndIter; Iter++, TailIter++) { 1010 // TailIter is used to track the tail of the loop chain if the block we are 1011 // checking (pointed by Iter) is the head of the chain. 1012 if (TailIter == LoopChain.end()) 1013 TailIter = LoopChain.begin(); 1014 1015 auto TailBB = *TailIter; 1016 1017 // Calculate the cost by putting this BB to the top. 1018 BlockFrequency Cost = 0; 1019 1020 // If the current BB is the loop header, we need to take into account the 1021 // cost of the missed fall through edge from outside of the loop to the 1022 // header. 1023 if (Iter != HeaderIter) 1024 Cost += HeaderFallThroughCost; 1025 1026 // Collect the loop exit cost by summing up frequencies of all exit edges 1027 // except the one from the chain tail. 1028 for (auto &ExitWithFreq : ExitsWithFreq) 1029 if (TailBB != ExitWithFreq.first) 1030 Cost += ExitWithFreq.second; 1031 1032 // The cost of breaking the once fall-through edge from the tail to the top 1033 // of the loop chain. Here we need to consider three cases: 1034 // 1. If the tail node has only one successor, then we will get an 1035 // additional jmp instruction. So the cost here is (MisfetchCost + 1036 // JumpInstCost) * tail node frequency. 1037 // 2. If the tail node has two successors, then we may still get an 1038 // additional jmp instruction if the layout successor after the loop 1039 // chain is not its CFG successor. Note that the more frequently executed 1040 // jmp instruction will be put ahead of the other one. Assume the 1041 // frequency of those two branches are x and y, where x is the frequency 1042 // of the edge to the chain head, then the cost will be 1043 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1044 // 3. If the tail node has more than two successors (this rarely happens), 1045 // we won't consider any additional cost. 1046 if (TailBB->isSuccessor(*Iter)) { 1047 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1048 if (TailBB->succ_size() == 1) 1049 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1050 MisfetchCost + JumpInstCost); 1051 else if (TailBB->succ_size() == 2) { 1052 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1053 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1054 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1055 ? TailBBFreq * TailToHeadProb.getCompl() 1056 : TailToHeadFreq; 1057 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1058 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1059 } 1060 } 1061 1062 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1063 << " to the top: " << Cost.getFrequency() << "\n"); 1064 1065 if (Cost < SmallestRotationCost) { 1066 SmallestRotationCost = Cost; 1067 RotationPos = Iter; 1068 } 1069 } 1070 1071 if (RotationPos != LoopChain.end()) { 1072 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1073 << " to the top\n"); 1074 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1075 } 1076 } 1077 1078 /// \brief Collect blocks in the given loop that are to be placed. 1079 /// 1080 /// When profile data is available, exclude cold blocks from the returned set; 1081 /// otherwise, collect all blocks in the loop. 1082 MachineBlockPlacement::BlockFilterSet 1083 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1084 BlockFilterSet LoopBlockSet; 1085 1086 // Filter cold blocks off from LoopBlockSet when profile data is available. 1087 // Collect the sum of frequencies of incoming edges to the loop header from 1088 // outside. If we treat the loop as a super block, this is the frequency of 1089 // the loop. Then for each block in the loop, we calculate the ratio between 1090 // its frequency and the frequency of the loop block. When it is too small, 1091 // don't add it to the loop chain. If there are outer loops, then this block 1092 // will be merged into the first outer loop chain for which this block is not 1093 // cold anymore. This needs precise profile data and we only do this when 1094 // profile data is available. 1095 if (F.getFunction()->getEntryCount()) { 1096 BlockFrequency LoopFreq(0); 1097 for (auto LoopPred : L.getHeader()->predecessors()) 1098 if (!L.contains(LoopPred)) 1099 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1100 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1101 1102 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1103 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1104 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1105 continue; 1106 LoopBlockSet.insert(LoopBB); 1107 } 1108 } else 1109 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1110 1111 return LoopBlockSet; 1112 } 1113 1114 /// \brief Forms basic block chains from the natural loop structures. 1115 /// 1116 /// These chains are designed to preserve the existing *structure* of the code 1117 /// as much as possible. We can then stitch the chains together in a way which 1118 /// both preserves the topological structure and minimizes taken conditional 1119 /// branches. 1120 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1121 MachineLoop &L) { 1122 // First recurse through any nested loops, building chains for those inner 1123 // loops. 1124 for (MachineLoop *InnerLoop : L) 1125 buildLoopChains(F, *InnerLoop); 1126 1127 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1128 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1129 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1130 1131 // Check if we have profile data for this function. If yes, we will rotate 1132 // this loop by modeling costs more precisely which requires the profile data 1133 // for better layout. 1134 bool RotateLoopWithProfile = 1135 ForcePreciseRotationCost || 1136 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1137 1138 // First check to see if there is an obviously preferable top block for the 1139 // loop. This will default to the header, but may end up as one of the 1140 // predecessors to the header if there is one which will result in strictly 1141 // fewer branches in the loop body. 1142 // When we use profile data to rotate the loop, this is unnecessary. 1143 MachineBasicBlock *LoopTop = 1144 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1145 1146 // If we selected just the header for the loop top, look for a potentially 1147 // profitable exit block in the event that rotating the loop can eliminate 1148 // branches by placing an exit edge at the bottom. 1149 MachineBasicBlock *ExitingBB = nullptr; 1150 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1151 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1152 1153 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1154 1155 // FIXME: This is a really lame way of walking the chains in the loop: we 1156 // walk the blocks, and use a set to prevent visiting a particular chain 1157 // twice. 1158 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1159 assert(LoopChain.UnscheduledPredecessors == 0); 1160 UpdatedPreds.insert(&LoopChain); 1161 1162 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1163 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1164 &LoopBlockSet); 1165 1166 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1167 1168 if (RotateLoopWithProfile) 1169 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1170 else 1171 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1172 1173 DEBUG({ 1174 // Crash at the end so we get all of the debugging output first. 1175 bool BadLoop = false; 1176 if (LoopChain.UnscheduledPredecessors) { 1177 BadLoop = true; 1178 dbgs() << "Loop chain contains a block without its preds placed!\n" 1179 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1180 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1181 } 1182 for (MachineBasicBlock *ChainBB : LoopChain) { 1183 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1184 if (!LoopBlockSet.erase(ChainBB)) { 1185 // We don't mark the loop as bad here because there are real situations 1186 // where this can occur. For example, with an unanalyzable fallthrough 1187 // from a loop block to a non-loop block or vice versa. 1188 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1189 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1190 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1191 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1192 } 1193 } 1194 1195 if (!LoopBlockSet.empty()) { 1196 BadLoop = true; 1197 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1198 dbgs() << "Loop contains blocks never placed into a chain!\n" 1199 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1200 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1201 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1202 } 1203 assert(!BadLoop && "Detected problems with the placement of this loop."); 1204 }); 1205 } 1206 1207 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1208 // Ensure that every BB in the function has an associated chain to simplify 1209 // the assumptions of the remaining algorithm. 1210 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1211 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1212 MachineBasicBlock *BB = &*FI; 1213 BlockChain *Chain = 1214 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1215 // Also, merge any blocks which we cannot reason about and must preserve 1216 // the exact fallthrough behavior for. 1217 for (;;) { 1218 Cond.clear(); 1219 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1220 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1221 break; 1222 1223 MachineFunction::iterator NextFI = std::next(FI); 1224 MachineBasicBlock *NextBB = &*NextFI; 1225 // Ensure that the layout successor is a viable block, as we know that 1226 // fallthrough is a possibility. 1227 assert(NextFI != FE && "Can't fallthrough past the last block."); 1228 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1229 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1230 << "\n"); 1231 Chain->merge(NextBB, nullptr); 1232 FI = NextFI; 1233 BB = NextBB; 1234 } 1235 } 1236 1237 if (OutlineOptionalBranches) { 1238 // Find the nearest common dominator of all of F's terminators. 1239 MachineBasicBlock *Terminator = nullptr; 1240 for (MachineBasicBlock &MBB : F) { 1241 if (MBB.succ_size() == 0) { 1242 if (Terminator == nullptr) 1243 Terminator = &MBB; 1244 else 1245 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1246 } 1247 } 1248 1249 // MBBs dominating this common dominator are unavoidable. 1250 UnavoidableBlocks.clear(); 1251 for (MachineBasicBlock &MBB : F) { 1252 if (MDT->dominates(&MBB, Terminator)) { 1253 UnavoidableBlocks.insert(&MBB); 1254 } 1255 } 1256 } 1257 1258 // Build any loop-based chains. 1259 for (MachineLoop *L : *MLI) 1260 buildLoopChains(F, *L); 1261 1262 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1263 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1264 1265 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1266 for (MachineBasicBlock &MBB : F) 1267 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1268 1269 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1270 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1271 1272 #ifndef NDEBUG 1273 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1274 #endif 1275 DEBUG({ 1276 // Crash at the end so we get all of the debugging output first. 1277 bool BadFunc = false; 1278 FunctionBlockSetType FunctionBlockSet; 1279 for (MachineBasicBlock &MBB : F) 1280 FunctionBlockSet.insert(&MBB); 1281 1282 for (MachineBasicBlock *ChainBB : FunctionChain) 1283 if (!FunctionBlockSet.erase(ChainBB)) { 1284 BadFunc = true; 1285 dbgs() << "Function chain contains a block not in the function!\n" 1286 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1287 } 1288 1289 if (!FunctionBlockSet.empty()) { 1290 BadFunc = true; 1291 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1292 dbgs() << "Function contains blocks never placed into a chain!\n" 1293 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1294 } 1295 assert(!BadFunc && "Detected problems with the block placement."); 1296 }); 1297 1298 // Splice the blocks into place. 1299 MachineFunction::iterator InsertPos = F.begin(); 1300 for (MachineBasicBlock *ChainBB : FunctionChain) { 1301 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1302 : " ... ") 1303 << getBlockName(ChainBB) << "\n"); 1304 if (InsertPos != MachineFunction::iterator(ChainBB)) 1305 F.splice(InsertPos, ChainBB); 1306 else 1307 ++InsertPos; 1308 1309 // Update the terminator of the previous block. 1310 if (ChainBB == *FunctionChain.begin()) 1311 continue; 1312 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1313 1314 // FIXME: It would be awesome of updateTerminator would just return rather 1315 // than assert when the branch cannot be analyzed in order to remove this 1316 // boiler plate. 1317 Cond.clear(); 1318 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1319 1320 // The "PrevBB" is not yet updated to reflect current code layout, so, 1321 // o. it may fall-through to a block without explict "goto" instruction 1322 // before layout, and no longer fall-through it after layout; or 1323 // o. just opposite. 1324 // 1325 // AnalyzeBranch() may return erroneous value for FBB when these two 1326 // situations take place. For the first scenario FBB is mistakenly set NULL; 1327 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1328 // mistakenly pointing to "*BI". 1329 // Thus, if the future change needs to use FBB before the layout is set, it 1330 // has to correct FBB first by using the code similar to the following: 1331 // 1332 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1333 // PrevBB->updateTerminator(); 1334 // Cond.clear(); 1335 // TBB = FBB = nullptr; 1336 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1337 // // FIXME: This should never take place. 1338 // TBB = FBB = nullptr; 1339 // } 1340 // } 1341 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1342 PrevBB->updateTerminator(); 1343 } 1344 1345 // Fixup the last block. 1346 Cond.clear(); 1347 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1348 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1349 F.back().updateTerminator(); 1350 } 1351 1352 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1353 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1354 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1355 1356 // Now that all the basic blocks in the chain have the proper layout, 1357 // make a final call to AnalyzeBranch with AllowModify set. 1358 // Indeed, the target may be able to optimize the branches in a way we 1359 // cannot because all branches may not be analyzable. 1360 // E.g., the target may be able to remove an unconditional branch to 1361 // a fallthrough when it occurs after predicated terminators. 1362 for (MachineBasicBlock *ChainBB : FunctionChain) { 1363 Cond.clear(); 1364 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1365 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1366 // If PrevBB has a two-way branch, try to re-order the branches 1367 // such that we branch to the successor with higher probability first. 1368 if (TBB && !Cond.empty() && FBB && 1369 MBPI->getEdgeProbability(ChainBB, FBB) > 1370 MBPI->getEdgeProbability(ChainBB, TBB) && 1371 !TII->ReverseBranchCondition(Cond)) { 1372 DEBUG(dbgs() << "Reverse order of the two branches: " 1373 << getBlockName(ChainBB) << "\n"); 1374 DEBUG(dbgs() << " Edge probability: " 1375 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1376 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1377 DebugLoc dl; // FIXME: this is nowhere 1378 TII->RemoveBranch(*ChainBB); 1379 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1380 ChainBB->updateTerminator(); 1381 } 1382 } 1383 } 1384 } 1385 1386 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1387 // Walk through the backedges of the function now that we have fully laid out 1388 // the basic blocks and align the destination of each backedge. We don't rely 1389 // exclusively on the loop info here so that we can align backedges in 1390 // unnatural CFGs and backedges that were introduced purely because of the 1391 // loop rotations done during this layout pass. 1392 if (F.getFunction()->optForSize()) 1393 return; 1394 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1395 if (FunctionChain.begin() == FunctionChain.end()) 1396 return; // Empty chain. 1397 1398 const BranchProbability ColdProb(1, 5); // 20% 1399 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1400 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1401 for (MachineBasicBlock *ChainBB : FunctionChain) { 1402 if (ChainBB == *FunctionChain.begin()) 1403 continue; 1404 1405 // Don't align non-looping basic blocks. These are unlikely to execute 1406 // enough times to matter in practice. Note that we'll still handle 1407 // unnatural CFGs inside of a natural outer loop (the common case) and 1408 // rotated loops. 1409 MachineLoop *L = MLI->getLoopFor(ChainBB); 1410 if (!L) 1411 continue; 1412 1413 unsigned Align = TLI->getPrefLoopAlignment(L); 1414 if (!Align) 1415 continue; // Don't care about loop alignment. 1416 1417 // If the block is cold relative to the function entry don't waste space 1418 // aligning it. 1419 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1420 if (Freq < WeightedEntryFreq) 1421 continue; 1422 1423 // If the block is cold relative to its loop header, don't align it 1424 // regardless of what edges into the block exist. 1425 MachineBasicBlock *LoopHeader = L->getHeader(); 1426 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1427 if (Freq < (LoopHeaderFreq * ColdProb)) 1428 continue; 1429 1430 // Check for the existence of a non-layout predecessor which would benefit 1431 // from aligning this block. 1432 MachineBasicBlock *LayoutPred = 1433 &*std::prev(MachineFunction::iterator(ChainBB)); 1434 1435 // Force alignment if all the predecessors are jumps. We already checked 1436 // that the block isn't cold above. 1437 if (!LayoutPred->isSuccessor(ChainBB)) { 1438 ChainBB->setAlignment(Align); 1439 continue; 1440 } 1441 1442 // Align this block if the layout predecessor's edge into this block is 1443 // cold relative to the block. When this is true, other predecessors make up 1444 // all of the hot entries into the block and thus alignment is likely to be 1445 // important. 1446 BranchProbability LayoutProb = 1447 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1448 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1449 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1450 ChainBB->setAlignment(Align); 1451 } 1452 } 1453 1454 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1455 if (skipFunction(*F.getFunction())) 1456 return false; 1457 1458 // Check for single-block functions and skip them. 1459 if (std::next(F.begin()) == F.end()) 1460 return false; 1461 1462 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1463 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1464 MLI = &getAnalysis<MachineLoopInfo>(); 1465 TII = F.getSubtarget().getInstrInfo(); 1466 TLI = F.getSubtarget().getTargetLowering(); 1467 MDT = &getAnalysis<MachineDominatorTree>(); 1468 assert(BlockToChain.empty()); 1469 1470 buildCFGChains(F); 1471 optimizeBranches(F); 1472 alignBlocks(F); 1473 1474 BlockToChain.clear(); 1475 ChainAllocator.DestroyAll(); 1476 1477 if (AlignAllBlock) 1478 // Align all of the blocks in the function to a specific alignment. 1479 for (MachineBasicBlock &MBB : F) 1480 MBB.setAlignment(AlignAllBlock); 1481 else if (AlignAllNonFallThruBlocks) { 1482 // Align all of the blocks that have no fall-through predecessors to a 1483 // specific alignment. 1484 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1485 auto LayoutPred = std::prev(MBI); 1486 if (!LayoutPred->isSuccessor(&*MBI)) 1487 MBI->setAlignment(AlignAllNonFallThruBlocks); 1488 } 1489 } 1490 1491 // We always return true as we have no way to track whether the final order 1492 // differs from the original order. 1493 return true; 1494 } 1495 1496 namespace { 1497 /// \brief A pass to compute block placement statistics. 1498 /// 1499 /// A separate pass to compute interesting statistics for evaluating block 1500 /// placement. This is separate from the actual placement pass so that they can 1501 /// be computed in the absence of any placement transformations or when using 1502 /// alternative placement strategies. 1503 class MachineBlockPlacementStats : public MachineFunctionPass { 1504 /// \brief A handle to the branch probability pass. 1505 const MachineBranchProbabilityInfo *MBPI; 1506 1507 /// \brief A handle to the function-wide block frequency pass. 1508 const MachineBlockFrequencyInfo *MBFI; 1509 1510 public: 1511 static char ID; // Pass identification, replacement for typeid 1512 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1513 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1514 } 1515 1516 bool runOnMachineFunction(MachineFunction &F) override; 1517 1518 void getAnalysisUsage(AnalysisUsage &AU) const override { 1519 AU.addRequired<MachineBranchProbabilityInfo>(); 1520 AU.addRequired<MachineBlockFrequencyInfo>(); 1521 AU.setPreservesAll(); 1522 MachineFunctionPass::getAnalysisUsage(AU); 1523 } 1524 }; 1525 } 1526 1527 char MachineBlockPlacementStats::ID = 0; 1528 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1529 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1530 "Basic Block Placement Stats", false, false) 1531 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1532 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1533 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1534 "Basic Block Placement Stats", false, false) 1535 1536 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1537 // Check for single-block functions and skip them. 1538 if (std::next(F.begin()) == F.end()) 1539 return false; 1540 1541 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1542 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1543 1544 for (MachineBasicBlock &MBB : F) { 1545 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1546 Statistic &NumBranches = 1547 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1548 Statistic &BranchTakenFreq = 1549 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1550 for (MachineBasicBlock *Succ : MBB.successors()) { 1551 // Skip if this successor is a fallthrough. 1552 if (MBB.isLayoutSuccessor(Succ)) 1553 continue; 1554 1555 BlockFrequency EdgeFreq = 1556 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1557 ++NumBranches; 1558 BranchTakenFreq += EdgeFreq.getFrequency(); 1559 } 1560 } 1561 1562 return false; 1563 } 1564