1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <functional> 54 #include <utility> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "block-placement" 58 59 STATISTIC(NumCondBranches, "Number of conditional branches"); 60 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 61 STATISTIC(CondBranchTakenFreq, 62 "Potential frequency of taking conditional branches"); 63 STATISTIC(UncondBranchTakenFreq, 64 "Potential frequency of taking unconditional branches"); 65 66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks in the function."), 69 cl::init(0), cl::Hidden); 70 71 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 72 "align-all-nofallthru-blocks", 73 cl::desc("Force the alignment of all " 74 "blocks that have no fall-through predecessors (i.e. don't add " 75 "nops that are executed)."), 76 cl::init(0), cl::Hidden); 77 78 // FIXME: Find a good default for this flag and remove the flag. 79 static cl::opt<unsigned> ExitBlockBias( 80 "block-placement-exit-block-bias", 81 cl::desc("Block frequency percentage a loop exit block needs " 82 "over the original exit to be considered the new exit."), 83 cl::init(0), cl::Hidden); 84 85 // Definition: 86 // - Outlining: placement of a basic block outside the chain or hot path. 87 88 static cl::opt<unsigned> LoopToColdBlockRatio( 89 "loop-to-cold-block-ratio", 90 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 91 "(frequency of block) is greater than this ratio"), 92 cl::init(5), cl::Hidden); 93 94 static cl::opt<bool> 95 PreciseRotationCost("precise-rotation-cost", 96 cl::desc("Model the cost of loop rotation more " 97 "precisely by using profile data."), 98 cl::init(false), cl::Hidden); 99 static cl::opt<bool> 100 ForcePreciseRotationCost("force-precise-rotation-cost", 101 cl::desc("Force the use of precise cost " 102 "loop rotation strategy."), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> MisfetchCost( 106 "misfetch-cost", 107 cl::desc("Cost that models the probabilistic risk of an instruction " 108 "misfetch due to a jump comparing to falling through, whose cost " 109 "is zero."), 110 cl::init(1), cl::Hidden); 111 112 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 113 cl::desc("Cost of jump instructions."), 114 cl::init(1), cl::Hidden); 115 static cl::opt<bool> 116 TailDupPlacement("tail-dup-placement", 117 cl::desc("Perform tail duplication during placement. " 118 "Creates more fallthrough opportunites in " 119 "outline branches."), 120 cl::init(true), cl::Hidden); 121 122 static cl::opt<bool> 123 BranchFoldPlacement("branch-fold-placement", 124 cl::desc("Perform branch folding during placement. " 125 "Reduces code size."), 126 cl::init(true), cl::Hidden); 127 128 // Heuristic for tail duplication. 129 static cl::opt<unsigned> TailDupPlacementThreshold( 130 "tail-dup-placement-threshold", 131 cl::desc("Instruction cutoff for tail duplication during layout. " 132 "Tail merging during layout is forced to have a threshold " 133 "that won't conflict."), cl::init(2), 134 cl::Hidden); 135 136 // Heuristic for aggressive tail duplication. 137 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 138 "tail-dup-placement-aggressive-threshold", 139 cl::desc("Instruction cutoff for aggressive tail duplication during " 140 "layout. Used at -O3. Tail merging during layout is forced to " 141 "have a threshold that won't conflict."), cl::init(3), 142 cl::Hidden); 143 144 // Heuristic for tail duplication. 145 static cl::opt<unsigned> TailDupPlacementPenalty( 146 "tail-dup-placement-penalty", 147 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 148 "Copying can increase fallthrough, but it also increases icache " 149 "pressure. This parameter controls the penalty to account for that. " 150 "Percent as integer."), 151 cl::init(2), 152 cl::Hidden); 153 154 // Heuristic for triangle chains. 155 static cl::opt<unsigned> TriangleChainCount( 156 "triangle-chain-count", 157 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 158 "triangle tail duplication heuristic to kick in. 0 to disable."), 159 cl::init(2), 160 cl::Hidden); 161 162 extern cl::opt<unsigned> StaticLikelyProb; 163 extern cl::opt<unsigned> ProfileLikelyProb; 164 165 // Internal option used to control BFI display only after MBP pass. 166 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 167 // -view-block-layout-with-bfi= 168 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 169 170 // Command line option to specify the name of the function for CFG dump 171 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 172 extern cl::opt<std::string> ViewBlockFreqFuncName; 173 174 namespace { 175 class BlockChain; 176 /// \brief Type for our function-wide basic block -> block chain mapping. 177 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 178 } 179 180 namespace { 181 /// \brief A chain of blocks which will be laid out contiguously. 182 /// 183 /// This is the datastructure representing a chain of consecutive blocks that 184 /// are profitable to layout together in order to maximize fallthrough 185 /// probabilities and code locality. We also can use a block chain to represent 186 /// a sequence of basic blocks which have some external (correctness) 187 /// requirement for sequential layout. 188 /// 189 /// Chains can be built around a single basic block and can be merged to grow 190 /// them. They participate in a block-to-chain mapping, which is updated 191 /// automatically as chains are merged together. 192 class BlockChain { 193 /// \brief The sequence of blocks belonging to this chain. 194 /// 195 /// This is the sequence of blocks for a particular chain. These will be laid 196 /// out in-order within the function. 197 SmallVector<MachineBasicBlock *, 4> Blocks; 198 199 /// \brief A handle to the function-wide basic block to block chain mapping. 200 /// 201 /// This is retained in each block chain to simplify the computation of child 202 /// block chains for SCC-formation and iteration. We store the edges to child 203 /// basic blocks, and map them back to their associated chains using this 204 /// structure. 205 BlockToChainMapType &BlockToChain; 206 207 public: 208 /// \brief Construct a new BlockChain. 209 /// 210 /// This builds a new block chain representing a single basic block in the 211 /// function. It also registers itself as the chain that block participates 212 /// in with the BlockToChain mapping. 213 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 214 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 215 assert(BB && "Cannot create a chain with a null basic block"); 216 BlockToChain[BB] = this; 217 } 218 219 /// \brief Iterator over blocks within the chain. 220 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 221 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 222 223 /// \brief Beginning of blocks within the chain. 224 iterator begin() { return Blocks.begin(); } 225 const_iterator begin() const { return Blocks.begin(); } 226 227 /// \brief End of blocks within the chain. 228 iterator end() { return Blocks.end(); } 229 const_iterator end() const { return Blocks.end(); } 230 231 bool remove(MachineBasicBlock* BB) { 232 for(iterator i = begin(); i != end(); ++i) { 233 if (*i == BB) { 234 Blocks.erase(i); 235 return true; 236 } 237 } 238 return false; 239 } 240 241 /// \brief Merge a block chain into this one. 242 /// 243 /// This routine merges a block chain into this one. It takes care of forming 244 /// a contiguous sequence of basic blocks, updating the edge list, and 245 /// updating the block -> chain mapping. It does not free or tear down the 246 /// old chain, but the old chain's block list is no longer valid. 247 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 248 assert(BB); 249 assert(!Blocks.empty()); 250 251 // Fast path in case we don't have a chain already. 252 if (!Chain) { 253 assert(!BlockToChain[BB]); 254 Blocks.push_back(BB); 255 BlockToChain[BB] = this; 256 return; 257 } 258 259 assert(BB == *Chain->begin()); 260 assert(Chain->begin() != Chain->end()); 261 262 // Update the incoming blocks to point to this chain, and add them to the 263 // chain structure. 264 for (MachineBasicBlock *ChainBB : *Chain) { 265 Blocks.push_back(ChainBB); 266 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 267 BlockToChain[ChainBB] = this; 268 } 269 } 270 271 #ifndef NDEBUG 272 /// \brief Dump the blocks in this chain. 273 LLVM_DUMP_METHOD void dump() { 274 for (MachineBasicBlock *MBB : *this) 275 MBB->dump(); 276 } 277 #endif // NDEBUG 278 279 /// \brief Count of predecessors of any block within the chain which have not 280 /// yet been scheduled. In general, we will delay scheduling this chain 281 /// until those predecessors are scheduled (or we find a sufficiently good 282 /// reason to override this heuristic.) Note that when forming loop chains, 283 /// blocks outside the loop are ignored and treated as if they were already 284 /// scheduled. 285 /// 286 /// Note: This field is reinitialized multiple times - once for each loop, 287 /// and then once for the function as a whole. 288 unsigned UnscheduledPredecessors; 289 }; 290 } 291 292 namespace { 293 class MachineBlockPlacement : public MachineFunctionPass { 294 /// \brief A typedef for a block filter set. 295 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 296 297 /// Pair struct containing basic block and taildup profitiability 298 struct BlockAndTailDupResult { 299 MachineBasicBlock *BB; 300 bool ShouldTailDup; 301 }; 302 303 /// Triple struct containing edge weight and the edge. 304 struct WeightedEdge { 305 BlockFrequency Weight; 306 MachineBasicBlock *Src; 307 MachineBasicBlock *Dest; 308 }; 309 310 /// \brief work lists of blocks that are ready to be laid out 311 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 312 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 313 314 /// Edges that have already been computed as optimal. 315 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 316 317 /// \brief Machine Function 318 MachineFunction *F; 319 320 /// \brief A handle to the branch probability pass. 321 const MachineBranchProbabilityInfo *MBPI; 322 323 /// \brief A handle to the function-wide block frequency pass. 324 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 325 326 /// \brief A handle to the loop info. 327 MachineLoopInfo *MLI; 328 329 /// \brief Preferred loop exit. 330 /// Member variable for convenience. It may be removed by duplication deep 331 /// in the call stack. 332 MachineBasicBlock *PreferredLoopExit; 333 334 /// \brief A handle to the target's instruction info. 335 const TargetInstrInfo *TII; 336 337 /// \brief A handle to the target's lowering info. 338 const TargetLoweringBase *TLI; 339 340 /// \brief A handle to the post dominator tree. 341 MachinePostDominatorTree *MPDT; 342 343 /// \brief Duplicator used to duplicate tails during placement. 344 /// 345 /// Placement decisions can open up new tail duplication opportunities, but 346 /// since tail duplication affects placement decisions of later blocks, it 347 /// must be done inline. 348 TailDuplicator TailDup; 349 350 /// \brief Allocator and owner of BlockChain structures. 351 /// 352 /// We build BlockChains lazily while processing the loop structure of 353 /// a function. To reduce malloc traffic, we allocate them using this 354 /// slab-like allocator, and destroy them after the pass completes. An 355 /// important guarantee is that this allocator produces stable pointers to 356 /// the chains. 357 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 358 359 /// \brief Function wide BasicBlock to BlockChain mapping. 360 /// 361 /// This mapping allows efficiently moving from any given basic block to the 362 /// BlockChain it participates in, if any. We use it to, among other things, 363 /// allow implicitly defining edges between chains as the existing edges 364 /// between basic blocks. 365 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 366 367 #ifndef NDEBUG 368 /// The set of basic blocks that have terminators that cannot be fully 369 /// analyzed. These basic blocks cannot be re-ordered safely by 370 /// MachineBlockPlacement, and we must preserve physical layout of these 371 /// blocks and their successors through the pass. 372 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 373 #endif 374 375 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 376 /// if the count goes to 0, add them to the appropriate work list. 377 void markChainSuccessors( 378 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 379 const BlockFilterSet *BlockFilter = nullptr); 380 381 /// Decrease the UnscheduledPredecessors count for a single block, and 382 /// if the count goes to 0, add them to the appropriate work list. 383 void markBlockSuccessors( 384 const BlockChain &Chain, const MachineBasicBlock *BB, 385 const MachineBasicBlock *LoopHeaderBB, 386 const BlockFilterSet *BlockFilter = nullptr); 387 388 BranchProbability 389 collectViableSuccessors( 390 const MachineBasicBlock *BB, const BlockChain &Chain, 391 const BlockFilterSet *BlockFilter, 392 SmallVector<MachineBasicBlock *, 4> &Successors); 393 bool shouldPredBlockBeOutlined( 394 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 395 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 396 BranchProbability SuccProb, BranchProbability HotProb); 397 bool repeatedlyTailDuplicateBlock( 398 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 399 const MachineBasicBlock *LoopHeaderBB, 400 BlockChain &Chain, BlockFilterSet *BlockFilter, 401 MachineFunction::iterator &PrevUnplacedBlockIt); 402 bool maybeTailDuplicateBlock( 403 MachineBasicBlock *BB, MachineBasicBlock *LPred, 404 BlockChain &Chain, BlockFilterSet *BlockFilter, 405 MachineFunction::iterator &PrevUnplacedBlockIt, 406 bool &DuplicatedToPred); 407 bool hasBetterLayoutPredecessor( 408 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 409 const BlockChain &SuccChain, BranchProbability SuccProb, 410 BranchProbability RealSuccProb, const BlockChain &Chain, 411 const BlockFilterSet *BlockFilter); 412 BlockAndTailDupResult selectBestSuccessor( 413 const MachineBasicBlock *BB, const BlockChain &Chain, 414 const BlockFilterSet *BlockFilter); 415 MachineBasicBlock *selectBestCandidateBlock( 416 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 417 MachineBasicBlock *getFirstUnplacedBlock( 418 const BlockChain &PlacedChain, 419 MachineFunction::iterator &PrevUnplacedBlockIt, 420 const BlockFilterSet *BlockFilter); 421 422 /// \brief Add a basic block to the work list if it is appropriate. 423 /// 424 /// If the optional parameter BlockFilter is provided, only MBB 425 /// present in the set will be added to the worklist. If nullptr 426 /// is provided, no filtering occurs. 427 void fillWorkLists(const MachineBasicBlock *MBB, 428 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 429 const BlockFilterSet *BlockFilter); 430 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 431 BlockFilterSet *BlockFilter = nullptr); 432 MachineBasicBlock *findBestLoopTop( 433 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 434 MachineBasicBlock *findBestLoopExit( 435 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 436 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 437 void buildLoopChains(const MachineLoop &L); 438 void rotateLoop( 439 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 440 const BlockFilterSet &LoopBlockSet); 441 void rotateLoopWithProfile( 442 BlockChain &LoopChain, const MachineLoop &L, 443 const BlockFilterSet &LoopBlockSet); 444 void buildCFGChains(); 445 void optimizeBranches(); 446 void alignBlocks(); 447 /// Returns true if a block should be tail-duplicated to increase fallthrough 448 /// opportunities. 449 bool shouldTailDuplicate(MachineBasicBlock *BB); 450 /// Check the edge frequencies to see if tail duplication will increase 451 /// fallthroughs. 452 bool isProfitableToTailDup( 453 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 454 BranchProbability AdjustedSumProb, 455 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 456 /// Check for a trellis layout. 457 bool isTrellis(const MachineBasicBlock *BB, 458 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 459 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 460 /// Get the best successor given a trellis layout. 461 BlockAndTailDupResult getBestTrellisSuccessor( 462 const MachineBasicBlock *BB, 463 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 464 BranchProbability AdjustedSumProb, const BlockChain &Chain, 465 const BlockFilterSet *BlockFilter); 466 /// Get the best pair of non-conflicting edges. 467 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 468 const MachineBasicBlock *BB, 469 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 470 /// Returns true if a block can tail duplicate into all unplaced 471 /// predecessors. Filters based on loop. 472 bool canTailDuplicateUnplacedPreds( 473 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 474 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 475 /// Find chains of triangles to tail-duplicate where a global analysis works, 476 /// but a local analysis would not find them. 477 void precomputeTriangleChains(); 478 479 public: 480 static char ID; // Pass identification, replacement for typeid 481 MachineBlockPlacement() : MachineFunctionPass(ID) { 482 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 483 } 484 485 bool runOnMachineFunction(MachineFunction &F) override; 486 487 void getAnalysisUsage(AnalysisUsage &AU) const override { 488 AU.addRequired<MachineBranchProbabilityInfo>(); 489 AU.addRequired<MachineBlockFrequencyInfo>(); 490 if (TailDupPlacement) 491 AU.addRequired<MachinePostDominatorTree>(); 492 AU.addRequired<MachineLoopInfo>(); 493 AU.addRequired<TargetPassConfig>(); 494 MachineFunctionPass::getAnalysisUsage(AU); 495 } 496 }; 497 } 498 499 char MachineBlockPlacement::ID = 0; 500 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 501 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 502 "Branch Probability Basic Block Placement", false, false) 503 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 504 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 505 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 506 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 507 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 508 "Branch Probability Basic Block Placement", false, false) 509 510 #ifndef NDEBUG 511 /// \brief Helper to print the name of a MBB. 512 /// 513 /// Only used by debug logging. 514 static std::string getBlockName(const MachineBasicBlock *BB) { 515 std::string Result; 516 raw_string_ostream OS(Result); 517 OS << "BB#" << BB->getNumber(); 518 OS << " ('" << BB->getName() << "')"; 519 OS.flush(); 520 return Result; 521 } 522 #endif 523 524 /// \brief Mark a chain's successors as having one fewer preds. 525 /// 526 /// When a chain is being merged into the "placed" chain, this routine will 527 /// quickly walk the successors of each block in the chain and mark them as 528 /// having one fewer active predecessor. It also adds any successors of this 529 /// chain which reach the zero-predecessor state to the appropriate worklist. 530 void MachineBlockPlacement::markChainSuccessors( 531 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 532 const BlockFilterSet *BlockFilter) { 533 // Walk all the blocks in this chain, marking their successors as having 534 // a predecessor placed. 535 for (MachineBasicBlock *MBB : Chain) { 536 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 537 } 538 } 539 540 /// \brief Mark a single block's successors as having one fewer preds. 541 /// 542 /// Under normal circumstances, this is only called by markChainSuccessors, 543 /// but if a block that was to be placed is completely tail-duplicated away, 544 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 545 /// for just that block. 546 void MachineBlockPlacement::markBlockSuccessors( 547 const BlockChain &Chain, const MachineBasicBlock *MBB, 548 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 549 // Add any successors for which this is the only un-placed in-loop 550 // predecessor to the worklist as a viable candidate for CFG-neutral 551 // placement. No subsequent placement of this block will violate the CFG 552 // shape, so we get to use heuristics to choose a favorable placement. 553 for (MachineBasicBlock *Succ : MBB->successors()) { 554 if (BlockFilter && !BlockFilter->count(Succ)) 555 continue; 556 BlockChain &SuccChain = *BlockToChain[Succ]; 557 // Disregard edges within a fixed chain, or edges to the loop header. 558 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 559 continue; 560 561 // This is a cross-chain edge that is within the loop, so decrement the 562 // loop predecessor count of the destination chain. 563 if (SuccChain.UnscheduledPredecessors == 0 || 564 --SuccChain.UnscheduledPredecessors > 0) 565 continue; 566 567 auto *NewBB = *SuccChain.begin(); 568 if (NewBB->isEHPad()) 569 EHPadWorkList.push_back(NewBB); 570 else 571 BlockWorkList.push_back(NewBB); 572 } 573 } 574 575 /// This helper function collects the set of successors of block 576 /// \p BB that are allowed to be its layout successors, and return 577 /// the total branch probability of edges from \p BB to those 578 /// blocks. 579 BranchProbability MachineBlockPlacement::collectViableSuccessors( 580 const MachineBasicBlock *BB, const BlockChain &Chain, 581 const BlockFilterSet *BlockFilter, 582 SmallVector<MachineBasicBlock *, 4> &Successors) { 583 // Adjust edge probabilities by excluding edges pointing to blocks that is 584 // either not in BlockFilter or is already in the current chain. Consider the 585 // following CFG: 586 // 587 // --->A 588 // | / \ 589 // | B C 590 // | \ / \ 591 // ----D E 592 // 593 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 594 // A->C is chosen as a fall-through, D won't be selected as a successor of C 595 // due to CFG constraint (the probability of C->D is not greater than 596 // HotProb to break top-order). If we exclude E that is not in BlockFilter 597 // when calculating the probability of C->D, D will be selected and we 598 // will get A C D B as the layout of this loop. 599 auto AdjustedSumProb = BranchProbability::getOne(); 600 for (MachineBasicBlock *Succ : BB->successors()) { 601 bool SkipSucc = false; 602 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 603 SkipSucc = true; 604 } else { 605 BlockChain *SuccChain = BlockToChain[Succ]; 606 if (SuccChain == &Chain) { 607 SkipSucc = true; 608 } else if (Succ != *SuccChain->begin()) { 609 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 610 continue; 611 } 612 } 613 if (SkipSucc) 614 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 615 else 616 Successors.push_back(Succ); 617 } 618 619 return AdjustedSumProb; 620 } 621 622 /// The helper function returns the branch probability that is adjusted 623 /// or normalized over the new total \p AdjustedSumProb. 624 static BranchProbability 625 getAdjustedProbability(BranchProbability OrigProb, 626 BranchProbability AdjustedSumProb) { 627 BranchProbability SuccProb; 628 uint32_t SuccProbN = OrigProb.getNumerator(); 629 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 630 if (SuccProbN >= SuccProbD) 631 SuccProb = BranchProbability::getOne(); 632 else 633 SuccProb = BranchProbability(SuccProbN, SuccProbD); 634 635 return SuccProb; 636 } 637 638 /// Check if \p BB has exactly the successors in \p Successors. 639 static bool 640 hasSameSuccessors(MachineBasicBlock &BB, 641 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 642 if (BB.succ_size() != Successors.size()) 643 return false; 644 // We don't want to count self-loops 645 if (Successors.count(&BB)) 646 return false; 647 for (MachineBasicBlock *Succ : BB.successors()) 648 if (!Successors.count(Succ)) 649 return false; 650 return true; 651 } 652 653 /// Check if a block should be tail duplicated to increase fallthrough 654 /// opportunities. 655 /// \p BB Block to check. 656 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 657 // Blocks with single successors don't create additional fallthrough 658 // opportunities. Don't duplicate them. TODO: When conditional exits are 659 // analyzable, allow them to be duplicated. 660 bool IsSimple = TailDup.isSimpleBB(BB); 661 662 if (BB->succ_size() == 1) 663 return false; 664 return TailDup.shouldTailDuplicate(IsSimple, *BB); 665 } 666 667 /// Compare 2 BlockFrequency's with a small penalty for \p A. 668 /// In order to be conservative, we apply a X% penalty to account for 669 /// increased icache pressure and static heuristics. For small frequencies 670 /// we use only the numerators to improve accuracy. For simplicity, we assume the 671 /// penalty is less than 100% 672 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 673 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 674 uint64_t EntryFreq) { 675 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 676 BlockFrequency Gain = A - B; 677 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 678 } 679 680 /// Check the edge frequencies to see if tail duplication will increase 681 /// fallthroughs. It only makes sense to call this function when 682 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 683 /// always locally profitable if we would have picked \p Succ without 684 /// considering duplication. 685 bool MachineBlockPlacement::isProfitableToTailDup( 686 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 687 BranchProbability QProb, 688 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 689 // We need to do a probability calculation to make sure this is profitable. 690 // First: does succ have a successor that post-dominates? This affects the 691 // calculation. The 2 relevant cases are: 692 // BB BB 693 // | \Qout | \Qout 694 // P| C |P C 695 // = C' = C' 696 // | /Qin | /Qin 697 // | / | / 698 // Succ Succ 699 // / \ | \ V 700 // U/ =V |U \ 701 // / \ = D 702 // D E | / 703 // | / 704 // |/ 705 // PDom 706 // '=' : Branch taken for that CFG edge 707 // In the second case, Placing Succ while duplicating it into C prevents the 708 // fallthrough of Succ into either D or PDom, because they now have C as an 709 // unplaced predecessor 710 711 // Start by figuring out which case we fall into 712 MachineBasicBlock *PDom = nullptr; 713 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 714 // Only scan the relevant successors 715 auto AdjustedSuccSumProb = 716 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 717 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 718 auto BBFreq = MBFI->getBlockFreq(BB); 719 auto SuccFreq = MBFI->getBlockFreq(Succ); 720 BlockFrequency P = BBFreq * PProb; 721 BlockFrequency Qout = BBFreq * QProb; 722 uint64_t EntryFreq = MBFI->getEntryFreq(); 723 // If there are no more successors, it is profitable to copy, as it strictly 724 // increases fallthrough. 725 if (SuccSuccs.size() == 0) 726 return greaterWithBias(P, Qout, EntryFreq); 727 728 auto BestSuccSucc = BranchProbability::getZero(); 729 // Find the PDom or the best Succ if no PDom exists. 730 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 731 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 732 if (Prob > BestSuccSucc) 733 BestSuccSucc = Prob; 734 if (PDom == nullptr) 735 if (MPDT->dominates(SuccSucc, Succ)) { 736 PDom = SuccSucc; 737 break; 738 } 739 } 740 // For the comparisons, we need to know Succ's best incoming edge that isn't 741 // from BB. 742 auto SuccBestPred = BlockFrequency(0); 743 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 744 if (SuccPred == Succ || SuccPred == BB 745 || BlockToChain[SuccPred] == &Chain 746 || (BlockFilter && !BlockFilter->count(SuccPred))) 747 continue; 748 auto Freq = MBFI->getBlockFreq(SuccPred) 749 * MBPI->getEdgeProbability(SuccPred, Succ); 750 if (Freq > SuccBestPred) 751 SuccBestPred = Freq; 752 } 753 // Qin is Succ's best unplaced incoming edge that isn't BB 754 BlockFrequency Qin = SuccBestPred; 755 // If it doesn't have a post-dominating successor, here is the calculation: 756 // BB BB 757 // | \Qout | \ 758 // P| C | = 759 // = C' | C 760 // | /Qin | | 761 // | / | C' (+Succ) 762 // Succ Succ /| 763 // / \ | \/ | 764 // U/ =V | == | 765 // / \ | / \| 766 // D E D E 767 // '=' : Branch taken for that CFG edge 768 // Cost in the first case is: P + V 769 // For this calculation, we always assume P > Qout. If Qout > P 770 // The result of this function will be ignored at the caller. 771 // Let F = SuccFreq - Qin 772 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 773 774 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 775 BranchProbability UProb = BestSuccSucc; 776 BranchProbability VProb = AdjustedSuccSumProb - UProb; 777 BlockFrequency F = SuccFreq - Qin; 778 BlockFrequency V = SuccFreq * VProb; 779 BlockFrequency QinU = std::min(Qin, F) * UProb; 780 BlockFrequency BaseCost = P + V; 781 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 782 return greaterWithBias(BaseCost, DupCost, EntryFreq); 783 } 784 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 785 BranchProbability VProb = AdjustedSuccSumProb - UProb; 786 BlockFrequency U = SuccFreq * UProb; 787 BlockFrequency V = SuccFreq * VProb; 788 BlockFrequency F = SuccFreq - Qin; 789 // If there is a post-dominating successor, here is the calculation: 790 // BB BB BB BB 791 // | \Qout | \ | \Qout | \ 792 // |P C | = |P C | = 793 // = C' |P C = C' |P C 794 // | /Qin | | | /Qin | | 795 // | / | C' (+Succ) | / | C' (+Succ) 796 // Succ Succ /| Succ Succ /| 797 // | \ V | \/ | | \ V | \/ | 798 // |U \ |U /\ =? |U = |U /\ | 799 // = D = = =?| | D | = =| 800 // | / |/ D | / |/ D 801 // | / | / | = | / 802 // |/ | / |/ | = 803 // Dom Dom Dom Dom 804 // '=' : Branch taken for that CFG edge 805 // The cost for taken branches in the first case is P + U 806 // Let F = SuccFreq - Qin 807 // The cost in the second case (assuming independence), given the layout: 808 // BB, Succ, (C+Succ), D, Dom or the layout: 809 // BB, Succ, D, Dom, (C+Succ) 810 // is Qout + max(F, Qin) * U + min(F, Qin) 811 // compare P + U vs Qout + P * U + Qin. 812 // 813 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 814 // 815 // For the 3rd case, the cost is P + 2 * V 816 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 817 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 818 if (UProb > AdjustedSuccSumProb / 2 && 819 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 820 Chain, BlockFilter)) 821 // Cases 3 & 4 822 return greaterWithBias( 823 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 824 EntryFreq); 825 // Cases 1 & 2 826 return greaterWithBias((P + U), 827 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 828 std::max(Qin, F) * UProb), 829 EntryFreq); 830 } 831 832 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 833 /// successors form the lower part of a trellis. A successor set S forms the 834 /// lower part of a trellis if all of the predecessors of S are either in S or 835 /// have all of S as successors. We ignore trellises where BB doesn't have 2 836 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 837 /// are very uncommon and complex to compute optimally. Allowing edges within S 838 /// is not strictly a trellis, but the same algorithm works, so we allow it. 839 bool MachineBlockPlacement::isTrellis( 840 const MachineBasicBlock *BB, 841 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 842 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 843 // Technically BB could form a trellis with branching factor higher than 2. 844 // But that's extremely uncommon. 845 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 846 return false; 847 848 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 849 BB->succ_end()); 850 // To avoid reviewing the same predecessors twice. 851 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 852 853 for (MachineBasicBlock *Succ : ViableSuccs) { 854 int PredCount = 0; 855 for (auto SuccPred : Succ->predecessors()) { 856 // Allow triangle successors, but don't count them. 857 if (Successors.count(SuccPred)) { 858 // Make sure that it is actually a triangle. 859 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 860 if (!Successors.count(CheckSucc)) 861 return false; 862 continue; 863 } 864 const BlockChain *PredChain = BlockToChain[SuccPred]; 865 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 866 PredChain == &Chain || PredChain == BlockToChain[Succ]) 867 continue; 868 ++PredCount; 869 // Perform the successor check only once. 870 if (!SeenPreds.insert(SuccPred).second) 871 continue; 872 if (!hasSameSuccessors(*SuccPred, Successors)) 873 return false; 874 } 875 // If one of the successors has only BB as a predecessor, it is not a 876 // trellis. 877 if (PredCount < 1) 878 return false; 879 } 880 return true; 881 } 882 883 /// Pick the highest total weight pair of edges that can both be laid out. 884 /// The edges in \p Edges[0] are assumed to have a different destination than 885 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 886 /// the individual highest weight edges to the 2 different destinations, or in 887 /// case of a conflict, one of them should be replaced with a 2nd best edge. 888 std::pair<MachineBlockPlacement::WeightedEdge, 889 MachineBlockPlacement::WeightedEdge> 890 MachineBlockPlacement::getBestNonConflictingEdges( 891 const MachineBasicBlock *BB, 892 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 893 Edges) { 894 // Sort the edges, and then for each successor, find the best incoming 895 // predecessor. If the best incoming predecessors aren't the same, 896 // then that is clearly the best layout. If there is a conflict, one of the 897 // successors will have to fallthrough from the second best predecessor. We 898 // compare which combination is better overall. 899 900 // Sort for highest frequency. 901 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 902 903 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 904 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 905 auto BestA = Edges[0].begin(); 906 auto BestB = Edges[1].begin(); 907 // Arrange for the correct answer to be in BestA and BestB 908 // If the 2 best edges don't conflict, the answer is already there. 909 if (BestA->Src == BestB->Src) { 910 // Compare the total fallthrough of (Best + Second Best) for both pairs 911 auto SecondBestA = std::next(BestA); 912 auto SecondBestB = std::next(BestB); 913 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 914 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 915 if (BestAScore < BestBScore) 916 BestA = SecondBestA; 917 else 918 BestB = SecondBestB; 919 } 920 // Arrange for the BB edge to be in BestA if it exists. 921 if (BestB->Src == BB) 922 std::swap(BestA, BestB); 923 return std::make_pair(*BestA, *BestB); 924 } 925 926 /// Get the best successor from \p BB based on \p BB being part of a trellis. 927 /// We only handle trellises with 2 successors, so the algorithm is 928 /// straightforward: Find the best pair of edges that don't conflict. We find 929 /// the best incoming edge for each successor in the trellis. If those conflict, 930 /// we consider which of them should be replaced with the second best. 931 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 932 /// comes from \p BB, it will be in \p BestEdges[0] 933 MachineBlockPlacement::BlockAndTailDupResult 934 MachineBlockPlacement::getBestTrellisSuccessor( 935 const MachineBasicBlock *BB, 936 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 937 BranchProbability AdjustedSumProb, const BlockChain &Chain, 938 const BlockFilterSet *BlockFilter) { 939 940 BlockAndTailDupResult Result = {nullptr, false}; 941 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 942 BB->succ_end()); 943 944 // We assume size 2 because it's common. For general n, we would have to do 945 // the Hungarian algorithm, but it's not worth the complexity because more 946 // than 2 successors is fairly uncommon, and a trellis even more so. 947 if (Successors.size() != 2 || ViableSuccs.size() != 2) 948 return Result; 949 950 // Collect the edge frequencies of all edges that form the trellis. 951 SmallVector<WeightedEdge, 8> Edges[2]; 952 int SuccIndex = 0; 953 for (auto Succ : ViableSuccs) { 954 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 955 // Skip any placed predecessors that are not BB 956 if (SuccPred != BB) 957 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 958 BlockToChain[SuccPred] == &Chain || 959 BlockToChain[SuccPred] == BlockToChain[Succ]) 960 continue; 961 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 962 MBPI->getEdgeProbability(SuccPred, Succ); 963 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 964 } 965 ++SuccIndex; 966 } 967 968 // Pick the best combination of 2 edges from all the edges in the trellis. 969 WeightedEdge BestA, BestB; 970 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 971 972 if (BestA.Src != BB) { 973 // If we have a trellis, and BB doesn't have the best fallthrough edges, 974 // we shouldn't choose any successor. We've already looked and there's a 975 // better fallthrough edge for all the successors. 976 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 977 return Result; 978 } 979 980 // Did we pick the triangle edge? If tail-duplication is profitable, do 981 // that instead. Otherwise merge the triangle edge now while we know it is 982 // optimal. 983 if (BestA.Dest == BestB.Src) { 984 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 985 // would be better. 986 MachineBasicBlock *Succ1 = BestA.Dest; 987 MachineBasicBlock *Succ2 = BestB.Dest; 988 // Check to see if tail-duplication would be profitable. 989 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 990 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 991 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 992 Chain, BlockFilter)) { 993 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 994 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 995 dbgs() << " Selected: " << getBlockName(Succ2) 996 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 997 Result.BB = Succ2; 998 Result.ShouldTailDup = true; 999 return Result; 1000 } 1001 } 1002 // We have already computed the optimal edge for the other side of the 1003 // trellis. 1004 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1005 1006 auto TrellisSucc = BestA.Dest; 1007 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1008 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1009 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1010 << ", probability: " << SuccProb << " (Trellis)\n"); 1011 Result.BB = TrellisSucc; 1012 return Result; 1013 } 1014 1015 /// When the option TailDupPlacement is on, this method checks if the 1016 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1017 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1018 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1019 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1020 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1021 if (!shouldTailDuplicate(Succ)) 1022 return false; 1023 1024 // For CFG checking. 1025 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1026 BB->succ_end()); 1027 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1028 // Make sure all unplaced and unfiltered predecessors can be 1029 // tail-duplicated into. 1030 // Skip any blocks that are already placed or not in this loop. 1031 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1032 || BlockToChain[Pred] == &Chain) 1033 continue; 1034 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1035 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1036 // This will result in a trellis after tail duplication, so we don't 1037 // need to copy Succ into this predecessor. In the presence 1038 // of a trellis tail duplication can continue to be profitable. 1039 // For example: 1040 // A A 1041 // |\ |\ 1042 // | \ | \ 1043 // | C | C+BB 1044 // | / | | 1045 // |/ | | 1046 // BB => BB | 1047 // |\ |\/| 1048 // | \ |/\| 1049 // | D | D 1050 // | / | / 1051 // |/ |/ 1052 // Succ Succ 1053 // 1054 // After BB was duplicated into C, the layout looks like the one on the 1055 // right. BB and C now have the same successors. When considering 1056 // whether Succ can be duplicated into all its unplaced predecessors, we 1057 // ignore C. 1058 // We can do this because C already has a profitable fallthrough, namely 1059 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1060 // duplication and for this test. 1061 // 1062 // This allows trellises to be laid out in 2 separate chains 1063 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1064 // because it allows the creation of 2 fallthrough paths with links 1065 // between them, and we correctly identify the best layout for these 1066 // CFGs. We want to extend trellises that the user created in addition 1067 // to trellises created by tail-duplication, so we just look for the 1068 // CFG. 1069 continue; 1070 return false; 1071 } 1072 } 1073 return true; 1074 } 1075 1076 /// Find chains of triangles where we believe it would be profitable to 1077 /// tail-duplicate them all, but a local analysis would not find them. 1078 /// There are 3 ways this can be profitable: 1079 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1080 /// longer chains) 1081 /// 2) The chains are statically correlated. Branch probabilities have a very 1082 /// U-shaped distribution. 1083 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1084 /// If the branches in a chain are likely to be from the same side of the 1085 /// distribution as their predecessor, but are independent at runtime, this 1086 /// transformation is profitable. (Because the cost of being wrong is a small 1087 /// fixed cost, unlike the standard triangle layout where the cost of being 1088 /// wrong scales with the # of triangles.) 1089 /// 3) The chains are dynamically correlated. If the probability that a previous 1090 /// branch was taken positively influences whether the next branch will be 1091 /// taken 1092 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1093 void MachineBlockPlacement::precomputeTriangleChains() { 1094 struct TriangleChain { 1095 std::vector<MachineBasicBlock *> Edges; 1096 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1097 : Edges({src, dst}) {} 1098 1099 void append(MachineBasicBlock *dst) { 1100 assert(getKey()->isSuccessor(dst) && 1101 "Attempting to append a block that is not a successor."); 1102 Edges.push_back(dst); 1103 } 1104 1105 unsigned count() const { return Edges.size() - 1; } 1106 1107 MachineBasicBlock *getKey() const { 1108 return Edges.back(); 1109 } 1110 }; 1111 1112 if (TriangleChainCount == 0) 1113 return; 1114 1115 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1116 // Map from last block to the chain that contains it. This allows us to extend 1117 // chains as we find new triangles. 1118 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1119 for (MachineBasicBlock &BB : *F) { 1120 // If BB doesn't have 2 successors, it doesn't start a triangle. 1121 if (BB.succ_size() != 2) 1122 continue; 1123 MachineBasicBlock *PDom = nullptr; 1124 for (MachineBasicBlock *Succ : BB.successors()) { 1125 if (!MPDT->dominates(Succ, &BB)) 1126 continue; 1127 PDom = Succ; 1128 break; 1129 } 1130 // If BB doesn't have a post-dominating successor, it doesn't form a 1131 // triangle. 1132 if (PDom == nullptr) 1133 continue; 1134 // If PDom has a hint that it is low probability, skip this triangle. 1135 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1136 continue; 1137 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1138 // we're looking for. 1139 if (!shouldTailDuplicate(PDom)) 1140 continue; 1141 bool CanTailDuplicate = true; 1142 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1143 // isn't the kind of triangle we're looking for. 1144 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1145 if (Pred == &BB) 1146 continue; 1147 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1148 CanTailDuplicate = false; 1149 break; 1150 } 1151 } 1152 // If we can't tail-duplicate PDom to its predecessors, then skip this 1153 // triangle. 1154 if (!CanTailDuplicate) 1155 continue; 1156 1157 // Now we have an interesting triangle. Insert it if it's not part of an 1158 // existing chain 1159 // Note: This cannot be replaced with a call insert() or emplace() because 1160 // the find key is BB, but the insert/emplace key is PDom. 1161 auto Found = TriangleChainMap.find(&BB); 1162 // If it is, remove the chain from the map, grow it, and put it back in the 1163 // map with the end as the new key. 1164 if (Found != TriangleChainMap.end()) { 1165 TriangleChain Chain = std::move(Found->second); 1166 TriangleChainMap.erase(Found); 1167 Chain.append(PDom); 1168 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1169 } else { 1170 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1171 assert(InsertResult.second && "Block seen twice."); 1172 (void)InsertResult; 1173 } 1174 } 1175 1176 // Iterating over a DenseMap is safe here, because the only thing in the body 1177 // of the loop is inserting into another DenseMap (ComputedEdges). 1178 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1179 for (auto &ChainPair : TriangleChainMap) { 1180 TriangleChain &Chain = ChainPair.second; 1181 // Benchmarking has shown that due to branch correlation duplicating 2 or 1182 // more triangles is profitable, despite the calculations assuming 1183 // independence. 1184 if (Chain.count() < TriangleChainCount) 1185 continue; 1186 MachineBasicBlock *dst = Chain.Edges.back(); 1187 Chain.Edges.pop_back(); 1188 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1189 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1190 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1191 1192 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1193 assert(InsertResult.second && "Block seen twice."); 1194 (void)InsertResult; 1195 1196 dst = src; 1197 } 1198 } 1199 } 1200 1201 // When profile is not present, return the StaticLikelyProb. 1202 // When profile is available, we need to handle the triangle-shape CFG. 1203 static BranchProbability getLayoutSuccessorProbThreshold( 1204 const MachineBasicBlock *BB) { 1205 if (!BB->getParent()->getFunction()->getEntryCount()) 1206 return BranchProbability(StaticLikelyProb, 100); 1207 if (BB->succ_size() == 2) { 1208 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1209 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1210 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1211 /* See case 1 below for the cost analysis. For BB->Succ to 1212 * be taken with smaller cost, the following needs to hold: 1213 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1214 * So the threshold T in the calculation below 1215 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1216 * So T / (1 - T) = 2, Yielding T = 2/3 1217 * Also adding user specified branch bias, we have 1218 * T = (2/3)*(ProfileLikelyProb/50) 1219 * = (2*ProfileLikelyProb)/150) 1220 */ 1221 return BranchProbability(2 * ProfileLikelyProb, 150); 1222 } 1223 } 1224 return BranchProbability(ProfileLikelyProb, 100); 1225 } 1226 1227 /// Checks to see if the layout candidate block \p Succ has a better layout 1228 /// predecessor than \c BB. If yes, returns true. 1229 /// \p SuccProb: The probability adjusted for only remaining blocks. 1230 /// Only used for logging 1231 /// \p RealSuccProb: The un-adjusted probability. 1232 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1233 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1234 /// considered 1235 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1236 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1237 const BlockChain &SuccChain, BranchProbability SuccProb, 1238 BranchProbability RealSuccProb, const BlockChain &Chain, 1239 const BlockFilterSet *BlockFilter) { 1240 1241 // There isn't a better layout when there are no unscheduled predecessors. 1242 if (SuccChain.UnscheduledPredecessors == 0) 1243 return false; 1244 1245 // There are two basic scenarios here: 1246 // ------------------------------------- 1247 // Case 1: triangular shape CFG (if-then): 1248 // BB 1249 // | \ 1250 // | \ 1251 // | Pred 1252 // | / 1253 // Succ 1254 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1255 // set Succ as the layout successor of BB. Picking Succ as BB's 1256 // successor breaks the CFG constraints (FIXME: define these constraints). 1257 // With this layout, Pred BB 1258 // is forced to be outlined, so the overall cost will be cost of the 1259 // branch taken from BB to Pred, plus the cost of back taken branch 1260 // from Pred to Succ, as well as the additional cost associated 1261 // with the needed unconditional jump instruction from Pred To Succ. 1262 1263 // The cost of the topological order layout is the taken branch cost 1264 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1265 // must hold: 1266 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1267 // < freq(BB->Succ) * taken_branch_cost. 1268 // Ignoring unconditional jump cost, we get 1269 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1270 // prob(BB->Succ) > 2 * prob(BB->Pred) 1271 // 1272 // When real profile data is available, we can precisely compute the 1273 // probability threshold that is needed for edge BB->Succ to be considered. 1274 // Without profile data, the heuristic requires the branch bias to be 1275 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1276 // ----------------------------------------------------------------- 1277 // Case 2: diamond like CFG (if-then-else): 1278 // S 1279 // / \ 1280 // | \ 1281 // BB Pred 1282 // \ / 1283 // Succ 1284 // .. 1285 // 1286 // The current block is BB and edge BB->Succ is now being evaluated. 1287 // Note that edge S->BB was previously already selected because 1288 // prob(S->BB) > prob(S->Pred). 1289 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1290 // choose Pred, we will have a topological ordering as shown on the left 1291 // in the picture below. If we choose Succ, we have the solution as shown 1292 // on the right: 1293 // 1294 // topo-order: 1295 // 1296 // S----- ---S 1297 // | | | | 1298 // ---BB | | BB 1299 // | | | | 1300 // | pred-- | Succ-- 1301 // | | | | 1302 // ---succ ---pred-- 1303 // 1304 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1305 // = freq(S->Pred) + freq(S->BB) 1306 // 1307 // If we have profile data (i.e, branch probabilities can be trusted), the 1308 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1309 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1310 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1311 // means the cost of topological order is greater. 1312 // When profile data is not available, however, we need to be more 1313 // conservative. If the branch prediction is wrong, breaking the topo-order 1314 // will actually yield a layout with large cost. For this reason, we need 1315 // strong biased branch at block S with Prob(S->BB) in order to select 1316 // BB->Succ. This is equivalent to looking the CFG backward with backward 1317 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1318 // profile data). 1319 // -------------------------------------------------------------------------- 1320 // Case 3: forked diamond 1321 // S 1322 // / \ 1323 // / \ 1324 // BB Pred 1325 // | \ / | 1326 // | \ / | 1327 // | X | 1328 // | / \ | 1329 // | / \ | 1330 // S1 S2 1331 // 1332 // The current block is BB and edge BB->S1 is now being evaluated. 1333 // As above S->BB was already selected because 1334 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1335 // 1336 // topo-order: 1337 // 1338 // S-------| ---S 1339 // | | | | 1340 // ---BB | | BB 1341 // | | | | 1342 // | Pred----| | S1---- 1343 // | | | | 1344 // --(S1 or S2) ---Pred-- 1345 // | 1346 // S2 1347 // 1348 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1349 // + min(freq(Pred->S1), freq(Pred->S2)) 1350 // Non-topo-order cost: 1351 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1352 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1353 // is 0. Then the non topo layout is better when 1354 // freq(S->Pred) < freq(BB->S1). 1355 // This is exactly what is checked below. 1356 // Note there are other shapes that apply (Pred may not be a single block, 1357 // but they all fit this general pattern.) 1358 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1359 1360 // Make sure that a hot successor doesn't have a globally more 1361 // important predecessor. 1362 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1363 bool BadCFGConflict = false; 1364 1365 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1366 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1367 (BlockFilter && !BlockFilter->count(Pred)) || 1368 BlockToChain[Pred] == &Chain || 1369 // This check is redundant except for look ahead. This function is 1370 // called for lookahead by isProfitableToTailDup when BB hasn't been 1371 // placed yet. 1372 (Pred == BB)) 1373 continue; 1374 // Do backward checking. 1375 // For all cases above, we need a backward checking to filter out edges that 1376 // are not 'strongly' biased. 1377 // BB Pred 1378 // \ / 1379 // Succ 1380 // We select edge BB->Succ if 1381 // freq(BB->Succ) > freq(Succ) * HotProb 1382 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1383 // HotProb 1384 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1385 // Case 1 is covered too, because the first equation reduces to: 1386 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1387 BlockFrequency PredEdgeFreq = 1388 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1389 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1390 BadCFGConflict = true; 1391 break; 1392 } 1393 } 1394 1395 if (BadCFGConflict) { 1396 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1397 << " (prob) (non-cold CFG conflict)\n"); 1398 return true; 1399 } 1400 1401 return false; 1402 } 1403 1404 /// \brief Select the best successor for a block. 1405 /// 1406 /// This looks across all successors of a particular block and attempts to 1407 /// select the "best" one to be the layout successor. It only considers direct 1408 /// successors which also pass the block filter. It will attempt to avoid 1409 /// breaking CFG structure, but cave and break such structures in the case of 1410 /// very hot successor edges. 1411 /// 1412 /// \returns The best successor block found, or null if none are viable, along 1413 /// with a boolean indicating if tail duplication is necessary. 1414 MachineBlockPlacement::BlockAndTailDupResult 1415 MachineBlockPlacement::selectBestSuccessor( 1416 const MachineBasicBlock *BB, const BlockChain &Chain, 1417 const BlockFilterSet *BlockFilter) { 1418 const BranchProbability HotProb(StaticLikelyProb, 100); 1419 1420 BlockAndTailDupResult BestSucc = { nullptr, false }; 1421 auto BestProb = BranchProbability::getZero(); 1422 1423 SmallVector<MachineBasicBlock *, 4> Successors; 1424 auto AdjustedSumProb = 1425 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1426 1427 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1428 1429 // if we already precomputed the best successor for BB, return that if still 1430 // applicable. 1431 auto FoundEdge = ComputedEdges.find(BB); 1432 if (FoundEdge != ComputedEdges.end()) { 1433 MachineBasicBlock *Succ = FoundEdge->second.BB; 1434 ComputedEdges.erase(FoundEdge); 1435 BlockChain *SuccChain = BlockToChain[Succ]; 1436 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1437 SuccChain != &Chain && Succ == *SuccChain->begin()) 1438 return FoundEdge->second; 1439 } 1440 1441 // if BB is part of a trellis, Use the trellis to determine the optimal 1442 // fallthrough edges 1443 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1444 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1445 BlockFilter); 1446 1447 // For blocks with CFG violations, we may be able to lay them out anyway with 1448 // tail-duplication. We keep this vector so we can perform the probability 1449 // calculations the minimum number of times. 1450 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1451 DupCandidates; 1452 for (MachineBasicBlock *Succ : Successors) { 1453 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1454 BranchProbability SuccProb = 1455 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1456 1457 BlockChain &SuccChain = *BlockToChain[Succ]; 1458 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1459 // predecessor that yields lower global cost. 1460 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1461 Chain, BlockFilter)) { 1462 // If tail duplication would make Succ profitable, place it. 1463 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1464 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1465 continue; 1466 } 1467 1468 DEBUG( 1469 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1470 << SuccProb 1471 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1472 << "\n"); 1473 1474 if (BestSucc.BB && BestProb >= SuccProb) { 1475 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1476 continue; 1477 } 1478 1479 DEBUG(dbgs() << " Setting it as best candidate\n"); 1480 BestSucc.BB = Succ; 1481 BestProb = SuccProb; 1482 } 1483 // Handle the tail duplication candidates in order of decreasing probability. 1484 // Stop at the first one that is profitable. Also stop if they are less 1485 // profitable than BestSucc. Position is important because we preserve it and 1486 // prefer first best match. Here we aren't comparing in order, so we capture 1487 // the position instead. 1488 if (DupCandidates.size() != 0) { 1489 auto cmp = 1490 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1491 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1492 return std::get<0>(a) > std::get<0>(b); 1493 }; 1494 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1495 } 1496 for(auto &Tup : DupCandidates) { 1497 BranchProbability DupProb; 1498 MachineBasicBlock *Succ; 1499 std::tie(DupProb, Succ) = Tup; 1500 if (DupProb < BestProb) 1501 break; 1502 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1503 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1504 DEBUG( 1505 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1506 << DupProb 1507 << " (Tail Duplicate)\n"); 1508 BestSucc.BB = Succ; 1509 BestSucc.ShouldTailDup = true; 1510 break; 1511 } 1512 } 1513 1514 if (BestSucc.BB) 1515 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1516 1517 return BestSucc; 1518 } 1519 1520 /// \brief Select the best block from a worklist. 1521 /// 1522 /// This looks through the provided worklist as a list of candidate basic 1523 /// blocks and select the most profitable one to place. The definition of 1524 /// profitable only really makes sense in the context of a loop. This returns 1525 /// the most frequently visited block in the worklist, which in the case of 1526 /// a loop, is the one most desirable to be physically close to the rest of the 1527 /// loop body in order to improve i-cache behavior. 1528 /// 1529 /// \returns The best block found, or null if none are viable. 1530 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1531 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1532 // Once we need to walk the worklist looking for a candidate, cleanup the 1533 // worklist of already placed entries. 1534 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1535 // some code complexity) into the loop below. 1536 WorkList.erase(remove_if(WorkList, 1537 [&](MachineBasicBlock *BB) { 1538 return BlockToChain.lookup(BB) == &Chain; 1539 }), 1540 WorkList.end()); 1541 1542 if (WorkList.empty()) 1543 return nullptr; 1544 1545 bool IsEHPad = WorkList[0]->isEHPad(); 1546 1547 MachineBasicBlock *BestBlock = nullptr; 1548 BlockFrequency BestFreq; 1549 for (MachineBasicBlock *MBB : WorkList) { 1550 assert(MBB->isEHPad() == IsEHPad); 1551 1552 BlockChain &SuccChain = *BlockToChain[MBB]; 1553 if (&SuccChain == &Chain) 1554 continue; 1555 1556 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1557 1558 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1559 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1560 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1561 1562 // For ehpad, we layout the least probable first as to avoid jumping back 1563 // from least probable landingpads to more probable ones. 1564 // 1565 // FIXME: Using probability is probably (!) not the best way to achieve 1566 // this. We should probably have a more principled approach to layout 1567 // cleanup code. 1568 // 1569 // The goal is to get: 1570 // 1571 // +--------------------------+ 1572 // | V 1573 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1574 // 1575 // Rather than: 1576 // 1577 // +-------------------------------------+ 1578 // V | 1579 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1580 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1581 continue; 1582 1583 BestBlock = MBB; 1584 BestFreq = CandidateFreq; 1585 } 1586 1587 return BestBlock; 1588 } 1589 1590 /// \brief Retrieve the first unplaced basic block. 1591 /// 1592 /// This routine is called when we are unable to use the CFG to walk through 1593 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1594 /// We walk through the function's blocks in order, starting from the 1595 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1596 /// re-scanning the entire sequence on repeated calls to this routine. 1597 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1598 const BlockChain &PlacedChain, 1599 MachineFunction::iterator &PrevUnplacedBlockIt, 1600 const BlockFilterSet *BlockFilter) { 1601 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1602 ++I) { 1603 if (BlockFilter && !BlockFilter->count(&*I)) 1604 continue; 1605 if (BlockToChain[&*I] != &PlacedChain) { 1606 PrevUnplacedBlockIt = I; 1607 // Now select the head of the chain to which the unplaced block belongs 1608 // as the block to place. This will force the entire chain to be placed, 1609 // and satisfies the requirements of merging chains. 1610 return *BlockToChain[&*I]->begin(); 1611 } 1612 } 1613 return nullptr; 1614 } 1615 1616 void MachineBlockPlacement::fillWorkLists( 1617 const MachineBasicBlock *MBB, 1618 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1619 const BlockFilterSet *BlockFilter = nullptr) { 1620 BlockChain &Chain = *BlockToChain[MBB]; 1621 if (!UpdatedPreds.insert(&Chain).second) 1622 return; 1623 1624 assert(Chain.UnscheduledPredecessors == 0); 1625 for (MachineBasicBlock *ChainBB : Chain) { 1626 assert(BlockToChain[ChainBB] == &Chain); 1627 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1628 if (BlockFilter && !BlockFilter->count(Pred)) 1629 continue; 1630 if (BlockToChain[Pred] == &Chain) 1631 continue; 1632 ++Chain.UnscheduledPredecessors; 1633 } 1634 } 1635 1636 if (Chain.UnscheduledPredecessors != 0) 1637 return; 1638 1639 MachineBasicBlock *BB = *Chain.begin(); 1640 if (BB->isEHPad()) 1641 EHPadWorkList.push_back(BB); 1642 else 1643 BlockWorkList.push_back(BB); 1644 } 1645 1646 void MachineBlockPlacement::buildChain( 1647 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1648 BlockFilterSet *BlockFilter) { 1649 assert(HeadBB && "BB must not be null.\n"); 1650 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1651 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1652 1653 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1654 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1655 MachineBasicBlock *BB = *std::prev(Chain.end()); 1656 for (;;) { 1657 assert(BB && "null block found at end of chain in loop."); 1658 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1659 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1660 1661 1662 // Look for the best viable successor if there is one to place immediately 1663 // after this block. 1664 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1665 MachineBasicBlock* BestSucc = Result.BB; 1666 bool ShouldTailDup = Result.ShouldTailDup; 1667 if (TailDupPlacement) 1668 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1669 1670 // If an immediate successor isn't available, look for the best viable 1671 // block among those we've identified as not violating the loop's CFG at 1672 // this point. This won't be a fallthrough, but it will increase locality. 1673 if (!BestSucc) 1674 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1675 if (!BestSucc) 1676 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1677 1678 if (!BestSucc) { 1679 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1680 if (!BestSucc) 1681 break; 1682 1683 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1684 "layout successor until the CFG reduces\n"); 1685 } 1686 1687 // Placement may have changed tail duplication opportunities. 1688 // Check for that now. 1689 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1690 // If the chosen successor was duplicated into all its predecessors, 1691 // don't bother laying it out, just go round the loop again with BB as 1692 // the chain end. 1693 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1694 BlockFilter, PrevUnplacedBlockIt)) 1695 continue; 1696 } 1697 1698 // Place this block, updating the datastructures to reflect its placement. 1699 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1700 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1701 // we selected a successor that didn't fit naturally into the CFG. 1702 SuccChain.UnscheduledPredecessors = 0; 1703 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1704 << getBlockName(BestSucc) << "\n"); 1705 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1706 Chain.merge(BestSucc, &SuccChain); 1707 BB = *std::prev(Chain.end()); 1708 } 1709 1710 DEBUG(dbgs() << "Finished forming chain for header block " 1711 << getBlockName(*Chain.begin()) << "\n"); 1712 } 1713 1714 /// \brief Find the best loop top block for layout. 1715 /// 1716 /// Look for a block which is strictly better than the loop header for laying 1717 /// out at the top of the loop. This looks for one and only one pattern: 1718 /// a latch block with no conditional exit. This block will cause a conditional 1719 /// jump around it or will be the bottom of the loop if we lay it out in place, 1720 /// but if it it doesn't end up at the bottom of the loop for any reason, 1721 /// rotation alone won't fix it. Because such a block will always result in an 1722 /// unconditional jump (for the backedge) rotating it in front of the loop 1723 /// header is always profitable. 1724 MachineBasicBlock * 1725 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1726 const BlockFilterSet &LoopBlockSet) { 1727 // Placing the latch block before the header may introduce an extra branch 1728 // that skips this block the first time the loop is executed, which we want 1729 // to avoid when optimising for size. 1730 // FIXME: in theory there is a case that does not introduce a new branch, 1731 // i.e. when the layout predecessor does not fallthrough to the loop header. 1732 // In practice this never happens though: there always seems to be a preheader 1733 // that can fallthrough and that is also placed before the header. 1734 if (F->getFunction()->optForSize()) 1735 return L.getHeader(); 1736 1737 // Check that the header hasn't been fused with a preheader block due to 1738 // crazy branches. If it has, we need to start with the header at the top to 1739 // prevent pulling the preheader into the loop body. 1740 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1741 if (!LoopBlockSet.count(*HeaderChain.begin())) 1742 return L.getHeader(); 1743 1744 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1745 << "\n"); 1746 1747 BlockFrequency BestPredFreq; 1748 MachineBasicBlock *BestPred = nullptr; 1749 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1750 if (!LoopBlockSet.count(Pred)) 1751 continue; 1752 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1753 << Pred->succ_size() << " successors, "; 1754 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1755 if (Pred->succ_size() > 1) 1756 continue; 1757 1758 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1759 if (!BestPred || PredFreq > BestPredFreq || 1760 (!(PredFreq < BestPredFreq) && 1761 Pred->isLayoutSuccessor(L.getHeader()))) { 1762 BestPred = Pred; 1763 BestPredFreq = PredFreq; 1764 } 1765 } 1766 1767 // If no direct predecessor is fine, just use the loop header. 1768 if (!BestPred) { 1769 DEBUG(dbgs() << " final top unchanged\n"); 1770 return L.getHeader(); 1771 } 1772 1773 // Walk backwards through any straight line of predecessors. 1774 while (BestPred->pred_size() == 1 && 1775 (*BestPred->pred_begin())->succ_size() == 1 && 1776 *BestPred->pred_begin() != L.getHeader()) 1777 BestPred = *BestPred->pred_begin(); 1778 1779 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1780 return BestPred; 1781 } 1782 1783 /// \brief Find the best loop exiting block for layout. 1784 /// 1785 /// This routine implements the logic to analyze the loop looking for the best 1786 /// block to layout at the top of the loop. Typically this is done to maximize 1787 /// fallthrough opportunities. 1788 MachineBasicBlock * 1789 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1790 const BlockFilterSet &LoopBlockSet) { 1791 // We don't want to layout the loop linearly in all cases. If the loop header 1792 // is just a normal basic block in the loop, we want to look for what block 1793 // within the loop is the best one to layout at the top. However, if the loop 1794 // header has be pre-merged into a chain due to predecessors not having 1795 // analyzable branches, *and* the predecessor it is merged with is *not* part 1796 // of the loop, rotating the header into the middle of the loop will create 1797 // a non-contiguous range of blocks which is Very Bad. So start with the 1798 // header and only rotate if safe. 1799 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1800 if (!LoopBlockSet.count(*HeaderChain.begin())) 1801 return nullptr; 1802 1803 BlockFrequency BestExitEdgeFreq; 1804 unsigned BestExitLoopDepth = 0; 1805 MachineBasicBlock *ExitingBB = nullptr; 1806 // If there are exits to outer loops, loop rotation can severely limit 1807 // fallthrough opportunities unless it selects such an exit. Keep a set of 1808 // blocks where rotating to exit with that block will reach an outer loop. 1809 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1810 1811 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1812 << "\n"); 1813 for (MachineBasicBlock *MBB : L.getBlocks()) { 1814 BlockChain &Chain = *BlockToChain[MBB]; 1815 // Ensure that this block is at the end of a chain; otherwise it could be 1816 // mid-way through an inner loop or a successor of an unanalyzable branch. 1817 if (MBB != *std::prev(Chain.end())) 1818 continue; 1819 1820 // Now walk the successors. We need to establish whether this has a viable 1821 // exiting successor and whether it has a viable non-exiting successor. 1822 // We store the old exiting state and restore it if a viable looping 1823 // successor isn't found. 1824 MachineBasicBlock *OldExitingBB = ExitingBB; 1825 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1826 bool HasLoopingSucc = false; 1827 for (MachineBasicBlock *Succ : MBB->successors()) { 1828 if (Succ->isEHPad()) 1829 continue; 1830 if (Succ == MBB) 1831 continue; 1832 BlockChain &SuccChain = *BlockToChain[Succ]; 1833 // Don't split chains, either this chain or the successor's chain. 1834 if (&Chain == &SuccChain) { 1835 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1836 << getBlockName(Succ) << " (chain conflict)\n"); 1837 continue; 1838 } 1839 1840 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1841 if (LoopBlockSet.count(Succ)) { 1842 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1843 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1844 HasLoopingSucc = true; 1845 continue; 1846 } 1847 1848 unsigned SuccLoopDepth = 0; 1849 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1850 SuccLoopDepth = ExitLoop->getLoopDepth(); 1851 if (ExitLoop->contains(&L)) 1852 BlocksExitingToOuterLoop.insert(MBB); 1853 } 1854 1855 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1856 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1857 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1858 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1859 // Note that we bias this toward an existing layout successor to retain 1860 // incoming order in the absence of better information. The exit must have 1861 // a frequency higher than the current exit before we consider breaking 1862 // the layout. 1863 BranchProbability Bias(100 - ExitBlockBias, 100); 1864 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1865 ExitEdgeFreq > BestExitEdgeFreq || 1866 (MBB->isLayoutSuccessor(Succ) && 1867 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1868 BestExitEdgeFreq = ExitEdgeFreq; 1869 ExitingBB = MBB; 1870 } 1871 } 1872 1873 if (!HasLoopingSucc) { 1874 // Restore the old exiting state, no viable looping successor was found. 1875 ExitingBB = OldExitingBB; 1876 BestExitEdgeFreq = OldBestExitEdgeFreq; 1877 } 1878 } 1879 // Without a candidate exiting block or with only a single block in the 1880 // loop, just use the loop header to layout the loop. 1881 if (!ExitingBB) { 1882 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1883 return nullptr; 1884 } 1885 if (L.getNumBlocks() == 1) { 1886 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1887 return nullptr; 1888 } 1889 1890 // Also, if we have exit blocks which lead to outer loops but didn't select 1891 // one of them as the exiting block we are rotating toward, disable loop 1892 // rotation altogether. 1893 if (!BlocksExitingToOuterLoop.empty() && 1894 !BlocksExitingToOuterLoop.count(ExitingBB)) 1895 return nullptr; 1896 1897 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1898 return ExitingBB; 1899 } 1900 1901 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1902 /// 1903 /// Once we have built a chain, try to rotate it to line up the hot exit block 1904 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1905 /// branches. For example, if the loop has fallthrough into its header and out 1906 /// of its bottom already, don't rotate it. 1907 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1908 const MachineBasicBlock *ExitingBB, 1909 const BlockFilterSet &LoopBlockSet) { 1910 if (!ExitingBB) 1911 return; 1912 1913 MachineBasicBlock *Top = *LoopChain.begin(); 1914 bool ViableTopFallthrough = false; 1915 for (MachineBasicBlock *Pred : Top->predecessors()) { 1916 BlockChain *PredChain = BlockToChain[Pred]; 1917 if (!LoopBlockSet.count(Pred) && 1918 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1919 ViableTopFallthrough = true; 1920 break; 1921 } 1922 } 1923 1924 // If the header has viable fallthrough, check whether the current loop 1925 // bottom is a viable exiting block. If so, bail out as rotating will 1926 // introduce an unnecessary branch. 1927 if (ViableTopFallthrough) { 1928 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1929 for (MachineBasicBlock *Succ : Bottom->successors()) { 1930 BlockChain *SuccChain = BlockToChain[Succ]; 1931 if (!LoopBlockSet.count(Succ) && 1932 (!SuccChain || Succ == *SuccChain->begin())) 1933 return; 1934 } 1935 } 1936 1937 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1938 if (ExitIt == LoopChain.end()) 1939 return; 1940 1941 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1942 } 1943 1944 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1945 /// 1946 /// With profile data, we can determine the cost in terms of missed fall through 1947 /// opportunities when rotating a loop chain and select the best rotation. 1948 /// Basically, there are three kinds of cost to consider for each rotation: 1949 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1950 /// the loop to the loop header. 1951 /// 2. The possibly missed fall through edges (if they exist) from the loop 1952 /// exits to BB out of the loop. 1953 /// 3. The missed fall through edge (if it exists) from the last BB to the 1954 /// first BB in the loop chain. 1955 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1956 /// We select the best rotation with the smallest cost. 1957 void MachineBlockPlacement::rotateLoopWithProfile( 1958 BlockChain &LoopChain, const MachineLoop &L, 1959 const BlockFilterSet &LoopBlockSet) { 1960 auto HeaderBB = L.getHeader(); 1961 auto HeaderIter = find(LoopChain, HeaderBB); 1962 auto RotationPos = LoopChain.end(); 1963 1964 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1965 1966 // A utility lambda that scales up a block frequency by dividing it by a 1967 // branch probability which is the reciprocal of the scale. 1968 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1969 unsigned Scale) -> BlockFrequency { 1970 if (Scale == 0) 1971 return 0; 1972 // Use operator / between BlockFrequency and BranchProbability to implement 1973 // saturating multiplication. 1974 return Freq / BranchProbability(1, Scale); 1975 }; 1976 1977 // Compute the cost of the missed fall-through edge to the loop header if the 1978 // chain head is not the loop header. As we only consider natural loops with 1979 // single header, this computation can be done only once. 1980 BlockFrequency HeaderFallThroughCost(0); 1981 for (auto *Pred : HeaderBB->predecessors()) { 1982 BlockChain *PredChain = BlockToChain[Pred]; 1983 if (!LoopBlockSet.count(Pred) && 1984 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1985 auto EdgeFreq = 1986 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1987 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1988 // If the predecessor has only an unconditional jump to the header, we 1989 // need to consider the cost of this jump. 1990 if (Pred->succ_size() == 1) 1991 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1992 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1993 } 1994 } 1995 1996 // Here we collect all exit blocks in the loop, and for each exit we find out 1997 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1998 // as the sum of frequencies of exit edges we collect here, excluding the exit 1999 // edge from the tail of the loop chain. 2000 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2001 for (auto BB : LoopChain) { 2002 auto LargestExitEdgeProb = BranchProbability::getZero(); 2003 for (auto *Succ : BB->successors()) { 2004 BlockChain *SuccChain = BlockToChain[Succ]; 2005 if (!LoopBlockSet.count(Succ) && 2006 (!SuccChain || Succ == *SuccChain->begin())) { 2007 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2008 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2009 } 2010 } 2011 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2012 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2013 ExitsWithFreq.emplace_back(BB, ExitFreq); 2014 } 2015 } 2016 2017 // In this loop we iterate every block in the loop chain and calculate the 2018 // cost assuming the block is the head of the loop chain. When the loop ends, 2019 // we should have found the best candidate as the loop chain's head. 2020 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2021 EndIter = LoopChain.end(); 2022 Iter != EndIter; Iter++, TailIter++) { 2023 // TailIter is used to track the tail of the loop chain if the block we are 2024 // checking (pointed by Iter) is the head of the chain. 2025 if (TailIter == LoopChain.end()) 2026 TailIter = LoopChain.begin(); 2027 2028 auto TailBB = *TailIter; 2029 2030 // Calculate the cost by putting this BB to the top. 2031 BlockFrequency Cost = 0; 2032 2033 // If the current BB is the loop header, we need to take into account the 2034 // cost of the missed fall through edge from outside of the loop to the 2035 // header. 2036 if (Iter != HeaderIter) 2037 Cost += HeaderFallThroughCost; 2038 2039 // Collect the loop exit cost by summing up frequencies of all exit edges 2040 // except the one from the chain tail. 2041 for (auto &ExitWithFreq : ExitsWithFreq) 2042 if (TailBB != ExitWithFreq.first) 2043 Cost += ExitWithFreq.second; 2044 2045 // The cost of breaking the once fall-through edge from the tail to the top 2046 // of the loop chain. Here we need to consider three cases: 2047 // 1. If the tail node has only one successor, then we will get an 2048 // additional jmp instruction. So the cost here is (MisfetchCost + 2049 // JumpInstCost) * tail node frequency. 2050 // 2. If the tail node has two successors, then we may still get an 2051 // additional jmp instruction if the layout successor after the loop 2052 // chain is not its CFG successor. Note that the more frequently executed 2053 // jmp instruction will be put ahead of the other one. Assume the 2054 // frequency of those two branches are x and y, where x is the frequency 2055 // of the edge to the chain head, then the cost will be 2056 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2057 // 3. If the tail node has more than two successors (this rarely happens), 2058 // we won't consider any additional cost. 2059 if (TailBB->isSuccessor(*Iter)) { 2060 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2061 if (TailBB->succ_size() == 1) 2062 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2063 MisfetchCost + JumpInstCost); 2064 else if (TailBB->succ_size() == 2) { 2065 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2066 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2067 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2068 ? TailBBFreq * TailToHeadProb.getCompl() 2069 : TailToHeadFreq; 2070 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2071 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2072 } 2073 } 2074 2075 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2076 << " to the top: " << Cost.getFrequency() << "\n"); 2077 2078 if (Cost < SmallestRotationCost) { 2079 SmallestRotationCost = Cost; 2080 RotationPos = Iter; 2081 } 2082 } 2083 2084 if (RotationPos != LoopChain.end()) { 2085 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2086 << " to the top\n"); 2087 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2088 } 2089 } 2090 2091 /// \brief Collect blocks in the given loop that are to be placed. 2092 /// 2093 /// When profile data is available, exclude cold blocks from the returned set; 2094 /// otherwise, collect all blocks in the loop. 2095 MachineBlockPlacement::BlockFilterSet 2096 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2097 BlockFilterSet LoopBlockSet; 2098 2099 // Filter cold blocks off from LoopBlockSet when profile data is available. 2100 // Collect the sum of frequencies of incoming edges to the loop header from 2101 // outside. If we treat the loop as a super block, this is the frequency of 2102 // the loop. Then for each block in the loop, we calculate the ratio between 2103 // its frequency and the frequency of the loop block. When it is too small, 2104 // don't add it to the loop chain. If there are outer loops, then this block 2105 // will be merged into the first outer loop chain for which this block is not 2106 // cold anymore. This needs precise profile data and we only do this when 2107 // profile data is available. 2108 if (F->getFunction()->getEntryCount()) { 2109 BlockFrequency LoopFreq(0); 2110 for (auto LoopPred : L.getHeader()->predecessors()) 2111 if (!L.contains(LoopPred)) 2112 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2113 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2114 2115 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2116 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2117 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2118 continue; 2119 LoopBlockSet.insert(LoopBB); 2120 } 2121 } else 2122 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2123 2124 return LoopBlockSet; 2125 } 2126 2127 /// \brief Forms basic block chains from the natural loop structures. 2128 /// 2129 /// These chains are designed to preserve the existing *structure* of the code 2130 /// as much as possible. We can then stitch the chains together in a way which 2131 /// both preserves the topological structure and minimizes taken conditional 2132 /// branches. 2133 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2134 // First recurse through any nested loops, building chains for those inner 2135 // loops. 2136 for (const MachineLoop *InnerLoop : L) 2137 buildLoopChains(*InnerLoop); 2138 2139 assert(BlockWorkList.empty()); 2140 assert(EHPadWorkList.empty()); 2141 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2142 2143 // Check if we have profile data for this function. If yes, we will rotate 2144 // this loop by modeling costs more precisely which requires the profile data 2145 // for better layout. 2146 bool RotateLoopWithProfile = 2147 ForcePreciseRotationCost || 2148 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2149 2150 // First check to see if there is an obviously preferable top block for the 2151 // loop. This will default to the header, but may end up as one of the 2152 // predecessors to the header if there is one which will result in strictly 2153 // fewer branches in the loop body. 2154 // When we use profile data to rotate the loop, this is unnecessary. 2155 MachineBasicBlock *LoopTop = 2156 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2157 2158 // If we selected just the header for the loop top, look for a potentially 2159 // profitable exit block in the event that rotating the loop can eliminate 2160 // branches by placing an exit edge at the bottom. 2161 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2162 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2163 2164 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2165 2166 // FIXME: This is a really lame way of walking the chains in the loop: we 2167 // walk the blocks, and use a set to prevent visiting a particular chain 2168 // twice. 2169 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2170 assert(LoopChain.UnscheduledPredecessors == 0); 2171 UpdatedPreds.insert(&LoopChain); 2172 2173 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2174 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2175 2176 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2177 2178 if (RotateLoopWithProfile) 2179 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2180 else 2181 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2182 2183 DEBUG({ 2184 // Crash at the end so we get all of the debugging output first. 2185 bool BadLoop = false; 2186 if (LoopChain.UnscheduledPredecessors) { 2187 BadLoop = true; 2188 dbgs() << "Loop chain contains a block without its preds placed!\n" 2189 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2190 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2191 } 2192 for (MachineBasicBlock *ChainBB : LoopChain) { 2193 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2194 if (!LoopBlockSet.remove(ChainBB)) { 2195 // We don't mark the loop as bad here because there are real situations 2196 // where this can occur. For example, with an unanalyzable fallthrough 2197 // from a loop block to a non-loop block or vice versa. 2198 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2199 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2200 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2201 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2202 } 2203 } 2204 2205 if (!LoopBlockSet.empty()) { 2206 BadLoop = true; 2207 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2208 dbgs() << "Loop contains blocks never placed into a chain!\n" 2209 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2210 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2211 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2212 } 2213 assert(!BadLoop && "Detected problems with the placement of this loop."); 2214 }); 2215 2216 BlockWorkList.clear(); 2217 EHPadWorkList.clear(); 2218 } 2219 2220 void MachineBlockPlacement::buildCFGChains() { 2221 // Ensure that every BB in the function has an associated chain to simplify 2222 // the assumptions of the remaining algorithm. 2223 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2224 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2225 ++FI) { 2226 MachineBasicBlock *BB = &*FI; 2227 BlockChain *Chain = 2228 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2229 // Also, merge any blocks which we cannot reason about and must preserve 2230 // the exact fallthrough behavior for. 2231 for (;;) { 2232 Cond.clear(); 2233 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2234 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2235 break; 2236 2237 MachineFunction::iterator NextFI = std::next(FI); 2238 MachineBasicBlock *NextBB = &*NextFI; 2239 // Ensure that the layout successor is a viable block, as we know that 2240 // fallthrough is a possibility. 2241 assert(NextFI != FE && "Can't fallthrough past the last block."); 2242 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2243 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2244 << "\n"); 2245 Chain->merge(NextBB, nullptr); 2246 #ifndef NDEBUG 2247 BlocksWithUnanalyzableExits.insert(&*BB); 2248 #endif 2249 FI = NextFI; 2250 BB = NextBB; 2251 } 2252 } 2253 2254 // Build any loop-based chains. 2255 PreferredLoopExit = nullptr; 2256 for (MachineLoop *L : *MLI) 2257 buildLoopChains(*L); 2258 2259 assert(BlockWorkList.empty()); 2260 assert(EHPadWorkList.empty()); 2261 2262 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2263 for (MachineBasicBlock &MBB : *F) 2264 fillWorkLists(&MBB, UpdatedPreds); 2265 2266 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2267 buildChain(&F->front(), FunctionChain); 2268 2269 #ifndef NDEBUG 2270 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2271 #endif 2272 DEBUG({ 2273 // Crash at the end so we get all of the debugging output first. 2274 bool BadFunc = false; 2275 FunctionBlockSetType FunctionBlockSet; 2276 for (MachineBasicBlock &MBB : *F) 2277 FunctionBlockSet.insert(&MBB); 2278 2279 for (MachineBasicBlock *ChainBB : FunctionChain) 2280 if (!FunctionBlockSet.erase(ChainBB)) { 2281 BadFunc = true; 2282 dbgs() << "Function chain contains a block not in the function!\n" 2283 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2284 } 2285 2286 if (!FunctionBlockSet.empty()) { 2287 BadFunc = true; 2288 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2289 dbgs() << "Function contains blocks never placed into a chain!\n" 2290 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2291 } 2292 assert(!BadFunc && "Detected problems with the block placement."); 2293 }); 2294 2295 // Splice the blocks into place. 2296 MachineFunction::iterator InsertPos = F->begin(); 2297 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2298 for (MachineBasicBlock *ChainBB : FunctionChain) { 2299 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2300 : " ... ") 2301 << getBlockName(ChainBB) << "\n"); 2302 if (InsertPos != MachineFunction::iterator(ChainBB)) 2303 F->splice(InsertPos, ChainBB); 2304 else 2305 ++InsertPos; 2306 2307 // Update the terminator of the previous block. 2308 if (ChainBB == *FunctionChain.begin()) 2309 continue; 2310 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2311 2312 // FIXME: It would be awesome of updateTerminator would just return rather 2313 // than assert when the branch cannot be analyzed in order to remove this 2314 // boiler plate. 2315 Cond.clear(); 2316 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2317 2318 #ifndef NDEBUG 2319 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2320 // Given the exact block placement we chose, we may actually not _need_ to 2321 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2322 // do that at this point is a bug. 2323 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2324 !PrevBB->canFallThrough()) && 2325 "Unexpected block with un-analyzable fallthrough!"); 2326 Cond.clear(); 2327 TBB = FBB = nullptr; 2328 } 2329 #endif 2330 2331 // The "PrevBB" is not yet updated to reflect current code layout, so, 2332 // o. it may fall-through to a block without explicit "goto" instruction 2333 // before layout, and no longer fall-through it after layout; or 2334 // o. just opposite. 2335 // 2336 // analyzeBranch() may return erroneous value for FBB when these two 2337 // situations take place. For the first scenario FBB is mistakenly set NULL; 2338 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2339 // mistakenly pointing to "*BI". 2340 // Thus, if the future change needs to use FBB before the layout is set, it 2341 // has to correct FBB first by using the code similar to the following: 2342 // 2343 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2344 // PrevBB->updateTerminator(); 2345 // Cond.clear(); 2346 // TBB = FBB = nullptr; 2347 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2348 // // FIXME: This should never take place. 2349 // TBB = FBB = nullptr; 2350 // } 2351 // } 2352 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2353 PrevBB->updateTerminator(); 2354 } 2355 2356 // Fixup the last block. 2357 Cond.clear(); 2358 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2359 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2360 F->back().updateTerminator(); 2361 2362 BlockWorkList.clear(); 2363 EHPadWorkList.clear(); 2364 } 2365 2366 void MachineBlockPlacement::optimizeBranches() { 2367 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2368 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2369 2370 // Now that all the basic blocks in the chain have the proper layout, 2371 // make a final call to AnalyzeBranch with AllowModify set. 2372 // Indeed, the target may be able to optimize the branches in a way we 2373 // cannot because all branches may not be analyzable. 2374 // E.g., the target may be able to remove an unconditional branch to 2375 // a fallthrough when it occurs after predicated terminators. 2376 for (MachineBasicBlock *ChainBB : FunctionChain) { 2377 Cond.clear(); 2378 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2379 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2380 // If PrevBB has a two-way branch, try to re-order the branches 2381 // such that we branch to the successor with higher probability first. 2382 if (TBB && !Cond.empty() && FBB && 2383 MBPI->getEdgeProbability(ChainBB, FBB) > 2384 MBPI->getEdgeProbability(ChainBB, TBB) && 2385 !TII->reverseBranchCondition(Cond)) { 2386 DEBUG(dbgs() << "Reverse order of the two branches: " 2387 << getBlockName(ChainBB) << "\n"); 2388 DEBUG(dbgs() << " Edge probability: " 2389 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2390 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2391 DebugLoc dl; // FIXME: this is nowhere 2392 TII->removeBranch(*ChainBB); 2393 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2394 ChainBB->updateTerminator(); 2395 } 2396 } 2397 } 2398 } 2399 2400 void MachineBlockPlacement::alignBlocks() { 2401 // Walk through the backedges of the function now that we have fully laid out 2402 // the basic blocks and align the destination of each backedge. We don't rely 2403 // exclusively on the loop info here so that we can align backedges in 2404 // unnatural CFGs and backedges that were introduced purely because of the 2405 // loop rotations done during this layout pass. 2406 if (F->getFunction()->optForSize()) 2407 return; 2408 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2409 if (FunctionChain.begin() == FunctionChain.end()) 2410 return; // Empty chain. 2411 2412 const BranchProbability ColdProb(1, 5); // 20% 2413 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2414 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2415 for (MachineBasicBlock *ChainBB : FunctionChain) { 2416 if (ChainBB == *FunctionChain.begin()) 2417 continue; 2418 2419 // Don't align non-looping basic blocks. These are unlikely to execute 2420 // enough times to matter in practice. Note that we'll still handle 2421 // unnatural CFGs inside of a natural outer loop (the common case) and 2422 // rotated loops. 2423 MachineLoop *L = MLI->getLoopFor(ChainBB); 2424 if (!L) 2425 continue; 2426 2427 unsigned Align = TLI->getPrefLoopAlignment(L); 2428 if (!Align) 2429 continue; // Don't care about loop alignment. 2430 2431 // If the block is cold relative to the function entry don't waste space 2432 // aligning it. 2433 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2434 if (Freq < WeightedEntryFreq) 2435 continue; 2436 2437 // If the block is cold relative to its loop header, don't align it 2438 // regardless of what edges into the block exist. 2439 MachineBasicBlock *LoopHeader = L->getHeader(); 2440 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2441 if (Freq < (LoopHeaderFreq * ColdProb)) 2442 continue; 2443 2444 // Check for the existence of a non-layout predecessor which would benefit 2445 // from aligning this block. 2446 MachineBasicBlock *LayoutPred = 2447 &*std::prev(MachineFunction::iterator(ChainBB)); 2448 2449 // Force alignment if all the predecessors are jumps. We already checked 2450 // that the block isn't cold above. 2451 if (!LayoutPred->isSuccessor(ChainBB)) { 2452 ChainBB->setAlignment(Align); 2453 continue; 2454 } 2455 2456 // Align this block if the layout predecessor's edge into this block is 2457 // cold relative to the block. When this is true, other predecessors make up 2458 // all of the hot entries into the block and thus alignment is likely to be 2459 // important. 2460 BranchProbability LayoutProb = 2461 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2462 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2463 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2464 ChainBB->setAlignment(Align); 2465 } 2466 } 2467 2468 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2469 /// it was duplicated into its chain predecessor and removed. 2470 /// \p BB - Basic block that may be duplicated. 2471 /// 2472 /// \p LPred - Chosen layout predecessor of \p BB. 2473 /// Updated to be the chain end if LPred is removed. 2474 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2475 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2476 /// Used to identify which blocks to update predecessor 2477 /// counts. 2478 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2479 /// chosen in the given order due to unnatural CFG 2480 /// only needed if \p BB is removed and 2481 /// \p PrevUnplacedBlockIt pointed to \p BB. 2482 /// @return true if \p BB was removed. 2483 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2484 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2485 const MachineBasicBlock *LoopHeaderBB, 2486 BlockChain &Chain, BlockFilterSet *BlockFilter, 2487 MachineFunction::iterator &PrevUnplacedBlockIt) { 2488 bool Removed, DuplicatedToLPred; 2489 bool DuplicatedToOriginalLPred; 2490 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2491 PrevUnplacedBlockIt, 2492 DuplicatedToLPred); 2493 if (!Removed) 2494 return false; 2495 DuplicatedToOriginalLPred = DuplicatedToLPred; 2496 // Iteratively try to duplicate again. It can happen that a block that is 2497 // duplicated into is still small enough to be duplicated again. 2498 // No need to call markBlockSuccessors in this case, as the blocks being 2499 // duplicated from here on are already scheduled. 2500 // Note that DuplicatedToLPred always implies Removed. 2501 while (DuplicatedToLPred) { 2502 assert (Removed && "Block must have been removed to be duplicated into its " 2503 "layout predecessor."); 2504 MachineBasicBlock *DupBB, *DupPred; 2505 // The removal callback causes Chain.end() to be updated when a block is 2506 // removed. On the first pass through the loop, the chain end should be the 2507 // same as it was on function entry. On subsequent passes, because we are 2508 // duplicating the block at the end of the chain, if it is removed the 2509 // chain will have shrunk by one block. 2510 BlockChain::iterator ChainEnd = Chain.end(); 2511 DupBB = *(--ChainEnd); 2512 // Now try to duplicate again. 2513 if (ChainEnd == Chain.begin()) 2514 break; 2515 DupPred = *std::prev(ChainEnd); 2516 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2517 PrevUnplacedBlockIt, 2518 DuplicatedToLPred); 2519 } 2520 // If BB was duplicated into LPred, it is now scheduled. But because it was 2521 // removed, markChainSuccessors won't be called for its chain. Instead we 2522 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2523 // at the end because repeating the tail duplication can increase the number 2524 // of unscheduled predecessors. 2525 LPred = *std::prev(Chain.end()); 2526 if (DuplicatedToOriginalLPred) 2527 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2528 return true; 2529 } 2530 2531 /// Tail duplicate \p BB into (some) predecessors if profitable. 2532 /// \p BB - Basic block that may be duplicated 2533 /// \p LPred - Chosen layout predecessor of \p BB 2534 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2535 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2536 /// Used to identify which blocks to update predecessor 2537 /// counts. 2538 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2539 /// chosen in the given order due to unnatural CFG 2540 /// only needed if \p BB is removed and 2541 /// \p PrevUnplacedBlockIt pointed to \p BB. 2542 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2543 /// only be true if the block was removed. 2544 /// \return - True if the block was duplicated into all preds and removed. 2545 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2546 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2547 BlockChain &Chain, BlockFilterSet *BlockFilter, 2548 MachineFunction::iterator &PrevUnplacedBlockIt, 2549 bool &DuplicatedToLPred) { 2550 DuplicatedToLPred = false; 2551 if (!shouldTailDuplicate(BB)) 2552 return false; 2553 2554 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2555 << BB->getNumber() << "\n"); 2556 2557 // This has to be a callback because none of it can be done after 2558 // BB is deleted. 2559 bool Removed = false; 2560 auto RemovalCallback = 2561 [&](MachineBasicBlock *RemBB) { 2562 // Signal to outer function 2563 Removed = true; 2564 2565 // Conservative default. 2566 bool InWorkList = true; 2567 // Remove from the Chain and Chain Map 2568 if (BlockToChain.count(RemBB)) { 2569 BlockChain *Chain = BlockToChain[RemBB]; 2570 InWorkList = Chain->UnscheduledPredecessors == 0; 2571 Chain->remove(RemBB); 2572 BlockToChain.erase(RemBB); 2573 } 2574 2575 // Handle the unplaced block iterator 2576 if (&(*PrevUnplacedBlockIt) == RemBB) { 2577 PrevUnplacedBlockIt++; 2578 } 2579 2580 // Handle the Work Lists 2581 if (InWorkList) { 2582 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2583 if (RemBB->isEHPad()) 2584 RemoveList = EHPadWorkList; 2585 RemoveList.erase( 2586 remove_if(RemoveList, 2587 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2588 RemoveList.end()); 2589 } 2590 2591 // Handle the filter set 2592 if (BlockFilter) { 2593 BlockFilter->remove(RemBB); 2594 } 2595 2596 // Remove the block from loop info. 2597 MLI->removeBlock(RemBB); 2598 if (RemBB == PreferredLoopExit) 2599 PreferredLoopExit = nullptr; 2600 2601 DEBUG(dbgs() << "TailDuplicator deleted block: " 2602 << getBlockName(RemBB) << "\n"); 2603 }; 2604 auto RemovalCallbackRef = 2605 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2606 2607 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2608 bool IsSimple = TailDup.isSimpleBB(BB); 2609 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2610 &DuplicatedPreds, &RemovalCallbackRef); 2611 2612 // Update UnscheduledPredecessors to reflect tail-duplication. 2613 DuplicatedToLPred = false; 2614 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2615 // We're only looking for unscheduled predecessors that match the filter. 2616 BlockChain* PredChain = BlockToChain[Pred]; 2617 if (Pred == LPred) 2618 DuplicatedToLPred = true; 2619 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2620 || PredChain == &Chain) 2621 continue; 2622 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2623 if (BlockFilter && !BlockFilter->count(NewSucc)) 2624 continue; 2625 BlockChain *NewChain = BlockToChain[NewSucc]; 2626 if (NewChain != &Chain && NewChain != PredChain) 2627 NewChain->UnscheduledPredecessors++; 2628 } 2629 } 2630 return Removed; 2631 } 2632 2633 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2634 if (skipFunction(*MF.getFunction())) 2635 return false; 2636 2637 // Check for single-block functions and skip them. 2638 if (std::next(MF.begin()) == MF.end()) 2639 return false; 2640 2641 F = &MF; 2642 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2643 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2644 getAnalysis<MachineBlockFrequencyInfo>()); 2645 MLI = &getAnalysis<MachineLoopInfo>(); 2646 TII = MF.getSubtarget().getInstrInfo(); 2647 TLI = MF.getSubtarget().getTargetLowering(); 2648 MPDT = nullptr; 2649 2650 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2651 // there are no MachineLoops. 2652 PreferredLoopExit = nullptr; 2653 2654 assert(BlockToChain.empty()); 2655 assert(ComputedEdges.empty()); 2656 2657 unsigned TailDupSize = TailDupPlacementThreshold; 2658 // If only the aggressive threshold is explicitly set, use it. 2659 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2660 TailDupPlacementThreshold.getNumOccurrences() == 0) 2661 TailDupSize = TailDupPlacementAggressiveThreshold; 2662 2663 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2664 // For agressive optimization, we can adjust some thresholds to be less 2665 // conservative. 2666 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2667 // At O3 we should be more willing to copy blocks for tail duplication. This 2668 // increases size pressure, so we only do it at O3 2669 // Do this unless only the regular threshold is explicitly set. 2670 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2671 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2672 TailDupSize = TailDupPlacementAggressiveThreshold; 2673 } 2674 2675 if (TailDupPlacement) { 2676 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2677 if (MF.getFunction()->optForSize()) 2678 TailDupSize = 1; 2679 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2680 precomputeTriangleChains(); 2681 } 2682 2683 buildCFGChains(); 2684 2685 // Changing the layout can create new tail merging opportunities. 2686 // TailMerge can create jump into if branches that make CFG irreducible for 2687 // HW that requires structured CFG. 2688 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2689 PassConfig->getEnableTailMerge() && 2690 BranchFoldPlacement; 2691 // No tail merging opportunities if the block number is less than four. 2692 if (MF.size() > 3 && EnableTailMerge) { 2693 unsigned TailMergeSize = TailDupSize + 1; 2694 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2695 *MBPI, TailMergeSize); 2696 2697 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2698 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2699 /*AfterBlockPlacement=*/true)) { 2700 // Redo the layout if tail merging creates/removes/moves blocks. 2701 BlockToChain.clear(); 2702 ComputedEdges.clear(); 2703 // Must redo the post-dominator tree if blocks were changed. 2704 if (MPDT) 2705 MPDT->runOnMachineFunction(MF); 2706 ChainAllocator.DestroyAll(); 2707 buildCFGChains(); 2708 } 2709 } 2710 2711 optimizeBranches(); 2712 alignBlocks(); 2713 2714 BlockToChain.clear(); 2715 ComputedEdges.clear(); 2716 ChainAllocator.DestroyAll(); 2717 2718 if (AlignAllBlock) 2719 // Align all of the blocks in the function to a specific alignment. 2720 for (MachineBasicBlock &MBB : MF) 2721 MBB.setAlignment(AlignAllBlock); 2722 else if (AlignAllNonFallThruBlocks) { 2723 // Align all of the blocks that have no fall-through predecessors to a 2724 // specific alignment. 2725 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2726 auto LayoutPred = std::prev(MBI); 2727 if (!LayoutPred->isSuccessor(&*MBI)) 2728 MBI->setAlignment(AlignAllNonFallThruBlocks); 2729 } 2730 } 2731 if (ViewBlockLayoutWithBFI != GVDT_None && 2732 (ViewBlockFreqFuncName.empty() || 2733 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2734 MBFI->view("MBP." + MF.getName(), false); 2735 } 2736 2737 2738 // We always return true as we have no way to track whether the final order 2739 // differs from the original order. 2740 return true; 2741 } 2742 2743 namespace { 2744 /// \brief A pass to compute block placement statistics. 2745 /// 2746 /// A separate pass to compute interesting statistics for evaluating block 2747 /// placement. This is separate from the actual placement pass so that they can 2748 /// be computed in the absence of any placement transformations or when using 2749 /// alternative placement strategies. 2750 class MachineBlockPlacementStats : public MachineFunctionPass { 2751 /// \brief A handle to the branch probability pass. 2752 const MachineBranchProbabilityInfo *MBPI; 2753 2754 /// \brief A handle to the function-wide block frequency pass. 2755 const MachineBlockFrequencyInfo *MBFI; 2756 2757 public: 2758 static char ID; // Pass identification, replacement for typeid 2759 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2760 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2761 } 2762 2763 bool runOnMachineFunction(MachineFunction &F) override; 2764 2765 void getAnalysisUsage(AnalysisUsage &AU) const override { 2766 AU.addRequired<MachineBranchProbabilityInfo>(); 2767 AU.addRequired<MachineBlockFrequencyInfo>(); 2768 AU.setPreservesAll(); 2769 MachineFunctionPass::getAnalysisUsage(AU); 2770 } 2771 }; 2772 } 2773 2774 char MachineBlockPlacementStats::ID = 0; 2775 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2776 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2777 "Basic Block Placement Stats", false, false) 2778 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2779 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2780 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2781 "Basic Block Placement Stats", false, false) 2782 2783 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2784 // Check for single-block functions and skip them. 2785 if (std::next(F.begin()) == F.end()) 2786 return false; 2787 2788 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2789 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2790 2791 for (MachineBasicBlock &MBB : F) { 2792 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2793 Statistic &NumBranches = 2794 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2795 Statistic &BranchTakenFreq = 2796 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2797 for (MachineBasicBlock *Succ : MBB.successors()) { 2798 // Skip if this successor is a fallthrough. 2799 if (MBB.isLayoutSuccessor(Succ)) 2800 continue; 2801 2802 BlockFrequency EdgeFreq = 2803 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2804 ++NumBranches; 2805 BranchTakenFreq += EdgeFreq.getFrequency(); 2806 } 2807 } 2808 2809 return false; 2810 } 2811