1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probablistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 129 namespace { 130 class BlockChain; 131 /// \brief Type for our function-wide basic block -> block chain mapping. 132 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 133 } 134 135 namespace { 136 /// \brief A chain of blocks which will be laid out contiguously. 137 /// 138 /// This is the datastructure representing a chain of consecutive blocks that 139 /// are profitable to layout together in order to maximize fallthrough 140 /// probabilities and code locality. We also can use a block chain to represent 141 /// a sequence of basic blocks which have some external (correctness) 142 /// requirement for sequential layout. 143 /// 144 /// Chains can be built around a single basic block and can be merged to grow 145 /// them. They participate in a block-to-chain mapping, which is updated 146 /// automatically as chains are merged together. 147 class BlockChain { 148 /// \brief The sequence of blocks belonging to this chain. 149 /// 150 /// This is the sequence of blocks for a particular chain. These will be laid 151 /// out in-order within the function. 152 SmallVector<MachineBasicBlock *, 4> Blocks; 153 154 /// \brief A handle to the function-wide basic block to block chain mapping. 155 /// 156 /// This is retained in each block chain to simplify the computation of child 157 /// block chains for SCC-formation and iteration. We store the edges to child 158 /// basic blocks, and map them back to their associated chains using this 159 /// structure. 160 BlockToChainMapType &BlockToChain; 161 162 public: 163 /// \brief Construct a new BlockChain. 164 /// 165 /// This builds a new block chain representing a single basic block in the 166 /// function. It also registers itself as the chain that block participates 167 /// in with the BlockToChain mapping. 168 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 169 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 170 assert(BB && "Cannot create a chain with a null basic block"); 171 BlockToChain[BB] = this; 172 } 173 174 /// \brief Iterator over blocks within the chain. 175 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 176 177 /// \brief Beginning of blocks within the chain. 178 iterator begin() { return Blocks.begin(); } 179 180 /// \brief End of blocks within the chain. 181 iterator end() { return Blocks.end(); } 182 183 /// \brief Merge a block chain into this one. 184 /// 185 /// This routine merges a block chain into this one. It takes care of forming 186 /// a contiguous sequence of basic blocks, updating the edge list, and 187 /// updating the block -> chain mapping. It does not free or tear down the 188 /// old chain, but the old chain's block list is no longer valid. 189 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 190 assert(BB); 191 assert(!Blocks.empty()); 192 193 // Fast path in case we don't have a chain already. 194 if (!Chain) { 195 assert(!BlockToChain[BB]); 196 Blocks.push_back(BB); 197 BlockToChain[BB] = this; 198 return; 199 } 200 201 assert(BB == *Chain->begin()); 202 assert(Chain->begin() != Chain->end()); 203 204 // Update the incoming blocks to point to this chain, and add them to the 205 // chain structure. 206 for (MachineBasicBlock *ChainBB : *Chain) { 207 Blocks.push_back(ChainBB); 208 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 209 BlockToChain[ChainBB] = this; 210 } 211 } 212 213 #ifndef NDEBUG 214 /// \brief Dump the blocks in this chain. 215 LLVM_DUMP_METHOD void dump() { 216 for (MachineBasicBlock *MBB : *this) 217 MBB->dump(); 218 } 219 #endif // NDEBUG 220 221 /// \brief Count of predecessors of any block within the chain which have not 222 /// yet been scheduled. In general, we will delay scheduling this chain 223 /// until those predecessors are scheduled (or we find a sufficiently good 224 /// reason to override this heuristic.) Note that when forming loop chains, 225 /// blocks outside the loop are ignored and treated as if they were already 226 /// scheduled. 227 /// 228 /// Note: This field is reinitialized multiple times - once for each loop, 229 /// and then once for the function as a whole. 230 unsigned UnscheduledPredecessors; 231 }; 232 } 233 234 namespace { 235 class MachineBlockPlacement : public MachineFunctionPass { 236 /// \brief A typedef for a block filter set. 237 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 238 239 /// \brief A handle to the branch probability pass. 240 const MachineBranchProbabilityInfo *MBPI; 241 242 /// \brief A handle to the function-wide block frequency pass. 243 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 244 245 /// \brief A handle to the loop info. 246 MachineLoopInfo *MLI; 247 248 /// \brief A handle to the target's instruction info. 249 const TargetInstrInfo *TII; 250 251 /// \brief A handle to the target's lowering info. 252 const TargetLoweringBase *TLI; 253 254 /// \brief A handle to the post dominator tree. 255 MachineDominatorTree *MDT; 256 257 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 258 /// all terminators of the MachineFunction. 259 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 260 261 /// \brief Allocator and owner of BlockChain structures. 262 /// 263 /// We build BlockChains lazily while processing the loop structure of 264 /// a function. To reduce malloc traffic, we allocate them using this 265 /// slab-like allocator, and destroy them after the pass completes. An 266 /// important guarantee is that this allocator produces stable pointers to 267 /// the chains. 268 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 269 270 /// \brief Function wide BasicBlock to BlockChain mapping. 271 /// 272 /// This mapping allows efficiently moving from any given basic block to the 273 /// BlockChain it participates in, if any. We use it to, among other things, 274 /// allow implicitly defining edges between chains as the existing edges 275 /// between basic blocks. 276 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 277 278 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 279 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 280 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 281 const BlockFilterSet *BlockFilter = nullptr); 282 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 283 BlockChain &Chain, 284 const BlockFilterSet *BlockFilter); 285 MachineBasicBlock * 286 selectBestCandidateBlock(BlockChain &Chain, 287 SmallVectorImpl<MachineBasicBlock *> &WorkList); 288 MachineBasicBlock * 289 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 290 MachineFunction::iterator &PrevUnplacedBlockIt, 291 const BlockFilterSet *BlockFilter); 292 293 /// \brief Add a basic block to the work list if it is apropriate. 294 /// 295 /// If the optional parameter BlockFilter is provided, only MBB 296 /// present in the set will be added to the worklist. If nullptr 297 /// is provided, no filtering occurs. 298 void fillWorkLists(MachineBasicBlock *MBB, 299 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 300 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 301 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 302 const BlockFilterSet *BlockFilter); 303 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 304 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 305 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 306 const BlockFilterSet *BlockFilter = nullptr); 307 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 308 const BlockFilterSet &LoopBlockSet); 309 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 310 const BlockFilterSet &LoopBlockSet); 311 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 312 void buildLoopChains(MachineFunction &F, MachineLoop &L); 313 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 314 const BlockFilterSet &LoopBlockSet); 315 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 316 const BlockFilterSet &LoopBlockSet); 317 void buildCFGChains(MachineFunction &F); 318 void optimizeBranches(MachineFunction &F); 319 void alignBlocks(MachineFunction &F); 320 321 public: 322 static char ID; // Pass identification, replacement for typeid 323 MachineBlockPlacement() : MachineFunctionPass(ID) { 324 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 325 } 326 327 bool runOnMachineFunction(MachineFunction &F) override; 328 329 void getAnalysisUsage(AnalysisUsage &AU) const override { 330 AU.addRequired<MachineBranchProbabilityInfo>(); 331 AU.addRequired<MachineBlockFrequencyInfo>(); 332 AU.addRequired<MachineDominatorTree>(); 333 AU.addRequired<MachineLoopInfo>(); 334 AU.addRequired<TargetPassConfig>(); 335 MachineFunctionPass::getAnalysisUsage(AU); 336 } 337 }; 338 } 339 340 char MachineBlockPlacement::ID = 0; 341 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 342 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 343 "Branch Probability Basic Block Placement", false, false) 344 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 345 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 346 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 347 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 348 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 349 "Branch Probability Basic Block Placement", false, false) 350 351 #ifndef NDEBUG 352 /// \brief Helper to print the name of a MBB. 353 /// 354 /// Only used by debug logging. 355 static std::string getBlockName(MachineBasicBlock *BB) { 356 std::string Result; 357 raw_string_ostream OS(Result); 358 OS << "BB#" << BB->getNumber(); 359 OS << " ('" << BB->getName() << "')"; 360 OS.flush(); 361 return Result; 362 } 363 #endif 364 365 /// \brief Mark a chain's successors as having one fewer preds. 366 /// 367 /// When a chain is being merged into the "placed" chain, this routine will 368 /// quickly walk the successors of each block in the chain and mark them as 369 /// having one fewer active predecessor. It also adds any successors of this 370 /// chain which reach the zero-predecessor state to the worklist passed in. 371 void MachineBlockPlacement::markChainSuccessors( 372 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 373 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 374 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 375 const BlockFilterSet *BlockFilter) { 376 // Walk all the blocks in this chain, marking their successors as having 377 // a predecessor placed. 378 for (MachineBasicBlock *MBB : Chain) { 379 // Add any successors for which this is the only un-placed in-loop 380 // predecessor to the worklist as a viable candidate for CFG-neutral 381 // placement. No subsequent placement of this block will violate the CFG 382 // shape, so we get to use heuristics to choose a favorable placement. 383 for (MachineBasicBlock *Succ : MBB->successors()) { 384 if (BlockFilter && !BlockFilter->count(Succ)) 385 continue; 386 BlockChain &SuccChain = *BlockToChain[Succ]; 387 // Disregard edges within a fixed chain, or edges to the loop header. 388 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 389 continue; 390 391 // This is a cross-chain edge that is within the loop, so decrement the 392 // loop predecessor count of the destination chain. 393 if (SuccChain.UnscheduledPredecessors == 0 || 394 --SuccChain.UnscheduledPredecessors > 0) 395 continue; 396 397 auto *MBB = *SuccChain.begin(); 398 if (MBB->isEHPad()) 399 EHPadWorkList.push_back(MBB); 400 else 401 BlockWorkList.push_back(MBB); 402 } 403 } 404 } 405 406 /// \brief Select the best successor for a block. 407 /// 408 /// This looks across all successors of a particular block and attempts to 409 /// select the "best" one to be the layout successor. It only considers direct 410 /// successors which also pass the block filter. It will attempt to avoid 411 /// breaking CFG structure, but cave and break such structures in the case of 412 /// very hot successor edges. 413 /// 414 /// \returns The best successor block found, or null if none are viable. 415 MachineBasicBlock * 416 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 417 BlockChain &Chain, 418 const BlockFilterSet *BlockFilter) { 419 const BranchProbability HotProb(StaticLikelyProb, 100); 420 421 MachineBasicBlock *BestSucc = nullptr; 422 auto BestProb = BranchProbability::getZero(); 423 424 // Adjust edge probabilities by excluding edges pointing to blocks that is 425 // either not in BlockFilter or is already in the current chain. Consider the 426 // following CFG: 427 // 428 // --->A 429 // | / \ 430 // | B C 431 // | \ / \ 432 // ----D E 433 // 434 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 435 // A->C is chosen as a fall-through, D won't be selected as a successor of C 436 // due to CFG constraint (the probability of C->D is not greater than 437 // HotProb). If we exclude E that is not in BlockFilter when calculating the 438 // probability of C->D, D will be selected and we will get A C D B as the 439 // layout of this loop. 440 auto AdjustedSumProb = BranchProbability::getOne(); 441 SmallVector<MachineBasicBlock *, 4> Successors; 442 for (MachineBasicBlock *Succ : BB->successors()) { 443 bool SkipSucc = false; 444 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 445 SkipSucc = true; 446 } else { 447 BlockChain *SuccChain = BlockToChain[Succ]; 448 if (SuccChain == &Chain) { 449 SkipSucc = true; 450 } else if (Succ != *SuccChain->begin()) { 451 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 452 continue; 453 } 454 } 455 if (SkipSucc) 456 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 457 else 458 Successors.push_back(Succ); 459 } 460 461 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 462 for (MachineBasicBlock *Succ : Successors) { 463 BranchProbability SuccProb; 464 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 465 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 466 if (SuccProbN >= SuccProbD) 467 SuccProb = BranchProbability::getOne(); 468 else 469 SuccProb = BranchProbability(SuccProbN, SuccProbD); 470 471 // If we outline optional branches, look whether Succ is unavoidable, i.e. 472 // dominates all terminators of the MachineFunction. If it does, other 473 // successors must be optional. Don't do this for cold branches. 474 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 475 UnavoidableBlocks.count(Succ) > 0) { 476 auto HasShortOptionalBranch = [&]() { 477 for (MachineBasicBlock *Pred : Succ->predecessors()) { 478 // Check whether there is an unplaced optional branch. 479 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 480 BlockToChain[Pred] == &Chain) 481 continue; 482 // Check whether the optional branch has exactly one BB. 483 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 484 continue; 485 // Check whether the optional branch is small. 486 if (Pred->size() < OutlineOptionalThreshold) 487 return true; 488 } 489 return false; 490 }; 491 if (!HasShortOptionalBranch()) 492 return Succ; 493 } 494 495 // Only consider successors which are either "hot", or wouldn't violate 496 // any CFG constraints. 497 BlockChain &SuccChain = *BlockToChain[Succ]; 498 if (SuccChain.UnscheduledPredecessors != 0) { 499 if (SuccProb < HotProb) { 500 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 501 << " (prob) (CFG conflict)\n"); 502 continue; 503 } 504 505 // Make sure that a hot successor doesn't have a globally more 506 // important predecessor. 507 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 508 BlockFrequency CandidateEdgeFreq = 509 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 510 bool BadCFGConflict = false; 511 for (MachineBasicBlock *Pred : Succ->predecessors()) { 512 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 513 (BlockFilter && !BlockFilter->count(Pred)) || 514 BlockToChain[Pred] == &Chain) 515 continue; 516 BlockFrequency PredEdgeFreq = 517 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 518 if (PredEdgeFreq >= CandidateEdgeFreq) { 519 BadCFGConflict = true; 520 break; 521 } 522 } 523 if (BadCFGConflict) { 524 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 525 << " (prob) (non-cold CFG conflict)\n"); 526 continue; 527 } 528 } 529 530 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 531 << " (prob)" 532 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 533 << "\n"); 534 if (BestSucc && BestProb >= SuccProb) 535 continue; 536 BestSucc = Succ; 537 BestProb = SuccProb; 538 } 539 return BestSucc; 540 } 541 542 /// \brief Select the best block from a worklist. 543 /// 544 /// This looks through the provided worklist as a list of candidate basic 545 /// blocks and select the most profitable one to place. The definition of 546 /// profitable only really makes sense in the context of a loop. This returns 547 /// the most frequently visited block in the worklist, which in the case of 548 /// a loop, is the one most desirable to be physically close to the rest of the 549 /// loop body in order to improve icache behavior. 550 /// 551 /// \returns The best block found, or null if none are viable. 552 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 553 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 554 // Once we need to walk the worklist looking for a candidate, cleanup the 555 // worklist of already placed entries. 556 // FIXME: If this shows up on profiles, it could be folded (at the cost of 557 // some code complexity) into the loop below. 558 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 559 [&](MachineBasicBlock *BB) { 560 return BlockToChain.lookup(BB) == &Chain; 561 }), 562 WorkList.end()); 563 564 if (WorkList.empty()) 565 return nullptr; 566 567 bool IsEHPad = WorkList[0]->isEHPad(); 568 569 MachineBasicBlock *BestBlock = nullptr; 570 BlockFrequency BestFreq; 571 for (MachineBasicBlock *MBB : WorkList) { 572 assert(MBB->isEHPad() == IsEHPad); 573 574 BlockChain &SuccChain = *BlockToChain[MBB]; 575 if (&SuccChain == &Chain) 576 continue; 577 578 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 579 580 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 581 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 582 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 583 584 // For ehpad, we layout the least probable first as to avoid jumping back 585 // from least probable landingpads to more probable ones. 586 // 587 // FIXME: Using probability is probably (!) not the best way to achieve 588 // this. We should probably have a more principled approach to layout 589 // cleanup code. 590 // 591 // The goal is to get: 592 // 593 // +--------------------------+ 594 // | V 595 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 596 // 597 // Rather than: 598 // 599 // +-------------------------------------+ 600 // V | 601 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 602 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 603 continue; 604 605 BestBlock = MBB; 606 BestFreq = CandidateFreq; 607 } 608 609 return BestBlock; 610 } 611 612 /// \brief Retrieve the first unplaced basic block. 613 /// 614 /// This routine is called when we are unable to use the CFG to walk through 615 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 616 /// We walk through the function's blocks in order, starting from the 617 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 618 /// re-scanning the entire sequence on repeated calls to this routine. 619 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 620 MachineFunction &F, const BlockChain &PlacedChain, 621 MachineFunction::iterator &PrevUnplacedBlockIt, 622 const BlockFilterSet *BlockFilter) { 623 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 624 ++I) { 625 if (BlockFilter && !BlockFilter->count(&*I)) 626 continue; 627 if (BlockToChain[&*I] != &PlacedChain) { 628 PrevUnplacedBlockIt = I; 629 // Now select the head of the chain to which the unplaced block belongs 630 // as the block to place. This will force the entire chain to be placed, 631 // and satisfies the requirements of merging chains. 632 return *BlockToChain[&*I]->begin(); 633 } 634 } 635 return nullptr; 636 } 637 638 void MachineBlockPlacement::fillWorkLists( 639 MachineBasicBlock *MBB, 640 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 641 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 642 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 643 const BlockFilterSet *BlockFilter = nullptr) { 644 BlockChain &Chain = *BlockToChain[MBB]; 645 if (!UpdatedPreds.insert(&Chain).second) 646 return; 647 648 assert(Chain.UnscheduledPredecessors == 0); 649 for (MachineBasicBlock *ChainBB : Chain) { 650 assert(BlockToChain[ChainBB] == &Chain); 651 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 652 if (BlockFilter && !BlockFilter->count(Pred)) 653 continue; 654 if (BlockToChain[Pred] == &Chain) 655 continue; 656 ++Chain.UnscheduledPredecessors; 657 } 658 } 659 660 if (Chain.UnscheduledPredecessors != 0) 661 return; 662 663 MBB = *Chain.begin(); 664 if (MBB->isEHPad()) 665 EHPadWorkList.push_back(MBB); 666 else 667 BlockWorkList.push_back(MBB); 668 } 669 670 void MachineBlockPlacement::buildChain( 671 MachineBasicBlock *BB, BlockChain &Chain, 672 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 673 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 674 const BlockFilterSet *BlockFilter) { 675 assert(BB); 676 assert(BlockToChain[BB] == &Chain); 677 MachineFunction &F = *BB->getParent(); 678 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 679 680 MachineBasicBlock *LoopHeaderBB = BB; 681 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 682 BlockFilter); 683 BB = *std::prev(Chain.end()); 684 for (;;) { 685 assert(BB); 686 assert(BlockToChain[BB] == &Chain); 687 assert(*std::prev(Chain.end()) == BB); 688 689 // Look for the best viable successor if there is one to place immediately 690 // after this block. 691 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 692 693 // If an immediate successor isn't available, look for the best viable 694 // block among those we've identified as not violating the loop's CFG at 695 // this point. This won't be a fallthrough, but it will increase locality. 696 if (!BestSucc) 697 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 698 if (!BestSucc) 699 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 700 701 if (!BestSucc) { 702 BestSucc = 703 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 704 if (!BestSucc) 705 break; 706 707 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 708 "layout successor until the CFG reduces\n"); 709 } 710 711 // Place this block, updating the datastructures to reflect its placement. 712 BlockChain &SuccChain = *BlockToChain[BestSucc]; 713 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 714 // we selected a successor that didn't fit naturally into the CFG. 715 SuccChain.UnscheduledPredecessors = 0; 716 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 717 << getBlockName(BestSucc) << "\n"); 718 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 719 BlockFilter); 720 Chain.merge(BestSucc, &SuccChain); 721 BB = *std::prev(Chain.end()); 722 } 723 724 DEBUG(dbgs() << "Finished forming chain for header block " 725 << getBlockName(*Chain.begin()) << "\n"); 726 } 727 728 /// \brief Find the best loop top block for layout. 729 /// 730 /// Look for a block which is strictly better than the loop header for laying 731 /// out at the top of the loop. This looks for one and only one pattern: 732 /// a latch block with no conditional exit. This block will cause a conditional 733 /// jump around it or will be the bottom of the loop if we lay it out in place, 734 /// but if it it doesn't end up at the bottom of the loop for any reason, 735 /// rotation alone won't fix it. Because such a block will always result in an 736 /// unconditional jump (for the backedge) rotating it in front of the loop 737 /// header is always profitable. 738 MachineBasicBlock * 739 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 740 const BlockFilterSet &LoopBlockSet) { 741 // Check that the header hasn't been fused with a preheader block due to 742 // crazy branches. If it has, we need to start with the header at the top to 743 // prevent pulling the preheader into the loop body. 744 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 745 if (!LoopBlockSet.count(*HeaderChain.begin())) 746 return L.getHeader(); 747 748 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 749 << "\n"); 750 751 BlockFrequency BestPredFreq; 752 MachineBasicBlock *BestPred = nullptr; 753 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 754 if (!LoopBlockSet.count(Pred)) 755 continue; 756 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 757 << Pred->succ_size() << " successors, "; 758 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 759 if (Pred->succ_size() > 1) 760 continue; 761 762 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 763 if (!BestPred || PredFreq > BestPredFreq || 764 (!(PredFreq < BestPredFreq) && 765 Pred->isLayoutSuccessor(L.getHeader()))) { 766 BestPred = Pred; 767 BestPredFreq = PredFreq; 768 } 769 } 770 771 // If no direct predecessor is fine, just use the loop header. 772 if (!BestPred) { 773 DEBUG(dbgs() << " final top unchanged\n"); 774 return L.getHeader(); 775 } 776 777 // Walk backwards through any straight line of predecessors. 778 while (BestPred->pred_size() == 1 && 779 (*BestPred->pred_begin())->succ_size() == 1 && 780 *BestPred->pred_begin() != L.getHeader()) 781 BestPred = *BestPred->pred_begin(); 782 783 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 784 return BestPred; 785 } 786 787 /// \brief Find the best loop exiting block for layout. 788 /// 789 /// This routine implements the logic to analyze the loop looking for the best 790 /// block to layout at the top of the loop. Typically this is done to maximize 791 /// fallthrough opportunities. 792 MachineBasicBlock * 793 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 794 const BlockFilterSet &LoopBlockSet) { 795 // We don't want to layout the loop linearly in all cases. If the loop header 796 // is just a normal basic block in the loop, we want to look for what block 797 // within the loop is the best one to layout at the top. However, if the loop 798 // header has be pre-merged into a chain due to predecessors not having 799 // analyzable branches, *and* the predecessor it is merged with is *not* part 800 // of the loop, rotating the header into the middle of the loop will create 801 // a non-contiguous range of blocks which is Very Bad. So start with the 802 // header and only rotate if safe. 803 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 804 if (!LoopBlockSet.count(*HeaderChain.begin())) 805 return nullptr; 806 807 BlockFrequency BestExitEdgeFreq; 808 unsigned BestExitLoopDepth = 0; 809 MachineBasicBlock *ExitingBB = nullptr; 810 // If there are exits to outer loops, loop rotation can severely limit 811 // fallthrough opportunites unless it selects such an exit. Keep a set of 812 // blocks where rotating to exit with that block will reach an outer loop. 813 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 814 815 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 816 << "\n"); 817 for (MachineBasicBlock *MBB : L.getBlocks()) { 818 BlockChain &Chain = *BlockToChain[MBB]; 819 // Ensure that this block is at the end of a chain; otherwise it could be 820 // mid-way through an inner loop or a successor of an unanalyzable branch. 821 if (MBB != *std::prev(Chain.end())) 822 continue; 823 824 // Now walk the successors. We need to establish whether this has a viable 825 // exiting successor and whether it has a viable non-exiting successor. 826 // We store the old exiting state and restore it if a viable looping 827 // successor isn't found. 828 MachineBasicBlock *OldExitingBB = ExitingBB; 829 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 830 bool HasLoopingSucc = false; 831 for (MachineBasicBlock *Succ : MBB->successors()) { 832 if (Succ->isEHPad()) 833 continue; 834 if (Succ == MBB) 835 continue; 836 BlockChain &SuccChain = *BlockToChain[Succ]; 837 // Don't split chains, either this chain or the successor's chain. 838 if (&Chain == &SuccChain) { 839 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 840 << getBlockName(Succ) << " (chain conflict)\n"); 841 continue; 842 } 843 844 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 845 if (LoopBlockSet.count(Succ)) { 846 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 847 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 848 HasLoopingSucc = true; 849 continue; 850 } 851 852 unsigned SuccLoopDepth = 0; 853 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 854 SuccLoopDepth = ExitLoop->getLoopDepth(); 855 if (ExitLoop->contains(&L)) 856 BlocksExitingToOuterLoop.insert(MBB); 857 } 858 859 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 860 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 861 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 862 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 863 // Note that we bias this toward an existing layout successor to retain 864 // incoming order in the absence of better information. The exit must have 865 // a frequency higher than the current exit before we consider breaking 866 // the layout. 867 BranchProbability Bias(100 - ExitBlockBias, 100); 868 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 869 ExitEdgeFreq > BestExitEdgeFreq || 870 (MBB->isLayoutSuccessor(Succ) && 871 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 872 BestExitEdgeFreq = ExitEdgeFreq; 873 ExitingBB = MBB; 874 } 875 } 876 877 if (!HasLoopingSucc) { 878 // Restore the old exiting state, no viable looping successor was found. 879 ExitingBB = OldExitingBB; 880 BestExitEdgeFreq = OldBestExitEdgeFreq; 881 } 882 } 883 // Without a candidate exiting block or with only a single block in the 884 // loop, just use the loop header to layout the loop. 885 if (!ExitingBB || L.getNumBlocks() == 1) 886 return nullptr; 887 888 // Also, if we have exit blocks which lead to outer loops but didn't select 889 // one of them as the exiting block we are rotating toward, disable loop 890 // rotation altogether. 891 if (!BlocksExitingToOuterLoop.empty() && 892 !BlocksExitingToOuterLoop.count(ExitingBB)) 893 return nullptr; 894 895 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 896 return ExitingBB; 897 } 898 899 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 900 /// 901 /// Once we have built a chain, try to rotate it to line up the hot exit block 902 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 903 /// branches. For example, if the loop has fallthrough into its header and out 904 /// of its bottom already, don't rotate it. 905 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 906 MachineBasicBlock *ExitingBB, 907 const BlockFilterSet &LoopBlockSet) { 908 if (!ExitingBB) 909 return; 910 911 MachineBasicBlock *Top = *LoopChain.begin(); 912 bool ViableTopFallthrough = false; 913 for (MachineBasicBlock *Pred : Top->predecessors()) { 914 BlockChain *PredChain = BlockToChain[Pred]; 915 if (!LoopBlockSet.count(Pred) && 916 (!PredChain || Pred == *std::prev(PredChain->end()))) { 917 ViableTopFallthrough = true; 918 break; 919 } 920 } 921 922 // If the header has viable fallthrough, check whether the current loop 923 // bottom is a viable exiting block. If so, bail out as rotating will 924 // introduce an unnecessary branch. 925 if (ViableTopFallthrough) { 926 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 927 for (MachineBasicBlock *Succ : Bottom->successors()) { 928 BlockChain *SuccChain = BlockToChain[Succ]; 929 if (!LoopBlockSet.count(Succ) && 930 (!SuccChain || Succ == *SuccChain->begin())) 931 return; 932 } 933 } 934 935 BlockChain::iterator ExitIt = 936 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 937 if (ExitIt == LoopChain.end()) 938 return; 939 940 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 941 } 942 943 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 944 /// 945 /// With profile data, we can determine the cost in terms of missed fall through 946 /// opportunities when rotating a loop chain and select the best rotation. 947 /// Basically, there are three kinds of cost to consider for each rotation: 948 /// 1. The possibly missed fall through edge (if it exists) from BB out of 949 /// the loop to the loop header. 950 /// 2. The possibly missed fall through edges (if they exist) from the loop 951 /// exits to BB out of the loop. 952 /// 3. The missed fall through edge (if it exists) from the last BB to the 953 /// first BB in the loop chain. 954 /// Therefore, the cost for a given rotation is the sum of costs listed above. 955 /// We select the best rotation with the smallest cost. 956 void MachineBlockPlacement::rotateLoopWithProfile( 957 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 958 auto HeaderBB = L.getHeader(); 959 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 960 auto RotationPos = LoopChain.end(); 961 962 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 963 964 // A utility lambda that scales up a block frequency by dividing it by a 965 // branch probability which is the reciprocal of the scale. 966 auto ScaleBlockFrequency = [](BlockFrequency Freq, 967 unsigned Scale) -> BlockFrequency { 968 if (Scale == 0) 969 return 0; 970 // Use operator / between BlockFrequency and BranchProbability to implement 971 // saturating multiplication. 972 return Freq / BranchProbability(1, Scale); 973 }; 974 975 // Compute the cost of the missed fall-through edge to the loop header if the 976 // chain head is not the loop header. As we only consider natural loops with 977 // single header, this computation can be done only once. 978 BlockFrequency HeaderFallThroughCost(0); 979 for (auto *Pred : HeaderBB->predecessors()) { 980 BlockChain *PredChain = BlockToChain[Pred]; 981 if (!LoopBlockSet.count(Pred) && 982 (!PredChain || Pred == *std::prev(PredChain->end()))) { 983 auto EdgeFreq = 984 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 985 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 986 // If the predecessor has only an unconditional jump to the header, we 987 // need to consider the cost of this jump. 988 if (Pred->succ_size() == 1) 989 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 990 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 991 } 992 } 993 994 // Here we collect all exit blocks in the loop, and for each exit we find out 995 // its hottest exit edge. For each loop rotation, we define the loop exit cost 996 // as the sum of frequencies of exit edges we collect here, excluding the exit 997 // edge from the tail of the loop chain. 998 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 999 for (auto BB : LoopChain) { 1000 auto LargestExitEdgeProb = BranchProbability::getZero(); 1001 for (auto *Succ : BB->successors()) { 1002 BlockChain *SuccChain = BlockToChain[Succ]; 1003 if (!LoopBlockSet.count(Succ) && 1004 (!SuccChain || Succ == *SuccChain->begin())) { 1005 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1006 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1007 } 1008 } 1009 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1010 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1011 ExitsWithFreq.emplace_back(BB, ExitFreq); 1012 } 1013 } 1014 1015 // In this loop we iterate every block in the loop chain and calculate the 1016 // cost assuming the block is the head of the loop chain. When the loop ends, 1017 // we should have found the best candidate as the loop chain's head. 1018 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1019 EndIter = LoopChain.end(); 1020 Iter != EndIter; Iter++, TailIter++) { 1021 // TailIter is used to track the tail of the loop chain if the block we are 1022 // checking (pointed by Iter) is the head of the chain. 1023 if (TailIter == LoopChain.end()) 1024 TailIter = LoopChain.begin(); 1025 1026 auto TailBB = *TailIter; 1027 1028 // Calculate the cost by putting this BB to the top. 1029 BlockFrequency Cost = 0; 1030 1031 // If the current BB is the loop header, we need to take into account the 1032 // cost of the missed fall through edge from outside of the loop to the 1033 // header. 1034 if (Iter != HeaderIter) 1035 Cost += HeaderFallThroughCost; 1036 1037 // Collect the loop exit cost by summing up frequencies of all exit edges 1038 // except the one from the chain tail. 1039 for (auto &ExitWithFreq : ExitsWithFreq) 1040 if (TailBB != ExitWithFreq.first) 1041 Cost += ExitWithFreq.second; 1042 1043 // The cost of breaking the once fall-through edge from the tail to the top 1044 // of the loop chain. Here we need to consider three cases: 1045 // 1. If the tail node has only one successor, then we will get an 1046 // additional jmp instruction. So the cost here is (MisfetchCost + 1047 // JumpInstCost) * tail node frequency. 1048 // 2. If the tail node has two successors, then we may still get an 1049 // additional jmp instruction if the layout successor after the loop 1050 // chain is not its CFG successor. Note that the more frequently executed 1051 // jmp instruction will be put ahead of the other one. Assume the 1052 // frequency of those two branches are x and y, where x is the frequency 1053 // of the edge to the chain head, then the cost will be 1054 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1055 // 3. If the tail node has more than two successors (this rarely happens), 1056 // we won't consider any additional cost. 1057 if (TailBB->isSuccessor(*Iter)) { 1058 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1059 if (TailBB->succ_size() == 1) 1060 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1061 MisfetchCost + JumpInstCost); 1062 else if (TailBB->succ_size() == 2) { 1063 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1064 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1065 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1066 ? TailBBFreq * TailToHeadProb.getCompl() 1067 : TailToHeadFreq; 1068 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1069 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1070 } 1071 } 1072 1073 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1074 << " to the top: " << Cost.getFrequency() << "\n"); 1075 1076 if (Cost < SmallestRotationCost) { 1077 SmallestRotationCost = Cost; 1078 RotationPos = Iter; 1079 } 1080 } 1081 1082 if (RotationPos != LoopChain.end()) { 1083 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1084 << " to the top\n"); 1085 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1086 } 1087 } 1088 1089 /// \brief Collect blocks in the given loop that are to be placed. 1090 /// 1091 /// When profile data is available, exclude cold blocks from the returned set; 1092 /// otherwise, collect all blocks in the loop. 1093 MachineBlockPlacement::BlockFilterSet 1094 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1095 BlockFilterSet LoopBlockSet; 1096 1097 // Filter cold blocks off from LoopBlockSet when profile data is available. 1098 // Collect the sum of frequencies of incoming edges to the loop header from 1099 // outside. If we treat the loop as a super block, this is the frequency of 1100 // the loop. Then for each block in the loop, we calculate the ratio between 1101 // its frequency and the frequency of the loop block. When it is too small, 1102 // don't add it to the loop chain. If there are outer loops, then this block 1103 // will be merged into the first outer loop chain for which this block is not 1104 // cold anymore. This needs precise profile data and we only do this when 1105 // profile data is available. 1106 if (F.getFunction()->getEntryCount()) { 1107 BlockFrequency LoopFreq(0); 1108 for (auto LoopPred : L.getHeader()->predecessors()) 1109 if (!L.contains(LoopPred)) 1110 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1111 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1112 1113 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1114 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1115 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1116 continue; 1117 LoopBlockSet.insert(LoopBB); 1118 } 1119 } else 1120 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1121 1122 return LoopBlockSet; 1123 } 1124 1125 /// \brief Forms basic block chains from the natural loop structures. 1126 /// 1127 /// These chains are designed to preserve the existing *structure* of the code 1128 /// as much as possible. We can then stitch the chains together in a way which 1129 /// both preserves the topological structure and minimizes taken conditional 1130 /// branches. 1131 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1132 MachineLoop &L) { 1133 // First recurse through any nested loops, building chains for those inner 1134 // loops. 1135 for (MachineLoop *InnerLoop : L) 1136 buildLoopChains(F, *InnerLoop); 1137 1138 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1139 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1140 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1141 1142 // Check if we have profile data for this function. If yes, we will rotate 1143 // this loop by modeling costs more precisely which requires the profile data 1144 // for better layout. 1145 bool RotateLoopWithProfile = 1146 ForcePreciseRotationCost || 1147 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1148 1149 // First check to see if there is an obviously preferable top block for the 1150 // loop. This will default to the header, but may end up as one of the 1151 // predecessors to the header if there is one which will result in strictly 1152 // fewer branches in the loop body. 1153 // When we use profile data to rotate the loop, this is unnecessary. 1154 MachineBasicBlock *LoopTop = 1155 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1156 1157 // If we selected just the header for the loop top, look for a potentially 1158 // profitable exit block in the event that rotating the loop can eliminate 1159 // branches by placing an exit edge at the bottom. 1160 MachineBasicBlock *ExitingBB = nullptr; 1161 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1162 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1163 1164 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1165 1166 // FIXME: This is a really lame way of walking the chains in the loop: we 1167 // walk the blocks, and use a set to prevent visiting a particular chain 1168 // twice. 1169 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1170 assert(LoopChain.UnscheduledPredecessors == 0); 1171 UpdatedPreds.insert(&LoopChain); 1172 1173 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1174 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1175 &LoopBlockSet); 1176 1177 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1178 1179 if (RotateLoopWithProfile) 1180 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1181 else 1182 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1183 1184 DEBUG({ 1185 // Crash at the end so we get all of the debugging output first. 1186 bool BadLoop = false; 1187 if (LoopChain.UnscheduledPredecessors) { 1188 BadLoop = true; 1189 dbgs() << "Loop chain contains a block without its preds placed!\n" 1190 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1191 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1192 } 1193 for (MachineBasicBlock *ChainBB : LoopChain) { 1194 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1195 if (!LoopBlockSet.erase(ChainBB)) { 1196 // We don't mark the loop as bad here because there are real situations 1197 // where this can occur. For example, with an unanalyzable fallthrough 1198 // from a loop block to a non-loop block or vice versa. 1199 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1200 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1201 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1202 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1203 } 1204 } 1205 1206 if (!LoopBlockSet.empty()) { 1207 BadLoop = true; 1208 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1209 dbgs() << "Loop contains blocks never placed into a chain!\n" 1210 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1211 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1212 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1213 } 1214 assert(!BadLoop && "Detected problems with the placement of this loop."); 1215 }); 1216 } 1217 1218 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1219 // Ensure that every BB in the function has an associated chain to simplify 1220 // the assumptions of the remaining algorithm. 1221 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1222 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1223 MachineBasicBlock *BB = &*FI; 1224 BlockChain *Chain = 1225 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1226 // Also, merge any blocks which we cannot reason about and must preserve 1227 // the exact fallthrough behavior for. 1228 for (;;) { 1229 Cond.clear(); 1230 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1231 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1232 break; 1233 1234 MachineFunction::iterator NextFI = std::next(FI); 1235 MachineBasicBlock *NextBB = &*NextFI; 1236 // Ensure that the layout successor is a viable block, as we know that 1237 // fallthrough is a possibility. 1238 assert(NextFI != FE && "Can't fallthrough past the last block."); 1239 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1240 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1241 << "\n"); 1242 Chain->merge(NextBB, nullptr); 1243 FI = NextFI; 1244 BB = NextBB; 1245 } 1246 } 1247 1248 if (OutlineOptionalBranches) { 1249 // Find the nearest common dominator of all of F's terminators. 1250 MachineBasicBlock *Terminator = nullptr; 1251 for (MachineBasicBlock &MBB : F) { 1252 if (MBB.succ_size() == 0) { 1253 if (Terminator == nullptr) 1254 Terminator = &MBB; 1255 else 1256 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1257 } 1258 } 1259 1260 // MBBs dominating this common dominator are unavoidable. 1261 UnavoidableBlocks.clear(); 1262 for (MachineBasicBlock &MBB : F) { 1263 if (MDT->dominates(&MBB, Terminator)) { 1264 UnavoidableBlocks.insert(&MBB); 1265 } 1266 } 1267 } 1268 1269 // Build any loop-based chains. 1270 for (MachineLoop *L : *MLI) 1271 buildLoopChains(F, *L); 1272 1273 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1274 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1275 1276 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1277 for (MachineBasicBlock &MBB : F) 1278 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1279 1280 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1281 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1282 1283 #ifndef NDEBUG 1284 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1285 #endif 1286 DEBUG({ 1287 // Crash at the end so we get all of the debugging output first. 1288 bool BadFunc = false; 1289 FunctionBlockSetType FunctionBlockSet; 1290 for (MachineBasicBlock &MBB : F) 1291 FunctionBlockSet.insert(&MBB); 1292 1293 for (MachineBasicBlock *ChainBB : FunctionChain) 1294 if (!FunctionBlockSet.erase(ChainBB)) { 1295 BadFunc = true; 1296 dbgs() << "Function chain contains a block not in the function!\n" 1297 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1298 } 1299 1300 if (!FunctionBlockSet.empty()) { 1301 BadFunc = true; 1302 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1303 dbgs() << "Function contains blocks never placed into a chain!\n" 1304 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1305 } 1306 assert(!BadFunc && "Detected problems with the block placement."); 1307 }); 1308 1309 // Splice the blocks into place. 1310 MachineFunction::iterator InsertPos = F.begin(); 1311 for (MachineBasicBlock *ChainBB : FunctionChain) { 1312 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1313 : " ... ") 1314 << getBlockName(ChainBB) << "\n"); 1315 if (InsertPos != MachineFunction::iterator(ChainBB)) 1316 F.splice(InsertPos, ChainBB); 1317 else 1318 ++InsertPos; 1319 1320 // Update the terminator of the previous block. 1321 if (ChainBB == *FunctionChain.begin()) 1322 continue; 1323 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1324 1325 // FIXME: It would be awesome of updateTerminator would just return rather 1326 // than assert when the branch cannot be analyzed in order to remove this 1327 // boiler plate. 1328 Cond.clear(); 1329 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1330 1331 // The "PrevBB" is not yet updated to reflect current code layout, so, 1332 // o. it may fall-through to a block without explict "goto" instruction 1333 // before layout, and no longer fall-through it after layout; or 1334 // o. just opposite. 1335 // 1336 // AnalyzeBranch() may return erroneous value for FBB when these two 1337 // situations take place. For the first scenario FBB is mistakenly set NULL; 1338 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1339 // mistakenly pointing to "*BI". 1340 // Thus, if the future change needs to use FBB before the layout is set, it 1341 // has to correct FBB first by using the code similar to the following: 1342 // 1343 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1344 // PrevBB->updateTerminator(); 1345 // Cond.clear(); 1346 // TBB = FBB = nullptr; 1347 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1348 // // FIXME: This should never take place. 1349 // TBB = FBB = nullptr; 1350 // } 1351 // } 1352 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1353 PrevBB->updateTerminator(); 1354 } 1355 1356 // Fixup the last block. 1357 Cond.clear(); 1358 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1359 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1360 F.back().updateTerminator(); 1361 } 1362 1363 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1364 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1365 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1366 1367 // Now that all the basic blocks in the chain have the proper layout, 1368 // make a final call to AnalyzeBranch with AllowModify set. 1369 // Indeed, the target may be able to optimize the branches in a way we 1370 // cannot because all branches may not be analyzable. 1371 // E.g., the target may be able to remove an unconditional branch to 1372 // a fallthrough when it occurs after predicated terminators. 1373 for (MachineBasicBlock *ChainBB : FunctionChain) { 1374 Cond.clear(); 1375 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1376 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1377 // If PrevBB has a two-way branch, try to re-order the branches 1378 // such that we branch to the successor with higher probability first. 1379 if (TBB && !Cond.empty() && FBB && 1380 MBPI->getEdgeProbability(ChainBB, FBB) > 1381 MBPI->getEdgeProbability(ChainBB, TBB) && 1382 !TII->ReverseBranchCondition(Cond)) { 1383 DEBUG(dbgs() << "Reverse order of the two branches: " 1384 << getBlockName(ChainBB) << "\n"); 1385 DEBUG(dbgs() << " Edge probability: " 1386 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1387 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1388 DebugLoc dl; // FIXME: this is nowhere 1389 TII->RemoveBranch(*ChainBB); 1390 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1391 ChainBB->updateTerminator(); 1392 } 1393 } 1394 } 1395 } 1396 1397 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1398 // Walk through the backedges of the function now that we have fully laid out 1399 // the basic blocks and align the destination of each backedge. We don't rely 1400 // exclusively on the loop info here so that we can align backedges in 1401 // unnatural CFGs and backedges that were introduced purely because of the 1402 // loop rotations done during this layout pass. 1403 if (F.getFunction()->optForSize()) 1404 return; 1405 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1406 if (FunctionChain.begin() == FunctionChain.end()) 1407 return; // Empty chain. 1408 1409 const BranchProbability ColdProb(1, 5); // 20% 1410 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1411 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1412 for (MachineBasicBlock *ChainBB : FunctionChain) { 1413 if (ChainBB == *FunctionChain.begin()) 1414 continue; 1415 1416 // Don't align non-looping basic blocks. These are unlikely to execute 1417 // enough times to matter in practice. Note that we'll still handle 1418 // unnatural CFGs inside of a natural outer loop (the common case) and 1419 // rotated loops. 1420 MachineLoop *L = MLI->getLoopFor(ChainBB); 1421 if (!L) 1422 continue; 1423 1424 unsigned Align = TLI->getPrefLoopAlignment(L); 1425 if (!Align) 1426 continue; // Don't care about loop alignment. 1427 1428 // If the block is cold relative to the function entry don't waste space 1429 // aligning it. 1430 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1431 if (Freq < WeightedEntryFreq) 1432 continue; 1433 1434 // If the block is cold relative to its loop header, don't align it 1435 // regardless of what edges into the block exist. 1436 MachineBasicBlock *LoopHeader = L->getHeader(); 1437 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1438 if (Freq < (LoopHeaderFreq * ColdProb)) 1439 continue; 1440 1441 // Check for the existence of a non-layout predecessor which would benefit 1442 // from aligning this block. 1443 MachineBasicBlock *LayoutPred = 1444 &*std::prev(MachineFunction::iterator(ChainBB)); 1445 1446 // Force alignment if all the predecessors are jumps. We already checked 1447 // that the block isn't cold above. 1448 if (!LayoutPred->isSuccessor(ChainBB)) { 1449 ChainBB->setAlignment(Align); 1450 continue; 1451 } 1452 1453 // Align this block if the layout predecessor's edge into this block is 1454 // cold relative to the block. When this is true, other predecessors make up 1455 // all of the hot entries into the block and thus alignment is likely to be 1456 // important. 1457 BranchProbability LayoutProb = 1458 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1459 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1460 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1461 ChainBB->setAlignment(Align); 1462 } 1463 } 1464 1465 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1466 if (skipFunction(*F.getFunction())) 1467 return false; 1468 1469 // Check for single-block functions and skip them. 1470 if (std::next(F.begin()) == F.end()) 1471 return false; 1472 1473 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1474 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1475 getAnalysis<MachineBlockFrequencyInfo>()); 1476 MLI = &getAnalysis<MachineLoopInfo>(); 1477 TII = F.getSubtarget().getInstrInfo(); 1478 TLI = F.getSubtarget().getTargetLowering(); 1479 MDT = &getAnalysis<MachineDominatorTree>(); 1480 assert(BlockToChain.empty()); 1481 1482 buildCFGChains(F); 1483 1484 // Changing the layout can create new tail merging opportunities. 1485 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1486 // TailMerge can create jump into if branches that make CFG irreducible for 1487 // HW that requires structurized CFG. 1488 bool EnableTailMerge = !F.getTarget().requiresStructuredCFG() && 1489 PassConfig->getEnableTailMerge() && 1490 BranchFoldPlacement; 1491 // No tail merging opportunities if the block number is less than four. 1492 if (F.size() > 3 && EnableTailMerge) { 1493 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1494 *MBPI); 1495 1496 if (BF.OptimizeFunction(F, TII, F.getSubtarget().getRegisterInfo(), 1497 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1498 /*AfterBlockPlacement=*/true)) { 1499 // Redo the layout if tail merging creates/removes/moves blocks. 1500 BlockToChain.clear(); 1501 ChainAllocator.DestroyAll(); 1502 buildCFGChains(F); 1503 } 1504 } 1505 1506 optimizeBranches(F); 1507 alignBlocks(F); 1508 1509 BlockToChain.clear(); 1510 ChainAllocator.DestroyAll(); 1511 1512 if (AlignAllBlock) 1513 // Align all of the blocks in the function to a specific alignment. 1514 for (MachineBasicBlock &MBB : F) 1515 MBB.setAlignment(AlignAllBlock); 1516 else if (AlignAllNonFallThruBlocks) { 1517 // Align all of the blocks that have no fall-through predecessors to a 1518 // specific alignment. 1519 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1520 auto LayoutPred = std::prev(MBI); 1521 if (!LayoutPred->isSuccessor(&*MBI)) 1522 MBI->setAlignment(AlignAllNonFallThruBlocks); 1523 } 1524 } 1525 1526 // We always return true as we have no way to track whether the final order 1527 // differs from the original order. 1528 return true; 1529 } 1530 1531 namespace { 1532 /// \brief A pass to compute block placement statistics. 1533 /// 1534 /// A separate pass to compute interesting statistics for evaluating block 1535 /// placement. This is separate from the actual placement pass so that they can 1536 /// be computed in the absence of any placement transformations or when using 1537 /// alternative placement strategies. 1538 class MachineBlockPlacementStats : public MachineFunctionPass { 1539 /// \brief A handle to the branch probability pass. 1540 const MachineBranchProbabilityInfo *MBPI; 1541 1542 /// \brief A handle to the function-wide block frequency pass. 1543 const MachineBlockFrequencyInfo *MBFI; 1544 1545 public: 1546 static char ID; // Pass identification, replacement for typeid 1547 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1548 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1549 } 1550 1551 bool runOnMachineFunction(MachineFunction &F) override; 1552 1553 void getAnalysisUsage(AnalysisUsage &AU) const override { 1554 AU.addRequired<MachineBranchProbabilityInfo>(); 1555 AU.addRequired<MachineBlockFrequencyInfo>(); 1556 AU.setPreservesAll(); 1557 MachineFunctionPass::getAnalysisUsage(AU); 1558 } 1559 }; 1560 } 1561 1562 char MachineBlockPlacementStats::ID = 0; 1563 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1564 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1565 "Basic Block Placement Stats", false, false) 1566 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1567 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1568 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1569 "Basic Block Placement Stats", false, false) 1570 1571 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1572 // Check for single-block functions and skip them. 1573 if (std::next(F.begin()) == F.end()) 1574 return false; 1575 1576 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1577 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1578 1579 for (MachineBasicBlock &MBB : F) { 1580 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1581 Statistic &NumBranches = 1582 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1583 Statistic &BranchTakenFreq = 1584 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1585 for (MachineBasicBlock *Succ : MBB.successors()) { 1586 // Skip if this successor is a fallthrough. 1587 if (MBB.isLayoutSuccessor(Succ)) 1588 continue; 1589 1590 BlockFrequency EdgeFreq = 1591 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1592 ++NumBranches; 1593 BranchTakenFreq += EdgeFreq.getFrequency(); 1594 } 1595 } 1596 1597 return false; 1598 } 1599