1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 static cl::opt<bool> 103 ForcePreciseRotationCost("force-precise-rotation-cost", 104 cl::desc("Force the use of precise cost " 105 "loop rotation strategy."), 106 cl::init(false), cl::Hidden); 107 108 static cl::opt<unsigned> MisfetchCost( 109 "misfetch-cost", 110 cl::desc("Cost that models the probablistic risk of an instruction " 111 "misfetch due to a jump comparing to falling through, whose cost " 112 "is zero."), 113 cl::init(1), cl::Hidden); 114 115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 116 cl::desc("Cost of jump instructions."), 117 cl::init(1), cl::Hidden); 118 119 extern cl::opt<unsigned> StaticLikelyProb; 120 121 namespace { 122 class BlockChain; 123 /// \brief Type for our function-wide basic block -> block chain mapping. 124 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 125 } 126 127 namespace { 128 /// \brief A chain of blocks which will be laid out contiguously. 129 /// 130 /// This is the datastructure representing a chain of consecutive blocks that 131 /// are profitable to layout together in order to maximize fallthrough 132 /// probabilities and code locality. We also can use a block chain to represent 133 /// a sequence of basic blocks which have some external (correctness) 134 /// requirement for sequential layout. 135 /// 136 /// Chains can be built around a single basic block and can be merged to grow 137 /// them. They participate in a block-to-chain mapping, which is updated 138 /// automatically as chains are merged together. 139 class BlockChain { 140 /// \brief The sequence of blocks belonging to this chain. 141 /// 142 /// This is the sequence of blocks for a particular chain. These will be laid 143 /// out in-order within the function. 144 SmallVector<MachineBasicBlock *, 4> Blocks; 145 146 /// \brief A handle to the function-wide basic block to block chain mapping. 147 /// 148 /// This is retained in each block chain to simplify the computation of child 149 /// block chains for SCC-formation and iteration. We store the edges to child 150 /// basic blocks, and map them back to their associated chains using this 151 /// structure. 152 BlockToChainMapType &BlockToChain; 153 154 public: 155 /// \brief Construct a new BlockChain. 156 /// 157 /// This builds a new block chain representing a single basic block in the 158 /// function. It also registers itself as the chain that block participates 159 /// in with the BlockToChain mapping. 160 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 161 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 162 assert(BB && "Cannot create a chain with a null basic block"); 163 BlockToChain[BB] = this; 164 } 165 166 /// \brief Iterator over blocks within the chain. 167 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 168 169 /// \brief Beginning of blocks within the chain. 170 iterator begin() { return Blocks.begin(); } 171 172 /// \brief End of blocks within the chain. 173 iterator end() { return Blocks.end(); } 174 175 /// \brief Merge a block chain into this one. 176 /// 177 /// This routine merges a block chain into this one. It takes care of forming 178 /// a contiguous sequence of basic blocks, updating the edge list, and 179 /// updating the block -> chain mapping. It does not free or tear down the 180 /// old chain, but the old chain's block list is no longer valid. 181 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 182 assert(BB); 183 assert(!Blocks.empty()); 184 185 // Fast path in case we don't have a chain already. 186 if (!Chain) { 187 assert(!BlockToChain[BB]); 188 Blocks.push_back(BB); 189 BlockToChain[BB] = this; 190 return; 191 } 192 193 assert(BB == *Chain->begin()); 194 assert(Chain->begin() != Chain->end()); 195 196 // Update the incoming blocks to point to this chain, and add them to the 197 // chain structure. 198 for (MachineBasicBlock *ChainBB : *Chain) { 199 Blocks.push_back(ChainBB); 200 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 201 BlockToChain[ChainBB] = this; 202 } 203 } 204 205 #ifndef NDEBUG 206 /// \brief Dump the blocks in this chain. 207 LLVM_DUMP_METHOD void dump() { 208 for (MachineBasicBlock *MBB : *this) 209 MBB->dump(); 210 } 211 #endif // NDEBUG 212 213 /// \brief Count of predecessors of any block within the chain which have not 214 /// yet been scheduled. In general, we will delay scheduling this chain 215 /// until those predecessors are scheduled (or we find a sufficiently good 216 /// reason to override this heuristic.) Note that when forming loop chains, 217 /// blocks outside the loop are ignored and treated as if they were already 218 /// scheduled. 219 /// 220 /// Note: This field is reinitialized multiple times - once for each loop, 221 /// and then once for the function as a whole. 222 unsigned UnscheduledPredecessors; 223 }; 224 } 225 226 namespace { 227 class MachineBlockPlacement : public MachineFunctionPass { 228 /// \brief A typedef for a block filter set. 229 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 230 231 /// \brief A handle to the branch probability pass. 232 const MachineBranchProbabilityInfo *MBPI; 233 234 /// \brief A handle to the function-wide block frequency pass. 235 const MachineBlockFrequencyInfo *MBFI; 236 237 /// \brief A handle to the loop info. 238 const MachineLoopInfo *MLI; 239 240 /// \brief A handle to the target's instruction info. 241 const TargetInstrInfo *TII; 242 243 /// \brief A handle to the target's lowering info. 244 const TargetLoweringBase *TLI; 245 246 /// \brief A handle to the post dominator tree. 247 MachineDominatorTree *MDT; 248 249 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 250 /// all terminators of the MachineFunction. 251 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 252 253 /// \brief Allocator and owner of BlockChain structures. 254 /// 255 /// We build BlockChains lazily while processing the loop structure of 256 /// a function. To reduce malloc traffic, we allocate them using this 257 /// slab-like allocator, and destroy them after the pass completes. An 258 /// important guarantee is that this allocator produces stable pointers to 259 /// the chains. 260 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 261 262 /// \brief Function wide BasicBlock to BlockChain mapping. 263 /// 264 /// This mapping allows efficiently moving from any given basic block to the 265 /// BlockChain it participates in, if any. We use it to, among other things, 266 /// allow implicitly defining edges between chains as the existing edges 267 /// between basic blocks. 268 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 269 270 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 271 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 272 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 273 const BlockFilterSet *BlockFilter = nullptr); 274 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 275 BlockChain &Chain, 276 const BlockFilterSet *BlockFilter); 277 MachineBasicBlock * 278 selectBestCandidateBlock(BlockChain &Chain, 279 SmallVectorImpl<MachineBasicBlock *> &WorkList); 280 MachineBasicBlock * 281 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 282 MachineFunction::iterator &PrevUnplacedBlockIt, 283 const BlockFilterSet *BlockFilter); 284 285 /// \brief Add a basic block to the work list if it is apropriate. 286 /// 287 /// If the optional parameter BlockFilter is provided, only MBB 288 /// present in the set will be added to the worklist. If nullptr 289 /// is provided, no filtering occurs. 290 void fillWorkLists(MachineBasicBlock *MBB, 291 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 292 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 293 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 294 const BlockFilterSet *BlockFilter); 295 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 296 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 297 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 298 const BlockFilterSet *BlockFilter = nullptr); 299 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 300 const BlockFilterSet &LoopBlockSet); 301 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 302 const BlockFilterSet &LoopBlockSet); 303 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 304 void buildLoopChains(MachineFunction &F, MachineLoop &L); 305 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 306 const BlockFilterSet &LoopBlockSet); 307 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 308 const BlockFilterSet &LoopBlockSet); 309 void buildCFGChains(MachineFunction &F); 310 void optimizeBranches(MachineFunction &F); 311 void alignBlocks(MachineFunction &F); 312 313 public: 314 static char ID; // Pass identification, replacement for typeid 315 MachineBlockPlacement() : MachineFunctionPass(ID) { 316 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 317 } 318 319 bool runOnMachineFunction(MachineFunction &F) override; 320 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 AU.addRequired<MachineBranchProbabilityInfo>(); 323 AU.addRequired<MachineBlockFrequencyInfo>(); 324 AU.addRequired<MachineDominatorTree>(); 325 AU.addRequired<MachineLoopInfo>(); 326 MachineFunctionPass::getAnalysisUsage(AU); 327 } 328 }; 329 } 330 331 char MachineBlockPlacement::ID = 0; 332 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 333 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 334 "Branch Probability Basic Block Placement", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 338 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 339 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 340 "Branch Probability Basic Block Placement", false, false) 341 342 #ifndef NDEBUG 343 /// \brief Helper to print the name of a MBB. 344 /// 345 /// Only used by debug logging. 346 static std::string getBlockName(MachineBasicBlock *BB) { 347 std::string Result; 348 raw_string_ostream OS(Result); 349 OS << "BB#" << BB->getNumber(); 350 OS << " ('" << BB->getName() << "')"; 351 OS.flush(); 352 return Result; 353 } 354 #endif 355 356 /// \brief Mark a chain's successors as having one fewer preds. 357 /// 358 /// When a chain is being merged into the "placed" chain, this routine will 359 /// quickly walk the successors of each block in the chain and mark them as 360 /// having one fewer active predecessor. It also adds any successors of this 361 /// chain which reach the zero-predecessor state to the worklist passed in. 362 void MachineBlockPlacement::markChainSuccessors( 363 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 364 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 365 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 366 const BlockFilterSet *BlockFilter) { 367 // Walk all the blocks in this chain, marking their successors as having 368 // a predecessor placed. 369 for (MachineBasicBlock *MBB : Chain) { 370 // Add any successors for which this is the only un-placed in-loop 371 // predecessor to the worklist as a viable candidate for CFG-neutral 372 // placement. No subsequent placement of this block will violate the CFG 373 // shape, so we get to use heuristics to choose a favorable placement. 374 for (MachineBasicBlock *Succ : MBB->successors()) { 375 if (BlockFilter && !BlockFilter->count(Succ)) 376 continue; 377 BlockChain &SuccChain = *BlockToChain[Succ]; 378 // Disregard edges within a fixed chain, or edges to the loop header. 379 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 380 continue; 381 382 // This is a cross-chain edge that is within the loop, so decrement the 383 // loop predecessor count of the destination chain. 384 if (SuccChain.UnscheduledPredecessors == 0 || 385 --SuccChain.UnscheduledPredecessors > 0) 386 continue; 387 388 auto *MBB = *SuccChain.begin(); 389 if (MBB->isEHPad()) 390 EHPadWorkList.push_back(MBB); 391 else 392 BlockWorkList.push_back(MBB); 393 } 394 } 395 } 396 397 /// \brief Select the best successor for a block. 398 /// 399 /// This looks across all successors of a particular block and attempts to 400 /// select the "best" one to be the layout successor. It only considers direct 401 /// successors which also pass the block filter. It will attempt to avoid 402 /// breaking CFG structure, but cave and break such structures in the case of 403 /// very hot successor edges. 404 /// 405 /// \returns The best successor block found, or null if none are viable. 406 MachineBasicBlock * 407 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 408 BlockChain &Chain, 409 const BlockFilterSet *BlockFilter) { 410 const BranchProbability HotProb(StaticLikelyProb, 100); 411 412 MachineBasicBlock *BestSucc = nullptr; 413 auto BestProb = BranchProbability::getZero(); 414 415 // Adjust edge probabilities by excluding edges pointing to blocks that is 416 // either not in BlockFilter or is already in the current chain. Consider the 417 // following CFG: 418 // 419 // --->A 420 // | / \ 421 // | B C 422 // | \ / \ 423 // ----D E 424 // 425 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 426 // A->C is chosen as a fall-through, D won't be selected as a successor of C 427 // due to CFG constraint (the probability of C->D is not greater than 428 // HotProb). If we exclude E that is not in BlockFilter when calculating the 429 // probability of C->D, D will be selected and we will get A C D B as the 430 // layout of this loop. 431 auto AdjustedSumProb = BranchProbability::getOne(); 432 SmallVector<MachineBasicBlock *, 4> Successors; 433 for (MachineBasicBlock *Succ : BB->successors()) { 434 bool SkipSucc = false; 435 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 436 SkipSucc = true; 437 } else { 438 BlockChain *SuccChain = BlockToChain[Succ]; 439 if (SuccChain == &Chain) { 440 SkipSucc = true; 441 } else if (Succ != *SuccChain->begin()) { 442 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 443 continue; 444 } 445 } 446 if (SkipSucc) 447 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 448 else 449 Successors.push_back(Succ); 450 } 451 452 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 453 for (MachineBasicBlock *Succ : Successors) { 454 BranchProbability SuccProb; 455 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 456 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 457 if (SuccProbN >= SuccProbD) 458 SuccProb = BranchProbability::getOne(); 459 else 460 SuccProb = BranchProbability(SuccProbN, SuccProbD); 461 462 // If we outline optional branches, look whether Succ is unavoidable, i.e. 463 // dominates all terminators of the MachineFunction. If it does, other 464 // successors must be optional. Don't do this for cold branches. 465 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 466 UnavoidableBlocks.count(Succ) > 0) { 467 auto HasShortOptionalBranch = [&]() { 468 for (MachineBasicBlock *Pred : Succ->predecessors()) { 469 // Check whether there is an unplaced optional branch. 470 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 471 BlockToChain[Pred] == &Chain) 472 continue; 473 // Check whether the optional branch has exactly one BB. 474 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 475 continue; 476 // Check whether the optional branch is small. 477 if (Pred->size() < OutlineOptionalThreshold) 478 return true; 479 } 480 return false; 481 }; 482 if (!HasShortOptionalBranch()) 483 return Succ; 484 } 485 486 // Only consider successors which are either "hot", or wouldn't violate 487 // any CFG constraints. 488 BlockChain &SuccChain = *BlockToChain[Succ]; 489 if (SuccChain.UnscheduledPredecessors != 0) { 490 if (SuccProb < HotProb) { 491 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 492 << " (prob) (CFG conflict)\n"); 493 continue; 494 } 495 496 // Make sure that a hot successor doesn't have a globally more 497 // important predecessor. 498 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 499 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 500 bool BadCFGConflict = false; 501 for (MachineBasicBlock *Pred : Succ->predecessors()) { 502 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 503 (BlockFilter && !BlockFilter->count(Pred)) || 504 BlockToChain[Pred] == &Chain) 505 continue; 506 BlockFrequency PredEdgeFreq = 507 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 508 // A B 509 // \ / 510 // C 511 // We layout ACB iff A.freq > C.freq * HotProb 512 // i.e. A.freq > A.freq * HotProb + B.freq * HotProb 513 // i.e. A.freq * (1 - HotProb) > B.freq * HotProb 514 // A: CandidateEdge 515 // B: PredEdge 516 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 517 BadCFGConflict = true; 518 break; 519 } 520 } 521 if (BadCFGConflict) { 522 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 523 << " (prob) (non-cold CFG conflict)\n"); 524 continue; 525 } 526 } 527 528 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 529 << " (prob)" 530 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 531 << "\n"); 532 if (BestSucc && BestProb >= SuccProb) 533 continue; 534 BestSucc = Succ; 535 BestProb = SuccProb; 536 } 537 return BestSucc; 538 } 539 540 /// \brief Select the best block from a worklist. 541 /// 542 /// This looks through the provided worklist as a list of candidate basic 543 /// blocks and select the most profitable one to place. The definition of 544 /// profitable only really makes sense in the context of a loop. This returns 545 /// the most frequently visited block in the worklist, which in the case of 546 /// a loop, is the one most desirable to be physically close to the rest of the 547 /// loop body in order to improve icache behavior. 548 /// 549 /// \returns The best block found, or null if none are viable. 550 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 551 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 552 // Once we need to walk the worklist looking for a candidate, cleanup the 553 // worklist of already placed entries. 554 // FIXME: If this shows up on profiles, it could be folded (at the cost of 555 // some code complexity) into the loop below. 556 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 557 [&](MachineBasicBlock *BB) { 558 return BlockToChain.lookup(BB) == &Chain; 559 }), 560 WorkList.end()); 561 562 if (WorkList.empty()) 563 return nullptr; 564 565 bool IsEHPad = WorkList[0]->isEHPad(); 566 567 MachineBasicBlock *BestBlock = nullptr; 568 BlockFrequency BestFreq; 569 for (MachineBasicBlock *MBB : WorkList) { 570 assert(MBB->isEHPad() == IsEHPad); 571 572 BlockChain &SuccChain = *BlockToChain[MBB]; 573 if (&SuccChain == &Chain) 574 continue; 575 576 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 577 578 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 579 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 580 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 581 582 // For ehpad, we layout the least probable first as to avoid jumping back 583 // from least probable landingpads to more probable ones. 584 // 585 // FIXME: Using probability is probably (!) not the best way to achieve 586 // this. We should probably have a more principled approach to layout 587 // cleanup code. 588 // 589 // The goal is to get: 590 // 591 // +--------------------------+ 592 // | V 593 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 594 // 595 // Rather than: 596 // 597 // +-------------------------------------+ 598 // V | 599 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 600 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 601 continue; 602 603 BestBlock = MBB; 604 BestFreq = CandidateFreq; 605 } 606 607 return BestBlock; 608 } 609 610 /// \brief Retrieve the first unplaced basic block. 611 /// 612 /// This routine is called when we are unable to use the CFG to walk through 613 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 614 /// We walk through the function's blocks in order, starting from the 615 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 616 /// re-scanning the entire sequence on repeated calls to this routine. 617 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 618 MachineFunction &F, const BlockChain &PlacedChain, 619 MachineFunction::iterator &PrevUnplacedBlockIt, 620 const BlockFilterSet *BlockFilter) { 621 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 622 ++I) { 623 if (BlockFilter && !BlockFilter->count(&*I)) 624 continue; 625 if (BlockToChain[&*I] != &PlacedChain) { 626 PrevUnplacedBlockIt = I; 627 // Now select the head of the chain to which the unplaced block belongs 628 // as the block to place. This will force the entire chain to be placed, 629 // and satisfies the requirements of merging chains. 630 return *BlockToChain[&*I]->begin(); 631 } 632 } 633 return nullptr; 634 } 635 636 void MachineBlockPlacement::fillWorkLists( 637 MachineBasicBlock *MBB, 638 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 639 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 640 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 641 const BlockFilterSet *BlockFilter = nullptr) { 642 BlockChain &Chain = *BlockToChain[MBB]; 643 if (!UpdatedPreds.insert(&Chain).second) 644 return; 645 646 assert(Chain.UnscheduledPredecessors == 0); 647 for (MachineBasicBlock *ChainBB : Chain) { 648 assert(BlockToChain[ChainBB] == &Chain); 649 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 650 if (BlockFilter && !BlockFilter->count(Pred)) 651 continue; 652 if (BlockToChain[Pred] == &Chain) 653 continue; 654 ++Chain.UnscheduledPredecessors; 655 } 656 } 657 658 if (Chain.UnscheduledPredecessors != 0) 659 return; 660 661 MBB = *Chain.begin(); 662 if (MBB->isEHPad()) 663 EHPadWorkList.push_back(MBB); 664 else 665 BlockWorkList.push_back(MBB); 666 } 667 668 void MachineBlockPlacement::buildChain( 669 MachineBasicBlock *BB, BlockChain &Chain, 670 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 671 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 672 const BlockFilterSet *BlockFilter) { 673 assert(BB); 674 assert(BlockToChain[BB] == &Chain); 675 MachineFunction &F = *BB->getParent(); 676 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 677 678 MachineBasicBlock *LoopHeaderBB = BB; 679 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 680 BlockFilter); 681 BB = *std::prev(Chain.end()); 682 for (;;) { 683 assert(BB); 684 assert(BlockToChain[BB] == &Chain); 685 assert(*std::prev(Chain.end()) == BB); 686 687 // Look for the best viable successor if there is one to place immediately 688 // after this block. 689 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 690 691 // If an immediate successor isn't available, look for the best viable 692 // block among those we've identified as not violating the loop's CFG at 693 // this point. This won't be a fallthrough, but it will increase locality. 694 if (!BestSucc) 695 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 696 if (!BestSucc) 697 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 698 699 if (!BestSucc) { 700 BestSucc = 701 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 702 if (!BestSucc) 703 break; 704 705 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 706 "layout successor until the CFG reduces\n"); 707 } 708 709 // Place this block, updating the datastructures to reflect its placement. 710 BlockChain &SuccChain = *BlockToChain[BestSucc]; 711 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 712 // we selected a successor that didn't fit naturally into the CFG. 713 SuccChain.UnscheduledPredecessors = 0; 714 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 715 << getBlockName(BestSucc) << "\n"); 716 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 717 BlockFilter); 718 Chain.merge(BestSucc, &SuccChain); 719 BB = *std::prev(Chain.end()); 720 } 721 722 DEBUG(dbgs() << "Finished forming chain for header block " 723 << getBlockName(*Chain.begin()) << "\n"); 724 } 725 726 /// \brief Find the best loop top block for layout. 727 /// 728 /// Look for a block which is strictly better than the loop header for laying 729 /// out at the top of the loop. This looks for one and only one pattern: 730 /// a latch block with no conditional exit. This block will cause a conditional 731 /// jump around it or will be the bottom of the loop if we lay it out in place, 732 /// but if it it doesn't end up at the bottom of the loop for any reason, 733 /// rotation alone won't fix it. Because such a block will always result in an 734 /// unconditional jump (for the backedge) rotating it in front of the loop 735 /// header is always profitable. 736 MachineBasicBlock * 737 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 738 const BlockFilterSet &LoopBlockSet) { 739 // Check that the header hasn't been fused with a preheader block due to 740 // crazy branches. If it has, we need to start with the header at the top to 741 // prevent pulling the preheader into the loop body. 742 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 743 if (!LoopBlockSet.count(*HeaderChain.begin())) 744 return L.getHeader(); 745 746 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 747 << "\n"); 748 749 BlockFrequency BestPredFreq; 750 MachineBasicBlock *BestPred = nullptr; 751 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 752 if (!LoopBlockSet.count(Pred)) 753 continue; 754 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 755 << Pred->succ_size() << " successors, "; 756 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 757 if (Pred->succ_size() > 1) 758 continue; 759 760 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 761 if (!BestPred || PredFreq > BestPredFreq || 762 (!(PredFreq < BestPredFreq) && 763 Pred->isLayoutSuccessor(L.getHeader()))) { 764 BestPred = Pred; 765 BestPredFreq = PredFreq; 766 } 767 } 768 769 // If no direct predecessor is fine, just use the loop header. 770 if (!BestPred) { 771 DEBUG(dbgs() << " final top unchanged\n"); 772 return L.getHeader(); 773 } 774 775 // Walk backwards through any straight line of predecessors. 776 while (BestPred->pred_size() == 1 && 777 (*BestPred->pred_begin())->succ_size() == 1 && 778 *BestPred->pred_begin() != L.getHeader()) 779 BestPred = *BestPred->pred_begin(); 780 781 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 782 return BestPred; 783 } 784 785 /// \brief Find the best loop exiting block for layout. 786 /// 787 /// This routine implements the logic to analyze the loop looking for the best 788 /// block to layout at the top of the loop. Typically this is done to maximize 789 /// fallthrough opportunities. 790 MachineBasicBlock * 791 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 792 const BlockFilterSet &LoopBlockSet) { 793 // We don't want to layout the loop linearly in all cases. If the loop header 794 // is just a normal basic block in the loop, we want to look for what block 795 // within the loop is the best one to layout at the top. However, if the loop 796 // header has be pre-merged into a chain due to predecessors not having 797 // analyzable branches, *and* the predecessor it is merged with is *not* part 798 // of the loop, rotating the header into the middle of the loop will create 799 // a non-contiguous range of blocks which is Very Bad. So start with the 800 // header and only rotate if safe. 801 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 802 if (!LoopBlockSet.count(*HeaderChain.begin())) 803 return nullptr; 804 805 BlockFrequency BestExitEdgeFreq; 806 unsigned BestExitLoopDepth = 0; 807 MachineBasicBlock *ExitingBB = nullptr; 808 // If there are exits to outer loops, loop rotation can severely limit 809 // fallthrough opportunites unless it selects such an exit. Keep a set of 810 // blocks where rotating to exit with that block will reach an outer loop. 811 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 812 813 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 814 << "\n"); 815 for (MachineBasicBlock *MBB : L.getBlocks()) { 816 BlockChain &Chain = *BlockToChain[MBB]; 817 // Ensure that this block is at the end of a chain; otherwise it could be 818 // mid-way through an inner loop or a successor of an unanalyzable branch. 819 if (MBB != *std::prev(Chain.end())) 820 continue; 821 822 // Now walk the successors. We need to establish whether this has a viable 823 // exiting successor and whether it has a viable non-exiting successor. 824 // We store the old exiting state and restore it if a viable looping 825 // successor isn't found. 826 MachineBasicBlock *OldExitingBB = ExitingBB; 827 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 828 bool HasLoopingSucc = false; 829 for (MachineBasicBlock *Succ : MBB->successors()) { 830 if (Succ->isEHPad()) 831 continue; 832 if (Succ == MBB) 833 continue; 834 BlockChain &SuccChain = *BlockToChain[Succ]; 835 // Don't split chains, either this chain or the successor's chain. 836 if (&Chain == &SuccChain) { 837 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 838 << getBlockName(Succ) << " (chain conflict)\n"); 839 continue; 840 } 841 842 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 843 if (LoopBlockSet.count(Succ)) { 844 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 845 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 846 HasLoopingSucc = true; 847 continue; 848 } 849 850 unsigned SuccLoopDepth = 0; 851 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 852 SuccLoopDepth = ExitLoop->getLoopDepth(); 853 if (ExitLoop->contains(&L)) 854 BlocksExitingToOuterLoop.insert(MBB); 855 } 856 857 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 858 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 859 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 860 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 861 // Note that we bias this toward an existing layout successor to retain 862 // incoming order in the absence of better information. The exit must have 863 // a frequency higher than the current exit before we consider breaking 864 // the layout. 865 BranchProbability Bias(100 - ExitBlockBias, 100); 866 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 867 ExitEdgeFreq > BestExitEdgeFreq || 868 (MBB->isLayoutSuccessor(Succ) && 869 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 870 BestExitEdgeFreq = ExitEdgeFreq; 871 ExitingBB = MBB; 872 } 873 } 874 875 if (!HasLoopingSucc) { 876 // Restore the old exiting state, no viable looping successor was found. 877 ExitingBB = OldExitingBB; 878 BestExitEdgeFreq = OldBestExitEdgeFreq; 879 } 880 } 881 // Without a candidate exiting block or with only a single block in the 882 // loop, just use the loop header to layout the loop. 883 if (!ExitingBB || L.getNumBlocks() == 1) 884 return nullptr; 885 886 // Also, if we have exit blocks which lead to outer loops but didn't select 887 // one of them as the exiting block we are rotating toward, disable loop 888 // rotation altogether. 889 if (!BlocksExitingToOuterLoop.empty() && 890 !BlocksExitingToOuterLoop.count(ExitingBB)) 891 return nullptr; 892 893 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 894 return ExitingBB; 895 } 896 897 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 898 /// 899 /// Once we have built a chain, try to rotate it to line up the hot exit block 900 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 901 /// branches. For example, if the loop has fallthrough into its header and out 902 /// of its bottom already, don't rotate it. 903 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 904 MachineBasicBlock *ExitingBB, 905 const BlockFilterSet &LoopBlockSet) { 906 if (!ExitingBB) 907 return; 908 909 MachineBasicBlock *Top = *LoopChain.begin(); 910 bool ViableTopFallthrough = false; 911 for (MachineBasicBlock *Pred : Top->predecessors()) { 912 BlockChain *PredChain = BlockToChain[Pred]; 913 if (!LoopBlockSet.count(Pred) && 914 (!PredChain || Pred == *std::prev(PredChain->end()))) { 915 ViableTopFallthrough = true; 916 break; 917 } 918 } 919 920 // If the header has viable fallthrough, check whether the current loop 921 // bottom is a viable exiting block. If so, bail out as rotating will 922 // introduce an unnecessary branch. 923 if (ViableTopFallthrough) { 924 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 925 for (MachineBasicBlock *Succ : Bottom->successors()) { 926 BlockChain *SuccChain = BlockToChain[Succ]; 927 if (!LoopBlockSet.count(Succ) && 928 (!SuccChain || Succ == *SuccChain->begin())) 929 return; 930 } 931 } 932 933 BlockChain::iterator ExitIt = 934 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 935 if (ExitIt == LoopChain.end()) 936 return; 937 938 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 939 } 940 941 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 942 /// 943 /// With profile data, we can determine the cost in terms of missed fall through 944 /// opportunities when rotating a loop chain and select the best rotation. 945 /// Basically, there are three kinds of cost to consider for each rotation: 946 /// 1. The possibly missed fall through edge (if it exists) from BB out of 947 /// the loop to the loop header. 948 /// 2. The possibly missed fall through edges (if they exist) from the loop 949 /// exits to BB out of the loop. 950 /// 3. The missed fall through edge (if it exists) from the last BB to the 951 /// first BB in the loop chain. 952 /// Therefore, the cost for a given rotation is the sum of costs listed above. 953 /// We select the best rotation with the smallest cost. 954 void MachineBlockPlacement::rotateLoopWithProfile( 955 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 956 auto HeaderBB = L.getHeader(); 957 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 958 auto RotationPos = LoopChain.end(); 959 960 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 961 962 // A utility lambda that scales up a block frequency by dividing it by a 963 // branch probability which is the reciprocal of the scale. 964 auto ScaleBlockFrequency = [](BlockFrequency Freq, 965 unsigned Scale) -> BlockFrequency { 966 if (Scale == 0) 967 return 0; 968 // Use operator / between BlockFrequency and BranchProbability to implement 969 // saturating multiplication. 970 return Freq / BranchProbability(1, Scale); 971 }; 972 973 // Compute the cost of the missed fall-through edge to the loop header if the 974 // chain head is not the loop header. As we only consider natural loops with 975 // single header, this computation can be done only once. 976 BlockFrequency HeaderFallThroughCost(0); 977 for (auto *Pred : HeaderBB->predecessors()) { 978 BlockChain *PredChain = BlockToChain[Pred]; 979 if (!LoopBlockSet.count(Pred) && 980 (!PredChain || Pred == *std::prev(PredChain->end()))) { 981 auto EdgeFreq = 982 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 983 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 984 // If the predecessor has only an unconditional jump to the header, we 985 // need to consider the cost of this jump. 986 if (Pred->succ_size() == 1) 987 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 988 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 989 } 990 } 991 992 // Here we collect all exit blocks in the loop, and for each exit we find out 993 // its hottest exit edge. For each loop rotation, we define the loop exit cost 994 // as the sum of frequencies of exit edges we collect here, excluding the exit 995 // edge from the tail of the loop chain. 996 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 997 for (auto BB : LoopChain) { 998 auto LargestExitEdgeProb = BranchProbability::getZero(); 999 for (auto *Succ : BB->successors()) { 1000 BlockChain *SuccChain = BlockToChain[Succ]; 1001 if (!LoopBlockSet.count(Succ) && 1002 (!SuccChain || Succ == *SuccChain->begin())) { 1003 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1004 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1005 } 1006 } 1007 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1008 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1009 ExitsWithFreq.emplace_back(BB, ExitFreq); 1010 } 1011 } 1012 1013 // In this loop we iterate every block in the loop chain and calculate the 1014 // cost assuming the block is the head of the loop chain. When the loop ends, 1015 // we should have found the best candidate as the loop chain's head. 1016 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1017 EndIter = LoopChain.end(); 1018 Iter != EndIter; Iter++, TailIter++) { 1019 // TailIter is used to track the tail of the loop chain if the block we are 1020 // checking (pointed by Iter) is the head of the chain. 1021 if (TailIter == LoopChain.end()) 1022 TailIter = LoopChain.begin(); 1023 1024 auto TailBB = *TailIter; 1025 1026 // Calculate the cost by putting this BB to the top. 1027 BlockFrequency Cost = 0; 1028 1029 // If the current BB is the loop header, we need to take into account the 1030 // cost of the missed fall through edge from outside of the loop to the 1031 // header. 1032 if (Iter != HeaderIter) 1033 Cost += HeaderFallThroughCost; 1034 1035 // Collect the loop exit cost by summing up frequencies of all exit edges 1036 // except the one from the chain tail. 1037 for (auto &ExitWithFreq : ExitsWithFreq) 1038 if (TailBB != ExitWithFreq.first) 1039 Cost += ExitWithFreq.second; 1040 1041 // The cost of breaking the once fall-through edge from the tail to the top 1042 // of the loop chain. Here we need to consider three cases: 1043 // 1. If the tail node has only one successor, then we will get an 1044 // additional jmp instruction. So the cost here is (MisfetchCost + 1045 // JumpInstCost) * tail node frequency. 1046 // 2. If the tail node has two successors, then we may still get an 1047 // additional jmp instruction if the layout successor after the loop 1048 // chain is not its CFG successor. Note that the more frequently executed 1049 // jmp instruction will be put ahead of the other one. Assume the 1050 // frequency of those two branches are x and y, where x is the frequency 1051 // of the edge to the chain head, then the cost will be 1052 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1053 // 3. If the tail node has more than two successors (this rarely happens), 1054 // we won't consider any additional cost. 1055 if (TailBB->isSuccessor(*Iter)) { 1056 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1057 if (TailBB->succ_size() == 1) 1058 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1059 MisfetchCost + JumpInstCost); 1060 else if (TailBB->succ_size() == 2) { 1061 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1062 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1063 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1064 ? TailBBFreq * TailToHeadProb.getCompl() 1065 : TailToHeadFreq; 1066 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1067 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1068 } 1069 } 1070 1071 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1072 << " to the top: " << Cost.getFrequency() << "\n"); 1073 1074 if (Cost < SmallestRotationCost) { 1075 SmallestRotationCost = Cost; 1076 RotationPos = Iter; 1077 } 1078 } 1079 1080 if (RotationPos != LoopChain.end()) { 1081 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1082 << " to the top\n"); 1083 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1084 } 1085 } 1086 1087 /// \brief Collect blocks in the given loop that are to be placed. 1088 /// 1089 /// When profile data is available, exclude cold blocks from the returned set; 1090 /// otherwise, collect all blocks in the loop. 1091 MachineBlockPlacement::BlockFilterSet 1092 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1093 BlockFilterSet LoopBlockSet; 1094 1095 // Filter cold blocks off from LoopBlockSet when profile data is available. 1096 // Collect the sum of frequencies of incoming edges to the loop header from 1097 // outside. If we treat the loop as a super block, this is the frequency of 1098 // the loop. Then for each block in the loop, we calculate the ratio between 1099 // its frequency and the frequency of the loop block. When it is too small, 1100 // don't add it to the loop chain. If there are outer loops, then this block 1101 // will be merged into the first outer loop chain for which this block is not 1102 // cold anymore. This needs precise profile data and we only do this when 1103 // profile data is available. 1104 if (F.getFunction()->getEntryCount()) { 1105 BlockFrequency LoopFreq(0); 1106 for (auto LoopPred : L.getHeader()->predecessors()) 1107 if (!L.contains(LoopPred)) 1108 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1109 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1110 1111 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1112 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1113 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1114 continue; 1115 LoopBlockSet.insert(LoopBB); 1116 } 1117 } else 1118 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1119 1120 return LoopBlockSet; 1121 } 1122 1123 /// \brief Forms basic block chains from the natural loop structures. 1124 /// 1125 /// These chains are designed to preserve the existing *structure* of the code 1126 /// as much as possible. We can then stitch the chains together in a way which 1127 /// both preserves the topological structure and minimizes taken conditional 1128 /// branches. 1129 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1130 MachineLoop &L) { 1131 // First recurse through any nested loops, building chains for those inner 1132 // loops. 1133 for (MachineLoop *InnerLoop : L) 1134 buildLoopChains(F, *InnerLoop); 1135 1136 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1137 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1138 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1139 1140 // Check if we have profile data for this function. If yes, we will rotate 1141 // this loop by modeling costs more precisely which requires the profile data 1142 // for better layout. 1143 bool RotateLoopWithProfile = 1144 ForcePreciseRotationCost || 1145 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1146 1147 // First check to see if there is an obviously preferable top block for the 1148 // loop. This will default to the header, but may end up as one of the 1149 // predecessors to the header if there is one which will result in strictly 1150 // fewer branches in the loop body. 1151 // When we use profile data to rotate the loop, this is unnecessary. 1152 MachineBasicBlock *LoopTop = 1153 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1154 1155 // If we selected just the header for the loop top, look for a potentially 1156 // profitable exit block in the event that rotating the loop can eliminate 1157 // branches by placing an exit edge at the bottom. 1158 MachineBasicBlock *ExitingBB = nullptr; 1159 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1160 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1161 1162 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1163 1164 // FIXME: This is a really lame way of walking the chains in the loop: we 1165 // walk the blocks, and use a set to prevent visiting a particular chain 1166 // twice. 1167 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1168 assert(LoopChain.UnscheduledPredecessors == 0); 1169 UpdatedPreds.insert(&LoopChain); 1170 1171 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1172 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1173 &LoopBlockSet); 1174 1175 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1176 1177 if (RotateLoopWithProfile) 1178 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1179 else 1180 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1181 1182 DEBUG({ 1183 // Crash at the end so we get all of the debugging output first. 1184 bool BadLoop = false; 1185 if (LoopChain.UnscheduledPredecessors) { 1186 BadLoop = true; 1187 dbgs() << "Loop chain contains a block without its preds placed!\n" 1188 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1189 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1190 } 1191 for (MachineBasicBlock *ChainBB : LoopChain) { 1192 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1193 if (!LoopBlockSet.erase(ChainBB)) { 1194 // We don't mark the loop as bad here because there are real situations 1195 // where this can occur. For example, with an unanalyzable fallthrough 1196 // from a loop block to a non-loop block or vice versa. 1197 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1198 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1199 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1200 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1201 } 1202 } 1203 1204 if (!LoopBlockSet.empty()) { 1205 BadLoop = true; 1206 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1207 dbgs() << "Loop contains blocks never placed into a chain!\n" 1208 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1209 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1210 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1211 } 1212 assert(!BadLoop && "Detected problems with the placement of this loop."); 1213 }); 1214 } 1215 1216 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1217 // Ensure that every BB in the function has an associated chain to simplify 1218 // the assumptions of the remaining algorithm. 1219 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1220 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1221 MachineBasicBlock *BB = &*FI; 1222 BlockChain *Chain = 1223 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1224 // Also, merge any blocks which we cannot reason about and must preserve 1225 // the exact fallthrough behavior for. 1226 for (;;) { 1227 Cond.clear(); 1228 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1229 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1230 break; 1231 1232 MachineFunction::iterator NextFI = std::next(FI); 1233 MachineBasicBlock *NextBB = &*NextFI; 1234 // Ensure that the layout successor is a viable block, as we know that 1235 // fallthrough is a possibility. 1236 assert(NextFI != FE && "Can't fallthrough past the last block."); 1237 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1238 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1239 << "\n"); 1240 Chain->merge(NextBB, nullptr); 1241 FI = NextFI; 1242 BB = NextBB; 1243 } 1244 } 1245 1246 if (OutlineOptionalBranches) { 1247 // Find the nearest common dominator of all of F's terminators. 1248 MachineBasicBlock *Terminator = nullptr; 1249 for (MachineBasicBlock &MBB : F) { 1250 if (MBB.succ_size() == 0) { 1251 if (Terminator == nullptr) 1252 Terminator = &MBB; 1253 else 1254 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1255 } 1256 } 1257 1258 // MBBs dominating this common dominator are unavoidable. 1259 UnavoidableBlocks.clear(); 1260 for (MachineBasicBlock &MBB : F) { 1261 if (MDT->dominates(&MBB, Terminator)) { 1262 UnavoidableBlocks.insert(&MBB); 1263 } 1264 } 1265 } 1266 1267 // Build any loop-based chains. 1268 for (MachineLoop *L : *MLI) 1269 buildLoopChains(F, *L); 1270 1271 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1272 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1273 1274 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1275 for (MachineBasicBlock &MBB : F) 1276 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1277 1278 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1279 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1280 1281 #ifndef NDEBUG 1282 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1283 #endif 1284 DEBUG({ 1285 // Crash at the end so we get all of the debugging output first. 1286 bool BadFunc = false; 1287 FunctionBlockSetType FunctionBlockSet; 1288 for (MachineBasicBlock &MBB : F) 1289 FunctionBlockSet.insert(&MBB); 1290 1291 for (MachineBasicBlock *ChainBB : FunctionChain) 1292 if (!FunctionBlockSet.erase(ChainBB)) { 1293 BadFunc = true; 1294 dbgs() << "Function chain contains a block not in the function!\n" 1295 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1296 } 1297 1298 if (!FunctionBlockSet.empty()) { 1299 BadFunc = true; 1300 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1301 dbgs() << "Function contains blocks never placed into a chain!\n" 1302 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1303 } 1304 assert(!BadFunc && "Detected problems with the block placement."); 1305 }); 1306 1307 // Splice the blocks into place. 1308 MachineFunction::iterator InsertPos = F.begin(); 1309 for (MachineBasicBlock *ChainBB : FunctionChain) { 1310 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1311 : " ... ") 1312 << getBlockName(ChainBB) << "\n"); 1313 if (InsertPos != MachineFunction::iterator(ChainBB)) 1314 F.splice(InsertPos, ChainBB); 1315 else 1316 ++InsertPos; 1317 1318 // Update the terminator of the previous block. 1319 if (ChainBB == *FunctionChain.begin()) 1320 continue; 1321 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1322 1323 // FIXME: It would be awesome of updateTerminator would just return rather 1324 // than assert when the branch cannot be analyzed in order to remove this 1325 // boiler plate. 1326 Cond.clear(); 1327 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1328 1329 // The "PrevBB" is not yet updated to reflect current code layout, so, 1330 // o. it may fall-through to a block without explict "goto" instruction 1331 // before layout, and no longer fall-through it after layout; or 1332 // o. just opposite. 1333 // 1334 // AnalyzeBranch() may return erroneous value for FBB when these two 1335 // situations take place. For the first scenario FBB is mistakenly set NULL; 1336 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1337 // mistakenly pointing to "*BI". 1338 // Thus, if the future change needs to use FBB before the layout is set, it 1339 // has to correct FBB first by using the code similar to the following: 1340 // 1341 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1342 // PrevBB->updateTerminator(); 1343 // Cond.clear(); 1344 // TBB = FBB = nullptr; 1345 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1346 // // FIXME: This should never take place. 1347 // TBB = FBB = nullptr; 1348 // } 1349 // } 1350 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1351 PrevBB->updateTerminator(); 1352 } 1353 1354 // Fixup the last block. 1355 Cond.clear(); 1356 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1357 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1358 F.back().updateTerminator(); 1359 } 1360 1361 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1362 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1363 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1364 1365 // Now that all the basic blocks in the chain have the proper layout, 1366 // make a final call to AnalyzeBranch with AllowModify set. 1367 // Indeed, the target may be able to optimize the branches in a way we 1368 // cannot because all branches may not be analyzable. 1369 // E.g., the target may be able to remove an unconditional branch to 1370 // a fallthrough when it occurs after predicated terminators. 1371 for (MachineBasicBlock *ChainBB : FunctionChain) { 1372 Cond.clear(); 1373 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1374 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1375 // If PrevBB has a two-way branch, try to re-order the branches 1376 // such that we branch to the successor with higher probability first. 1377 if (TBB && !Cond.empty() && FBB && 1378 MBPI->getEdgeProbability(ChainBB, FBB) > 1379 MBPI->getEdgeProbability(ChainBB, TBB) && 1380 !TII->ReverseBranchCondition(Cond)) { 1381 DEBUG(dbgs() << "Reverse order of the two branches: " 1382 << getBlockName(ChainBB) << "\n"); 1383 DEBUG(dbgs() << " Edge probability: " 1384 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1385 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1386 DebugLoc dl; // FIXME: this is nowhere 1387 TII->RemoveBranch(*ChainBB); 1388 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1389 ChainBB->updateTerminator(); 1390 } 1391 } 1392 } 1393 } 1394 1395 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1396 // Walk through the backedges of the function now that we have fully laid out 1397 // the basic blocks and align the destination of each backedge. We don't rely 1398 // exclusively on the loop info here so that we can align backedges in 1399 // unnatural CFGs and backedges that were introduced purely because of the 1400 // loop rotations done during this layout pass. 1401 if (F.getFunction()->optForSize()) 1402 return; 1403 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1404 if (FunctionChain.begin() == FunctionChain.end()) 1405 return; // Empty chain. 1406 1407 const BranchProbability ColdProb(1, 5); // 20% 1408 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1409 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1410 for (MachineBasicBlock *ChainBB : FunctionChain) { 1411 if (ChainBB == *FunctionChain.begin()) 1412 continue; 1413 1414 // Don't align non-looping basic blocks. These are unlikely to execute 1415 // enough times to matter in practice. Note that we'll still handle 1416 // unnatural CFGs inside of a natural outer loop (the common case) and 1417 // rotated loops. 1418 MachineLoop *L = MLI->getLoopFor(ChainBB); 1419 if (!L) 1420 continue; 1421 1422 unsigned Align = TLI->getPrefLoopAlignment(L); 1423 if (!Align) 1424 continue; // Don't care about loop alignment. 1425 1426 // If the block is cold relative to the function entry don't waste space 1427 // aligning it. 1428 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1429 if (Freq < WeightedEntryFreq) 1430 continue; 1431 1432 // If the block is cold relative to its loop header, don't align it 1433 // regardless of what edges into the block exist. 1434 MachineBasicBlock *LoopHeader = L->getHeader(); 1435 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1436 if (Freq < (LoopHeaderFreq * ColdProb)) 1437 continue; 1438 1439 // Check for the existence of a non-layout predecessor which would benefit 1440 // from aligning this block. 1441 MachineBasicBlock *LayoutPred = 1442 &*std::prev(MachineFunction::iterator(ChainBB)); 1443 1444 // Force alignment if all the predecessors are jumps. We already checked 1445 // that the block isn't cold above. 1446 if (!LayoutPred->isSuccessor(ChainBB)) { 1447 ChainBB->setAlignment(Align); 1448 continue; 1449 } 1450 1451 // Align this block if the layout predecessor's edge into this block is 1452 // cold relative to the block. When this is true, other predecessors make up 1453 // all of the hot entries into the block and thus alignment is likely to be 1454 // important. 1455 BranchProbability LayoutProb = 1456 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1457 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1458 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1459 ChainBB->setAlignment(Align); 1460 } 1461 } 1462 1463 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1464 if (skipFunction(*F.getFunction())) 1465 return false; 1466 1467 // Check for single-block functions and skip them. 1468 if (std::next(F.begin()) == F.end()) 1469 return false; 1470 1471 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1472 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1473 MLI = &getAnalysis<MachineLoopInfo>(); 1474 TII = F.getSubtarget().getInstrInfo(); 1475 TLI = F.getSubtarget().getTargetLowering(); 1476 MDT = &getAnalysis<MachineDominatorTree>(); 1477 assert(BlockToChain.empty()); 1478 1479 buildCFGChains(F); 1480 optimizeBranches(F); 1481 alignBlocks(F); 1482 1483 BlockToChain.clear(); 1484 ChainAllocator.DestroyAll(); 1485 1486 if (AlignAllBlock) 1487 // Align all of the blocks in the function to a specific alignment. 1488 for (MachineBasicBlock &MBB : F) 1489 MBB.setAlignment(AlignAllBlock); 1490 else if (AlignAllNonFallThruBlocks) { 1491 // Align all of the blocks that have no fall-through predecessors to a 1492 // specific alignment. 1493 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1494 auto LayoutPred = std::prev(MBI); 1495 if (!LayoutPred->isSuccessor(&*MBI)) 1496 MBI->setAlignment(AlignAllNonFallThruBlocks); 1497 } 1498 } 1499 1500 // We always return true as we have no way to track whether the final order 1501 // differs from the original order. 1502 return true; 1503 } 1504 1505 namespace { 1506 /// \brief A pass to compute block placement statistics. 1507 /// 1508 /// A separate pass to compute interesting statistics for evaluating block 1509 /// placement. This is separate from the actual placement pass so that they can 1510 /// be computed in the absence of any placement transformations or when using 1511 /// alternative placement strategies. 1512 class MachineBlockPlacementStats : public MachineFunctionPass { 1513 /// \brief A handle to the branch probability pass. 1514 const MachineBranchProbabilityInfo *MBPI; 1515 1516 /// \brief A handle to the function-wide block frequency pass. 1517 const MachineBlockFrequencyInfo *MBFI; 1518 1519 public: 1520 static char ID; // Pass identification, replacement for typeid 1521 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1522 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1523 } 1524 1525 bool runOnMachineFunction(MachineFunction &F) override; 1526 1527 void getAnalysisUsage(AnalysisUsage &AU) const override { 1528 AU.addRequired<MachineBranchProbabilityInfo>(); 1529 AU.addRequired<MachineBlockFrequencyInfo>(); 1530 AU.setPreservesAll(); 1531 MachineFunctionPass::getAnalysisUsage(AU); 1532 } 1533 }; 1534 } 1535 1536 char MachineBlockPlacementStats::ID = 0; 1537 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1538 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1539 "Basic Block Placement Stats", false, false) 1540 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1541 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1542 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1543 "Basic Block Placement Stats", false, false) 1544 1545 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1546 // Check for single-block functions and skip them. 1547 if (std::next(F.begin()) == F.end()) 1548 return false; 1549 1550 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1551 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1552 1553 for (MachineBasicBlock &MBB : F) { 1554 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1555 Statistic &NumBranches = 1556 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1557 Statistic &BranchTakenFreq = 1558 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1559 for (MachineBasicBlock *Succ : MBB.successors()) { 1560 // Skip if this successor is a fallthrough. 1561 if (MBB.isLayoutSuccessor(Succ)) 1562 continue; 1563 1564 BlockFrequency EdgeFreq = 1565 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1566 ++NumBranches; 1567 BranchTakenFreq += EdgeFreq.getFrequency(); 1568 } 1569 } 1570 1571 return false; 1572 } 1573