1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MBFIWrapper.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/PrintPasses.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Allocator.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Transforms/Utils/CodeLayout.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <memory> 71 #include <string> 72 #include <tuple> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 #define DEBUG_TYPE "block-placement" 79 80 STATISTIC(NumCondBranches, "Number of conditional branches"); 81 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 82 STATISTIC(CondBranchTakenFreq, 83 "Potential frequency of taking conditional branches"); 84 STATISTIC(UncondBranchTakenFreq, 85 "Potential frequency of taking unconditional branches"); 86 87 static cl::opt<unsigned> AlignAllBlock( 88 "align-all-blocks", 89 cl::desc("Force the alignment of all blocks in the function in log2 format " 90 "(e.g 4 means align on 16B boundaries)."), 91 cl::init(0), cl::Hidden); 92 93 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 94 "align-all-nofallthru-blocks", 95 cl::desc("Force the alignment of all blocks that have no fall-through " 96 "predecessors (i.e. don't add nops that are executed). In log2 " 97 "format (e.g 4 means align on 16B boundaries)."), 98 cl::init(0), cl::Hidden); 99 100 static cl::opt<unsigned> MaxBytesForAlignmentOverride( 101 "max-bytes-for-alignment", 102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for " 103 "alignment"), 104 cl::init(0), cl::Hidden); 105 106 // FIXME: Find a good default for this flag and remove the flag. 107 static cl::opt<unsigned> ExitBlockBias( 108 "block-placement-exit-block-bias", 109 cl::desc("Block frequency percentage a loop exit block needs " 110 "over the original exit to be considered the new exit."), 111 cl::init(0), cl::Hidden); 112 113 // Definition: 114 // - Outlining: placement of a basic block outside the chain or hot path. 115 116 static cl::opt<unsigned> LoopToColdBlockRatio( 117 "loop-to-cold-block-ratio", 118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 119 "(frequency of block) is greater than this ratio"), 120 cl::init(5), cl::Hidden); 121 122 static cl::opt<bool> 123 ForceLoopColdBlock("force-loop-cold-block", 124 cl::desc("Force outlining cold blocks from loops."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<bool> 128 PreciseRotationCost("precise-rotation-cost", 129 cl::desc("Model the cost of loop rotation more " 130 "precisely by using profile data."), 131 cl::init(false), cl::Hidden); 132 133 static cl::opt<bool> 134 ForcePreciseRotationCost("force-precise-rotation-cost", 135 cl::desc("Force the use of precise cost " 136 "loop rotation strategy."), 137 cl::init(false), cl::Hidden); 138 139 static cl::opt<unsigned> MisfetchCost( 140 "misfetch-cost", 141 cl::desc("Cost that models the probabilistic risk of an instruction " 142 "misfetch due to a jump comparing to falling through, whose cost " 143 "is zero."), 144 cl::init(1), cl::Hidden); 145 146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 147 cl::desc("Cost of jump instructions."), 148 cl::init(1), cl::Hidden); 149 static cl::opt<bool> 150 TailDupPlacement("tail-dup-placement", 151 cl::desc("Perform tail duplication during placement. " 152 "Creates more fallthrough opportunites in " 153 "outline branches."), 154 cl::init(true), cl::Hidden); 155 156 static cl::opt<bool> 157 BranchFoldPlacement("branch-fold-placement", 158 cl::desc("Perform branch folding during placement. " 159 "Reduces code size."), 160 cl::init(true), cl::Hidden); 161 162 // Heuristic for tail duplication. 163 static cl::opt<unsigned> TailDupPlacementThreshold( 164 "tail-dup-placement-threshold", 165 cl::desc("Instruction cutoff for tail duplication during layout. " 166 "Tail merging during layout is forced to have a threshold " 167 "that won't conflict."), 168 cl::init(2), cl::Hidden); 169 170 // Heuristic for aggressive tail duplication. 171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 172 "tail-dup-placement-aggressive-threshold", 173 cl::desc("Instruction cutoff for aggressive tail duplication during " 174 "layout. Used at -O3. Tail merging during layout is forced to " 175 "have a threshold that won't conflict."), 176 cl::init(4), cl::Hidden); 177 178 // Heuristic for tail duplication. 179 static cl::opt<unsigned> TailDupPlacementPenalty( 180 "tail-dup-placement-penalty", 181 cl::desc( 182 "Cost penalty for blocks that can avoid breaking CFG by copying. " 183 "Copying can increase fallthrough, but it also increases icache " 184 "pressure. This parameter controls the penalty to account for that. " 185 "Percent as integer."), 186 cl::init(2), cl::Hidden); 187 188 // Heuristic for tail duplication if profile count is used in cost model. 189 static cl::opt<unsigned> TailDupProfilePercentThreshold( 190 "tail-dup-profile-percent-threshold", 191 cl::desc("If profile count information is used in tail duplication cost " 192 "model, the gained fall through number from tail duplication " 193 "should be at least this percent of hot count."), 194 cl::init(50), cl::Hidden); 195 196 // Heuristic for triangle chains. 197 static cl::opt<unsigned> TriangleChainCount( 198 "triangle-chain-count", 199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 200 "triangle tail duplication heuristic to kick in. 0 to disable."), 201 cl::init(2), cl::Hidden); 202 203 // Use case: When block layout is visualized after MBP pass, the basic blocks 204 // are labeled in layout order; meanwhile blocks could be numbered in a 205 // different order. It's hard to map between the graph and pass output. 206 // With this option on, the basic blocks are renumbered in function layout 207 // order. For debugging only. 208 static cl::opt<bool> RenumberBlocksBeforeView( 209 "renumber-blocks-before-view", 210 cl::desc( 211 "If true, basic blocks are re-numbered before MBP layout is printed " 212 "into a dot graph. Only used when a function is being printed."), 213 cl::init(false), cl::Hidden); 214 215 static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks( 216 "ext-tsp-block-placement-max-blocks", 217 cl::desc("Maximum number of basic blocks in a function to run ext-TSP " 218 "block placement."), 219 cl::init(UINT_MAX), cl::Hidden); 220 221 namespace llvm { 222 extern cl::opt<bool> EnableExtTspBlockPlacement; 223 extern cl::opt<bool> ApplyExtTspWithoutProfile; 224 extern cl::opt<unsigned> StaticLikelyProb; 225 extern cl::opt<unsigned> ProfileLikelyProb; 226 227 // Internal option used to control BFI display only after MBP pass. 228 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 229 // -view-block-layout-with-bfi= 230 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 231 232 // Command line option to specify the name of the function for CFG dump 233 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 234 extern cl::opt<std::string> ViewBlockFreqFuncName; 235 } // namespace llvm 236 237 namespace { 238 239 class BlockChain; 240 241 /// Type for our function-wide basic block -> block chain mapping. 242 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 243 244 /// A chain of blocks which will be laid out contiguously. 245 /// 246 /// This is the datastructure representing a chain of consecutive blocks that 247 /// are profitable to layout together in order to maximize fallthrough 248 /// probabilities and code locality. We also can use a block chain to represent 249 /// a sequence of basic blocks which have some external (correctness) 250 /// requirement for sequential layout. 251 /// 252 /// Chains can be built around a single basic block and can be merged to grow 253 /// them. They participate in a block-to-chain mapping, which is updated 254 /// automatically as chains are merged together. 255 class BlockChain { 256 /// The sequence of blocks belonging to this chain. 257 /// 258 /// This is the sequence of blocks for a particular chain. These will be laid 259 /// out in-order within the function. 260 SmallVector<MachineBasicBlock *, 4> Blocks; 261 262 /// A handle to the function-wide basic block to block chain mapping. 263 /// 264 /// This is retained in each block chain to simplify the computation of child 265 /// block chains for SCC-formation and iteration. We store the edges to child 266 /// basic blocks, and map them back to their associated chains using this 267 /// structure. 268 BlockToChainMapType &BlockToChain; 269 270 public: 271 /// Construct a new BlockChain. 272 /// 273 /// This builds a new block chain representing a single basic block in the 274 /// function. It also registers itself as the chain that block participates 275 /// in with the BlockToChain mapping. 276 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 277 : Blocks(1, BB), BlockToChain(BlockToChain) { 278 assert(BB && "Cannot create a chain with a null basic block"); 279 BlockToChain[BB] = this; 280 } 281 282 /// Iterator over blocks within the chain. 283 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 284 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 285 286 /// Beginning of blocks within the chain. 287 iterator begin() { return Blocks.begin(); } 288 const_iterator begin() const { return Blocks.begin(); } 289 290 /// End of blocks within the chain. 291 iterator end() { return Blocks.end(); } 292 const_iterator end() const { return Blocks.end(); } 293 294 bool remove(MachineBasicBlock *BB) { 295 for (iterator i = begin(); i != end(); ++i) { 296 if (*i == BB) { 297 Blocks.erase(i); 298 return true; 299 } 300 } 301 return false; 302 } 303 304 /// Merge a block chain into this one. 305 /// 306 /// This routine merges a block chain into this one. It takes care of forming 307 /// a contiguous sequence of basic blocks, updating the edge list, and 308 /// updating the block -> chain mapping. It does not free or tear down the 309 /// old chain, but the old chain's block list is no longer valid. 310 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 311 assert(BB && "Can't merge a null block."); 312 assert(!Blocks.empty() && "Can't merge into an empty chain."); 313 314 // Fast path in case we don't have a chain already. 315 if (!Chain) { 316 assert(!BlockToChain[BB] && 317 "Passed chain is null, but BB has entry in BlockToChain."); 318 Blocks.push_back(BB); 319 BlockToChain[BB] = this; 320 return; 321 } 322 323 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 324 assert(Chain->begin() != Chain->end()); 325 326 // Update the incoming blocks to point to this chain, and add them to the 327 // chain structure. 328 for (MachineBasicBlock *ChainBB : *Chain) { 329 Blocks.push_back(ChainBB); 330 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 331 BlockToChain[ChainBB] = this; 332 } 333 } 334 335 #ifndef NDEBUG 336 /// Dump the blocks in this chain. 337 LLVM_DUMP_METHOD void dump() { 338 for (MachineBasicBlock *MBB : *this) 339 MBB->dump(); 340 } 341 #endif // NDEBUG 342 343 /// Count of predecessors of any block within the chain which have not 344 /// yet been scheduled. In general, we will delay scheduling this chain 345 /// until those predecessors are scheduled (or we find a sufficiently good 346 /// reason to override this heuristic.) Note that when forming loop chains, 347 /// blocks outside the loop are ignored and treated as if they were already 348 /// scheduled. 349 /// 350 /// Note: This field is reinitialized multiple times - once for each loop, 351 /// and then once for the function as a whole. 352 unsigned UnscheduledPredecessors = 0; 353 }; 354 355 class MachineBlockPlacement : public MachineFunctionPass { 356 /// A type for a block filter set. 357 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 358 359 /// Pair struct containing basic block and taildup profitability 360 struct BlockAndTailDupResult { 361 MachineBasicBlock *BB = nullptr; 362 bool ShouldTailDup; 363 }; 364 365 /// Triple struct containing edge weight and the edge. 366 struct WeightedEdge { 367 BlockFrequency Weight; 368 MachineBasicBlock *Src = nullptr; 369 MachineBasicBlock *Dest = nullptr; 370 }; 371 372 /// work lists of blocks that are ready to be laid out 373 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 374 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 375 376 /// Edges that have already been computed as optimal. 377 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 378 379 /// Machine Function 380 MachineFunction *F = nullptr; 381 382 /// A handle to the branch probability pass. 383 const MachineBranchProbabilityInfo *MBPI = nullptr; 384 385 /// A handle to the function-wide block frequency pass. 386 std::unique_ptr<MBFIWrapper> MBFI; 387 388 /// A handle to the loop info. 389 MachineLoopInfo *MLI = nullptr; 390 391 /// Preferred loop exit. 392 /// Member variable for convenience. It may be removed by duplication deep 393 /// in the call stack. 394 MachineBasicBlock *PreferredLoopExit = nullptr; 395 396 /// A handle to the target's instruction info. 397 const TargetInstrInfo *TII = nullptr; 398 399 /// A handle to the target's lowering info. 400 const TargetLoweringBase *TLI = nullptr; 401 402 /// A handle to the post dominator tree. 403 MachinePostDominatorTree *MPDT = nullptr; 404 405 ProfileSummaryInfo *PSI = nullptr; 406 407 TargetPassConfig *PassConfig = nullptr; 408 409 /// Duplicator used to duplicate tails during placement. 410 /// 411 /// Placement decisions can open up new tail duplication opportunities, but 412 /// since tail duplication affects placement decisions of later blocks, it 413 /// must be done inline. 414 TailDuplicator TailDup; 415 416 /// Partial tail duplication threshold. 417 BlockFrequency DupThreshold; 418 419 unsigned TailDupSize; 420 421 /// True: use block profile count to compute tail duplication cost. 422 /// False: use block frequency to compute tail duplication cost. 423 bool UseProfileCount = false; 424 425 /// Allocator and owner of BlockChain structures. 426 /// 427 /// We build BlockChains lazily while processing the loop structure of 428 /// a function. To reduce malloc traffic, we allocate them using this 429 /// slab-like allocator, and destroy them after the pass completes. An 430 /// important guarantee is that this allocator produces stable pointers to 431 /// the chains. 432 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 433 434 /// Function wide BasicBlock to BlockChain mapping. 435 /// 436 /// This mapping allows efficiently moving from any given basic block to the 437 /// BlockChain it participates in, if any. We use it to, among other things, 438 /// allow implicitly defining edges between chains as the existing edges 439 /// between basic blocks. 440 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 441 442 #ifndef NDEBUG 443 /// The set of basic blocks that have terminators that cannot be fully 444 /// analyzed. These basic blocks cannot be re-ordered safely by 445 /// MachineBlockPlacement, and we must preserve physical layout of these 446 /// blocks and their successors through the pass. 447 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 448 #endif 449 450 /// Get block profile count or frequency according to UseProfileCount. 451 /// The return value is used to model tail duplication cost. 452 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 453 if (UseProfileCount) { 454 auto Count = MBFI->getBlockProfileCount(BB); 455 if (Count) 456 return BlockFrequency(*Count); 457 else 458 return BlockFrequency(0); 459 } else 460 return MBFI->getBlockFreq(BB); 461 } 462 463 /// Scale the DupThreshold according to basic block size. 464 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 465 void initTailDupThreshold(); 466 467 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 468 /// if the count goes to 0, add them to the appropriate work list. 469 void markChainSuccessors(const BlockChain &Chain, 470 const MachineBasicBlock *LoopHeaderBB, 471 const BlockFilterSet *BlockFilter = nullptr); 472 473 /// Decrease the UnscheduledPredecessors count for a single block, and 474 /// if the count goes to 0, add them to the appropriate work list. 475 void markBlockSuccessors(const BlockChain &Chain, const MachineBasicBlock *BB, 476 const MachineBasicBlock *LoopHeaderBB, 477 const BlockFilterSet *BlockFilter = nullptr); 478 479 BranchProbability 480 collectViableSuccessors(const MachineBasicBlock *BB, const BlockChain &Chain, 481 const BlockFilterSet *BlockFilter, 482 SmallVector<MachineBasicBlock *, 4> &Successors); 483 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 484 BlockFilterSet *BlockFilter); 485 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 486 MachineBasicBlock *BB, 487 BlockFilterSet *BlockFilter); 488 bool repeatedlyTailDuplicateBlock( 489 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 490 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 491 BlockFilterSet *BlockFilter, 492 MachineFunction::iterator &PrevUnplacedBlockIt, 493 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt); 494 bool 495 maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, 496 BlockChain &Chain, BlockFilterSet *BlockFilter, 497 MachineFunction::iterator &PrevUnplacedBlockIt, 498 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 499 bool &DuplicatedToLPred); 500 bool hasBetterLayoutPredecessor(const MachineBasicBlock *BB, 501 const MachineBasicBlock *Succ, 502 const BlockChain &SuccChain, 503 BranchProbability SuccProb, 504 BranchProbability RealSuccProb, 505 const BlockChain &Chain, 506 const BlockFilterSet *BlockFilter); 507 BlockAndTailDupResult selectBestSuccessor(const MachineBasicBlock *BB, 508 const BlockChain &Chain, 509 const BlockFilterSet *BlockFilter); 510 MachineBasicBlock * 511 selectBestCandidateBlock(const BlockChain &Chain, 512 SmallVectorImpl<MachineBasicBlock *> &WorkList); 513 MachineBasicBlock * 514 getFirstUnplacedBlock(const BlockChain &PlacedChain, 515 MachineFunction::iterator &PrevUnplacedBlockIt); 516 MachineBasicBlock * 517 getFirstUnplacedBlock(const BlockChain &PlacedChain, 518 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 519 const BlockFilterSet *BlockFilter); 520 521 /// Add a basic block to the work list if it is appropriate. 522 /// 523 /// If the optional parameter BlockFilter is provided, only MBB 524 /// present in the set will be added to the worklist. If nullptr 525 /// is provided, no filtering occurs. 526 void fillWorkLists(const MachineBasicBlock *MBB, 527 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 528 const BlockFilterSet *BlockFilter); 529 530 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 531 BlockFilterSet *BlockFilter = nullptr); 532 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 533 const MachineBasicBlock *OldTop); 534 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 535 const BlockFilterSet &LoopBlockSet); 536 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 537 const BlockFilterSet &LoopBlockSet); 538 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 539 const MachineBasicBlock *OldTop, 540 const MachineBasicBlock *ExitBB, 541 const BlockFilterSet &LoopBlockSet); 542 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 543 const MachineLoop &L, 544 const BlockFilterSet &LoopBlockSet); 545 MachineBasicBlock *findBestLoopTop(const MachineLoop &L, 546 const BlockFilterSet &LoopBlockSet); 547 MachineBasicBlock *findBestLoopExit(const MachineLoop &L, 548 const BlockFilterSet &LoopBlockSet, 549 BlockFrequency &ExitFreq); 550 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 551 void buildLoopChains(const MachineLoop &L); 552 void rotateLoop(BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 553 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 554 void rotateLoopWithProfile(BlockChain &LoopChain, const MachineLoop &L, 555 const BlockFilterSet &LoopBlockSet); 556 void buildCFGChains(); 557 void optimizeBranches(); 558 void alignBlocks(); 559 /// Returns true if a block should be tail-duplicated to increase fallthrough 560 /// opportunities. 561 bool shouldTailDuplicate(MachineBasicBlock *BB); 562 /// Check the edge frequencies to see if tail duplication will increase 563 /// fallthroughs. 564 bool isProfitableToTailDup(const MachineBasicBlock *BB, 565 const MachineBasicBlock *Succ, 566 BranchProbability QProb, const BlockChain &Chain, 567 const BlockFilterSet *BlockFilter); 568 569 /// Check for a trellis layout. 570 bool isTrellis(const MachineBasicBlock *BB, 571 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 572 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 573 574 /// Get the best successor given a trellis layout. 575 BlockAndTailDupResult getBestTrellisSuccessor( 576 const MachineBasicBlock *BB, 577 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 578 BranchProbability AdjustedSumProb, const BlockChain &Chain, 579 const BlockFilterSet *BlockFilter); 580 581 /// Get the best pair of non-conflicting edges. 582 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 583 const MachineBasicBlock *BB, 584 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 585 586 /// Returns true if a block can tail duplicate into all unplaced 587 /// predecessors. Filters based on loop. 588 bool canTailDuplicateUnplacedPreds(const MachineBasicBlock *BB, 589 MachineBasicBlock *Succ, 590 const BlockChain &Chain, 591 const BlockFilterSet *BlockFilter); 592 593 /// Find chains of triangles to tail-duplicate where a global analysis works, 594 /// but a local analysis would not find them. 595 void precomputeTriangleChains(); 596 597 /// Apply a post-processing step optimizing block placement. 598 void applyExtTsp(); 599 600 /// Modify the existing block placement in the function and adjust all jumps. 601 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); 602 603 /// Create a single CFG chain from the current block order. 604 void createCFGChainExtTsp(); 605 606 public: 607 static char ID; // Pass identification, replacement for typeid 608 609 MachineBlockPlacement() : MachineFunctionPass(ID) { 610 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 611 } 612 613 bool runOnMachineFunction(MachineFunction &F) override; 614 615 bool allowTailDupPlacement() const { 616 assert(F); 617 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 618 } 619 620 void getAnalysisUsage(AnalysisUsage &AU) const override { 621 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 622 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 623 if (TailDupPlacement) 624 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 625 AU.addRequired<MachineLoopInfoWrapperPass>(); 626 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 627 AU.addRequired<TargetPassConfig>(); 628 MachineFunctionPass::getAnalysisUsage(AU); 629 } 630 }; 631 632 } // end anonymous namespace 633 634 char MachineBlockPlacement::ID = 0; 635 636 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 637 638 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 639 "Branch Probability Basic Block Placement", false, false) 640 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 641 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 642 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 643 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 644 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 645 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 646 "Branch Probability Basic Block Placement", false, false) 647 648 #ifndef NDEBUG 649 /// Helper to print the name of a MBB. 650 /// 651 /// Only used by debug logging. 652 static std::string getBlockName(const MachineBasicBlock *BB) { 653 std::string Result; 654 raw_string_ostream OS(Result); 655 OS << printMBBReference(*BB); 656 OS << " ('" << BB->getName() << "')"; 657 OS.flush(); 658 return Result; 659 } 660 #endif 661 662 /// Mark a chain's successors as having one fewer preds. 663 /// 664 /// When a chain is being merged into the "placed" chain, this routine will 665 /// quickly walk the successors of each block in the chain and mark them as 666 /// having one fewer active predecessor. It also adds any successors of this 667 /// chain which reach the zero-predecessor state to the appropriate worklist. 668 void MachineBlockPlacement::markChainSuccessors( 669 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 670 const BlockFilterSet *BlockFilter) { 671 // Walk all the blocks in this chain, marking their successors as having 672 // a predecessor placed. 673 for (MachineBasicBlock *MBB : Chain) { 674 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 675 } 676 } 677 678 /// Mark a single block's successors as having one fewer preds. 679 /// 680 /// Under normal circumstances, this is only called by markChainSuccessors, 681 /// but if a block that was to be placed is completely tail-duplicated away, 682 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 683 /// for just that block. 684 void MachineBlockPlacement::markBlockSuccessors( 685 const BlockChain &Chain, const MachineBasicBlock *MBB, 686 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 687 // Add any successors for which this is the only un-placed in-loop 688 // predecessor to the worklist as a viable candidate for CFG-neutral 689 // placement. No subsequent placement of this block will violate the CFG 690 // shape, so we get to use heuristics to choose a favorable placement. 691 for (MachineBasicBlock *Succ : MBB->successors()) { 692 if (BlockFilter && !BlockFilter->count(Succ)) 693 continue; 694 BlockChain &SuccChain = *BlockToChain[Succ]; 695 // Disregard edges within a fixed chain, or edges to the loop header. 696 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 697 continue; 698 699 // This is a cross-chain edge that is within the loop, so decrement the 700 // loop predecessor count of the destination chain. 701 if (SuccChain.UnscheduledPredecessors == 0 || 702 --SuccChain.UnscheduledPredecessors > 0) 703 continue; 704 705 auto *NewBB = *SuccChain.begin(); 706 if (NewBB->isEHPad()) 707 EHPadWorkList.push_back(NewBB); 708 else 709 BlockWorkList.push_back(NewBB); 710 } 711 } 712 713 /// This helper function collects the set of successors of block 714 /// \p BB that are allowed to be its layout successors, and return 715 /// the total branch probability of edges from \p BB to those 716 /// blocks. 717 BranchProbability MachineBlockPlacement::collectViableSuccessors( 718 const MachineBasicBlock *BB, const BlockChain &Chain, 719 const BlockFilterSet *BlockFilter, 720 SmallVector<MachineBasicBlock *, 4> &Successors) { 721 // Adjust edge probabilities by excluding edges pointing to blocks that is 722 // either not in BlockFilter or is already in the current chain. Consider the 723 // following CFG: 724 // 725 // --->A 726 // | / \ 727 // | B C 728 // | \ / \ 729 // ----D E 730 // 731 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 732 // A->C is chosen as a fall-through, D won't be selected as a successor of C 733 // due to CFG constraint (the probability of C->D is not greater than 734 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 735 // when calculating the probability of C->D, D will be selected and we 736 // will get A C D B as the layout of this loop. 737 auto AdjustedSumProb = BranchProbability::getOne(); 738 for (MachineBasicBlock *Succ : BB->successors()) { 739 bool SkipSucc = false; 740 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 741 SkipSucc = true; 742 } else { 743 BlockChain *SuccChain = BlockToChain[Succ]; 744 if (SuccChain == &Chain) { 745 SkipSucc = true; 746 } else if (Succ != *SuccChain->begin()) { 747 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 748 << " -> Mid chain!\n"); 749 continue; 750 } 751 } 752 if (SkipSucc) 753 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 754 else 755 Successors.push_back(Succ); 756 } 757 758 return AdjustedSumProb; 759 } 760 761 /// The helper function returns the branch probability that is adjusted 762 /// or normalized over the new total \p AdjustedSumProb. 763 static BranchProbability 764 getAdjustedProbability(BranchProbability OrigProb, 765 BranchProbability AdjustedSumProb) { 766 BranchProbability SuccProb; 767 uint32_t SuccProbN = OrigProb.getNumerator(); 768 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 769 if (SuccProbN >= SuccProbD) 770 SuccProb = BranchProbability::getOne(); 771 else 772 SuccProb = BranchProbability(SuccProbN, SuccProbD); 773 774 return SuccProb; 775 } 776 777 /// Check if \p BB has exactly the successors in \p Successors. 778 static bool 779 hasSameSuccessors(MachineBasicBlock &BB, 780 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 781 if (BB.succ_size() != Successors.size()) 782 return false; 783 // We don't want to count self-loops 784 if (Successors.count(&BB)) 785 return false; 786 for (MachineBasicBlock *Succ : BB.successors()) 787 if (!Successors.count(Succ)) 788 return false; 789 return true; 790 } 791 792 /// Check if a block should be tail duplicated to increase fallthrough 793 /// opportunities. 794 /// \p BB Block to check. 795 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 796 // Blocks with single successors don't create additional fallthrough 797 // opportunities. Don't duplicate them. TODO: When conditional exits are 798 // analyzable, allow them to be duplicated. 799 bool IsSimple = TailDup.isSimpleBB(BB); 800 801 if (BB->succ_size() == 1) 802 return false; 803 return TailDup.shouldTailDuplicate(IsSimple, *BB); 804 } 805 806 /// Compare 2 BlockFrequency's with a small penalty for \p A. 807 /// In order to be conservative, we apply a X% penalty to account for 808 /// increased icache pressure and static heuristics. For small frequencies 809 /// we use only the numerators to improve accuracy. For simplicity, we assume 810 /// the penalty is less than 100% 811 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 812 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 813 BlockFrequency EntryFreq) { 814 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 815 BlockFrequency Gain = A - B; 816 return (Gain / ThresholdProb) >= EntryFreq; 817 } 818 819 /// Check the edge frequencies to see if tail duplication will increase 820 /// fallthroughs. It only makes sense to call this function when 821 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 822 /// always locally profitable if we would have picked \p Succ without 823 /// considering duplication. 824 bool MachineBlockPlacement::isProfitableToTailDup( 825 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 826 BranchProbability QProb, const BlockChain &Chain, 827 const BlockFilterSet *BlockFilter) { 828 // We need to do a probability calculation to make sure this is profitable. 829 // First: does succ have a successor that post-dominates? This affects the 830 // calculation. The 2 relevant cases are: 831 // BB BB 832 // | \Qout | \Qout 833 // P| C |P C 834 // = C' = C' 835 // | /Qin | /Qin 836 // | / | / 837 // Succ Succ 838 // / \ | \ V 839 // U/ =V |U \ 840 // / \ = D 841 // D E | / 842 // | / 843 // |/ 844 // PDom 845 // '=' : Branch taken for that CFG edge 846 // In the second case, Placing Succ while duplicating it into C prevents the 847 // fallthrough of Succ into either D or PDom, because they now have C as an 848 // unplaced predecessor 849 850 // Start by figuring out which case we fall into 851 MachineBasicBlock *PDom = nullptr; 852 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 853 // Only scan the relevant successors 854 auto AdjustedSuccSumProb = 855 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 856 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 857 auto BBFreq = MBFI->getBlockFreq(BB); 858 auto SuccFreq = MBFI->getBlockFreq(Succ); 859 BlockFrequency P = BBFreq * PProb; 860 BlockFrequency Qout = BBFreq * QProb; 861 BlockFrequency EntryFreq = MBFI->getEntryFreq(); 862 // If there are no more successors, it is profitable to copy, as it strictly 863 // increases fallthrough. 864 if (SuccSuccs.size() == 0) 865 return greaterWithBias(P, Qout, EntryFreq); 866 867 auto BestSuccSucc = BranchProbability::getZero(); 868 // Find the PDom or the best Succ if no PDom exists. 869 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 870 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 871 if (Prob > BestSuccSucc) 872 BestSuccSucc = Prob; 873 if (PDom == nullptr) 874 if (MPDT->dominates(SuccSucc, Succ)) { 875 PDom = SuccSucc; 876 break; 877 } 878 } 879 // For the comparisons, we need to know Succ's best incoming edge that isn't 880 // from BB. 881 auto SuccBestPred = BlockFrequency(0); 882 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 883 if (SuccPred == Succ || SuccPred == BB || 884 BlockToChain[SuccPred] == &Chain || 885 (BlockFilter && !BlockFilter->count(SuccPred))) 886 continue; 887 auto Freq = 888 MBFI->getBlockFreq(SuccPred) * MBPI->getEdgeProbability(SuccPred, Succ); 889 if (Freq > SuccBestPred) 890 SuccBestPred = Freq; 891 } 892 // Qin is Succ's best unplaced incoming edge that isn't BB 893 BlockFrequency Qin = SuccBestPred; 894 // If it doesn't have a post-dominating successor, here is the calculation: 895 // BB BB 896 // | \Qout | \ 897 // P| C | = 898 // = C' | C 899 // | /Qin | | 900 // | / | C' (+Succ) 901 // Succ Succ /| 902 // / \ | \/ | 903 // U/ =V | == | 904 // / \ | / \| 905 // D E D E 906 // '=' : Branch taken for that CFG edge 907 // Cost in the first case is: P + V 908 // For this calculation, we always assume P > Qout. If Qout > P 909 // The result of this function will be ignored at the caller. 910 // Let F = SuccFreq - Qin 911 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 912 913 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 914 BranchProbability UProb = BestSuccSucc; 915 BranchProbability VProb = AdjustedSuccSumProb - UProb; 916 BlockFrequency F = SuccFreq - Qin; 917 BlockFrequency V = SuccFreq * VProb; 918 BlockFrequency QinU = std::min(Qin, F) * UProb; 919 BlockFrequency BaseCost = P + V; 920 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 921 return greaterWithBias(BaseCost, DupCost, EntryFreq); 922 } 923 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 924 BranchProbability VProb = AdjustedSuccSumProb - UProb; 925 BlockFrequency U = SuccFreq * UProb; 926 BlockFrequency V = SuccFreq * VProb; 927 BlockFrequency F = SuccFreq - Qin; 928 // If there is a post-dominating successor, here is the calculation: 929 // BB BB BB BB 930 // | \Qout | \ | \Qout | \ 931 // |P C | = |P C | = 932 // = C' |P C = C' |P C 933 // | /Qin | | | /Qin | | 934 // | / | C' (+Succ) | / | C' (+Succ) 935 // Succ Succ /| Succ Succ /| 936 // | \ V | \/ | | \ V | \/ | 937 // |U \ |U /\ =? |U = |U /\ | 938 // = D = = =?| | D | = =| 939 // | / |/ D | / |/ D 940 // | / | / | = | / 941 // |/ | / |/ | = 942 // Dom Dom Dom Dom 943 // '=' : Branch taken for that CFG edge 944 // The cost for taken branches in the first case is P + U 945 // Let F = SuccFreq - Qin 946 // The cost in the second case (assuming independence), given the layout: 947 // BB, Succ, (C+Succ), D, Dom or the layout: 948 // BB, Succ, D, Dom, (C+Succ) 949 // is Qout + max(F, Qin) * U + min(F, Qin) 950 // compare P + U vs Qout + P * U + Qin. 951 // 952 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 953 // 954 // For the 3rd case, the cost is P + 2 * V 955 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 956 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 957 if (UProb > AdjustedSuccSumProb / 2 && 958 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 959 Chain, BlockFilter)) 960 // Cases 3 & 4 961 return greaterWithBias( 962 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 963 EntryFreq); 964 // Cases 1 & 2 965 return greaterWithBias((P + U), 966 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 967 std::max(Qin, F) * UProb), 968 EntryFreq); 969 } 970 971 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 972 /// successors form the lower part of a trellis. A successor set S forms the 973 /// lower part of a trellis if all of the predecessors of S are either in S or 974 /// have all of S as successors. We ignore trellises where BB doesn't have 2 975 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 976 /// are very uncommon and complex to compute optimally. Allowing edges within S 977 /// is not strictly a trellis, but the same algorithm works, so we allow it. 978 bool MachineBlockPlacement::isTrellis( 979 const MachineBasicBlock *BB, 980 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 981 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 982 // Technically BB could form a trellis with branching factor higher than 2. 983 // But that's extremely uncommon. 984 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 985 return false; 986 987 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 988 BB->succ_end()); 989 // To avoid reviewing the same predecessors twice. 990 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 991 992 for (MachineBasicBlock *Succ : ViableSuccs) { 993 int PredCount = 0; 994 for (auto *SuccPred : Succ->predecessors()) { 995 // Allow triangle successors, but don't count them. 996 if (Successors.count(SuccPred)) { 997 // Make sure that it is actually a triangle. 998 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 999 if (!Successors.count(CheckSucc)) 1000 return false; 1001 continue; 1002 } 1003 const BlockChain *PredChain = BlockToChain[SuccPred]; 1004 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 1005 PredChain == &Chain || PredChain == BlockToChain[Succ]) 1006 continue; 1007 ++PredCount; 1008 // Perform the successor check only once. 1009 if (!SeenPreds.insert(SuccPred).second) 1010 continue; 1011 if (!hasSameSuccessors(*SuccPred, Successors)) 1012 return false; 1013 } 1014 // If one of the successors has only BB as a predecessor, it is not a 1015 // trellis. 1016 if (PredCount < 1) 1017 return false; 1018 } 1019 return true; 1020 } 1021 1022 /// Pick the highest total weight pair of edges that can both be laid out. 1023 /// The edges in \p Edges[0] are assumed to have a different destination than 1024 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 1025 /// the individual highest weight edges to the 2 different destinations, or in 1026 /// case of a conflict, one of them should be replaced with a 2nd best edge. 1027 std::pair<MachineBlockPlacement::WeightedEdge, 1028 MachineBlockPlacement::WeightedEdge> 1029 MachineBlockPlacement::getBestNonConflictingEdges( 1030 const MachineBasicBlock *BB, 1031 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 1032 Edges) { 1033 // Sort the edges, and then for each successor, find the best incoming 1034 // predecessor. If the best incoming predecessors aren't the same, 1035 // then that is clearly the best layout. If there is a conflict, one of the 1036 // successors will have to fallthrough from the second best predecessor. We 1037 // compare which combination is better overall. 1038 1039 // Sort for highest frequency. 1040 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 1041 1042 llvm::stable_sort(Edges[0], Cmp); 1043 llvm::stable_sort(Edges[1], Cmp); 1044 auto BestA = Edges[0].begin(); 1045 auto BestB = Edges[1].begin(); 1046 // Arrange for the correct answer to be in BestA and BestB 1047 // If the 2 best edges don't conflict, the answer is already there. 1048 if (BestA->Src == BestB->Src) { 1049 // Compare the total fallthrough of (Best + Second Best) for both pairs 1050 auto SecondBestA = std::next(BestA); 1051 auto SecondBestB = std::next(BestB); 1052 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1053 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1054 if (BestAScore < BestBScore) 1055 BestA = SecondBestA; 1056 else 1057 BestB = SecondBestB; 1058 } 1059 // Arrange for the BB edge to be in BestA if it exists. 1060 if (BestB->Src == BB) 1061 std::swap(BestA, BestB); 1062 return std::make_pair(*BestA, *BestB); 1063 } 1064 1065 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1066 /// We only handle trellises with 2 successors, so the algorithm is 1067 /// straightforward: Find the best pair of edges that don't conflict. We find 1068 /// the best incoming edge for each successor in the trellis. If those conflict, 1069 /// we consider which of them should be replaced with the second best. 1070 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1071 /// comes from \p BB, it will be in \p BestEdges[0] 1072 MachineBlockPlacement::BlockAndTailDupResult 1073 MachineBlockPlacement::getBestTrellisSuccessor( 1074 const MachineBasicBlock *BB, 1075 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1076 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1077 const BlockFilterSet *BlockFilter) { 1078 1079 BlockAndTailDupResult Result = {nullptr, false}; 1080 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1081 BB->succ_end()); 1082 1083 // We assume size 2 because it's common. For general n, we would have to do 1084 // the Hungarian algorithm, but it's not worth the complexity because more 1085 // than 2 successors is fairly uncommon, and a trellis even more so. 1086 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1087 return Result; 1088 1089 // Collect the edge frequencies of all edges that form the trellis. 1090 SmallVector<WeightedEdge, 8> Edges[2]; 1091 int SuccIndex = 0; 1092 for (auto *Succ : ViableSuccs) { 1093 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1094 // Skip any placed predecessors that are not BB 1095 if (SuccPred != BB) 1096 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1097 BlockToChain[SuccPred] == &Chain || 1098 BlockToChain[SuccPred] == BlockToChain[Succ]) 1099 continue; 1100 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1101 MBPI->getEdgeProbability(SuccPred, Succ); 1102 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1103 } 1104 ++SuccIndex; 1105 } 1106 1107 // Pick the best combination of 2 edges from all the edges in the trellis. 1108 WeightedEdge BestA, BestB; 1109 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1110 1111 if (BestA.Src != BB) { 1112 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1113 // we shouldn't choose any successor. We've already looked and there's a 1114 // better fallthrough edge for all the successors. 1115 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1116 return Result; 1117 } 1118 1119 // Did we pick the triangle edge? If tail-duplication is profitable, do 1120 // that instead. Otherwise merge the triangle edge now while we know it is 1121 // optimal. 1122 if (BestA.Dest == BestB.Src) { 1123 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1124 // would be better. 1125 MachineBasicBlock *Succ1 = BestA.Dest; 1126 MachineBasicBlock *Succ2 = BestB.Dest; 1127 // Check to see if tail-duplication would be profitable. 1128 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1129 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1130 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1131 Chain, BlockFilter)) { 1132 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1133 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1134 dbgs() << " Selected: " << getBlockName(Succ2) 1135 << ", probability: " << Succ2Prob 1136 << " (Tail Duplicate)\n"); 1137 Result.BB = Succ2; 1138 Result.ShouldTailDup = true; 1139 return Result; 1140 } 1141 } 1142 // We have already computed the optimal edge for the other side of the 1143 // trellis. 1144 ComputedEdges[BestB.Src] = {BestB.Dest, false}; 1145 1146 auto TrellisSucc = BestA.Dest; 1147 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1148 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1149 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1150 << ", probability: " << SuccProb << " (Trellis)\n"); 1151 Result.BB = TrellisSucc; 1152 return Result; 1153 } 1154 1155 /// When the option allowTailDupPlacement() is on, this method checks if the 1156 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1157 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1158 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1159 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1160 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1161 if (!shouldTailDuplicate(Succ)) 1162 return false; 1163 1164 // The result of canTailDuplicate. 1165 bool Duplicate = true; 1166 // Number of possible duplication. 1167 unsigned int NumDup = 0; 1168 1169 // For CFG checking. 1170 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1171 BB->succ_end()); 1172 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1173 // Make sure all unplaced and unfiltered predecessors can be 1174 // tail-duplicated into. 1175 // Skip any blocks that are already placed or not in this loop. 1176 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) || 1177 (BlockToChain[Pred] == &Chain && !Succ->succ_empty())) 1178 continue; 1179 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1180 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1181 // This will result in a trellis after tail duplication, so we don't 1182 // need to copy Succ into this predecessor. In the presence 1183 // of a trellis tail duplication can continue to be profitable. 1184 // For example: 1185 // A A 1186 // |\ |\ 1187 // | \ | \ 1188 // | C | C+BB 1189 // | / | | 1190 // |/ | | 1191 // BB => BB | 1192 // |\ |\/| 1193 // | \ |/\| 1194 // | D | D 1195 // | / | / 1196 // |/ |/ 1197 // Succ Succ 1198 // 1199 // After BB was duplicated into C, the layout looks like the one on the 1200 // right. BB and C now have the same successors. When considering 1201 // whether Succ can be duplicated into all its unplaced predecessors, we 1202 // ignore C. 1203 // We can do this because C already has a profitable fallthrough, namely 1204 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1205 // duplication and for this test. 1206 // 1207 // This allows trellises to be laid out in 2 separate chains 1208 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1209 // because it allows the creation of 2 fallthrough paths with links 1210 // between them, and we correctly identify the best layout for these 1211 // CFGs. We want to extend trellises that the user created in addition 1212 // to trellises created by tail-duplication, so we just look for the 1213 // CFG. 1214 continue; 1215 Duplicate = false; 1216 continue; 1217 } 1218 NumDup++; 1219 } 1220 1221 // No possible duplication in current filter set. 1222 if (NumDup == 0) 1223 return false; 1224 1225 // If profile information is available, findDuplicateCandidates can do more 1226 // precise benefit analysis. 1227 if (F->getFunction().hasProfileData()) 1228 return true; 1229 1230 // This is mainly for function exit BB. 1231 // The integrated tail duplication is really designed for increasing 1232 // fallthrough from predecessors from Succ to its successors. We may need 1233 // other machanism to handle different cases. 1234 if (Succ->succ_empty()) 1235 return true; 1236 1237 // Plus the already placed predecessor. 1238 NumDup++; 1239 1240 // If the duplication candidate has more unplaced predecessors than 1241 // successors, the extra duplication can't bring more fallthrough. 1242 // 1243 // Pred1 Pred2 Pred3 1244 // \ | / 1245 // \ | / 1246 // \ | / 1247 // Dup 1248 // / \ 1249 // / \ 1250 // Succ1 Succ2 1251 // 1252 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1253 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1254 // but the duplication into Pred3 can't increase fallthrough. 1255 // 1256 // A small number of extra duplication may not hurt too much. We need a better 1257 // heuristic to handle it. 1258 if ((NumDup > Succ->succ_size()) || !Duplicate) 1259 return false; 1260 1261 return true; 1262 } 1263 1264 /// Find chains of triangles where we believe it would be profitable to 1265 /// tail-duplicate them all, but a local analysis would not find them. 1266 /// There are 3 ways this can be profitable: 1267 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1268 /// longer chains) 1269 /// 2) The chains are statically correlated. Branch probabilities have a very 1270 /// U-shaped distribution. 1271 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1272 /// If the branches in a chain are likely to be from the same side of the 1273 /// distribution as their predecessor, but are independent at runtime, this 1274 /// transformation is profitable. (Because the cost of being wrong is a small 1275 /// fixed cost, unlike the standard triangle layout where the cost of being 1276 /// wrong scales with the # of triangles.) 1277 /// 3) The chains are dynamically correlated. If the probability that a previous 1278 /// branch was taken positively influences whether the next branch will be 1279 /// taken 1280 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1281 void MachineBlockPlacement::precomputeTriangleChains() { 1282 struct TriangleChain { 1283 std::vector<MachineBasicBlock *> Edges; 1284 1285 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1286 : Edges({src, dst}) {} 1287 1288 void append(MachineBasicBlock *dst) { 1289 assert(getKey()->isSuccessor(dst) && 1290 "Attempting to append a block that is not a successor."); 1291 Edges.push_back(dst); 1292 } 1293 1294 unsigned count() const { return Edges.size() - 1; } 1295 1296 MachineBasicBlock *getKey() const { return Edges.back(); } 1297 }; 1298 1299 if (TriangleChainCount == 0) 1300 return; 1301 1302 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1303 // Map from last block to the chain that contains it. This allows us to extend 1304 // chains as we find new triangles. 1305 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1306 for (MachineBasicBlock &BB : *F) { 1307 // If BB doesn't have 2 successors, it doesn't start a triangle. 1308 if (BB.succ_size() != 2) 1309 continue; 1310 MachineBasicBlock *PDom = nullptr; 1311 for (MachineBasicBlock *Succ : BB.successors()) { 1312 if (!MPDT->dominates(Succ, &BB)) 1313 continue; 1314 PDom = Succ; 1315 break; 1316 } 1317 // If BB doesn't have a post-dominating successor, it doesn't form a 1318 // triangle. 1319 if (PDom == nullptr) 1320 continue; 1321 // If PDom has a hint that it is low probability, skip this triangle. 1322 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1323 continue; 1324 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1325 // we're looking for. 1326 if (!shouldTailDuplicate(PDom)) 1327 continue; 1328 bool CanTailDuplicate = true; 1329 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1330 // isn't the kind of triangle we're looking for. 1331 for (MachineBasicBlock *Pred : PDom->predecessors()) { 1332 if (Pred == &BB) 1333 continue; 1334 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1335 CanTailDuplicate = false; 1336 break; 1337 } 1338 } 1339 // If we can't tail-duplicate PDom to its predecessors, then skip this 1340 // triangle. 1341 if (!CanTailDuplicate) 1342 continue; 1343 1344 // Now we have an interesting triangle. Insert it if it's not part of an 1345 // existing chain. 1346 // Note: This cannot be replaced with a call insert() or emplace() because 1347 // the find key is BB, but the insert/emplace key is PDom. 1348 auto Found = TriangleChainMap.find(&BB); 1349 // If it is, remove the chain from the map, grow it, and put it back in the 1350 // map with the end as the new key. 1351 if (Found != TriangleChainMap.end()) { 1352 TriangleChain Chain = std::move(Found->second); 1353 TriangleChainMap.erase(Found); 1354 Chain.append(PDom); 1355 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1356 } else { 1357 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1358 assert(InsertResult.second && "Block seen twice."); 1359 (void)InsertResult; 1360 } 1361 } 1362 1363 // Iterating over a DenseMap is safe here, because the only thing in the body 1364 // of the loop is inserting into another DenseMap (ComputedEdges). 1365 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1366 for (auto &ChainPair : TriangleChainMap) { 1367 TriangleChain &Chain = ChainPair.second; 1368 // Benchmarking has shown that due to branch correlation duplicating 2 or 1369 // more triangles is profitable, despite the calculations assuming 1370 // independence. 1371 if (Chain.count() < TriangleChainCount) 1372 continue; 1373 MachineBasicBlock *dst = Chain.Edges.back(); 1374 Chain.Edges.pop_back(); 1375 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1376 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1377 << getBlockName(dst) 1378 << " as pre-computed based on triangles.\n"); 1379 1380 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1381 assert(InsertResult.second && "Block seen twice."); 1382 (void)InsertResult; 1383 1384 dst = src; 1385 } 1386 } 1387 } 1388 1389 // When profile is not present, return the StaticLikelyProb. 1390 // When profile is available, we need to handle the triangle-shape CFG. 1391 static BranchProbability 1392 getLayoutSuccessorProbThreshold(const MachineBasicBlock *BB) { 1393 if (!BB->getParent()->getFunction().hasProfileData()) 1394 return BranchProbability(StaticLikelyProb, 100); 1395 if (BB->succ_size() == 2) { 1396 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1397 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1398 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1399 /* See case 1 below for the cost analysis. For BB->Succ to 1400 * be taken with smaller cost, the following needs to hold: 1401 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1402 * So the threshold T in the calculation below 1403 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1404 * So T / (1 - T) = 2, Yielding T = 2/3 1405 * Also adding user specified branch bias, we have 1406 * T = (2/3)*(ProfileLikelyProb/50) 1407 * = (2*ProfileLikelyProb)/150) 1408 */ 1409 return BranchProbability(2 * ProfileLikelyProb, 150); 1410 } 1411 } 1412 return BranchProbability(ProfileLikelyProb, 100); 1413 } 1414 1415 /// Checks to see if the layout candidate block \p Succ has a better layout 1416 /// predecessor than \c BB. If yes, returns true. 1417 /// \p SuccProb: The probability adjusted for only remaining blocks. 1418 /// Only used for logging 1419 /// \p RealSuccProb: The un-adjusted probability. 1420 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1421 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1422 /// considered 1423 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1424 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1425 const BlockChain &SuccChain, BranchProbability SuccProb, 1426 BranchProbability RealSuccProb, const BlockChain &Chain, 1427 const BlockFilterSet *BlockFilter) { 1428 1429 // There isn't a better layout when there are no unscheduled predecessors. 1430 if (SuccChain.UnscheduledPredecessors == 0) 1431 return false; 1432 1433 // There are two basic scenarios here: 1434 // ------------------------------------- 1435 // Case 1: triangular shape CFG (if-then): 1436 // BB 1437 // | \ 1438 // | \ 1439 // | Pred 1440 // | / 1441 // Succ 1442 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1443 // set Succ as the layout successor of BB. Picking Succ as BB's 1444 // successor breaks the CFG constraints (FIXME: define these constraints). 1445 // With this layout, Pred BB 1446 // is forced to be outlined, so the overall cost will be cost of the 1447 // branch taken from BB to Pred, plus the cost of back taken branch 1448 // from Pred to Succ, as well as the additional cost associated 1449 // with the needed unconditional jump instruction from Pred To Succ. 1450 1451 // The cost of the topological order layout is the taken branch cost 1452 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1453 // must hold: 1454 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1455 // < freq(BB->Succ) * taken_branch_cost. 1456 // Ignoring unconditional jump cost, we get 1457 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1458 // prob(BB->Succ) > 2 * prob(BB->Pred) 1459 // 1460 // When real profile data is available, we can precisely compute the 1461 // probability threshold that is needed for edge BB->Succ to be considered. 1462 // Without profile data, the heuristic requires the branch bias to be 1463 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1464 // ----------------------------------------------------------------- 1465 // Case 2: diamond like CFG (if-then-else): 1466 // S 1467 // / \ 1468 // | \ 1469 // BB Pred 1470 // \ / 1471 // Succ 1472 // .. 1473 // 1474 // The current block is BB and edge BB->Succ is now being evaluated. 1475 // Note that edge S->BB was previously already selected because 1476 // prob(S->BB) > prob(S->Pred). 1477 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1478 // choose Pred, we will have a topological ordering as shown on the left 1479 // in the picture below. If we choose Succ, we have the solution as shown 1480 // on the right: 1481 // 1482 // topo-order: 1483 // 1484 // S----- ---S 1485 // | | | | 1486 // ---BB | | BB 1487 // | | | | 1488 // | Pred-- | Succ-- 1489 // | | | | 1490 // ---Succ ---Pred-- 1491 // 1492 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1493 // = freq(S->Pred) + freq(S->BB) 1494 // 1495 // If we have profile data (i.e, branch probabilities can be trusted), the 1496 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1497 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1498 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1499 // means the cost of topological order is greater. 1500 // When profile data is not available, however, we need to be more 1501 // conservative. If the branch prediction is wrong, breaking the topo-order 1502 // will actually yield a layout with large cost. For this reason, we need 1503 // strong biased branch at block S with Prob(S->BB) in order to select 1504 // BB->Succ. This is equivalent to looking the CFG backward with backward 1505 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1506 // profile data). 1507 // -------------------------------------------------------------------------- 1508 // Case 3: forked diamond 1509 // S 1510 // / \ 1511 // / \ 1512 // BB Pred 1513 // | \ / | 1514 // | \ / | 1515 // | X | 1516 // | / \ | 1517 // | / \ | 1518 // S1 S2 1519 // 1520 // The current block is BB and edge BB->S1 is now being evaluated. 1521 // As above S->BB was already selected because 1522 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1523 // 1524 // topo-order: 1525 // 1526 // S-------| ---S 1527 // | | | | 1528 // ---BB | | BB 1529 // | | | | 1530 // | Pred----| | S1---- 1531 // | | | | 1532 // --(S1 or S2) ---Pred-- 1533 // | 1534 // S2 1535 // 1536 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1537 // + min(freq(Pred->S1), freq(Pred->S2)) 1538 // Non-topo-order cost: 1539 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1540 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1541 // is 0. Then the non topo layout is better when 1542 // freq(S->Pred) < freq(BB->S1). 1543 // This is exactly what is checked below. 1544 // Note there are other shapes that apply (Pred may not be a single block, 1545 // but they all fit this general pattern.) 1546 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1547 1548 // Make sure that a hot successor doesn't have a globally more 1549 // important predecessor. 1550 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1551 bool BadCFGConflict = false; 1552 1553 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1554 BlockChain *PredChain = BlockToChain[Pred]; 1555 if (Pred == Succ || PredChain == &SuccChain || 1556 (BlockFilter && !BlockFilter->count(Pred)) || PredChain == &Chain || 1557 Pred != *std::prev(PredChain->end()) || 1558 // This check is redundant except for look ahead. This function is 1559 // called for lookahead by isProfitableToTailDup when BB hasn't been 1560 // placed yet. 1561 (Pred == BB)) 1562 continue; 1563 // Do backward checking. 1564 // For all cases above, we need a backward checking to filter out edges that 1565 // are not 'strongly' biased. 1566 // BB Pred 1567 // \ / 1568 // Succ 1569 // We select edge BB->Succ if 1570 // freq(BB->Succ) > freq(Succ) * HotProb 1571 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1572 // HotProb 1573 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1574 // Case 1 is covered too, because the first equation reduces to: 1575 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1576 BlockFrequency PredEdgeFreq = 1577 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1578 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1579 BadCFGConflict = true; 1580 break; 1581 } 1582 } 1583 1584 if (BadCFGConflict) { 1585 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1586 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 /// Select the best successor for a block. 1594 /// 1595 /// This looks across all successors of a particular block and attempts to 1596 /// select the "best" one to be the layout successor. It only considers direct 1597 /// successors which also pass the block filter. It will attempt to avoid 1598 /// breaking CFG structure, but cave and break such structures in the case of 1599 /// very hot successor edges. 1600 /// 1601 /// \returns The best successor block found, or null if none are viable, along 1602 /// with a boolean indicating if tail duplication is necessary. 1603 MachineBlockPlacement::BlockAndTailDupResult 1604 MachineBlockPlacement::selectBestSuccessor(const MachineBasicBlock *BB, 1605 const BlockChain &Chain, 1606 const BlockFilterSet *BlockFilter) { 1607 const BranchProbability HotProb(StaticLikelyProb, 100); 1608 1609 BlockAndTailDupResult BestSucc = {nullptr, false}; 1610 auto BestProb = BranchProbability::getZero(); 1611 1612 SmallVector<MachineBasicBlock *, 4> Successors; 1613 auto AdjustedSumProb = 1614 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1615 1616 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1617 << "\n"); 1618 1619 // if we already precomputed the best successor for BB, return that if still 1620 // applicable. 1621 auto FoundEdge = ComputedEdges.find(BB); 1622 if (FoundEdge != ComputedEdges.end()) { 1623 MachineBasicBlock *Succ = FoundEdge->second.BB; 1624 ComputedEdges.erase(FoundEdge); 1625 BlockChain *SuccChain = BlockToChain[Succ]; 1626 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1627 SuccChain != &Chain && Succ == *SuccChain->begin()) 1628 return FoundEdge->second; 1629 } 1630 1631 // if BB is part of a trellis, Use the trellis to determine the optimal 1632 // fallthrough edges 1633 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1634 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1635 BlockFilter); 1636 1637 // For blocks with CFG violations, we may be able to lay them out anyway with 1638 // tail-duplication. We keep this vector so we can perform the probability 1639 // calculations the minimum number of times. 1640 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1641 DupCandidates; 1642 for (MachineBasicBlock *Succ : Successors) { 1643 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1644 BranchProbability SuccProb = 1645 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1646 1647 BlockChain &SuccChain = *BlockToChain[Succ]; 1648 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1649 // predecessor that yields lower global cost. 1650 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1651 Chain, BlockFilter)) { 1652 // If tail duplication would make Succ profitable, place it. 1653 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1654 DupCandidates.emplace_back(SuccProb, Succ); 1655 continue; 1656 } 1657 1658 LLVM_DEBUG( 1659 dbgs() << " Candidate: " << getBlockName(Succ) 1660 << ", probability: " << SuccProb 1661 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1662 << "\n"); 1663 1664 if (BestSucc.BB && BestProb >= SuccProb) { 1665 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1666 continue; 1667 } 1668 1669 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1670 BestSucc.BB = Succ; 1671 BestProb = SuccProb; 1672 } 1673 // Handle the tail duplication candidates in order of decreasing probability. 1674 // Stop at the first one that is profitable. Also stop if they are less 1675 // profitable than BestSucc. Position is important because we preserve it and 1676 // prefer first best match. Here we aren't comparing in order, so we capture 1677 // the position instead. 1678 llvm::stable_sort(DupCandidates, 1679 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1680 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1681 return std::get<0>(L) > std::get<0>(R); 1682 }); 1683 for (auto &Tup : DupCandidates) { 1684 BranchProbability DupProb; 1685 MachineBasicBlock *Succ; 1686 std::tie(DupProb, Succ) = Tup; 1687 if (DupProb < BestProb) 1688 break; 1689 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) && 1690 (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1691 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1692 << ", probability: " << DupProb 1693 << " (Tail Duplicate)\n"); 1694 BestSucc.BB = Succ; 1695 BestSucc.ShouldTailDup = true; 1696 break; 1697 } 1698 } 1699 1700 if (BestSucc.BB) 1701 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1702 1703 return BestSucc; 1704 } 1705 1706 /// Select the best block from a worklist. 1707 /// 1708 /// This looks through the provided worklist as a list of candidate basic 1709 /// blocks and select the most profitable one to place. The definition of 1710 /// profitable only really makes sense in the context of a loop. This returns 1711 /// the most frequently visited block in the worklist, which in the case of 1712 /// a loop, is the one most desirable to be physically close to the rest of the 1713 /// loop body in order to improve i-cache behavior. 1714 /// 1715 /// \returns The best block found, or null if none are viable. 1716 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1717 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1718 // Once we need to walk the worklist looking for a candidate, cleanup the 1719 // worklist of already placed entries. 1720 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1721 // some code complexity) into the loop below. 1722 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1723 return BlockToChain.lookup(BB) == &Chain; 1724 }); 1725 1726 if (WorkList.empty()) 1727 return nullptr; 1728 1729 bool IsEHPad = WorkList[0]->isEHPad(); 1730 1731 MachineBasicBlock *BestBlock = nullptr; 1732 BlockFrequency BestFreq; 1733 for (MachineBasicBlock *MBB : WorkList) { 1734 assert(MBB->isEHPad() == IsEHPad && 1735 "EHPad mismatch between block and work list."); 1736 1737 BlockChain &SuccChain = *BlockToChain[MBB]; 1738 if (&SuccChain == &Chain) 1739 continue; 1740 1741 assert(SuccChain.UnscheduledPredecessors == 0 && 1742 "Found CFG-violating block"); 1743 1744 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1745 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> " 1746 << printBlockFreq(MBFI->getMBFI(), CandidateFreq) 1747 << " (freq)\n"); 1748 1749 // For ehpad, we layout the least probable first as to avoid jumping back 1750 // from least probable landingpads to more probable ones. 1751 // 1752 // FIXME: Using probability is probably (!) not the best way to achieve 1753 // this. We should probably have a more principled approach to layout 1754 // cleanup code. 1755 // 1756 // The goal is to get: 1757 // 1758 // +--------------------------+ 1759 // | V 1760 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1761 // 1762 // Rather than: 1763 // 1764 // +-------------------------------------+ 1765 // V | 1766 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1767 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1768 continue; 1769 1770 BestBlock = MBB; 1771 BestFreq = CandidateFreq; 1772 } 1773 1774 return BestBlock; 1775 } 1776 1777 /// Retrieve the first unplaced basic block in the entire function. 1778 /// 1779 /// This routine is called when we are unable to use the CFG to walk through 1780 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1781 /// We walk through the function's blocks in order, starting from the 1782 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1783 /// re-scanning the entire sequence on repeated calls to this routine. 1784 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1785 const BlockChain &PlacedChain, 1786 MachineFunction::iterator &PrevUnplacedBlockIt) { 1787 1788 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1789 ++I) { 1790 if (BlockToChain[&*I] != &PlacedChain) { 1791 PrevUnplacedBlockIt = I; 1792 // Now select the head of the chain to which the unplaced block belongs 1793 // as the block to place. This will force the entire chain to be placed, 1794 // and satisfies the requirements of merging chains. 1795 return *BlockToChain[&*I]->begin(); 1796 } 1797 } 1798 return nullptr; 1799 } 1800 1801 /// Retrieve the first unplaced basic block among the blocks in BlockFilter. 1802 /// 1803 /// This is similar to getFirstUnplacedBlock for the entire function, but since 1804 /// the size of BlockFilter is typically far less than the number of blocks in 1805 /// the entire function, iterating through the BlockFilter is more efficient. 1806 /// When processing the entire funciton, using the version without BlockFilter 1807 /// has a complexity of #(loops in function) * #(blocks in function), while this 1808 /// version has a complexity of sum(#(loops in block) foreach block in function) 1809 /// which is always smaller. For long function mostly sequential in structure, 1810 /// the complexity is amortized to 1 * #(blocks in function). 1811 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1812 const BlockChain &PlacedChain, 1813 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 1814 const BlockFilterSet *BlockFilter) { 1815 assert(BlockFilter); 1816 for (; PrevUnplacedBlockInFilterIt != BlockFilter->end(); 1817 ++PrevUnplacedBlockInFilterIt) { 1818 BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt]; 1819 if (C != &PlacedChain) { 1820 return *C->begin(); 1821 } 1822 } 1823 return nullptr; 1824 } 1825 1826 void MachineBlockPlacement::fillWorkLists( 1827 const MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1828 const BlockFilterSet *BlockFilter = nullptr) { 1829 BlockChain &Chain = *BlockToChain[MBB]; 1830 if (!UpdatedPreds.insert(&Chain).second) 1831 return; 1832 1833 assert( 1834 Chain.UnscheduledPredecessors == 0 && 1835 "Attempting to place block with unscheduled predecessors in worklist."); 1836 for (MachineBasicBlock *ChainBB : Chain) { 1837 assert(BlockToChain[ChainBB] == &Chain && 1838 "Block in chain doesn't match BlockToChain map."); 1839 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1840 if (BlockFilter && !BlockFilter->count(Pred)) 1841 continue; 1842 if (BlockToChain[Pred] == &Chain) 1843 continue; 1844 ++Chain.UnscheduledPredecessors; 1845 } 1846 } 1847 1848 if (Chain.UnscheduledPredecessors != 0) 1849 return; 1850 1851 MachineBasicBlock *BB = *Chain.begin(); 1852 if (BB->isEHPad()) 1853 EHPadWorkList.push_back(BB); 1854 else 1855 BlockWorkList.push_back(BB); 1856 } 1857 1858 void MachineBlockPlacement::buildChain(const MachineBasicBlock *HeadBB, 1859 BlockChain &Chain, 1860 BlockFilterSet *BlockFilter) { 1861 assert(HeadBB && "BB must not be null.\n"); 1862 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1863 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1864 BlockFilterSet::iterator PrevUnplacedBlockInFilterIt; 1865 if (BlockFilter) 1866 PrevUnplacedBlockInFilterIt = BlockFilter->begin(); 1867 1868 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1869 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1870 MachineBasicBlock *BB = *std::prev(Chain.end()); 1871 while (true) { 1872 assert(BB && "null block found at end of chain in loop."); 1873 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1874 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1875 1876 // Look for the best viable successor if there is one to place immediately 1877 // after this block. 1878 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1879 MachineBasicBlock *BestSucc = Result.BB; 1880 bool ShouldTailDup = Result.ShouldTailDup; 1881 if (allowTailDupPlacement()) 1882 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds( 1883 BB, BestSucc, Chain, BlockFilter)); 1884 1885 // If an immediate successor isn't available, look for the best viable 1886 // block among those we've identified as not violating the loop's CFG at 1887 // this point. This won't be a fallthrough, but it will increase locality. 1888 if (!BestSucc) 1889 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1890 if (!BestSucc) 1891 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1892 1893 if (!BestSucc) { 1894 if (BlockFilter) 1895 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt, 1896 BlockFilter); 1897 else 1898 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt); 1899 if (!BestSucc) 1900 break; 1901 1902 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1903 "layout successor until the CFG reduces\n"); 1904 } 1905 1906 // Placement may have changed tail duplication opportunities. 1907 // Check for that now. 1908 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1909 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1910 BlockFilter, PrevUnplacedBlockIt, 1911 PrevUnplacedBlockInFilterIt); 1912 // If the chosen successor was duplicated into BB, don't bother laying 1913 // it out, just go round the loop again with BB as the chain end. 1914 if (!BB->isSuccessor(BestSucc)) 1915 continue; 1916 } 1917 1918 // Place this block, updating the datastructures to reflect its placement. 1919 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1920 // Zero out UnscheduledPredecessors for the successor we're about to merge 1921 // in case we selected a successor that didn't fit naturally into the CFG. 1922 SuccChain.UnscheduledPredecessors = 0; 1923 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1924 << getBlockName(BestSucc) << "\n"); 1925 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1926 Chain.merge(BestSucc, &SuccChain); 1927 BB = *std::prev(Chain.end()); 1928 } 1929 1930 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1931 << getBlockName(*Chain.begin()) << "\n"); 1932 } 1933 1934 // If bottom of block BB has only one successor OldTop, in most cases it is 1935 // profitable to move it before OldTop, except the following case: 1936 // 1937 // -->OldTop<- 1938 // | . | 1939 // | . | 1940 // | . | 1941 // ---Pred | 1942 // | | 1943 // BB----- 1944 // 1945 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1946 // layout the other successor below it, so it can't reduce taken branch. 1947 // In this case we keep its original layout. 1948 bool MachineBlockPlacement::canMoveBottomBlockToTop( 1949 const MachineBasicBlock *BottomBlock, const MachineBasicBlock *OldTop) { 1950 if (BottomBlock->pred_size() != 1) 1951 return true; 1952 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1953 if (Pred->succ_size() != 2) 1954 return true; 1955 1956 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1957 if (OtherBB == BottomBlock) 1958 OtherBB = *Pred->succ_rbegin(); 1959 if (OtherBB == OldTop) 1960 return false; 1961 1962 return true; 1963 } 1964 1965 // Find out the possible fall through frequence to the top of a loop. 1966 BlockFrequency 1967 MachineBlockPlacement::TopFallThroughFreq(const MachineBasicBlock *Top, 1968 const BlockFilterSet &LoopBlockSet) { 1969 BlockFrequency MaxFreq = BlockFrequency(0); 1970 for (MachineBasicBlock *Pred : Top->predecessors()) { 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!LoopBlockSet.count(Pred) && 1973 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1974 // Found a Pred block can be placed before Top. 1975 // Check if Top is the best successor of Pred. 1976 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1977 bool TopOK = true; 1978 for (MachineBasicBlock *Succ : Pred->successors()) { 1979 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1980 BlockChain *SuccChain = BlockToChain[Succ]; 1981 // Check if Succ can be placed after Pred. 1982 // Succ should not be in any chain, or it is the head of some chain. 1983 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1984 (!SuccChain || Succ == *SuccChain->begin())) { 1985 TopOK = false; 1986 break; 1987 } 1988 } 1989 if (TopOK) { 1990 BlockFrequency EdgeFreq = 1991 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Top); 1992 if (EdgeFreq > MaxFreq) 1993 MaxFreq = EdgeFreq; 1994 } 1995 } 1996 } 1997 return MaxFreq; 1998 } 1999 2000 // Compute the fall through gains when move NewTop before OldTop. 2001 // 2002 // In following diagram, edges marked as "-" are reduced fallthrough, edges 2003 // marked as "+" are increased fallthrough, this function computes 2004 // 2005 // SUM(increased fallthrough) - SUM(decreased fallthrough) 2006 // 2007 // | 2008 // | - 2009 // V 2010 // --->OldTop 2011 // | . 2012 // | . 2013 // +| . + 2014 // | Pred ---> 2015 // | |- 2016 // | V 2017 // --- NewTop <--- 2018 // |- 2019 // V 2020 // 2021 BlockFrequency MachineBlockPlacement::FallThroughGains( 2022 const MachineBasicBlock *NewTop, const MachineBasicBlock *OldTop, 2023 const MachineBasicBlock *ExitBB, const BlockFilterSet &LoopBlockSet) { 2024 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 2025 BlockFrequency FallThrough2Exit = BlockFrequency(0); 2026 if (ExitBB) 2027 FallThrough2Exit = 2028 MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, ExitBB); 2029 BlockFrequency BackEdgeFreq = 2030 MBFI->getBlockFreq(NewTop) * MBPI->getEdgeProbability(NewTop, OldTop); 2031 2032 // Find the best Pred of NewTop. 2033 MachineBasicBlock *BestPred = nullptr; 2034 BlockFrequency FallThroughFromPred = BlockFrequency(0); 2035 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 2036 if (!LoopBlockSet.count(Pred)) 2037 continue; 2038 BlockChain *PredChain = BlockToChain[Pred]; 2039 if (!PredChain || Pred == *std::prev(PredChain->end())) { 2040 BlockFrequency EdgeFreq = 2041 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop); 2042 if (EdgeFreq > FallThroughFromPred) { 2043 FallThroughFromPred = EdgeFreq; 2044 BestPred = Pred; 2045 } 2046 } 2047 } 2048 2049 // If NewTop is not placed after Pred, another successor can be placed 2050 // after Pred. 2051 BlockFrequency NewFreq = BlockFrequency(0); 2052 if (BestPred) { 2053 for (MachineBasicBlock *Succ : BestPred->successors()) { 2054 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 2055 continue; 2056 if (ComputedEdges.contains(Succ)) 2057 continue; 2058 BlockChain *SuccChain = BlockToChain[Succ]; 2059 if ((SuccChain && (Succ != *SuccChain->begin())) || 2060 (SuccChain == BlockToChain[BestPred])) 2061 continue; 2062 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 2063 MBPI->getEdgeProbability(BestPred, Succ); 2064 if (EdgeFreq > NewFreq) 2065 NewFreq = EdgeFreq; 2066 } 2067 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2068 MBPI->getEdgeProbability(BestPred, NewTop); 2069 if (NewFreq > OrigEdgeFreq) { 2070 // If NewTop is not the best successor of Pred, then Pred doesn't 2071 // fallthrough to NewTop. So there is no FallThroughFromPred and 2072 // NewFreq. 2073 NewFreq = BlockFrequency(0); 2074 FallThroughFromPred = BlockFrequency(0); 2075 } 2076 } 2077 2078 BlockFrequency Result = BlockFrequency(0); 2079 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2080 BlockFrequency Lost = 2081 FallThrough2Top + FallThrough2Exit + FallThroughFromPred; 2082 if (Gains > Lost) 2083 Result = Gains - Lost; 2084 return Result; 2085 } 2086 2087 /// Helper function of findBestLoopTop. Find the best loop top block 2088 /// from predecessors of old top. 2089 /// 2090 /// Look for a block which is strictly better than the old top for laying 2091 /// out before the old top of the loop. This looks for only two patterns: 2092 /// 2093 /// 1. a block has only one successor, the old loop top 2094 /// 2095 /// Because such a block will always result in an unconditional jump, 2096 /// rotating it in front of the old top is always profitable. 2097 /// 2098 /// 2. a block has two successors, one is old top, another is exit 2099 /// and it has more than one predecessors 2100 /// 2101 /// If it is below one of its predecessors P, only P can fall through to 2102 /// it, all other predecessors need a jump to it, and another conditional 2103 /// jump to loop header. If it is moved before loop header, all its 2104 /// predecessors jump to it, then fall through to loop header. So all its 2105 /// predecessors except P can reduce one taken branch. 2106 /// At the same time, move it before old top increases the taken branch 2107 /// to loop exit block, so the reduced taken branch will be compared with 2108 /// the increased taken branch to the loop exit block. 2109 MachineBasicBlock *MachineBlockPlacement::findBestLoopTopHelper( 2110 MachineBasicBlock *OldTop, const MachineLoop &L, 2111 const BlockFilterSet &LoopBlockSet) { 2112 // Check that the header hasn't been fused with a preheader block due to 2113 // crazy branches. If it has, we need to start with the header at the top to 2114 // prevent pulling the preheader into the loop body. 2115 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2116 if (!LoopBlockSet.count(*HeaderChain.begin())) 2117 return OldTop; 2118 if (OldTop != *HeaderChain.begin()) 2119 return OldTop; 2120 2121 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2122 << "\n"); 2123 2124 BlockFrequency BestGains = BlockFrequency(0); 2125 MachineBasicBlock *BestPred = nullptr; 2126 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2127 if (!LoopBlockSet.count(Pred)) 2128 continue; 2129 if (Pred == L.getHeader()) 2130 continue; 2131 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2132 << Pred->succ_size() << " successors, " 2133 << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n"); 2134 if (Pred->succ_size() > 2) 2135 continue; 2136 2137 MachineBasicBlock *OtherBB = nullptr; 2138 if (Pred->succ_size() == 2) { 2139 OtherBB = *Pred->succ_begin(); 2140 if (OtherBB == OldTop) 2141 OtherBB = *Pred->succ_rbegin(); 2142 } 2143 2144 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2145 continue; 2146 2147 BlockFrequency Gains = 2148 FallThroughGains(Pred, OldTop, OtherBB, LoopBlockSet); 2149 if ((Gains > BlockFrequency(0)) && 2150 (Gains > BestGains || 2151 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2152 BestPred = Pred; 2153 BestGains = Gains; 2154 } 2155 } 2156 2157 // If no direct predecessor is fine, just use the loop header. 2158 if (!BestPred) { 2159 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2160 return OldTop; 2161 } 2162 2163 // Walk backwards through any straight line of predecessors. 2164 while (BestPred->pred_size() == 1 && 2165 (*BestPred->pred_begin())->succ_size() == 1 && 2166 *BestPred->pred_begin() != L.getHeader()) 2167 BestPred = *BestPred->pred_begin(); 2168 2169 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2170 return BestPred; 2171 } 2172 2173 /// Find the best loop top block for layout. 2174 /// 2175 /// This function iteratively calls findBestLoopTopHelper, until no new better 2176 /// BB can be found. 2177 MachineBasicBlock * 2178 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2179 const BlockFilterSet &LoopBlockSet) { 2180 // Placing the latch block before the header may introduce an extra branch 2181 // that skips this block the first time the loop is executed, which we want 2182 // to avoid when optimising for size. 2183 // FIXME: in theory there is a case that does not introduce a new branch, 2184 // i.e. when the layout predecessor does not fallthrough to the loop header. 2185 // In practice this never happens though: there always seems to be a preheader 2186 // that can fallthrough and that is also placed before the header. 2187 bool OptForSize = F->getFunction().hasOptSize() || 2188 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2189 if (OptForSize) 2190 return L.getHeader(); 2191 2192 MachineBasicBlock *OldTop = nullptr; 2193 MachineBasicBlock *NewTop = L.getHeader(); 2194 while (NewTop != OldTop) { 2195 OldTop = NewTop; 2196 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2197 if (NewTop != OldTop) 2198 ComputedEdges[NewTop] = {OldTop, false}; 2199 } 2200 return NewTop; 2201 } 2202 2203 /// Find the best loop exiting block for layout. 2204 /// 2205 /// This routine implements the logic to analyze the loop looking for the best 2206 /// block to layout at the top of the loop. Typically this is done to maximize 2207 /// fallthrough opportunities. 2208 MachineBasicBlock * 2209 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2210 const BlockFilterSet &LoopBlockSet, 2211 BlockFrequency &ExitFreq) { 2212 // We don't want to layout the loop linearly in all cases. If the loop header 2213 // is just a normal basic block in the loop, we want to look for what block 2214 // within the loop is the best one to layout at the top. However, if the loop 2215 // header has be pre-merged into a chain due to predecessors not having 2216 // analyzable branches, *and* the predecessor it is merged with is *not* part 2217 // of the loop, rotating the header into the middle of the loop will create 2218 // a non-contiguous range of blocks which is Very Bad. So start with the 2219 // header and only rotate if safe. 2220 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2221 if (!LoopBlockSet.count(*HeaderChain.begin())) 2222 return nullptr; 2223 2224 BlockFrequency BestExitEdgeFreq; 2225 unsigned BestExitLoopDepth = 0; 2226 MachineBasicBlock *ExitingBB = nullptr; 2227 // If there are exits to outer loops, loop rotation can severely limit 2228 // fallthrough opportunities unless it selects such an exit. Keep a set of 2229 // blocks where rotating to exit with that block will reach an outer loop. 2230 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2231 2232 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2233 << getBlockName(L.getHeader()) << "\n"); 2234 for (MachineBasicBlock *MBB : L.getBlocks()) { 2235 BlockChain &Chain = *BlockToChain[MBB]; 2236 // Ensure that this block is at the end of a chain; otherwise it could be 2237 // mid-way through an inner loop or a successor of an unanalyzable branch. 2238 if (MBB != *std::prev(Chain.end())) 2239 continue; 2240 2241 // Now walk the successors. We need to establish whether this has a viable 2242 // exiting successor and whether it has a viable non-exiting successor. 2243 // We store the old exiting state and restore it if a viable looping 2244 // successor isn't found. 2245 MachineBasicBlock *OldExitingBB = ExitingBB; 2246 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2247 bool HasLoopingSucc = false; 2248 for (MachineBasicBlock *Succ : MBB->successors()) { 2249 if (Succ->isEHPad()) 2250 continue; 2251 if (Succ == MBB) 2252 continue; 2253 BlockChain &SuccChain = *BlockToChain[Succ]; 2254 // Don't split chains, either this chain or the successor's chain. 2255 if (&Chain == &SuccChain) { 2256 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2257 << getBlockName(Succ) << " (chain conflict)\n"); 2258 continue; 2259 } 2260 2261 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2262 if (LoopBlockSet.count(Succ)) { 2263 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2264 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2265 HasLoopingSucc = true; 2266 continue; 2267 } 2268 2269 unsigned SuccLoopDepth = 0; 2270 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2271 SuccLoopDepth = ExitLoop->getLoopDepth(); 2272 if (ExitLoop->contains(&L)) 2273 BlocksExitingToOuterLoop.insert(MBB); 2274 } 2275 2276 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2277 LLVM_DEBUG( 2278 dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2279 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (" 2280 << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n"); 2281 // Note that we bias this toward an existing layout successor to retain 2282 // incoming order in the absence of better information. The exit must have 2283 // a frequency higher than the current exit before we consider breaking 2284 // the layout. 2285 BranchProbability Bias(100 - ExitBlockBias, 100); 2286 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2287 ExitEdgeFreq > BestExitEdgeFreq || 2288 (MBB->isLayoutSuccessor(Succ) && 2289 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2290 BestExitEdgeFreq = ExitEdgeFreq; 2291 ExitingBB = MBB; 2292 } 2293 } 2294 2295 if (!HasLoopingSucc) { 2296 // Restore the old exiting state, no viable looping successor was found. 2297 ExitingBB = OldExitingBB; 2298 BestExitEdgeFreq = OldBestExitEdgeFreq; 2299 } 2300 } 2301 // Without a candidate exiting block or with only a single block in the 2302 // loop, just use the loop header to layout the loop. 2303 if (!ExitingBB) { 2304 LLVM_DEBUG( 2305 dbgs() << " No other candidate exit blocks, using loop header\n"); 2306 return nullptr; 2307 } 2308 if (L.getNumBlocks() == 1) { 2309 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2310 return nullptr; 2311 } 2312 2313 // Also, if we have exit blocks which lead to outer loops but didn't select 2314 // one of them as the exiting block we are rotating toward, disable loop 2315 // rotation altogether. 2316 if (!BlocksExitingToOuterLoop.empty() && 2317 !BlocksExitingToOuterLoop.count(ExitingBB)) 2318 return nullptr; 2319 2320 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2321 << "\n"); 2322 ExitFreq = BestExitEdgeFreq; 2323 return ExitingBB; 2324 } 2325 2326 /// Check if there is a fallthrough to loop header Top. 2327 /// 2328 /// 1. Look for a Pred that can be layout before Top. 2329 /// 2. Check if Top is the most possible successor of Pred. 2330 bool MachineBlockPlacement::hasViableTopFallthrough( 2331 const MachineBasicBlock *Top, const BlockFilterSet &LoopBlockSet) { 2332 for (MachineBasicBlock *Pred : Top->predecessors()) { 2333 BlockChain *PredChain = BlockToChain[Pred]; 2334 if (!LoopBlockSet.count(Pred) && 2335 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2336 // Found a Pred block can be placed before Top. 2337 // Check if Top is the best successor of Pred. 2338 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2339 bool TopOK = true; 2340 for (MachineBasicBlock *Succ : Pred->successors()) { 2341 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2342 BlockChain *SuccChain = BlockToChain[Succ]; 2343 // Check if Succ can be placed after Pred. 2344 // Succ should not be in any chain, or it is the head of some chain. 2345 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2346 TopOK = false; 2347 break; 2348 } 2349 } 2350 if (TopOK) 2351 return true; 2352 } 2353 } 2354 return false; 2355 } 2356 2357 /// Attempt to rotate an exiting block to the bottom of the loop. 2358 /// 2359 /// Once we have built a chain, try to rotate it to line up the hot exit block 2360 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2361 /// branches. For example, if the loop has fallthrough into its header and out 2362 /// of its bottom already, don't rotate it. 2363 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2364 const MachineBasicBlock *ExitingBB, 2365 BlockFrequency ExitFreq, 2366 const BlockFilterSet &LoopBlockSet) { 2367 if (!ExitingBB) 2368 return; 2369 2370 MachineBasicBlock *Top = *LoopChain.begin(); 2371 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2372 2373 // If ExitingBB is already the last one in a chain then nothing to do. 2374 if (Bottom == ExitingBB) 2375 return; 2376 2377 // The entry block should always be the first BB in a function. 2378 if (Top->isEntryBlock()) 2379 return; 2380 2381 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2382 2383 // If the header has viable fallthrough, check whether the current loop 2384 // bottom is a viable exiting block. If so, bail out as rotating will 2385 // introduce an unnecessary branch. 2386 if (ViableTopFallthrough) { 2387 for (MachineBasicBlock *Succ : Bottom->successors()) { 2388 BlockChain *SuccChain = BlockToChain[Succ]; 2389 if (!LoopBlockSet.count(Succ) && 2390 (!SuccChain || Succ == *SuccChain->begin())) 2391 return; 2392 } 2393 2394 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2395 // frequency is larger than top fallthrough. 2396 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2397 if (FallThrough2Top >= ExitFreq) 2398 return; 2399 } 2400 2401 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2402 if (ExitIt == LoopChain.end()) 2403 return; 2404 2405 // Rotating a loop exit to the bottom when there is a fallthrough to top 2406 // trades the entry fallthrough for an exit fallthrough. 2407 // If there is no bottom->top edge, but the chosen exit block does have 2408 // a fallthrough, we break that fallthrough for nothing in return. 2409 2410 // Let's consider an example. We have a built chain of basic blocks 2411 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2412 // By doing a rotation we get 2413 // Bk+1, ..., Bn, B1, ..., Bk 2414 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2415 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2416 // It might be compensated by fallthrough Bn -> B1. 2417 // So we have a condition to avoid creation of extra branch by loop rotation. 2418 // All below must be true to avoid loop rotation: 2419 // If there is a fallthrough to top (B1) 2420 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2421 // There is no fallthrough from bottom (Bn) to top (B1). 2422 // Please note that there is no exit fallthrough from Bn because we checked it 2423 // above. 2424 if (ViableTopFallthrough) { 2425 assert(std::next(ExitIt) != LoopChain.end() && 2426 "Exit should not be last BB"); 2427 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2428 if (ExitingBB->isSuccessor(NextBlockInChain)) 2429 if (!Bottom->isSuccessor(Top)) 2430 return; 2431 } 2432 2433 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2434 << " at bottom\n"); 2435 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2436 } 2437 2438 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2439 /// 2440 /// With profile data, we can determine the cost in terms of missed fall through 2441 /// opportunities when rotating a loop chain and select the best rotation. 2442 /// Basically, there are three kinds of cost to consider for each rotation: 2443 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2444 /// the loop to the loop header. 2445 /// 2. The possibly missed fall through edges (if they exist) from the loop 2446 /// exits to BB out of the loop. 2447 /// 3. The missed fall through edge (if it exists) from the last BB to the 2448 /// first BB in the loop chain. 2449 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2450 /// We select the best rotation with the smallest cost. 2451 void MachineBlockPlacement::rotateLoopWithProfile( 2452 BlockChain &LoopChain, const MachineLoop &L, 2453 const BlockFilterSet &LoopBlockSet) { 2454 auto RotationPos = LoopChain.end(); 2455 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2456 2457 // The entry block should always be the first BB in a function. 2458 if (ChainHeaderBB->isEntryBlock()) 2459 return; 2460 2461 BlockFrequency SmallestRotationCost = BlockFrequency::max(); 2462 2463 // A utility lambda that scales up a block frequency by dividing it by a 2464 // branch probability which is the reciprocal of the scale. 2465 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2466 unsigned Scale) -> BlockFrequency { 2467 if (Scale == 0) 2468 return BlockFrequency(0); 2469 // Use operator / between BlockFrequency and BranchProbability to implement 2470 // saturating multiplication. 2471 return Freq / BranchProbability(1, Scale); 2472 }; 2473 2474 // Compute the cost of the missed fall-through edge to the loop header if the 2475 // chain head is not the loop header. As we only consider natural loops with 2476 // single header, this computation can be done only once. 2477 BlockFrequency HeaderFallThroughCost(0); 2478 for (auto *Pred : ChainHeaderBB->predecessors()) { 2479 BlockChain *PredChain = BlockToChain[Pred]; 2480 if (!LoopBlockSet.count(Pred) && 2481 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2482 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2483 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2484 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2485 // If the predecessor has only an unconditional jump to the header, we 2486 // need to consider the cost of this jump. 2487 if (Pred->succ_size() == 1) 2488 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2489 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2490 } 2491 } 2492 2493 // Here we collect all exit blocks in the loop, and for each exit we find out 2494 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2495 // as the sum of frequencies of exit edges we collect here, excluding the exit 2496 // edge from the tail of the loop chain. 2497 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2498 for (auto *BB : LoopChain) { 2499 auto LargestExitEdgeProb = BranchProbability::getZero(); 2500 for (auto *Succ : BB->successors()) { 2501 BlockChain *SuccChain = BlockToChain[Succ]; 2502 if (!LoopBlockSet.count(Succ) && 2503 (!SuccChain || Succ == *SuccChain->begin())) { 2504 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2505 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2506 } 2507 } 2508 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2509 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2510 ExitsWithFreq.emplace_back(BB, ExitFreq); 2511 } 2512 } 2513 2514 // In this loop we iterate every block in the loop chain and calculate the 2515 // cost assuming the block is the head of the loop chain. When the loop ends, 2516 // we should have found the best candidate as the loop chain's head. 2517 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2518 EndIter = LoopChain.end(); 2519 Iter != EndIter; Iter++, TailIter++) { 2520 // TailIter is used to track the tail of the loop chain if the block we are 2521 // checking (pointed by Iter) is the head of the chain. 2522 if (TailIter == LoopChain.end()) 2523 TailIter = LoopChain.begin(); 2524 2525 auto TailBB = *TailIter; 2526 2527 // Calculate the cost by putting this BB to the top. 2528 BlockFrequency Cost = BlockFrequency(0); 2529 2530 // If the current BB is the loop header, we need to take into account the 2531 // cost of the missed fall through edge from outside of the loop to the 2532 // header. 2533 if (Iter != LoopChain.begin()) 2534 Cost += HeaderFallThroughCost; 2535 2536 // Collect the loop exit cost by summing up frequencies of all exit edges 2537 // except the one from the chain tail. 2538 for (auto &ExitWithFreq : ExitsWithFreq) 2539 if (TailBB != ExitWithFreq.first) 2540 Cost += ExitWithFreq.second; 2541 2542 // The cost of breaking the once fall-through edge from the tail to the top 2543 // of the loop chain. Here we need to consider three cases: 2544 // 1. If the tail node has only one successor, then we will get an 2545 // additional jmp instruction. So the cost here is (MisfetchCost + 2546 // JumpInstCost) * tail node frequency. 2547 // 2. If the tail node has two successors, then we may still get an 2548 // additional jmp instruction if the layout successor after the loop 2549 // chain is not its CFG successor. Note that the more frequently executed 2550 // jmp instruction will be put ahead of the other one. Assume the 2551 // frequency of those two branches are x and y, where x is the frequency 2552 // of the edge to the chain head, then the cost will be 2553 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2554 // 3. If the tail node has more than two successors (this rarely happens), 2555 // we won't consider any additional cost. 2556 if (TailBB->isSuccessor(*Iter)) { 2557 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2558 if (TailBB->succ_size() == 1) 2559 Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost); 2560 else if (TailBB->succ_size() == 2) { 2561 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2562 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2563 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2564 ? TailBBFreq * TailToHeadProb.getCompl() 2565 : TailToHeadFreq; 2566 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2567 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2568 } 2569 } 2570 2571 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2572 << getBlockName(*Iter) << " to the top: " 2573 << printBlockFreq(MBFI->getMBFI(), Cost) << "\n"); 2574 2575 if (Cost < SmallestRotationCost) { 2576 SmallestRotationCost = Cost; 2577 RotationPos = Iter; 2578 } 2579 } 2580 2581 if (RotationPos != LoopChain.end()) { 2582 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2583 << " to the top\n"); 2584 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2585 } 2586 } 2587 2588 /// Collect blocks in the given loop that are to be placed. 2589 /// 2590 /// When profile data is available, exclude cold blocks from the returned set; 2591 /// otherwise, collect all blocks in the loop. 2592 MachineBlockPlacement::BlockFilterSet 2593 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2594 // Collect the blocks in a set ordered by block number, as this gives the same 2595 // order as they appear in the function. 2596 struct MBBCompare { 2597 bool operator()(const MachineBasicBlock *X, 2598 const MachineBasicBlock *Y) const { 2599 return X->getNumber() < Y->getNumber(); 2600 } 2601 }; 2602 std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet; 2603 2604 // Filter cold blocks off from LoopBlockSet when profile data is available. 2605 // Collect the sum of frequencies of incoming edges to the loop header from 2606 // outside. If we treat the loop as a super block, this is the frequency of 2607 // the loop. Then for each block in the loop, we calculate the ratio between 2608 // its frequency and the frequency of the loop block. When it is too small, 2609 // don't add it to the loop chain. If there are outer loops, then this block 2610 // will be merged into the first outer loop chain for which this block is not 2611 // cold anymore. This needs precise profile data and we only do this when 2612 // profile data is available. 2613 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2614 BlockFrequency LoopFreq(0); 2615 for (auto *LoopPred : L.getHeader()->predecessors()) 2616 if (!L.contains(LoopPred)) 2617 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2618 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2619 2620 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2621 if (LoopBlockSet.count(LoopBB)) 2622 continue; 2623 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2624 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2625 continue; 2626 BlockChain *Chain = BlockToChain[LoopBB]; 2627 for (MachineBasicBlock *ChainBB : *Chain) 2628 LoopBlockSet.insert(ChainBB); 2629 } 2630 } else 2631 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2632 2633 // Copy the blocks into a BlockFilterSet, as iterating it is faster than 2634 // std::set. We will only remove blocks and never insert them, which will 2635 // preserve the ordering. 2636 BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end()); 2637 return Ret; 2638 } 2639 2640 /// Forms basic block chains from the natural loop structures. 2641 /// 2642 /// These chains are designed to preserve the existing *structure* of the code 2643 /// as much as possible. We can then stitch the chains together in a way which 2644 /// both preserves the topological structure and minimizes taken conditional 2645 /// branches. 2646 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2647 // First recurse through any nested loops, building chains for those inner 2648 // loops. 2649 for (const MachineLoop *InnerLoop : L) 2650 buildLoopChains(*InnerLoop); 2651 2652 assert(BlockWorkList.empty() && 2653 "BlockWorkList not empty when starting to build loop chains."); 2654 assert(EHPadWorkList.empty() && 2655 "EHPadWorkList not empty when starting to build loop chains."); 2656 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2657 2658 // Check if we have profile data for this function. If yes, we will rotate 2659 // this loop by modeling costs more precisely which requires the profile data 2660 // for better layout. 2661 bool RotateLoopWithProfile = 2662 ForcePreciseRotationCost || 2663 (PreciseRotationCost && F->getFunction().hasProfileData()); 2664 2665 // First check to see if there is an obviously preferable top block for the 2666 // loop. This will default to the header, but may end up as one of the 2667 // predecessors to the header if there is one which will result in strictly 2668 // fewer branches in the loop body. 2669 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2670 2671 // If we selected just the header for the loop top, look for a potentially 2672 // profitable exit block in the event that rotating the loop can eliminate 2673 // branches by placing an exit edge at the bottom. 2674 // 2675 // Loops are processed innermost to uttermost, make sure we clear 2676 // PreferredLoopExit before processing a new loop. 2677 PreferredLoopExit = nullptr; 2678 BlockFrequency ExitFreq; 2679 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2680 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2681 2682 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2683 2684 // FIXME: This is a really lame way of walking the chains in the loop: we 2685 // walk the blocks, and use a set to prevent visiting a particular chain 2686 // twice. 2687 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2688 assert(LoopChain.UnscheduledPredecessors == 0 && 2689 "LoopChain should not have unscheduled predecessors."); 2690 UpdatedPreds.insert(&LoopChain); 2691 2692 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2693 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2694 2695 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2696 2697 if (RotateLoopWithProfile) 2698 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2699 else 2700 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2701 2702 LLVM_DEBUG({ 2703 // Crash at the end so we get all of the debugging output first. 2704 bool BadLoop = false; 2705 if (LoopChain.UnscheduledPredecessors) { 2706 BadLoop = true; 2707 dbgs() << "Loop chain contains a block without its preds placed!\n" 2708 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2709 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2710 } 2711 for (MachineBasicBlock *ChainBB : LoopChain) { 2712 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2713 if (!LoopBlockSet.remove(ChainBB)) { 2714 // We don't mark the loop as bad here because there are real situations 2715 // where this can occur. For example, with an unanalyzable fallthrough 2716 // from a loop block to a non-loop block or vice versa. 2717 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2718 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2719 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2720 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2721 } 2722 } 2723 2724 if (!LoopBlockSet.empty()) { 2725 BadLoop = true; 2726 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2727 dbgs() << "Loop contains blocks never placed into a chain!\n" 2728 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2729 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2730 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2731 } 2732 assert(!BadLoop && "Detected problems with the placement of this loop."); 2733 }); 2734 2735 BlockWorkList.clear(); 2736 EHPadWorkList.clear(); 2737 } 2738 2739 void MachineBlockPlacement::buildCFGChains() { 2740 // Ensure that every BB in the function has an associated chain to simplify 2741 // the assumptions of the remaining algorithm. 2742 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2743 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2744 ++FI) { 2745 MachineBasicBlock *BB = &*FI; 2746 BlockChain *Chain = 2747 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2748 // Also, merge any blocks which we cannot reason about and must preserve 2749 // the exact fallthrough behavior for. 2750 while (true) { 2751 Cond.clear(); 2752 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2753 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2754 break; 2755 2756 MachineFunction::iterator NextFI = std::next(FI); 2757 MachineBasicBlock *NextBB = &*NextFI; 2758 // Ensure that the layout successor is a viable block, as we know that 2759 // fallthrough is a possibility. 2760 assert(NextFI != FE && "Can't fallthrough past the last block."); 2761 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2762 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2763 << "\n"); 2764 Chain->merge(NextBB, nullptr); 2765 #ifndef NDEBUG 2766 BlocksWithUnanalyzableExits.insert(&*BB); 2767 #endif 2768 FI = NextFI; 2769 BB = NextBB; 2770 } 2771 } 2772 2773 // Build any loop-based chains. 2774 PreferredLoopExit = nullptr; 2775 for (MachineLoop *L : *MLI) 2776 buildLoopChains(*L); 2777 2778 assert(BlockWorkList.empty() && 2779 "BlockWorkList should be empty before building final chain."); 2780 assert(EHPadWorkList.empty() && 2781 "EHPadWorkList should be empty before building final chain."); 2782 2783 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2784 for (MachineBasicBlock &MBB : *F) 2785 fillWorkLists(&MBB, UpdatedPreds); 2786 2787 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2788 buildChain(&F->front(), FunctionChain); 2789 2790 #ifndef NDEBUG 2791 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2792 #endif 2793 LLVM_DEBUG({ 2794 // Crash at the end so we get all of the debugging output first. 2795 bool BadFunc = false; 2796 FunctionBlockSetType FunctionBlockSet; 2797 for (MachineBasicBlock &MBB : *F) 2798 FunctionBlockSet.insert(&MBB); 2799 2800 for (MachineBasicBlock *ChainBB : FunctionChain) 2801 if (!FunctionBlockSet.erase(ChainBB)) { 2802 BadFunc = true; 2803 dbgs() << "Function chain contains a block not in the function!\n" 2804 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2805 } 2806 2807 if (!FunctionBlockSet.empty()) { 2808 BadFunc = true; 2809 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2810 dbgs() << "Function contains blocks never placed into a chain!\n" 2811 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2812 } 2813 assert(!BadFunc && "Detected problems with the block placement."); 2814 }); 2815 2816 // Remember original layout ordering, so we can update terminators after 2817 // reordering to point to the original layout successor. 2818 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2819 F->getNumBlockIDs()); 2820 { 2821 MachineBasicBlock *LastMBB = nullptr; 2822 for (auto &MBB : *F) { 2823 if (LastMBB != nullptr) 2824 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2825 LastMBB = &MBB; 2826 } 2827 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2828 } 2829 2830 // Splice the blocks into place. 2831 MachineFunction::iterator InsertPos = F->begin(); 2832 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2833 for (MachineBasicBlock *ChainBB : FunctionChain) { 2834 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2835 : " ... ") 2836 << getBlockName(ChainBB) << "\n"); 2837 if (InsertPos != MachineFunction::iterator(ChainBB)) 2838 F->splice(InsertPos, ChainBB); 2839 else 2840 ++InsertPos; 2841 2842 // Update the terminator of the previous block. 2843 if (ChainBB == *FunctionChain.begin()) 2844 continue; 2845 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2846 2847 // FIXME: It would be awesome of updateTerminator would just return rather 2848 // than assert when the branch cannot be analyzed in order to remove this 2849 // boiler plate. 2850 Cond.clear(); 2851 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2852 2853 #ifndef NDEBUG 2854 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2855 // Given the exact block placement we chose, we may actually not _need_ to 2856 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2857 // do that at this point is a bug. 2858 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2859 !PrevBB->canFallThrough()) && 2860 "Unexpected block with un-analyzable fallthrough!"); 2861 Cond.clear(); 2862 TBB = FBB = nullptr; 2863 } 2864 #endif 2865 2866 // The "PrevBB" is not yet updated to reflect current code layout, so, 2867 // o. it may fall-through to a block without explicit "goto" instruction 2868 // before layout, and no longer fall-through it after layout; or 2869 // o. just opposite. 2870 // 2871 // analyzeBranch() may return erroneous value for FBB when these two 2872 // situations take place. For the first scenario FBB is mistakenly set NULL; 2873 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2874 // mistakenly pointing to "*BI". 2875 // Thus, if the future change needs to use FBB before the layout is set, it 2876 // has to correct FBB first by using the code similar to the following: 2877 // 2878 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2879 // PrevBB->updateTerminator(); 2880 // Cond.clear(); 2881 // TBB = FBB = nullptr; 2882 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2883 // // FIXME: This should never take place. 2884 // TBB = FBB = nullptr; 2885 // } 2886 // } 2887 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2888 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2889 } 2890 } 2891 2892 // Fixup the last block. 2893 Cond.clear(); 2894 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2895 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2896 MachineBasicBlock *PrevBB = &F->back(); 2897 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2898 } 2899 2900 BlockWorkList.clear(); 2901 EHPadWorkList.clear(); 2902 } 2903 2904 void MachineBlockPlacement::optimizeBranches() { 2905 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2906 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2907 2908 // Now that all the basic blocks in the chain have the proper layout, 2909 // make a final call to analyzeBranch with AllowModify set. 2910 // Indeed, the target may be able to optimize the branches in a way we 2911 // cannot because all branches may not be analyzable. 2912 // E.g., the target may be able to remove an unconditional branch to 2913 // a fallthrough when it occurs after predicated terminators. 2914 for (MachineBasicBlock *ChainBB : FunctionChain) { 2915 Cond.clear(); 2916 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2917 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2918 // If PrevBB has a two-way branch, try to re-order the branches 2919 // such that we branch to the successor with higher probability first. 2920 if (TBB && !Cond.empty() && FBB && 2921 MBPI->getEdgeProbability(ChainBB, FBB) > 2922 MBPI->getEdgeProbability(ChainBB, TBB) && 2923 !TII->reverseBranchCondition(Cond)) { 2924 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2925 << getBlockName(ChainBB) << "\n"); 2926 LLVM_DEBUG(dbgs() << " Edge probability: " 2927 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2928 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2929 DebugLoc dl; // FIXME: this is nowhere 2930 TII->removeBranch(*ChainBB); 2931 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2932 } 2933 } 2934 } 2935 } 2936 2937 void MachineBlockPlacement::alignBlocks() { 2938 // Walk through the backedges of the function now that we have fully laid out 2939 // the basic blocks and align the destination of each backedge. We don't rely 2940 // exclusively on the loop info here so that we can align backedges in 2941 // unnatural CFGs and backedges that were introduced purely because of the 2942 // loop rotations done during this layout pass. 2943 if (!AlignAllBlock && !AlignAllNonFallThruBlocks) { 2944 if (F->getFunction().hasMinSize() || 2945 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2946 return; 2947 } 2948 2949 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2950 // Empty chain. 2951 if (FunctionChain.begin() == FunctionChain.end()) 2952 return; 2953 2954 const BranchProbability ColdProb(1, 5); // 20% 2955 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2956 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2957 for (MachineBasicBlock *ChainBB : FunctionChain) { 2958 if (ChainBB == *FunctionChain.begin()) 2959 continue; 2960 2961 // Don't align non-looping basic blocks. These are unlikely to execute 2962 // enough times to matter in practice. Note that we'll still handle 2963 // unnatural CFGs inside of a natural outer loop (the common case) and 2964 // rotated loops. 2965 MachineLoop *L = MLI->getLoopFor(ChainBB); 2966 if (!L) 2967 continue; 2968 2969 const Align TLIAlign = TLI->getPrefLoopAlignment(L); 2970 unsigned MDAlign = 1; 2971 MDNode *LoopID = L->getLoopID(); 2972 if (LoopID) { 2973 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 2974 MDNode *MD = dyn_cast<MDNode>(MDO); 2975 if (MD == nullptr) 2976 continue; 2977 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 2978 if (S == nullptr) 2979 continue; 2980 if (S->getString() == "llvm.loop.align") { 2981 assert(MD->getNumOperands() == 2 && 2982 "per-loop align metadata should have two operands."); 2983 MDAlign = 2984 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 2985 assert(MDAlign >= 1 && "per-loop align value must be positive."); 2986 } 2987 } 2988 } 2989 2990 // Use max of the TLIAlign and MDAlign 2991 const Align LoopAlign = std::max(TLIAlign, Align(MDAlign)); 2992 if (LoopAlign == 1) 2993 continue; // Don't care about loop alignment. 2994 2995 // If the block is cold relative to the function entry don't waste space 2996 // aligning it. 2997 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2998 if (Freq < WeightedEntryFreq) 2999 continue; 3000 3001 // If the block is cold relative to its loop header, don't align it 3002 // regardless of what edges into the block exist. 3003 MachineBasicBlock *LoopHeader = L->getHeader(); 3004 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 3005 if (Freq < (LoopHeaderFreq * ColdProb)) 3006 continue; 3007 3008 // If the global profiles indicates so, don't align it. 3009 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 3010 !TLI->alignLoopsWithOptSize()) 3011 continue; 3012 3013 // Check for the existence of a non-layout predecessor which would benefit 3014 // from aligning this block. 3015 MachineBasicBlock *LayoutPred = 3016 &*std::prev(MachineFunction::iterator(ChainBB)); 3017 3018 auto DetermineMaxAlignmentPadding = [&]() { 3019 // Set the maximum bytes allowed to be emitted for alignment. 3020 unsigned MaxBytes; 3021 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) 3022 MaxBytes = MaxBytesForAlignmentOverride; 3023 else 3024 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB); 3025 ChainBB->setMaxBytesForAlignment(MaxBytes); 3026 }; 3027 3028 // Force alignment if all the predecessors are jumps. We already checked 3029 // that the block isn't cold above. 3030 if (!LayoutPred->isSuccessor(ChainBB)) { 3031 ChainBB->setAlignment(LoopAlign); 3032 DetermineMaxAlignmentPadding(); 3033 continue; 3034 } 3035 3036 // Align this block if the layout predecessor's edge into this block is 3037 // cold relative to the block. When this is true, other predecessors make up 3038 // all of the hot entries into the block and thus alignment is likely to be 3039 // important. 3040 BranchProbability LayoutProb = 3041 MBPI->getEdgeProbability(LayoutPred, ChainBB); 3042 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 3043 if (LayoutEdgeFreq <= (Freq * ColdProb)) { 3044 ChainBB->setAlignment(LoopAlign); 3045 DetermineMaxAlignmentPadding(); 3046 } 3047 } 3048 3049 const bool HasMaxBytesOverride = 3050 MaxBytesForAlignmentOverride.getNumOccurrences() > 0; 3051 3052 if (AlignAllBlock) 3053 // Align all of the blocks in the function to a specific alignment. 3054 for (MachineBasicBlock &MBB : *F) { 3055 if (HasMaxBytesOverride) 3056 MBB.setAlignment(Align(1ULL << AlignAllBlock), 3057 MaxBytesForAlignmentOverride); 3058 else 3059 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3060 } 3061 else if (AlignAllNonFallThruBlocks) { 3062 // Align all of the blocks that have no fall-through predecessors to a 3063 // specific alignment. 3064 for (auto MBI = std::next(F->begin()), MBE = F->end(); MBI != MBE; ++MBI) { 3065 auto LayoutPred = std::prev(MBI); 3066 if (!LayoutPred->isSuccessor(&*MBI)) { 3067 if (HasMaxBytesOverride) 3068 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks), 3069 MaxBytesForAlignmentOverride); 3070 else 3071 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3072 } 3073 } 3074 } 3075 } 3076 3077 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 3078 /// it was duplicated into its chain predecessor and removed. 3079 /// \p BB - Basic block that may be duplicated. 3080 /// 3081 /// \p LPred - Chosen layout predecessor of \p BB. 3082 /// Updated to be the chain end if LPred is removed. 3083 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3084 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3085 /// Used to identify which blocks to update predecessor 3086 /// counts. 3087 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3088 /// chosen in the given order due to unnatural CFG 3089 /// only needed if \p BB is removed and 3090 /// \p PrevUnplacedBlockIt pointed to \p BB. 3091 /// @return true if \p BB was removed. 3092 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 3093 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 3094 const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain, 3095 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3096 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) { 3097 bool Removed, DuplicatedToLPred; 3098 bool DuplicatedToOriginalLPred; 3099 Removed = maybeTailDuplicateBlock( 3100 BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3101 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3102 if (!Removed) 3103 return false; 3104 DuplicatedToOriginalLPred = DuplicatedToLPred; 3105 // Iteratively try to duplicate again. It can happen that a block that is 3106 // duplicated into is still small enough to be duplicated again. 3107 // No need to call markBlockSuccessors in this case, as the blocks being 3108 // duplicated from here on are already scheduled. 3109 while (DuplicatedToLPred && Removed) { 3110 MachineBasicBlock *DupBB, *DupPred; 3111 // The removal callback causes Chain.end() to be updated when a block is 3112 // removed. On the first pass through the loop, the chain end should be the 3113 // same as it was on function entry. On subsequent passes, because we are 3114 // duplicating the block at the end of the chain, if it is removed the 3115 // chain will have shrunk by one block. 3116 BlockChain::iterator ChainEnd = Chain.end(); 3117 DupBB = *(--ChainEnd); 3118 // Now try to duplicate again. 3119 if (ChainEnd == Chain.begin()) 3120 break; 3121 DupPred = *std::prev(ChainEnd); 3122 Removed = maybeTailDuplicateBlock( 3123 DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt, 3124 PrevUnplacedBlockInFilterIt, DuplicatedToLPred); 3125 } 3126 // If BB was duplicated into LPred, it is now scheduled. But because it was 3127 // removed, markChainSuccessors won't be called for its chain. Instead we 3128 // call markBlockSuccessors for LPred to achieve the same effect. This must go 3129 // at the end because repeating the tail duplication can increase the number 3130 // of unscheduled predecessors. 3131 LPred = *std::prev(Chain.end()); 3132 if (DuplicatedToOriginalLPred) 3133 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 3134 return true; 3135 } 3136 3137 /// Tail duplicate \p BB into (some) predecessors if profitable. 3138 /// \p BB - Basic block that may be duplicated 3139 /// \p LPred - Chosen layout predecessor of \p BB 3140 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 3141 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 3142 /// Used to identify which blocks to update predecessor 3143 /// counts. 3144 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 3145 /// chosen in the given order due to unnatural CFG 3146 /// only needed if \p BB is removed and 3147 /// \p PrevUnplacedBlockIt pointed to \p BB. 3148 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 3149 /// \return - True if the block was duplicated into all preds and removed. 3150 bool MachineBlockPlacement::maybeTailDuplicateBlock( 3151 MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain, 3152 BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, 3153 BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, 3154 bool &DuplicatedToLPred) { 3155 DuplicatedToLPred = false; 3156 if (!shouldTailDuplicate(BB)) 3157 return false; 3158 3159 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3160 << "\n"); 3161 3162 // This has to be a callback because none of it can be done after 3163 // BB is deleted. 3164 bool Removed = false; 3165 auto RemovalCallback = [&](MachineBasicBlock *RemBB) { 3166 // Signal to outer function 3167 Removed = true; 3168 3169 // Conservative default. 3170 bool InWorkList = true; 3171 // Remove from the Chain and Chain Map 3172 if (BlockToChain.count(RemBB)) { 3173 BlockChain *Chain = BlockToChain[RemBB]; 3174 InWorkList = Chain->UnscheduledPredecessors == 0; 3175 Chain->remove(RemBB); 3176 BlockToChain.erase(RemBB); 3177 } 3178 3179 // Handle the unplaced block iterator 3180 if (&(*PrevUnplacedBlockIt) == RemBB) { 3181 PrevUnplacedBlockIt++; 3182 } 3183 3184 // Handle the Work Lists 3185 if (InWorkList) { 3186 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3187 if (RemBB->isEHPad()) 3188 RemoveList = EHPadWorkList; 3189 llvm::erase(RemoveList, RemBB); 3190 } 3191 3192 // Handle the filter set 3193 if (BlockFilter) { 3194 auto It = llvm::find(*BlockFilter, RemBB); 3195 // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt 3196 // pointing to the same element as before. 3197 if (It != BlockFilter->end()) { 3198 if (It < PrevUnplacedBlockInFilterIt) { 3199 const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt; 3200 // BlockFilter is a SmallVector so all elements after RemBB are 3201 // shifted to the front by 1 after its deletion. 3202 auto Distance = PrevUnplacedBlockInFilterIt - It - 1; 3203 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance; 3204 assert(*PrevUnplacedBlockInFilterIt == PrevBB); 3205 (void)PrevBB; 3206 } else if (It == PrevUnplacedBlockInFilterIt) 3207 // The block pointed by PrevUnplacedBlockInFilterIt is erased, we 3208 // have to set it to the next element. 3209 PrevUnplacedBlockInFilterIt = BlockFilter->erase(It); 3210 else 3211 BlockFilter->erase(It); 3212 } 3213 } 3214 3215 // Remove the block from loop info. 3216 MLI->removeBlock(RemBB); 3217 if (RemBB == PreferredLoopExit) 3218 PreferredLoopExit = nullptr; 3219 3220 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " << getBlockName(RemBB) 3221 << "\n"); 3222 }; 3223 auto RemovalCallbackRef = 3224 function_ref<void(MachineBasicBlock *)>(RemovalCallback); 3225 3226 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3227 bool IsSimple = TailDup.isSimpleBB(BB); 3228 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3229 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3230 if (F->getFunction().hasProfileData()) { 3231 // We can do partial duplication with precise profile information. 3232 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3233 if (CandidatePreds.size() == 0) 3234 return false; 3235 if (CandidatePreds.size() < BB->pred_size()) 3236 CandidatePtr = &CandidatePreds; 3237 } 3238 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3239 &RemovalCallbackRef, CandidatePtr); 3240 3241 // Update UnscheduledPredecessors to reflect tail-duplication. 3242 DuplicatedToLPred = false; 3243 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3244 // We're only looking for unscheduled predecessors that match the filter. 3245 BlockChain *PredChain = BlockToChain[Pred]; 3246 if (Pred == LPred) 3247 DuplicatedToLPred = true; 3248 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) || 3249 PredChain == &Chain) 3250 continue; 3251 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3252 if (BlockFilter && !BlockFilter->count(NewSucc)) 3253 continue; 3254 BlockChain *NewChain = BlockToChain[NewSucc]; 3255 if (NewChain != &Chain && NewChain != PredChain) 3256 NewChain->UnscheduledPredecessors++; 3257 } 3258 } 3259 return Removed; 3260 } 3261 3262 // Count the number of actual machine instructions. 3263 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3264 uint64_t InstrCount = 0; 3265 for (MachineInstr &MI : *MBB) { 3266 if (!MI.isPHI() && !MI.isMetaInstruction()) 3267 InstrCount += 1; 3268 } 3269 return InstrCount; 3270 } 3271 3272 // The size cost of duplication is the instruction size of the duplicated block. 3273 // So we should scale the threshold accordingly. But the instruction size is not 3274 // available on all targets, so we use the number of instructions instead. 3275 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3276 return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB)); 3277 } 3278 3279 // Returns true if BB is Pred's best successor. 3280 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3281 MachineBasicBlock *Pred, 3282 BlockFilterSet *BlockFilter) { 3283 if (BB == Pred) 3284 return false; 3285 if (BlockFilter && !BlockFilter->count(Pred)) 3286 return false; 3287 BlockChain *PredChain = BlockToChain[Pred]; 3288 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3289 return false; 3290 3291 // Find the successor with largest probability excluding BB. 3292 BranchProbability BestProb = BranchProbability::getZero(); 3293 for (MachineBasicBlock *Succ : Pred->successors()) 3294 if (Succ != BB) { 3295 if (BlockFilter && !BlockFilter->count(Succ)) 3296 continue; 3297 BlockChain *SuccChain = BlockToChain[Succ]; 3298 if (SuccChain && (Succ != *SuccChain->begin())) 3299 continue; 3300 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3301 if (SuccProb > BestProb) 3302 BestProb = SuccProb; 3303 } 3304 3305 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3306 if (BBProb <= BestProb) 3307 return false; 3308 3309 // Compute the number of reduced taken branches if Pred falls through to BB 3310 // instead of another successor. Then compare it with threshold. 3311 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3312 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3313 return Gain > scaleThreshold(BB); 3314 } 3315 3316 // Find out the predecessors of BB and BB can be beneficially duplicated into 3317 // them. 3318 void MachineBlockPlacement::findDuplicateCandidates( 3319 SmallVectorImpl<MachineBasicBlock *> &Candidates, MachineBasicBlock *BB, 3320 BlockFilterSet *BlockFilter) { 3321 MachineBasicBlock *Fallthrough = nullptr; 3322 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3323 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3324 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); 3325 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); 3326 3327 // Sort for highest frequency. 3328 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3329 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3330 }; 3331 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3332 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3333 }; 3334 llvm::stable_sort(Succs, CmpSucc); 3335 llvm::stable_sort(Preds, CmpPred); 3336 3337 auto SuccIt = Succs.begin(); 3338 if (SuccIt != Succs.end()) { 3339 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3340 } 3341 3342 // For each predecessors of BB, compute the benefit of duplicating BB, 3343 // if it is larger than the threshold, add it into Candidates. 3344 // 3345 // If we have following control flow. 3346 // 3347 // PB1 PB2 PB3 PB4 3348 // \ | / /\ 3349 // \ | / / \ 3350 // \ |/ / \ 3351 // BB----/ OB 3352 // /\ 3353 // / \ 3354 // SB1 SB2 3355 // 3356 // And it can be partially duplicated as 3357 // 3358 // PB2+BB 3359 // | PB1 PB3 PB4 3360 // | | / /\ 3361 // | | / / \ 3362 // | |/ / \ 3363 // | BB----/ OB 3364 // |\ /| 3365 // | X | 3366 // |/ \| 3367 // SB2 SB1 3368 // 3369 // The benefit of duplicating into a predecessor is defined as 3370 // Orig_taken_branch - Duplicated_taken_branch 3371 // 3372 // The Orig_taken_branch is computed with the assumption that predecessor 3373 // jumps to BB and the most possible successor is laid out after BB. 3374 // 3375 // The Duplicated_taken_branch is computed with the assumption that BB is 3376 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3377 // SB2 for PB2 in our case). If there is no available successor, the combined 3378 // block jumps to all BB's successor, like PB3 in this example. 3379 // 3380 // If a predecessor has multiple successors, so BB can't be duplicated into 3381 // it. But it can beneficially fall through to BB, and duplicate BB into other 3382 // predecessors. 3383 for (MachineBasicBlock *Pred : Preds) { 3384 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3385 3386 if (!TailDup.canTailDuplicate(BB, Pred)) { 3387 // BB can't be duplicated into Pred, but it is possible to be layout 3388 // below Pred. 3389 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3390 Fallthrough = Pred; 3391 if (SuccIt != Succs.end()) 3392 SuccIt++; 3393 } 3394 continue; 3395 } 3396 3397 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3398 BlockFrequency DupCost; 3399 if (SuccIt == Succs.end()) { 3400 // Jump to all successors; 3401 if (Succs.size() > 0) 3402 DupCost += PredFreq; 3403 } else { 3404 // Fallthrough to *SuccIt, jump to all other successors; 3405 DupCost += PredFreq; 3406 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3407 } 3408 3409 assert(OrigCost >= DupCost); 3410 OrigCost -= DupCost; 3411 if (OrigCost > BBDupThreshold) { 3412 Candidates.push_back(Pred); 3413 if (SuccIt != Succs.end()) 3414 SuccIt++; 3415 } 3416 } 3417 3418 // No predecessors can optimally fallthrough to BB. 3419 // So we can change one duplication into fallthrough. 3420 if (!Fallthrough) { 3421 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3422 Candidates[0] = Candidates.back(); 3423 Candidates.pop_back(); 3424 } 3425 } 3426 } 3427 3428 void MachineBlockPlacement::initTailDupThreshold() { 3429 DupThreshold = BlockFrequency(0); 3430 if (F->getFunction().hasProfileData()) { 3431 // We prefer to use prifile count. 3432 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3433 if (HotThreshold != UINT64_MAX) { 3434 UseProfileCount = true; 3435 DupThreshold = 3436 BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100); 3437 } else { 3438 // Profile count is not available, we can use block frequency instead. 3439 BlockFrequency MaxFreq = BlockFrequency(0); 3440 for (MachineBasicBlock &MBB : *F) { 3441 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3442 if (Freq > MaxFreq) 3443 MaxFreq = Freq; 3444 } 3445 3446 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3447 DupThreshold = BlockFrequency(MaxFreq * ThresholdProb); 3448 UseProfileCount = false; 3449 } 3450 } 3451 3452 TailDupSize = TailDupPlacementThreshold; 3453 // If only the aggressive threshold is explicitly set, use it. 3454 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3455 TailDupPlacementThreshold.getNumOccurrences() == 0) 3456 TailDupSize = TailDupPlacementAggressiveThreshold; 3457 3458 // For aggressive optimization, we can adjust some thresholds to be less 3459 // conservative. 3460 if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) { 3461 // At O3 we should be more willing to copy blocks for tail duplication. This 3462 // increases size pressure, so we only do it at O3 3463 // Do this unless only the regular threshold is explicitly set. 3464 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3465 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3466 TailDupSize = TailDupPlacementAggressiveThreshold; 3467 } 3468 3469 // If there's no threshold provided through options, query the target 3470 // information for a threshold instead. 3471 if (TailDupPlacementThreshold.getNumOccurrences() == 0 && 3472 (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive || 3473 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) 3474 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel()); 3475 } 3476 3477 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3478 if (skipFunction(MF.getFunction())) 3479 return false; 3480 3481 // Check for single-block functions and skip them. 3482 if (std::next(MF.begin()) == MF.end()) 3483 return false; 3484 3485 F = &MF; 3486 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3487 MBFI = std::make_unique<MBFIWrapper>( 3488 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); 3489 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 3490 TII = MF.getSubtarget().getInstrInfo(); 3491 TLI = MF.getSubtarget().getTargetLowering(); 3492 MPDT = nullptr; 3493 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3494 PassConfig = &getAnalysis<TargetPassConfig>(); 3495 3496 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3497 // there are no MachineLoops. 3498 PreferredLoopExit = nullptr; 3499 3500 assert(BlockToChain.empty() && 3501 "BlockToChain map should be empty before starting placement."); 3502 assert(ComputedEdges.empty() && 3503 "Computed Edge map should be empty before starting placement."); 3504 3505 // Initialize tail duplication thresholds. 3506 initTailDupThreshold(); 3507 3508 // Apply tail duplication. 3509 if (allowTailDupPlacement()) { 3510 MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 3511 bool OptForSize = MF.getFunction().hasOptSize() || 3512 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3513 if (OptForSize) 3514 TailDupSize = 1; 3515 const bool PreRegAlloc = false; 3516 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3517 /* LayoutMode */ true, TailDupSize); 3518 precomputeTriangleChains(); 3519 } 3520 3521 buildCFGChains(); 3522 3523 // Changing the layout can create new tail merging opportunities. 3524 // TailMerge can create jump into if branches that make CFG irreducible for 3525 // HW that requires structured CFG. 3526 const bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3527 PassConfig->getEnableTailMerge() && 3528 BranchFoldPlacement && MF.size() > 3; 3529 // No tail merging opportunities if the block number is less than four. 3530 if (EnableTailMerge) { 3531 const unsigned TailMergeSize = TailDupSize + 1; 3532 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3533 *MBFI, *MBPI, PSI, TailMergeSize); 3534 3535 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3536 /*AfterPlacement=*/true)) { 3537 // Redo the layout if tail merging creates/removes/moves blocks. 3538 BlockToChain.clear(); 3539 ComputedEdges.clear(); 3540 // Must redo the post-dominator tree if blocks were changed. 3541 if (MPDT) 3542 MPDT->recalculate(MF); 3543 ChainAllocator.DestroyAll(); 3544 buildCFGChains(); 3545 } 3546 } 3547 3548 // Apply a post-processing optimizing block placement. 3549 if (MF.size() >= 3 && EnableExtTspBlockPlacement && 3550 (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData()) && 3551 MF.size() <= ExtTspBlockPlacementMaxBlocks) { 3552 // Find a new placement and modify the layout of the blocks in the function. 3553 applyExtTsp(); 3554 3555 // Re-create CFG chain so that we can optimizeBranches and alignBlocks. 3556 createCFGChainExtTsp(); 3557 } 3558 3559 optimizeBranches(); 3560 alignBlocks(); 3561 3562 BlockToChain.clear(); 3563 ComputedEdges.clear(); 3564 ChainAllocator.DestroyAll(); 3565 3566 // View the function. 3567 if (ViewBlockLayoutWithBFI != GVDT_None && 3568 (ViewBlockFreqFuncName.empty() || 3569 F->getFunction().getName() == ViewBlockFreqFuncName)) { 3570 if (RenumberBlocksBeforeView) 3571 MF.RenumberBlocks(); 3572 MBFI->view("MBP." + MF.getName(), false); 3573 } 3574 3575 // We always return true as we have no way to track whether the final order 3576 // differs from the original order. 3577 return true; 3578 } 3579 3580 void MachineBlockPlacement::applyExtTsp() { 3581 // Prepare data; blocks are indexed by their index in the current ordering. 3582 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; 3583 BlockIndex.reserve(F->size()); 3584 std::vector<const MachineBasicBlock *> CurrentBlockOrder; 3585 CurrentBlockOrder.reserve(F->size()); 3586 size_t NumBlocks = 0; 3587 for (const MachineBasicBlock &MBB : *F) { 3588 BlockIndex[&MBB] = NumBlocks++; 3589 CurrentBlockOrder.push_back(&MBB); 3590 } 3591 3592 auto BlockSizes = std::vector<uint64_t>(F->size()); 3593 auto BlockCounts = std::vector<uint64_t>(F->size()); 3594 std::vector<codelayout::EdgeCount> JumpCounts; 3595 for (MachineBasicBlock &MBB : *F) { 3596 // Getting the block frequency. 3597 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3598 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency(); 3599 // Getting the block size: 3600 // - approximate the size of an instruction by 4 bytes, and 3601 // - ignore debug instructions. 3602 // Note: getting the exact size of each block is target-dependent and can be 3603 // done by extending the interface of MCCodeEmitter. Experimentally we do 3604 // not see a perf improvement with the exact block sizes. 3605 auto NonDbgInsts = 3606 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end()); 3607 int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end()); 3608 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; 3609 // Getting jump frequencies. 3610 for (MachineBasicBlock *Succ : MBB.successors()) { 3611 auto EP = MBPI->getEdgeProbability(&MBB, Succ); 3612 BlockFrequency JumpFreq = BlockFreq * EP; 3613 JumpCounts.push_back( 3614 {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()}); 3615 } 3616 } 3617 3618 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() 3619 << " with profile = " << F->getFunction().hasProfileData() 3620 << " (" << F->getName().str() << ")" 3621 << "\n"); 3622 LLVM_DEBUG( 3623 dbgs() << format(" original layout score: %0.2f\n", 3624 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts))); 3625 3626 // Run the layout algorithm. 3627 auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts); 3628 std::vector<const MachineBasicBlock *> NewBlockOrder; 3629 NewBlockOrder.reserve(F->size()); 3630 for (uint64_t Node : NewOrder) { 3631 NewBlockOrder.push_back(CurrentBlockOrder[Node]); 3632 } 3633 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n", 3634 calcExtTspScore(NewOrder, BlockSizes, BlockCounts, 3635 JumpCounts))); 3636 3637 // Assign new block order. 3638 assignBlockOrder(NewBlockOrder); 3639 } 3640 3641 void MachineBlockPlacement::assignBlockOrder( 3642 const std::vector<const MachineBasicBlock *> &NewBlockOrder) { 3643 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order"); 3644 F->RenumberBlocks(); 3645 // At this point, we possibly removed blocks from the function, so we can't 3646 // renumber the domtree. At this point, we don't need it anymore, though. 3647 // TODO: move this to the point where the dominator tree is actually 3648 // invalidated (i.e., where blocks are removed without updating the domtree). 3649 MPDT = nullptr; 3650 3651 bool HasChanges = false; 3652 for (size_t I = 0; I < NewBlockOrder.size(); I++) { 3653 if (NewBlockOrder[I] != F->getBlockNumbered(I)) { 3654 HasChanges = true; 3655 break; 3656 } 3657 } 3658 // Stop early if the new block order is identical to the existing one. 3659 if (!HasChanges) 3660 return; 3661 3662 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); 3663 for (auto &MBB : *F) { 3664 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); 3665 } 3666 3667 // Sort basic blocks in the function according to the computed order. 3668 DenseMap<const MachineBasicBlock *, size_t> NewIndex; 3669 for (const MachineBasicBlock *MBB : NewBlockOrder) { 3670 NewIndex[MBB] = NewIndex.size(); 3671 } 3672 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) { 3673 return NewIndex[&L] < NewIndex[&R]; 3674 }); 3675 3676 // Update basic block branches by inserting explicit fallthrough branches 3677 // when required and re-optimize branches when possible. 3678 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); 3679 SmallVector<MachineOperand, 4> Cond; 3680 for (auto &MBB : *F) { 3681 MachineFunction::iterator NextMBB = std::next(MBB.getIterator()); 3682 MachineFunction::iterator EndIt = MBB.getParent()->end(); 3683 auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; 3684 // If this block had a fallthrough before we need an explicit unconditional 3685 // branch to that block if the fallthrough block is not adjacent to the 3686 // block in the new order. 3687 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { 3688 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 3689 } 3690 3691 // It might be possible to optimize branches by flipping the condition. 3692 Cond.clear(); 3693 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 3694 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 3695 continue; 3696 MBB.updateTerminator(FTMBB); 3697 } 3698 3699 #ifndef NDEBUG 3700 // Make sure we correctly constructed all branches. 3701 F->verify(this, "After optimized block reordering", &errs()); 3702 #endif 3703 } 3704 3705 void MachineBlockPlacement::createCFGChainExtTsp() { 3706 BlockToChain.clear(); 3707 ComputedEdges.clear(); 3708 ChainAllocator.DestroyAll(); 3709 3710 MachineBasicBlock *HeadBB = &F->front(); 3711 BlockChain *FunctionChain = 3712 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); 3713 3714 for (MachineBasicBlock &MBB : *F) { 3715 if (HeadBB == &MBB) 3716 continue; // Ignore head of the chain 3717 FunctionChain->merge(&MBB, nullptr); 3718 } 3719 } 3720 3721 namespace { 3722 3723 /// A pass to compute block placement statistics. 3724 /// 3725 /// A separate pass to compute interesting statistics for evaluating block 3726 /// placement. This is separate from the actual placement pass so that they can 3727 /// be computed in the absence of any placement transformations or when using 3728 /// alternative placement strategies. 3729 class MachineBlockPlacementStats : public MachineFunctionPass { 3730 /// A handle to the branch probability pass. 3731 const MachineBranchProbabilityInfo *MBPI; 3732 3733 /// A handle to the function-wide block frequency pass. 3734 const MachineBlockFrequencyInfo *MBFI; 3735 3736 public: 3737 static char ID; // Pass identification, replacement for typeid 3738 3739 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3740 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3741 } 3742 3743 bool runOnMachineFunction(MachineFunction &F) override; 3744 3745 void getAnalysisUsage(AnalysisUsage &AU) const override { 3746 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 3747 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 3748 AU.setPreservesAll(); 3749 MachineFunctionPass::getAnalysisUsage(AU); 3750 } 3751 }; 3752 3753 } // end anonymous namespace 3754 3755 char MachineBlockPlacementStats::ID = 0; 3756 3757 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3758 3759 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3760 "Basic Block Placement Stats", false, false) 3761 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 3762 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 3763 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3764 "Basic Block Placement Stats", false, false) 3765 3766 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3767 // Check for single-block functions and skip them. 3768 if (std::next(F.begin()) == F.end()) 3769 return false; 3770 3771 if (!isFunctionInPrintList(F.getName())) 3772 return false; 3773 3774 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 3775 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 3776 3777 for (MachineBasicBlock &MBB : F) { 3778 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3779 Statistic &NumBranches = 3780 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3781 Statistic &BranchTakenFreq = 3782 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3783 for (MachineBasicBlock *Succ : MBB.successors()) { 3784 // Skip if this successor is a fallthrough. 3785 if (MBB.isLayoutSuccessor(Succ)) 3786 continue; 3787 3788 BlockFrequency EdgeFreq = 3789 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3790 ++NumBranches; 3791 BranchTakenFreq += EdgeFreq.getFrequency(); 3792 } 3793 } 3794 3795 return false; 3796 } 3797