1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "BranchFolding.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetLowering.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Allocator.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "block-placement" 75 76 STATISTIC(NumCondBranches, "Number of conditional branches"); 77 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 78 STATISTIC(CondBranchTakenFreq, 79 "Potential frequency of taking conditional branches"); 80 STATISTIC(UncondBranchTakenFreq, 81 "Potential frequency of taking unconditional branches"); 82 83 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 84 cl::desc("Force the alignment of all " 85 "blocks in the function."), 86 cl::init(0), cl::Hidden); 87 88 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 89 "align-all-nofallthru-blocks", 90 cl::desc("Force the alignment of all " 91 "blocks that have no fall-through predecessors (i.e. don't add " 92 "nops that are executed)."), 93 cl::init(0), cl::Hidden); 94 95 // FIXME: Find a good default for this flag and remove the flag. 96 static cl::opt<unsigned> ExitBlockBias( 97 "block-placement-exit-block-bias", 98 cl::desc("Block frequency percentage a loop exit block needs " 99 "over the original exit to be considered the new exit."), 100 cl::init(0), cl::Hidden); 101 102 // Definition: 103 // - Outlining: placement of a basic block outside the chain or hot path. 104 105 static cl::opt<unsigned> LoopToColdBlockRatio( 106 "loop-to-cold-block-ratio", 107 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 108 "(frequency of block) is greater than this ratio"), 109 cl::init(5), cl::Hidden); 110 111 static cl::opt<bool> ForceLoopColdBlock( 112 "force-loop-cold-block", 113 cl::desc("Force outlining cold blocks from loops."), 114 cl::init(false), cl::Hidden); 115 116 static cl::opt<bool> 117 PreciseRotationCost("precise-rotation-cost", 118 cl::desc("Model the cost of loop rotation more " 119 "precisely by using profile data."), 120 cl::init(false), cl::Hidden); 121 122 static cl::opt<bool> 123 ForcePreciseRotationCost("force-precise-rotation-cost", 124 cl::desc("Force the use of precise cost " 125 "loop rotation strategy."), 126 cl::init(false), cl::Hidden); 127 128 static cl::opt<unsigned> MisfetchCost( 129 "misfetch-cost", 130 cl::desc("Cost that models the probabilistic risk of an instruction " 131 "misfetch due to a jump comparing to falling through, whose cost " 132 "is zero."), 133 cl::init(1), cl::Hidden); 134 135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 136 cl::desc("Cost of jump instructions."), 137 cl::init(1), cl::Hidden); 138 static cl::opt<bool> 139 TailDupPlacement("tail-dup-placement", 140 cl::desc("Perform tail duplication during placement. " 141 "Creates more fallthrough opportunites in " 142 "outline branches."), 143 cl::init(true), cl::Hidden); 144 145 static cl::opt<bool> 146 BranchFoldPlacement("branch-fold-placement", 147 cl::desc("Perform branch folding during placement. " 148 "Reduces code size."), 149 cl::init(true), cl::Hidden); 150 151 // Heuristic for tail duplication. 152 static cl::opt<unsigned> TailDupPlacementThreshold( 153 "tail-dup-placement-threshold", 154 cl::desc("Instruction cutoff for tail duplication during layout. " 155 "Tail merging during layout is forced to have a threshold " 156 "that won't conflict."), cl::init(2), 157 cl::Hidden); 158 159 // Heuristic for aggressive tail duplication. 160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 161 "tail-dup-placement-aggressive-threshold", 162 cl::desc("Instruction cutoff for aggressive tail duplication during " 163 "layout. Used at -O3. Tail merging during layout is forced to " 164 "have a threshold that won't conflict."), cl::init(4), 165 cl::Hidden); 166 167 // Heuristic for tail duplication. 168 static cl::opt<unsigned> TailDupPlacementPenalty( 169 "tail-dup-placement-penalty", 170 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 171 "Copying can increase fallthrough, but it also increases icache " 172 "pressure. This parameter controls the penalty to account for that. " 173 "Percent as integer."), 174 cl::init(2), 175 cl::Hidden); 176 177 // Heuristic for triangle chains. 178 static cl::opt<unsigned> TriangleChainCount( 179 "triangle-chain-count", 180 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 181 "triangle tail duplication heuristic to kick in. 0 to disable."), 182 cl::init(2), 183 cl::Hidden); 184 185 extern cl::opt<unsigned> StaticLikelyProb; 186 extern cl::opt<unsigned> ProfileLikelyProb; 187 188 // Internal option used to control BFI display only after MBP pass. 189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 190 // -view-block-layout-with-bfi= 191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 192 193 // Command line option to specify the name of the function for CFG dump 194 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 195 extern cl::opt<std::string> ViewBlockFreqFuncName; 196 197 namespace { 198 199 class BlockChain; 200 201 /// Type for our function-wide basic block -> block chain mapping. 202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 203 204 /// A chain of blocks which will be laid out contiguously. 205 /// 206 /// This is the datastructure representing a chain of consecutive blocks that 207 /// are profitable to layout together in order to maximize fallthrough 208 /// probabilities and code locality. We also can use a block chain to represent 209 /// a sequence of basic blocks which have some external (correctness) 210 /// requirement for sequential layout. 211 /// 212 /// Chains can be built around a single basic block and can be merged to grow 213 /// them. They participate in a block-to-chain mapping, which is updated 214 /// automatically as chains are merged together. 215 class BlockChain { 216 /// The sequence of blocks belonging to this chain. 217 /// 218 /// This is the sequence of blocks for a particular chain. These will be laid 219 /// out in-order within the function. 220 SmallVector<MachineBasicBlock *, 4> Blocks; 221 222 /// A handle to the function-wide basic block to block chain mapping. 223 /// 224 /// This is retained in each block chain to simplify the computation of child 225 /// block chains for SCC-formation and iteration. We store the edges to child 226 /// basic blocks, and map them back to their associated chains using this 227 /// structure. 228 BlockToChainMapType &BlockToChain; 229 230 public: 231 /// Construct a new BlockChain. 232 /// 233 /// This builds a new block chain representing a single basic block in the 234 /// function. It also registers itself as the chain that block participates 235 /// in with the BlockToChain mapping. 236 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 237 : Blocks(1, BB), BlockToChain(BlockToChain) { 238 assert(BB && "Cannot create a chain with a null basic block"); 239 BlockToChain[BB] = this; 240 } 241 242 /// Iterator over blocks within the chain. 243 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 244 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 245 246 /// Beginning of blocks within the chain. 247 iterator begin() { return Blocks.begin(); } 248 const_iterator begin() const { return Blocks.begin(); } 249 250 /// End of blocks within the chain. 251 iterator end() { return Blocks.end(); } 252 const_iterator end() const { return Blocks.end(); } 253 254 bool remove(MachineBasicBlock* BB) { 255 for(iterator i = begin(); i != end(); ++i) { 256 if (*i == BB) { 257 Blocks.erase(i); 258 return true; 259 } 260 } 261 return false; 262 } 263 264 /// Merge a block chain into this one. 265 /// 266 /// This routine merges a block chain into this one. It takes care of forming 267 /// a contiguous sequence of basic blocks, updating the edge list, and 268 /// updating the block -> chain mapping. It does not free or tear down the 269 /// old chain, but the old chain's block list is no longer valid. 270 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 271 assert(BB && "Can't merge a null block."); 272 assert(!Blocks.empty() && "Can't merge into an empty chain."); 273 274 // Fast path in case we don't have a chain already. 275 if (!Chain) { 276 assert(!BlockToChain[BB] && 277 "Passed chain is null, but BB has entry in BlockToChain."); 278 Blocks.push_back(BB); 279 BlockToChain[BB] = this; 280 return; 281 } 282 283 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 284 assert(Chain->begin() != Chain->end()); 285 286 // Update the incoming blocks to point to this chain, and add them to the 287 // chain structure. 288 for (MachineBasicBlock *ChainBB : *Chain) { 289 Blocks.push_back(ChainBB); 290 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 291 BlockToChain[ChainBB] = this; 292 } 293 } 294 295 #ifndef NDEBUG 296 /// Dump the blocks in this chain. 297 LLVM_DUMP_METHOD void dump() { 298 for (MachineBasicBlock *MBB : *this) 299 MBB->dump(); 300 } 301 #endif // NDEBUG 302 303 /// Count of predecessors of any block within the chain which have not 304 /// yet been scheduled. In general, we will delay scheduling this chain 305 /// until those predecessors are scheduled (or we find a sufficiently good 306 /// reason to override this heuristic.) Note that when forming loop chains, 307 /// blocks outside the loop are ignored and treated as if they were already 308 /// scheduled. 309 /// 310 /// Note: This field is reinitialized multiple times - once for each loop, 311 /// and then once for the function as a whole. 312 unsigned UnscheduledPredecessors = 0; 313 }; 314 315 class MachineBlockPlacement : public MachineFunctionPass { 316 /// A type for a block filter set. 317 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 318 319 /// Pair struct containing basic block and taildup profitiability 320 struct BlockAndTailDupResult { 321 MachineBasicBlock *BB; 322 bool ShouldTailDup; 323 }; 324 325 /// Triple struct containing edge weight and the edge. 326 struct WeightedEdge { 327 BlockFrequency Weight; 328 MachineBasicBlock *Src; 329 MachineBasicBlock *Dest; 330 }; 331 332 /// work lists of blocks that are ready to be laid out 333 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 334 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 335 336 /// Edges that have already been computed as optimal. 337 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 338 339 /// Machine Function 340 MachineFunction *F; 341 342 /// A handle to the branch probability pass. 343 const MachineBranchProbabilityInfo *MBPI; 344 345 /// A handle to the function-wide block frequency pass. 346 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 347 348 /// A handle to the loop info. 349 MachineLoopInfo *MLI; 350 351 /// Preferred loop exit. 352 /// Member variable for convenience. It may be removed by duplication deep 353 /// in the call stack. 354 MachineBasicBlock *PreferredLoopExit; 355 356 /// A handle to the target's instruction info. 357 const TargetInstrInfo *TII; 358 359 /// A handle to the target's lowering info. 360 const TargetLoweringBase *TLI; 361 362 /// A handle to the post dominator tree. 363 MachinePostDominatorTree *MPDT; 364 365 /// Duplicator used to duplicate tails during placement. 366 /// 367 /// Placement decisions can open up new tail duplication opportunities, but 368 /// since tail duplication affects placement decisions of later blocks, it 369 /// must be done inline. 370 TailDuplicator TailDup; 371 372 /// Allocator and owner of BlockChain structures. 373 /// 374 /// We build BlockChains lazily while processing the loop structure of 375 /// a function. To reduce malloc traffic, we allocate them using this 376 /// slab-like allocator, and destroy them after the pass completes. An 377 /// important guarantee is that this allocator produces stable pointers to 378 /// the chains. 379 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 380 381 /// Function wide BasicBlock to BlockChain mapping. 382 /// 383 /// This mapping allows efficiently moving from any given basic block to the 384 /// BlockChain it participates in, if any. We use it to, among other things, 385 /// allow implicitly defining edges between chains as the existing edges 386 /// between basic blocks. 387 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 388 389 #ifndef NDEBUG 390 /// The set of basic blocks that have terminators that cannot be fully 391 /// analyzed. These basic blocks cannot be re-ordered safely by 392 /// MachineBlockPlacement, and we must preserve physical layout of these 393 /// blocks and their successors through the pass. 394 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 395 #endif 396 397 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 398 /// if the count goes to 0, add them to the appropriate work list. 399 void markChainSuccessors( 400 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 401 const BlockFilterSet *BlockFilter = nullptr); 402 403 /// Decrease the UnscheduledPredecessors count for a single block, and 404 /// if the count goes to 0, add them to the appropriate work list. 405 void markBlockSuccessors( 406 const BlockChain &Chain, const MachineBasicBlock *BB, 407 const MachineBasicBlock *LoopHeaderBB, 408 const BlockFilterSet *BlockFilter = nullptr); 409 410 BranchProbability 411 collectViableSuccessors( 412 const MachineBasicBlock *BB, const BlockChain &Chain, 413 const BlockFilterSet *BlockFilter, 414 SmallVector<MachineBasicBlock *, 4> &Successors); 415 bool shouldPredBlockBeOutlined( 416 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 417 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 418 BranchProbability SuccProb, BranchProbability HotProb); 419 bool repeatedlyTailDuplicateBlock( 420 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 421 const MachineBasicBlock *LoopHeaderBB, 422 BlockChain &Chain, BlockFilterSet *BlockFilter, 423 MachineFunction::iterator &PrevUnplacedBlockIt); 424 bool maybeTailDuplicateBlock( 425 MachineBasicBlock *BB, MachineBasicBlock *LPred, 426 BlockChain &Chain, BlockFilterSet *BlockFilter, 427 MachineFunction::iterator &PrevUnplacedBlockIt, 428 bool &DuplicatedToPred); 429 bool hasBetterLayoutPredecessor( 430 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 431 const BlockChain &SuccChain, BranchProbability SuccProb, 432 BranchProbability RealSuccProb, const BlockChain &Chain, 433 const BlockFilterSet *BlockFilter); 434 BlockAndTailDupResult selectBestSuccessor( 435 const MachineBasicBlock *BB, const BlockChain &Chain, 436 const BlockFilterSet *BlockFilter); 437 MachineBasicBlock *selectBestCandidateBlock( 438 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 439 MachineBasicBlock *getFirstUnplacedBlock( 440 const BlockChain &PlacedChain, 441 MachineFunction::iterator &PrevUnplacedBlockIt, 442 const BlockFilterSet *BlockFilter); 443 444 /// Add a basic block to the work list if it is appropriate. 445 /// 446 /// If the optional parameter BlockFilter is provided, only MBB 447 /// present in the set will be added to the worklist. If nullptr 448 /// is provided, no filtering occurs. 449 void fillWorkLists(const MachineBasicBlock *MBB, 450 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 451 const BlockFilterSet *BlockFilter); 452 453 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 454 BlockFilterSet *BlockFilter = nullptr); 455 MachineBasicBlock *findBestLoopTop( 456 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 457 MachineBasicBlock *findBestLoopExit( 458 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 459 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 460 void buildLoopChains(const MachineLoop &L); 461 void rotateLoop( 462 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 463 const BlockFilterSet &LoopBlockSet); 464 void rotateLoopWithProfile( 465 BlockChain &LoopChain, const MachineLoop &L, 466 const BlockFilterSet &LoopBlockSet); 467 void buildCFGChains(); 468 void optimizeBranches(); 469 void alignBlocks(); 470 /// Returns true if a block should be tail-duplicated to increase fallthrough 471 /// opportunities. 472 bool shouldTailDuplicate(MachineBasicBlock *BB); 473 /// Check the edge frequencies to see if tail duplication will increase 474 /// fallthroughs. 475 bool isProfitableToTailDup( 476 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 477 BranchProbability AdjustedSumProb, 478 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 479 480 /// Check for a trellis layout. 481 bool isTrellis(const MachineBasicBlock *BB, 482 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 483 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 484 485 /// Get the best successor given a trellis layout. 486 BlockAndTailDupResult getBestTrellisSuccessor( 487 const MachineBasicBlock *BB, 488 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 489 BranchProbability AdjustedSumProb, const BlockChain &Chain, 490 const BlockFilterSet *BlockFilter); 491 492 /// Get the best pair of non-conflicting edges. 493 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 494 const MachineBasicBlock *BB, 495 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 496 497 /// Returns true if a block can tail duplicate into all unplaced 498 /// predecessors. Filters based on loop. 499 bool canTailDuplicateUnplacedPreds( 500 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 501 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 502 503 /// Find chains of triangles to tail-duplicate where a global analysis works, 504 /// but a local analysis would not find them. 505 void precomputeTriangleChains(); 506 507 public: 508 static char ID; // Pass identification, replacement for typeid 509 510 MachineBlockPlacement() : MachineFunctionPass(ID) { 511 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 512 } 513 514 bool runOnMachineFunction(MachineFunction &F) override; 515 516 bool allowTailDupPlacement() const { 517 assert(F); 518 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 519 } 520 521 void getAnalysisUsage(AnalysisUsage &AU) const override { 522 AU.addRequired<MachineBranchProbabilityInfo>(); 523 AU.addRequired<MachineBlockFrequencyInfo>(); 524 if (TailDupPlacement) 525 AU.addRequired<MachinePostDominatorTree>(); 526 AU.addRequired<MachineLoopInfo>(); 527 AU.addRequired<TargetPassConfig>(); 528 MachineFunctionPass::getAnalysisUsage(AU); 529 } 530 }; 531 532 } // end anonymous namespace 533 534 char MachineBlockPlacement::ID = 0; 535 536 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 537 538 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 539 "Branch Probability Basic Block Placement", false, false) 540 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 541 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 542 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 543 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 544 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 545 "Branch Probability Basic Block Placement", false, false) 546 547 #ifndef NDEBUG 548 /// Helper to print the name of a MBB. 549 /// 550 /// Only used by debug logging. 551 static std::string getBlockName(const MachineBasicBlock *BB) { 552 std::string Result; 553 raw_string_ostream OS(Result); 554 OS << printMBBReference(*BB); 555 OS << " ('" << BB->getName() << "')"; 556 OS.flush(); 557 return Result; 558 } 559 #endif 560 561 /// Mark a chain's successors as having one fewer preds. 562 /// 563 /// When a chain is being merged into the "placed" chain, this routine will 564 /// quickly walk the successors of each block in the chain and mark them as 565 /// having one fewer active predecessor. It also adds any successors of this 566 /// chain which reach the zero-predecessor state to the appropriate worklist. 567 void MachineBlockPlacement::markChainSuccessors( 568 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 569 const BlockFilterSet *BlockFilter) { 570 // Walk all the blocks in this chain, marking their successors as having 571 // a predecessor placed. 572 for (MachineBasicBlock *MBB : Chain) { 573 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 574 } 575 } 576 577 /// Mark a single block's successors as having one fewer preds. 578 /// 579 /// Under normal circumstances, this is only called by markChainSuccessors, 580 /// but if a block that was to be placed is completely tail-duplicated away, 581 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 582 /// for just that block. 583 void MachineBlockPlacement::markBlockSuccessors( 584 const BlockChain &Chain, const MachineBasicBlock *MBB, 585 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 586 // Add any successors for which this is the only un-placed in-loop 587 // predecessor to the worklist as a viable candidate for CFG-neutral 588 // placement. No subsequent placement of this block will violate the CFG 589 // shape, so we get to use heuristics to choose a favorable placement. 590 for (MachineBasicBlock *Succ : MBB->successors()) { 591 if (BlockFilter && !BlockFilter->count(Succ)) 592 continue; 593 BlockChain &SuccChain = *BlockToChain[Succ]; 594 // Disregard edges within a fixed chain, or edges to the loop header. 595 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 596 continue; 597 598 // This is a cross-chain edge that is within the loop, so decrement the 599 // loop predecessor count of the destination chain. 600 if (SuccChain.UnscheduledPredecessors == 0 || 601 --SuccChain.UnscheduledPredecessors > 0) 602 continue; 603 604 auto *NewBB = *SuccChain.begin(); 605 if (NewBB->isEHPad()) 606 EHPadWorkList.push_back(NewBB); 607 else 608 BlockWorkList.push_back(NewBB); 609 } 610 } 611 612 /// This helper function collects the set of successors of block 613 /// \p BB that are allowed to be its layout successors, and return 614 /// the total branch probability of edges from \p BB to those 615 /// blocks. 616 BranchProbability MachineBlockPlacement::collectViableSuccessors( 617 const MachineBasicBlock *BB, const BlockChain &Chain, 618 const BlockFilterSet *BlockFilter, 619 SmallVector<MachineBasicBlock *, 4> &Successors) { 620 // Adjust edge probabilities by excluding edges pointing to blocks that is 621 // either not in BlockFilter or is already in the current chain. Consider the 622 // following CFG: 623 // 624 // --->A 625 // | / \ 626 // | B C 627 // | \ / \ 628 // ----D E 629 // 630 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 631 // A->C is chosen as a fall-through, D won't be selected as a successor of C 632 // due to CFG constraint (the probability of C->D is not greater than 633 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 634 // when calculating the probability of C->D, D will be selected and we 635 // will get A C D B as the layout of this loop. 636 auto AdjustedSumProb = BranchProbability::getOne(); 637 for (MachineBasicBlock *Succ : BB->successors()) { 638 bool SkipSucc = false; 639 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 640 SkipSucc = true; 641 } else { 642 BlockChain *SuccChain = BlockToChain[Succ]; 643 if (SuccChain == &Chain) { 644 SkipSucc = true; 645 } else if (Succ != *SuccChain->begin()) { 646 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 647 continue; 648 } 649 } 650 if (SkipSucc) 651 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 652 else 653 Successors.push_back(Succ); 654 } 655 656 return AdjustedSumProb; 657 } 658 659 /// The helper function returns the branch probability that is adjusted 660 /// or normalized over the new total \p AdjustedSumProb. 661 static BranchProbability 662 getAdjustedProbability(BranchProbability OrigProb, 663 BranchProbability AdjustedSumProb) { 664 BranchProbability SuccProb; 665 uint32_t SuccProbN = OrigProb.getNumerator(); 666 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 667 if (SuccProbN >= SuccProbD) 668 SuccProb = BranchProbability::getOne(); 669 else 670 SuccProb = BranchProbability(SuccProbN, SuccProbD); 671 672 return SuccProb; 673 } 674 675 /// Check if \p BB has exactly the successors in \p Successors. 676 static bool 677 hasSameSuccessors(MachineBasicBlock &BB, 678 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 679 if (BB.succ_size() != Successors.size()) 680 return false; 681 // We don't want to count self-loops 682 if (Successors.count(&BB)) 683 return false; 684 for (MachineBasicBlock *Succ : BB.successors()) 685 if (!Successors.count(Succ)) 686 return false; 687 return true; 688 } 689 690 /// Check if a block should be tail duplicated to increase fallthrough 691 /// opportunities. 692 /// \p BB Block to check. 693 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 694 // Blocks with single successors don't create additional fallthrough 695 // opportunities. Don't duplicate them. TODO: When conditional exits are 696 // analyzable, allow them to be duplicated. 697 bool IsSimple = TailDup.isSimpleBB(BB); 698 699 if (BB->succ_size() == 1) 700 return false; 701 return TailDup.shouldTailDuplicate(IsSimple, *BB); 702 } 703 704 /// Compare 2 BlockFrequency's with a small penalty for \p A. 705 /// In order to be conservative, we apply a X% penalty to account for 706 /// increased icache pressure and static heuristics. For small frequencies 707 /// we use only the numerators to improve accuracy. For simplicity, we assume the 708 /// penalty is less than 100% 709 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 710 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 711 uint64_t EntryFreq) { 712 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 713 BlockFrequency Gain = A - B; 714 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 715 } 716 717 /// Check the edge frequencies to see if tail duplication will increase 718 /// fallthroughs. It only makes sense to call this function when 719 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 720 /// always locally profitable if we would have picked \p Succ without 721 /// considering duplication. 722 bool MachineBlockPlacement::isProfitableToTailDup( 723 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 724 BranchProbability QProb, 725 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 726 // We need to do a probability calculation to make sure this is profitable. 727 // First: does succ have a successor that post-dominates? This affects the 728 // calculation. The 2 relevant cases are: 729 // BB BB 730 // | \Qout | \Qout 731 // P| C |P C 732 // = C' = C' 733 // | /Qin | /Qin 734 // | / | / 735 // Succ Succ 736 // / \ | \ V 737 // U/ =V |U \ 738 // / \ = D 739 // D E | / 740 // | / 741 // |/ 742 // PDom 743 // '=' : Branch taken for that CFG edge 744 // In the second case, Placing Succ while duplicating it into C prevents the 745 // fallthrough of Succ into either D or PDom, because they now have C as an 746 // unplaced predecessor 747 748 // Start by figuring out which case we fall into 749 MachineBasicBlock *PDom = nullptr; 750 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 751 // Only scan the relevant successors 752 auto AdjustedSuccSumProb = 753 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 754 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 755 auto BBFreq = MBFI->getBlockFreq(BB); 756 auto SuccFreq = MBFI->getBlockFreq(Succ); 757 BlockFrequency P = BBFreq * PProb; 758 BlockFrequency Qout = BBFreq * QProb; 759 uint64_t EntryFreq = MBFI->getEntryFreq(); 760 // If there are no more successors, it is profitable to copy, as it strictly 761 // increases fallthrough. 762 if (SuccSuccs.size() == 0) 763 return greaterWithBias(P, Qout, EntryFreq); 764 765 auto BestSuccSucc = BranchProbability::getZero(); 766 // Find the PDom or the best Succ if no PDom exists. 767 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 768 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 769 if (Prob > BestSuccSucc) 770 BestSuccSucc = Prob; 771 if (PDom == nullptr) 772 if (MPDT->dominates(SuccSucc, Succ)) { 773 PDom = SuccSucc; 774 break; 775 } 776 } 777 // For the comparisons, we need to know Succ's best incoming edge that isn't 778 // from BB. 779 auto SuccBestPred = BlockFrequency(0); 780 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 781 if (SuccPred == Succ || SuccPred == BB 782 || BlockToChain[SuccPred] == &Chain 783 || (BlockFilter && !BlockFilter->count(SuccPred))) 784 continue; 785 auto Freq = MBFI->getBlockFreq(SuccPred) 786 * MBPI->getEdgeProbability(SuccPred, Succ); 787 if (Freq > SuccBestPred) 788 SuccBestPred = Freq; 789 } 790 // Qin is Succ's best unplaced incoming edge that isn't BB 791 BlockFrequency Qin = SuccBestPred; 792 // If it doesn't have a post-dominating successor, here is the calculation: 793 // BB BB 794 // | \Qout | \ 795 // P| C | = 796 // = C' | C 797 // | /Qin | | 798 // | / | C' (+Succ) 799 // Succ Succ /| 800 // / \ | \/ | 801 // U/ =V | == | 802 // / \ | / \| 803 // D E D E 804 // '=' : Branch taken for that CFG edge 805 // Cost in the first case is: P + V 806 // For this calculation, we always assume P > Qout. If Qout > P 807 // The result of this function will be ignored at the caller. 808 // Let F = SuccFreq - Qin 809 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 810 811 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 812 BranchProbability UProb = BestSuccSucc; 813 BranchProbability VProb = AdjustedSuccSumProb - UProb; 814 BlockFrequency F = SuccFreq - Qin; 815 BlockFrequency V = SuccFreq * VProb; 816 BlockFrequency QinU = std::min(Qin, F) * UProb; 817 BlockFrequency BaseCost = P + V; 818 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 819 return greaterWithBias(BaseCost, DupCost, EntryFreq); 820 } 821 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 822 BranchProbability VProb = AdjustedSuccSumProb - UProb; 823 BlockFrequency U = SuccFreq * UProb; 824 BlockFrequency V = SuccFreq * VProb; 825 BlockFrequency F = SuccFreq - Qin; 826 // If there is a post-dominating successor, here is the calculation: 827 // BB BB BB BB 828 // | \Qout | \ | \Qout | \ 829 // |P C | = |P C | = 830 // = C' |P C = C' |P C 831 // | /Qin | | | /Qin | | 832 // | / | C' (+Succ) | / | C' (+Succ) 833 // Succ Succ /| Succ Succ /| 834 // | \ V | \/ | | \ V | \/ | 835 // |U \ |U /\ =? |U = |U /\ | 836 // = D = = =?| | D | = =| 837 // | / |/ D | / |/ D 838 // | / | / | = | / 839 // |/ | / |/ | = 840 // Dom Dom Dom Dom 841 // '=' : Branch taken for that CFG edge 842 // The cost for taken branches in the first case is P + U 843 // Let F = SuccFreq - Qin 844 // The cost in the second case (assuming independence), given the layout: 845 // BB, Succ, (C+Succ), D, Dom or the layout: 846 // BB, Succ, D, Dom, (C+Succ) 847 // is Qout + max(F, Qin) * U + min(F, Qin) 848 // compare P + U vs Qout + P * U + Qin. 849 // 850 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 851 // 852 // For the 3rd case, the cost is P + 2 * V 853 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 854 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 855 if (UProb > AdjustedSuccSumProb / 2 && 856 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 857 Chain, BlockFilter)) 858 // Cases 3 & 4 859 return greaterWithBias( 860 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 861 EntryFreq); 862 // Cases 1 & 2 863 return greaterWithBias((P + U), 864 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 865 std::max(Qin, F) * UProb), 866 EntryFreq); 867 } 868 869 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 870 /// successors form the lower part of a trellis. A successor set S forms the 871 /// lower part of a trellis if all of the predecessors of S are either in S or 872 /// have all of S as successors. We ignore trellises where BB doesn't have 2 873 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 874 /// are very uncommon and complex to compute optimally. Allowing edges within S 875 /// is not strictly a trellis, but the same algorithm works, so we allow it. 876 bool MachineBlockPlacement::isTrellis( 877 const MachineBasicBlock *BB, 878 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 879 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 880 // Technically BB could form a trellis with branching factor higher than 2. 881 // But that's extremely uncommon. 882 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 883 return false; 884 885 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 886 BB->succ_end()); 887 // To avoid reviewing the same predecessors twice. 888 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 889 890 for (MachineBasicBlock *Succ : ViableSuccs) { 891 int PredCount = 0; 892 for (auto SuccPred : Succ->predecessors()) { 893 // Allow triangle successors, but don't count them. 894 if (Successors.count(SuccPred)) { 895 // Make sure that it is actually a triangle. 896 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 897 if (!Successors.count(CheckSucc)) 898 return false; 899 continue; 900 } 901 const BlockChain *PredChain = BlockToChain[SuccPred]; 902 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 903 PredChain == &Chain || PredChain == BlockToChain[Succ]) 904 continue; 905 ++PredCount; 906 // Perform the successor check only once. 907 if (!SeenPreds.insert(SuccPred).second) 908 continue; 909 if (!hasSameSuccessors(*SuccPred, Successors)) 910 return false; 911 } 912 // If one of the successors has only BB as a predecessor, it is not a 913 // trellis. 914 if (PredCount < 1) 915 return false; 916 } 917 return true; 918 } 919 920 /// Pick the highest total weight pair of edges that can both be laid out. 921 /// The edges in \p Edges[0] are assumed to have a different destination than 922 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 923 /// the individual highest weight edges to the 2 different destinations, or in 924 /// case of a conflict, one of them should be replaced with a 2nd best edge. 925 std::pair<MachineBlockPlacement::WeightedEdge, 926 MachineBlockPlacement::WeightedEdge> 927 MachineBlockPlacement::getBestNonConflictingEdges( 928 const MachineBasicBlock *BB, 929 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 930 Edges) { 931 // Sort the edges, and then for each successor, find the best incoming 932 // predecessor. If the best incoming predecessors aren't the same, 933 // then that is clearly the best layout. If there is a conflict, one of the 934 // successors will have to fallthrough from the second best predecessor. We 935 // compare which combination is better overall. 936 937 // Sort for highest frequency. 938 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 939 940 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 941 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 942 auto BestA = Edges[0].begin(); 943 auto BestB = Edges[1].begin(); 944 // Arrange for the correct answer to be in BestA and BestB 945 // If the 2 best edges don't conflict, the answer is already there. 946 if (BestA->Src == BestB->Src) { 947 // Compare the total fallthrough of (Best + Second Best) for both pairs 948 auto SecondBestA = std::next(BestA); 949 auto SecondBestB = std::next(BestB); 950 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 951 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 952 if (BestAScore < BestBScore) 953 BestA = SecondBestA; 954 else 955 BestB = SecondBestB; 956 } 957 // Arrange for the BB edge to be in BestA if it exists. 958 if (BestB->Src == BB) 959 std::swap(BestA, BestB); 960 return std::make_pair(*BestA, *BestB); 961 } 962 963 /// Get the best successor from \p BB based on \p BB being part of a trellis. 964 /// We only handle trellises with 2 successors, so the algorithm is 965 /// straightforward: Find the best pair of edges that don't conflict. We find 966 /// the best incoming edge for each successor in the trellis. If those conflict, 967 /// we consider which of them should be replaced with the second best. 968 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 969 /// comes from \p BB, it will be in \p BestEdges[0] 970 MachineBlockPlacement::BlockAndTailDupResult 971 MachineBlockPlacement::getBestTrellisSuccessor( 972 const MachineBasicBlock *BB, 973 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 974 BranchProbability AdjustedSumProb, const BlockChain &Chain, 975 const BlockFilterSet *BlockFilter) { 976 977 BlockAndTailDupResult Result = {nullptr, false}; 978 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 979 BB->succ_end()); 980 981 // We assume size 2 because it's common. For general n, we would have to do 982 // the Hungarian algorithm, but it's not worth the complexity because more 983 // than 2 successors is fairly uncommon, and a trellis even more so. 984 if (Successors.size() != 2 || ViableSuccs.size() != 2) 985 return Result; 986 987 // Collect the edge frequencies of all edges that form the trellis. 988 SmallVector<WeightedEdge, 8> Edges[2]; 989 int SuccIndex = 0; 990 for (auto Succ : ViableSuccs) { 991 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 992 // Skip any placed predecessors that are not BB 993 if (SuccPred != BB) 994 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 995 BlockToChain[SuccPred] == &Chain || 996 BlockToChain[SuccPred] == BlockToChain[Succ]) 997 continue; 998 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 999 MBPI->getEdgeProbability(SuccPred, Succ); 1000 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1001 } 1002 ++SuccIndex; 1003 } 1004 1005 // Pick the best combination of 2 edges from all the edges in the trellis. 1006 WeightedEdge BestA, BestB; 1007 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1008 1009 if (BestA.Src != BB) { 1010 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1011 // we shouldn't choose any successor. We've already looked and there's a 1012 // better fallthrough edge for all the successors. 1013 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1014 return Result; 1015 } 1016 1017 // Did we pick the triangle edge? If tail-duplication is profitable, do 1018 // that instead. Otherwise merge the triangle edge now while we know it is 1019 // optimal. 1020 if (BestA.Dest == BestB.Src) { 1021 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1022 // would be better. 1023 MachineBasicBlock *Succ1 = BestA.Dest; 1024 MachineBasicBlock *Succ2 = BestB.Dest; 1025 // Check to see if tail-duplication would be profitable. 1026 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1027 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1028 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1029 Chain, BlockFilter)) { 1030 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1031 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1032 dbgs() << " Selected: " << getBlockName(Succ2) 1033 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 1034 Result.BB = Succ2; 1035 Result.ShouldTailDup = true; 1036 return Result; 1037 } 1038 } 1039 // We have already computed the optimal edge for the other side of the 1040 // trellis. 1041 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1042 1043 auto TrellisSucc = BestA.Dest; 1044 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1045 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1046 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1047 << ", probability: " << SuccProb << " (Trellis)\n"); 1048 Result.BB = TrellisSucc; 1049 return Result; 1050 } 1051 1052 /// When the option allowTailDupPlacement() is on, this method checks if the 1053 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1054 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1055 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1056 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1057 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1058 if (!shouldTailDuplicate(Succ)) 1059 return false; 1060 1061 // For CFG checking. 1062 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1063 BB->succ_end()); 1064 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1065 // Make sure all unplaced and unfiltered predecessors can be 1066 // tail-duplicated into. 1067 // Skip any blocks that are already placed or not in this loop. 1068 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1069 || BlockToChain[Pred] == &Chain) 1070 continue; 1071 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1072 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1073 // This will result in a trellis after tail duplication, so we don't 1074 // need to copy Succ into this predecessor. In the presence 1075 // of a trellis tail duplication can continue to be profitable. 1076 // For example: 1077 // A A 1078 // |\ |\ 1079 // | \ | \ 1080 // | C | C+BB 1081 // | / | | 1082 // |/ | | 1083 // BB => BB | 1084 // |\ |\/| 1085 // | \ |/\| 1086 // | D | D 1087 // | / | / 1088 // |/ |/ 1089 // Succ Succ 1090 // 1091 // After BB was duplicated into C, the layout looks like the one on the 1092 // right. BB and C now have the same successors. When considering 1093 // whether Succ can be duplicated into all its unplaced predecessors, we 1094 // ignore C. 1095 // We can do this because C already has a profitable fallthrough, namely 1096 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1097 // duplication and for this test. 1098 // 1099 // This allows trellises to be laid out in 2 separate chains 1100 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1101 // because it allows the creation of 2 fallthrough paths with links 1102 // between them, and we correctly identify the best layout for these 1103 // CFGs. We want to extend trellises that the user created in addition 1104 // to trellises created by tail-duplication, so we just look for the 1105 // CFG. 1106 continue; 1107 return false; 1108 } 1109 } 1110 return true; 1111 } 1112 1113 /// Find chains of triangles where we believe it would be profitable to 1114 /// tail-duplicate them all, but a local analysis would not find them. 1115 /// There are 3 ways this can be profitable: 1116 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1117 /// longer chains) 1118 /// 2) The chains are statically correlated. Branch probabilities have a very 1119 /// U-shaped distribution. 1120 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1121 /// If the branches in a chain are likely to be from the same side of the 1122 /// distribution as their predecessor, but are independent at runtime, this 1123 /// transformation is profitable. (Because the cost of being wrong is a small 1124 /// fixed cost, unlike the standard triangle layout where the cost of being 1125 /// wrong scales with the # of triangles.) 1126 /// 3) The chains are dynamically correlated. If the probability that a previous 1127 /// branch was taken positively influences whether the next branch will be 1128 /// taken 1129 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1130 void MachineBlockPlacement::precomputeTriangleChains() { 1131 struct TriangleChain { 1132 std::vector<MachineBasicBlock *> Edges; 1133 1134 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1135 : Edges({src, dst}) {} 1136 1137 void append(MachineBasicBlock *dst) { 1138 assert(getKey()->isSuccessor(dst) && 1139 "Attempting to append a block that is not a successor."); 1140 Edges.push_back(dst); 1141 } 1142 1143 unsigned count() const { return Edges.size() - 1; } 1144 1145 MachineBasicBlock *getKey() const { 1146 return Edges.back(); 1147 } 1148 }; 1149 1150 if (TriangleChainCount == 0) 1151 return; 1152 1153 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1154 // Map from last block to the chain that contains it. This allows us to extend 1155 // chains as we find new triangles. 1156 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1157 for (MachineBasicBlock &BB : *F) { 1158 // If BB doesn't have 2 successors, it doesn't start a triangle. 1159 if (BB.succ_size() != 2) 1160 continue; 1161 MachineBasicBlock *PDom = nullptr; 1162 for (MachineBasicBlock *Succ : BB.successors()) { 1163 if (!MPDT->dominates(Succ, &BB)) 1164 continue; 1165 PDom = Succ; 1166 break; 1167 } 1168 // If BB doesn't have a post-dominating successor, it doesn't form a 1169 // triangle. 1170 if (PDom == nullptr) 1171 continue; 1172 // If PDom has a hint that it is low probability, skip this triangle. 1173 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1174 continue; 1175 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1176 // we're looking for. 1177 if (!shouldTailDuplicate(PDom)) 1178 continue; 1179 bool CanTailDuplicate = true; 1180 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1181 // isn't the kind of triangle we're looking for. 1182 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1183 if (Pred == &BB) 1184 continue; 1185 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1186 CanTailDuplicate = false; 1187 break; 1188 } 1189 } 1190 // If we can't tail-duplicate PDom to its predecessors, then skip this 1191 // triangle. 1192 if (!CanTailDuplicate) 1193 continue; 1194 1195 // Now we have an interesting triangle. Insert it if it's not part of an 1196 // existing chain. 1197 // Note: This cannot be replaced with a call insert() or emplace() because 1198 // the find key is BB, but the insert/emplace key is PDom. 1199 auto Found = TriangleChainMap.find(&BB); 1200 // If it is, remove the chain from the map, grow it, and put it back in the 1201 // map with the end as the new key. 1202 if (Found != TriangleChainMap.end()) { 1203 TriangleChain Chain = std::move(Found->second); 1204 TriangleChainMap.erase(Found); 1205 Chain.append(PDom); 1206 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1207 } else { 1208 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1209 assert(InsertResult.second && "Block seen twice."); 1210 (void)InsertResult; 1211 } 1212 } 1213 1214 // Iterating over a DenseMap is safe here, because the only thing in the body 1215 // of the loop is inserting into another DenseMap (ComputedEdges). 1216 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1217 for (auto &ChainPair : TriangleChainMap) { 1218 TriangleChain &Chain = ChainPair.second; 1219 // Benchmarking has shown that due to branch correlation duplicating 2 or 1220 // more triangles is profitable, despite the calculations assuming 1221 // independence. 1222 if (Chain.count() < TriangleChainCount) 1223 continue; 1224 MachineBasicBlock *dst = Chain.Edges.back(); 1225 Chain.Edges.pop_back(); 1226 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1227 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1228 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1229 1230 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1231 assert(InsertResult.second && "Block seen twice."); 1232 (void)InsertResult; 1233 1234 dst = src; 1235 } 1236 } 1237 } 1238 1239 // When profile is not present, return the StaticLikelyProb. 1240 // When profile is available, we need to handle the triangle-shape CFG. 1241 static BranchProbability getLayoutSuccessorProbThreshold( 1242 const MachineBasicBlock *BB) { 1243 if (!BB->getParent()->getFunction().hasProfileData()) 1244 return BranchProbability(StaticLikelyProb, 100); 1245 if (BB->succ_size() == 2) { 1246 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1247 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1248 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1249 /* See case 1 below for the cost analysis. For BB->Succ to 1250 * be taken with smaller cost, the following needs to hold: 1251 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1252 * So the threshold T in the calculation below 1253 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1254 * So T / (1 - T) = 2, Yielding T = 2/3 1255 * Also adding user specified branch bias, we have 1256 * T = (2/3)*(ProfileLikelyProb/50) 1257 * = (2*ProfileLikelyProb)/150) 1258 */ 1259 return BranchProbability(2 * ProfileLikelyProb, 150); 1260 } 1261 } 1262 return BranchProbability(ProfileLikelyProb, 100); 1263 } 1264 1265 /// Checks to see if the layout candidate block \p Succ has a better layout 1266 /// predecessor than \c BB. If yes, returns true. 1267 /// \p SuccProb: The probability adjusted for only remaining blocks. 1268 /// Only used for logging 1269 /// \p RealSuccProb: The un-adjusted probability. 1270 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1271 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1272 /// considered 1273 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1274 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1275 const BlockChain &SuccChain, BranchProbability SuccProb, 1276 BranchProbability RealSuccProb, const BlockChain &Chain, 1277 const BlockFilterSet *BlockFilter) { 1278 1279 // There isn't a better layout when there are no unscheduled predecessors. 1280 if (SuccChain.UnscheduledPredecessors == 0) 1281 return false; 1282 1283 // There are two basic scenarios here: 1284 // ------------------------------------- 1285 // Case 1: triangular shape CFG (if-then): 1286 // BB 1287 // | \ 1288 // | \ 1289 // | Pred 1290 // | / 1291 // Succ 1292 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1293 // set Succ as the layout successor of BB. Picking Succ as BB's 1294 // successor breaks the CFG constraints (FIXME: define these constraints). 1295 // With this layout, Pred BB 1296 // is forced to be outlined, so the overall cost will be cost of the 1297 // branch taken from BB to Pred, plus the cost of back taken branch 1298 // from Pred to Succ, as well as the additional cost associated 1299 // with the needed unconditional jump instruction from Pred To Succ. 1300 1301 // The cost of the topological order layout is the taken branch cost 1302 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1303 // must hold: 1304 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1305 // < freq(BB->Succ) * taken_branch_cost. 1306 // Ignoring unconditional jump cost, we get 1307 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1308 // prob(BB->Succ) > 2 * prob(BB->Pred) 1309 // 1310 // When real profile data is available, we can precisely compute the 1311 // probability threshold that is needed for edge BB->Succ to be considered. 1312 // Without profile data, the heuristic requires the branch bias to be 1313 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1314 // ----------------------------------------------------------------- 1315 // Case 2: diamond like CFG (if-then-else): 1316 // S 1317 // / \ 1318 // | \ 1319 // BB Pred 1320 // \ / 1321 // Succ 1322 // .. 1323 // 1324 // The current block is BB and edge BB->Succ is now being evaluated. 1325 // Note that edge S->BB was previously already selected because 1326 // prob(S->BB) > prob(S->Pred). 1327 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1328 // choose Pred, we will have a topological ordering as shown on the left 1329 // in the picture below. If we choose Succ, we have the solution as shown 1330 // on the right: 1331 // 1332 // topo-order: 1333 // 1334 // S----- ---S 1335 // | | | | 1336 // ---BB | | BB 1337 // | | | | 1338 // | Pred-- | Succ-- 1339 // | | | | 1340 // ---Succ ---Pred-- 1341 // 1342 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1343 // = freq(S->Pred) + freq(S->BB) 1344 // 1345 // If we have profile data (i.e, branch probabilities can be trusted), the 1346 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1347 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1348 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1349 // means the cost of topological order is greater. 1350 // When profile data is not available, however, we need to be more 1351 // conservative. If the branch prediction is wrong, breaking the topo-order 1352 // will actually yield a layout with large cost. For this reason, we need 1353 // strong biased branch at block S with Prob(S->BB) in order to select 1354 // BB->Succ. This is equivalent to looking the CFG backward with backward 1355 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1356 // profile data). 1357 // -------------------------------------------------------------------------- 1358 // Case 3: forked diamond 1359 // S 1360 // / \ 1361 // / \ 1362 // BB Pred 1363 // | \ / | 1364 // | \ / | 1365 // | X | 1366 // | / \ | 1367 // | / \ | 1368 // S1 S2 1369 // 1370 // The current block is BB and edge BB->S1 is now being evaluated. 1371 // As above S->BB was already selected because 1372 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1373 // 1374 // topo-order: 1375 // 1376 // S-------| ---S 1377 // | | | | 1378 // ---BB | | BB 1379 // | | | | 1380 // | Pred----| | S1---- 1381 // | | | | 1382 // --(S1 or S2) ---Pred-- 1383 // | 1384 // S2 1385 // 1386 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1387 // + min(freq(Pred->S1), freq(Pred->S2)) 1388 // Non-topo-order cost: 1389 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1390 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1391 // is 0. Then the non topo layout is better when 1392 // freq(S->Pred) < freq(BB->S1). 1393 // This is exactly what is checked below. 1394 // Note there are other shapes that apply (Pred may not be a single block, 1395 // but they all fit this general pattern.) 1396 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1397 1398 // Make sure that a hot successor doesn't have a globally more 1399 // important predecessor. 1400 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1401 bool BadCFGConflict = false; 1402 1403 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1404 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1405 (BlockFilter && !BlockFilter->count(Pred)) || 1406 BlockToChain[Pred] == &Chain || 1407 // This check is redundant except for look ahead. This function is 1408 // called for lookahead by isProfitableToTailDup when BB hasn't been 1409 // placed yet. 1410 (Pred == BB)) 1411 continue; 1412 // Do backward checking. 1413 // For all cases above, we need a backward checking to filter out edges that 1414 // are not 'strongly' biased. 1415 // BB Pred 1416 // \ / 1417 // Succ 1418 // We select edge BB->Succ if 1419 // freq(BB->Succ) > freq(Succ) * HotProb 1420 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1421 // HotProb 1422 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1423 // Case 1 is covered too, because the first equation reduces to: 1424 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1425 BlockFrequency PredEdgeFreq = 1426 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1427 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1428 BadCFGConflict = true; 1429 break; 1430 } 1431 } 1432 1433 if (BadCFGConflict) { 1434 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1435 << " (prob) (non-cold CFG conflict)\n"); 1436 return true; 1437 } 1438 1439 return false; 1440 } 1441 1442 /// Select the best successor for a block. 1443 /// 1444 /// This looks across all successors of a particular block and attempts to 1445 /// select the "best" one to be the layout successor. It only considers direct 1446 /// successors which also pass the block filter. It will attempt to avoid 1447 /// breaking CFG structure, but cave and break such structures in the case of 1448 /// very hot successor edges. 1449 /// 1450 /// \returns The best successor block found, or null if none are viable, along 1451 /// with a boolean indicating if tail duplication is necessary. 1452 MachineBlockPlacement::BlockAndTailDupResult 1453 MachineBlockPlacement::selectBestSuccessor( 1454 const MachineBasicBlock *BB, const BlockChain &Chain, 1455 const BlockFilterSet *BlockFilter) { 1456 const BranchProbability HotProb(StaticLikelyProb, 100); 1457 1458 BlockAndTailDupResult BestSucc = { nullptr, false }; 1459 auto BestProb = BranchProbability::getZero(); 1460 1461 SmallVector<MachineBasicBlock *, 4> Successors; 1462 auto AdjustedSumProb = 1463 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1464 1465 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1466 1467 // if we already precomputed the best successor for BB, return that if still 1468 // applicable. 1469 auto FoundEdge = ComputedEdges.find(BB); 1470 if (FoundEdge != ComputedEdges.end()) { 1471 MachineBasicBlock *Succ = FoundEdge->second.BB; 1472 ComputedEdges.erase(FoundEdge); 1473 BlockChain *SuccChain = BlockToChain[Succ]; 1474 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1475 SuccChain != &Chain && Succ == *SuccChain->begin()) 1476 return FoundEdge->second; 1477 } 1478 1479 // if BB is part of a trellis, Use the trellis to determine the optimal 1480 // fallthrough edges 1481 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1482 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1483 BlockFilter); 1484 1485 // For blocks with CFG violations, we may be able to lay them out anyway with 1486 // tail-duplication. We keep this vector so we can perform the probability 1487 // calculations the minimum number of times. 1488 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1489 DupCandidates; 1490 for (MachineBasicBlock *Succ : Successors) { 1491 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1492 BranchProbability SuccProb = 1493 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1494 1495 BlockChain &SuccChain = *BlockToChain[Succ]; 1496 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1497 // predecessor that yields lower global cost. 1498 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1499 Chain, BlockFilter)) { 1500 // If tail duplication would make Succ profitable, place it. 1501 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1502 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1503 continue; 1504 } 1505 1506 DEBUG( 1507 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1508 << SuccProb 1509 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1510 << "\n"); 1511 1512 if (BestSucc.BB && BestProb >= SuccProb) { 1513 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1514 continue; 1515 } 1516 1517 DEBUG(dbgs() << " Setting it as best candidate\n"); 1518 BestSucc.BB = Succ; 1519 BestProb = SuccProb; 1520 } 1521 // Handle the tail duplication candidates in order of decreasing probability. 1522 // Stop at the first one that is profitable. Also stop if they are less 1523 // profitable than BestSucc. Position is important because we preserve it and 1524 // prefer first best match. Here we aren't comparing in order, so we capture 1525 // the position instead. 1526 if (DupCandidates.size() != 0) { 1527 auto cmp = 1528 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1529 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1530 return std::get<0>(a) > std::get<0>(b); 1531 }; 1532 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1533 } 1534 for(auto &Tup : DupCandidates) { 1535 BranchProbability DupProb; 1536 MachineBasicBlock *Succ; 1537 std::tie(DupProb, Succ) = Tup; 1538 if (DupProb < BestProb) 1539 break; 1540 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1541 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1542 DEBUG( 1543 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1544 << DupProb 1545 << " (Tail Duplicate)\n"); 1546 BestSucc.BB = Succ; 1547 BestSucc.ShouldTailDup = true; 1548 break; 1549 } 1550 } 1551 1552 if (BestSucc.BB) 1553 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1554 1555 return BestSucc; 1556 } 1557 1558 /// Select the best block from a worklist. 1559 /// 1560 /// This looks through the provided worklist as a list of candidate basic 1561 /// blocks and select the most profitable one to place. The definition of 1562 /// profitable only really makes sense in the context of a loop. This returns 1563 /// the most frequently visited block in the worklist, which in the case of 1564 /// a loop, is the one most desirable to be physically close to the rest of the 1565 /// loop body in order to improve i-cache behavior. 1566 /// 1567 /// \returns The best block found, or null if none are viable. 1568 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1569 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1570 // Once we need to walk the worklist looking for a candidate, cleanup the 1571 // worklist of already placed entries. 1572 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1573 // some code complexity) into the loop below. 1574 WorkList.erase(llvm::remove_if(WorkList, 1575 [&](MachineBasicBlock *BB) { 1576 return BlockToChain.lookup(BB) == &Chain; 1577 }), 1578 WorkList.end()); 1579 1580 if (WorkList.empty()) 1581 return nullptr; 1582 1583 bool IsEHPad = WorkList[0]->isEHPad(); 1584 1585 MachineBasicBlock *BestBlock = nullptr; 1586 BlockFrequency BestFreq; 1587 for (MachineBasicBlock *MBB : WorkList) { 1588 assert(MBB->isEHPad() == IsEHPad && 1589 "EHPad mismatch between block and work list."); 1590 1591 BlockChain &SuccChain = *BlockToChain[MBB]; 1592 if (&SuccChain == &Chain) 1593 continue; 1594 1595 assert(SuccChain.UnscheduledPredecessors == 0 && 1596 "Found CFG-violating block"); 1597 1598 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1599 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1600 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1601 1602 // For ehpad, we layout the least probable first as to avoid jumping back 1603 // from least probable landingpads to more probable ones. 1604 // 1605 // FIXME: Using probability is probably (!) not the best way to achieve 1606 // this. We should probably have a more principled approach to layout 1607 // cleanup code. 1608 // 1609 // The goal is to get: 1610 // 1611 // +--------------------------+ 1612 // | V 1613 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1614 // 1615 // Rather than: 1616 // 1617 // +-------------------------------------+ 1618 // V | 1619 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1620 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1621 continue; 1622 1623 BestBlock = MBB; 1624 BestFreq = CandidateFreq; 1625 } 1626 1627 return BestBlock; 1628 } 1629 1630 /// Retrieve the first unplaced basic block. 1631 /// 1632 /// This routine is called when we are unable to use the CFG to walk through 1633 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1634 /// We walk through the function's blocks in order, starting from the 1635 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1636 /// re-scanning the entire sequence on repeated calls to this routine. 1637 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1638 const BlockChain &PlacedChain, 1639 MachineFunction::iterator &PrevUnplacedBlockIt, 1640 const BlockFilterSet *BlockFilter) { 1641 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1642 ++I) { 1643 if (BlockFilter && !BlockFilter->count(&*I)) 1644 continue; 1645 if (BlockToChain[&*I] != &PlacedChain) { 1646 PrevUnplacedBlockIt = I; 1647 // Now select the head of the chain to which the unplaced block belongs 1648 // as the block to place. This will force the entire chain to be placed, 1649 // and satisfies the requirements of merging chains. 1650 return *BlockToChain[&*I]->begin(); 1651 } 1652 } 1653 return nullptr; 1654 } 1655 1656 void MachineBlockPlacement::fillWorkLists( 1657 const MachineBasicBlock *MBB, 1658 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1659 const BlockFilterSet *BlockFilter = nullptr) { 1660 BlockChain &Chain = *BlockToChain[MBB]; 1661 if (!UpdatedPreds.insert(&Chain).second) 1662 return; 1663 1664 assert( 1665 Chain.UnscheduledPredecessors == 0 && 1666 "Attempting to place block with unscheduled predecessors in worklist."); 1667 for (MachineBasicBlock *ChainBB : Chain) { 1668 assert(BlockToChain[ChainBB] == &Chain && 1669 "Block in chain doesn't match BlockToChain map."); 1670 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1671 if (BlockFilter && !BlockFilter->count(Pred)) 1672 continue; 1673 if (BlockToChain[Pred] == &Chain) 1674 continue; 1675 ++Chain.UnscheduledPredecessors; 1676 } 1677 } 1678 1679 if (Chain.UnscheduledPredecessors != 0) 1680 return; 1681 1682 MachineBasicBlock *BB = *Chain.begin(); 1683 if (BB->isEHPad()) 1684 EHPadWorkList.push_back(BB); 1685 else 1686 BlockWorkList.push_back(BB); 1687 } 1688 1689 void MachineBlockPlacement::buildChain( 1690 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1691 BlockFilterSet *BlockFilter) { 1692 assert(HeadBB && "BB must not be null.\n"); 1693 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1694 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1695 1696 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1697 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1698 MachineBasicBlock *BB = *std::prev(Chain.end()); 1699 while (true) { 1700 assert(BB && "null block found at end of chain in loop."); 1701 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1702 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1703 1704 1705 // Look for the best viable successor if there is one to place immediately 1706 // after this block. 1707 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1708 MachineBasicBlock* BestSucc = Result.BB; 1709 bool ShouldTailDup = Result.ShouldTailDup; 1710 if (allowTailDupPlacement()) 1711 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1712 1713 // If an immediate successor isn't available, look for the best viable 1714 // block among those we've identified as not violating the loop's CFG at 1715 // this point. This won't be a fallthrough, but it will increase locality. 1716 if (!BestSucc) 1717 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1718 if (!BestSucc) 1719 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1720 1721 if (!BestSucc) { 1722 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1723 if (!BestSucc) 1724 break; 1725 1726 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1727 "layout successor until the CFG reduces\n"); 1728 } 1729 1730 // Placement may have changed tail duplication opportunities. 1731 // Check for that now. 1732 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1733 // If the chosen successor was duplicated into all its predecessors, 1734 // don't bother laying it out, just go round the loop again with BB as 1735 // the chain end. 1736 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1737 BlockFilter, PrevUnplacedBlockIt)) 1738 continue; 1739 } 1740 1741 // Place this block, updating the datastructures to reflect its placement. 1742 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1743 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1744 // we selected a successor that didn't fit naturally into the CFG. 1745 SuccChain.UnscheduledPredecessors = 0; 1746 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1747 << getBlockName(BestSucc) << "\n"); 1748 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1749 Chain.merge(BestSucc, &SuccChain); 1750 BB = *std::prev(Chain.end()); 1751 } 1752 1753 DEBUG(dbgs() << "Finished forming chain for header block " 1754 << getBlockName(*Chain.begin()) << "\n"); 1755 } 1756 1757 /// Find the best loop top block for layout. 1758 /// 1759 /// Look for a block which is strictly better than the loop header for laying 1760 /// out at the top of the loop. This looks for one and only one pattern: 1761 /// a latch block with no conditional exit. This block will cause a conditional 1762 /// jump around it or will be the bottom of the loop if we lay it out in place, 1763 /// but if it it doesn't end up at the bottom of the loop for any reason, 1764 /// rotation alone won't fix it. Because such a block will always result in an 1765 /// unconditional jump (for the backedge) rotating it in front of the loop 1766 /// header is always profitable. 1767 MachineBasicBlock * 1768 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1769 const BlockFilterSet &LoopBlockSet) { 1770 // Placing the latch block before the header may introduce an extra branch 1771 // that skips this block the first time the loop is executed, which we want 1772 // to avoid when optimising for size. 1773 // FIXME: in theory there is a case that does not introduce a new branch, 1774 // i.e. when the layout predecessor does not fallthrough to the loop header. 1775 // In practice this never happens though: there always seems to be a preheader 1776 // that can fallthrough and that is also placed before the header. 1777 if (F->getFunction().optForSize()) 1778 return L.getHeader(); 1779 1780 // Check that the header hasn't been fused with a preheader block due to 1781 // crazy branches. If it has, we need to start with the header at the top to 1782 // prevent pulling the preheader into the loop body. 1783 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1784 if (!LoopBlockSet.count(*HeaderChain.begin())) 1785 return L.getHeader(); 1786 1787 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1788 << "\n"); 1789 1790 BlockFrequency BestPredFreq; 1791 MachineBasicBlock *BestPred = nullptr; 1792 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1793 if (!LoopBlockSet.count(Pred)) 1794 continue; 1795 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1796 << Pred->succ_size() << " successors, "; 1797 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1798 if (Pred->succ_size() > 1) 1799 continue; 1800 1801 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1802 if (!BestPred || PredFreq > BestPredFreq || 1803 (!(PredFreq < BestPredFreq) && 1804 Pred->isLayoutSuccessor(L.getHeader()))) { 1805 BestPred = Pred; 1806 BestPredFreq = PredFreq; 1807 } 1808 } 1809 1810 // If no direct predecessor is fine, just use the loop header. 1811 if (!BestPred) { 1812 DEBUG(dbgs() << " final top unchanged\n"); 1813 return L.getHeader(); 1814 } 1815 1816 // Walk backwards through any straight line of predecessors. 1817 while (BestPred->pred_size() == 1 && 1818 (*BestPred->pred_begin())->succ_size() == 1 && 1819 *BestPred->pred_begin() != L.getHeader()) 1820 BestPred = *BestPred->pred_begin(); 1821 1822 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1823 return BestPred; 1824 } 1825 1826 /// Find the best loop exiting block for layout. 1827 /// 1828 /// This routine implements the logic to analyze the loop looking for the best 1829 /// block to layout at the top of the loop. Typically this is done to maximize 1830 /// fallthrough opportunities. 1831 MachineBasicBlock * 1832 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1833 const BlockFilterSet &LoopBlockSet) { 1834 // We don't want to layout the loop linearly in all cases. If the loop header 1835 // is just a normal basic block in the loop, we want to look for what block 1836 // within the loop is the best one to layout at the top. However, if the loop 1837 // header has be pre-merged into a chain due to predecessors not having 1838 // analyzable branches, *and* the predecessor it is merged with is *not* part 1839 // of the loop, rotating the header into the middle of the loop will create 1840 // a non-contiguous range of blocks which is Very Bad. So start with the 1841 // header and only rotate if safe. 1842 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1843 if (!LoopBlockSet.count(*HeaderChain.begin())) 1844 return nullptr; 1845 1846 BlockFrequency BestExitEdgeFreq; 1847 unsigned BestExitLoopDepth = 0; 1848 MachineBasicBlock *ExitingBB = nullptr; 1849 // If there are exits to outer loops, loop rotation can severely limit 1850 // fallthrough opportunities unless it selects such an exit. Keep a set of 1851 // blocks where rotating to exit with that block will reach an outer loop. 1852 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1853 1854 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1855 << "\n"); 1856 for (MachineBasicBlock *MBB : L.getBlocks()) { 1857 BlockChain &Chain = *BlockToChain[MBB]; 1858 // Ensure that this block is at the end of a chain; otherwise it could be 1859 // mid-way through an inner loop or a successor of an unanalyzable branch. 1860 if (MBB != *std::prev(Chain.end())) 1861 continue; 1862 1863 // Now walk the successors. We need to establish whether this has a viable 1864 // exiting successor and whether it has a viable non-exiting successor. 1865 // We store the old exiting state and restore it if a viable looping 1866 // successor isn't found. 1867 MachineBasicBlock *OldExitingBB = ExitingBB; 1868 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1869 bool HasLoopingSucc = false; 1870 for (MachineBasicBlock *Succ : MBB->successors()) { 1871 if (Succ->isEHPad()) 1872 continue; 1873 if (Succ == MBB) 1874 continue; 1875 BlockChain &SuccChain = *BlockToChain[Succ]; 1876 // Don't split chains, either this chain or the successor's chain. 1877 if (&Chain == &SuccChain) { 1878 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1879 << getBlockName(Succ) << " (chain conflict)\n"); 1880 continue; 1881 } 1882 1883 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1884 if (LoopBlockSet.count(Succ)) { 1885 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1886 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1887 HasLoopingSucc = true; 1888 continue; 1889 } 1890 1891 unsigned SuccLoopDepth = 0; 1892 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1893 SuccLoopDepth = ExitLoop->getLoopDepth(); 1894 if (ExitLoop->contains(&L)) 1895 BlocksExitingToOuterLoop.insert(MBB); 1896 } 1897 1898 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1899 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1900 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1901 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1902 // Note that we bias this toward an existing layout successor to retain 1903 // incoming order in the absence of better information. The exit must have 1904 // a frequency higher than the current exit before we consider breaking 1905 // the layout. 1906 BranchProbability Bias(100 - ExitBlockBias, 100); 1907 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1908 ExitEdgeFreq > BestExitEdgeFreq || 1909 (MBB->isLayoutSuccessor(Succ) && 1910 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1911 BestExitEdgeFreq = ExitEdgeFreq; 1912 ExitingBB = MBB; 1913 } 1914 } 1915 1916 if (!HasLoopingSucc) { 1917 // Restore the old exiting state, no viable looping successor was found. 1918 ExitingBB = OldExitingBB; 1919 BestExitEdgeFreq = OldBestExitEdgeFreq; 1920 } 1921 } 1922 // Without a candidate exiting block or with only a single block in the 1923 // loop, just use the loop header to layout the loop. 1924 if (!ExitingBB) { 1925 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1926 return nullptr; 1927 } 1928 if (L.getNumBlocks() == 1) { 1929 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1930 return nullptr; 1931 } 1932 1933 // Also, if we have exit blocks which lead to outer loops but didn't select 1934 // one of them as the exiting block we are rotating toward, disable loop 1935 // rotation altogether. 1936 if (!BlocksExitingToOuterLoop.empty() && 1937 !BlocksExitingToOuterLoop.count(ExitingBB)) 1938 return nullptr; 1939 1940 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1941 return ExitingBB; 1942 } 1943 1944 /// Attempt to rotate an exiting block to the bottom of the loop. 1945 /// 1946 /// Once we have built a chain, try to rotate it to line up the hot exit block 1947 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1948 /// branches. For example, if the loop has fallthrough into its header and out 1949 /// of its bottom already, don't rotate it. 1950 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1951 const MachineBasicBlock *ExitingBB, 1952 const BlockFilterSet &LoopBlockSet) { 1953 if (!ExitingBB) 1954 return; 1955 1956 MachineBasicBlock *Top = *LoopChain.begin(); 1957 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1958 1959 // If ExitingBB is already the last one in a chain then nothing to do. 1960 if (Bottom == ExitingBB) 1961 return; 1962 1963 bool ViableTopFallthrough = false; 1964 for (MachineBasicBlock *Pred : Top->predecessors()) { 1965 BlockChain *PredChain = BlockToChain[Pred]; 1966 if (!LoopBlockSet.count(Pred) && 1967 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1968 ViableTopFallthrough = true; 1969 break; 1970 } 1971 } 1972 1973 // If the header has viable fallthrough, check whether the current loop 1974 // bottom is a viable exiting block. If so, bail out as rotating will 1975 // introduce an unnecessary branch. 1976 if (ViableTopFallthrough) { 1977 for (MachineBasicBlock *Succ : Bottom->successors()) { 1978 BlockChain *SuccChain = BlockToChain[Succ]; 1979 if (!LoopBlockSet.count(Succ) && 1980 (!SuccChain || Succ == *SuccChain->begin())) 1981 return; 1982 } 1983 } 1984 1985 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 1986 if (ExitIt == LoopChain.end()) 1987 return; 1988 1989 // Rotating a loop exit to the bottom when there is a fallthrough to top 1990 // trades the entry fallthrough for an exit fallthrough. 1991 // If there is no bottom->top edge, but the chosen exit block does have 1992 // a fallthrough, we break that fallthrough for nothing in return. 1993 1994 // Let's consider an example. We have a built chain of basic blocks 1995 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 1996 // By doing a rotation we get 1997 // Bk+1, ..., Bn, B1, ..., Bk 1998 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 1999 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2000 // It might be compensated by fallthrough Bn -> B1. 2001 // So we have a condition to avoid creation of extra branch by loop rotation. 2002 // All below must be true to avoid loop rotation: 2003 // If there is a fallthrough to top (B1) 2004 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2005 // There is no fallthrough from bottom (Bn) to top (B1). 2006 // Please note that there is no exit fallthrough from Bn because we checked it 2007 // above. 2008 if (ViableTopFallthrough) { 2009 assert(std::next(ExitIt) != LoopChain.end() && 2010 "Exit should not be last BB"); 2011 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2012 if (ExitingBB->isSuccessor(NextBlockInChain)) 2013 if (!Bottom->isSuccessor(Top)) 2014 return; 2015 } 2016 2017 DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2018 << " at bottom\n"); 2019 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2020 } 2021 2022 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2023 /// 2024 /// With profile data, we can determine the cost in terms of missed fall through 2025 /// opportunities when rotating a loop chain and select the best rotation. 2026 /// Basically, there are three kinds of cost to consider for each rotation: 2027 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2028 /// the loop to the loop header. 2029 /// 2. The possibly missed fall through edges (if they exist) from the loop 2030 /// exits to BB out of the loop. 2031 /// 3. The missed fall through edge (if it exists) from the last BB to the 2032 /// first BB in the loop chain. 2033 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2034 /// We select the best rotation with the smallest cost. 2035 void MachineBlockPlacement::rotateLoopWithProfile( 2036 BlockChain &LoopChain, const MachineLoop &L, 2037 const BlockFilterSet &LoopBlockSet) { 2038 auto HeaderBB = L.getHeader(); 2039 auto HeaderIter = llvm::find(LoopChain, HeaderBB); 2040 auto RotationPos = LoopChain.end(); 2041 2042 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2043 2044 // A utility lambda that scales up a block frequency by dividing it by a 2045 // branch probability which is the reciprocal of the scale. 2046 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2047 unsigned Scale) -> BlockFrequency { 2048 if (Scale == 0) 2049 return 0; 2050 // Use operator / between BlockFrequency and BranchProbability to implement 2051 // saturating multiplication. 2052 return Freq / BranchProbability(1, Scale); 2053 }; 2054 2055 // Compute the cost of the missed fall-through edge to the loop header if the 2056 // chain head is not the loop header. As we only consider natural loops with 2057 // single header, this computation can be done only once. 2058 BlockFrequency HeaderFallThroughCost(0); 2059 for (auto *Pred : HeaderBB->predecessors()) { 2060 BlockChain *PredChain = BlockToChain[Pred]; 2061 if (!LoopBlockSet.count(Pred) && 2062 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2063 auto EdgeFreq = 2064 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2065 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2066 // If the predecessor has only an unconditional jump to the header, we 2067 // need to consider the cost of this jump. 2068 if (Pred->succ_size() == 1) 2069 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2070 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2071 } 2072 } 2073 2074 // Here we collect all exit blocks in the loop, and for each exit we find out 2075 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2076 // as the sum of frequencies of exit edges we collect here, excluding the exit 2077 // edge from the tail of the loop chain. 2078 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2079 for (auto BB : LoopChain) { 2080 auto LargestExitEdgeProb = BranchProbability::getZero(); 2081 for (auto *Succ : BB->successors()) { 2082 BlockChain *SuccChain = BlockToChain[Succ]; 2083 if (!LoopBlockSet.count(Succ) && 2084 (!SuccChain || Succ == *SuccChain->begin())) { 2085 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2086 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2087 } 2088 } 2089 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2090 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2091 ExitsWithFreq.emplace_back(BB, ExitFreq); 2092 } 2093 } 2094 2095 // In this loop we iterate every block in the loop chain and calculate the 2096 // cost assuming the block is the head of the loop chain. When the loop ends, 2097 // we should have found the best candidate as the loop chain's head. 2098 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2099 EndIter = LoopChain.end(); 2100 Iter != EndIter; Iter++, TailIter++) { 2101 // TailIter is used to track the tail of the loop chain if the block we are 2102 // checking (pointed by Iter) is the head of the chain. 2103 if (TailIter == LoopChain.end()) 2104 TailIter = LoopChain.begin(); 2105 2106 auto TailBB = *TailIter; 2107 2108 // Calculate the cost by putting this BB to the top. 2109 BlockFrequency Cost = 0; 2110 2111 // If the current BB is the loop header, we need to take into account the 2112 // cost of the missed fall through edge from outside of the loop to the 2113 // header. 2114 if (Iter != HeaderIter) 2115 Cost += HeaderFallThroughCost; 2116 2117 // Collect the loop exit cost by summing up frequencies of all exit edges 2118 // except the one from the chain tail. 2119 for (auto &ExitWithFreq : ExitsWithFreq) 2120 if (TailBB != ExitWithFreq.first) 2121 Cost += ExitWithFreq.second; 2122 2123 // The cost of breaking the once fall-through edge from the tail to the top 2124 // of the loop chain. Here we need to consider three cases: 2125 // 1. If the tail node has only one successor, then we will get an 2126 // additional jmp instruction. So the cost here is (MisfetchCost + 2127 // JumpInstCost) * tail node frequency. 2128 // 2. If the tail node has two successors, then we may still get an 2129 // additional jmp instruction if the layout successor after the loop 2130 // chain is not its CFG successor. Note that the more frequently executed 2131 // jmp instruction will be put ahead of the other one. Assume the 2132 // frequency of those two branches are x and y, where x is the frequency 2133 // of the edge to the chain head, then the cost will be 2134 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2135 // 3. If the tail node has more than two successors (this rarely happens), 2136 // we won't consider any additional cost. 2137 if (TailBB->isSuccessor(*Iter)) { 2138 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2139 if (TailBB->succ_size() == 1) 2140 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2141 MisfetchCost + JumpInstCost); 2142 else if (TailBB->succ_size() == 2) { 2143 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2144 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2145 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2146 ? TailBBFreq * TailToHeadProb.getCompl() 2147 : TailToHeadFreq; 2148 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2149 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2150 } 2151 } 2152 2153 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2154 << " to the top: " << Cost.getFrequency() << "\n"); 2155 2156 if (Cost < SmallestRotationCost) { 2157 SmallestRotationCost = Cost; 2158 RotationPos = Iter; 2159 } 2160 } 2161 2162 if (RotationPos != LoopChain.end()) { 2163 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2164 << " to the top\n"); 2165 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2166 } 2167 } 2168 2169 /// Collect blocks in the given loop that are to be placed. 2170 /// 2171 /// When profile data is available, exclude cold blocks from the returned set; 2172 /// otherwise, collect all blocks in the loop. 2173 MachineBlockPlacement::BlockFilterSet 2174 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2175 BlockFilterSet LoopBlockSet; 2176 2177 // Filter cold blocks off from LoopBlockSet when profile data is available. 2178 // Collect the sum of frequencies of incoming edges to the loop header from 2179 // outside. If we treat the loop as a super block, this is the frequency of 2180 // the loop. Then for each block in the loop, we calculate the ratio between 2181 // its frequency and the frequency of the loop block. When it is too small, 2182 // don't add it to the loop chain. If there are outer loops, then this block 2183 // will be merged into the first outer loop chain for which this block is not 2184 // cold anymore. This needs precise profile data and we only do this when 2185 // profile data is available. 2186 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2187 BlockFrequency LoopFreq(0); 2188 for (auto LoopPred : L.getHeader()->predecessors()) 2189 if (!L.contains(LoopPred)) 2190 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2191 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2192 2193 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2194 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2195 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2196 continue; 2197 LoopBlockSet.insert(LoopBB); 2198 } 2199 } else 2200 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2201 2202 return LoopBlockSet; 2203 } 2204 2205 /// Forms basic block chains from the natural loop structures. 2206 /// 2207 /// These chains are designed to preserve the existing *structure* of the code 2208 /// as much as possible. We can then stitch the chains together in a way which 2209 /// both preserves the topological structure and minimizes taken conditional 2210 /// branches. 2211 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2212 // First recurse through any nested loops, building chains for those inner 2213 // loops. 2214 for (const MachineLoop *InnerLoop : L) 2215 buildLoopChains(*InnerLoop); 2216 2217 assert(BlockWorkList.empty() && 2218 "BlockWorkList not empty when starting to build loop chains."); 2219 assert(EHPadWorkList.empty() && 2220 "EHPadWorkList not empty when starting to build loop chains."); 2221 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2222 2223 // Check if we have profile data for this function. If yes, we will rotate 2224 // this loop by modeling costs more precisely which requires the profile data 2225 // for better layout. 2226 bool RotateLoopWithProfile = 2227 ForcePreciseRotationCost || 2228 (PreciseRotationCost && F->getFunction().hasProfileData()); 2229 2230 // First check to see if there is an obviously preferable top block for the 2231 // loop. This will default to the header, but may end up as one of the 2232 // predecessors to the header if there is one which will result in strictly 2233 // fewer branches in the loop body. 2234 // When we use profile data to rotate the loop, this is unnecessary. 2235 MachineBasicBlock *LoopTop = 2236 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2237 2238 // If we selected just the header for the loop top, look for a potentially 2239 // profitable exit block in the event that rotating the loop can eliminate 2240 // branches by placing an exit edge at the bottom. 2241 // 2242 // Loops are processed innermost to uttermost, make sure we clear 2243 // PreferredLoopExit before processing a new loop. 2244 PreferredLoopExit = nullptr; 2245 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2246 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2247 2248 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2249 2250 // FIXME: This is a really lame way of walking the chains in the loop: we 2251 // walk the blocks, and use a set to prevent visiting a particular chain 2252 // twice. 2253 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2254 assert(LoopChain.UnscheduledPredecessors == 0 && 2255 "LoopChain should not have unscheduled predecessors."); 2256 UpdatedPreds.insert(&LoopChain); 2257 2258 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2259 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2260 2261 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2262 2263 if (RotateLoopWithProfile) 2264 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2265 else 2266 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2267 2268 DEBUG({ 2269 // Crash at the end so we get all of the debugging output first. 2270 bool BadLoop = false; 2271 if (LoopChain.UnscheduledPredecessors) { 2272 BadLoop = true; 2273 dbgs() << "Loop chain contains a block without its preds placed!\n" 2274 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2275 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2276 } 2277 for (MachineBasicBlock *ChainBB : LoopChain) { 2278 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2279 if (!LoopBlockSet.remove(ChainBB)) { 2280 // We don't mark the loop as bad here because there are real situations 2281 // where this can occur. For example, with an unanalyzable fallthrough 2282 // from a loop block to a non-loop block or vice versa. 2283 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2284 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2285 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2286 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2287 } 2288 } 2289 2290 if (!LoopBlockSet.empty()) { 2291 BadLoop = true; 2292 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2293 dbgs() << "Loop contains blocks never placed into a chain!\n" 2294 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2295 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2296 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2297 } 2298 assert(!BadLoop && "Detected problems with the placement of this loop."); 2299 }); 2300 2301 BlockWorkList.clear(); 2302 EHPadWorkList.clear(); 2303 } 2304 2305 void MachineBlockPlacement::buildCFGChains() { 2306 // Ensure that every BB in the function has an associated chain to simplify 2307 // the assumptions of the remaining algorithm. 2308 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2309 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2310 ++FI) { 2311 MachineBasicBlock *BB = &*FI; 2312 BlockChain *Chain = 2313 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2314 // Also, merge any blocks which we cannot reason about and must preserve 2315 // the exact fallthrough behavior for. 2316 while (true) { 2317 Cond.clear(); 2318 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2319 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2320 break; 2321 2322 MachineFunction::iterator NextFI = std::next(FI); 2323 MachineBasicBlock *NextBB = &*NextFI; 2324 // Ensure that the layout successor is a viable block, as we know that 2325 // fallthrough is a possibility. 2326 assert(NextFI != FE && "Can't fallthrough past the last block."); 2327 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2328 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2329 << "\n"); 2330 Chain->merge(NextBB, nullptr); 2331 #ifndef NDEBUG 2332 BlocksWithUnanalyzableExits.insert(&*BB); 2333 #endif 2334 FI = NextFI; 2335 BB = NextBB; 2336 } 2337 } 2338 2339 // Build any loop-based chains. 2340 PreferredLoopExit = nullptr; 2341 for (MachineLoop *L : *MLI) 2342 buildLoopChains(*L); 2343 2344 assert(BlockWorkList.empty() && 2345 "BlockWorkList should be empty before building final chain."); 2346 assert(EHPadWorkList.empty() && 2347 "EHPadWorkList should be empty before building final chain."); 2348 2349 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2350 for (MachineBasicBlock &MBB : *F) 2351 fillWorkLists(&MBB, UpdatedPreds); 2352 2353 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2354 buildChain(&F->front(), FunctionChain); 2355 2356 #ifndef NDEBUG 2357 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2358 #endif 2359 DEBUG({ 2360 // Crash at the end so we get all of the debugging output first. 2361 bool BadFunc = false; 2362 FunctionBlockSetType FunctionBlockSet; 2363 for (MachineBasicBlock &MBB : *F) 2364 FunctionBlockSet.insert(&MBB); 2365 2366 for (MachineBasicBlock *ChainBB : FunctionChain) 2367 if (!FunctionBlockSet.erase(ChainBB)) { 2368 BadFunc = true; 2369 dbgs() << "Function chain contains a block not in the function!\n" 2370 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2371 } 2372 2373 if (!FunctionBlockSet.empty()) { 2374 BadFunc = true; 2375 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2376 dbgs() << "Function contains blocks never placed into a chain!\n" 2377 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2378 } 2379 assert(!BadFunc && "Detected problems with the block placement."); 2380 }); 2381 2382 // Splice the blocks into place. 2383 MachineFunction::iterator InsertPos = F->begin(); 2384 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2385 for (MachineBasicBlock *ChainBB : FunctionChain) { 2386 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2387 : " ... ") 2388 << getBlockName(ChainBB) << "\n"); 2389 if (InsertPos != MachineFunction::iterator(ChainBB)) 2390 F->splice(InsertPos, ChainBB); 2391 else 2392 ++InsertPos; 2393 2394 // Update the terminator of the previous block. 2395 if (ChainBB == *FunctionChain.begin()) 2396 continue; 2397 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2398 2399 // FIXME: It would be awesome of updateTerminator would just return rather 2400 // than assert when the branch cannot be analyzed in order to remove this 2401 // boiler plate. 2402 Cond.clear(); 2403 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2404 2405 #ifndef NDEBUG 2406 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2407 // Given the exact block placement we chose, we may actually not _need_ to 2408 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2409 // do that at this point is a bug. 2410 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2411 !PrevBB->canFallThrough()) && 2412 "Unexpected block with un-analyzable fallthrough!"); 2413 Cond.clear(); 2414 TBB = FBB = nullptr; 2415 } 2416 #endif 2417 2418 // The "PrevBB" is not yet updated to reflect current code layout, so, 2419 // o. it may fall-through to a block without explicit "goto" instruction 2420 // before layout, and no longer fall-through it after layout; or 2421 // o. just opposite. 2422 // 2423 // analyzeBranch() may return erroneous value for FBB when these two 2424 // situations take place. For the first scenario FBB is mistakenly set NULL; 2425 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2426 // mistakenly pointing to "*BI". 2427 // Thus, if the future change needs to use FBB before the layout is set, it 2428 // has to correct FBB first by using the code similar to the following: 2429 // 2430 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2431 // PrevBB->updateTerminator(); 2432 // Cond.clear(); 2433 // TBB = FBB = nullptr; 2434 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2435 // // FIXME: This should never take place. 2436 // TBB = FBB = nullptr; 2437 // } 2438 // } 2439 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2440 PrevBB->updateTerminator(); 2441 } 2442 2443 // Fixup the last block. 2444 Cond.clear(); 2445 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2446 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2447 F->back().updateTerminator(); 2448 2449 BlockWorkList.clear(); 2450 EHPadWorkList.clear(); 2451 } 2452 2453 void MachineBlockPlacement::optimizeBranches() { 2454 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2455 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2456 2457 // Now that all the basic blocks in the chain have the proper layout, 2458 // make a final call to AnalyzeBranch with AllowModify set. 2459 // Indeed, the target may be able to optimize the branches in a way we 2460 // cannot because all branches may not be analyzable. 2461 // E.g., the target may be able to remove an unconditional branch to 2462 // a fallthrough when it occurs after predicated terminators. 2463 for (MachineBasicBlock *ChainBB : FunctionChain) { 2464 Cond.clear(); 2465 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2466 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2467 // If PrevBB has a two-way branch, try to re-order the branches 2468 // such that we branch to the successor with higher probability first. 2469 if (TBB && !Cond.empty() && FBB && 2470 MBPI->getEdgeProbability(ChainBB, FBB) > 2471 MBPI->getEdgeProbability(ChainBB, TBB) && 2472 !TII->reverseBranchCondition(Cond)) { 2473 DEBUG(dbgs() << "Reverse order of the two branches: " 2474 << getBlockName(ChainBB) << "\n"); 2475 DEBUG(dbgs() << " Edge probability: " 2476 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2477 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2478 DebugLoc dl; // FIXME: this is nowhere 2479 TII->removeBranch(*ChainBB); 2480 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2481 ChainBB->updateTerminator(); 2482 } 2483 } 2484 } 2485 } 2486 2487 void MachineBlockPlacement::alignBlocks() { 2488 // Walk through the backedges of the function now that we have fully laid out 2489 // the basic blocks and align the destination of each backedge. We don't rely 2490 // exclusively on the loop info here so that we can align backedges in 2491 // unnatural CFGs and backedges that were introduced purely because of the 2492 // loop rotations done during this layout pass. 2493 if (F->getFunction().optForSize()) 2494 return; 2495 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2496 if (FunctionChain.begin() == FunctionChain.end()) 2497 return; // Empty chain. 2498 2499 const BranchProbability ColdProb(1, 5); // 20% 2500 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2501 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2502 for (MachineBasicBlock *ChainBB : FunctionChain) { 2503 if (ChainBB == *FunctionChain.begin()) 2504 continue; 2505 2506 // Don't align non-looping basic blocks. These are unlikely to execute 2507 // enough times to matter in practice. Note that we'll still handle 2508 // unnatural CFGs inside of a natural outer loop (the common case) and 2509 // rotated loops. 2510 MachineLoop *L = MLI->getLoopFor(ChainBB); 2511 if (!L) 2512 continue; 2513 2514 unsigned Align = TLI->getPrefLoopAlignment(L); 2515 if (!Align) 2516 continue; // Don't care about loop alignment. 2517 2518 // If the block is cold relative to the function entry don't waste space 2519 // aligning it. 2520 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2521 if (Freq < WeightedEntryFreq) 2522 continue; 2523 2524 // If the block is cold relative to its loop header, don't align it 2525 // regardless of what edges into the block exist. 2526 MachineBasicBlock *LoopHeader = L->getHeader(); 2527 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2528 if (Freq < (LoopHeaderFreq * ColdProb)) 2529 continue; 2530 2531 // Check for the existence of a non-layout predecessor which would benefit 2532 // from aligning this block. 2533 MachineBasicBlock *LayoutPred = 2534 &*std::prev(MachineFunction::iterator(ChainBB)); 2535 2536 // Force alignment if all the predecessors are jumps. We already checked 2537 // that the block isn't cold above. 2538 if (!LayoutPred->isSuccessor(ChainBB)) { 2539 ChainBB->setAlignment(Align); 2540 continue; 2541 } 2542 2543 // Align this block if the layout predecessor's edge into this block is 2544 // cold relative to the block. When this is true, other predecessors make up 2545 // all of the hot entries into the block and thus alignment is likely to be 2546 // important. 2547 BranchProbability LayoutProb = 2548 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2549 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2550 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2551 ChainBB->setAlignment(Align); 2552 } 2553 } 2554 2555 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2556 /// it was duplicated into its chain predecessor and removed. 2557 /// \p BB - Basic block that may be duplicated. 2558 /// 2559 /// \p LPred - Chosen layout predecessor of \p BB. 2560 /// Updated to be the chain end if LPred is removed. 2561 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2562 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2563 /// Used to identify which blocks to update predecessor 2564 /// counts. 2565 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2566 /// chosen in the given order due to unnatural CFG 2567 /// only needed if \p BB is removed and 2568 /// \p PrevUnplacedBlockIt pointed to \p BB. 2569 /// @return true if \p BB was removed. 2570 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2571 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2572 const MachineBasicBlock *LoopHeaderBB, 2573 BlockChain &Chain, BlockFilterSet *BlockFilter, 2574 MachineFunction::iterator &PrevUnplacedBlockIt) { 2575 bool Removed, DuplicatedToLPred; 2576 bool DuplicatedToOriginalLPred; 2577 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2578 PrevUnplacedBlockIt, 2579 DuplicatedToLPred); 2580 if (!Removed) 2581 return false; 2582 DuplicatedToOriginalLPred = DuplicatedToLPred; 2583 // Iteratively try to duplicate again. It can happen that a block that is 2584 // duplicated into is still small enough to be duplicated again. 2585 // No need to call markBlockSuccessors in this case, as the blocks being 2586 // duplicated from here on are already scheduled. 2587 // Note that DuplicatedToLPred always implies Removed. 2588 while (DuplicatedToLPred) { 2589 assert(Removed && "Block must have been removed to be duplicated into its " 2590 "layout predecessor."); 2591 MachineBasicBlock *DupBB, *DupPred; 2592 // The removal callback causes Chain.end() to be updated when a block is 2593 // removed. On the first pass through the loop, the chain end should be the 2594 // same as it was on function entry. On subsequent passes, because we are 2595 // duplicating the block at the end of the chain, if it is removed the 2596 // chain will have shrunk by one block. 2597 BlockChain::iterator ChainEnd = Chain.end(); 2598 DupBB = *(--ChainEnd); 2599 // Now try to duplicate again. 2600 if (ChainEnd == Chain.begin()) 2601 break; 2602 DupPred = *std::prev(ChainEnd); 2603 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2604 PrevUnplacedBlockIt, 2605 DuplicatedToLPred); 2606 } 2607 // If BB was duplicated into LPred, it is now scheduled. But because it was 2608 // removed, markChainSuccessors won't be called for its chain. Instead we 2609 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2610 // at the end because repeating the tail duplication can increase the number 2611 // of unscheduled predecessors. 2612 LPred = *std::prev(Chain.end()); 2613 if (DuplicatedToOriginalLPred) 2614 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2615 return true; 2616 } 2617 2618 /// Tail duplicate \p BB into (some) predecessors if profitable. 2619 /// \p BB - Basic block that may be duplicated 2620 /// \p LPred - Chosen layout predecessor of \p BB 2621 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2622 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2623 /// Used to identify which blocks to update predecessor 2624 /// counts. 2625 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2626 /// chosen in the given order due to unnatural CFG 2627 /// only needed if \p BB is removed and 2628 /// \p PrevUnplacedBlockIt pointed to \p BB. 2629 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2630 /// only be true if the block was removed. 2631 /// \return - True if the block was duplicated into all preds and removed. 2632 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2633 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2634 BlockChain &Chain, BlockFilterSet *BlockFilter, 2635 MachineFunction::iterator &PrevUnplacedBlockIt, 2636 bool &DuplicatedToLPred) { 2637 DuplicatedToLPred = false; 2638 if (!shouldTailDuplicate(BB)) 2639 return false; 2640 2641 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2642 << BB->getNumber() << "\n"); 2643 2644 // This has to be a callback because none of it can be done after 2645 // BB is deleted. 2646 bool Removed = false; 2647 auto RemovalCallback = 2648 [&](MachineBasicBlock *RemBB) { 2649 // Signal to outer function 2650 Removed = true; 2651 2652 // Conservative default. 2653 bool InWorkList = true; 2654 // Remove from the Chain and Chain Map 2655 if (BlockToChain.count(RemBB)) { 2656 BlockChain *Chain = BlockToChain[RemBB]; 2657 InWorkList = Chain->UnscheduledPredecessors == 0; 2658 Chain->remove(RemBB); 2659 BlockToChain.erase(RemBB); 2660 } 2661 2662 // Handle the unplaced block iterator 2663 if (&(*PrevUnplacedBlockIt) == RemBB) { 2664 PrevUnplacedBlockIt++; 2665 } 2666 2667 // Handle the Work Lists 2668 if (InWorkList) { 2669 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2670 if (RemBB->isEHPad()) 2671 RemoveList = EHPadWorkList; 2672 RemoveList.erase( 2673 llvm::remove_if(RemoveList, 2674 [RemBB](MachineBasicBlock *BB) { 2675 return BB == RemBB; 2676 }), 2677 RemoveList.end()); 2678 } 2679 2680 // Handle the filter set 2681 if (BlockFilter) { 2682 BlockFilter->remove(RemBB); 2683 } 2684 2685 // Remove the block from loop info. 2686 MLI->removeBlock(RemBB); 2687 if (RemBB == PreferredLoopExit) 2688 PreferredLoopExit = nullptr; 2689 2690 DEBUG(dbgs() << "TailDuplicator deleted block: " 2691 << getBlockName(RemBB) << "\n"); 2692 }; 2693 auto RemovalCallbackRef = 2694 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2695 2696 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2697 bool IsSimple = TailDup.isSimpleBB(BB); 2698 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2699 &DuplicatedPreds, &RemovalCallbackRef); 2700 2701 // Update UnscheduledPredecessors to reflect tail-duplication. 2702 DuplicatedToLPred = false; 2703 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2704 // We're only looking for unscheduled predecessors that match the filter. 2705 BlockChain* PredChain = BlockToChain[Pred]; 2706 if (Pred == LPred) 2707 DuplicatedToLPred = true; 2708 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2709 || PredChain == &Chain) 2710 continue; 2711 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2712 if (BlockFilter && !BlockFilter->count(NewSucc)) 2713 continue; 2714 BlockChain *NewChain = BlockToChain[NewSucc]; 2715 if (NewChain != &Chain && NewChain != PredChain) 2716 NewChain->UnscheduledPredecessors++; 2717 } 2718 } 2719 return Removed; 2720 } 2721 2722 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2723 if (skipFunction(MF.getFunction())) 2724 return false; 2725 2726 // Check for single-block functions and skip them. 2727 if (std::next(MF.begin()) == MF.end()) 2728 return false; 2729 2730 F = &MF; 2731 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2732 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2733 getAnalysis<MachineBlockFrequencyInfo>()); 2734 MLI = &getAnalysis<MachineLoopInfo>(); 2735 TII = MF.getSubtarget().getInstrInfo(); 2736 TLI = MF.getSubtarget().getTargetLowering(); 2737 MPDT = nullptr; 2738 2739 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2740 // there are no MachineLoops. 2741 PreferredLoopExit = nullptr; 2742 2743 assert(BlockToChain.empty() && 2744 "BlockToChain map should be empty before starting placement."); 2745 assert(ComputedEdges.empty() && 2746 "Computed Edge map should be empty before starting placement."); 2747 2748 unsigned TailDupSize = TailDupPlacementThreshold; 2749 // If only the aggressive threshold is explicitly set, use it. 2750 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2751 TailDupPlacementThreshold.getNumOccurrences() == 0) 2752 TailDupSize = TailDupPlacementAggressiveThreshold; 2753 2754 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2755 // For agressive optimization, we can adjust some thresholds to be less 2756 // conservative. 2757 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2758 // At O3 we should be more willing to copy blocks for tail duplication. This 2759 // increases size pressure, so we only do it at O3 2760 // Do this unless only the regular threshold is explicitly set. 2761 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2762 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2763 TailDupSize = TailDupPlacementAggressiveThreshold; 2764 } 2765 2766 if (allowTailDupPlacement()) { 2767 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2768 if (MF.getFunction().optForSize()) 2769 TailDupSize = 1; 2770 bool PreRegAlloc = false; 2771 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 2772 precomputeTriangleChains(); 2773 } 2774 2775 buildCFGChains(); 2776 2777 // Changing the layout can create new tail merging opportunities. 2778 // TailMerge can create jump into if branches that make CFG irreducible for 2779 // HW that requires structured CFG. 2780 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2781 PassConfig->getEnableTailMerge() && 2782 BranchFoldPlacement; 2783 // No tail merging opportunities if the block number is less than four. 2784 if (MF.size() > 3 && EnableTailMerge) { 2785 unsigned TailMergeSize = TailDupSize + 1; 2786 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2787 *MBPI, TailMergeSize); 2788 2789 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2790 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2791 /*AfterBlockPlacement=*/true)) { 2792 // Redo the layout if tail merging creates/removes/moves blocks. 2793 BlockToChain.clear(); 2794 ComputedEdges.clear(); 2795 // Must redo the post-dominator tree if blocks were changed. 2796 if (MPDT) 2797 MPDT->runOnMachineFunction(MF); 2798 ChainAllocator.DestroyAll(); 2799 buildCFGChains(); 2800 } 2801 } 2802 2803 optimizeBranches(); 2804 alignBlocks(); 2805 2806 BlockToChain.clear(); 2807 ComputedEdges.clear(); 2808 ChainAllocator.DestroyAll(); 2809 2810 if (AlignAllBlock) 2811 // Align all of the blocks in the function to a specific alignment. 2812 for (MachineBasicBlock &MBB : MF) 2813 MBB.setAlignment(AlignAllBlock); 2814 else if (AlignAllNonFallThruBlocks) { 2815 // Align all of the blocks that have no fall-through predecessors to a 2816 // specific alignment. 2817 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2818 auto LayoutPred = std::prev(MBI); 2819 if (!LayoutPred->isSuccessor(&*MBI)) 2820 MBI->setAlignment(AlignAllNonFallThruBlocks); 2821 } 2822 } 2823 if (ViewBlockLayoutWithBFI != GVDT_None && 2824 (ViewBlockFreqFuncName.empty() || 2825 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 2826 MBFI->view("MBP." + MF.getName(), false); 2827 } 2828 2829 2830 // We always return true as we have no way to track whether the final order 2831 // differs from the original order. 2832 return true; 2833 } 2834 2835 namespace { 2836 2837 /// A pass to compute block placement statistics. 2838 /// 2839 /// A separate pass to compute interesting statistics for evaluating block 2840 /// placement. This is separate from the actual placement pass so that they can 2841 /// be computed in the absence of any placement transformations or when using 2842 /// alternative placement strategies. 2843 class MachineBlockPlacementStats : public MachineFunctionPass { 2844 /// A handle to the branch probability pass. 2845 const MachineBranchProbabilityInfo *MBPI; 2846 2847 /// A handle to the function-wide block frequency pass. 2848 const MachineBlockFrequencyInfo *MBFI; 2849 2850 public: 2851 static char ID; // Pass identification, replacement for typeid 2852 2853 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2854 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2855 } 2856 2857 bool runOnMachineFunction(MachineFunction &F) override; 2858 2859 void getAnalysisUsage(AnalysisUsage &AU) const override { 2860 AU.addRequired<MachineBranchProbabilityInfo>(); 2861 AU.addRequired<MachineBlockFrequencyInfo>(); 2862 AU.setPreservesAll(); 2863 MachineFunctionPass::getAnalysisUsage(AU); 2864 } 2865 }; 2866 2867 } // end anonymous namespace 2868 2869 char MachineBlockPlacementStats::ID = 0; 2870 2871 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2872 2873 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2874 "Basic Block Placement Stats", false, false) 2875 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2876 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2877 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2878 "Basic Block Placement Stats", false, false) 2879 2880 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2881 // Check for single-block functions and skip them. 2882 if (std::next(F.begin()) == F.end()) 2883 return false; 2884 2885 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2886 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2887 2888 for (MachineBasicBlock &MBB : F) { 2889 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2890 Statistic &NumBranches = 2891 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2892 Statistic &BranchTakenFreq = 2893 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2894 for (MachineBasicBlock *Succ : MBB.successors()) { 2895 // Skip if this successor is a fallthrough. 2896 if (MBB.isLayoutSuccessor(Succ)) 2897 continue; 2898 2899 BlockFrequency EdgeFreq = 2900 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2901 ++NumBranches; 2902 BranchTakenFreq += EdgeFreq.getFrequency(); 2903 } 2904 } 2905 2906 return false; 2907 } 2908