xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 5bae81ba9e6db16fac3cc0ee96b134f3f588c8f4)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <tuple>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "block-placement"
79 
80 STATISTIC(NumCondBranches, "Number of conditional branches");
81 STATISTIC(NumUncondBranches, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq,
83           "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq,
85           "Potential frequency of taking unconditional branches");
86 
87 static cl::opt<unsigned> AlignAllBlock(
88     "align-all-blocks",
89     cl::desc("Force the alignment of all blocks in the function in log2 format "
90              "(e.g 4 means align on 16B boundaries)."),
91     cl::init(0), cl::Hidden);
92 
93 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
94     "align-all-nofallthru-blocks",
95     cl::desc("Force the alignment of all blocks that have no fall-through "
96              "predecessors (i.e. don't add nops that are executed). In log2 "
97              "format (e.g 4 means align on 16B boundaries)."),
98     cl::init(0), cl::Hidden);
99 
100 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
101     "max-bytes-for-alignment",
102     cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103              "alignment"),
104     cl::init(0), cl::Hidden);
105 
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt<unsigned> ExitBlockBias(
108     "block-placement-exit-block-bias",
109     cl::desc("Block frequency percentage a loop exit block needs "
110              "over the original exit to be considered the new exit."),
111     cl::init(0), cl::Hidden);
112 
113 // Definition:
114 // - Outlining: placement of a basic block outside the chain or hot path.
115 
116 static cl::opt<unsigned> LoopToColdBlockRatio(
117     "loop-to-cold-block-ratio",
118     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119              "(frequency of block) is greater than this ratio"),
120     cl::init(5), cl::Hidden);
121 
122 static cl::opt<bool> ForceLoopColdBlock(
123     "force-loop-cold-block",
124     cl::desc("Force outlining cold blocks from loops."),
125     cl::init(false), cl::Hidden);
126 
127 static cl::opt<bool>
128     PreciseRotationCost("precise-rotation-cost",
129                         cl::desc("Model the cost of loop rotation more "
130                                  "precisely by using profile data."),
131                         cl::init(false), cl::Hidden);
132 
133 static cl::opt<bool>
134     ForcePreciseRotationCost("force-precise-rotation-cost",
135                              cl::desc("Force the use of precise cost "
136                                       "loop rotation strategy."),
137                              cl::init(false), cl::Hidden);
138 
139 static cl::opt<unsigned> MisfetchCost(
140     "misfetch-cost",
141     cl::desc("Cost that models the probabilistic risk of an instruction "
142              "misfetch due to a jump comparing to falling through, whose cost "
143              "is zero."),
144     cl::init(1), cl::Hidden);
145 
146 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
147                                       cl::desc("Cost of jump instructions."),
148                                       cl::init(1), cl::Hidden);
149 static cl::opt<bool>
150 TailDupPlacement("tail-dup-placement",
151               cl::desc("Perform tail duplication during placement. "
152                        "Creates more fallthrough opportunites in "
153                        "outline branches."),
154               cl::init(true), cl::Hidden);
155 
156 static cl::opt<bool>
157 BranchFoldPlacement("branch-fold-placement",
158               cl::desc("Perform branch folding during placement. "
159                        "Reduces code size."),
160               cl::init(true), cl::Hidden);
161 
162 // Heuristic for tail duplication.
163 static cl::opt<unsigned> TailDupPlacementThreshold(
164     "tail-dup-placement-threshold",
165     cl::desc("Instruction cutoff for tail duplication during layout. "
166              "Tail merging during layout is forced to have a threshold "
167              "that won't conflict."), cl::init(2),
168     cl::Hidden);
169 
170 // Heuristic for aggressive tail duplication.
171 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
172     "tail-dup-placement-aggressive-threshold",
173     cl::desc("Instruction cutoff for aggressive tail duplication during "
174              "layout. Used at -O3. Tail merging during layout is forced to "
175              "have a threshold that won't conflict."), cl::init(4),
176     cl::Hidden);
177 
178 // Heuristic for tail duplication.
179 static cl::opt<unsigned> TailDupPlacementPenalty(
180     "tail-dup-placement-penalty",
181     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182              "Copying can increase fallthrough, but it also increases icache "
183              "pressure. This parameter controls the penalty to account for that. "
184              "Percent as integer."),
185     cl::init(2),
186     cl::Hidden);
187 
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt<unsigned> TailDupProfilePercentThreshold(
190     "tail-dup-profile-percent-threshold",
191     cl::desc("If profile count information is used in tail duplication cost "
192              "model, the gained fall through number from tail duplication "
193              "should be at least this percent of hot count."),
194     cl::init(50), cl::Hidden);
195 
196 // Heuristic for triangle chains.
197 static cl::opt<unsigned> TriangleChainCount(
198     "triangle-chain-count",
199     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200              "triangle tail duplication heuristic to kick in. 0 to disable."),
201     cl::init(2),
202     cl::Hidden);
203 
204 // Use case: When block layout is visualized after MBP pass, the basic blocks
205 // are labeled in layout order; meanwhile blocks could be numbered in a
206 // different order. It's hard to map between the graph and pass output.
207 // With this option on, the basic blocks are renumbered in function layout
208 // order. For debugging only.
209 static cl::opt<bool> RenumberBlocksBeforeView(
210     "renumber-blocks-before-view",
211     cl::desc(
212         "If true, basic blocks are re-numbered before MBP layout is printed "
213         "into a dot graph. Only used when a function is being printed."),
214     cl::init(false), cl::Hidden);
215 
216 static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks(
217     "ext-tsp-block-placement-max-blocks",
218     cl::desc("Maximum number of basic blocks in a function to run ext-TSP "
219              "block placement."),
220     cl::init(UINT_MAX), cl::Hidden);
221 
222 namespace llvm {
223 extern cl::opt<bool> EnableExtTspBlockPlacement;
224 extern cl::opt<bool> ApplyExtTspWithoutProfile;
225 extern cl::opt<unsigned> StaticLikelyProb;
226 extern cl::opt<unsigned> ProfileLikelyProb;
227 
228 // Internal option used to control BFI display only after MBP pass.
229 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
230 // -view-block-layout-with-bfi=
231 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
232 
233 // Command line option to specify the name of the function for CFG dump
234 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
235 extern cl::opt<std::string> ViewBlockFreqFuncName;
236 } // namespace llvm
237 
238 namespace {
239 
240 class BlockChain;
241 
242 /// Type for our function-wide basic block -> block chain mapping.
243 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
244 
245 /// A chain of blocks which will be laid out contiguously.
246 ///
247 /// This is the datastructure representing a chain of consecutive blocks that
248 /// are profitable to layout together in order to maximize fallthrough
249 /// probabilities and code locality. We also can use a block chain to represent
250 /// a sequence of basic blocks which have some external (correctness)
251 /// requirement for sequential layout.
252 ///
253 /// Chains can be built around a single basic block and can be merged to grow
254 /// them. They participate in a block-to-chain mapping, which is updated
255 /// automatically as chains are merged together.
256 class BlockChain {
257   /// The sequence of blocks belonging to this chain.
258   ///
259   /// This is the sequence of blocks for a particular chain. These will be laid
260   /// out in-order within the function.
261   SmallVector<MachineBasicBlock *, 4> Blocks;
262 
263   /// A handle to the function-wide basic block to block chain mapping.
264   ///
265   /// This is retained in each block chain to simplify the computation of child
266   /// block chains for SCC-formation and iteration. We store the edges to child
267   /// basic blocks, and map them back to their associated chains using this
268   /// structure.
269   BlockToChainMapType &BlockToChain;
270 
271 public:
272   /// Construct a new BlockChain.
273   ///
274   /// This builds a new block chain representing a single basic block in the
275   /// function. It also registers itself as the chain that block participates
276   /// in with the BlockToChain mapping.
277   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
278       : Blocks(1, BB), BlockToChain(BlockToChain) {
279     assert(BB && "Cannot create a chain with a null basic block");
280     BlockToChain[BB] = this;
281   }
282 
283   /// Iterator over blocks within the chain.
284   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
285   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
286 
287   /// Beginning of blocks within the chain.
288   iterator begin() { return Blocks.begin(); }
289   const_iterator begin() const { return Blocks.begin(); }
290 
291   /// End of blocks within the chain.
292   iterator end() { return Blocks.end(); }
293   const_iterator end() const { return Blocks.end(); }
294 
295   bool remove(MachineBasicBlock* BB) {
296     for(iterator i = begin(); i != end(); ++i) {
297       if (*i == BB) {
298         Blocks.erase(i);
299         return true;
300       }
301     }
302     return false;
303   }
304 
305   /// Merge a block chain into this one.
306   ///
307   /// This routine merges a block chain into this one. It takes care of forming
308   /// a contiguous sequence of basic blocks, updating the edge list, and
309   /// updating the block -> chain mapping. It does not free or tear down the
310   /// old chain, but the old chain's block list is no longer valid.
311   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
312     assert(BB && "Can't merge a null block.");
313     assert(!Blocks.empty() && "Can't merge into an empty chain.");
314 
315     // Fast path in case we don't have a chain already.
316     if (!Chain) {
317       assert(!BlockToChain[BB] &&
318              "Passed chain is null, but BB has entry in BlockToChain.");
319       Blocks.push_back(BB);
320       BlockToChain[BB] = this;
321       return;
322     }
323 
324     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
325     assert(Chain->begin() != Chain->end());
326 
327     // Update the incoming blocks to point to this chain, and add them to the
328     // chain structure.
329     for (MachineBasicBlock *ChainBB : *Chain) {
330       Blocks.push_back(ChainBB);
331       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
332       BlockToChain[ChainBB] = this;
333     }
334   }
335 
336 #ifndef NDEBUG
337   /// Dump the blocks in this chain.
338   LLVM_DUMP_METHOD void dump() {
339     for (MachineBasicBlock *MBB : *this)
340       MBB->dump();
341   }
342 #endif // NDEBUG
343 
344   /// Count of predecessors of any block within the chain which have not
345   /// yet been scheduled.  In general, we will delay scheduling this chain
346   /// until those predecessors are scheduled (or we find a sufficiently good
347   /// reason to override this heuristic.)  Note that when forming loop chains,
348   /// blocks outside the loop are ignored and treated as if they were already
349   /// scheduled.
350   ///
351   /// Note: This field is reinitialized multiple times - once for each loop,
352   /// and then once for the function as a whole.
353   unsigned UnscheduledPredecessors = 0;
354 };
355 
356 class MachineBlockPlacement : public MachineFunctionPass {
357   /// A type for a block filter set.
358   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
359 
360   /// Pair struct containing basic block and taildup profitability
361   struct BlockAndTailDupResult {
362     MachineBasicBlock *BB = nullptr;
363     bool ShouldTailDup;
364   };
365 
366   /// Triple struct containing edge weight and the edge.
367   struct WeightedEdge {
368     BlockFrequency Weight;
369     MachineBasicBlock *Src = nullptr;
370     MachineBasicBlock *Dest = nullptr;
371   };
372 
373   /// work lists of blocks that are ready to be laid out
374   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
375   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
376 
377   /// Edges that have already been computed as optimal.
378   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
379 
380   /// Machine Function
381   MachineFunction *F = nullptr;
382 
383   /// A handle to the branch probability pass.
384   const MachineBranchProbabilityInfo *MBPI = nullptr;
385 
386   /// A handle to the function-wide block frequency pass.
387   std::unique_ptr<MBFIWrapper> MBFI;
388 
389   /// A handle to the loop info.
390   MachineLoopInfo *MLI = nullptr;
391 
392   /// Preferred loop exit.
393   /// Member variable for convenience. It may be removed by duplication deep
394   /// in the call stack.
395   MachineBasicBlock *PreferredLoopExit = nullptr;
396 
397   /// A handle to the target's instruction info.
398   const TargetInstrInfo *TII = nullptr;
399 
400   /// A handle to the target's lowering info.
401   const TargetLoweringBase *TLI = nullptr;
402 
403   /// A handle to the post dominator tree.
404   MachinePostDominatorTree *MPDT = nullptr;
405 
406   ProfileSummaryInfo *PSI = nullptr;
407 
408   /// Duplicator used to duplicate tails during placement.
409   ///
410   /// Placement decisions can open up new tail duplication opportunities, but
411   /// since tail duplication affects placement decisions of later blocks, it
412   /// must be done inline.
413   TailDuplicator TailDup;
414 
415   /// Partial tail duplication threshold.
416   BlockFrequency DupThreshold;
417 
418   /// True:  use block profile count to compute tail duplication cost.
419   /// False: use block frequency to compute tail duplication cost.
420   bool UseProfileCount = false;
421 
422   /// Allocator and owner of BlockChain structures.
423   ///
424   /// We build BlockChains lazily while processing the loop structure of
425   /// a function. To reduce malloc traffic, we allocate them using this
426   /// slab-like allocator, and destroy them after the pass completes. An
427   /// important guarantee is that this allocator produces stable pointers to
428   /// the chains.
429   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
430 
431   /// Function wide BasicBlock to BlockChain mapping.
432   ///
433   /// This mapping allows efficiently moving from any given basic block to the
434   /// BlockChain it participates in, if any. We use it to, among other things,
435   /// allow implicitly defining edges between chains as the existing edges
436   /// between basic blocks.
437   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
438 
439 #ifndef NDEBUG
440   /// The set of basic blocks that have terminators that cannot be fully
441   /// analyzed.  These basic blocks cannot be re-ordered safely by
442   /// MachineBlockPlacement, and we must preserve physical layout of these
443   /// blocks and their successors through the pass.
444   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
445 #endif
446 
447   /// Get block profile count or frequency according to UseProfileCount.
448   /// The return value is used to model tail duplication cost.
449   BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
450     if (UseProfileCount) {
451       auto Count = MBFI->getBlockProfileCount(BB);
452       if (Count)
453         return BlockFrequency(*Count);
454       else
455         return BlockFrequency(0);
456     } else
457       return MBFI->getBlockFreq(BB);
458   }
459 
460   /// Scale the DupThreshold according to basic block size.
461   BlockFrequency scaleThreshold(MachineBasicBlock *BB);
462   void initDupThreshold();
463 
464   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
465   /// if the count goes to 0, add them to the appropriate work list.
466   void markChainSuccessors(
467       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
468       const BlockFilterSet *BlockFilter = nullptr);
469 
470   /// Decrease the UnscheduledPredecessors count for a single block, and
471   /// if the count goes to 0, add them to the appropriate work list.
472   void markBlockSuccessors(
473       const BlockChain &Chain, const MachineBasicBlock *BB,
474       const MachineBasicBlock *LoopHeaderBB,
475       const BlockFilterSet *BlockFilter = nullptr);
476 
477   BranchProbability
478   collectViableSuccessors(
479       const MachineBasicBlock *BB, const BlockChain &Chain,
480       const BlockFilterSet *BlockFilter,
481       SmallVector<MachineBasicBlock *, 4> &Successors);
482   bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
483                        BlockFilterSet *BlockFilter);
484   void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
485                                MachineBasicBlock *BB,
486                                BlockFilterSet *BlockFilter);
487   bool repeatedlyTailDuplicateBlock(
488       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
489       const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
490       BlockFilterSet *BlockFilter,
491       MachineFunction::iterator &PrevUnplacedBlockIt,
492       BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt);
493   bool
494   maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
495                           BlockChain &Chain, BlockFilterSet *BlockFilter,
496                           MachineFunction::iterator &PrevUnplacedBlockIt,
497                           BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
498                           bool &DuplicatedToLPred);
499   bool hasBetterLayoutPredecessor(
500       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
501       const BlockChain &SuccChain, BranchProbability SuccProb,
502       BranchProbability RealSuccProb, const BlockChain &Chain,
503       const BlockFilterSet *BlockFilter);
504   BlockAndTailDupResult selectBestSuccessor(
505       const MachineBasicBlock *BB, const BlockChain &Chain,
506       const BlockFilterSet *BlockFilter);
507   MachineBasicBlock *selectBestCandidateBlock(
508       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
509   MachineBasicBlock *
510   getFirstUnplacedBlock(const BlockChain &PlacedChain,
511                         MachineFunction::iterator &PrevUnplacedBlockIt);
512   MachineBasicBlock *
513   getFirstUnplacedBlock(const BlockChain &PlacedChain,
514                         BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
515                         const BlockFilterSet *BlockFilter);
516 
517   /// Add a basic block to the work list if it is appropriate.
518   ///
519   /// If the optional parameter BlockFilter is provided, only MBB
520   /// present in the set will be added to the worklist. If nullptr
521   /// is provided, no filtering occurs.
522   void fillWorkLists(const MachineBasicBlock *MBB,
523                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
524                      const BlockFilterSet *BlockFilter);
525 
526   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
527                   BlockFilterSet *BlockFilter = nullptr);
528   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
529                                const MachineBasicBlock *OldTop);
530   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
531                                const BlockFilterSet &LoopBlockSet);
532   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
533                                     const BlockFilterSet &LoopBlockSet);
534   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
535                                   const MachineBasicBlock *OldTop,
536                                   const MachineBasicBlock *ExitBB,
537                                   const BlockFilterSet &LoopBlockSet);
538   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
539       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
540   MachineBasicBlock *findBestLoopTop(
541       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
542   MachineBasicBlock *findBestLoopExit(
543       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
544       BlockFrequency &ExitFreq);
545   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
546   void buildLoopChains(const MachineLoop &L);
547   void rotateLoop(
548       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
549       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
550   void rotateLoopWithProfile(
551       BlockChain &LoopChain, const MachineLoop &L,
552       const BlockFilterSet &LoopBlockSet);
553   void buildCFGChains();
554   void optimizeBranches();
555   void alignBlocks();
556   /// Returns true if a block should be tail-duplicated to increase fallthrough
557   /// opportunities.
558   bool shouldTailDuplicate(MachineBasicBlock *BB);
559   /// Check the edge frequencies to see if tail duplication will increase
560   /// fallthroughs.
561   bool isProfitableToTailDup(
562     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
563     BranchProbability QProb,
564     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
565 
566   /// Check for a trellis layout.
567   bool isTrellis(const MachineBasicBlock *BB,
568                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
569                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
570 
571   /// Get the best successor given a trellis layout.
572   BlockAndTailDupResult getBestTrellisSuccessor(
573       const MachineBasicBlock *BB,
574       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
575       BranchProbability AdjustedSumProb, const BlockChain &Chain,
576       const BlockFilterSet *BlockFilter);
577 
578   /// Get the best pair of non-conflicting edges.
579   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
580       const MachineBasicBlock *BB,
581       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
582 
583   /// Returns true if a block can tail duplicate into all unplaced
584   /// predecessors. Filters based on loop.
585   bool canTailDuplicateUnplacedPreds(
586       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
587       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
588 
589   /// Find chains of triangles to tail-duplicate where a global analysis works,
590   /// but a local analysis would not find them.
591   void precomputeTriangleChains();
592 
593   /// Apply a post-processing step optimizing block placement.
594   void applyExtTsp();
595 
596   /// Modify the existing block placement in the function and adjust all jumps.
597   void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
598 
599   /// Create a single CFG chain from the current block order.
600   void createCFGChainExtTsp();
601 
602 public:
603   static char ID; // Pass identification, replacement for typeid
604 
605   MachineBlockPlacement() : MachineFunctionPass(ID) {
606     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
607   }
608 
609   bool runOnMachineFunction(MachineFunction &F) override;
610 
611   bool allowTailDupPlacement() const {
612     assert(F);
613     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
614   }
615 
616   void getAnalysisUsage(AnalysisUsage &AU) const override {
617     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
618     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
619     if (TailDupPlacement)
620       AU.addRequired<MachinePostDominatorTreeWrapperPass>();
621     AU.addRequired<MachineLoopInfoWrapperPass>();
622     AU.addRequired<ProfileSummaryInfoWrapperPass>();
623     AU.addRequired<TargetPassConfig>();
624     MachineFunctionPass::getAnalysisUsage(AU);
625   }
626 };
627 
628 } // end anonymous namespace
629 
630 char MachineBlockPlacement::ID = 0;
631 
632 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
633 
634 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
635                       "Branch Probability Basic Block Placement", false, false)
636 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
637 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
638 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
639 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
640 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
641 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
642                     "Branch Probability Basic Block Placement", false, false)
643 
644 #ifndef NDEBUG
645 /// Helper to print the name of a MBB.
646 ///
647 /// Only used by debug logging.
648 static std::string getBlockName(const MachineBasicBlock *BB) {
649   std::string Result;
650   raw_string_ostream OS(Result);
651   OS << printMBBReference(*BB);
652   OS << " ('" << BB->getName() << "')";
653   OS.flush();
654   return Result;
655 }
656 #endif
657 
658 /// Mark a chain's successors as having one fewer preds.
659 ///
660 /// When a chain is being merged into the "placed" chain, this routine will
661 /// quickly walk the successors of each block in the chain and mark them as
662 /// having one fewer active predecessor. It also adds any successors of this
663 /// chain which reach the zero-predecessor state to the appropriate worklist.
664 void MachineBlockPlacement::markChainSuccessors(
665     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
666     const BlockFilterSet *BlockFilter) {
667   // Walk all the blocks in this chain, marking their successors as having
668   // a predecessor placed.
669   for (MachineBasicBlock *MBB : Chain) {
670     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
671   }
672 }
673 
674 /// Mark a single block's successors as having one fewer preds.
675 ///
676 /// Under normal circumstances, this is only called by markChainSuccessors,
677 /// but if a block that was to be placed is completely tail-duplicated away,
678 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
679 /// for just that block.
680 void MachineBlockPlacement::markBlockSuccessors(
681     const BlockChain &Chain, const MachineBasicBlock *MBB,
682     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
683   // Add any successors for which this is the only un-placed in-loop
684   // predecessor to the worklist as a viable candidate for CFG-neutral
685   // placement. No subsequent placement of this block will violate the CFG
686   // shape, so we get to use heuristics to choose a favorable placement.
687   for (MachineBasicBlock *Succ : MBB->successors()) {
688     if (BlockFilter && !BlockFilter->count(Succ))
689       continue;
690     BlockChain &SuccChain = *BlockToChain[Succ];
691     // Disregard edges within a fixed chain, or edges to the loop header.
692     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
693       continue;
694 
695     // This is a cross-chain edge that is within the loop, so decrement the
696     // loop predecessor count of the destination chain.
697     if (SuccChain.UnscheduledPredecessors == 0 ||
698         --SuccChain.UnscheduledPredecessors > 0)
699       continue;
700 
701     auto *NewBB = *SuccChain.begin();
702     if (NewBB->isEHPad())
703       EHPadWorkList.push_back(NewBB);
704     else
705       BlockWorkList.push_back(NewBB);
706   }
707 }
708 
709 /// This helper function collects the set of successors of block
710 /// \p BB that are allowed to be its layout successors, and return
711 /// the total branch probability of edges from \p BB to those
712 /// blocks.
713 BranchProbability MachineBlockPlacement::collectViableSuccessors(
714     const MachineBasicBlock *BB, const BlockChain &Chain,
715     const BlockFilterSet *BlockFilter,
716     SmallVector<MachineBasicBlock *, 4> &Successors) {
717   // Adjust edge probabilities by excluding edges pointing to blocks that is
718   // either not in BlockFilter or is already in the current chain. Consider the
719   // following CFG:
720   //
721   //     --->A
722   //     |  / \
723   //     | B   C
724   //     |  \ / \
725   //     ----D   E
726   //
727   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
728   // A->C is chosen as a fall-through, D won't be selected as a successor of C
729   // due to CFG constraint (the probability of C->D is not greater than
730   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
731   // when calculating the probability of C->D, D will be selected and we
732   // will get A C D B as the layout of this loop.
733   auto AdjustedSumProb = BranchProbability::getOne();
734   for (MachineBasicBlock *Succ : BB->successors()) {
735     bool SkipSucc = false;
736     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
737       SkipSucc = true;
738     } else {
739       BlockChain *SuccChain = BlockToChain[Succ];
740       if (SuccChain == &Chain) {
741         SkipSucc = true;
742       } else if (Succ != *SuccChain->begin()) {
743         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
744                           << " -> Mid chain!\n");
745         continue;
746       }
747     }
748     if (SkipSucc)
749       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
750     else
751       Successors.push_back(Succ);
752   }
753 
754   return AdjustedSumProb;
755 }
756 
757 /// The helper function returns the branch probability that is adjusted
758 /// or normalized over the new total \p AdjustedSumProb.
759 static BranchProbability
760 getAdjustedProbability(BranchProbability OrigProb,
761                        BranchProbability AdjustedSumProb) {
762   BranchProbability SuccProb;
763   uint32_t SuccProbN = OrigProb.getNumerator();
764   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
765   if (SuccProbN >= SuccProbD)
766     SuccProb = BranchProbability::getOne();
767   else
768     SuccProb = BranchProbability(SuccProbN, SuccProbD);
769 
770   return SuccProb;
771 }
772 
773 /// Check if \p BB has exactly the successors in \p Successors.
774 static bool
775 hasSameSuccessors(MachineBasicBlock &BB,
776                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
777   if (BB.succ_size() != Successors.size())
778     return false;
779   // We don't want to count self-loops
780   if (Successors.count(&BB))
781     return false;
782   for (MachineBasicBlock *Succ : BB.successors())
783     if (!Successors.count(Succ))
784       return false;
785   return true;
786 }
787 
788 /// Check if a block should be tail duplicated to increase fallthrough
789 /// opportunities.
790 /// \p BB Block to check.
791 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
792   // Blocks with single successors don't create additional fallthrough
793   // opportunities. Don't duplicate them. TODO: When conditional exits are
794   // analyzable, allow them to be duplicated.
795   bool IsSimple = TailDup.isSimpleBB(BB);
796 
797   if (BB->succ_size() == 1)
798     return false;
799   return TailDup.shouldTailDuplicate(IsSimple, *BB);
800 }
801 
802 /// Compare 2 BlockFrequency's with a small penalty for \p A.
803 /// In order to be conservative, we apply a X% penalty to account for
804 /// increased icache pressure and static heuristics. For small frequencies
805 /// we use only the numerators to improve accuracy. For simplicity, we assume the
806 /// penalty is less than 100%
807 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
808 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
809                             BlockFrequency EntryFreq) {
810   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
811   BlockFrequency Gain = A - B;
812   return (Gain / ThresholdProb) >= EntryFreq;
813 }
814 
815 /// Check the edge frequencies to see if tail duplication will increase
816 /// fallthroughs. It only makes sense to call this function when
817 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
818 /// always locally profitable if we would have picked \p Succ without
819 /// considering duplication.
820 bool MachineBlockPlacement::isProfitableToTailDup(
821     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
822     BranchProbability QProb,
823     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
824   // We need to do a probability calculation to make sure this is profitable.
825   // First: does succ have a successor that post-dominates? This affects the
826   // calculation. The 2 relevant cases are:
827   //    BB         BB
828   //    | \Qout    | \Qout
829   //   P|  C       |P C
830   //    =   C'     =   C'
831   //    |  /Qin    |  /Qin
832   //    | /        | /
833   //    Succ       Succ
834   //    / \        | \  V
835   //  U/   =V      |U \
836   //  /     \      =   D
837   //  D      E     |  /
838   //               | /
839   //               |/
840   //               PDom
841   //  '=' : Branch taken for that CFG edge
842   // In the second case, Placing Succ while duplicating it into C prevents the
843   // fallthrough of Succ into either D or PDom, because they now have C as an
844   // unplaced predecessor
845 
846   // Start by figuring out which case we fall into
847   MachineBasicBlock *PDom = nullptr;
848   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
849   // Only scan the relevant successors
850   auto AdjustedSuccSumProb =
851       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
852   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
853   auto BBFreq = MBFI->getBlockFreq(BB);
854   auto SuccFreq = MBFI->getBlockFreq(Succ);
855   BlockFrequency P = BBFreq * PProb;
856   BlockFrequency Qout = BBFreq * QProb;
857   BlockFrequency EntryFreq = MBFI->getEntryFreq();
858   // If there are no more successors, it is profitable to copy, as it strictly
859   // increases fallthrough.
860   if (SuccSuccs.size() == 0)
861     return greaterWithBias(P, Qout, EntryFreq);
862 
863   auto BestSuccSucc = BranchProbability::getZero();
864   // Find the PDom or the best Succ if no PDom exists.
865   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
866     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
867     if (Prob > BestSuccSucc)
868       BestSuccSucc = Prob;
869     if (PDom == nullptr)
870       if (MPDT->dominates(SuccSucc, Succ)) {
871         PDom = SuccSucc;
872         break;
873       }
874   }
875   // For the comparisons, we need to know Succ's best incoming edge that isn't
876   // from BB.
877   auto SuccBestPred = BlockFrequency(0);
878   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
879     if (SuccPred == Succ || SuccPred == BB
880         || BlockToChain[SuccPred] == &Chain
881         || (BlockFilter && !BlockFilter->count(SuccPred)))
882       continue;
883     auto Freq = MBFI->getBlockFreq(SuccPred)
884         * MBPI->getEdgeProbability(SuccPred, Succ);
885     if (Freq > SuccBestPred)
886       SuccBestPred = Freq;
887   }
888   // Qin is Succ's best unplaced incoming edge that isn't BB
889   BlockFrequency Qin = SuccBestPred;
890   // If it doesn't have a post-dominating successor, here is the calculation:
891   //    BB        BB
892   //    | \Qout   |  \
893   //   P|  C      |   =
894   //    =   C'    |    C
895   //    |  /Qin   |     |
896   //    | /       |     C' (+Succ)
897   //    Succ      Succ /|
898   //    / \       |  \/ |
899   //  U/   =V     |  == |
900   //  /     \     | /  \|
901   //  D      E    D     E
902   //  '=' : Branch taken for that CFG edge
903   //  Cost in the first case is: P + V
904   //  For this calculation, we always assume P > Qout. If Qout > P
905   //  The result of this function will be ignored at the caller.
906   //  Let F = SuccFreq - Qin
907   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
908 
909   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
910     BranchProbability UProb = BestSuccSucc;
911     BranchProbability VProb = AdjustedSuccSumProb - UProb;
912     BlockFrequency F = SuccFreq - Qin;
913     BlockFrequency V = SuccFreq * VProb;
914     BlockFrequency QinU = std::min(Qin, F) * UProb;
915     BlockFrequency BaseCost = P + V;
916     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
917     return greaterWithBias(BaseCost, DupCost, EntryFreq);
918   }
919   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
920   BranchProbability VProb = AdjustedSuccSumProb - UProb;
921   BlockFrequency U = SuccFreq * UProb;
922   BlockFrequency V = SuccFreq * VProb;
923   BlockFrequency F = SuccFreq - Qin;
924   // If there is a post-dominating successor, here is the calculation:
925   // BB         BB                 BB          BB
926   // | \Qout    |   \               | \Qout     |  \
927   // |P C       |    =              |P C        |   =
928   // =   C'     |P    C             =   C'      |P   C
929   // |  /Qin    |      |            |  /Qin     |     |
930   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
931   // Succ       Succ  /|            Succ        Succ /|
932   // | \  V     |   \/ |            | \  V      |  \/ |
933   // |U \       |U  /\ =?           |U =        |U /\ |
934   // =   D      = =  =?|            |   D       | =  =|
935   // |  /       |/     D            |  /        |/    D
936   // | /        |     /             | =         |    /
937   // |/         |    /              |/          |   =
938   // Dom         Dom                Dom         Dom
939   //  '=' : Branch taken for that CFG edge
940   // The cost for taken branches in the first case is P + U
941   // Let F = SuccFreq - Qin
942   // The cost in the second case (assuming independence), given the layout:
943   // BB, Succ, (C+Succ), D, Dom or the layout:
944   // BB, Succ, D, Dom, (C+Succ)
945   // is Qout + max(F, Qin) * U + min(F, Qin)
946   // compare P + U vs Qout + P * U + Qin.
947   //
948   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
949   //
950   // For the 3rd case, the cost is P + 2 * V
951   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
952   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
953   if (UProb > AdjustedSuccSumProb / 2 &&
954       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
955                                   Chain, BlockFilter))
956     // Cases 3 & 4
957     return greaterWithBias(
958         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
959         EntryFreq);
960   // Cases 1 & 2
961   return greaterWithBias((P + U),
962                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
963                           std::max(Qin, F) * UProb),
964                          EntryFreq);
965 }
966 
967 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
968 /// successors form the lower part of a trellis. A successor set S forms the
969 /// lower part of a trellis if all of the predecessors of S are either in S or
970 /// have all of S as successors. We ignore trellises where BB doesn't have 2
971 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
972 /// are very uncommon and complex to compute optimally. Allowing edges within S
973 /// is not strictly a trellis, but the same algorithm works, so we allow it.
974 bool MachineBlockPlacement::isTrellis(
975     const MachineBasicBlock *BB,
976     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
977     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
978   // Technically BB could form a trellis with branching factor higher than 2.
979   // But that's extremely uncommon.
980   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
981     return false;
982 
983   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
984                                                        BB->succ_end());
985   // To avoid reviewing the same predecessors twice.
986   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
987 
988   for (MachineBasicBlock *Succ : ViableSuccs) {
989     int PredCount = 0;
990     for (auto *SuccPred : Succ->predecessors()) {
991       // Allow triangle successors, but don't count them.
992       if (Successors.count(SuccPred)) {
993         // Make sure that it is actually a triangle.
994         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
995           if (!Successors.count(CheckSucc))
996             return false;
997         continue;
998       }
999       const BlockChain *PredChain = BlockToChain[SuccPred];
1000       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
1001           PredChain == &Chain || PredChain == BlockToChain[Succ])
1002         continue;
1003       ++PredCount;
1004       // Perform the successor check only once.
1005       if (!SeenPreds.insert(SuccPred).second)
1006         continue;
1007       if (!hasSameSuccessors(*SuccPred, Successors))
1008         return false;
1009     }
1010     // If one of the successors has only BB as a predecessor, it is not a
1011     // trellis.
1012     if (PredCount < 1)
1013       return false;
1014   }
1015   return true;
1016 }
1017 
1018 /// Pick the highest total weight pair of edges that can both be laid out.
1019 /// The edges in \p Edges[0] are assumed to have a different destination than
1020 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1021 /// the individual highest weight edges to the 2 different destinations, or in
1022 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1023 std::pair<MachineBlockPlacement::WeightedEdge,
1024           MachineBlockPlacement::WeightedEdge>
1025 MachineBlockPlacement::getBestNonConflictingEdges(
1026     const MachineBasicBlock *BB,
1027     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1028         Edges) {
1029   // Sort the edges, and then for each successor, find the best incoming
1030   // predecessor. If the best incoming predecessors aren't the same,
1031   // then that is clearly the best layout. If there is a conflict, one of the
1032   // successors will have to fallthrough from the second best predecessor. We
1033   // compare which combination is better overall.
1034 
1035   // Sort for highest frequency.
1036   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1037 
1038   llvm::stable_sort(Edges[0], Cmp);
1039   llvm::stable_sort(Edges[1], Cmp);
1040   auto BestA = Edges[0].begin();
1041   auto BestB = Edges[1].begin();
1042   // Arrange for the correct answer to be in BestA and BestB
1043   // If the 2 best edges don't conflict, the answer is already there.
1044   if (BestA->Src == BestB->Src) {
1045     // Compare the total fallthrough of (Best + Second Best) for both pairs
1046     auto SecondBestA = std::next(BestA);
1047     auto SecondBestB = std::next(BestB);
1048     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1049     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1050     if (BestAScore < BestBScore)
1051       BestA = SecondBestA;
1052     else
1053       BestB = SecondBestB;
1054   }
1055   // Arrange for the BB edge to be in BestA if it exists.
1056   if (BestB->Src == BB)
1057     std::swap(BestA, BestB);
1058   return std::make_pair(*BestA, *BestB);
1059 }
1060 
1061 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1062 /// We only handle trellises with 2 successors, so the algorithm is
1063 /// straightforward: Find the best pair of edges that don't conflict. We find
1064 /// the best incoming edge for each successor in the trellis. If those conflict,
1065 /// we consider which of them should be replaced with the second best.
1066 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1067 /// comes from \p BB, it will be in \p BestEdges[0]
1068 MachineBlockPlacement::BlockAndTailDupResult
1069 MachineBlockPlacement::getBestTrellisSuccessor(
1070     const MachineBasicBlock *BB,
1071     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1072     BranchProbability AdjustedSumProb, const BlockChain &Chain,
1073     const BlockFilterSet *BlockFilter) {
1074 
1075   BlockAndTailDupResult Result = {nullptr, false};
1076   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1077                                                        BB->succ_end());
1078 
1079   // We assume size 2 because it's common. For general n, we would have to do
1080   // the Hungarian algorithm, but it's not worth the complexity because more
1081   // than 2 successors is fairly uncommon, and a trellis even more so.
1082   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1083     return Result;
1084 
1085   // Collect the edge frequencies of all edges that form the trellis.
1086   SmallVector<WeightedEdge, 8> Edges[2];
1087   int SuccIndex = 0;
1088   for (auto *Succ : ViableSuccs) {
1089     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1090       // Skip any placed predecessors that are not BB
1091       if (SuccPred != BB)
1092         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1093             BlockToChain[SuccPred] == &Chain ||
1094             BlockToChain[SuccPred] == BlockToChain[Succ])
1095           continue;
1096       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1097                                 MBPI->getEdgeProbability(SuccPred, Succ);
1098       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1099     }
1100     ++SuccIndex;
1101   }
1102 
1103   // Pick the best combination of 2 edges from all the edges in the trellis.
1104   WeightedEdge BestA, BestB;
1105   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1106 
1107   if (BestA.Src != BB) {
1108     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1109     // we shouldn't choose any successor. We've already looked and there's a
1110     // better fallthrough edge for all the successors.
1111     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1112     return Result;
1113   }
1114 
1115   // Did we pick the triangle edge? If tail-duplication is profitable, do
1116   // that instead. Otherwise merge the triangle edge now while we know it is
1117   // optimal.
1118   if (BestA.Dest == BestB.Src) {
1119     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1120     // would be better.
1121     MachineBasicBlock *Succ1 = BestA.Dest;
1122     MachineBasicBlock *Succ2 = BestB.Dest;
1123     // Check to see if tail-duplication would be profitable.
1124     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1125         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1126         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1127                               Chain, BlockFilter)) {
1128       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1129                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1130                  dbgs() << "    Selected: " << getBlockName(Succ2)
1131                         << ", probability: " << Succ2Prob
1132                         << " (Tail Duplicate)\n");
1133       Result.BB = Succ2;
1134       Result.ShouldTailDup = true;
1135       return Result;
1136     }
1137   }
1138   // We have already computed the optimal edge for the other side of the
1139   // trellis.
1140   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1141 
1142   auto TrellisSucc = BestA.Dest;
1143   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1144                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1145              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1146                     << ", probability: " << SuccProb << " (Trellis)\n");
1147   Result.BB = TrellisSucc;
1148   return Result;
1149 }
1150 
1151 /// When the option allowTailDupPlacement() is on, this method checks if the
1152 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1153 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1154 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1155     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1156     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1157   if (!shouldTailDuplicate(Succ))
1158     return false;
1159 
1160   // The result of canTailDuplicate.
1161   bool Duplicate = true;
1162   // Number of possible duplication.
1163   unsigned int NumDup = 0;
1164 
1165   // For CFG checking.
1166   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1167                                                        BB->succ_end());
1168   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1169     // Make sure all unplaced and unfiltered predecessors can be
1170     // tail-duplicated into.
1171     // Skip any blocks that are already placed or not in this loop.
1172     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1173         || (BlockToChain[Pred] == &Chain && !Succ->succ_empty()))
1174       continue;
1175     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1176       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1177         // This will result in a trellis after tail duplication, so we don't
1178         // need to copy Succ into this predecessor. In the presence
1179         // of a trellis tail duplication can continue to be profitable.
1180         // For example:
1181         // A            A
1182         // |\           |\
1183         // | \          | \
1184         // |  C         |  C+BB
1185         // | /          |  |
1186         // |/           |  |
1187         // BB    =>     BB |
1188         // |\           |\/|
1189         // | \          |/\|
1190         // |  D         |  D
1191         // | /          | /
1192         // |/           |/
1193         // Succ         Succ
1194         //
1195         // After BB was duplicated into C, the layout looks like the one on the
1196         // right. BB and C now have the same successors. When considering
1197         // whether Succ can be duplicated into all its unplaced predecessors, we
1198         // ignore C.
1199         // We can do this because C already has a profitable fallthrough, namely
1200         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1201         // duplication and for this test.
1202         //
1203         // This allows trellises to be laid out in 2 separate chains
1204         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1205         // because it allows the creation of 2 fallthrough paths with links
1206         // between them, and we correctly identify the best layout for these
1207         // CFGs. We want to extend trellises that the user created in addition
1208         // to trellises created by tail-duplication, so we just look for the
1209         // CFG.
1210         continue;
1211       Duplicate = false;
1212       continue;
1213     }
1214     NumDup++;
1215   }
1216 
1217   // No possible duplication in current filter set.
1218   if (NumDup == 0)
1219     return false;
1220 
1221   // If profile information is available, findDuplicateCandidates can do more
1222   // precise benefit analysis.
1223   if (F->getFunction().hasProfileData())
1224     return true;
1225 
1226   // This is mainly for function exit BB.
1227   // The integrated tail duplication is really designed for increasing
1228   // fallthrough from predecessors from Succ to its successors. We may need
1229   // other machanism to handle different cases.
1230   if (Succ->succ_empty())
1231     return true;
1232 
1233   // Plus the already placed predecessor.
1234   NumDup++;
1235 
1236   // If the duplication candidate has more unplaced predecessors than
1237   // successors, the extra duplication can't bring more fallthrough.
1238   //
1239   //     Pred1 Pred2 Pred3
1240   //         \   |   /
1241   //          \  |  /
1242   //           \ | /
1243   //            Dup
1244   //            / \
1245   //           /   \
1246   //       Succ1  Succ2
1247   //
1248   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1249   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1250   // but the duplication into Pred3 can't increase fallthrough.
1251   //
1252   // A small number of extra duplication may not hurt too much. We need a better
1253   // heuristic to handle it.
1254   if ((NumDup > Succ->succ_size()) || !Duplicate)
1255     return false;
1256 
1257   return true;
1258 }
1259 
1260 /// Find chains of triangles where we believe it would be profitable to
1261 /// tail-duplicate them all, but a local analysis would not find them.
1262 /// There are 3 ways this can be profitable:
1263 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1264 ///    longer chains)
1265 /// 2) The chains are statically correlated. Branch probabilities have a very
1266 ///    U-shaped distribution.
1267 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1268 ///    If the branches in a chain are likely to be from the same side of the
1269 ///    distribution as their predecessor, but are independent at runtime, this
1270 ///    transformation is profitable. (Because the cost of being wrong is a small
1271 ///    fixed cost, unlike the standard triangle layout where the cost of being
1272 ///    wrong scales with the # of triangles.)
1273 /// 3) The chains are dynamically correlated. If the probability that a previous
1274 ///    branch was taken positively influences whether the next branch will be
1275 ///    taken
1276 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1277 void MachineBlockPlacement::precomputeTriangleChains() {
1278   struct TriangleChain {
1279     std::vector<MachineBasicBlock *> Edges;
1280 
1281     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1282         : Edges({src, dst}) {}
1283 
1284     void append(MachineBasicBlock *dst) {
1285       assert(getKey()->isSuccessor(dst) &&
1286              "Attempting to append a block that is not a successor.");
1287       Edges.push_back(dst);
1288     }
1289 
1290     unsigned count() const { return Edges.size() - 1; }
1291 
1292     MachineBasicBlock *getKey() const {
1293       return Edges.back();
1294     }
1295   };
1296 
1297   if (TriangleChainCount == 0)
1298     return;
1299 
1300   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1301   // Map from last block to the chain that contains it. This allows us to extend
1302   // chains as we find new triangles.
1303   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1304   for (MachineBasicBlock &BB : *F) {
1305     // If BB doesn't have 2 successors, it doesn't start a triangle.
1306     if (BB.succ_size() != 2)
1307       continue;
1308     MachineBasicBlock *PDom = nullptr;
1309     for (MachineBasicBlock *Succ : BB.successors()) {
1310       if (!MPDT->dominates(Succ, &BB))
1311         continue;
1312       PDom = Succ;
1313       break;
1314     }
1315     // If BB doesn't have a post-dominating successor, it doesn't form a
1316     // triangle.
1317     if (PDom == nullptr)
1318       continue;
1319     // If PDom has a hint that it is low probability, skip this triangle.
1320     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1321       continue;
1322     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1323     // we're looking for.
1324     if (!shouldTailDuplicate(PDom))
1325       continue;
1326     bool CanTailDuplicate = true;
1327     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1328     // isn't the kind of triangle we're looking for.
1329     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1330       if (Pred == &BB)
1331         continue;
1332       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1333         CanTailDuplicate = false;
1334         break;
1335       }
1336     }
1337     // If we can't tail-duplicate PDom to its predecessors, then skip this
1338     // triangle.
1339     if (!CanTailDuplicate)
1340       continue;
1341 
1342     // Now we have an interesting triangle. Insert it if it's not part of an
1343     // existing chain.
1344     // Note: This cannot be replaced with a call insert() or emplace() because
1345     // the find key is BB, but the insert/emplace key is PDom.
1346     auto Found = TriangleChainMap.find(&BB);
1347     // If it is, remove the chain from the map, grow it, and put it back in the
1348     // map with the end as the new key.
1349     if (Found != TriangleChainMap.end()) {
1350       TriangleChain Chain = std::move(Found->second);
1351       TriangleChainMap.erase(Found);
1352       Chain.append(PDom);
1353       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1354     } else {
1355       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1356       assert(InsertResult.second && "Block seen twice.");
1357       (void)InsertResult;
1358     }
1359   }
1360 
1361   // Iterating over a DenseMap is safe here, because the only thing in the body
1362   // of the loop is inserting into another DenseMap (ComputedEdges).
1363   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1364   for (auto &ChainPair : TriangleChainMap) {
1365     TriangleChain &Chain = ChainPair.second;
1366     // Benchmarking has shown that due to branch correlation duplicating 2 or
1367     // more triangles is profitable, despite the calculations assuming
1368     // independence.
1369     if (Chain.count() < TriangleChainCount)
1370       continue;
1371     MachineBasicBlock *dst = Chain.Edges.back();
1372     Chain.Edges.pop_back();
1373     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1374       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1375                         << getBlockName(dst)
1376                         << " as pre-computed based on triangles.\n");
1377 
1378       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1379       assert(InsertResult.second && "Block seen twice.");
1380       (void)InsertResult;
1381 
1382       dst = src;
1383     }
1384   }
1385 }
1386 
1387 // When profile is not present, return the StaticLikelyProb.
1388 // When profile is available, we need to handle the triangle-shape CFG.
1389 static BranchProbability getLayoutSuccessorProbThreshold(
1390       const MachineBasicBlock *BB) {
1391   if (!BB->getParent()->getFunction().hasProfileData())
1392     return BranchProbability(StaticLikelyProb, 100);
1393   if (BB->succ_size() == 2) {
1394     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1395     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1396     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1397       /* See case 1 below for the cost analysis. For BB->Succ to
1398        * be taken with smaller cost, the following needs to hold:
1399        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1400        *   So the threshold T in the calculation below
1401        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1402        *   So T / (1 - T) = 2, Yielding T = 2/3
1403        * Also adding user specified branch bias, we have
1404        *   T = (2/3)*(ProfileLikelyProb/50)
1405        *     = (2*ProfileLikelyProb)/150)
1406        */
1407       return BranchProbability(2 * ProfileLikelyProb, 150);
1408     }
1409   }
1410   return BranchProbability(ProfileLikelyProb, 100);
1411 }
1412 
1413 /// Checks to see if the layout candidate block \p Succ has a better layout
1414 /// predecessor than \c BB. If yes, returns true.
1415 /// \p SuccProb: The probability adjusted for only remaining blocks.
1416 ///   Only used for logging
1417 /// \p RealSuccProb: The un-adjusted probability.
1418 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1419 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1420 ///    considered
1421 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1422     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1423     const BlockChain &SuccChain, BranchProbability SuccProb,
1424     BranchProbability RealSuccProb, const BlockChain &Chain,
1425     const BlockFilterSet *BlockFilter) {
1426 
1427   // There isn't a better layout when there are no unscheduled predecessors.
1428   if (SuccChain.UnscheduledPredecessors == 0)
1429     return false;
1430 
1431   // There are two basic scenarios here:
1432   // -------------------------------------
1433   // Case 1: triangular shape CFG (if-then):
1434   //     BB
1435   //     | \
1436   //     |  \
1437   //     |   Pred
1438   //     |   /
1439   //     Succ
1440   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1441   // set Succ as the layout successor of BB. Picking Succ as BB's
1442   // successor breaks the CFG constraints (FIXME: define these constraints).
1443   // With this layout, Pred BB
1444   // is forced to be outlined, so the overall cost will be cost of the
1445   // branch taken from BB to Pred, plus the cost of back taken branch
1446   // from Pred to Succ, as well as the additional cost associated
1447   // with the needed unconditional jump instruction from Pred To Succ.
1448 
1449   // The cost of the topological order layout is the taken branch cost
1450   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1451   // must hold:
1452   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1453   //      < freq(BB->Succ) *  taken_branch_cost.
1454   // Ignoring unconditional jump cost, we get
1455   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1456   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1457   //
1458   // When real profile data is available, we can precisely compute the
1459   // probability threshold that is needed for edge BB->Succ to be considered.
1460   // Without profile data, the heuristic requires the branch bias to be
1461   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1462   // -----------------------------------------------------------------
1463   // Case 2: diamond like CFG (if-then-else):
1464   //     S
1465   //    / \
1466   //   |   \
1467   //  BB    Pred
1468   //   \    /
1469   //    Succ
1470   //    ..
1471   //
1472   // The current block is BB and edge BB->Succ is now being evaluated.
1473   // Note that edge S->BB was previously already selected because
1474   // prob(S->BB) > prob(S->Pred).
1475   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1476   // choose Pred, we will have a topological ordering as shown on the left
1477   // in the picture below. If we choose Succ, we have the solution as shown
1478   // on the right:
1479   //
1480   //   topo-order:
1481   //
1482   //       S-----                             ---S
1483   //       |    |                             |  |
1484   //    ---BB   |                             |  BB
1485   //    |       |                             |  |
1486   //    |  Pred--                             |  Succ--
1487   //    |  |                                  |       |
1488   //    ---Succ                               ---Pred--
1489   //
1490   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1491   //      = freq(S->Pred) + freq(S->BB)
1492   //
1493   // If we have profile data (i.e, branch probabilities can be trusted), the
1494   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1495   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1496   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1497   // means the cost of topological order is greater.
1498   // When profile data is not available, however, we need to be more
1499   // conservative. If the branch prediction is wrong, breaking the topo-order
1500   // will actually yield a layout with large cost. For this reason, we need
1501   // strong biased branch at block S with Prob(S->BB) in order to select
1502   // BB->Succ. This is equivalent to looking the CFG backward with backward
1503   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1504   // profile data).
1505   // --------------------------------------------------------------------------
1506   // Case 3: forked diamond
1507   //       S
1508   //      / \
1509   //     /   \
1510   //   BB    Pred
1511   //   | \   / |
1512   //   |  \ /  |
1513   //   |   X   |
1514   //   |  / \  |
1515   //   | /   \ |
1516   //   S1     S2
1517   //
1518   // The current block is BB and edge BB->S1 is now being evaluated.
1519   // As above S->BB was already selected because
1520   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1521   //
1522   // topo-order:
1523   //
1524   //     S-------|                     ---S
1525   //     |       |                     |  |
1526   //  ---BB      |                     |  BB
1527   //  |          |                     |  |
1528   //  |  Pred----|                     |  S1----
1529   //  |  |                             |       |
1530   //  --(S1 or S2)                     ---Pred--
1531   //                                        |
1532   //                                       S2
1533   //
1534   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1535   //    + min(freq(Pred->S1), freq(Pred->S2))
1536   // Non-topo-order cost:
1537   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1538   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1539   // is 0. Then the non topo layout is better when
1540   // freq(S->Pred) < freq(BB->S1).
1541   // This is exactly what is checked below.
1542   // Note there are other shapes that apply (Pred may not be a single block,
1543   // but they all fit this general pattern.)
1544   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1545 
1546   // Make sure that a hot successor doesn't have a globally more
1547   // important predecessor.
1548   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1549   bool BadCFGConflict = false;
1550 
1551   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1552     BlockChain *PredChain = BlockToChain[Pred];
1553     if (Pred == Succ || PredChain == &SuccChain ||
1554         (BlockFilter && !BlockFilter->count(Pred)) ||
1555         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1556         // This check is redundant except for look ahead. This function is
1557         // called for lookahead by isProfitableToTailDup when BB hasn't been
1558         // placed yet.
1559         (Pred == BB))
1560       continue;
1561     // Do backward checking.
1562     // For all cases above, we need a backward checking to filter out edges that
1563     // are not 'strongly' biased.
1564     // BB  Pred
1565     //  \ /
1566     //  Succ
1567     // We select edge BB->Succ if
1568     //      freq(BB->Succ) > freq(Succ) * HotProb
1569     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1570     //      HotProb
1571     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1572     // Case 1 is covered too, because the first equation reduces to:
1573     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1574     BlockFrequency PredEdgeFreq =
1575         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1576     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1577       BadCFGConflict = true;
1578       break;
1579     }
1580   }
1581 
1582   if (BadCFGConflict) {
1583     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1584                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1585     return true;
1586   }
1587 
1588   return false;
1589 }
1590 
1591 /// Select the best successor for a block.
1592 ///
1593 /// This looks across all successors of a particular block and attempts to
1594 /// select the "best" one to be the layout successor. It only considers direct
1595 /// successors which also pass the block filter. It will attempt to avoid
1596 /// breaking CFG structure, but cave and break such structures in the case of
1597 /// very hot successor edges.
1598 ///
1599 /// \returns The best successor block found, or null if none are viable, along
1600 /// with a boolean indicating if tail duplication is necessary.
1601 MachineBlockPlacement::BlockAndTailDupResult
1602 MachineBlockPlacement::selectBestSuccessor(
1603     const MachineBasicBlock *BB, const BlockChain &Chain,
1604     const BlockFilterSet *BlockFilter) {
1605   const BranchProbability HotProb(StaticLikelyProb, 100);
1606 
1607   BlockAndTailDupResult BestSucc = { nullptr, false };
1608   auto BestProb = BranchProbability::getZero();
1609 
1610   SmallVector<MachineBasicBlock *, 4> Successors;
1611   auto AdjustedSumProb =
1612       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1613 
1614   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1615                     << "\n");
1616 
1617   // if we already precomputed the best successor for BB, return that if still
1618   // applicable.
1619   auto FoundEdge = ComputedEdges.find(BB);
1620   if (FoundEdge != ComputedEdges.end()) {
1621     MachineBasicBlock *Succ = FoundEdge->second.BB;
1622     ComputedEdges.erase(FoundEdge);
1623     BlockChain *SuccChain = BlockToChain[Succ];
1624     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1625         SuccChain != &Chain && Succ == *SuccChain->begin())
1626       return FoundEdge->second;
1627   }
1628 
1629   // if BB is part of a trellis, Use the trellis to determine the optimal
1630   // fallthrough edges
1631   if (isTrellis(BB, Successors, Chain, BlockFilter))
1632     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1633                                    BlockFilter);
1634 
1635   // For blocks with CFG violations, we may be able to lay them out anyway with
1636   // tail-duplication. We keep this vector so we can perform the probability
1637   // calculations the minimum number of times.
1638   SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1639       DupCandidates;
1640   for (MachineBasicBlock *Succ : Successors) {
1641     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1642     BranchProbability SuccProb =
1643         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1644 
1645     BlockChain &SuccChain = *BlockToChain[Succ];
1646     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1647     // predecessor that yields lower global cost.
1648     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1649                                    Chain, BlockFilter)) {
1650       // If tail duplication would make Succ profitable, place it.
1651       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1652         DupCandidates.emplace_back(SuccProb, Succ);
1653       continue;
1654     }
1655 
1656     LLVM_DEBUG(
1657         dbgs() << "    Candidate: " << getBlockName(Succ)
1658                << ", probability: " << SuccProb
1659                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1660                << "\n");
1661 
1662     if (BestSucc.BB && BestProb >= SuccProb) {
1663       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1664       continue;
1665     }
1666 
1667     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1668     BestSucc.BB = Succ;
1669     BestProb = SuccProb;
1670   }
1671   // Handle the tail duplication candidates in order of decreasing probability.
1672   // Stop at the first one that is profitable. Also stop if they are less
1673   // profitable than BestSucc. Position is important because we preserve it and
1674   // prefer first best match. Here we aren't comparing in order, so we capture
1675   // the position instead.
1676   llvm::stable_sort(DupCandidates,
1677                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1678                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1679                       return std::get<0>(L) > std::get<0>(R);
1680                     });
1681   for (auto &Tup : DupCandidates) {
1682     BranchProbability DupProb;
1683     MachineBasicBlock *Succ;
1684     std::tie(DupProb, Succ) = Tup;
1685     if (DupProb < BestProb)
1686       break;
1687     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1688         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1689       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1690                         << ", probability: " << DupProb
1691                         << " (Tail Duplicate)\n");
1692       BestSucc.BB = Succ;
1693       BestSucc.ShouldTailDup = true;
1694       break;
1695     }
1696   }
1697 
1698   if (BestSucc.BB)
1699     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1700 
1701   return BestSucc;
1702 }
1703 
1704 /// Select the best block from a worklist.
1705 ///
1706 /// This looks through the provided worklist as a list of candidate basic
1707 /// blocks and select the most profitable one to place. The definition of
1708 /// profitable only really makes sense in the context of a loop. This returns
1709 /// the most frequently visited block in the worklist, which in the case of
1710 /// a loop, is the one most desirable to be physically close to the rest of the
1711 /// loop body in order to improve i-cache behavior.
1712 ///
1713 /// \returns The best block found, or null if none are viable.
1714 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1715     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1716   // Once we need to walk the worklist looking for a candidate, cleanup the
1717   // worklist of already placed entries.
1718   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1719   // some code complexity) into the loop below.
1720   llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1721     return BlockToChain.lookup(BB) == &Chain;
1722   });
1723 
1724   if (WorkList.empty())
1725     return nullptr;
1726 
1727   bool IsEHPad = WorkList[0]->isEHPad();
1728 
1729   MachineBasicBlock *BestBlock = nullptr;
1730   BlockFrequency BestFreq;
1731   for (MachineBasicBlock *MBB : WorkList) {
1732     assert(MBB->isEHPad() == IsEHPad &&
1733            "EHPad mismatch between block and work list.");
1734 
1735     BlockChain &SuccChain = *BlockToChain[MBB];
1736     if (&SuccChain == &Chain)
1737       continue;
1738 
1739     assert(SuccChain.UnscheduledPredecessors == 0 &&
1740            "Found CFG-violating block");
1741 
1742     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1743     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> "
1744                       << printBlockFreq(MBFI->getMBFI(), CandidateFreq)
1745                       << " (freq)\n");
1746 
1747     // For ehpad, we layout the least probable first as to avoid jumping back
1748     // from least probable landingpads to more probable ones.
1749     //
1750     // FIXME: Using probability is probably (!) not the best way to achieve
1751     // this. We should probably have a more principled approach to layout
1752     // cleanup code.
1753     //
1754     // The goal is to get:
1755     //
1756     //                 +--------------------------+
1757     //                 |                          V
1758     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1759     //
1760     // Rather than:
1761     //
1762     //                 +-------------------------------------+
1763     //                 V                                     |
1764     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1765     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1766       continue;
1767 
1768     BestBlock = MBB;
1769     BestFreq = CandidateFreq;
1770   }
1771 
1772   return BestBlock;
1773 }
1774 
1775 /// Retrieve the first unplaced basic block in the entire function.
1776 ///
1777 /// This routine is called when we are unable to use the CFG to walk through
1778 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1779 /// We walk through the function's blocks in order, starting from the
1780 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1781 /// re-scanning the entire sequence on repeated calls to this routine.
1782 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1783     const BlockChain &PlacedChain,
1784     MachineFunction::iterator &PrevUnplacedBlockIt) {
1785 
1786   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1787        ++I) {
1788     if (BlockToChain[&*I] != &PlacedChain) {
1789       PrevUnplacedBlockIt = I;
1790       // Now select the head of the chain to which the unplaced block belongs
1791       // as the block to place. This will force the entire chain to be placed,
1792       // and satisfies the requirements of merging chains.
1793       return *BlockToChain[&*I]->begin();
1794     }
1795   }
1796   return nullptr;
1797 }
1798 
1799 /// Retrieve the first unplaced basic block among the blocks in BlockFilter.
1800 ///
1801 /// This is similar to getFirstUnplacedBlock for the entire function, but since
1802 /// the size of BlockFilter is typically far less than the number of blocks in
1803 /// the entire function, iterating through the BlockFilter is more efficient.
1804 /// When processing the entire funciton, using the version without BlockFilter
1805 /// has a complexity of #(loops in function) * #(blocks in function), while this
1806 /// version has a complexity of sum(#(loops in block) foreach block in function)
1807 /// which is always smaller. For long function mostly sequential in structure,
1808 /// the complexity is amortized to 1 * #(blocks in function).
1809 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1810     const BlockChain &PlacedChain,
1811     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
1812     const BlockFilterSet *BlockFilter) {
1813   assert(BlockFilter);
1814   for (; PrevUnplacedBlockInFilterIt != BlockFilter->end();
1815        ++PrevUnplacedBlockInFilterIt) {
1816     BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt];
1817     if (C != &PlacedChain) {
1818       return *C->begin();
1819     }
1820   }
1821   return nullptr;
1822 }
1823 
1824 void MachineBlockPlacement::fillWorkLists(
1825     const MachineBasicBlock *MBB,
1826     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1827     const BlockFilterSet *BlockFilter = nullptr) {
1828   BlockChain &Chain = *BlockToChain[MBB];
1829   if (!UpdatedPreds.insert(&Chain).second)
1830     return;
1831 
1832   assert(
1833       Chain.UnscheduledPredecessors == 0 &&
1834       "Attempting to place block with unscheduled predecessors in worklist.");
1835   for (MachineBasicBlock *ChainBB : Chain) {
1836     assert(BlockToChain[ChainBB] == &Chain &&
1837            "Block in chain doesn't match BlockToChain map.");
1838     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1839       if (BlockFilter && !BlockFilter->count(Pred))
1840         continue;
1841       if (BlockToChain[Pred] == &Chain)
1842         continue;
1843       ++Chain.UnscheduledPredecessors;
1844     }
1845   }
1846 
1847   if (Chain.UnscheduledPredecessors != 0)
1848     return;
1849 
1850   MachineBasicBlock *BB = *Chain.begin();
1851   if (BB->isEHPad())
1852     EHPadWorkList.push_back(BB);
1853   else
1854     BlockWorkList.push_back(BB);
1855 }
1856 
1857 void MachineBlockPlacement::buildChain(
1858     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1859     BlockFilterSet *BlockFilter) {
1860   assert(HeadBB && "BB must not be null.\n");
1861   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1862   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1863   BlockFilterSet::iterator PrevUnplacedBlockInFilterIt;
1864   if (BlockFilter)
1865     PrevUnplacedBlockInFilterIt = BlockFilter->begin();
1866 
1867   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1868   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1869   MachineBasicBlock *BB = *std::prev(Chain.end());
1870   while (true) {
1871     assert(BB && "null block found at end of chain in loop.");
1872     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1873     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1874 
1875 
1876     // Look for the best viable successor if there is one to place immediately
1877     // after this block.
1878     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1879     MachineBasicBlock* BestSucc = Result.BB;
1880     bool ShouldTailDup = Result.ShouldTailDup;
1881     if (allowTailDupPlacement())
1882       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1883                                                                   Chain,
1884                                                                   BlockFilter));
1885 
1886     // If an immediate successor isn't available, look for the best viable
1887     // block among those we've identified as not violating the loop's CFG at
1888     // this point. This won't be a fallthrough, but it will increase locality.
1889     if (!BestSucc)
1890       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1891     if (!BestSucc)
1892       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1893 
1894     if (!BestSucc) {
1895       if (BlockFilter)
1896         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockInFilterIt,
1897                                          BlockFilter);
1898       else
1899         BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt);
1900       if (!BestSucc)
1901         break;
1902 
1903       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1904                            "layout successor until the CFG reduces\n");
1905     }
1906 
1907     // Placement may have changed tail duplication opportunities.
1908     // Check for that now.
1909     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1910       repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1911                                    BlockFilter, PrevUnplacedBlockIt,
1912                                    PrevUnplacedBlockInFilterIt);
1913       // If the chosen successor was duplicated into BB, don't bother laying
1914       // it out, just go round the loop again with BB as the chain end.
1915       if (!BB->isSuccessor(BestSucc))
1916         continue;
1917     }
1918 
1919     // Place this block, updating the datastructures to reflect its placement.
1920     BlockChain &SuccChain = *BlockToChain[BestSucc];
1921     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1922     // we selected a successor that didn't fit naturally into the CFG.
1923     SuccChain.UnscheduledPredecessors = 0;
1924     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1925                       << getBlockName(BestSucc) << "\n");
1926     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1927     Chain.merge(BestSucc, &SuccChain);
1928     BB = *std::prev(Chain.end());
1929   }
1930 
1931   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1932                     << getBlockName(*Chain.begin()) << "\n");
1933 }
1934 
1935 // If bottom of block BB has only one successor OldTop, in most cases it is
1936 // profitable to move it before OldTop, except the following case:
1937 //
1938 //     -->OldTop<-
1939 //     |    .    |
1940 //     |    .    |
1941 //     |    .    |
1942 //     ---Pred   |
1943 //          |    |
1944 //         BB-----
1945 //
1946 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1947 // layout the other successor below it, so it can't reduce taken branch.
1948 // In this case we keep its original layout.
1949 bool
1950 MachineBlockPlacement::canMoveBottomBlockToTop(
1951     const MachineBasicBlock *BottomBlock,
1952     const MachineBasicBlock *OldTop) {
1953   if (BottomBlock->pred_size() != 1)
1954     return true;
1955   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1956   if (Pred->succ_size() != 2)
1957     return true;
1958 
1959   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1960   if (OtherBB == BottomBlock)
1961     OtherBB = *Pred->succ_rbegin();
1962   if (OtherBB == OldTop)
1963     return false;
1964 
1965   return true;
1966 }
1967 
1968 // Find out the possible fall through frequence to the top of a loop.
1969 BlockFrequency
1970 MachineBlockPlacement::TopFallThroughFreq(
1971     const MachineBasicBlock *Top,
1972     const BlockFilterSet &LoopBlockSet) {
1973   BlockFrequency MaxFreq = BlockFrequency(0);
1974   for (MachineBasicBlock *Pred : Top->predecessors()) {
1975     BlockChain *PredChain = BlockToChain[Pred];
1976     if (!LoopBlockSet.count(Pred) &&
1977         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1978       // Found a Pred block can be placed before Top.
1979       // Check if Top is the best successor of Pred.
1980       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1981       bool TopOK = true;
1982       for (MachineBasicBlock *Succ : Pred->successors()) {
1983         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1984         BlockChain *SuccChain = BlockToChain[Succ];
1985         // Check if Succ can be placed after Pred.
1986         // Succ should not be in any chain, or it is the head of some chain.
1987         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1988             (!SuccChain || Succ == *SuccChain->begin())) {
1989           TopOK = false;
1990           break;
1991         }
1992       }
1993       if (TopOK) {
1994         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1995                                   MBPI->getEdgeProbability(Pred, Top);
1996         if (EdgeFreq > MaxFreq)
1997           MaxFreq = EdgeFreq;
1998       }
1999     }
2000   }
2001   return MaxFreq;
2002 }
2003 
2004 // Compute the fall through gains when move NewTop before OldTop.
2005 //
2006 // In following diagram, edges marked as "-" are reduced fallthrough, edges
2007 // marked as "+" are increased fallthrough, this function computes
2008 //
2009 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
2010 //
2011 //              |
2012 //              | -
2013 //              V
2014 //        --->OldTop
2015 //        |     .
2016 //        |     .
2017 //       +|     .    +
2018 //        |   Pred --->
2019 //        |     |-
2020 //        |     V
2021 //        --- NewTop <---
2022 //              |-
2023 //              V
2024 //
2025 BlockFrequency
2026 MachineBlockPlacement::FallThroughGains(
2027     const MachineBasicBlock *NewTop,
2028     const MachineBasicBlock *OldTop,
2029     const MachineBasicBlock *ExitBB,
2030     const BlockFilterSet &LoopBlockSet) {
2031   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
2032   BlockFrequency FallThrough2Exit = BlockFrequency(0);
2033   if (ExitBB)
2034     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
2035         MBPI->getEdgeProbability(NewTop, ExitBB);
2036   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
2037       MBPI->getEdgeProbability(NewTop, OldTop);
2038 
2039   // Find the best Pred of NewTop.
2040   MachineBasicBlock *BestPred = nullptr;
2041   BlockFrequency FallThroughFromPred = BlockFrequency(0);
2042   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
2043     if (!LoopBlockSet.count(Pred))
2044       continue;
2045     BlockChain *PredChain = BlockToChain[Pred];
2046     if (!PredChain || Pred == *std::prev(PredChain->end())) {
2047       BlockFrequency EdgeFreq =
2048           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, NewTop);
2049       if (EdgeFreq > FallThroughFromPred) {
2050         FallThroughFromPred = EdgeFreq;
2051         BestPred = Pred;
2052       }
2053     }
2054   }
2055 
2056   // If NewTop is not placed after Pred, another successor can be placed
2057   // after Pred.
2058   BlockFrequency NewFreq = BlockFrequency(0);
2059   if (BestPred) {
2060     for (MachineBasicBlock *Succ : BestPred->successors()) {
2061       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2062         continue;
2063       if (ComputedEdges.contains(Succ))
2064         continue;
2065       BlockChain *SuccChain = BlockToChain[Succ];
2066       if ((SuccChain && (Succ != *SuccChain->begin())) ||
2067           (SuccChain == BlockToChain[BestPred]))
2068         continue;
2069       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2070                                 MBPI->getEdgeProbability(BestPred, Succ);
2071       if (EdgeFreq > NewFreq)
2072         NewFreq = EdgeFreq;
2073     }
2074     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2075                                   MBPI->getEdgeProbability(BestPred, NewTop);
2076     if (NewFreq > OrigEdgeFreq) {
2077       // If NewTop is not the best successor of Pred, then Pred doesn't
2078       // fallthrough to NewTop. So there is no FallThroughFromPred and
2079       // NewFreq.
2080       NewFreq = BlockFrequency(0);
2081       FallThroughFromPred = BlockFrequency(0);
2082     }
2083   }
2084 
2085   BlockFrequency Result = BlockFrequency(0);
2086   BlockFrequency Gains = BackEdgeFreq + NewFreq;
2087   BlockFrequency Lost =
2088       FallThrough2Top + FallThrough2Exit + FallThroughFromPred;
2089   if (Gains > Lost)
2090     Result = Gains - Lost;
2091   return Result;
2092 }
2093 
2094 /// Helper function of findBestLoopTop. Find the best loop top block
2095 /// from predecessors of old top.
2096 ///
2097 /// Look for a block which is strictly better than the old top for laying
2098 /// out before the old top of the loop. This looks for only two patterns:
2099 ///
2100 ///     1. a block has only one successor, the old loop top
2101 ///
2102 ///        Because such a block will always result in an unconditional jump,
2103 ///        rotating it in front of the old top is always profitable.
2104 ///
2105 ///     2. a block has two successors, one is old top, another is exit
2106 ///        and it has more than one predecessors
2107 ///
2108 ///        If it is below one of its predecessors P, only P can fall through to
2109 ///        it, all other predecessors need a jump to it, and another conditional
2110 ///        jump to loop header. If it is moved before loop header, all its
2111 ///        predecessors jump to it, then fall through to loop header. So all its
2112 ///        predecessors except P can reduce one taken branch.
2113 ///        At the same time, move it before old top increases the taken branch
2114 ///        to loop exit block, so the reduced taken branch will be compared with
2115 ///        the increased taken branch to the loop exit block.
2116 MachineBasicBlock *
2117 MachineBlockPlacement::findBestLoopTopHelper(
2118     MachineBasicBlock *OldTop,
2119     const MachineLoop &L,
2120     const BlockFilterSet &LoopBlockSet) {
2121   // Check that the header hasn't been fused with a preheader block due to
2122   // crazy branches. If it has, we need to start with the header at the top to
2123   // prevent pulling the preheader into the loop body.
2124   BlockChain &HeaderChain = *BlockToChain[OldTop];
2125   if (!LoopBlockSet.count(*HeaderChain.begin()))
2126     return OldTop;
2127   if (OldTop != *HeaderChain.begin())
2128     return OldTop;
2129 
2130   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2131                     << "\n");
2132 
2133   BlockFrequency BestGains = BlockFrequency(0);
2134   MachineBasicBlock *BestPred = nullptr;
2135   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2136     if (!LoopBlockSet.count(Pred))
2137       continue;
2138     if (Pred == L.getHeader())
2139       continue;
2140     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2141                       << Pred->succ_size() << " successors, "
2142                       << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n");
2143     if (Pred->succ_size() > 2)
2144       continue;
2145 
2146     MachineBasicBlock *OtherBB = nullptr;
2147     if (Pred->succ_size() == 2) {
2148       OtherBB = *Pred->succ_begin();
2149       if (OtherBB == OldTop)
2150         OtherBB = *Pred->succ_rbegin();
2151     }
2152 
2153     if (!canMoveBottomBlockToTop(Pred, OldTop))
2154       continue;
2155 
2156     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2157                                             LoopBlockSet);
2158     if ((Gains > BlockFrequency(0)) &&
2159         (Gains > BestGains ||
2160          ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2161       BestPred = Pred;
2162       BestGains = Gains;
2163     }
2164   }
2165 
2166   // If no direct predecessor is fine, just use the loop header.
2167   if (!BestPred) {
2168     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2169     return OldTop;
2170   }
2171 
2172   // Walk backwards through any straight line of predecessors.
2173   while (BestPred->pred_size() == 1 &&
2174          (*BestPred->pred_begin())->succ_size() == 1 &&
2175          *BestPred->pred_begin() != L.getHeader())
2176     BestPred = *BestPred->pred_begin();
2177 
2178   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2179   return BestPred;
2180 }
2181 
2182 /// Find the best loop top block for layout.
2183 ///
2184 /// This function iteratively calls findBestLoopTopHelper, until no new better
2185 /// BB can be found.
2186 MachineBasicBlock *
2187 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2188                                        const BlockFilterSet &LoopBlockSet) {
2189   // Placing the latch block before the header may introduce an extra branch
2190   // that skips this block the first time the loop is executed, which we want
2191   // to avoid when optimising for size.
2192   // FIXME: in theory there is a case that does not introduce a new branch,
2193   // i.e. when the layout predecessor does not fallthrough to the loop header.
2194   // In practice this never happens though: there always seems to be a preheader
2195   // that can fallthrough and that is also placed before the header.
2196   bool OptForSize = F->getFunction().hasOptSize() ||
2197                     llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2198   if (OptForSize)
2199     return L.getHeader();
2200 
2201   MachineBasicBlock *OldTop = nullptr;
2202   MachineBasicBlock *NewTop = L.getHeader();
2203   while (NewTop != OldTop) {
2204     OldTop = NewTop;
2205     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2206     if (NewTop != OldTop)
2207       ComputedEdges[NewTop] = { OldTop, false };
2208   }
2209   return NewTop;
2210 }
2211 
2212 /// Find the best loop exiting block for layout.
2213 ///
2214 /// This routine implements the logic to analyze the loop looking for the best
2215 /// block to layout at the top of the loop. Typically this is done to maximize
2216 /// fallthrough opportunities.
2217 MachineBasicBlock *
2218 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2219                                         const BlockFilterSet &LoopBlockSet,
2220                                         BlockFrequency &ExitFreq) {
2221   // We don't want to layout the loop linearly in all cases. If the loop header
2222   // is just a normal basic block in the loop, we want to look for what block
2223   // within the loop is the best one to layout at the top. However, if the loop
2224   // header has be pre-merged into a chain due to predecessors not having
2225   // analyzable branches, *and* the predecessor it is merged with is *not* part
2226   // of the loop, rotating the header into the middle of the loop will create
2227   // a non-contiguous range of blocks which is Very Bad. So start with the
2228   // header and only rotate if safe.
2229   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2230   if (!LoopBlockSet.count(*HeaderChain.begin()))
2231     return nullptr;
2232 
2233   BlockFrequency BestExitEdgeFreq;
2234   unsigned BestExitLoopDepth = 0;
2235   MachineBasicBlock *ExitingBB = nullptr;
2236   // If there are exits to outer loops, loop rotation can severely limit
2237   // fallthrough opportunities unless it selects such an exit. Keep a set of
2238   // blocks where rotating to exit with that block will reach an outer loop.
2239   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2240 
2241   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2242                     << getBlockName(L.getHeader()) << "\n");
2243   for (MachineBasicBlock *MBB : L.getBlocks()) {
2244     BlockChain &Chain = *BlockToChain[MBB];
2245     // Ensure that this block is at the end of a chain; otherwise it could be
2246     // mid-way through an inner loop or a successor of an unanalyzable branch.
2247     if (MBB != *std::prev(Chain.end()))
2248       continue;
2249 
2250     // Now walk the successors. We need to establish whether this has a viable
2251     // exiting successor and whether it has a viable non-exiting successor.
2252     // We store the old exiting state and restore it if a viable looping
2253     // successor isn't found.
2254     MachineBasicBlock *OldExitingBB = ExitingBB;
2255     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2256     bool HasLoopingSucc = false;
2257     for (MachineBasicBlock *Succ : MBB->successors()) {
2258       if (Succ->isEHPad())
2259         continue;
2260       if (Succ == MBB)
2261         continue;
2262       BlockChain &SuccChain = *BlockToChain[Succ];
2263       // Don't split chains, either this chain or the successor's chain.
2264       if (&Chain == &SuccChain) {
2265         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2266                           << getBlockName(Succ) << " (chain conflict)\n");
2267         continue;
2268       }
2269 
2270       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2271       if (LoopBlockSet.count(Succ)) {
2272         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2273                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2274         HasLoopingSucc = true;
2275         continue;
2276       }
2277 
2278       unsigned SuccLoopDepth = 0;
2279       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2280         SuccLoopDepth = ExitLoop->getLoopDepth();
2281         if (ExitLoop->contains(&L))
2282           BlocksExitingToOuterLoop.insert(MBB);
2283       }
2284 
2285       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2286       LLVM_DEBUG(
2287           dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2288                  << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("
2289                  << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n");
2290       // Note that we bias this toward an existing layout successor to retain
2291       // incoming order in the absence of better information. The exit must have
2292       // a frequency higher than the current exit before we consider breaking
2293       // the layout.
2294       BranchProbability Bias(100 - ExitBlockBias, 100);
2295       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2296           ExitEdgeFreq > BestExitEdgeFreq ||
2297           (MBB->isLayoutSuccessor(Succ) &&
2298            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2299         BestExitEdgeFreq = ExitEdgeFreq;
2300         ExitingBB = MBB;
2301       }
2302     }
2303 
2304     if (!HasLoopingSucc) {
2305       // Restore the old exiting state, no viable looping successor was found.
2306       ExitingBB = OldExitingBB;
2307       BestExitEdgeFreq = OldBestExitEdgeFreq;
2308     }
2309   }
2310   // Without a candidate exiting block or with only a single block in the
2311   // loop, just use the loop header to layout the loop.
2312   if (!ExitingBB) {
2313     LLVM_DEBUG(
2314         dbgs() << "    No other candidate exit blocks, using loop header\n");
2315     return nullptr;
2316   }
2317   if (L.getNumBlocks() == 1) {
2318     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2319     return nullptr;
2320   }
2321 
2322   // Also, if we have exit blocks which lead to outer loops but didn't select
2323   // one of them as the exiting block we are rotating toward, disable loop
2324   // rotation altogether.
2325   if (!BlocksExitingToOuterLoop.empty() &&
2326       !BlocksExitingToOuterLoop.count(ExitingBB))
2327     return nullptr;
2328 
2329   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2330                     << "\n");
2331   ExitFreq = BestExitEdgeFreq;
2332   return ExitingBB;
2333 }
2334 
2335 /// Check if there is a fallthrough to loop header Top.
2336 ///
2337 ///   1. Look for a Pred that can be layout before Top.
2338 ///   2. Check if Top is the most possible successor of Pred.
2339 bool
2340 MachineBlockPlacement::hasViableTopFallthrough(
2341     const MachineBasicBlock *Top,
2342     const BlockFilterSet &LoopBlockSet) {
2343   for (MachineBasicBlock *Pred : Top->predecessors()) {
2344     BlockChain *PredChain = BlockToChain[Pred];
2345     if (!LoopBlockSet.count(Pred) &&
2346         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2347       // Found a Pred block can be placed before Top.
2348       // Check if Top is the best successor of Pred.
2349       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2350       bool TopOK = true;
2351       for (MachineBasicBlock *Succ : Pred->successors()) {
2352         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2353         BlockChain *SuccChain = BlockToChain[Succ];
2354         // Check if Succ can be placed after Pred.
2355         // Succ should not be in any chain, or it is the head of some chain.
2356         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2357           TopOK = false;
2358           break;
2359         }
2360       }
2361       if (TopOK)
2362         return true;
2363     }
2364   }
2365   return false;
2366 }
2367 
2368 /// Attempt to rotate an exiting block to the bottom of the loop.
2369 ///
2370 /// Once we have built a chain, try to rotate it to line up the hot exit block
2371 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2372 /// branches. For example, if the loop has fallthrough into its header and out
2373 /// of its bottom already, don't rotate it.
2374 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2375                                        const MachineBasicBlock *ExitingBB,
2376                                        BlockFrequency ExitFreq,
2377                                        const BlockFilterSet &LoopBlockSet) {
2378   if (!ExitingBB)
2379     return;
2380 
2381   MachineBasicBlock *Top = *LoopChain.begin();
2382   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2383 
2384   // If ExitingBB is already the last one in a chain then nothing to do.
2385   if (Bottom == ExitingBB)
2386     return;
2387 
2388   // The entry block should always be the first BB in a function.
2389   if (Top->isEntryBlock())
2390     return;
2391 
2392   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2393 
2394   // If the header has viable fallthrough, check whether the current loop
2395   // bottom is a viable exiting block. If so, bail out as rotating will
2396   // introduce an unnecessary branch.
2397   if (ViableTopFallthrough) {
2398     for (MachineBasicBlock *Succ : Bottom->successors()) {
2399       BlockChain *SuccChain = BlockToChain[Succ];
2400       if (!LoopBlockSet.count(Succ) &&
2401           (!SuccChain || Succ == *SuccChain->begin()))
2402         return;
2403     }
2404 
2405     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2406     // frequency is larger than top fallthrough.
2407     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2408     if (FallThrough2Top >= ExitFreq)
2409       return;
2410   }
2411 
2412   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2413   if (ExitIt == LoopChain.end())
2414     return;
2415 
2416   // Rotating a loop exit to the bottom when there is a fallthrough to top
2417   // trades the entry fallthrough for an exit fallthrough.
2418   // If there is no bottom->top edge, but the chosen exit block does have
2419   // a fallthrough, we break that fallthrough for nothing in return.
2420 
2421   // Let's consider an example. We have a built chain of basic blocks
2422   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2423   // By doing a rotation we get
2424   // Bk+1, ..., Bn, B1, ..., Bk
2425   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2426   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2427   // It might be compensated by fallthrough Bn -> B1.
2428   // So we have a condition to avoid creation of extra branch by loop rotation.
2429   // All below must be true to avoid loop rotation:
2430   //   If there is a fallthrough to top (B1)
2431   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2432   //   There is no fallthrough from bottom (Bn) to top (B1).
2433   // Please note that there is no exit fallthrough from Bn because we checked it
2434   // above.
2435   if (ViableTopFallthrough) {
2436     assert(std::next(ExitIt) != LoopChain.end() &&
2437            "Exit should not be last BB");
2438     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2439     if (ExitingBB->isSuccessor(NextBlockInChain))
2440       if (!Bottom->isSuccessor(Top))
2441         return;
2442   }
2443 
2444   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2445                     << " at bottom\n");
2446   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2447 }
2448 
2449 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2450 ///
2451 /// With profile data, we can determine the cost in terms of missed fall through
2452 /// opportunities when rotating a loop chain and select the best rotation.
2453 /// Basically, there are three kinds of cost to consider for each rotation:
2454 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2455 ///    the loop to the loop header.
2456 ///    2. The possibly missed fall through edges (if they exist) from the loop
2457 ///    exits to BB out of the loop.
2458 ///    3. The missed fall through edge (if it exists) from the last BB to the
2459 ///    first BB in the loop chain.
2460 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2461 ///  We select the best rotation with the smallest cost.
2462 void MachineBlockPlacement::rotateLoopWithProfile(
2463     BlockChain &LoopChain, const MachineLoop &L,
2464     const BlockFilterSet &LoopBlockSet) {
2465   auto RotationPos = LoopChain.end();
2466   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2467 
2468   // The entry block should always be the first BB in a function.
2469   if (ChainHeaderBB->isEntryBlock())
2470     return;
2471 
2472   BlockFrequency SmallestRotationCost = BlockFrequency::max();
2473 
2474   // A utility lambda that scales up a block frequency by dividing it by a
2475   // branch probability which is the reciprocal of the scale.
2476   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2477                                 unsigned Scale) -> BlockFrequency {
2478     if (Scale == 0)
2479       return BlockFrequency(0);
2480     // Use operator / between BlockFrequency and BranchProbability to implement
2481     // saturating multiplication.
2482     return Freq / BranchProbability(1, Scale);
2483   };
2484 
2485   // Compute the cost of the missed fall-through edge to the loop header if the
2486   // chain head is not the loop header. As we only consider natural loops with
2487   // single header, this computation can be done only once.
2488   BlockFrequency HeaderFallThroughCost(0);
2489   for (auto *Pred : ChainHeaderBB->predecessors()) {
2490     BlockChain *PredChain = BlockToChain[Pred];
2491     if (!LoopBlockSet.count(Pred) &&
2492         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2493       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2494           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2495       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2496       // If the predecessor has only an unconditional jump to the header, we
2497       // need to consider the cost of this jump.
2498       if (Pred->succ_size() == 1)
2499         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2500       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2501     }
2502   }
2503 
2504   // Here we collect all exit blocks in the loop, and for each exit we find out
2505   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2506   // as the sum of frequencies of exit edges we collect here, excluding the exit
2507   // edge from the tail of the loop chain.
2508   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2509   for (auto *BB : LoopChain) {
2510     auto LargestExitEdgeProb = BranchProbability::getZero();
2511     for (auto *Succ : BB->successors()) {
2512       BlockChain *SuccChain = BlockToChain[Succ];
2513       if (!LoopBlockSet.count(Succ) &&
2514           (!SuccChain || Succ == *SuccChain->begin())) {
2515         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2516         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2517       }
2518     }
2519     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2520       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2521       ExitsWithFreq.emplace_back(BB, ExitFreq);
2522     }
2523   }
2524 
2525   // In this loop we iterate every block in the loop chain and calculate the
2526   // cost assuming the block is the head of the loop chain. When the loop ends,
2527   // we should have found the best candidate as the loop chain's head.
2528   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2529             EndIter = LoopChain.end();
2530        Iter != EndIter; Iter++, TailIter++) {
2531     // TailIter is used to track the tail of the loop chain if the block we are
2532     // checking (pointed by Iter) is the head of the chain.
2533     if (TailIter == LoopChain.end())
2534       TailIter = LoopChain.begin();
2535 
2536     auto TailBB = *TailIter;
2537 
2538     // Calculate the cost by putting this BB to the top.
2539     BlockFrequency Cost = BlockFrequency(0);
2540 
2541     // If the current BB is the loop header, we need to take into account the
2542     // cost of the missed fall through edge from outside of the loop to the
2543     // header.
2544     if (Iter != LoopChain.begin())
2545       Cost += HeaderFallThroughCost;
2546 
2547     // Collect the loop exit cost by summing up frequencies of all exit edges
2548     // except the one from the chain tail.
2549     for (auto &ExitWithFreq : ExitsWithFreq)
2550       if (TailBB != ExitWithFreq.first)
2551         Cost += ExitWithFreq.second;
2552 
2553     // The cost of breaking the once fall-through edge from the tail to the top
2554     // of the loop chain. Here we need to consider three cases:
2555     // 1. If the tail node has only one successor, then we will get an
2556     //    additional jmp instruction. So the cost here is (MisfetchCost +
2557     //    JumpInstCost) * tail node frequency.
2558     // 2. If the tail node has two successors, then we may still get an
2559     //    additional jmp instruction if the layout successor after the loop
2560     //    chain is not its CFG successor. Note that the more frequently executed
2561     //    jmp instruction will be put ahead of the other one. Assume the
2562     //    frequency of those two branches are x and y, where x is the frequency
2563     //    of the edge to the chain head, then the cost will be
2564     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2565     // 3. If the tail node has more than two successors (this rarely happens),
2566     //    we won't consider any additional cost.
2567     if (TailBB->isSuccessor(*Iter)) {
2568       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2569       if (TailBB->succ_size() == 1)
2570         Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost);
2571       else if (TailBB->succ_size() == 2) {
2572         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2573         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2574         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2575                                   ? TailBBFreq * TailToHeadProb.getCompl()
2576                                   : TailToHeadFreq;
2577         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2578                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2579       }
2580     }
2581 
2582     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2583                       << getBlockName(*Iter) << " to the top: "
2584                       << printBlockFreq(MBFI->getMBFI(), Cost) << "\n");
2585 
2586     if (Cost < SmallestRotationCost) {
2587       SmallestRotationCost = Cost;
2588       RotationPos = Iter;
2589     }
2590   }
2591 
2592   if (RotationPos != LoopChain.end()) {
2593     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2594                       << " to the top\n");
2595     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2596   }
2597 }
2598 
2599 /// Collect blocks in the given loop that are to be placed.
2600 ///
2601 /// When profile data is available, exclude cold blocks from the returned set;
2602 /// otherwise, collect all blocks in the loop.
2603 MachineBlockPlacement::BlockFilterSet
2604 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2605   // Collect the blocks in a set ordered by block number, as this gives the same
2606   // order as they appear in the function.
2607   struct MBBCompare {
2608     bool operator()(const MachineBasicBlock *X,
2609                     const MachineBasicBlock *Y) const {
2610       return X->getNumber() < Y->getNumber();
2611     }
2612   };
2613   std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet;
2614 
2615   // Filter cold blocks off from LoopBlockSet when profile data is available.
2616   // Collect the sum of frequencies of incoming edges to the loop header from
2617   // outside. If we treat the loop as a super block, this is the frequency of
2618   // the loop. Then for each block in the loop, we calculate the ratio between
2619   // its frequency and the frequency of the loop block. When it is too small,
2620   // don't add it to the loop chain. If there are outer loops, then this block
2621   // will be merged into the first outer loop chain for which this block is not
2622   // cold anymore. This needs precise profile data and we only do this when
2623   // profile data is available.
2624   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2625     BlockFrequency LoopFreq(0);
2626     for (auto *LoopPred : L.getHeader()->predecessors())
2627       if (!L.contains(LoopPred))
2628         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2629                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2630 
2631     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2632       if (LoopBlockSet.count(LoopBB))
2633         continue;
2634       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2635       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2636         continue;
2637       BlockChain *Chain = BlockToChain[LoopBB];
2638       for (MachineBasicBlock *ChainBB : *Chain)
2639         LoopBlockSet.insert(ChainBB);
2640     }
2641   } else
2642     LoopBlockSet.insert(L.block_begin(), L.block_end());
2643 
2644   // Copy the blocks into a BlockFilterSet, as iterating it is faster than
2645   // std::set. We will only remove blocks and never insert them, which will
2646   // preserve the ordering.
2647   BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end());
2648   return Ret;
2649 }
2650 
2651 /// Forms basic block chains from the natural loop structures.
2652 ///
2653 /// These chains are designed to preserve the existing *structure* of the code
2654 /// as much as possible. We can then stitch the chains together in a way which
2655 /// both preserves the topological structure and minimizes taken conditional
2656 /// branches.
2657 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2658   // First recurse through any nested loops, building chains for those inner
2659   // loops.
2660   for (const MachineLoop *InnerLoop : L)
2661     buildLoopChains(*InnerLoop);
2662 
2663   assert(BlockWorkList.empty() &&
2664          "BlockWorkList not empty when starting to build loop chains.");
2665   assert(EHPadWorkList.empty() &&
2666          "EHPadWorkList not empty when starting to build loop chains.");
2667   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2668 
2669   // Check if we have profile data for this function. If yes, we will rotate
2670   // this loop by modeling costs more precisely which requires the profile data
2671   // for better layout.
2672   bool RotateLoopWithProfile =
2673       ForcePreciseRotationCost ||
2674       (PreciseRotationCost && F->getFunction().hasProfileData());
2675 
2676   // First check to see if there is an obviously preferable top block for the
2677   // loop. This will default to the header, but may end up as one of the
2678   // predecessors to the header if there is one which will result in strictly
2679   // fewer branches in the loop body.
2680   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2681 
2682   // If we selected just the header for the loop top, look for a potentially
2683   // profitable exit block in the event that rotating the loop can eliminate
2684   // branches by placing an exit edge at the bottom.
2685   //
2686   // Loops are processed innermost to uttermost, make sure we clear
2687   // PreferredLoopExit before processing a new loop.
2688   PreferredLoopExit = nullptr;
2689   BlockFrequency ExitFreq;
2690   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2691     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2692 
2693   BlockChain &LoopChain = *BlockToChain[LoopTop];
2694 
2695   // FIXME: This is a really lame way of walking the chains in the loop: we
2696   // walk the blocks, and use a set to prevent visiting a particular chain
2697   // twice.
2698   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2699   assert(LoopChain.UnscheduledPredecessors == 0 &&
2700          "LoopChain should not have unscheduled predecessors.");
2701   UpdatedPreds.insert(&LoopChain);
2702 
2703   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2704     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2705 
2706   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2707 
2708   if (RotateLoopWithProfile)
2709     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2710   else
2711     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2712 
2713   LLVM_DEBUG({
2714     // Crash at the end so we get all of the debugging output first.
2715     bool BadLoop = false;
2716     if (LoopChain.UnscheduledPredecessors) {
2717       BadLoop = true;
2718       dbgs() << "Loop chain contains a block without its preds placed!\n"
2719              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2720              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2721     }
2722     for (MachineBasicBlock *ChainBB : LoopChain) {
2723       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2724       if (!LoopBlockSet.remove(ChainBB)) {
2725         // We don't mark the loop as bad here because there are real situations
2726         // where this can occur. For example, with an unanalyzable fallthrough
2727         // from a loop block to a non-loop block or vice versa.
2728         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2729                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2730                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2731                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2732       }
2733     }
2734 
2735     if (!LoopBlockSet.empty()) {
2736       BadLoop = true;
2737       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2738         dbgs() << "Loop contains blocks never placed into a chain!\n"
2739                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2740                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2741                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2742     }
2743     assert(!BadLoop && "Detected problems with the placement of this loop.");
2744   });
2745 
2746   BlockWorkList.clear();
2747   EHPadWorkList.clear();
2748 }
2749 
2750 void MachineBlockPlacement::buildCFGChains() {
2751   // Ensure that every BB in the function has an associated chain to simplify
2752   // the assumptions of the remaining algorithm.
2753   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2754   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2755        ++FI) {
2756     MachineBasicBlock *BB = &*FI;
2757     BlockChain *Chain =
2758         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2759     // Also, merge any blocks which we cannot reason about and must preserve
2760     // the exact fallthrough behavior for.
2761     while (true) {
2762       Cond.clear();
2763       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2764       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2765         break;
2766 
2767       MachineFunction::iterator NextFI = std::next(FI);
2768       MachineBasicBlock *NextBB = &*NextFI;
2769       // Ensure that the layout successor is a viable block, as we know that
2770       // fallthrough is a possibility.
2771       assert(NextFI != FE && "Can't fallthrough past the last block.");
2772       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2773                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2774                         << "\n");
2775       Chain->merge(NextBB, nullptr);
2776 #ifndef NDEBUG
2777       BlocksWithUnanalyzableExits.insert(&*BB);
2778 #endif
2779       FI = NextFI;
2780       BB = NextBB;
2781     }
2782   }
2783 
2784   // Build any loop-based chains.
2785   PreferredLoopExit = nullptr;
2786   for (MachineLoop *L : *MLI)
2787     buildLoopChains(*L);
2788 
2789   assert(BlockWorkList.empty() &&
2790          "BlockWorkList should be empty before building final chain.");
2791   assert(EHPadWorkList.empty() &&
2792          "EHPadWorkList should be empty before building final chain.");
2793 
2794   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2795   for (MachineBasicBlock &MBB : *F)
2796     fillWorkLists(&MBB, UpdatedPreds);
2797 
2798   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2799   buildChain(&F->front(), FunctionChain);
2800 
2801 #ifndef NDEBUG
2802   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2803 #endif
2804   LLVM_DEBUG({
2805     // Crash at the end so we get all of the debugging output first.
2806     bool BadFunc = false;
2807     FunctionBlockSetType FunctionBlockSet;
2808     for (MachineBasicBlock &MBB : *F)
2809       FunctionBlockSet.insert(&MBB);
2810 
2811     for (MachineBasicBlock *ChainBB : FunctionChain)
2812       if (!FunctionBlockSet.erase(ChainBB)) {
2813         BadFunc = true;
2814         dbgs() << "Function chain contains a block not in the function!\n"
2815                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2816       }
2817 
2818     if (!FunctionBlockSet.empty()) {
2819       BadFunc = true;
2820       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2821         dbgs() << "Function contains blocks never placed into a chain!\n"
2822                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2823     }
2824     assert(!BadFunc && "Detected problems with the block placement.");
2825   });
2826 
2827   // Remember original layout ordering, so we can update terminators after
2828   // reordering to point to the original layout successor.
2829   SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2830       F->getNumBlockIDs());
2831   {
2832     MachineBasicBlock *LastMBB = nullptr;
2833     for (auto &MBB : *F) {
2834       if (LastMBB != nullptr)
2835         OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2836       LastMBB = &MBB;
2837     }
2838     OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2839   }
2840 
2841   // Splice the blocks into place.
2842   MachineFunction::iterator InsertPos = F->begin();
2843   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2844   for (MachineBasicBlock *ChainBB : FunctionChain) {
2845     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2846                                                             : "          ... ")
2847                       << getBlockName(ChainBB) << "\n");
2848     if (InsertPos != MachineFunction::iterator(ChainBB))
2849       F->splice(InsertPos, ChainBB);
2850     else
2851       ++InsertPos;
2852 
2853     // Update the terminator of the previous block.
2854     if (ChainBB == *FunctionChain.begin())
2855       continue;
2856     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2857 
2858     // FIXME: It would be awesome of updateTerminator would just return rather
2859     // than assert when the branch cannot be analyzed in order to remove this
2860     // boiler plate.
2861     Cond.clear();
2862     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2863 
2864 #ifndef NDEBUG
2865     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2866       // Given the exact block placement we chose, we may actually not _need_ to
2867       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2868       // do that at this point is a bug.
2869       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2870               !PrevBB->canFallThrough()) &&
2871              "Unexpected block with un-analyzable fallthrough!");
2872       Cond.clear();
2873       TBB = FBB = nullptr;
2874     }
2875 #endif
2876 
2877     // The "PrevBB" is not yet updated to reflect current code layout, so,
2878     //   o. it may fall-through to a block without explicit "goto" instruction
2879     //      before layout, and no longer fall-through it after layout; or
2880     //   o. just opposite.
2881     //
2882     // analyzeBranch() may return erroneous value for FBB when these two
2883     // situations take place. For the first scenario FBB is mistakenly set NULL;
2884     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2885     // mistakenly pointing to "*BI".
2886     // Thus, if the future change needs to use FBB before the layout is set, it
2887     // has to correct FBB first by using the code similar to the following:
2888     //
2889     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2890     //   PrevBB->updateTerminator();
2891     //   Cond.clear();
2892     //   TBB = FBB = nullptr;
2893     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2894     //     // FIXME: This should never take place.
2895     //     TBB = FBB = nullptr;
2896     //   }
2897     // }
2898     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2899       PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2900     }
2901   }
2902 
2903   // Fixup the last block.
2904   Cond.clear();
2905   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2906   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2907     MachineBasicBlock *PrevBB = &F->back();
2908     PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2909   }
2910 
2911   BlockWorkList.clear();
2912   EHPadWorkList.clear();
2913 }
2914 
2915 void MachineBlockPlacement::optimizeBranches() {
2916   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2917   SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2918 
2919   // Now that all the basic blocks in the chain have the proper layout,
2920   // make a final call to analyzeBranch with AllowModify set.
2921   // Indeed, the target may be able to optimize the branches in a way we
2922   // cannot because all branches may not be analyzable.
2923   // E.g., the target may be able to remove an unconditional branch to
2924   // a fallthrough when it occurs after predicated terminators.
2925   for (MachineBasicBlock *ChainBB : FunctionChain) {
2926     Cond.clear();
2927     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2928     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2929       // If PrevBB has a two-way branch, try to re-order the branches
2930       // such that we branch to the successor with higher probability first.
2931       if (TBB && !Cond.empty() && FBB &&
2932           MBPI->getEdgeProbability(ChainBB, FBB) >
2933               MBPI->getEdgeProbability(ChainBB, TBB) &&
2934           !TII->reverseBranchCondition(Cond)) {
2935         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2936                           << getBlockName(ChainBB) << "\n");
2937         LLVM_DEBUG(dbgs() << "    Edge probability: "
2938                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2939                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2940         DebugLoc dl; // FIXME: this is nowhere
2941         TII->removeBranch(*ChainBB);
2942         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2943       }
2944     }
2945   }
2946 }
2947 
2948 void MachineBlockPlacement::alignBlocks() {
2949   // Walk through the backedges of the function now that we have fully laid out
2950   // the basic blocks and align the destination of each backedge. We don't rely
2951   // exclusively on the loop info here so that we can align backedges in
2952   // unnatural CFGs and backedges that were introduced purely because of the
2953   // loop rotations done during this layout pass.
2954   if (F->getFunction().hasMinSize() ||
2955       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2956     return;
2957   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2958   if (FunctionChain.begin() == FunctionChain.end())
2959     return; // Empty chain.
2960 
2961   const BranchProbability ColdProb(1, 5); // 20%
2962   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2963   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2964   for (MachineBasicBlock *ChainBB : FunctionChain) {
2965     if (ChainBB == *FunctionChain.begin())
2966       continue;
2967 
2968     // Don't align non-looping basic blocks. These are unlikely to execute
2969     // enough times to matter in practice. Note that we'll still handle
2970     // unnatural CFGs inside of a natural outer loop (the common case) and
2971     // rotated loops.
2972     MachineLoop *L = MLI->getLoopFor(ChainBB);
2973     if (!L)
2974       continue;
2975 
2976     const Align TLIAlign = TLI->getPrefLoopAlignment(L);
2977     unsigned MDAlign = 1;
2978     MDNode *LoopID = L->getLoopID();
2979     if (LoopID) {
2980       for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
2981         MDNode *MD = dyn_cast<MDNode>(MDO);
2982         if (MD == nullptr)
2983           continue;
2984         MDString *S = dyn_cast<MDString>(MD->getOperand(0));
2985         if (S == nullptr)
2986           continue;
2987         if (S->getString() == "llvm.loop.align") {
2988           assert(MD->getNumOperands() == 2 &&
2989                  "per-loop align metadata should have two operands.");
2990           MDAlign =
2991               mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
2992           assert(MDAlign >= 1 && "per-loop align value must be positive.");
2993         }
2994       }
2995     }
2996 
2997     // Use max of the TLIAlign and MDAlign
2998     const Align LoopAlign = std::max(TLIAlign, Align(MDAlign));
2999     if (LoopAlign == 1)
3000       continue; // Don't care about loop alignment.
3001 
3002     // If the block is cold relative to the function entry don't waste space
3003     // aligning it.
3004     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
3005     if (Freq < WeightedEntryFreq)
3006       continue;
3007 
3008     // If the block is cold relative to its loop header, don't align it
3009     // regardless of what edges into the block exist.
3010     MachineBasicBlock *LoopHeader = L->getHeader();
3011     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
3012     if (Freq < (LoopHeaderFreq * ColdProb))
3013       continue;
3014 
3015     // If the global profiles indicates so, don't align it.
3016     if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
3017         !TLI->alignLoopsWithOptSize())
3018       continue;
3019 
3020     // Check for the existence of a non-layout predecessor which would benefit
3021     // from aligning this block.
3022     MachineBasicBlock *LayoutPred =
3023         &*std::prev(MachineFunction::iterator(ChainBB));
3024 
3025     auto DetermineMaxAlignmentPadding = [&]() {
3026       // Set the maximum bytes allowed to be emitted for alignment.
3027       unsigned MaxBytes;
3028       if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
3029         MaxBytes = MaxBytesForAlignmentOverride;
3030       else
3031         MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
3032       ChainBB->setMaxBytesForAlignment(MaxBytes);
3033     };
3034 
3035     // Force alignment if all the predecessors are jumps. We already checked
3036     // that the block isn't cold above.
3037     if (!LayoutPred->isSuccessor(ChainBB)) {
3038       ChainBB->setAlignment(LoopAlign);
3039       DetermineMaxAlignmentPadding();
3040       continue;
3041     }
3042 
3043     // Align this block if the layout predecessor's edge into this block is
3044     // cold relative to the block. When this is true, other predecessors make up
3045     // all of the hot entries into the block and thus alignment is likely to be
3046     // important.
3047     BranchProbability LayoutProb =
3048         MBPI->getEdgeProbability(LayoutPred, ChainBB);
3049     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
3050     if (LayoutEdgeFreq <= (Freq * ColdProb)) {
3051       ChainBB->setAlignment(LoopAlign);
3052       DetermineMaxAlignmentPadding();
3053     }
3054   }
3055 }
3056 
3057 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
3058 /// it was duplicated into its chain predecessor and removed.
3059 /// \p BB    - Basic block that may be duplicated.
3060 ///
3061 /// \p LPred - Chosen layout predecessor of \p BB.
3062 ///            Updated to be the chain end if LPred is removed.
3063 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3064 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3065 ///                  Used to identify which blocks to update predecessor
3066 ///                  counts.
3067 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3068 ///                          chosen in the given order due to unnatural CFG
3069 ///                          only needed if \p BB is removed and
3070 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3071 /// @return true if \p BB was removed.
3072 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
3073     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
3074     const MachineBasicBlock *LoopHeaderBB, BlockChain &Chain,
3075     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3076     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) {
3077   bool Removed, DuplicatedToLPred;
3078   bool DuplicatedToOriginalLPred;
3079   Removed = maybeTailDuplicateBlock(
3080       BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3081       PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3082   if (!Removed)
3083     return false;
3084   DuplicatedToOriginalLPred = DuplicatedToLPred;
3085   // Iteratively try to duplicate again. It can happen that a block that is
3086   // duplicated into is still small enough to be duplicated again.
3087   // No need to call markBlockSuccessors in this case, as the blocks being
3088   // duplicated from here on are already scheduled.
3089   while (DuplicatedToLPred && Removed) {
3090     MachineBasicBlock *DupBB, *DupPred;
3091     // The removal callback causes Chain.end() to be updated when a block is
3092     // removed. On the first pass through the loop, the chain end should be the
3093     // same as it was on function entry. On subsequent passes, because we are
3094     // duplicating the block at the end of the chain, if it is removed the
3095     // chain will have shrunk by one block.
3096     BlockChain::iterator ChainEnd = Chain.end();
3097     DupBB = *(--ChainEnd);
3098     // Now try to duplicate again.
3099     if (ChainEnd == Chain.begin())
3100       break;
3101     DupPred = *std::prev(ChainEnd);
3102     Removed = maybeTailDuplicateBlock(
3103         DupBB, DupPred, Chain, BlockFilter, PrevUnplacedBlockIt,
3104         PrevUnplacedBlockInFilterIt, DuplicatedToLPred);
3105   }
3106   // If BB was duplicated into LPred, it is now scheduled. But because it was
3107   // removed, markChainSuccessors won't be called for its chain. Instead we
3108   // call markBlockSuccessors for LPred to achieve the same effect. This must go
3109   // at the end because repeating the tail duplication can increase the number
3110   // of unscheduled predecessors.
3111   LPred = *std::prev(Chain.end());
3112   if (DuplicatedToOriginalLPred)
3113     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3114   return true;
3115 }
3116 
3117 /// Tail duplicate \p BB into (some) predecessors if profitable.
3118 /// \p BB    - Basic block that may be duplicated
3119 /// \p LPred - Chosen layout predecessor of \p BB
3120 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3121 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3122 ///                  Used to identify which blocks to update predecessor
3123 ///                  counts.
3124 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3125 ///                          chosen in the given order due to unnatural CFG
3126 ///                          only needed if \p BB is removed and
3127 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
3128 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3129 /// \return  - True if the block was duplicated into all preds and removed.
3130 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3131     MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain,
3132     BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt,
3133     BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt,
3134     bool &DuplicatedToLPred) {
3135   DuplicatedToLPred = false;
3136   if (!shouldTailDuplicate(BB))
3137     return false;
3138 
3139   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3140                     << "\n");
3141 
3142   // This has to be a callback because none of it can be done after
3143   // BB is deleted.
3144   bool Removed = false;
3145   auto RemovalCallback =
3146       [&](MachineBasicBlock *RemBB) {
3147         // Signal to outer function
3148         Removed = true;
3149 
3150         // Conservative default.
3151         bool InWorkList = true;
3152         // Remove from the Chain and Chain Map
3153         if (BlockToChain.count(RemBB)) {
3154           BlockChain *Chain = BlockToChain[RemBB];
3155           InWorkList = Chain->UnscheduledPredecessors == 0;
3156           Chain->remove(RemBB);
3157           BlockToChain.erase(RemBB);
3158         }
3159 
3160         // Handle the unplaced block iterator
3161         if (&(*PrevUnplacedBlockIt) == RemBB) {
3162           PrevUnplacedBlockIt++;
3163         }
3164 
3165         // Handle the Work Lists
3166         if (InWorkList) {
3167           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3168           if (RemBB->isEHPad())
3169             RemoveList = EHPadWorkList;
3170           llvm::erase(RemoveList, RemBB);
3171         }
3172 
3173         // Handle the filter set
3174         if (BlockFilter) {
3175           auto It = llvm::find(*BlockFilter, RemBB);
3176           // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt
3177           // pointing to the same element as before.
3178           if (It != BlockFilter->end()) {
3179             if (It < PrevUnplacedBlockInFilterIt) {
3180               const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt;
3181               // BlockFilter is a SmallVector so all elements after RemBB are
3182               // shifted to the front by 1 after its deletion.
3183               auto Distance = PrevUnplacedBlockInFilterIt - It - 1;
3184               PrevUnplacedBlockInFilterIt = BlockFilter->erase(It) + Distance;
3185               assert(*PrevUnplacedBlockInFilterIt == PrevBB);
3186               (void)PrevBB;
3187             } else if (It == PrevUnplacedBlockInFilterIt)
3188               // The block pointed by PrevUnplacedBlockInFilterIt is erased, we
3189               // have to set it to the next element.
3190               PrevUnplacedBlockInFilterIt = BlockFilter->erase(It);
3191             else
3192               BlockFilter->erase(It);
3193           }
3194         }
3195 
3196         // Remove the block from loop info.
3197         MLI->removeBlock(RemBB);
3198         if (RemBB == PreferredLoopExit)
3199           PreferredLoopExit = nullptr;
3200 
3201         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3202                           << getBlockName(RemBB) << "\n");
3203       };
3204   auto RemovalCallbackRef =
3205       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3206 
3207   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3208   bool IsSimple = TailDup.isSimpleBB(BB);
3209   SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3210   SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3211   if (F->getFunction().hasProfileData()) {
3212     // We can do partial duplication with precise profile information.
3213     findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3214     if (CandidatePreds.size() == 0)
3215       return false;
3216     if (CandidatePreds.size() < BB->pred_size())
3217       CandidatePtr = &CandidatePreds;
3218   }
3219   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3220                                  &RemovalCallbackRef, CandidatePtr);
3221 
3222   // Update UnscheduledPredecessors to reflect tail-duplication.
3223   DuplicatedToLPred = false;
3224   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3225     // We're only looking for unscheduled predecessors that match the filter.
3226     BlockChain* PredChain = BlockToChain[Pred];
3227     if (Pred == LPred)
3228       DuplicatedToLPred = true;
3229     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3230         || PredChain == &Chain)
3231       continue;
3232     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3233       if (BlockFilter && !BlockFilter->count(NewSucc))
3234         continue;
3235       BlockChain *NewChain = BlockToChain[NewSucc];
3236       if (NewChain != &Chain && NewChain != PredChain)
3237         NewChain->UnscheduledPredecessors++;
3238     }
3239   }
3240   return Removed;
3241 }
3242 
3243 // Count the number of actual machine instructions.
3244 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3245   uint64_t InstrCount = 0;
3246   for (MachineInstr &MI : *MBB) {
3247     if (!MI.isPHI() && !MI.isMetaInstruction())
3248       InstrCount += 1;
3249   }
3250   return InstrCount;
3251 }
3252 
3253 // The size cost of duplication is the instruction size of the duplicated block.
3254 // So we should scale the threshold accordingly. But the instruction size is not
3255 // available on all targets, so we use the number of instructions instead.
3256 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3257   return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(BB));
3258 }
3259 
3260 // Returns true if BB is Pred's best successor.
3261 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3262                                             MachineBasicBlock *Pred,
3263                                             BlockFilterSet *BlockFilter) {
3264   if (BB == Pred)
3265     return false;
3266   if (BlockFilter && !BlockFilter->count(Pred))
3267     return false;
3268   BlockChain *PredChain = BlockToChain[Pred];
3269   if (PredChain && (Pred != *std::prev(PredChain->end())))
3270     return false;
3271 
3272   // Find the successor with largest probability excluding BB.
3273   BranchProbability BestProb = BranchProbability::getZero();
3274   for (MachineBasicBlock *Succ : Pred->successors())
3275     if (Succ != BB) {
3276       if (BlockFilter && !BlockFilter->count(Succ))
3277         continue;
3278       BlockChain *SuccChain = BlockToChain[Succ];
3279       if (SuccChain && (Succ != *SuccChain->begin()))
3280         continue;
3281       BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3282       if (SuccProb > BestProb)
3283         BestProb = SuccProb;
3284     }
3285 
3286   BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3287   if (BBProb <= BestProb)
3288     return false;
3289 
3290   // Compute the number of reduced taken branches if Pred falls through to BB
3291   // instead of another successor. Then compare it with threshold.
3292   BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3293   BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3294   return Gain > scaleThreshold(BB);
3295 }
3296 
3297 // Find out the predecessors of BB and BB can be beneficially duplicated into
3298 // them.
3299 void MachineBlockPlacement::findDuplicateCandidates(
3300     SmallVectorImpl<MachineBasicBlock *> &Candidates,
3301     MachineBasicBlock *BB,
3302     BlockFilterSet *BlockFilter) {
3303   MachineBasicBlock *Fallthrough = nullptr;
3304   BranchProbability DefaultBranchProb = BranchProbability::getZero();
3305   BlockFrequency BBDupThreshold(scaleThreshold(BB));
3306   SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3307   SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3308 
3309   // Sort for highest frequency.
3310   auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3311     return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3312   };
3313   auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3314     return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3315   };
3316   llvm::stable_sort(Succs, CmpSucc);
3317   llvm::stable_sort(Preds, CmpPred);
3318 
3319   auto SuccIt = Succs.begin();
3320   if (SuccIt != Succs.end()) {
3321     DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3322   }
3323 
3324   // For each predecessors of BB, compute the benefit of duplicating BB,
3325   // if it is larger than the threshold, add it into Candidates.
3326   //
3327   // If we have following control flow.
3328   //
3329   //     PB1 PB2 PB3 PB4
3330   //      \   |  /    /\
3331   //       \  | /    /  \
3332   //        \ |/    /    \
3333   //         BB----/     OB
3334   //         /\
3335   //        /  \
3336   //      SB1 SB2
3337   //
3338   // And it can be partially duplicated as
3339   //
3340   //   PB2+BB
3341   //      |  PB1 PB3 PB4
3342   //      |   |  /    /\
3343   //      |   | /    /  \
3344   //      |   |/    /    \
3345   //      |  BB----/     OB
3346   //      |\ /|
3347   //      | X |
3348   //      |/ \|
3349   //     SB2 SB1
3350   //
3351   // The benefit of duplicating into a predecessor is defined as
3352   //         Orig_taken_branch - Duplicated_taken_branch
3353   //
3354   // The Orig_taken_branch is computed with the assumption that predecessor
3355   // jumps to BB and the most possible successor is laid out after BB.
3356   //
3357   // The Duplicated_taken_branch is computed with the assumption that BB is
3358   // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3359   // SB2 for PB2 in our case). If there is no available successor, the combined
3360   // block jumps to all BB's successor, like PB3 in this example.
3361   //
3362   // If a predecessor has multiple successors, so BB can't be duplicated into
3363   // it. But it can beneficially fall through to BB, and duplicate BB into other
3364   // predecessors.
3365   for (MachineBasicBlock *Pred : Preds) {
3366     BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3367 
3368     if (!TailDup.canTailDuplicate(BB, Pred)) {
3369       // BB can't be duplicated into Pred, but it is possible to be layout
3370       // below Pred.
3371       if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3372         Fallthrough = Pred;
3373         if (SuccIt != Succs.end())
3374           SuccIt++;
3375       }
3376       continue;
3377     }
3378 
3379     BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3380     BlockFrequency DupCost;
3381     if (SuccIt == Succs.end()) {
3382       // Jump to all successors;
3383       if (Succs.size() > 0)
3384         DupCost += PredFreq;
3385     } else {
3386       // Fallthrough to *SuccIt, jump to all other successors;
3387       DupCost += PredFreq;
3388       DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3389     }
3390 
3391     assert(OrigCost >= DupCost);
3392     OrigCost -= DupCost;
3393     if (OrigCost > BBDupThreshold) {
3394       Candidates.push_back(Pred);
3395       if (SuccIt != Succs.end())
3396         SuccIt++;
3397     }
3398   }
3399 
3400   // No predecessors can optimally fallthrough to BB.
3401   // So we can change one duplication into fallthrough.
3402   if (!Fallthrough) {
3403     if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3404       Candidates[0] = Candidates.back();
3405       Candidates.pop_back();
3406     }
3407   }
3408 }
3409 
3410 void MachineBlockPlacement::initDupThreshold() {
3411   DupThreshold = BlockFrequency(0);
3412   if (!F->getFunction().hasProfileData())
3413     return;
3414 
3415   // We prefer to use prifile count.
3416   uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3417   if (HotThreshold != UINT64_MAX) {
3418     UseProfileCount = true;
3419     DupThreshold =
3420         BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100);
3421     return;
3422   }
3423 
3424   // Profile count is not available, we can use block frequency instead.
3425   BlockFrequency MaxFreq = BlockFrequency(0);
3426   for (MachineBasicBlock &MBB : *F) {
3427     BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3428     if (Freq > MaxFreq)
3429       MaxFreq = Freq;
3430   }
3431 
3432   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3433   DupThreshold = BlockFrequency(MaxFreq * ThresholdProb);
3434   UseProfileCount = false;
3435 }
3436 
3437 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3438   if (skipFunction(MF.getFunction()))
3439     return false;
3440 
3441   // Check for single-block functions and skip them.
3442   if (std::next(MF.begin()) == MF.end())
3443     return false;
3444 
3445   F = &MF;
3446   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3447   MBFI = std::make_unique<MBFIWrapper>(
3448       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI());
3449   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
3450   TII = MF.getSubtarget().getInstrInfo();
3451   TLI = MF.getSubtarget().getTargetLowering();
3452   MPDT = nullptr;
3453   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3454 
3455   initDupThreshold();
3456 
3457   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3458   // there are no MachineLoops.
3459   PreferredLoopExit = nullptr;
3460 
3461   assert(BlockToChain.empty() &&
3462          "BlockToChain map should be empty before starting placement.");
3463   assert(ComputedEdges.empty() &&
3464          "Computed Edge map should be empty before starting placement.");
3465 
3466   unsigned TailDupSize = TailDupPlacementThreshold;
3467   // If only the aggressive threshold is explicitly set, use it.
3468   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3469       TailDupPlacementThreshold.getNumOccurrences() == 0)
3470     TailDupSize = TailDupPlacementAggressiveThreshold;
3471 
3472   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3473   // For aggressive optimization, we can adjust some thresholds to be less
3474   // conservative.
3475   if (PassConfig->getOptLevel() >= CodeGenOptLevel::Aggressive) {
3476     // At O3 we should be more willing to copy blocks for tail duplication. This
3477     // increases size pressure, so we only do it at O3
3478     // Do this unless only the regular threshold is explicitly set.
3479     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3480         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3481       TailDupSize = TailDupPlacementAggressiveThreshold;
3482   }
3483 
3484   // If there's no threshold provided through options, query the target
3485   // information for a threshold instead.
3486   if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3487       (PassConfig->getOptLevel() < CodeGenOptLevel::Aggressive ||
3488        TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3489     TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3490 
3491   if (allowTailDupPlacement()) {
3492     MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
3493     bool OptForSize = MF.getFunction().hasOptSize() ||
3494                       llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3495     if (OptForSize)
3496       TailDupSize = 1;
3497     bool PreRegAlloc = false;
3498     TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3499                    /* LayoutMode */ true, TailDupSize);
3500     precomputeTriangleChains();
3501   }
3502 
3503   buildCFGChains();
3504 
3505   // Changing the layout can create new tail merging opportunities.
3506   // TailMerge can create jump into if branches that make CFG irreducible for
3507   // HW that requires structured CFG.
3508   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3509                          PassConfig->getEnableTailMerge() &&
3510                          BranchFoldPlacement;
3511   // No tail merging opportunities if the block number is less than four.
3512   if (MF.size() > 3 && EnableTailMerge) {
3513     unsigned TailMergeSize = TailDupSize + 1;
3514     BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3515                     *MBFI, *MBPI, PSI, TailMergeSize);
3516 
3517     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3518                             /*AfterPlacement=*/true)) {
3519       // Redo the layout if tail merging creates/removes/moves blocks.
3520       BlockToChain.clear();
3521       ComputedEdges.clear();
3522       // Must redo the post-dominator tree if blocks were changed.
3523       if (MPDT)
3524         MPDT->recalculate(MF);
3525       ChainAllocator.DestroyAll();
3526       buildCFGChains();
3527     }
3528   }
3529 
3530   // Apply a post-processing optimizing block placement.
3531   if (MF.size() >= 3 && EnableExtTspBlockPlacement &&
3532       (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData()) &&
3533       MF.size() <= ExtTspBlockPlacementMaxBlocks) {
3534     // Find a new placement and modify the layout of the blocks in the function.
3535     applyExtTsp();
3536 
3537     // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3538     createCFGChainExtTsp();
3539   }
3540 
3541   optimizeBranches();
3542   alignBlocks();
3543 
3544   BlockToChain.clear();
3545   ComputedEdges.clear();
3546   ChainAllocator.DestroyAll();
3547 
3548   bool HasMaxBytesOverride =
3549       MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3550 
3551   if (AlignAllBlock)
3552     // Align all of the blocks in the function to a specific alignment.
3553     for (MachineBasicBlock &MBB : MF) {
3554       if (HasMaxBytesOverride)
3555         MBB.setAlignment(Align(1ULL << AlignAllBlock),
3556                          MaxBytesForAlignmentOverride);
3557       else
3558         MBB.setAlignment(Align(1ULL << AlignAllBlock));
3559     }
3560   else if (AlignAllNonFallThruBlocks) {
3561     // Align all of the blocks that have no fall-through predecessors to a
3562     // specific alignment.
3563     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3564       auto LayoutPred = std::prev(MBI);
3565       if (!LayoutPred->isSuccessor(&*MBI)) {
3566         if (HasMaxBytesOverride)
3567           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3568                             MaxBytesForAlignmentOverride);
3569         else
3570           MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3571       }
3572     }
3573   }
3574   if (ViewBlockLayoutWithBFI != GVDT_None &&
3575       (ViewBlockFreqFuncName.empty() ||
3576        F->getFunction().getName() == ViewBlockFreqFuncName)) {
3577     if (RenumberBlocksBeforeView)
3578       MF.RenumberBlocks();
3579     MBFI->view("MBP." + MF.getName(), false);
3580   }
3581 
3582   // We always return true as we have no way to track whether the final order
3583   // differs from the original order.
3584   return true;
3585 }
3586 
3587 void MachineBlockPlacement::applyExtTsp() {
3588   // Prepare data; blocks are indexed by their index in the current ordering.
3589   DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3590   BlockIndex.reserve(F->size());
3591   std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3592   CurrentBlockOrder.reserve(F->size());
3593   size_t NumBlocks = 0;
3594   for (const MachineBasicBlock &MBB : *F) {
3595     BlockIndex[&MBB] = NumBlocks++;
3596     CurrentBlockOrder.push_back(&MBB);
3597   }
3598 
3599   auto BlockSizes = std::vector<uint64_t>(F->size());
3600   auto BlockCounts = std::vector<uint64_t>(F->size());
3601   std::vector<codelayout::EdgeCount> JumpCounts;
3602   for (MachineBasicBlock &MBB : *F) {
3603     // Getting the block frequency.
3604     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3605     BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3606     // Getting the block size:
3607     // - approximate the size of an instruction by 4 bytes, and
3608     // - ignore debug instructions.
3609     // Note: getting the exact size of each block is target-dependent and can be
3610     // done by extending the interface of MCCodeEmitter. Experimentally we do
3611     // not see a perf improvement with the exact block sizes.
3612     auto NonDbgInsts =
3613         instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3614     int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3615     BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3616     // Getting jump frequencies.
3617     for (MachineBasicBlock *Succ : MBB.successors()) {
3618       auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3619       BlockFrequency JumpFreq = BlockFreq * EP;
3620       JumpCounts.push_back(
3621           {BlockIndex[&MBB], BlockIndex[Succ], JumpFreq.getFrequency()});
3622     }
3623   }
3624 
3625   LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3626                     << " with profile = " << F->getFunction().hasProfileData()
3627                     << " (" << F->getName().str() << ")"
3628                     << "\n");
3629   LLVM_DEBUG(
3630       dbgs() << format("  original  layout score: %0.2f\n",
3631                        calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3632 
3633   // Run the layout algorithm.
3634   auto NewOrder = computeExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3635   std::vector<const MachineBasicBlock *> NewBlockOrder;
3636   NewBlockOrder.reserve(F->size());
3637   for (uint64_t Node : NewOrder) {
3638     NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3639   }
3640   LLVM_DEBUG(dbgs() << format("  optimized layout score: %0.2f\n",
3641                               calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3642                                               JumpCounts)));
3643 
3644   // Assign new block order.
3645   assignBlockOrder(NewBlockOrder);
3646 }
3647 
3648 void MachineBlockPlacement::assignBlockOrder(
3649     const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3650   assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3651   F->RenumberBlocks();
3652 
3653   bool HasChanges = false;
3654   for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3655     if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3656       HasChanges = true;
3657       break;
3658     }
3659   }
3660   // Stop early if the new block order is identical to the existing one.
3661   if (!HasChanges)
3662     return;
3663 
3664   SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3665   for (auto &MBB : *F) {
3666     PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3667   }
3668 
3669   // Sort basic blocks in the function according to the computed order.
3670   DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3671   for (const MachineBasicBlock *MBB : NewBlockOrder) {
3672     NewIndex[MBB] = NewIndex.size();
3673   }
3674   F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3675     return NewIndex[&L] < NewIndex[&R];
3676   });
3677 
3678   // Update basic block branches by inserting explicit fallthrough branches
3679   // when required and re-optimize branches when possible.
3680   const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3681   SmallVector<MachineOperand, 4> Cond;
3682   for (auto &MBB : *F) {
3683     MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3684     MachineFunction::iterator EndIt = MBB.getParent()->end();
3685     auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3686     // If this block had a fallthrough before we need an explicit unconditional
3687     // branch to that block if the fallthrough block is not adjacent to the
3688     // block in the new order.
3689     if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3690       TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3691     }
3692 
3693     // It might be possible to optimize branches by flipping the condition.
3694     Cond.clear();
3695     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3696     if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3697       continue;
3698     MBB.updateTerminator(FTMBB);
3699   }
3700 
3701 #ifndef NDEBUG
3702   // Make sure we correctly constructed all branches.
3703   F->verify(this, "After optimized block reordering");
3704 #endif
3705 }
3706 
3707 void MachineBlockPlacement::createCFGChainExtTsp() {
3708   BlockToChain.clear();
3709   ComputedEdges.clear();
3710   ChainAllocator.DestroyAll();
3711 
3712   MachineBasicBlock *HeadBB = &F->front();
3713   BlockChain *FunctionChain =
3714       new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3715 
3716   for (MachineBasicBlock &MBB : *F) {
3717     if (HeadBB == &MBB)
3718       continue; // Ignore head of the chain
3719     FunctionChain->merge(&MBB, nullptr);
3720   }
3721 }
3722 
3723 namespace {
3724 
3725 /// A pass to compute block placement statistics.
3726 ///
3727 /// A separate pass to compute interesting statistics for evaluating block
3728 /// placement. This is separate from the actual placement pass so that they can
3729 /// be computed in the absence of any placement transformations or when using
3730 /// alternative placement strategies.
3731 class MachineBlockPlacementStats : public MachineFunctionPass {
3732   /// A handle to the branch probability pass.
3733   const MachineBranchProbabilityInfo *MBPI;
3734 
3735   /// A handle to the function-wide block frequency pass.
3736   const MachineBlockFrequencyInfo *MBFI;
3737 
3738 public:
3739   static char ID; // Pass identification, replacement for typeid
3740 
3741   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3742     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3743   }
3744 
3745   bool runOnMachineFunction(MachineFunction &F) override;
3746 
3747   void getAnalysisUsage(AnalysisUsage &AU) const override {
3748     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
3749     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
3750     AU.setPreservesAll();
3751     MachineFunctionPass::getAnalysisUsage(AU);
3752   }
3753 };
3754 
3755 } // end anonymous namespace
3756 
3757 char MachineBlockPlacementStats::ID = 0;
3758 
3759 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3760 
3761 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3762                       "Basic Block Placement Stats", false, false)
3763 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
3764 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
3765 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3766                     "Basic Block Placement Stats", false, false)
3767 
3768 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3769   // Check for single-block functions and skip them.
3770   if (std::next(F.begin()) == F.end())
3771     return false;
3772 
3773   if (!isFunctionInPrintList(F.getName()))
3774     return false;
3775 
3776   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
3777   MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
3778 
3779   for (MachineBasicBlock &MBB : F) {
3780     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3781     Statistic &NumBranches =
3782         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3783     Statistic &BranchTakenFreq =
3784         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3785     for (MachineBasicBlock *Succ : MBB.successors()) {
3786       // Skip if this successor is a fallthrough.
3787       if (MBB.isLayoutSuccessor(Succ))
3788         continue;
3789 
3790       BlockFrequency EdgeFreq =
3791           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3792       ++NumBranches;
3793       BranchTakenFreq += EdgeFreq.getFrequency();
3794     }
3795   }
3796 
3797   return false;
3798 }
3799