1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probablistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 129 namespace { 130 class BlockChain; 131 /// \brief Type for our function-wide basic block -> block chain mapping. 132 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 133 } 134 135 namespace { 136 /// \brief A chain of blocks which will be laid out contiguously. 137 /// 138 /// This is the datastructure representing a chain of consecutive blocks that 139 /// are profitable to layout together in order to maximize fallthrough 140 /// probabilities and code locality. We also can use a block chain to represent 141 /// a sequence of basic blocks which have some external (correctness) 142 /// requirement for sequential layout. 143 /// 144 /// Chains can be built around a single basic block and can be merged to grow 145 /// them. They participate in a block-to-chain mapping, which is updated 146 /// automatically as chains are merged together. 147 class BlockChain { 148 /// \brief The sequence of blocks belonging to this chain. 149 /// 150 /// This is the sequence of blocks for a particular chain. These will be laid 151 /// out in-order within the function. 152 SmallVector<MachineBasicBlock *, 4> Blocks; 153 154 /// \brief A handle to the function-wide basic block to block chain mapping. 155 /// 156 /// This is retained in each block chain to simplify the computation of child 157 /// block chains for SCC-formation and iteration. We store the edges to child 158 /// basic blocks, and map them back to their associated chains using this 159 /// structure. 160 BlockToChainMapType &BlockToChain; 161 162 public: 163 /// \brief Construct a new BlockChain. 164 /// 165 /// This builds a new block chain representing a single basic block in the 166 /// function. It also registers itself as the chain that block participates 167 /// in with the BlockToChain mapping. 168 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 169 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 170 assert(BB && "Cannot create a chain with a null basic block"); 171 BlockToChain[BB] = this; 172 } 173 174 /// \brief Iterator over blocks within the chain. 175 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 176 177 /// \brief Beginning of blocks within the chain. 178 iterator begin() { return Blocks.begin(); } 179 180 /// \brief End of blocks within the chain. 181 iterator end() { return Blocks.end(); } 182 183 /// \brief Merge a block chain into this one. 184 /// 185 /// This routine merges a block chain into this one. It takes care of forming 186 /// a contiguous sequence of basic blocks, updating the edge list, and 187 /// updating the block -> chain mapping. It does not free or tear down the 188 /// old chain, but the old chain's block list is no longer valid. 189 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 190 assert(BB); 191 assert(!Blocks.empty()); 192 193 // Fast path in case we don't have a chain already. 194 if (!Chain) { 195 assert(!BlockToChain[BB]); 196 Blocks.push_back(BB); 197 BlockToChain[BB] = this; 198 return; 199 } 200 201 assert(BB == *Chain->begin()); 202 assert(Chain->begin() != Chain->end()); 203 204 // Update the incoming blocks to point to this chain, and add them to the 205 // chain structure. 206 for (MachineBasicBlock *ChainBB : *Chain) { 207 Blocks.push_back(ChainBB); 208 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 209 BlockToChain[ChainBB] = this; 210 } 211 } 212 213 #ifndef NDEBUG 214 /// \brief Dump the blocks in this chain. 215 LLVM_DUMP_METHOD void dump() { 216 for (MachineBasicBlock *MBB : *this) 217 MBB->dump(); 218 } 219 #endif // NDEBUG 220 221 /// \brief Count of predecessors of any block within the chain which have not 222 /// yet been scheduled. In general, we will delay scheduling this chain 223 /// until those predecessors are scheduled (or we find a sufficiently good 224 /// reason to override this heuristic.) Note that when forming loop chains, 225 /// blocks outside the loop are ignored and treated as if they were already 226 /// scheduled. 227 /// 228 /// Note: This field is reinitialized multiple times - once for each loop, 229 /// and then once for the function as a whole. 230 unsigned UnscheduledPredecessors; 231 }; 232 } 233 234 namespace { 235 class MachineBlockPlacement : public MachineFunctionPass { 236 /// \brief A typedef for a block filter set. 237 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 238 239 /// \brief A handle to the branch probability pass. 240 const MachineBranchProbabilityInfo *MBPI; 241 242 /// \brief A handle to the function-wide block frequency pass. 243 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 244 245 /// \brief A handle to the loop info. 246 MachineLoopInfo *MLI; 247 248 /// \brief A handle to the target's instruction info. 249 const TargetInstrInfo *TII; 250 251 /// \brief A handle to the target's lowering info. 252 const TargetLoweringBase *TLI; 253 254 /// \brief A handle to the post dominator tree. 255 MachineDominatorTree *MDT; 256 257 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 258 /// all terminators of the MachineFunction. 259 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 260 261 /// \brief Allocator and owner of BlockChain structures. 262 /// 263 /// We build BlockChains lazily while processing the loop structure of 264 /// a function. To reduce malloc traffic, we allocate them using this 265 /// slab-like allocator, and destroy them after the pass completes. An 266 /// important guarantee is that this allocator produces stable pointers to 267 /// the chains. 268 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 269 270 /// \brief Function wide BasicBlock to BlockChain mapping. 271 /// 272 /// This mapping allows efficiently moving from any given basic block to the 273 /// BlockChain it participates in, if any. We use it to, among other things, 274 /// allow implicitly defining edges between chains as the existing edges 275 /// between basic blocks. 276 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 277 278 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 279 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 280 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 281 const BlockFilterSet *BlockFilter = nullptr); 282 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 283 BlockChain &Chain, 284 const BlockFilterSet *BlockFilter); 285 MachineBasicBlock * 286 selectBestCandidateBlock(BlockChain &Chain, 287 SmallVectorImpl<MachineBasicBlock *> &WorkList); 288 MachineBasicBlock * 289 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 290 MachineFunction::iterator &PrevUnplacedBlockIt, 291 const BlockFilterSet *BlockFilter); 292 293 /// \brief Add a basic block to the work list if it is apropriate. 294 /// 295 /// If the optional parameter BlockFilter is provided, only MBB 296 /// present in the set will be added to the worklist. If nullptr 297 /// is provided, no filtering occurs. 298 void fillWorkLists(MachineBasicBlock *MBB, 299 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 300 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 301 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 302 const BlockFilterSet *BlockFilter); 303 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 304 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 305 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 306 const BlockFilterSet *BlockFilter = nullptr); 307 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 308 const BlockFilterSet &LoopBlockSet); 309 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 310 const BlockFilterSet &LoopBlockSet); 311 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 312 void buildLoopChains(MachineFunction &F, MachineLoop &L); 313 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 314 const BlockFilterSet &LoopBlockSet); 315 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 316 const BlockFilterSet &LoopBlockSet); 317 void buildCFGChains(MachineFunction &F); 318 void optimizeBranches(MachineFunction &F); 319 void alignBlocks(MachineFunction &F); 320 321 public: 322 static char ID; // Pass identification, replacement for typeid 323 MachineBlockPlacement() : MachineFunctionPass(ID) { 324 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 325 } 326 327 bool runOnMachineFunction(MachineFunction &F) override; 328 329 void getAnalysisUsage(AnalysisUsage &AU) const override { 330 AU.addRequired<MachineBranchProbabilityInfo>(); 331 AU.addRequired<MachineBlockFrequencyInfo>(); 332 AU.addRequired<MachineDominatorTree>(); 333 AU.addRequired<MachineLoopInfo>(); 334 AU.addRequired<TargetPassConfig>(); 335 MachineFunctionPass::getAnalysisUsage(AU); 336 } 337 }; 338 } 339 340 char MachineBlockPlacement::ID = 0; 341 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 342 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 343 "Branch Probability Basic Block Placement", false, false) 344 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 345 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 346 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 347 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 348 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 349 "Branch Probability Basic Block Placement", false, false) 350 351 #ifndef NDEBUG 352 /// \brief Helper to print the name of a MBB. 353 /// 354 /// Only used by debug logging. 355 static std::string getBlockName(MachineBasicBlock *BB) { 356 std::string Result; 357 raw_string_ostream OS(Result); 358 OS << "BB#" << BB->getNumber(); 359 OS << " ('" << BB->getName() << "')"; 360 OS.flush(); 361 return Result; 362 } 363 #endif 364 365 /// \brief Mark a chain's successors as having one fewer preds. 366 /// 367 /// When a chain is being merged into the "placed" chain, this routine will 368 /// quickly walk the successors of each block in the chain and mark them as 369 /// having one fewer active predecessor. It also adds any successors of this 370 /// chain which reach the zero-predecessor state to the worklist passed in. 371 void MachineBlockPlacement::markChainSuccessors( 372 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 373 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 374 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 375 const BlockFilterSet *BlockFilter) { 376 // Walk all the blocks in this chain, marking their successors as having 377 // a predecessor placed. 378 for (MachineBasicBlock *MBB : Chain) { 379 // Add any successors for which this is the only un-placed in-loop 380 // predecessor to the worklist as a viable candidate for CFG-neutral 381 // placement. No subsequent placement of this block will violate the CFG 382 // shape, so we get to use heuristics to choose a favorable placement. 383 for (MachineBasicBlock *Succ : MBB->successors()) { 384 if (BlockFilter && !BlockFilter->count(Succ)) 385 continue; 386 BlockChain &SuccChain = *BlockToChain[Succ]; 387 // Disregard edges within a fixed chain, or edges to the loop header. 388 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 389 continue; 390 391 // This is a cross-chain edge that is within the loop, so decrement the 392 // loop predecessor count of the destination chain. 393 if (SuccChain.UnscheduledPredecessors == 0 || 394 --SuccChain.UnscheduledPredecessors > 0) 395 continue; 396 397 auto *MBB = *SuccChain.begin(); 398 if (MBB->isEHPad()) 399 EHPadWorkList.push_back(MBB); 400 else 401 BlockWorkList.push_back(MBB); 402 } 403 } 404 } 405 406 /// \brief Select the best successor for a block. 407 /// 408 /// This looks across all successors of a particular block and attempts to 409 /// select the "best" one to be the layout successor. It only considers direct 410 /// successors which also pass the block filter. It will attempt to avoid 411 /// breaking CFG structure, but cave and break such structures in the case of 412 /// very hot successor edges. 413 /// 414 /// \returns The best successor block found, or null if none are viable. 415 MachineBasicBlock * 416 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 417 BlockChain &Chain, 418 const BlockFilterSet *BlockFilter) { 419 const BranchProbability HotProb(StaticLikelyProb, 100); 420 421 MachineBasicBlock *BestSucc = nullptr; 422 auto BestProb = BranchProbability::getZero(); 423 424 // Adjust edge probabilities by excluding edges pointing to blocks that is 425 // either not in BlockFilter or is already in the current chain. Consider the 426 // following CFG: 427 // 428 // --->A 429 // | / \ 430 // | B C 431 // | \ / \ 432 // ----D E 433 // 434 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 435 // A->C is chosen as a fall-through, D won't be selected as a successor of C 436 // due to CFG constraint (the probability of C->D is not greater than 437 // HotProb). If we exclude E that is not in BlockFilter when calculating the 438 // probability of C->D, D will be selected and we will get A C D B as the 439 // layout of this loop. 440 auto AdjustedSumProb = BranchProbability::getOne(); 441 SmallVector<MachineBasicBlock *, 4> Successors; 442 for (MachineBasicBlock *Succ : BB->successors()) { 443 bool SkipSucc = false; 444 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 445 SkipSucc = true; 446 } else { 447 BlockChain *SuccChain = BlockToChain[Succ]; 448 if (SuccChain == &Chain) { 449 SkipSucc = true; 450 } else if (Succ != *SuccChain->begin()) { 451 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 452 continue; 453 } 454 } 455 if (SkipSucc) 456 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 457 else 458 Successors.push_back(Succ); 459 } 460 461 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 462 for (MachineBasicBlock *Succ : Successors) { 463 BranchProbability SuccProb; 464 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 465 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 466 if (SuccProbN >= SuccProbD) 467 SuccProb = BranchProbability::getOne(); 468 else 469 SuccProb = BranchProbability(SuccProbN, SuccProbD); 470 471 // If we outline optional branches, look whether Succ is unavoidable, i.e. 472 // dominates all terminators of the MachineFunction. If it does, other 473 // successors must be optional. Don't do this for cold branches. 474 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 475 UnavoidableBlocks.count(Succ) > 0) { 476 auto HasShortOptionalBranch = [&]() { 477 for (MachineBasicBlock *Pred : Succ->predecessors()) { 478 // Check whether there is an unplaced optional branch. 479 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 480 BlockToChain[Pred] == &Chain) 481 continue; 482 // Check whether the optional branch has exactly one BB. 483 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 484 continue; 485 // Check whether the optional branch is small. 486 if (Pred->size() < OutlineOptionalThreshold) 487 return true; 488 } 489 return false; 490 }; 491 if (!HasShortOptionalBranch()) 492 return Succ; 493 } 494 495 // Only consider successors which are either "hot", or wouldn't violate 496 // any CFG constraints. 497 BlockChain &SuccChain = *BlockToChain[Succ]; 498 if (SuccChain.UnscheduledPredecessors != 0) { 499 if (SuccProb < HotProb) { 500 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 501 << " (prob) (CFG conflict)\n"); 502 continue; 503 } 504 505 // Make sure that a hot successor doesn't have a globally more 506 // important predecessor. 507 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 508 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 509 bool BadCFGConflict = false; 510 for (MachineBasicBlock *Pred : Succ->predecessors()) { 511 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 512 (BlockFilter && !BlockFilter->count(Pred)) || 513 BlockToChain[Pred] == &Chain) 514 continue; 515 BlockFrequency PredEdgeFreq = 516 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 517 // A B 518 // \ / 519 // C 520 // We layout ACB iff A.freq > C.freq * HotProb 521 // i.e. A.freq > A.freq * HotProb + B.freq * HotProb 522 // i.e. A.freq * (1 - HotProb) > B.freq * HotProb 523 // A: CandidateEdge 524 // B: PredEdge 525 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 526 BadCFGConflict = true; 527 break; 528 } 529 } 530 if (BadCFGConflict) { 531 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 532 << " (prob) (non-cold CFG conflict)\n"); 533 continue; 534 } 535 } 536 537 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 538 << " (prob)" 539 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 540 << "\n"); 541 if (BestSucc && BestProb >= SuccProb) 542 continue; 543 BestSucc = Succ; 544 BestProb = SuccProb; 545 } 546 return BestSucc; 547 } 548 549 /// \brief Select the best block from a worklist. 550 /// 551 /// This looks through the provided worklist as a list of candidate basic 552 /// blocks and select the most profitable one to place. The definition of 553 /// profitable only really makes sense in the context of a loop. This returns 554 /// the most frequently visited block in the worklist, which in the case of 555 /// a loop, is the one most desirable to be physically close to the rest of the 556 /// loop body in order to improve icache behavior. 557 /// 558 /// \returns The best block found, or null if none are viable. 559 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 560 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 561 // Once we need to walk the worklist looking for a candidate, cleanup the 562 // worklist of already placed entries. 563 // FIXME: If this shows up on profiles, it could be folded (at the cost of 564 // some code complexity) into the loop below. 565 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 566 [&](MachineBasicBlock *BB) { 567 return BlockToChain.lookup(BB) == &Chain; 568 }), 569 WorkList.end()); 570 571 if (WorkList.empty()) 572 return nullptr; 573 574 bool IsEHPad = WorkList[0]->isEHPad(); 575 576 MachineBasicBlock *BestBlock = nullptr; 577 BlockFrequency BestFreq; 578 for (MachineBasicBlock *MBB : WorkList) { 579 assert(MBB->isEHPad() == IsEHPad); 580 581 BlockChain &SuccChain = *BlockToChain[MBB]; 582 if (&SuccChain == &Chain) 583 continue; 584 585 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 586 587 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 588 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 589 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 590 591 // For ehpad, we layout the least probable first as to avoid jumping back 592 // from least probable landingpads to more probable ones. 593 // 594 // FIXME: Using probability is probably (!) not the best way to achieve 595 // this. We should probably have a more principled approach to layout 596 // cleanup code. 597 // 598 // The goal is to get: 599 // 600 // +--------------------------+ 601 // | V 602 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 603 // 604 // Rather than: 605 // 606 // +-------------------------------------+ 607 // V | 608 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 609 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 610 continue; 611 612 BestBlock = MBB; 613 BestFreq = CandidateFreq; 614 } 615 616 return BestBlock; 617 } 618 619 /// \brief Retrieve the first unplaced basic block. 620 /// 621 /// This routine is called when we are unable to use the CFG to walk through 622 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 623 /// We walk through the function's blocks in order, starting from the 624 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 625 /// re-scanning the entire sequence on repeated calls to this routine. 626 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 627 MachineFunction &F, const BlockChain &PlacedChain, 628 MachineFunction::iterator &PrevUnplacedBlockIt, 629 const BlockFilterSet *BlockFilter) { 630 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 631 ++I) { 632 if (BlockFilter && !BlockFilter->count(&*I)) 633 continue; 634 if (BlockToChain[&*I] != &PlacedChain) { 635 PrevUnplacedBlockIt = I; 636 // Now select the head of the chain to which the unplaced block belongs 637 // as the block to place. This will force the entire chain to be placed, 638 // and satisfies the requirements of merging chains. 639 return *BlockToChain[&*I]->begin(); 640 } 641 } 642 return nullptr; 643 } 644 645 void MachineBlockPlacement::fillWorkLists( 646 MachineBasicBlock *MBB, 647 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 648 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 649 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 650 const BlockFilterSet *BlockFilter = nullptr) { 651 BlockChain &Chain = *BlockToChain[MBB]; 652 if (!UpdatedPreds.insert(&Chain).second) 653 return; 654 655 assert(Chain.UnscheduledPredecessors == 0); 656 for (MachineBasicBlock *ChainBB : Chain) { 657 assert(BlockToChain[ChainBB] == &Chain); 658 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 659 if (BlockFilter && !BlockFilter->count(Pred)) 660 continue; 661 if (BlockToChain[Pred] == &Chain) 662 continue; 663 ++Chain.UnscheduledPredecessors; 664 } 665 } 666 667 if (Chain.UnscheduledPredecessors != 0) 668 return; 669 670 MBB = *Chain.begin(); 671 if (MBB->isEHPad()) 672 EHPadWorkList.push_back(MBB); 673 else 674 BlockWorkList.push_back(MBB); 675 } 676 677 void MachineBlockPlacement::buildChain( 678 MachineBasicBlock *BB, BlockChain &Chain, 679 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 680 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 681 const BlockFilterSet *BlockFilter) { 682 assert(BB); 683 assert(BlockToChain[BB] == &Chain); 684 MachineFunction &F = *BB->getParent(); 685 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 686 687 MachineBasicBlock *LoopHeaderBB = BB; 688 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 689 BlockFilter); 690 BB = *std::prev(Chain.end()); 691 for (;;) { 692 assert(BB); 693 assert(BlockToChain[BB] == &Chain); 694 assert(*std::prev(Chain.end()) == BB); 695 696 // Look for the best viable successor if there is one to place immediately 697 // after this block. 698 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 699 700 // If an immediate successor isn't available, look for the best viable 701 // block among those we've identified as not violating the loop's CFG at 702 // this point. This won't be a fallthrough, but it will increase locality. 703 if (!BestSucc) 704 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 705 if (!BestSucc) 706 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 707 708 if (!BestSucc) { 709 BestSucc = 710 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 711 if (!BestSucc) 712 break; 713 714 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 715 "layout successor until the CFG reduces\n"); 716 } 717 718 // Place this block, updating the datastructures to reflect its placement. 719 BlockChain &SuccChain = *BlockToChain[BestSucc]; 720 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 721 // we selected a successor that didn't fit naturally into the CFG. 722 SuccChain.UnscheduledPredecessors = 0; 723 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 724 << getBlockName(BestSucc) << "\n"); 725 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 726 BlockFilter); 727 Chain.merge(BestSucc, &SuccChain); 728 BB = *std::prev(Chain.end()); 729 } 730 731 DEBUG(dbgs() << "Finished forming chain for header block " 732 << getBlockName(*Chain.begin()) << "\n"); 733 } 734 735 /// \brief Find the best loop top block for layout. 736 /// 737 /// Look for a block which is strictly better than the loop header for laying 738 /// out at the top of the loop. This looks for one and only one pattern: 739 /// a latch block with no conditional exit. This block will cause a conditional 740 /// jump around it or will be the bottom of the loop if we lay it out in place, 741 /// but if it it doesn't end up at the bottom of the loop for any reason, 742 /// rotation alone won't fix it. Because such a block will always result in an 743 /// unconditional jump (for the backedge) rotating it in front of the loop 744 /// header is always profitable. 745 MachineBasicBlock * 746 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 747 const BlockFilterSet &LoopBlockSet) { 748 // Check that the header hasn't been fused with a preheader block due to 749 // crazy branches. If it has, we need to start with the header at the top to 750 // prevent pulling the preheader into the loop body. 751 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 752 if (!LoopBlockSet.count(*HeaderChain.begin())) 753 return L.getHeader(); 754 755 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 756 << "\n"); 757 758 BlockFrequency BestPredFreq; 759 MachineBasicBlock *BestPred = nullptr; 760 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 761 if (!LoopBlockSet.count(Pred)) 762 continue; 763 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 764 << Pred->succ_size() << " successors, "; 765 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 766 if (Pred->succ_size() > 1) 767 continue; 768 769 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 770 if (!BestPred || PredFreq > BestPredFreq || 771 (!(PredFreq < BestPredFreq) && 772 Pred->isLayoutSuccessor(L.getHeader()))) { 773 BestPred = Pred; 774 BestPredFreq = PredFreq; 775 } 776 } 777 778 // If no direct predecessor is fine, just use the loop header. 779 if (!BestPred) { 780 DEBUG(dbgs() << " final top unchanged\n"); 781 return L.getHeader(); 782 } 783 784 // Walk backwards through any straight line of predecessors. 785 while (BestPred->pred_size() == 1 && 786 (*BestPred->pred_begin())->succ_size() == 1 && 787 *BestPred->pred_begin() != L.getHeader()) 788 BestPred = *BestPred->pred_begin(); 789 790 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 791 return BestPred; 792 } 793 794 /// \brief Find the best loop exiting block for layout. 795 /// 796 /// This routine implements the logic to analyze the loop looking for the best 797 /// block to layout at the top of the loop. Typically this is done to maximize 798 /// fallthrough opportunities. 799 MachineBasicBlock * 800 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 801 const BlockFilterSet &LoopBlockSet) { 802 // We don't want to layout the loop linearly in all cases. If the loop header 803 // is just a normal basic block in the loop, we want to look for what block 804 // within the loop is the best one to layout at the top. However, if the loop 805 // header has be pre-merged into a chain due to predecessors not having 806 // analyzable branches, *and* the predecessor it is merged with is *not* part 807 // of the loop, rotating the header into the middle of the loop will create 808 // a non-contiguous range of blocks which is Very Bad. So start with the 809 // header and only rotate if safe. 810 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 811 if (!LoopBlockSet.count(*HeaderChain.begin())) 812 return nullptr; 813 814 BlockFrequency BestExitEdgeFreq; 815 unsigned BestExitLoopDepth = 0; 816 MachineBasicBlock *ExitingBB = nullptr; 817 // If there are exits to outer loops, loop rotation can severely limit 818 // fallthrough opportunites unless it selects such an exit. Keep a set of 819 // blocks where rotating to exit with that block will reach an outer loop. 820 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 821 822 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 823 << "\n"); 824 for (MachineBasicBlock *MBB : L.getBlocks()) { 825 BlockChain &Chain = *BlockToChain[MBB]; 826 // Ensure that this block is at the end of a chain; otherwise it could be 827 // mid-way through an inner loop or a successor of an unanalyzable branch. 828 if (MBB != *std::prev(Chain.end())) 829 continue; 830 831 // Now walk the successors. We need to establish whether this has a viable 832 // exiting successor and whether it has a viable non-exiting successor. 833 // We store the old exiting state and restore it if a viable looping 834 // successor isn't found. 835 MachineBasicBlock *OldExitingBB = ExitingBB; 836 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 837 bool HasLoopingSucc = false; 838 for (MachineBasicBlock *Succ : MBB->successors()) { 839 if (Succ->isEHPad()) 840 continue; 841 if (Succ == MBB) 842 continue; 843 BlockChain &SuccChain = *BlockToChain[Succ]; 844 // Don't split chains, either this chain or the successor's chain. 845 if (&Chain == &SuccChain) { 846 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 847 << getBlockName(Succ) << " (chain conflict)\n"); 848 continue; 849 } 850 851 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 852 if (LoopBlockSet.count(Succ)) { 853 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 854 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 855 HasLoopingSucc = true; 856 continue; 857 } 858 859 unsigned SuccLoopDepth = 0; 860 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 861 SuccLoopDepth = ExitLoop->getLoopDepth(); 862 if (ExitLoop->contains(&L)) 863 BlocksExitingToOuterLoop.insert(MBB); 864 } 865 866 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 867 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 868 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 869 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 870 // Note that we bias this toward an existing layout successor to retain 871 // incoming order in the absence of better information. The exit must have 872 // a frequency higher than the current exit before we consider breaking 873 // the layout. 874 BranchProbability Bias(100 - ExitBlockBias, 100); 875 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 876 ExitEdgeFreq > BestExitEdgeFreq || 877 (MBB->isLayoutSuccessor(Succ) && 878 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 879 BestExitEdgeFreq = ExitEdgeFreq; 880 ExitingBB = MBB; 881 } 882 } 883 884 if (!HasLoopingSucc) { 885 // Restore the old exiting state, no viable looping successor was found. 886 ExitingBB = OldExitingBB; 887 BestExitEdgeFreq = OldBestExitEdgeFreq; 888 } 889 } 890 // Without a candidate exiting block or with only a single block in the 891 // loop, just use the loop header to layout the loop. 892 if (!ExitingBB || L.getNumBlocks() == 1) 893 return nullptr; 894 895 // Also, if we have exit blocks which lead to outer loops but didn't select 896 // one of them as the exiting block we are rotating toward, disable loop 897 // rotation altogether. 898 if (!BlocksExitingToOuterLoop.empty() && 899 !BlocksExitingToOuterLoop.count(ExitingBB)) 900 return nullptr; 901 902 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 903 return ExitingBB; 904 } 905 906 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 907 /// 908 /// Once we have built a chain, try to rotate it to line up the hot exit block 909 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 910 /// branches. For example, if the loop has fallthrough into its header and out 911 /// of its bottom already, don't rotate it. 912 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 913 MachineBasicBlock *ExitingBB, 914 const BlockFilterSet &LoopBlockSet) { 915 if (!ExitingBB) 916 return; 917 918 MachineBasicBlock *Top = *LoopChain.begin(); 919 bool ViableTopFallthrough = false; 920 for (MachineBasicBlock *Pred : Top->predecessors()) { 921 BlockChain *PredChain = BlockToChain[Pred]; 922 if (!LoopBlockSet.count(Pred) && 923 (!PredChain || Pred == *std::prev(PredChain->end()))) { 924 ViableTopFallthrough = true; 925 break; 926 } 927 } 928 929 // If the header has viable fallthrough, check whether the current loop 930 // bottom is a viable exiting block. If so, bail out as rotating will 931 // introduce an unnecessary branch. 932 if (ViableTopFallthrough) { 933 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 934 for (MachineBasicBlock *Succ : Bottom->successors()) { 935 BlockChain *SuccChain = BlockToChain[Succ]; 936 if (!LoopBlockSet.count(Succ) && 937 (!SuccChain || Succ == *SuccChain->begin())) 938 return; 939 } 940 } 941 942 BlockChain::iterator ExitIt = 943 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 944 if (ExitIt == LoopChain.end()) 945 return; 946 947 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 948 } 949 950 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 951 /// 952 /// With profile data, we can determine the cost in terms of missed fall through 953 /// opportunities when rotating a loop chain and select the best rotation. 954 /// Basically, there are three kinds of cost to consider for each rotation: 955 /// 1. The possibly missed fall through edge (if it exists) from BB out of 956 /// the loop to the loop header. 957 /// 2. The possibly missed fall through edges (if they exist) from the loop 958 /// exits to BB out of the loop. 959 /// 3. The missed fall through edge (if it exists) from the last BB to the 960 /// first BB in the loop chain. 961 /// Therefore, the cost for a given rotation is the sum of costs listed above. 962 /// We select the best rotation with the smallest cost. 963 void MachineBlockPlacement::rotateLoopWithProfile( 964 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 965 auto HeaderBB = L.getHeader(); 966 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 967 auto RotationPos = LoopChain.end(); 968 969 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 970 971 // A utility lambda that scales up a block frequency by dividing it by a 972 // branch probability which is the reciprocal of the scale. 973 auto ScaleBlockFrequency = [](BlockFrequency Freq, 974 unsigned Scale) -> BlockFrequency { 975 if (Scale == 0) 976 return 0; 977 // Use operator / between BlockFrequency and BranchProbability to implement 978 // saturating multiplication. 979 return Freq / BranchProbability(1, Scale); 980 }; 981 982 // Compute the cost of the missed fall-through edge to the loop header if the 983 // chain head is not the loop header. As we only consider natural loops with 984 // single header, this computation can be done only once. 985 BlockFrequency HeaderFallThroughCost(0); 986 for (auto *Pred : HeaderBB->predecessors()) { 987 BlockChain *PredChain = BlockToChain[Pred]; 988 if (!LoopBlockSet.count(Pred) && 989 (!PredChain || Pred == *std::prev(PredChain->end()))) { 990 auto EdgeFreq = 991 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 992 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 993 // If the predecessor has only an unconditional jump to the header, we 994 // need to consider the cost of this jump. 995 if (Pred->succ_size() == 1) 996 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 997 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 998 } 999 } 1000 1001 // Here we collect all exit blocks in the loop, and for each exit we find out 1002 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1003 // as the sum of frequencies of exit edges we collect here, excluding the exit 1004 // edge from the tail of the loop chain. 1005 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1006 for (auto BB : LoopChain) { 1007 auto LargestExitEdgeProb = BranchProbability::getZero(); 1008 for (auto *Succ : BB->successors()) { 1009 BlockChain *SuccChain = BlockToChain[Succ]; 1010 if (!LoopBlockSet.count(Succ) && 1011 (!SuccChain || Succ == *SuccChain->begin())) { 1012 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1013 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1014 } 1015 } 1016 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1017 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1018 ExitsWithFreq.emplace_back(BB, ExitFreq); 1019 } 1020 } 1021 1022 // In this loop we iterate every block in the loop chain and calculate the 1023 // cost assuming the block is the head of the loop chain. When the loop ends, 1024 // we should have found the best candidate as the loop chain's head. 1025 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1026 EndIter = LoopChain.end(); 1027 Iter != EndIter; Iter++, TailIter++) { 1028 // TailIter is used to track the tail of the loop chain if the block we are 1029 // checking (pointed by Iter) is the head of the chain. 1030 if (TailIter == LoopChain.end()) 1031 TailIter = LoopChain.begin(); 1032 1033 auto TailBB = *TailIter; 1034 1035 // Calculate the cost by putting this BB to the top. 1036 BlockFrequency Cost = 0; 1037 1038 // If the current BB is the loop header, we need to take into account the 1039 // cost of the missed fall through edge from outside of the loop to the 1040 // header. 1041 if (Iter != HeaderIter) 1042 Cost += HeaderFallThroughCost; 1043 1044 // Collect the loop exit cost by summing up frequencies of all exit edges 1045 // except the one from the chain tail. 1046 for (auto &ExitWithFreq : ExitsWithFreq) 1047 if (TailBB != ExitWithFreq.first) 1048 Cost += ExitWithFreq.second; 1049 1050 // The cost of breaking the once fall-through edge from the tail to the top 1051 // of the loop chain. Here we need to consider three cases: 1052 // 1. If the tail node has only one successor, then we will get an 1053 // additional jmp instruction. So the cost here is (MisfetchCost + 1054 // JumpInstCost) * tail node frequency. 1055 // 2. If the tail node has two successors, then we may still get an 1056 // additional jmp instruction if the layout successor after the loop 1057 // chain is not its CFG successor. Note that the more frequently executed 1058 // jmp instruction will be put ahead of the other one. Assume the 1059 // frequency of those two branches are x and y, where x is the frequency 1060 // of the edge to the chain head, then the cost will be 1061 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1062 // 3. If the tail node has more than two successors (this rarely happens), 1063 // we won't consider any additional cost. 1064 if (TailBB->isSuccessor(*Iter)) { 1065 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1066 if (TailBB->succ_size() == 1) 1067 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1068 MisfetchCost + JumpInstCost); 1069 else if (TailBB->succ_size() == 2) { 1070 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1071 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1072 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1073 ? TailBBFreq * TailToHeadProb.getCompl() 1074 : TailToHeadFreq; 1075 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1076 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1077 } 1078 } 1079 1080 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1081 << " to the top: " << Cost.getFrequency() << "\n"); 1082 1083 if (Cost < SmallestRotationCost) { 1084 SmallestRotationCost = Cost; 1085 RotationPos = Iter; 1086 } 1087 } 1088 1089 if (RotationPos != LoopChain.end()) { 1090 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1091 << " to the top\n"); 1092 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1093 } 1094 } 1095 1096 /// \brief Collect blocks in the given loop that are to be placed. 1097 /// 1098 /// When profile data is available, exclude cold blocks from the returned set; 1099 /// otherwise, collect all blocks in the loop. 1100 MachineBlockPlacement::BlockFilterSet 1101 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1102 BlockFilterSet LoopBlockSet; 1103 1104 // Filter cold blocks off from LoopBlockSet when profile data is available. 1105 // Collect the sum of frequencies of incoming edges to the loop header from 1106 // outside. If we treat the loop as a super block, this is the frequency of 1107 // the loop. Then for each block in the loop, we calculate the ratio between 1108 // its frequency and the frequency of the loop block. When it is too small, 1109 // don't add it to the loop chain. If there are outer loops, then this block 1110 // will be merged into the first outer loop chain for which this block is not 1111 // cold anymore. This needs precise profile data and we only do this when 1112 // profile data is available. 1113 if (F.getFunction()->getEntryCount()) { 1114 BlockFrequency LoopFreq(0); 1115 for (auto LoopPred : L.getHeader()->predecessors()) 1116 if (!L.contains(LoopPred)) 1117 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1118 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1119 1120 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1121 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1122 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1123 continue; 1124 LoopBlockSet.insert(LoopBB); 1125 } 1126 } else 1127 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1128 1129 return LoopBlockSet; 1130 } 1131 1132 /// \brief Forms basic block chains from the natural loop structures. 1133 /// 1134 /// These chains are designed to preserve the existing *structure* of the code 1135 /// as much as possible. We can then stitch the chains together in a way which 1136 /// both preserves the topological structure and minimizes taken conditional 1137 /// branches. 1138 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1139 MachineLoop &L) { 1140 // First recurse through any nested loops, building chains for those inner 1141 // loops. 1142 for (MachineLoop *InnerLoop : L) 1143 buildLoopChains(F, *InnerLoop); 1144 1145 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1146 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1147 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1148 1149 // Check if we have profile data for this function. If yes, we will rotate 1150 // this loop by modeling costs more precisely which requires the profile data 1151 // for better layout. 1152 bool RotateLoopWithProfile = 1153 ForcePreciseRotationCost || 1154 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1155 1156 // First check to see if there is an obviously preferable top block for the 1157 // loop. This will default to the header, but may end up as one of the 1158 // predecessors to the header if there is one which will result in strictly 1159 // fewer branches in the loop body. 1160 // When we use profile data to rotate the loop, this is unnecessary. 1161 MachineBasicBlock *LoopTop = 1162 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1163 1164 // If we selected just the header for the loop top, look for a potentially 1165 // profitable exit block in the event that rotating the loop can eliminate 1166 // branches by placing an exit edge at the bottom. 1167 MachineBasicBlock *ExitingBB = nullptr; 1168 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1169 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1170 1171 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1172 1173 // FIXME: This is a really lame way of walking the chains in the loop: we 1174 // walk the blocks, and use a set to prevent visiting a particular chain 1175 // twice. 1176 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1177 assert(LoopChain.UnscheduledPredecessors == 0); 1178 UpdatedPreds.insert(&LoopChain); 1179 1180 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1181 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1182 &LoopBlockSet); 1183 1184 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1185 1186 if (RotateLoopWithProfile) 1187 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1188 else 1189 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1190 1191 DEBUG({ 1192 // Crash at the end so we get all of the debugging output first. 1193 bool BadLoop = false; 1194 if (LoopChain.UnscheduledPredecessors) { 1195 BadLoop = true; 1196 dbgs() << "Loop chain contains a block without its preds placed!\n" 1197 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1198 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1199 } 1200 for (MachineBasicBlock *ChainBB : LoopChain) { 1201 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1202 if (!LoopBlockSet.erase(ChainBB)) { 1203 // We don't mark the loop as bad here because there are real situations 1204 // where this can occur. For example, with an unanalyzable fallthrough 1205 // from a loop block to a non-loop block or vice versa. 1206 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1207 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1208 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1209 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1210 } 1211 } 1212 1213 if (!LoopBlockSet.empty()) { 1214 BadLoop = true; 1215 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1216 dbgs() << "Loop contains blocks never placed into a chain!\n" 1217 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1218 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1219 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1220 } 1221 assert(!BadLoop && "Detected problems with the placement of this loop."); 1222 }); 1223 } 1224 1225 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1226 // Ensure that every BB in the function has an associated chain to simplify 1227 // the assumptions of the remaining algorithm. 1228 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1229 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1230 MachineBasicBlock *BB = &*FI; 1231 BlockChain *Chain = 1232 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1233 // Also, merge any blocks which we cannot reason about and must preserve 1234 // the exact fallthrough behavior for. 1235 for (;;) { 1236 Cond.clear(); 1237 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1238 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1239 break; 1240 1241 MachineFunction::iterator NextFI = std::next(FI); 1242 MachineBasicBlock *NextBB = &*NextFI; 1243 // Ensure that the layout successor is a viable block, as we know that 1244 // fallthrough is a possibility. 1245 assert(NextFI != FE && "Can't fallthrough past the last block."); 1246 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1247 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1248 << "\n"); 1249 Chain->merge(NextBB, nullptr); 1250 FI = NextFI; 1251 BB = NextBB; 1252 } 1253 } 1254 1255 if (OutlineOptionalBranches) { 1256 // Find the nearest common dominator of all of F's terminators. 1257 MachineBasicBlock *Terminator = nullptr; 1258 for (MachineBasicBlock &MBB : F) { 1259 if (MBB.succ_size() == 0) { 1260 if (Terminator == nullptr) 1261 Terminator = &MBB; 1262 else 1263 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1264 } 1265 } 1266 1267 // MBBs dominating this common dominator are unavoidable. 1268 UnavoidableBlocks.clear(); 1269 for (MachineBasicBlock &MBB : F) { 1270 if (MDT->dominates(&MBB, Terminator)) { 1271 UnavoidableBlocks.insert(&MBB); 1272 } 1273 } 1274 } 1275 1276 // Build any loop-based chains. 1277 for (MachineLoop *L : *MLI) 1278 buildLoopChains(F, *L); 1279 1280 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1281 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1282 1283 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1284 for (MachineBasicBlock &MBB : F) 1285 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1286 1287 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1288 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1289 1290 #ifndef NDEBUG 1291 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1292 #endif 1293 DEBUG({ 1294 // Crash at the end so we get all of the debugging output first. 1295 bool BadFunc = false; 1296 FunctionBlockSetType FunctionBlockSet; 1297 for (MachineBasicBlock &MBB : F) 1298 FunctionBlockSet.insert(&MBB); 1299 1300 for (MachineBasicBlock *ChainBB : FunctionChain) 1301 if (!FunctionBlockSet.erase(ChainBB)) { 1302 BadFunc = true; 1303 dbgs() << "Function chain contains a block not in the function!\n" 1304 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1305 } 1306 1307 if (!FunctionBlockSet.empty()) { 1308 BadFunc = true; 1309 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1310 dbgs() << "Function contains blocks never placed into a chain!\n" 1311 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1312 } 1313 assert(!BadFunc && "Detected problems with the block placement."); 1314 }); 1315 1316 // Splice the blocks into place. 1317 MachineFunction::iterator InsertPos = F.begin(); 1318 for (MachineBasicBlock *ChainBB : FunctionChain) { 1319 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1320 : " ... ") 1321 << getBlockName(ChainBB) << "\n"); 1322 if (InsertPos != MachineFunction::iterator(ChainBB)) 1323 F.splice(InsertPos, ChainBB); 1324 else 1325 ++InsertPos; 1326 1327 // Update the terminator of the previous block. 1328 if (ChainBB == *FunctionChain.begin()) 1329 continue; 1330 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1331 1332 // FIXME: It would be awesome of updateTerminator would just return rather 1333 // than assert when the branch cannot be analyzed in order to remove this 1334 // boiler plate. 1335 Cond.clear(); 1336 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1337 1338 // The "PrevBB" is not yet updated to reflect current code layout, so, 1339 // o. it may fall-through to a block without explict "goto" instruction 1340 // before layout, and no longer fall-through it after layout; or 1341 // o. just opposite. 1342 // 1343 // AnalyzeBranch() may return erroneous value for FBB when these two 1344 // situations take place. For the first scenario FBB is mistakenly set NULL; 1345 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1346 // mistakenly pointing to "*BI". 1347 // Thus, if the future change needs to use FBB before the layout is set, it 1348 // has to correct FBB first by using the code similar to the following: 1349 // 1350 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1351 // PrevBB->updateTerminator(); 1352 // Cond.clear(); 1353 // TBB = FBB = nullptr; 1354 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1355 // // FIXME: This should never take place. 1356 // TBB = FBB = nullptr; 1357 // } 1358 // } 1359 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1360 PrevBB->updateTerminator(); 1361 } 1362 1363 // Fixup the last block. 1364 Cond.clear(); 1365 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1366 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1367 F.back().updateTerminator(); 1368 } 1369 1370 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1371 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1372 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1373 1374 // Now that all the basic blocks in the chain have the proper layout, 1375 // make a final call to AnalyzeBranch with AllowModify set. 1376 // Indeed, the target may be able to optimize the branches in a way we 1377 // cannot because all branches may not be analyzable. 1378 // E.g., the target may be able to remove an unconditional branch to 1379 // a fallthrough when it occurs after predicated terminators. 1380 for (MachineBasicBlock *ChainBB : FunctionChain) { 1381 Cond.clear(); 1382 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1383 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1384 // If PrevBB has a two-way branch, try to re-order the branches 1385 // such that we branch to the successor with higher probability first. 1386 if (TBB && !Cond.empty() && FBB && 1387 MBPI->getEdgeProbability(ChainBB, FBB) > 1388 MBPI->getEdgeProbability(ChainBB, TBB) && 1389 !TII->ReverseBranchCondition(Cond)) { 1390 DEBUG(dbgs() << "Reverse order of the two branches: " 1391 << getBlockName(ChainBB) << "\n"); 1392 DEBUG(dbgs() << " Edge probability: " 1393 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1394 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1395 DebugLoc dl; // FIXME: this is nowhere 1396 TII->RemoveBranch(*ChainBB); 1397 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1398 ChainBB->updateTerminator(); 1399 } 1400 } 1401 } 1402 } 1403 1404 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1405 // Walk through the backedges of the function now that we have fully laid out 1406 // the basic blocks and align the destination of each backedge. We don't rely 1407 // exclusively on the loop info here so that we can align backedges in 1408 // unnatural CFGs and backedges that were introduced purely because of the 1409 // loop rotations done during this layout pass. 1410 if (F.getFunction()->optForSize()) 1411 return; 1412 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1413 if (FunctionChain.begin() == FunctionChain.end()) 1414 return; // Empty chain. 1415 1416 const BranchProbability ColdProb(1, 5); // 20% 1417 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1418 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1419 for (MachineBasicBlock *ChainBB : FunctionChain) { 1420 if (ChainBB == *FunctionChain.begin()) 1421 continue; 1422 1423 // Don't align non-looping basic blocks. These are unlikely to execute 1424 // enough times to matter in practice. Note that we'll still handle 1425 // unnatural CFGs inside of a natural outer loop (the common case) and 1426 // rotated loops. 1427 MachineLoop *L = MLI->getLoopFor(ChainBB); 1428 if (!L) 1429 continue; 1430 1431 unsigned Align = TLI->getPrefLoopAlignment(L); 1432 if (!Align) 1433 continue; // Don't care about loop alignment. 1434 1435 // If the block is cold relative to the function entry don't waste space 1436 // aligning it. 1437 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1438 if (Freq < WeightedEntryFreq) 1439 continue; 1440 1441 // If the block is cold relative to its loop header, don't align it 1442 // regardless of what edges into the block exist. 1443 MachineBasicBlock *LoopHeader = L->getHeader(); 1444 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1445 if (Freq < (LoopHeaderFreq * ColdProb)) 1446 continue; 1447 1448 // Check for the existence of a non-layout predecessor which would benefit 1449 // from aligning this block. 1450 MachineBasicBlock *LayoutPred = 1451 &*std::prev(MachineFunction::iterator(ChainBB)); 1452 1453 // Force alignment if all the predecessors are jumps. We already checked 1454 // that the block isn't cold above. 1455 if (!LayoutPred->isSuccessor(ChainBB)) { 1456 ChainBB->setAlignment(Align); 1457 continue; 1458 } 1459 1460 // Align this block if the layout predecessor's edge into this block is 1461 // cold relative to the block. When this is true, other predecessors make up 1462 // all of the hot entries into the block and thus alignment is likely to be 1463 // important. 1464 BranchProbability LayoutProb = 1465 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1466 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1467 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1468 ChainBB->setAlignment(Align); 1469 } 1470 } 1471 1472 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1473 if (skipFunction(*F.getFunction())) 1474 return false; 1475 1476 // Check for single-block functions and skip them. 1477 if (std::next(F.begin()) == F.end()) 1478 return false; 1479 1480 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1481 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1482 getAnalysis<MachineBlockFrequencyInfo>()); 1483 MLI = &getAnalysis<MachineLoopInfo>(); 1484 TII = F.getSubtarget().getInstrInfo(); 1485 TLI = F.getSubtarget().getTargetLowering(); 1486 MDT = &getAnalysis<MachineDominatorTree>(); 1487 assert(BlockToChain.empty()); 1488 1489 buildCFGChains(F); 1490 1491 // Changing the layout can create new tail merging opportunities. 1492 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1493 // TailMerge can create jump into if branches that make CFG irreducible for 1494 // HW that requires structurized CFG. 1495 bool EnableTailMerge = !F.getTarget().requiresStructuredCFG() && 1496 PassConfig->getEnableTailMerge() && 1497 BranchFoldPlacement; 1498 // No tail merging opportunities if the block number is less than four. 1499 if (F.size() > 3 && EnableTailMerge) { 1500 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1501 *MBPI); 1502 1503 if (BF.OptimizeFunction(F, TII, F.getSubtarget().getRegisterInfo(), 1504 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1505 /*AfterBlockPlacement=*/true)) { 1506 // Redo the layout if tail merging creates/removes/moves blocks. 1507 BlockToChain.clear(); 1508 ChainAllocator.DestroyAll(); 1509 buildCFGChains(F); 1510 } 1511 } 1512 1513 optimizeBranches(F); 1514 alignBlocks(F); 1515 1516 BlockToChain.clear(); 1517 ChainAllocator.DestroyAll(); 1518 1519 if (AlignAllBlock) 1520 // Align all of the blocks in the function to a specific alignment. 1521 for (MachineBasicBlock &MBB : F) 1522 MBB.setAlignment(AlignAllBlock); 1523 else if (AlignAllNonFallThruBlocks) { 1524 // Align all of the blocks that have no fall-through predecessors to a 1525 // specific alignment. 1526 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1527 auto LayoutPred = std::prev(MBI); 1528 if (!LayoutPred->isSuccessor(&*MBI)) 1529 MBI->setAlignment(AlignAllNonFallThruBlocks); 1530 } 1531 } 1532 1533 // We always return true as we have no way to track whether the final order 1534 // differs from the original order. 1535 return true; 1536 } 1537 1538 namespace { 1539 /// \brief A pass to compute block placement statistics. 1540 /// 1541 /// A separate pass to compute interesting statistics for evaluating block 1542 /// placement. This is separate from the actual placement pass so that they can 1543 /// be computed in the absence of any placement transformations or when using 1544 /// alternative placement strategies. 1545 class MachineBlockPlacementStats : public MachineFunctionPass { 1546 /// \brief A handle to the branch probability pass. 1547 const MachineBranchProbabilityInfo *MBPI; 1548 1549 /// \brief A handle to the function-wide block frequency pass. 1550 const MachineBlockFrequencyInfo *MBFI; 1551 1552 public: 1553 static char ID; // Pass identification, replacement for typeid 1554 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1555 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1556 } 1557 1558 bool runOnMachineFunction(MachineFunction &F) override; 1559 1560 void getAnalysisUsage(AnalysisUsage &AU) const override { 1561 AU.addRequired<MachineBranchProbabilityInfo>(); 1562 AU.addRequired<MachineBlockFrequencyInfo>(); 1563 AU.setPreservesAll(); 1564 MachineFunctionPass::getAnalysisUsage(AU); 1565 } 1566 }; 1567 } 1568 1569 char MachineBlockPlacementStats::ID = 0; 1570 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1571 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1572 "Basic Block Placement Stats", false, false) 1573 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1574 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1575 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1576 "Basic Block Placement Stats", false, false) 1577 1578 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1579 // Check for single-block functions and skip them. 1580 if (std::next(F.begin()) == F.end()) 1581 return false; 1582 1583 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1584 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1585 1586 for (MachineBasicBlock &MBB : F) { 1587 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1588 Statistic &NumBranches = 1589 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1590 Statistic &BranchTakenFreq = 1591 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1592 for (MachineBasicBlock *Succ : MBB.successors()) { 1593 // Skip if this successor is a fallthrough. 1594 if (MBB.isLayoutSuccessor(Succ)) 1595 continue; 1596 1597 BlockFrequency EdgeFreq = 1598 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1599 ++NumBranches; 1600 BranchTakenFreq += EdgeFreq.getFrequency(); 1601 } 1602 } 1603 1604 return false; 1605 } 1606