xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 4fa9f3ae45206639c800639a40ece9b3bbeeb433)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "block-placement"
52 
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59 
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64 
65 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
66     "align-all-nofallthru-blocks",
67     cl::desc("Force the alignment of all "
68              "blocks that have no fall-through predecessors (i.e. don't add "
69              "nops that are executed)."),
70     cl::init(0), cl::Hidden);
71 
72 // FIXME: Find a good default for this flag and remove the flag.
73 static cl::opt<unsigned> ExitBlockBias(
74     "block-placement-exit-block-bias",
75     cl::desc("Block frequency percentage a loop exit block needs "
76              "over the original exit to be considered the new exit."),
77     cl::init(0), cl::Hidden);
78 
79 static cl::opt<bool> OutlineOptionalBranches(
80     "outline-optional-branches",
81     cl::desc("Put completely optional branches, i.e. branches with a common "
82              "post dominator, out of line."),
83     cl::init(false), cl::Hidden);
84 
85 static cl::opt<unsigned> OutlineOptionalThreshold(
86     "outline-optional-threshold",
87     cl::desc("Don't outline optional branches that are a single block with an "
88              "instruction count below this threshold"),
89     cl::init(4), cl::Hidden);
90 
91 static cl::opt<unsigned> LoopToColdBlockRatio(
92     "loop-to-cold-block-ratio",
93     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
94              "(frequency of block) is greater than this ratio"),
95     cl::init(5), cl::Hidden);
96 
97 static cl::opt<bool>
98     PreciseRotationCost("precise-rotation-cost",
99                         cl::desc("Model the cost of loop rotation more "
100                                  "precisely by using profile data."),
101                         cl::init(false), cl::Hidden);
102 static cl::opt<bool>
103     ForcePreciseRotationCost("force-precise-rotation-cost",
104                              cl::desc("Force the use of precise cost "
105                                       "loop rotation strategy."),
106                              cl::init(false), cl::Hidden);
107 
108 static cl::opt<unsigned> MisfetchCost(
109     "misfetch-cost",
110     cl::desc("Cost that models the probablistic risk of an instruction "
111              "misfetch due to a jump comparing to falling through, whose cost "
112              "is zero."),
113     cl::init(1), cl::Hidden);
114 
115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
116                                       cl::desc("Cost of jump instructions."),
117                                       cl::init(1), cl::Hidden);
118 
119 extern cl::opt<unsigned> StaticLikelyProb;
120 
121 namespace {
122 class BlockChain;
123 /// \brief Type for our function-wide basic block -> block chain mapping.
124 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
125 }
126 
127 namespace {
128 /// \brief A chain of blocks which will be laid out contiguously.
129 ///
130 /// This is the datastructure representing a chain of consecutive blocks that
131 /// are profitable to layout together in order to maximize fallthrough
132 /// probabilities and code locality. We also can use a block chain to represent
133 /// a sequence of basic blocks which have some external (correctness)
134 /// requirement for sequential layout.
135 ///
136 /// Chains can be built around a single basic block and can be merged to grow
137 /// them. They participate in a block-to-chain mapping, which is updated
138 /// automatically as chains are merged together.
139 class BlockChain {
140   /// \brief The sequence of blocks belonging to this chain.
141   ///
142   /// This is the sequence of blocks for a particular chain. These will be laid
143   /// out in-order within the function.
144   SmallVector<MachineBasicBlock *, 4> Blocks;
145 
146   /// \brief A handle to the function-wide basic block to block chain mapping.
147   ///
148   /// This is retained in each block chain to simplify the computation of child
149   /// block chains for SCC-formation and iteration. We store the edges to child
150   /// basic blocks, and map them back to their associated chains using this
151   /// structure.
152   BlockToChainMapType &BlockToChain;
153 
154 public:
155   /// \brief Construct a new BlockChain.
156   ///
157   /// This builds a new block chain representing a single basic block in the
158   /// function. It also registers itself as the chain that block participates
159   /// in with the BlockToChain mapping.
160   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
161       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
162     assert(BB && "Cannot create a chain with a null basic block");
163     BlockToChain[BB] = this;
164   }
165 
166   /// \brief Iterator over blocks within the chain.
167   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
168 
169   /// \brief Beginning of blocks within the chain.
170   iterator begin() { return Blocks.begin(); }
171 
172   /// \brief End of blocks within the chain.
173   iterator end() { return Blocks.end(); }
174 
175   /// \brief Merge a block chain into this one.
176   ///
177   /// This routine merges a block chain into this one. It takes care of forming
178   /// a contiguous sequence of basic blocks, updating the edge list, and
179   /// updating the block -> chain mapping. It does not free or tear down the
180   /// old chain, but the old chain's block list is no longer valid.
181   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
182     assert(BB);
183     assert(!Blocks.empty());
184 
185     // Fast path in case we don't have a chain already.
186     if (!Chain) {
187       assert(!BlockToChain[BB]);
188       Blocks.push_back(BB);
189       BlockToChain[BB] = this;
190       return;
191     }
192 
193     assert(BB == *Chain->begin());
194     assert(Chain->begin() != Chain->end());
195 
196     // Update the incoming blocks to point to this chain, and add them to the
197     // chain structure.
198     for (MachineBasicBlock *ChainBB : *Chain) {
199       Blocks.push_back(ChainBB);
200       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
201       BlockToChain[ChainBB] = this;
202     }
203   }
204 
205 #ifndef NDEBUG
206   /// \brief Dump the blocks in this chain.
207   LLVM_DUMP_METHOD void dump() {
208     for (MachineBasicBlock *MBB : *this)
209       MBB->dump();
210   }
211 #endif // NDEBUG
212 
213   /// \brief Count of predecessors of any block within the chain which have not
214   /// yet been scheduled.  In general, we will delay scheduling this chain
215   /// until those predecessors are scheduled (or we find a sufficiently good
216   /// reason to override this heuristic.)  Note that when forming loop chains,
217   /// blocks outside the loop are ignored and treated as if they were already
218   /// scheduled.
219   ///
220   /// Note: This field is reinitialized multiple times - once for each loop,
221   /// and then once for the function as a whole.
222   unsigned UnscheduledPredecessors;
223 };
224 }
225 
226 namespace {
227 class MachineBlockPlacement : public MachineFunctionPass {
228   /// \brief A typedef for a block filter set.
229   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
230 
231   /// \brief A handle to the branch probability pass.
232   const MachineBranchProbabilityInfo *MBPI;
233 
234   /// \brief A handle to the function-wide block frequency pass.
235   const MachineBlockFrequencyInfo *MBFI;
236 
237   /// \brief A handle to the loop info.
238   const MachineLoopInfo *MLI;
239 
240   /// \brief A handle to the target's instruction info.
241   const TargetInstrInfo *TII;
242 
243   /// \brief A handle to the target's lowering info.
244   const TargetLoweringBase *TLI;
245 
246   /// \brief A handle to the post dominator tree.
247   MachineDominatorTree *MDT;
248 
249   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
250   /// all terminators of the MachineFunction.
251   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
252 
253   /// \brief Allocator and owner of BlockChain structures.
254   ///
255   /// We build BlockChains lazily while processing the loop structure of
256   /// a function. To reduce malloc traffic, we allocate them using this
257   /// slab-like allocator, and destroy them after the pass completes. An
258   /// important guarantee is that this allocator produces stable pointers to
259   /// the chains.
260   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
261 
262   /// \brief Function wide BasicBlock to BlockChain mapping.
263   ///
264   /// This mapping allows efficiently moving from any given basic block to the
265   /// BlockChain it participates in, if any. We use it to, among other things,
266   /// allow implicitly defining edges between chains as the existing edges
267   /// between basic blocks.
268   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
269 
270   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
271                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
272                            SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
273                            const BlockFilterSet *BlockFilter = nullptr);
274   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
275                                          BlockChain &Chain,
276                                          const BlockFilterSet *BlockFilter);
277   MachineBasicBlock *
278   selectBestCandidateBlock(BlockChain &Chain,
279                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
280   MachineBasicBlock *
281   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
282                         MachineFunction::iterator &PrevUnplacedBlockIt,
283                         const BlockFilterSet *BlockFilter);
284 
285   /// \brief Add a basic block to the work list if it is apropriate.
286   ///
287   /// If the optional parameter BlockFilter is provided, only MBB
288   /// present in the set will be added to the worklist. If nullptr
289   /// is provided, no filtering occurs.
290   void fillWorkLists(MachineBasicBlock *MBB,
291                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
292                      SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
293                      SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
294                      const BlockFilterSet *BlockFilter);
295   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
296                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
297                   SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
298                   const BlockFilterSet *BlockFilter = nullptr);
299   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
300                                      const BlockFilterSet &LoopBlockSet);
301   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
302                                       const BlockFilterSet &LoopBlockSet);
303   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
304   void buildLoopChains(MachineFunction &F, MachineLoop &L);
305   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
306                   const BlockFilterSet &LoopBlockSet);
307   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
308                              const BlockFilterSet &LoopBlockSet);
309   void buildCFGChains(MachineFunction &F);
310   void optimizeBranches(MachineFunction &F);
311   void alignBlocks(MachineFunction &F);
312 
313 public:
314   static char ID; // Pass identification, replacement for typeid
315   MachineBlockPlacement() : MachineFunctionPass(ID) {
316     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
317   }
318 
319   bool runOnMachineFunction(MachineFunction &F) override;
320 
321   void getAnalysisUsage(AnalysisUsage &AU) const override {
322     AU.addRequired<MachineBranchProbabilityInfo>();
323     AU.addRequired<MachineBlockFrequencyInfo>();
324     AU.addRequired<MachineDominatorTree>();
325     AU.addRequired<MachineLoopInfo>();
326     MachineFunctionPass::getAnalysisUsage(AU);
327   }
328 };
329 }
330 
331 char MachineBlockPlacement::ID = 0;
332 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
333 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
334                       "Branch Probability Basic Block Placement", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
338 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
339 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
340                     "Branch Probability Basic Block Placement", false, false)
341 
342 #ifndef NDEBUG
343 /// \brief Helper to print the name of a MBB.
344 ///
345 /// Only used by debug logging.
346 static std::string getBlockName(MachineBasicBlock *BB) {
347   std::string Result;
348   raw_string_ostream OS(Result);
349   OS << "BB#" << BB->getNumber();
350   OS << " ('" << BB->getName() << "')";
351   OS.flush();
352   return Result;
353 }
354 #endif
355 
356 /// \brief Mark a chain's successors as having one fewer preds.
357 ///
358 /// When a chain is being merged into the "placed" chain, this routine will
359 /// quickly walk the successors of each block in the chain and mark them as
360 /// having one fewer active predecessor. It also adds any successors of this
361 /// chain which reach the zero-predecessor state to the worklist passed in.
362 void MachineBlockPlacement::markChainSuccessors(
363     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
364     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
365     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
366     const BlockFilterSet *BlockFilter) {
367   // Walk all the blocks in this chain, marking their successors as having
368   // a predecessor placed.
369   for (MachineBasicBlock *MBB : Chain) {
370     // Add any successors for which this is the only un-placed in-loop
371     // predecessor to the worklist as a viable candidate for CFG-neutral
372     // placement. No subsequent placement of this block will violate the CFG
373     // shape, so we get to use heuristics to choose a favorable placement.
374     for (MachineBasicBlock *Succ : MBB->successors()) {
375       if (BlockFilter && !BlockFilter->count(Succ))
376         continue;
377       BlockChain &SuccChain = *BlockToChain[Succ];
378       // Disregard edges within a fixed chain, or edges to the loop header.
379       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
380         continue;
381 
382       // This is a cross-chain edge that is within the loop, so decrement the
383       // loop predecessor count of the destination chain.
384       if (SuccChain.UnscheduledPredecessors == 0 ||
385           --SuccChain.UnscheduledPredecessors > 0)
386         continue;
387 
388       auto *MBB = *SuccChain.begin();
389       if (MBB->isEHPad())
390         EHPadWorkList.push_back(MBB);
391       else
392         BlockWorkList.push_back(MBB);
393     }
394   }
395 }
396 
397 /// \brief Select the best successor for a block.
398 ///
399 /// This looks across all successors of a particular block and attempts to
400 /// select the "best" one to be the layout successor. It only considers direct
401 /// successors which also pass the block filter. It will attempt to avoid
402 /// breaking CFG structure, but cave and break such structures in the case of
403 /// very hot successor edges.
404 ///
405 /// \returns The best successor block found, or null if none are viable.
406 MachineBasicBlock *
407 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
408                                            BlockChain &Chain,
409                                            const BlockFilterSet *BlockFilter) {
410   const BranchProbability HotProb(StaticLikelyProb, 100);
411 
412   MachineBasicBlock *BestSucc = nullptr;
413   auto BestProb = BranchProbability::getZero();
414 
415   // Adjust edge probabilities by excluding edges pointing to blocks that is
416   // either not in BlockFilter or is already in the current chain. Consider the
417   // following CFG:
418   //
419   //     --->A
420   //     |  / \
421   //     | B   C
422   //     |  \ / \
423   //     ----D   E
424   //
425   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
426   // A->C is chosen as a fall-through, D won't be selected as a successor of C
427   // due to CFG constraint (the probability of C->D is not greater than
428   // HotProb). If we exclude E that is not in BlockFilter when calculating the
429   // probability of C->D, D will be selected and we will get A C D B as the
430   // layout of this loop.
431   auto AdjustedSumProb = BranchProbability::getOne();
432   SmallVector<MachineBasicBlock *, 4> Successors;
433   for (MachineBasicBlock *Succ : BB->successors()) {
434     bool SkipSucc = false;
435     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
436       SkipSucc = true;
437     } else {
438       BlockChain *SuccChain = BlockToChain[Succ];
439       if (SuccChain == &Chain) {
440         SkipSucc = true;
441       } else if (Succ != *SuccChain->begin()) {
442         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
443         continue;
444       }
445     }
446     if (SkipSucc)
447       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
448     else
449       Successors.push_back(Succ);
450   }
451 
452   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
453   for (MachineBasicBlock *Succ : Successors) {
454     BranchProbability SuccProb;
455     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
456     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
457     if (SuccProbN >= SuccProbD)
458       SuccProb = BranchProbability::getOne();
459     else
460       SuccProb = BranchProbability(SuccProbN, SuccProbD);
461 
462     // If we outline optional branches, look whether Succ is unavoidable, i.e.
463     // dominates all terminators of the MachineFunction. If it does, other
464     // successors must be optional. Don't do this for cold branches.
465     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
466         UnavoidableBlocks.count(Succ) > 0) {
467       auto HasShortOptionalBranch = [&]() {
468         for (MachineBasicBlock *Pred : Succ->predecessors()) {
469           // Check whether there is an unplaced optional branch.
470           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
471               BlockToChain[Pred] == &Chain)
472             continue;
473           // Check whether the optional branch has exactly one BB.
474           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
475             continue;
476           // Check whether the optional branch is small.
477           if (Pred->size() < OutlineOptionalThreshold)
478             return true;
479         }
480         return false;
481       };
482       if (!HasShortOptionalBranch())
483         return Succ;
484     }
485 
486     // Only consider successors which are either "hot", or wouldn't violate
487     // any CFG constraints.
488     BlockChain &SuccChain = *BlockToChain[Succ];
489     if (SuccChain.UnscheduledPredecessors != 0) {
490       if (SuccProb < HotProb) {
491         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
492                      << " (prob) (CFG conflict)\n");
493         continue;
494       }
495 
496       // Make sure that a hot successor doesn't have a globally more
497       // important predecessor.
498       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
499       BlockFrequency CandidateEdgeFreq =
500           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
501       bool BadCFGConflict = false;
502       for (MachineBasicBlock *Pred : Succ->predecessors()) {
503         if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
504             (BlockFilter && !BlockFilter->count(Pred)) ||
505             BlockToChain[Pred] == &Chain)
506           continue;
507         BlockFrequency PredEdgeFreq =
508             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
509         if (PredEdgeFreq >= CandidateEdgeFreq) {
510           BadCFGConflict = true;
511           break;
512         }
513       }
514       if (BadCFGConflict) {
515         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
516                      << " (prob) (non-cold CFG conflict)\n");
517         continue;
518       }
519     }
520 
521     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
522                  << " (prob)"
523                  << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
524                  << "\n");
525     if (BestSucc && BestProb >= SuccProb)
526       continue;
527     BestSucc = Succ;
528     BestProb = SuccProb;
529   }
530   return BestSucc;
531 }
532 
533 /// \brief Select the best block from a worklist.
534 ///
535 /// This looks through the provided worklist as a list of candidate basic
536 /// blocks and select the most profitable one to place. The definition of
537 /// profitable only really makes sense in the context of a loop. This returns
538 /// the most frequently visited block in the worklist, which in the case of
539 /// a loop, is the one most desirable to be physically close to the rest of the
540 /// loop body in order to improve icache behavior.
541 ///
542 /// \returns The best block found, or null if none are viable.
543 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
544     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
545   // Once we need to walk the worklist looking for a candidate, cleanup the
546   // worklist of already placed entries.
547   // FIXME: If this shows up on profiles, it could be folded (at the cost of
548   // some code complexity) into the loop below.
549   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
550                                 [&](MachineBasicBlock *BB) {
551                                   return BlockToChain.lookup(BB) == &Chain;
552                                 }),
553                  WorkList.end());
554 
555   if (WorkList.empty())
556     return nullptr;
557 
558   bool IsEHPad = WorkList[0]->isEHPad();
559 
560   MachineBasicBlock *BestBlock = nullptr;
561   BlockFrequency BestFreq;
562   for (MachineBasicBlock *MBB : WorkList) {
563     assert(MBB->isEHPad() == IsEHPad);
564 
565     BlockChain &SuccChain = *BlockToChain[MBB];
566     if (&SuccChain == &Chain)
567       continue;
568 
569     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
570 
571     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
572     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
573           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
574 
575     // For ehpad, we layout the least probable first as to avoid jumping back
576     // from least probable landingpads to more probable ones.
577     //
578     // FIXME: Using probability is probably (!) not the best way to achieve
579     // this. We should probably have a more principled approach to layout
580     // cleanup code.
581     //
582     // The goal is to get:
583     //
584     //                 +--------------------------+
585     //                 |                          V
586     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
587     //
588     // Rather than:
589     //
590     //                 +-------------------------------------+
591     //                 V                                     |
592     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
593     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
594       continue;
595 
596     BestBlock = MBB;
597     BestFreq = CandidateFreq;
598   }
599 
600   return BestBlock;
601 }
602 
603 /// \brief Retrieve the first unplaced basic block.
604 ///
605 /// This routine is called when we are unable to use the CFG to walk through
606 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
607 /// We walk through the function's blocks in order, starting from the
608 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
609 /// re-scanning the entire sequence on repeated calls to this routine.
610 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
611     MachineFunction &F, const BlockChain &PlacedChain,
612     MachineFunction::iterator &PrevUnplacedBlockIt,
613     const BlockFilterSet *BlockFilter) {
614   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
615        ++I) {
616     if (BlockFilter && !BlockFilter->count(&*I))
617       continue;
618     if (BlockToChain[&*I] != &PlacedChain) {
619       PrevUnplacedBlockIt = I;
620       // Now select the head of the chain to which the unplaced block belongs
621       // as the block to place. This will force the entire chain to be placed,
622       // and satisfies the requirements of merging chains.
623       return *BlockToChain[&*I]->begin();
624     }
625   }
626   return nullptr;
627 }
628 
629 void MachineBlockPlacement::fillWorkLists(
630     MachineBasicBlock *MBB,
631     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
632     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
633     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
634     const BlockFilterSet *BlockFilter = nullptr) {
635   BlockChain &Chain = *BlockToChain[MBB];
636   if (!UpdatedPreds.insert(&Chain).second)
637     return;
638 
639   assert(Chain.UnscheduledPredecessors == 0);
640   for (MachineBasicBlock *ChainBB : Chain) {
641     assert(BlockToChain[ChainBB] == &Chain);
642     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
643       if (BlockFilter && !BlockFilter->count(Pred))
644         continue;
645       if (BlockToChain[Pred] == &Chain)
646         continue;
647       ++Chain.UnscheduledPredecessors;
648     }
649   }
650 
651   if (Chain.UnscheduledPredecessors != 0)
652     return;
653 
654   MBB = *Chain.begin();
655   if (MBB->isEHPad())
656     EHPadWorkList.push_back(MBB);
657   else
658     BlockWorkList.push_back(MBB);
659 }
660 
661 void MachineBlockPlacement::buildChain(
662     MachineBasicBlock *BB, BlockChain &Chain,
663     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
664     SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList,
665     const BlockFilterSet *BlockFilter) {
666   assert(BB);
667   assert(BlockToChain[BB] == &Chain);
668   MachineFunction &F = *BB->getParent();
669   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
670 
671   MachineBasicBlock *LoopHeaderBB = BB;
672   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
673                       BlockFilter);
674   BB = *std::prev(Chain.end());
675   for (;;) {
676     assert(BB);
677     assert(BlockToChain[BB] == &Chain);
678     assert(*std::prev(Chain.end()) == BB);
679 
680     // Look for the best viable successor if there is one to place immediately
681     // after this block.
682     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
683 
684     // If an immediate successor isn't available, look for the best viable
685     // block among those we've identified as not violating the loop's CFG at
686     // this point. This won't be a fallthrough, but it will increase locality.
687     if (!BestSucc)
688       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
689     if (!BestSucc)
690       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
691 
692     if (!BestSucc) {
693       BestSucc =
694           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
695       if (!BestSucc)
696         break;
697 
698       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
699                       "layout successor until the CFG reduces\n");
700     }
701 
702     // Place this block, updating the datastructures to reflect its placement.
703     BlockChain &SuccChain = *BlockToChain[BestSucc];
704     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
705     // we selected a successor that didn't fit naturally into the CFG.
706     SuccChain.UnscheduledPredecessors = 0;
707     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
708                  << getBlockName(BestSucc) << "\n");
709     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList,
710                         BlockFilter);
711     Chain.merge(BestSucc, &SuccChain);
712     BB = *std::prev(Chain.end());
713   }
714 
715   DEBUG(dbgs() << "Finished forming chain for header block "
716                << getBlockName(*Chain.begin()) << "\n");
717 }
718 
719 /// \brief Find the best loop top block for layout.
720 ///
721 /// Look for a block which is strictly better than the loop header for laying
722 /// out at the top of the loop. This looks for one and only one pattern:
723 /// a latch block with no conditional exit. This block will cause a conditional
724 /// jump around it or will be the bottom of the loop if we lay it out in place,
725 /// but if it it doesn't end up at the bottom of the loop for any reason,
726 /// rotation alone won't fix it. Because such a block will always result in an
727 /// unconditional jump (for the backedge) rotating it in front of the loop
728 /// header is always profitable.
729 MachineBasicBlock *
730 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
731                                        const BlockFilterSet &LoopBlockSet) {
732   // Check that the header hasn't been fused with a preheader block due to
733   // crazy branches. If it has, we need to start with the header at the top to
734   // prevent pulling the preheader into the loop body.
735   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
736   if (!LoopBlockSet.count(*HeaderChain.begin()))
737     return L.getHeader();
738 
739   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
740                << "\n");
741 
742   BlockFrequency BestPredFreq;
743   MachineBasicBlock *BestPred = nullptr;
744   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
745     if (!LoopBlockSet.count(Pred))
746       continue;
747     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
748                  << Pred->succ_size() << " successors, ";
749           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
750     if (Pred->succ_size() > 1)
751       continue;
752 
753     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
754     if (!BestPred || PredFreq > BestPredFreq ||
755         (!(PredFreq < BestPredFreq) &&
756          Pred->isLayoutSuccessor(L.getHeader()))) {
757       BestPred = Pred;
758       BestPredFreq = PredFreq;
759     }
760   }
761 
762   // If no direct predecessor is fine, just use the loop header.
763   if (!BestPred) {
764     DEBUG(dbgs() << "    final top unchanged\n");
765     return L.getHeader();
766   }
767 
768   // Walk backwards through any straight line of predecessors.
769   while (BestPred->pred_size() == 1 &&
770          (*BestPred->pred_begin())->succ_size() == 1 &&
771          *BestPred->pred_begin() != L.getHeader())
772     BestPred = *BestPred->pred_begin();
773 
774   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
775   return BestPred;
776 }
777 
778 /// \brief Find the best loop exiting block for layout.
779 ///
780 /// This routine implements the logic to analyze the loop looking for the best
781 /// block to layout at the top of the loop. Typically this is done to maximize
782 /// fallthrough opportunities.
783 MachineBasicBlock *
784 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
785                                         const BlockFilterSet &LoopBlockSet) {
786   // We don't want to layout the loop linearly in all cases. If the loop header
787   // is just a normal basic block in the loop, we want to look for what block
788   // within the loop is the best one to layout at the top. However, if the loop
789   // header has be pre-merged into a chain due to predecessors not having
790   // analyzable branches, *and* the predecessor it is merged with is *not* part
791   // of the loop, rotating the header into the middle of the loop will create
792   // a non-contiguous range of blocks which is Very Bad. So start with the
793   // header and only rotate if safe.
794   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
795   if (!LoopBlockSet.count(*HeaderChain.begin()))
796     return nullptr;
797 
798   BlockFrequency BestExitEdgeFreq;
799   unsigned BestExitLoopDepth = 0;
800   MachineBasicBlock *ExitingBB = nullptr;
801   // If there are exits to outer loops, loop rotation can severely limit
802   // fallthrough opportunites unless it selects such an exit. Keep a set of
803   // blocks where rotating to exit with that block will reach an outer loop.
804   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
805 
806   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
807                << "\n");
808   for (MachineBasicBlock *MBB : L.getBlocks()) {
809     BlockChain &Chain = *BlockToChain[MBB];
810     // Ensure that this block is at the end of a chain; otherwise it could be
811     // mid-way through an inner loop or a successor of an unanalyzable branch.
812     if (MBB != *std::prev(Chain.end()))
813       continue;
814 
815     // Now walk the successors. We need to establish whether this has a viable
816     // exiting successor and whether it has a viable non-exiting successor.
817     // We store the old exiting state and restore it if a viable looping
818     // successor isn't found.
819     MachineBasicBlock *OldExitingBB = ExitingBB;
820     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
821     bool HasLoopingSucc = false;
822     for (MachineBasicBlock *Succ : MBB->successors()) {
823       if (Succ->isEHPad())
824         continue;
825       if (Succ == MBB)
826         continue;
827       BlockChain &SuccChain = *BlockToChain[Succ];
828       // Don't split chains, either this chain or the successor's chain.
829       if (&Chain == &SuccChain) {
830         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
831                      << getBlockName(Succ) << " (chain conflict)\n");
832         continue;
833       }
834 
835       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
836       if (LoopBlockSet.count(Succ)) {
837         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
838                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
839         HasLoopingSucc = true;
840         continue;
841       }
842 
843       unsigned SuccLoopDepth = 0;
844       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
845         SuccLoopDepth = ExitLoop->getLoopDepth();
846         if (ExitLoop->contains(&L))
847           BlocksExitingToOuterLoop.insert(MBB);
848       }
849 
850       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
851       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
852                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
853             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
854       // Note that we bias this toward an existing layout successor to retain
855       // incoming order in the absence of better information. The exit must have
856       // a frequency higher than the current exit before we consider breaking
857       // the layout.
858       BranchProbability Bias(100 - ExitBlockBias, 100);
859       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
860           ExitEdgeFreq > BestExitEdgeFreq ||
861           (MBB->isLayoutSuccessor(Succ) &&
862            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
863         BestExitEdgeFreq = ExitEdgeFreq;
864         ExitingBB = MBB;
865       }
866     }
867 
868     if (!HasLoopingSucc) {
869       // Restore the old exiting state, no viable looping successor was found.
870       ExitingBB = OldExitingBB;
871       BestExitEdgeFreq = OldBestExitEdgeFreq;
872     }
873   }
874   // Without a candidate exiting block or with only a single block in the
875   // loop, just use the loop header to layout the loop.
876   if (!ExitingBB || L.getNumBlocks() == 1)
877     return nullptr;
878 
879   // Also, if we have exit blocks which lead to outer loops but didn't select
880   // one of them as the exiting block we are rotating toward, disable loop
881   // rotation altogether.
882   if (!BlocksExitingToOuterLoop.empty() &&
883       !BlocksExitingToOuterLoop.count(ExitingBB))
884     return nullptr;
885 
886   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
887   return ExitingBB;
888 }
889 
890 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
891 ///
892 /// Once we have built a chain, try to rotate it to line up the hot exit block
893 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
894 /// branches. For example, if the loop has fallthrough into its header and out
895 /// of its bottom already, don't rotate it.
896 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
897                                        MachineBasicBlock *ExitingBB,
898                                        const BlockFilterSet &LoopBlockSet) {
899   if (!ExitingBB)
900     return;
901 
902   MachineBasicBlock *Top = *LoopChain.begin();
903   bool ViableTopFallthrough = false;
904   for (MachineBasicBlock *Pred : Top->predecessors()) {
905     BlockChain *PredChain = BlockToChain[Pred];
906     if (!LoopBlockSet.count(Pred) &&
907         (!PredChain || Pred == *std::prev(PredChain->end()))) {
908       ViableTopFallthrough = true;
909       break;
910     }
911   }
912 
913   // If the header has viable fallthrough, check whether the current loop
914   // bottom is a viable exiting block. If so, bail out as rotating will
915   // introduce an unnecessary branch.
916   if (ViableTopFallthrough) {
917     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
918     for (MachineBasicBlock *Succ : Bottom->successors()) {
919       BlockChain *SuccChain = BlockToChain[Succ];
920       if (!LoopBlockSet.count(Succ) &&
921           (!SuccChain || Succ == *SuccChain->begin()))
922         return;
923     }
924   }
925 
926   BlockChain::iterator ExitIt =
927       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
928   if (ExitIt == LoopChain.end())
929     return;
930 
931   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
932 }
933 
934 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
935 ///
936 /// With profile data, we can determine the cost in terms of missed fall through
937 /// opportunities when rotating a loop chain and select the best rotation.
938 /// Basically, there are three kinds of cost to consider for each rotation:
939 ///    1. The possibly missed fall through edge (if it exists) from BB out of
940 ///    the loop to the loop header.
941 ///    2. The possibly missed fall through edges (if they exist) from the loop
942 ///    exits to BB out of the loop.
943 ///    3. The missed fall through edge (if it exists) from the last BB to the
944 ///    first BB in the loop chain.
945 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
946 ///  We select the best rotation with the smallest cost.
947 void MachineBlockPlacement::rotateLoopWithProfile(
948     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
949   auto HeaderBB = L.getHeader();
950   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
951   auto RotationPos = LoopChain.end();
952 
953   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
954 
955   // A utility lambda that scales up a block frequency by dividing it by a
956   // branch probability which is the reciprocal of the scale.
957   auto ScaleBlockFrequency = [](BlockFrequency Freq,
958                                 unsigned Scale) -> BlockFrequency {
959     if (Scale == 0)
960       return 0;
961     // Use operator / between BlockFrequency and BranchProbability to implement
962     // saturating multiplication.
963     return Freq / BranchProbability(1, Scale);
964   };
965 
966   // Compute the cost of the missed fall-through edge to the loop header if the
967   // chain head is not the loop header. As we only consider natural loops with
968   // single header, this computation can be done only once.
969   BlockFrequency HeaderFallThroughCost(0);
970   for (auto *Pred : HeaderBB->predecessors()) {
971     BlockChain *PredChain = BlockToChain[Pred];
972     if (!LoopBlockSet.count(Pred) &&
973         (!PredChain || Pred == *std::prev(PredChain->end()))) {
974       auto EdgeFreq =
975           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
976       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
977       // If the predecessor has only an unconditional jump to the header, we
978       // need to consider the cost of this jump.
979       if (Pred->succ_size() == 1)
980         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
981       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
982     }
983   }
984 
985   // Here we collect all exit blocks in the loop, and for each exit we find out
986   // its hottest exit edge. For each loop rotation, we define the loop exit cost
987   // as the sum of frequencies of exit edges we collect here, excluding the exit
988   // edge from the tail of the loop chain.
989   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
990   for (auto BB : LoopChain) {
991     auto LargestExitEdgeProb = BranchProbability::getZero();
992     for (auto *Succ : BB->successors()) {
993       BlockChain *SuccChain = BlockToChain[Succ];
994       if (!LoopBlockSet.count(Succ) &&
995           (!SuccChain || Succ == *SuccChain->begin())) {
996         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
997         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
998       }
999     }
1000     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1001       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1002       ExitsWithFreq.emplace_back(BB, ExitFreq);
1003     }
1004   }
1005 
1006   // In this loop we iterate every block in the loop chain and calculate the
1007   // cost assuming the block is the head of the loop chain. When the loop ends,
1008   // we should have found the best candidate as the loop chain's head.
1009   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1010             EndIter = LoopChain.end();
1011        Iter != EndIter; Iter++, TailIter++) {
1012     // TailIter is used to track the tail of the loop chain if the block we are
1013     // checking (pointed by Iter) is the head of the chain.
1014     if (TailIter == LoopChain.end())
1015       TailIter = LoopChain.begin();
1016 
1017     auto TailBB = *TailIter;
1018 
1019     // Calculate the cost by putting this BB to the top.
1020     BlockFrequency Cost = 0;
1021 
1022     // If the current BB is the loop header, we need to take into account the
1023     // cost of the missed fall through edge from outside of the loop to the
1024     // header.
1025     if (Iter != HeaderIter)
1026       Cost += HeaderFallThroughCost;
1027 
1028     // Collect the loop exit cost by summing up frequencies of all exit edges
1029     // except the one from the chain tail.
1030     for (auto &ExitWithFreq : ExitsWithFreq)
1031       if (TailBB != ExitWithFreq.first)
1032         Cost += ExitWithFreq.second;
1033 
1034     // The cost of breaking the once fall-through edge from the tail to the top
1035     // of the loop chain. Here we need to consider three cases:
1036     // 1. If the tail node has only one successor, then we will get an
1037     //    additional jmp instruction. So the cost here is (MisfetchCost +
1038     //    JumpInstCost) * tail node frequency.
1039     // 2. If the tail node has two successors, then we may still get an
1040     //    additional jmp instruction if the layout successor after the loop
1041     //    chain is not its CFG successor. Note that the more frequently executed
1042     //    jmp instruction will be put ahead of the other one. Assume the
1043     //    frequency of those two branches are x and y, where x is the frequency
1044     //    of the edge to the chain head, then the cost will be
1045     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1046     // 3. If the tail node has more than two successors (this rarely happens),
1047     //    we won't consider any additional cost.
1048     if (TailBB->isSuccessor(*Iter)) {
1049       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1050       if (TailBB->succ_size() == 1)
1051         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1052                                     MisfetchCost + JumpInstCost);
1053       else if (TailBB->succ_size() == 2) {
1054         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1055         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1056         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1057                                   ? TailBBFreq * TailToHeadProb.getCompl()
1058                                   : TailToHeadFreq;
1059         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1060                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1061       }
1062     }
1063 
1064     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1065                  << " to the top: " << Cost.getFrequency() << "\n");
1066 
1067     if (Cost < SmallestRotationCost) {
1068       SmallestRotationCost = Cost;
1069       RotationPos = Iter;
1070     }
1071   }
1072 
1073   if (RotationPos != LoopChain.end()) {
1074     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1075                  << " to the top\n");
1076     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1077   }
1078 }
1079 
1080 /// \brief Collect blocks in the given loop that are to be placed.
1081 ///
1082 /// When profile data is available, exclude cold blocks from the returned set;
1083 /// otherwise, collect all blocks in the loop.
1084 MachineBlockPlacement::BlockFilterSet
1085 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
1086   BlockFilterSet LoopBlockSet;
1087 
1088   // Filter cold blocks off from LoopBlockSet when profile data is available.
1089   // Collect the sum of frequencies of incoming edges to the loop header from
1090   // outside. If we treat the loop as a super block, this is the frequency of
1091   // the loop. Then for each block in the loop, we calculate the ratio between
1092   // its frequency and the frequency of the loop block. When it is too small,
1093   // don't add it to the loop chain. If there are outer loops, then this block
1094   // will be merged into the first outer loop chain for which this block is not
1095   // cold anymore. This needs precise profile data and we only do this when
1096   // profile data is available.
1097   if (F.getFunction()->getEntryCount()) {
1098     BlockFrequency LoopFreq(0);
1099     for (auto LoopPred : L.getHeader()->predecessors())
1100       if (!L.contains(LoopPred))
1101         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1102                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1103 
1104     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1105       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1106       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1107         continue;
1108       LoopBlockSet.insert(LoopBB);
1109     }
1110   } else
1111     LoopBlockSet.insert(L.block_begin(), L.block_end());
1112 
1113   return LoopBlockSet;
1114 }
1115 
1116 /// \brief Forms basic block chains from the natural loop structures.
1117 ///
1118 /// These chains are designed to preserve the existing *structure* of the code
1119 /// as much as possible. We can then stitch the chains together in a way which
1120 /// both preserves the topological structure and minimizes taken conditional
1121 /// branches.
1122 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1123                                             MachineLoop &L) {
1124   // First recurse through any nested loops, building chains for those inner
1125   // loops.
1126   for (MachineLoop *InnerLoop : L)
1127     buildLoopChains(F, *InnerLoop);
1128 
1129   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1130   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1131   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1132 
1133   // Check if we have profile data for this function. If yes, we will rotate
1134   // this loop by modeling costs more precisely which requires the profile data
1135   // for better layout.
1136   bool RotateLoopWithProfile =
1137       ForcePreciseRotationCost ||
1138       (PreciseRotationCost && F.getFunction()->getEntryCount());
1139 
1140   // First check to see if there is an obviously preferable top block for the
1141   // loop. This will default to the header, but may end up as one of the
1142   // predecessors to the header if there is one which will result in strictly
1143   // fewer branches in the loop body.
1144   // When we use profile data to rotate the loop, this is unnecessary.
1145   MachineBasicBlock *LoopTop =
1146       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1147 
1148   // If we selected just the header for the loop top, look for a potentially
1149   // profitable exit block in the event that rotating the loop can eliminate
1150   // branches by placing an exit edge at the bottom.
1151   MachineBasicBlock *ExitingBB = nullptr;
1152   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1153     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1154 
1155   BlockChain &LoopChain = *BlockToChain[LoopTop];
1156 
1157   // FIXME: This is a really lame way of walking the chains in the loop: we
1158   // walk the blocks, and use a set to prevent visiting a particular chain
1159   // twice.
1160   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1161   assert(LoopChain.UnscheduledPredecessors == 0);
1162   UpdatedPreds.insert(&LoopChain);
1163 
1164   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1165     fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList,
1166                   &LoopBlockSet);
1167 
1168   buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet);
1169 
1170   if (RotateLoopWithProfile)
1171     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1172   else
1173     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1174 
1175   DEBUG({
1176     // Crash at the end so we get all of the debugging output first.
1177     bool BadLoop = false;
1178     if (LoopChain.UnscheduledPredecessors) {
1179       BadLoop = true;
1180       dbgs() << "Loop chain contains a block without its preds placed!\n"
1181              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1182              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1183     }
1184     for (MachineBasicBlock *ChainBB : LoopChain) {
1185       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1186       if (!LoopBlockSet.erase(ChainBB)) {
1187         // We don't mark the loop as bad here because there are real situations
1188         // where this can occur. For example, with an unanalyzable fallthrough
1189         // from a loop block to a non-loop block or vice versa.
1190         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1191                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1192                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1193                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1194       }
1195     }
1196 
1197     if (!LoopBlockSet.empty()) {
1198       BadLoop = true;
1199       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1200         dbgs() << "Loop contains blocks never placed into a chain!\n"
1201                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1202                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1203                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1204     }
1205     assert(!BadLoop && "Detected problems with the placement of this loop.");
1206   });
1207 }
1208 
1209 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1210   // Ensure that every BB in the function has an associated chain to simplify
1211   // the assumptions of the remaining algorithm.
1212   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1213   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1214     MachineBasicBlock *BB = &*FI;
1215     BlockChain *Chain =
1216         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1217     // Also, merge any blocks which we cannot reason about and must preserve
1218     // the exact fallthrough behavior for.
1219     for (;;) {
1220       Cond.clear();
1221       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1222       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1223         break;
1224 
1225       MachineFunction::iterator NextFI = std::next(FI);
1226       MachineBasicBlock *NextBB = &*NextFI;
1227       // Ensure that the layout successor is a viable block, as we know that
1228       // fallthrough is a possibility.
1229       assert(NextFI != FE && "Can't fallthrough past the last block.");
1230       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1231                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1232                    << "\n");
1233       Chain->merge(NextBB, nullptr);
1234       FI = NextFI;
1235       BB = NextBB;
1236     }
1237   }
1238 
1239   if (OutlineOptionalBranches) {
1240     // Find the nearest common dominator of all of F's terminators.
1241     MachineBasicBlock *Terminator = nullptr;
1242     for (MachineBasicBlock &MBB : F) {
1243       if (MBB.succ_size() == 0) {
1244         if (Terminator == nullptr)
1245           Terminator = &MBB;
1246         else
1247           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1248       }
1249     }
1250 
1251     // MBBs dominating this common dominator are unavoidable.
1252     UnavoidableBlocks.clear();
1253     for (MachineBasicBlock &MBB : F) {
1254       if (MDT->dominates(&MBB, Terminator)) {
1255         UnavoidableBlocks.insert(&MBB);
1256       }
1257     }
1258   }
1259 
1260   // Build any loop-based chains.
1261   for (MachineLoop *L : *MLI)
1262     buildLoopChains(F, *L);
1263 
1264   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1265   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
1266 
1267   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1268   for (MachineBasicBlock &MBB : F)
1269     fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList);
1270 
1271   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1272   buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList);
1273 
1274 #ifndef NDEBUG
1275   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1276 #endif
1277   DEBUG({
1278     // Crash at the end so we get all of the debugging output first.
1279     bool BadFunc = false;
1280     FunctionBlockSetType FunctionBlockSet;
1281     for (MachineBasicBlock &MBB : F)
1282       FunctionBlockSet.insert(&MBB);
1283 
1284     for (MachineBasicBlock *ChainBB : FunctionChain)
1285       if (!FunctionBlockSet.erase(ChainBB)) {
1286         BadFunc = true;
1287         dbgs() << "Function chain contains a block not in the function!\n"
1288                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1289       }
1290 
1291     if (!FunctionBlockSet.empty()) {
1292       BadFunc = true;
1293       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1294         dbgs() << "Function contains blocks never placed into a chain!\n"
1295                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1296     }
1297     assert(!BadFunc && "Detected problems with the block placement.");
1298   });
1299 
1300   // Splice the blocks into place.
1301   MachineFunction::iterator InsertPos = F.begin();
1302   for (MachineBasicBlock *ChainBB : FunctionChain) {
1303     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1304                                                        : "          ... ")
1305                  << getBlockName(ChainBB) << "\n");
1306     if (InsertPos != MachineFunction::iterator(ChainBB))
1307       F.splice(InsertPos, ChainBB);
1308     else
1309       ++InsertPos;
1310 
1311     // Update the terminator of the previous block.
1312     if (ChainBB == *FunctionChain.begin())
1313       continue;
1314     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1315 
1316     // FIXME: It would be awesome of updateTerminator would just return rather
1317     // than assert when the branch cannot be analyzed in order to remove this
1318     // boiler plate.
1319     Cond.clear();
1320     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1321 
1322     // The "PrevBB" is not yet updated to reflect current code layout, so,
1323     //   o. it may fall-through to a block without explict "goto" instruction
1324     //      before layout, and no longer fall-through it after layout; or
1325     //   o. just opposite.
1326     //
1327     // AnalyzeBranch() may return erroneous value for FBB when these two
1328     // situations take place. For the first scenario FBB is mistakenly set NULL;
1329     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1330     // mistakenly pointing to "*BI".
1331     // Thus, if the future change needs to use FBB before the layout is set, it
1332     // has to correct FBB first by using the code similar to the following:
1333     //
1334     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1335     //   PrevBB->updateTerminator();
1336     //   Cond.clear();
1337     //   TBB = FBB = nullptr;
1338     //   if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1339     //     // FIXME: This should never take place.
1340     //     TBB = FBB = nullptr;
1341     //   }
1342     // }
1343     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
1344       PrevBB->updateTerminator();
1345   }
1346 
1347   // Fixup the last block.
1348   Cond.clear();
1349   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1350   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1351     F.back().updateTerminator();
1352 }
1353 
1354 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) {
1355   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1356   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1357 
1358   // Now that all the basic blocks in the chain have the proper layout,
1359   // make a final call to AnalyzeBranch with AllowModify set.
1360   // Indeed, the target may be able to optimize the branches in a way we
1361   // cannot because all branches may not be analyzable.
1362   // E.g., the target may be able to remove an unconditional branch to
1363   // a fallthrough when it occurs after predicated terminators.
1364   for (MachineBasicBlock *ChainBB : FunctionChain) {
1365     Cond.clear();
1366     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1367     if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1368       // If PrevBB has a two-way branch, try to re-order the branches
1369       // such that we branch to the successor with higher probability first.
1370       if (TBB && !Cond.empty() && FBB &&
1371           MBPI->getEdgeProbability(ChainBB, FBB) >
1372               MBPI->getEdgeProbability(ChainBB, TBB) &&
1373           !TII->ReverseBranchCondition(Cond)) {
1374         DEBUG(dbgs() << "Reverse order of the two branches: "
1375                      << getBlockName(ChainBB) << "\n");
1376         DEBUG(dbgs() << "    Edge probability: "
1377                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1378                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1379         DebugLoc dl; // FIXME: this is nowhere
1380         TII->RemoveBranch(*ChainBB);
1381         TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
1382         ChainBB->updateTerminator();
1383       }
1384     }
1385   }
1386 }
1387 
1388 void MachineBlockPlacement::alignBlocks(MachineFunction &F) {
1389   // Walk through the backedges of the function now that we have fully laid out
1390   // the basic blocks and align the destination of each backedge. We don't rely
1391   // exclusively on the loop info here so that we can align backedges in
1392   // unnatural CFGs and backedges that were introduced purely because of the
1393   // loop rotations done during this layout pass.
1394   if (F.getFunction()->optForSize())
1395     return;
1396   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1397   if (FunctionChain.begin() == FunctionChain.end())
1398     return; // Empty chain.
1399 
1400   const BranchProbability ColdProb(1, 5); // 20%
1401   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1402   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1403   for (MachineBasicBlock *ChainBB : FunctionChain) {
1404     if (ChainBB == *FunctionChain.begin())
1405       continue;
1406 
1407     // Don't align non-looping basic blocks. These are unlikely to execute
1408     // enough times to matter in practice. Note that we'll still handle
1409     // unnatural CFGs inside of a natural outer loop (the common case) and
1410     // rotated loops.
1411     MachineLoop *L = MLI->getLoopFor(ChainBB);
1412     if (!L)
1413       continue;
1414 
1415     unsigned Align = TLI->getPrefLoopAlignment(L);
1416     if (!Align)
1417       continue; // Don't care about loop alignment.
1418 
1419     // If the block is cold relative to the function entry don't waste space
1420     // aligning it.
1421     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1422     if (Freq < WeightedEntryFreq)
1423       continue;
1424 
1425     // If the block is cold relative to its loop header, don't align it
1426     // regardless of what edges into the block exist.
1427     MachineBasicBlock *LoopHeader = L->getHeader();
1428     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1429     if (Freq < (LoopHeaderFreq * ColdProb))
1430       continue;
1431 
1432     // Check for the existence of a non-layout predecessor which would benefit
1433     // from aligning this block.
1434     MachineBasicBlock *LayoutPred =
1435         &*std::prev(MachineFunction::iterator(ChainBB));
1436 
1437     // Force alignment if all the predecessors are jumps. We already checked
1438     // that the block isn't cold above.
1439     if (!LayoutPred->isSuccessor(ChainBB)) {
1440       ChainBB->setAlignment(Align);
1441       continue;
1442     }
1443 
1444     // Align this block if the layout predecessor's edge into this block is
1445     // cold relative to the block. When this is true, other predecessors make up
1446     // all of the hot entries into the block and thus alignment is likely to be
1447     // important.
1448     BranchProbability LayoutProb =
1449         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1450     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1451     if (LayoutEdgeFreq <= (Freq * ColdProb))
1452       ChainBB->setAlignment(Align);
1453   }
1454 }
1455 
1456 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1457   if (skipFunction(*F.getFunction()))
1458     return false;
1459 
1460   // Check for single-block functions and skip them.
1461   if (std::next(F.begin()) == F.end())
1462     return false;
1463 
1464   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1465   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1466   MLI = &getAnalysis<MachineLoopInfo>();
1467   TII = F.getSubtarget().getInstrInfo();
1468   TLI = F.getSubtarget().getTargetLowering();
1469   MDT = &getAnalysis<MachineDominatorTree>();
1470   assert(BlockToChain.empty());
1471 
1472   buildCFGChains(F);
1473   optimizeBranches(F);
1474   alignBlocks(F);
1475 
1476   BlockToChain.clear();
1477   ChainAllocator.DestroyAll();
1478 
1479   if (AlignAllBlock)
1480     // Align all of the blocks in the function to a specific alignment.
1481     for (MachineBasicBlock &MBB : F)
1482       MBB.setAlignment(AlignAllBlock);
1483   else if (AlignAllNonFallThruBlocks) {
1484     // Align all of the blocks that have no fall-through predecessors to a
1485     // specific alignment.
1486     for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) {
1487       auto LayoutPred = std::prev(MBI);
1488       if (!LayoutPred->isSuccessor(&*MBI))
1489         MBI->setAlignment(AlignAllNonFallThruBlocks);
1490     }
1491   }
1492 
1493   // We always return true as we have no way to track whether the final order
1494   // differs from the original order.
1495   return true;
1496 }
1497 
1498 namespace {
1499 /// \brief A pass to compute block placement statistics.
1500 ///
1501 /// A separate pass to compute interesting statistics for evaluating block
1502 /// placement. This is separate from the actual placement pass so that they can
1503 /// be computed in the absence of any placement transformations or when using
1504 /// alternative placement strategies.
1505 class MachineBlockPlacementStats : public MachineFunctionPass {
1506   /// \brief A handle to the branch probability pass.
1507   const MachineBranchProbabilityInfo *MBPI;
1508 
1509   /// \brief A handle to the function-wide block frequency pass.
1510   const MachineBlockFrequencyInfo *MBFI;
1511 
1512 public:
1513   static char ID; // Pass identification, replacement for typeid
1514   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1515     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1516   }
1517 
1518   bool runOnMachineFunction(MachineFunction &F) override;
1519 
1520   void getAnalysisUsage(AnalysisUsage &AU) const override {
1521     AU.addRequired<MachineBranchProbabilityInfo>();
1522     AU.addRequired<MachineBlockFrequencyInfo>();
1523     AU.setPreservesAll();
1524     MachineFunctionPass::getAnalysisUsage(AU);
1525   }
1526 };
1527 }
1528 
1529 char MachineBlockPlacementStats::ID = 0;
1530 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1531 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1532                       "Basic Block Placement Stats", false, false)
1533 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1534 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1535 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1536                     "Basic Block Placement Stats", false, false)
1537 
1538 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1539   // Check for single-block functions and skip them.
1540   if (std::next(F.begin()) == F.end())
1541     return false;
1542 
1543   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1544   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1545 
1546   for (MachineBasicBlock &MBB : F) {
1547     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1548     Statistic &NumBranches =
1549         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1550     Statistic &BranchTakenFreq =
1551         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1552     for (MachineBasicBlock *Succ : MBB.successors()) {
1553       // Skip if this successor is a fallthrough.
1554       if (MBB.isLayoutSuccessor(Succ))
1555         continue;
1556 
1557       BlockFrequency EdgeFreq =
1558           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1559       ++NumBranches;
1560       BranchTakenFreq += EdgeFreq.getFrequency();
1561     }
1562   }
1563 
1564   return false;
1565 }
1566