1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 static cl::opt<bool> 103 ForcePreciseRotationCost("force-precise-rotation-cost", 104 cl::desc("Force the use of precise cost " 105 "loop rotation strategy."), 106 cl::init(false), cl::Hidden); 107 108 static cl::opt<unsigned> MisfetchCost( 109 "misfetch-cost", 110 cl::desc("Cost that models the probablistic risk of an instruction " 111 "misfetch due to a jump comparing to falling through, whose cost " 112 "is zero."), 113 cl::init(1), cl::Hidden); 114 115 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 116 cl::desc("Cost of jump instructions."), 117 cl::init(1), cl::Hidden); 118 119 extern cl::opt<unsigned> StaticLikelyProb; 120 121 namespace { 122 class BlockChain; 123 /// \brief Type for our function-wide basic block -> block chain mapping. 124 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 125 } 126 127 namespace { 128 /// \brief A chain of blocks which will be laid out contiguously. 129 /// 130 /// This is the datastructure representing a chain of consecutive blocks that 131 /// are profitable to layout together in order to maximize fallthrough 132 /// probabilities and code locality. We also can use a block chain to represent 133 /// a sequence of basic blocks which have some external (correctness) 134 /// requirement for sequential layout. 135 /// 136 /// Chains can be built around a single basic block and can be merged to grow 137 /// them. They participate in a block-to-chain mapping, which is updated 138 /// automatically as chains are merged together. 139 class BlockChain { 140 /// \brief The sequence of blocks belonging to this chain. 141 /// 142 /// This is the sequence of blocks for a particular chain. These will be laid 143 /// out in-order within the function. 144 SmallVector<MachineBasicBlock *, 4> Blocks; 145 146 /// \brief A handle to the function-wide basic block to block chain mapping. 147 /// 148 /// This is retained in each block chain to simplify the computation of child 149 /// block chains for SCC-formation and iteration. We store the edges to child 150 /// basic blocks, and map them back to their associated chains using this 151 /// structure. 152 BlockToChainMapType &BlockToChain; 153 154 public: 155 /// \brief Construct a new BlockChain. 156 /// 157 /// This builds a new block chain representing a single basic block in the 158 /// function. It also registers itself as the chain that block participates 159 /// in with the BlockToChain mapping. 160 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 161 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 162 assert(BB && "Cannot create a chain with a null basic block"); 163 BlockToChain[BB] = this; 164 } 165 166 /// \brief Iterator over blocks within the chain. 167 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 168 169 /// \brief Beginning of blocks within the chain. 170 iterator begin() { return Blocks.begin(); } 171 172 /// \brief End of blocks within the chain. 173 iterator end() { return Blocks.end(); } 174 175 /// \brief Merge a block chain into this one. 176 /// 177 /// This routine merges a block chain into this one. It takes care of forming 178 /// a contiguous sequence of basic blocks, updating the edge list, and 179 /// updating the block -> chain mapping. It does not free or tear down the 180 /// old chain, but the old chain's block list is no longer valid. 181 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 182 assert(BB); 183 assert(!Blocks.empty()); 184 185 // Fast path in case we don't have a chain already. 186 if (!Chain) { 187 assert(!BlockToChain[BB]); 188 Blocks.push_back(BB); 189 BlockToChain[BB] = this; 190 return; 191 } 192 193 assert(BB == *Chain->begin()); 194 assert(Chain->begin() != Chain->end()); 195 196 // Update the incoming blocks to point to this chain, and add them to the 197 // chain structure. 198 for (MachineBasicBlock *ChainBB : *Chain) { 199 Blocks.push_back(ChainBB); 200 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 201 BlockToChain[ChainBB] = this; 202 } 203 } 204 205 #ifndef NDEBUG 206 /// \brief Dump the blocks in this chain. 207 LLVM_DUMP_METHOD void dump() { 208 for (MachineBasicBlock *MBB : *this) 209 MBB->dump(); 210 } 211 #endif // NDEBUG 212 213 /// \brief Count of predecessors of any block within the chain which have not 214 /// yet been scheduled. In general, we will delay scheduling this chain 215 /// until those predecessors are scheduled (or we find a sufficiently good 216 /// reason to override this heuristic.) Note that when forming loop chains, 217 /// blocks outside the loop are ignored and treated as if they were already 218 /// scheduled. 219 /// 220 /// Note: This field is reinitialized multiple times - once for each loop, 221 /// and then once for the function as a whole. 222 unsigned UnscheduledPredecessors; 223 }; 224 } 225 226 namespace { 227 class MachineBlockPlacement : public MachineFunctionPass { 228 /// \brief A typedef for a block filter set. 229 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 230 231 /// \brief A handle to the branch probability pass. 232 const MachineBranchProbabilityInfo *MBPI; 233 234 /// \brief A handle to the function-wide block frequency pass. 235 const MachineBlockFrequencyInfo *MBFI; 236 237 /// \brief A handle to the loop info. 238 const MachineLoopInfo *MLI; 239 240 /// \brief A handle to the target's instruction info. 241 const TargetInstrInfo *TII; 242 243 /// \brief A handle to the target's lowering info. 244 const TargetLoweringBase *TLI; 245 246 /// \brief A handle to the post dominator tree. 247 MachineDominatorTree *MDT; 248 249 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 250 /// all terminators of the MachineFunction. 251 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 252 253 /// \brief Allocator and owner of BlockChain structures. 254 /// 255 /// We build BlockChains lazily while processing the loop structure of 256 /// a function. To reduce malloc traffic, we allocate them using this 257 /// slab-like allocator, and destroy them after the pass completes. An 258 /// important guarantee is that this allocator produces stable pointers to 259 /// the chains. 260 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 261 262 /// \brief Function wide BasicBlock to BlockChain mapping. 263 /// 264 /// This mapping allows efficiently moving from any given basic block to the 265 /// BlockChain it participates in, if any. We use it to, among other things, 266 /// allow implicitly defining edges between chains as the existing edges 267 /// between basic blocks. 268 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 269 270 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 271 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 272 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 273 const BlockFilterSet *BlockFilter = nullptr); 274 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 275 BlockChain &Chain, 276 const BlockFilterSet *BlockFilter); 277 MachineBasicBlock * 278 selectBestCandidateBlock(BlockChain &Chain, 279 SmallVectorImpl<MachineBasicBlock *> &WorkList); 280 MachineBasicBlock * 281 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 282 MachineFunction::iterator &PrevUnplacedBlockIt, 283 const BlockFilterSet *BlockFilter); 284 285 /// \brief Add a basic block to the work list if it is apropriate. 286 /// 287 /// If the optional parameter BlockFilter is provided, only MBB 288 /// present in the set will be added to the worklist. If nullptr 289 /// is provided, no filtering occurs. 290 void fillWorkLists(MachineBasicBlock *MBB, 291 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 292 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 293 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 294 const BlockFilterSet *BlockFilter); 295 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 296 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 297 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 298 const BlockFilterSet *BlockFilter = nullptr); 299 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 300 const BlockFilterSet &LoopBlockSet); 301 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 302 const BlockFilterSet &LoopBlockSet); 303 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 304 void buildLoopChains(MachineFunction &F, MachineLoop &L); 305 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 306 const BlockFilterSet &LoopBlockSet); 307 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 308 const BlockFilterSet &LoopBlockSet); 309 void buildCFGChains(MachineFunction &F); 310 void optimizeBranches(MachineFunction &F); 311 void alignBlocks(MachineFunction &F); 312 313 public: 314 static char ID; // Pass identification, replacement for typeid 315 MachineBlockPlacement() : MachineFunctionPass(ID) { 316 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 317 } 318 319 bool runOnMachineFunction(MachineFunction &F) override; 320 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 AU.addRequired<MachineBranchProbabilityInfo>(); 323 AU.addRequired<MachineBlockFrequencyInfo>(); 324 AU.addRequired<MachineDominatorTree>(); 325 AU.addRequired<MachineLoopInfo>(); 326 MachineFunctionPass::getAnalysisUsage(AU); 327 } 328 }; 329 } 330 331 char MachineBlockPlacement::ID = 0; 332 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 333 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 334 "Branch Probability Basic Block Placement", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 338 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 339 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 340 "Branch Probability Basic Block Placement", false, false) 341 342 #ifndef NDEBUG 343 /// \brief Helper to print the name of a MBB. 344 /// 345 /// Only used by debug logging. 346 static std::string getBlockName(MachineBasicBlock *BB) { 347 std::string Result; 348 raw_string_ostream OS(Result); 349 OS << "BB#" << BB->getNumber(); 350 OS << " ('" << BB->getName() << "')"; 351 OS.flush(); 352 return Result; 353 } 354 #endif 355 356 /// \brief Mark a chain's successors as having one fewer preds. 357 /// 358 /// When a chain is being merged into the "placed" chain, this routine will 359 /// quickly walk the successors of each block in the chain and mark them as 360 /// having one fewer active predecessor. It also adds any successors of this 361 /// chain which reach the zero-predecessor state to the worklist passed in. 362 void MachineBlockPlacement::markChainSuccessors( 363 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 364 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 365 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 366 const BlockFilterSet *BlockFilter) { 367 // Walk all the blocks in this chain, marking their successors as having 368 // a predecessor placed. 369 for (MachineBasicBlock *MBB : Chain) { 370 // Add any successors for which this is the only un-placed in-loop 371 // predecessor to the worklist as a viable candidate for CFG-neutral 372 // placement. No subsequent placement of this block will violate the CFG 373 // shape, so we get to use heuristics to choose a favorable placement. 374 for (MachineBasicBlock *Succ : MBB->successors()) { 375 if (BlockFilter && !BlockFilter->count(Succ)) 376 continue; 377 BlockChain &SuccChain = *BlockToChain[Succ]; 378 // Disregard edges within a fixed chain, or edges to the loop header. 379 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 380 continue; 381 382 // This is a cross-chain edge that is within the loop, so decrement the 383 // loop predecessor count of the destination chain. 384 if (SuccChain.UnscheduledPredecessors == 0 || 385 --SuccChain.UnscheduledPredecessors > 0) 386 continue; 387 388 auto *MBB = *SuccChain.begin(); 389 if (MBB->isEHPad()) 390 EHPadWorkList.push_back(MBB); 391 else 392 BlockWorkList.push_back(MBB); 393 } 394 } 395 } 396 397 /// \brief Select the best successor for a block. 398 /// 399 /// This looks across all successors of a particular block and attempts to 400 /// select the "best" one to be the layout successor. It only considers direct 401 /// successors which also pass the block filter. It will attempt to avoid 402 /// breaking CFG structure, but cave and break such structures in the case of 403 /// very hot successor edges. 404 /// 405 /// \returns The best successor block found, or null if none are viable. 406 MachineBasicBlock * 407 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 408 BlockChain &Chain, 409 const BlockFilterSet *BlockFilter) { 410 const BranchProbability HotProb(StaticLikelyProb, 100); 411 412 MachineBasicBlock *BestSucc = nullptr; 413 auto BestProb = BranchProbability::getZero(); 414 415 // Adjust edge probabilities by excluding edges pointing to blocks that is 416 // either not in BlockFilter or is already in the current chain. Consider the 417 // following CFG: 418 // 419 // --->A 420 // | / \ 421 // | B C 422 // | \ / \ 423 // ----D E 424 // 425 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 426 // A->C is chosen as a fall-through, D won't be selected as a successor of C 427 // due to CFG constraint (the probability of C->D is not greater than 428 // HotProb). If we exclude E that is not in BlockFilter when calculating the 429 // probability of C->D, D will be selected and we will get A C D B as the 430 // layout of this loop. 431 auto AdjustedSumProb = BranchProbability::getOne(); 432 SmallVector<MachineBasicBlock *, 4> Successors; 433 for (MachineBasicBlock *Succ : BB->successors()) { 434 bool SkipSucc = false; 435 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 436 SkipSucc = true; 437 } else { 438 BlockChain *SuccChain = BlockToChain[Succ]; 439 if (SuccChain == &Chain) { 440 SkipSucc = true; 441 } else if (Succ != *SuccChain->begin()) { 442 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 443 continue; 444 } 445 } 446 if (SkipSucc) 447 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 448 else 449 Successors.push_back(Succ); 450 } 451 452 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 453 for (MachineBasicBlock *Succ : Successors) { 454 BranchProbability SuccProb; 455 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 456 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 457 if (SuccProbN >= SuccProbD) 458 SuccProb = BranchProbability::getOne(); 459 else 460 SuccProb = BranchProbability(SuccProbN, SuccProbD); 461 462 // If we outline optional branches, look whether Succ is unavoidable, i.e. 463 // dominates all terminators of the MachineFunction. If it does, other 464 // successors must be optional. Don't do this for cold branches. 465 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 466 UnavoidableBlocks.count(Succ) > 0) { 467 auto HasShortOptionalBranch = [&]() { 468 for (MachineBasicBlock *Pred : Succ->predecessors()) { 469 // Check whether there is an unplaced optional branch. 470 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 471 BlockToChain[Pred] == &Chain) 472 continue; 473 // Check whether the optional branch has exactly one BB. 474 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 475 continue; 476 // Check whether the optional branch is small. 477 if (Pred->size() < OutlineOptionalThreshold) 478 return true; 479 } 480 return false; 481 }; 482 if (!HasShortOptionalBranch()) 483 return Succ; 484 } 485 486 // Only consider successors which are either "hot", or wouldn't violate 487 // any CFG constraints. 488 BlockChain &SuccChain = *BlockToChain[Succ]; 489 if (SuccChain.UnscheduledPredecessors != 0) { 490 if (SuccProb < HotProb) { 491 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 492 << " (prob) (CFG conflict)\n"); 493 continue; 494 } 495 496 // Make sure that a hot successor doesn't have a globally more 497 // important predecessor. 498 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 499 BlockFrequency CandidateEdgeFreq = 500 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 501 bool BadCFGConflict = false; 502 for (MachineBasicBlock *Pred : Succ->predecessors()) { 503 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 504 (BlockFilter && !BlockFilter->count(Pred)) || 505 BlockToChain[Pred] == &Chain) 506 continue; 507 BlockFrequency PredEdgeFreq = 508 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 509 if (PredEdgeFreq >= CandidateEdgeFreq) { 510 BadCFGConflict = true; 511 break; 512 } 513 } 514 if (BadCFGConflict) { 515 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 516 << " (prob) (non-cold CFG conflict)\n"); 517 continue; 518 } 519 } 520 521 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 522 << " (prob)" 523 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 524 << "\n"); 525 if (BestSucc && BestProb >= SuccProb) 526 continue; 527 BestSucc = Succ; 528 BestProb = SuccProb; 529 } 530 return BestSucc; 531 } 532 533 /// \brief Select the best block from a worklist. 534 /// 535 /// This looks through the provided worklist as a list of candidate basic 536 /// blocks and select the most profitable one to place. The definition of 537 /// profitable only really makes sense in the context of a loop. This returns 538 /// the most frequently visited block in the worklist, which in the case of 539 /// a loop, is the one most desirable to be physically close to the rest of the 540 /// loop body in order to improve icache behavior. 541 /// 542 /// \returns The best block found, or null if none are viable. 543 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 544 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 545 // Once we need to walk the worklist looking for a candidate, cleanup the 546 // worklist of already placed entries. 547 // FIXME: If this shows up on profiles, it could be folded (at the cost of 548 // some code complexity) into the loop below. 549 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 550 [&](MachineBasicBlock *BB) { 551 return BlockToChain.lookup(BB) == &Chain; 552 }), 553 WorkList.end()); 554 555 if (WorkList.empty()) 556 return nullptr; 557 558 bool IsEHPad = WorkList[0]->isEHPad(); 559 560 MachineBasicBlock *BestBlock = nullptr; 561 BlockFrequency BestFreq; 562 for (MachineBasicBlock *MBB : WorkList) { 563 assert(MBB->isEHPad() == IsEHPad); 564 565 BlockChain &SuccChain = *BlockToChain[MBB]; 566 if (&SuccChain == &Chain) 567 continue; 568 569 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 570 571 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 572 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 573 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 574 575 // For ehpad, we layout the least probable first as to avoid jumping back 576 // from least probable landingpads to more probable ones. 577 // 578 // FIXME: Using probability is probably (!) not the best way to achieve 579 // this. We should probably have a more principled approach to layout 580 // cleanup code. 581 // 582 // The goal is to get: 583 // 584 // +--------------------------+ 585 // | V 586 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 587 // 588 // Rather than: 589 // 590 // +-------------------------------------+ 591 // V | 592 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 593 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 594 continue; 595 596 BestBlock = MBB; 597 BestFreq = CandidateFreq; 598 } 599 600 return BestBlock; 601 } 602 603 /// \brief Retrieve the first unplaced basic block. 604 /// 605 /// This routine is called when we are unable to use the CFG to walk through 606 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 607 /// We walk through the function's blocks in order, starting from the 608 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 609 /// re-scanning the entire sequence on repeated calls to this routine. 610 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 611 MachineFunction &F, const BlockChain &PlacedChain, 612 MachineFunction::iterator &PrevUnplacedBlockIt, 613 const BlockFilterSet *BlockFilter) { 614 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 615 ++I) { 616 if (BlockFilter && !BlockFilter->count(&*I)) 617 continue; 618 if (BlockToChain[&*I] != &PlacedChain) { 619 PrevUnplacedBlockIt = I; 620 // Now select the head of the chain to which the unplaced block belongs 621 // as the block to place. This will force the entire chain to be placed, 622 // and satisfies the requirements of merging chains. 623 return *BlockToChain[&*I]->begin(); 624 } 625 } 626 return nullptr; 627 } 628 629 void MachineBlockPlacement::fillWorkLists( 630 MachineBasicBlock *MBB, 631 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 632 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 633 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 634 const BlockFilterSet *BlockFilter = nullptr) { 635 BlockChain &Chain = *BlockToChain[MBB]; 636 if (!UpdatedPreds.insert(&Chain).second) 637 return; 638 639 assert(Chain.UnscheduledPredecessors == 0); 640 for (MachineBasicBlock *ChainBB : Chain) { 641 assert(BlockToChain[ChainBB] == &Chain); 642 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 643 if (BlockFilter && !BlockFilter->count(Pred)) 644 continue; 645 if (BlockToChain[Pred] == &Chain) 646 continue; 647 ++Chain.UnscheduledPredecessors; 648 } 649 } 650 651 if (Chain.UnscheduledPredecessors != 0) 652 return; 653 654 MBB = *Chain.begin(); 655 if (MBB->isEHPad()) 656 EHPadWorkList.push_back(MBB); 657 else 658 BlockWorkList.push_back(MBB); 659 } 660 661 void MachineBlockPlacement::buildChain( 662 MachineBasicBlock *BB, BlockChain &Chain, 663 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 664 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 665 const BlockFilterSet *BlockFilter) { 666 assert(BB); 667 assert(BlockToChain[BB] == &Chain); 668 MachineFunction &F = *BB->getParent(); 669 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 670 671 MachineBasicBlock *LoopHeaderBB = BB; 672 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 673 BlockFilter); 674 BB = *std::prev(Chain.end()); 675 for (;;) { 676 assert(BB); 677 assert(BlockToChain[BB] == &Chain); 678 assert(*std::prev(Chain.end()) == BB); 679 680 // Look for the best viable successor if there is one to place immediately 681 // after this block. 682 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 683 684 // If an immediate successor isn't available, look for the best viable 685 // block among those we've identified as not violating the loop's CFG at 686 // this point. This won't be a fallthrough, but it will increase locality. 687 if (!BestSucc) 688 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 689 if (!BestSucc) 690 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 691 692 if (!BestSucc) { 693 BestSucc = 694 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 695 if (!BestSucc) 696 break; 697 698 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 699 "layout successor until the CFG reduces\n"); 700 } 701 702 // Place this block, updating the datastructures to reflect its placement. 703 BlockChain &SuccChain = *BlockToChain[BestSucc]; 704 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 705 // we selected a successor that didn't fit naturally into the CFG. 706 SuccChain.UnscheduledPredecessors = 0; 707 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 708 << getBlockName(BestSucc) << "\n"); 709 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 710 BlockFilter); 711 Chain.merge(BestSucc, &SuccChain); 712 BB = *std::prev(Chain.end()); 713 } 714 715 DEBUG(dbgs() << "Finished forming chain for header block " 716 << getBlockName(*Chain.begin()) << "\n"); 717 } 718 719 /// \brief Find the best loop top block for layout. 720 /// 721 /// Look for a block which is strictly better than the loop header for laying 722 /// out at the top of the loop. This looks for one and only one pattern: 723 /// a latch block with no conditional exit. This block will cause a conditional 724 /// jump around it or will be the bottom of the loop if we lay it out in place, 725 /// but if it it doesn't end up at the bottom of the loop for any reason, 726 /// rotation alone won't fix it. Because such a block will always result in an 727 /// unconditional jump (for the backedge) rotating it in front of the loop 728 /// header is always profitable. 729 MachineBasicBlock * 730 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 731 const BlockFilterSet &LoopBlockSet) { 732 // Check that the header hasn't been fused with a preheader block due to 733 // crazy branches. If it has, we need to start with the header at the top to 734 // prevent pulling the preheader into the loop body. 735 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 736 if (!LoopBlockSet.count(*HeaderChain.begin())) 737 return L.getHeader(); 738 739 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 740 << "\n"); 741 742 BlockFrequency BestPredFreq; 743 MachineBasicBlock *BestPred = nullptr; 744 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 745 if (!LoopBlockSet.count(Pred)) 746 continue; 747 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 748 << Pred->succ_size() << " successors, "; 749 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 750 if (Pred->succ_size() > 1) 751 continue; 752 753 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 754 if (!BestPred || PredFreq > BestPredFreq || 755 (!(PredFreq < BestPredFreq) && 756 Pred->isLayoutSuccessor(L.getHeader()))) { 757 BestPred = Pred; 758 BestPredFreq = PredFreq; 759 } 760 } 761 762 // If no direct predecessor is fine, just use the loop header. 763 if (!BestPred) { 764 DEBUG(dbgs() << " final top unchanged\n"); 765 return L.getHeader(); 766 } 767 768 // Walk backwards through any straight line of predecessors. 769 while (BestPred->pred_size() == 1 && 770 (*BestPred->pred_begin())->succ_size() == 1 && 771 *BestPred->pred_begin() != L.getHeader()) 772 BestPred = *BestPred->pred_begin(); 773 774 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 775 return BestPred; 776 } 777 778 /// \brief Find the best loop exiting block for layout. 779 /// 780 /// This routine implements the logic to analyze the loop looking for the best 781 /// block to layout at the top of the loop. Typically this is done to maximize 782 /// fallthrough opportunities. 783 MachineBasicBlock * 784 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 785 const BlockFilterSet &LoopBlockSet) { 786 // We don't want to layout the loop linearly in all cases. If the loop header 787 // is just a normal basic block in the loop, we want to look for what block 788 // within the loop is the best one to layout at the top. However, if the loop 789 // header has be pre-merged into a chain due to predecessors not having 790 // analyzable branches, *and* the predecessor it is merged with is *not* part 791 // of the loop, rotating the header into the middle of the loop will create 792 // a non-contiguous range of blocks which is Very Bad. So start with the 793 // header and only rotate if safe. 794 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 795 if (!LoopBlockSet.count(*HeaderChain.begin())) 796 return nullptr; 797 798 BlockFrequency BestExitEdgeFreq; 799 unsigned BestExitLoopDepth = 0; 800 MachineBasicBlock *ExitingBB = nullptr; 801 // If there are exits to outer loops, loop rotation can severely limit 802 // fallthrough opportunites unless it selects such an exit. Keep a set of 803 // blocks where rotating to exit with that block will reach an outer loop. 804 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 805 806 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 807 << "\n"); 808 for (MachineBasicBlock *MBB : L.getBlocks()) { 809 BlockChain &Chain = *BlockToChain[MBB]; 810 // Ensure that this block is at the end of a chain; otherwise it could be 811 // mid-way through an inner loop or a successor of an unanalyzable branch. 812 if (MBB != *std::prev(Chain.end())) 813 continue; 814 815 // Now walk the successors. We need to establish whether this has a viable 816 // exiting successor and whether it has a viable non-exiting successor. 817 // We store the old exiting state and restore it if a viable looping 818 // successor isn't found. 819 MachineBasicBlock *OldExitingBB = ExitingBB; 820 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 821 bool HasLoopingSucc = false; 822 for (MachineBasicBlock *Succ : MBB->successors()) { 823 if (Succ->isEHPad()) 824 continue; 825 if (Succ == MBB) 826 continue; 827 BlockChain &SuccChain = *BlockToChain[Succ]; 828 // Don't split chains, either this chain or the successor's chain. 829 if (&Chain == &SuccChain) { 830 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 831 << getBlockName(Succ) << " (chain conflict)\n"); 832 continue; 833 } 834 835 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 836 if (LoopBlockSet.count(Succ)) { 837 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 838 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 839 HasLoopingSucc = true; 840 continue; 841 } 842 843 unsigned SuccLoopDepth = 0; 844 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 845 SuccLoopDepth = ExitLoop->getLoopDepth(); 846 if (ExitLoop->contains(&L)) 847 BlocksExitingToOuterLoop.insert(MBB); 848 } 849 850 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 851 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 852 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 853 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 854 // Note that we bias this toward an existing layout successor to retain 855 // incoming order in the absence of better information. The exit must have 856 // a frequency higher than the current exit before we consider breaking 857 // the layout. 858 BranchProbability Bias(100 - ExitBlockBias, 100); 859 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 860 ExitEdgeFreq > BestExitEdgeFreq || 861 (MBB->isLayoutSuccessor(Succ) && 862 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 863 BestExitEdgeFreq = ExitEdgeFreq; 864 ExitingBB = MBB; 865 } 866 } 867 868 if (!HasLoopingSucc) { 869 // Restore the old exiting state, no viable looping successor was found. 870 ExitingBB = OldExitingBB; 871 BestExitEdgeFreq = OldBestExitEdgeFreq; 872 } 873 } 874 // Without a candidate exiting block or with only a single block in the 875 // loop, just use the loop header to layout the loop. 876 if (!ExitingBB || L.getNumBlocks() == 1) 877 return nullptr; 878 879 // Also, if we have exit blocks which lead to outer loops but didn't select 880 // one of them as the exiting block we are rotating toward, disable loop 881 // rotation altogether. 882 if (!BlocksExitingToOuterLoop.empty() && 883 !BlocksExitingToOuterLoop.count(ExitingBB)) 884 return nullptr; 885 886 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 887 return ExitingBB; 888 } 889 890 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 891 /// 892 /// Once we have built a chain, try to rotate it to line up the hot exit block 893 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 894 /// branches. For example, if the loop has fallthrough into its header and out 895 /// of its bottom already, don't rotate it. 896 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 897 MachineBasicBlock *ExitingBB, 898 const BlockFilterSet &LoopBlockSet) { 899 if (!ExitingBB) 900 return; 901 902 MachineBasicBlock *Top = *LoopChain.begin(); 903 bool ViableTopFallthrough = false; 904 for (MachineBasicBlock *Pred : Top->predecessors()) { 905 BlockChain *PredChain = BlockToChain[Pred]; 906 if (!LoopBlockSet.count(Pred) && 907 (!PredChain || Pred == *std::prev(PredChain->end()))) { 908 ViableTopFallthrough = true; 909 break; 910 } 911 } 912 913 // If the header has viable fallthrough, check whether the current loop 914 // bottom is a viable exiting block. If so, bail out as rotating will 915 // introduce an unnecessary branch. 916 if (ViableTopFallthrough) { 917 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 918 for (MachineBasicBlock *Succ : Bottom->successors()) { 919 BlockChain *SuccChain = BlockToChain[Succ]; 920 if (!LoopBlockSet.count(Succ) && 921 (!SuccChain || Succ == *SuccChain->begin())) 922 return; 923 } 924 } 925 926 BlockChain::iterator ExitIt = 927 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 928 if (ExitIt == LoopChain.end()) 929 return; 930 931 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 932 } 933 934 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 935 /// 936 /// With profile data, we can determine the cost in terms of missed fall through 937 /// opportunities when rotating a loop chain and select the best rotation. 938 /// Basically, there are three kinds of cost to consider for each rotation: 939 /// 1. The possibly missed fall through edge (if it exists) from BB out of 940 /// the loop to the loop header. 941 /// 2. The possibly missed fall through edges (if they exist) from the loop 942 /// exits to BB out of the loop. 943 /// 3. The missed fall through edge (if it exists) from the last BB to the 944 /// first BB in the loop chain. 945 /// Therefore, the cost for a given rotation is the sum of costs listed above. 946 /// We select the best rotation with the smallest cost. 947 void MachineBlockPlacement::rotateLoopWithProfile( 948 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 949 auto HeaderBB = L.getHeader(); 950 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 951 auto RotationPos = LoopChain.end(); 952 953 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 954 955 // A utility lambda that scales up a block frequency by dividing it by a 956 // branch probability which is the reciprocal of the scale. 957 auto ScaleBlockFrequency = [](BlockFrequency Freq, 958 unsigned Scale) -> BlockFrequency { 959 if (Scale == 0) 960 return 0; 961 // Use operator / between BlockFrequency and BranchProbability to implement 962 // saturating multiplication. 963 return Freq / BranchProbability(1, Scale); 964 }; 965 966 // Compute the cost of the missed fall-through edge to the loop header if the 967 // chain head is not the loop header. As we only consider natural loops with 968 // single header, this computation can be done only once. 969 BlockFrequency HeaderFallThroughCost(0); 970 for (auto *Pred : HeaderBB->predecessors()) { 971 BlockChain *PredChain = BlockToChain[Pred]; 972 if (!LoopBlockSet.count(Pred) && 973 (!PredChain || Pred == *std::prev(PredChain->end()))) { 974 auto EdgeFreq = 975 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 976 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 977 // If the predecessor has only an unconditional jump to the header, we 978 // need to consider the cost of this jump. 979 if (Pred->succ_size() == 1) 980 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 981 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 982 } 983 } 984 985 // Here we collect all exit blocks in the loop, and for each exit we find out 986 // its hottest exit edge. For each loop rotation, we define the loop exit cost 987 // as the sum of frequencies of exit edges we collect here, excluding the exit 988 // edge from the tail of the loop chain. 989 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 990 for (auto BB : LoopChain) { 991 auto LargestExitEdgeProb = BranchProbability::getZero(); 992 for (auto *Succ : BB->successors()) { 993 BlockChain *SuccChain = BlockToChain[Succ]; 994 if (!LoopBlockSet.count(Succ) && 995 (!SuccChain || Succ == *SuccChain->begin())) { 996 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 997 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 998 } 999 } 1000 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1001 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1002 ExitsWithFreq.emplace_back(BB, ExitFreq); 1003 } 1004 } 1005 1006 // In this loop we iterate every block in the loop chain and calculate the 1007 // cost assuming the block is the head of the loop chain. When the loop ends, 1008 // we should have found the best candidate as the loop chain's head. 1009 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1010 EndIter = LoopChain.end(); 1011 Iter != EndIter; Iter++, TailIter++) { 1012 // TailIter is used to track the tail of the loop chain if the block we are 1013 // checking (pointed by Iter) is the head of the chain. 1014 if (TailIter == LoopChain.end()) 1015 TailIter = LoopChain.begin(); 1016 1017 auto TailBB = *TailIter; 1018 1019 // Calculate the cost by putting this BB to the top. 1020 BlockFrequency Cost = 0; 1021 1022 // If the current BB is the loop header, we need to take into account the 1023 // cost of the missed fall through edge from outside of the loop to the 1024 // header. 1025 if (Iter != HeaderIter) 1026 Cost += HeaderFallThroughCost; 1027 1028 // Collect the loop exit cost by summing up frequencies of all exit edges 1029 // except the one from the chain tail. 1030 for (auto &ExitWithFreq : ExitsWithFreq) 1031 if (TailBB != ExitWithFreq.first) 1032 Cost += ExitWithFreq.second; 1033 1034 // The cost of breaking the once fall-through edge from the tail to the top 1035 // of the loop chain. Here we need to consider three cases: 1036 // 1. If the tail node has only one successor, then we will get an 1037 // additional jmp instruction. So the cost here is (MisfetchCost + 1038 // JumpInstCost) * tail node frequency. 1039 // 2. If the tail node has two successors, then we may still get an 1040 // additional jmp instruction if the layout successor after the loop 1041 // chain is not its CFG successor. Note that the more frequently executed 1042 // jmp instruction will be put ahead of the other one. Assume the 1043 // frequency of those two branches are x and y, where x is the frequency 1044 // of the edge to the chain head, then the cost will be 1045 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1046 // 3. If the tail node has more than two successors (this rarely happens), 1047 // we won't consider any additional cost. 1048 if (TailBB->isSuccessor(*Iter)) { 1049 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1050 if (TailBB->succ_size() == 1) 1051 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1052 MisfetchCost + JumpInstCost); 1053 else if (TailBB->succ_size() == 2) { 1054 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1055 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1056 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1057 ? TailBBFreq * TailToHeadProb.getCompl() 1058 : TailToHeadFreq; 1059 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1060 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1061 } 1062 } 1063 1064 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1065 << " to the top: " << Cost.getFrequency() << "\n"); 1066 1067 if (Cost < SmallestRotationCost) { 1068 SmallestRotationCost = Cost; 1069 RotationPos = Iter; 1070 } 1071 } 1072 1073 if (RotationPos != LoopChain.end()) { 1074 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1075 << " to the top\n"); 1076 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1077 } 1078 } 1079 1080 /// \brief Collect blocks in the given loop that are to be placed. 1081 /// 1082 /// When profile data is available, exclude cold blocks from the returned set; 1083 /// otherwise, collect all blocks in the loop. 1084 MachineBlockPlacement::BlockFilterSet 1085 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1086 BlockFilterSet LoopBlockSet; 1087 1088 // Filter cold blocks off from LoopBlockSet when profile data is available. 1089 // Collect the sum of frequencies of incoming edges to the loop header from 1090 // outside. If we treat the loop as a super block, this is the frequency of 1091 // the loop. Then for each block in the loop, we calculate the ratio between 1092 // its frequency and the frequency of the loop block. When it is too small, 1093 // don't add it to the loop chain. If there are outer loops, then this block 1094 // will be merged into the first outer loop chain for which this block is not 1095 // cold anymore. This needs precise profile data and we only do this when 1096 // profile data is available. 1097 if (F.getFunction()->getEntryCount()) { 1098 BlockFrequency LoopFreq(0); 1099 for (auto LoopPred : L.getHeader()->predecessors()) 1100 if (!L.contains(LoopPred)) 1101 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1102 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1103 1104 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1105 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1106 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1107 continue; 1108 LoopBlockSet.insert(LoopBB); 1109 } 1110 } else 1111 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1112 1113 return LoopBlockSet; 1114 } 1115 1116 /// \brief Forms basic block chains from the natural loop structures. 1117 /// 1118 /// These chains are designed to preserve the existing *structure* of the code 1119 /// as much as possible. We can then stitch the chains together in a way which 1120 /// both preserves the topological structure and minimizes taken conditional 1121 /// branches. 1122 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1123 MachineLoop &L) { 1124 // First recurse through any nested loops, building chains for those inner 1125 // loops. 1126 for (MachineLoop *InnerLoop : L) 1127 buildLoopChains(F, *InnerLoop); 1128 1129 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1130 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1131 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1132 1133 // Check if we have profile data for this function. If yes, we will rotate 1134 // this loop by modeling costs more precisely which requires the profile data 1135 // for better layout. 1136 bool RotateLoopWithProfile = 1137 ForcePreciseRotationCost || 1138 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1139 1140 // First check to see if there is an obviously preferable top block for the 1141 // loop. This will default to the header, but may end up as one of the 1142 // predecessors to the header if there is one which will result in strictly 1143 // fewer branches in the loop body. 1144 // When we use profile data to rotate the loop, this is unnecessary. 1145 MachineBasicBlock *LoopTop = 1146 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1147 1148 // If we selected just the header for the loop top, look for a potentially 1149 // profitable exit block in the event that rotating the loop can eliminate 1150 // branches by placing an exit edge at the bottom. 1151 MachineBasicBlock *ExitingBB = nullptr; 1152 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1153 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1154 1155 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1156 1157 // FIXME: This is a really lame way of walking the chains in the loop: we 1158 // walk the blocks, and use a set to prevent visiting a particular chain 1159 // twice. 1160 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1161 assert(LoopChain.UnscheduledPredecessors == 0); 1162 UpdatedPreds.insert(&LoopChain); 1163 1164 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1165 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1166 &LoopBlockSet); 1167 1168 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1169 1170 if (RotateLoopWithProfile) 1171 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1172 else 1173 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1174 1175 DEBUG({ 1176 // Crash at the end so we get all of the debugging output first. 1177 bool BadLoop = false; 1178 if (LoopChain.UnscheduledPredecessors) { 1179 BadLoop = true; 1180 dbgs() << "Loop chain contains a block without its preds placed!\n" 1181 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1182 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1183 } 1184 for (MachineBasicBlock *ChainBB : LoopChain) { 1185 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1186 if (!LoopBlockSet.erase(ChainBB)) { 1187 // We don't mark the loop as bad here because there are real situations 1188 // where this can occur. For example, with an unanalyzable fallthrough 1189 // from a loop block to a non-loop block or vice versa. 1190 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1191 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1192 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1193 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1194 } 1195 } 1196 1197 if (!LoopBlockSet.empty()) { 1198 BadLoop = true; 1199 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1200 dbgs() << "Loop contains blocks never placed into a chain!\n" 1201 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1202 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1203 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1204 } 1205 assert(!BadLoop && "Detected problems with the placement of this loop."); 1206 }); 1207 } 1208 1209 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1210 // Ensure that every BB in the function has an associated chain to simplify 1211 // the assumptions of the remaining algorithm. 1212 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1213 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1214 MachineBasicBlock *BB = &*FI; 1215 BlockChain *Chain = 1216 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1217 // Also, merge any blocks which we cannot reason about and must preserve 1218 // the exact fallthrough behavior for. 1219 for (;;) { 1220 Cond.clear(); 1221 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1222 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1223 break; 1224 1225 MachineFunction::iterator NextFI = std::next(FI); 1226 MachineBasicBlock *NextBB = &*NextFI; 1227 // Ensure that the layout successor is a viable block, as we know that 1228 // fallthrough is a possibility. 1229 assert(NextFI != FE && "Can't fallthrough past the last block."); 1230 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1231 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1232 << "\n"); 1233 Chain->merge(NextBB, nullptr); 1234 FI = NextFI; 1235 BB = NextBB; 1236 } 1237 } 1238 1239 if (OutlineOptionalBranches) { 1240 // Find the nearest common dominator of all of F's terminators. 1241 MachineBasicBlock *Terminator = nullptr; 1242 for (MachineBasicBlock &MBB : F) { 1243 if (MBB.succ_size() == 0) { 1244 if (Terminator == nullptr) 1245 Terminator = &MBB; 1246 else 1247 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1248 } 1249 } 1250 1251 // MBBs dominating this common dominator are unavoidable. 1252 UnavoidableBlocks.clear(); 1253 for (MachineBasicBlock &MBB : F) { 1254 if (MDT->dominates(&MBB, Terminator)) { 1255 UnavoidableBlocks.insert(&MBB); 1256 } 1257 } 1258 } 1259 1260 // Build any loop-based chains. 1261 for (MachineLoop *L : *MLI) 1262 buildLoopChains(F, *L); 1263 1264 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1265 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1266 1267 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1268 for (MachineBasicBlock &MBB : F) 1269 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1270 1271 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1272 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1273 1274 #ifndef NDEBUG 1275 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1276 #endif 1277 DEBUG({ 1278 // Crash at the end so we get all of the debugging output first. 1279 bool BadFunc = false; 1280 FunctionBlockSetType FunctionBlockSet; 1281 for (MachineBasicBlock &MBB : F) 1282 FunctionBlockSet.insert(&MBB); 1283 1284 for (MachineBasicBlock *ChainBB : FunctionChain) 1285 if (!FunctionBlockSet.erase(ChainBB)) { 1286 BadFunc = true; 1287 dbgs() << "Function chain contains a block not in the function!\n" 1288 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1289 } 1290 1291 if (!FunctionBlockSet.empty()) { 1292 BadFunc = true; 1293 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1294 dbgs() << "Function contains blocks never placed into a chain!\n" 1295 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1296 } 1297 assert(!BadFunc && "Detected problems with the block placement."); 1298 }); 1299 1300 // Splice the blocks into place. 1301 MachineFunction::iterator InsertPos = F.begin(); 1302 for (MachineBasicBlock *ChainBB : FunctionChain) { 1303 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1304 : " ... ") 1305 << getBlockName(ChainBB) << "\n"); 1306 if (InsertPos != MachineFunction::iterator(ChainBB)) 1307 F.splice(InsertPos, ChainBB); 1308 else 1309 ++InsertPos; 1310 1311 // Update the terminator of the previous block. 1312 if (ChainBB == *FunctionChain.begin()) 1313 continue; 1314 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1315 1316 // FIXME: It would be awesome of updateTerminator would just return rather 1317 // than assert when the branch cannot be analyzed in order to remove this 1318 // boiler plate. 1319 Cond.clear(); 1320 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1321 1322 // The "PrevBB" is not yet updated to reflect current code layout, so, 1323 // o. it may fall-through to a block without explict "goto" instruction 1324 // before layout, and no longer fall-through it after layout; or 1325 // o. just opposite. 1326 // 1327 // AnalyzeBranch() may return erroneous value for FBB when these two 1328 // situations take place. For the first scenario FBB is mistakenly set NULL; 1329 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1330 // mistakenly pointing to "*BI". 1331 // Thus, if the future change needs to use FBB before the layout is set, it 1332 // has to correct FBB first by using the code similar to the following: 1333 // 1334 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1335 // PrevBB->updateTerminator(); 1336 // Cond.clear(); 1337 // TBB = FBB = nullptr; 1338 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1339 // // FIXME: This should never take place. 1340 // TBB = FBB = nullptr; 1341 // } 1342 // } 1343 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1344 PrevBB->updateTerminator(); 1345 } 1346 1347 // Fixup the last block. 1348 Cond.clear(); 1349 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1350 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1351 F.back().updateTerminator(); 1352 } 1353 1354 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1355 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1356 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1357 1358 // Now that all the basic blocks in the chain have the proper layout, 1359 // make a final call to AnalyzeBranch with AllowModify set. 1360 // Indeed, the target may be able to optimize the branches in a way we 1361 // cannot because all branches may not be analyzable. 1362 // E.g., the target may be able to remove an unconditional branch to 1363 // a fallthrough when it occurs after predicated terminators. 1364 for (MachineBasicBlock *ChainBB : FunctionChain) { 1365 Cond.clear(); 1366 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1367 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1368 // If PrevBB has a two-way branch, try to re-order the branches 1369 // such that we branch to the successor with higher probability first. 1370 if (TBB && !Cond.empty() && FBB && 1371 MBPI->getEdgeProbability(ChainBB, FBB) > 1372 MBPI->getEdgeProbability(ChainBB, TBB) && 1373 !TII->ReverseBranchCondition(Cond)) { 1374 DEBUG(dbgs() << "Reverse order of the two branches: " 1375 << getBlockName(ChainBB) << "\n"); 1376 DEBUG(dbgs() << " Edge probability: " 1377 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1378 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1379 DebugLoc dl; // FIXME: this is nowhere 1380 TII->RemoveBranch(*ChainBB); 1381 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1382 ChainBB->updateTerminator(); 1383 } 1384 } 1385 } 1386 } 1387 1388 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1389 // Walk through the backedges of the function now that we have fully laid out 1390 // the basic blocks and align the destination of each backedge. We don't rely 1391 // exclusively on the loop info here so that we can align backedges in 1392 // unnatural CFGs and backedges that were introduced purely because of the 1393 // loop rotations done during this layout pass. 1394 if (F.getFunction()->optForSize()) 1395 return; 1396 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1397 if (FunctionChain.begin() == FunctionChain.end()) 1398 return; // Empty chain. 1399 1400 const BranchProbability ColdProb(1, 5); // 20% 1401 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1402 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1403 for (MachineBasicBlock *ChainBB : FunctionChain) { 1404 if (ChainBB == *FunctionChain.begin()) 1405 continue; 1406 1407 // Don't align non-looping basic blocks. These are unlikely to execute 1408 // enough times to matter in practice. Note that we'll still handle 1409 // unnatural CFGs inside of a natural outer loop (the common case) and 1410 // rotated loops. 1411 MachineLoop *L = MLI->getLoopFor(ChainBB); 1412 if (!L) 1413 continue; 1414 1415 unsigned Align = TLI->getPrefLoopAlignment(L); 1416 if (!Align) 1417 continue; // Don't care about loop alignment. 1418 1419 // If the block is cold relative to the function entry don't waste space 1420 // aligning it. 1421 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1422 if (Freq < WeightedEntryFreq) 1423 continue; 1424 1425 // If the block is cold relative to its loop header, don't align it 1426 // regardless of what edges into the block exist. 1427 MachineBasicBlock *LoopHeader = L->getHeader(); 1428 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1429 if (Freq < (LoopHeaderFreq * ColdProb)) 1430 continue; 1431 1432 // Check for the existence of a non-layout predecessor which would benefit 1433 // from aligning this block. 1434 MachineBasicBlock *LayoutPred = 1435 &*std::prev(MachineFunction::iterator(ChainBB)); 1436 1437 // Force alignment if all the predecessors are jumps. We already checked 1438 // that the block isn't cold above. 1439 if (!LayoutPred->isSuccessor(ChainBB)) { 1440 ChainBB->setAlignment(Align); 1441 continue; 1442 } 1443 1444 // Align this block if the layout predecessor's edge into this block is 1445 // cold relative to the block. When this is true, other predecessors make up 1446 // all of the hot entries into the block and thus alignment is likely to be 1447 // important. 1448 BranchProbability LayoutProb = 1449 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1450 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1451 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1452 ChainBB->setAlignment(Align); 1453 } 1454 } 1455 1456 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1457 if (skipFunction(*F.getFunction())) 1458 return false; 1459 1460 // Check for single-block functions and skip them. 1461 if (std::next(F.begin()) == F.end()) 1462 return false; 1463 1464 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1465 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1466 MLI = &getAnalysis<MachineLoopInfo>(); 1467 TII = F.getSubtarget().getInstrInfo(); 1468 TLI = F.getSubtarget().getTargetLowering(); 1469 MDT = &getAnalysis<MachineDominatorTree>(); 1470 assert(BlockToChain.empty()); 1471 1472 buildCFGChains(F); 1473 optimizeBranches(F); 1474 alignBlocks(F); 1475 1476 BlockToChain.clear(); 1477 ChainAllocator.DestroyAll(); 1478 1479 if (AlignAllBlock) 1480 // Align all of the blocks in the function to a specific alignment. 1481 for (MachineBasicBlock &MBB : F) 1482 MBB.setAlignment(AlignAllBlock); 1483 else if (AlignAllNonFallThruBlocks) { 1484 // Align all of the blocks that have no fall-through predecessors to a 1485 // specific alignment. 1486 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1487 auto LayoutPred = std::prev(MBI); 1488 if (!LayoutPred->isSuccessor(&*MBI)) 1489 MBI->setAlignment(AlignAllNonFallThruBlocks); 1490 } 1491 } 1492 1493 // We always return true as we have no way to track whether the final order 1494 // differs from the original order. 1495 return true; 1496 } 1497 1498 namespace { 1499 /// \brief A pass to compute block placement statistics. 1500 /// 1501 /// A separate pass to compute interesting statistics for evaluating block 1502 /// placement. This is separate from the actual placement pass so that they can 1503 /// be computed in the absence of any placement transformations or when using 1504 /// alternative placement strategies. 1505 class MachineBlockPlacementStats : public MachineFunctionPass { 1506 /// \brief A handle to the branch probability pass. 1507 const MachineBranchProbabilityInfo *MBPI; 1508 1509 /// \brief A handle to the function-wide block frequency pass. 1510 const MachineBlockFrequencyInfo *MBFI; 1511 1512 public: 1513 static char ID; // Pass identification, replacement for typeid 1514 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1515 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1516 } 1517 1518 bool runOnMachineFunction(MachineFunction &F) override; 1519 1520 void getAnalysisUsage(AnalysisUsage &AU) const override { 1521 AU.addRequired<MachineBranchProbabilityInfo>(); 1522 AU.addRequired<MachineBlockFrequencyInfo>(); 1523 AU.setPreservesAll(); 1524 MachineFunctionPass::getAnalysisUsage(AU); 1525 } 1526 }; 1527 } 1528 1529 char MachineBlockPlacementStats::ID = 0; 1530 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1531 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1532 "Basic Block Placement Stats", false, false) 1533 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1534 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1535 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1536 "Basic Block Placement Stats", false, false) 1537 1538 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1539 // Check for single-block functions and skip them. 1540 if (std::next(F.begin()) == F.end()) 1541 return false; 1542 1543 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1544 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1545 1546 for (MachineBasicBlock &MBB : F) { 1547 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1548 Statistic &NumBranches = 1549 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1550 Statistic &BranchTakenFreq = 1551 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1552 for (MachineBasicBlock *Succ : MBB.successors()) { 1553 // Skip if this successor is a fallthrough. 1554 if (MBB.isLayoutSuccessor(Succ)) 1555 continue; 1556 1557 BlockFrequency EdgeFreq = 1558 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1559 ++NumBranches; 1560 BranchTakenFreq += EdgeFreq.getFrequency(); 1561 } 1562 } 1563 1564 return false; 1565 } 1566