1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Allocator.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "block-placement" 75 76 STATISTIC(NumCondBranches, "Number of conditional branches"); 77 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 78 STATISTIC(CondBranchTakenFreq, 79 "Potential frequency of taking conditional branches"); 80 STATISTIC(UncondBranchTakenFreq, 81 "Potential frequency of taking unconditional branches"); 82 83 static cl::opt<unsigned> AlignAllBlock( 84 "align-all-blocks", 85 cl::desc("Force the alignment of all blocks in the function in log2 format " 86 "(e.g 4 means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 90 "align-all-nofallthru-blocks", 91 cl::desc("Force the alignment of all blocks that have no fall-through " 92 "predecessors (i.e. don't add nops that are executed). In log2 " 93 "format (e.g 4 means align on 16B boundaries)."), 94 cl::init(0), cl::Hidden); 95 96 // FIXME: Find a good default for this flag and remove the flag. 97 static cl::opt<unsigned> ExitBlockBias( 98 "block-placement-exit-block-bias", 99 cl::desc("Block frequency percentage a loop exit block needs " 100 "over the original exit to be considered the new exit."), 101 cl::init(0), cl::Hidden); 102 103 // Definition: 104 // - Outlining: placement of a basic block outside the chain or hot path. 105 106 static cl::opt<unsigned> LoopToColdBlockRatio( 107 "loop-to-cold-block-ratio", 108 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 109 "(frequency of block) is greater than this ratio"), 110 cl::init(5), cl::Hidden); 111 112 static cl::opt<bool> ForceLoopColdBlock( 113 "force-loop-cold-block", 114 cl::desc("Force outlining cold blocks from loops."), 115 cl::init(false), cl::Hidden); 116 117 static cl::opt<bool> 118 PreciseRotationCost("precise-rotation-cost", 119 cl::desc("Model the cost of loop rotation more " 120 "precisely by using profile data."), 121 cl::init(false), cl::Hidden); 122 123 static cl::opt<bool> 124 ForcePreciseRotationCost("force-precise-rotation-cost", 125 cl::desc("Force the use of precise cost " 126 "loop rotation strategy."), 127 cl::init(false), cl::Hidden); 128 129 static cl::opt<unsigned> MisfetchCost( 130 "misfetch-cost", 131 cl::desc("Cost that models the probabilistic risk of an instruction " 132 "misfetch due to a jump comparing to falling through, whose cost " 133 "is zero."), 134 cl::init(1), cl::Hidden); 135 136 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 137 cl::desc("Cost of jump instructions."), 138 cl::init(1), cl::Hidden); 139 static cl::opt<bool> 140 TailDupPlacement("tail-dup-placement", 141 cl::desc("Perform tail duplication during placement. " 142 "Creates more fallthrough opportunites in " 143 "outline branches."), 144 cl::init(true), cl::Hidden); 145 146 static cl::opt<bool> 147 BranchFoldPlacement("branch-fold-placement", 148 cl::desc("Perform branch folding during placement. " 149 "Reduces code size."), 150 cl::init(true), cl::Hidden); 151 152 // Heuristic for tail duplication. 153 static cl::opt<unsigned> TailDupPlacementThreshold( 154 "tail-dup-placement-threshold", 155 cl::desc("Instruction cutoff for tail duplication during layout. " 156 "Tail merging during layout is forced to have a threshold " 157 "that won't conflict."), cl::init(2), 158 cl::Hidden); 159 160 // Heuristic for aggressive tail duplication. 161 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 162 "tail-dup-placement-aggressive-threshold", 163 cl::desc("Instruction cutoff for aggressive tail duplication during " 164 "layout. Used at -O3. Tail merging during layout is forced to " 165 "have a threshold that won't conflict."), cl::init(4), 166 cl::Hidden); 167 168 // Heuristic for tail duplication. 169 static cl::opt<unsigned> TailDupPlacementPenalty( 170 "tail-dup-placement-penalty", 171 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 172 "Copying can increase fallthrough, but it also increases icache " 173 "pressure. This parameter controls the penalty to account for that. " 174 "Percent as integer."), 175 cl::init(2), 176 cl::Hidden); 177 178 // Heuristic for triangle chains. 179 static cl::opt<unsigned> TriangleChainCount( 180 "triangle-chain-count", 181 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 182 "triangle tail duplication heuristic to kick in. 0 to disable."), 183 cl::init(2), 184 cl::Hidden); 185 186 extern cl::opt<unsigned> StaticLikelyProb; 187 extern cl::opt<unsigned> ProfileLikelyProb; 188 189 // Internal option used to control BFI display only after MBP pass. 190 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 191 // -view-block-layout-with-bfi= 192 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 193 194 // Command line option to specify the name of the function for CFG dump 195 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 196 extern cl::opt<std::string> ViewBlockFreqFuncName; 197 198 namespace { 199 200 class BlockChain; 201 202 /// Type for our function-wide basic block -> block chain mapping. 203 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 204 205 /// A chain of blocks which will be laid out contiguously. 206 /// 207 /// This is the datastructure representing a chain of consecutive blocks that 208 /// are profitable to layout together in order to maximize fallthrough 209 /// probabilities and code locality. We also can use a block chain to represent 210 /// a sequence of basic blocks which have some external (correctness) 211 /// requirement for sequential layout. 212 /// 213 /// Chains can be built around a single basic block and can be merged to grow 214 /// them. They participate in a block-to-chain mapping, which is updated 215 /// automatically as chains are merged together. 216 class BlockChain { 217 /// The sequence of blocks belonging to this chain. 218 /// 219 /// This is the sequence of blocks for a particular chain. These will be laid 220 /// out in-order within the function. 221 SmallVector<MachineBasicBlock *, 4> Blocks; 222 223 /// A handle to the function-wide basic block to block chain mapping. 224 /// 225 /// This is retained in each block chain to simplify the computation of child 226 /// block chains for SCC-formation and iteration. We store the edges to child 227 /// basic blocks, and map them back to their associated chains using this 228 /// structure. 229 BlockToChainMapType &BlockToChain; 230 231 public: 232 /// Construct a new BlockChain. 233 /// 234 /// This builds a new block chain representing a single basic block in the 235 /// function. It also registers itself as the chain that block participates 236 /// in with the BlockToChain mapping. 237 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 238 : Blocks(1, BB), BlockToChain(BlockToChain) { 239 assert(BB && "Cannot create a chain with a null basic block"); 240 BlockToChain[BB] = this; 241 } 242 243 /// Iterator over blocks within the chain. 244 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 245 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 246 247 /// Beginning of blocks within the chain. 248 iterator begin() { return Blocks.begin(); } 249 const_iterator begin() const { return Blocks.begin(); } 250 251 /// End of blocks within the chain. 252 iterator end() { return Blocks.end(); } 253 const_iterator end() const { return Blocks.end(); } 254 255 bool remove(MachineBasicBlock* BB) { 256 for(iterator i = begin(); i != end(); ++i) { 257 if (*i == BB) { 258 Blocks.erase(i); 259 return true; 260 } 261 } 262 return false; 263 } 264 265 /// Merge a block chain into this one. 266 /// 267 /// This routine merges a block chain into this one. It takes care of forming 268 /// a contiguous sequence of basic blocks, updating the edge list, and 269 /// updating the block -> chain mapping. It does not free or tear down the 270 /// old chain, but the old chain's block list is no longer valid. 271 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 272 assert(BB && "Can't merge a null block."); 273 assert(!Blocks.empty() && "Can't merge into an empty chain."); 274 275 // Fast path in case we don't have a chain already. 276 if (!Chain) { 277 assert(!BlockToChain[BB] && 278 "Passed chain is null, but BB has entry in BlockToChain."); 279 Blocks.push_back(BB); 280 BlockToChain[BB] = this; 281 return; 282 } 283 284 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 285 assert(Chain->begin() != Chain->end()); 286 287 // Update the incoming blocks to point to this chain, and add them to the 288 // chain structure. 289 for (MachineBasicBlock *ChainBB : *Chain) { 290 Blocks.push_back(ChainBB); 291 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 292 BlockToChain[ChainBB] = this; 293 } 294 } 295 296 #ifndef NDEBUG 297 /// Dump the blocks in this chain. 298 LLVM_DUMP_METHOD void dump() { 299 for (MachineBasicBlock *MBB : *this) 300 MBB->dump(); 301 } 302 #endif // NDEBUG 303 304 /// Count of predecessors of any block within the chain which have not 305 /// yet been scheduled. In general, we will delay scheduling this chain 306 /// until those predecessors are scheduled (or we find a sufficiently good 307 /// reason to override this heuristic.) Note that when forming loop chains, 308 /// blocks outside the loop are ignored and treated as if they were already 309 /// scheduled. 310 /// 311 /// Note: This field is reinitialized multiple times - once for each loop, 312 /// and then once for the function as a whole. 313 unsigned UnscheduledPredecessors = 0; 314 }; 315 316 class MachineBlockPlacement : public MachineFunctionPass { 317 /// A type for a block filter set. 318 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 319 320 /// Pair struct containing basic block and taildup profitability 321 struct BlockAndTailDupResult { 322 MachineBasicBlock *BB; 323 bool ShouldTailDup; 324 }; 325 326 /// Triple struct containing edge weight and the edge. 327 struct WeightedEdge { 328 BlockFrequency Weight; 329 MachineBasicBlock *Src; 330 MachineBasicBlock *Dest; 331 }; 332 333 /// work lists of blocks that are ready to be laid out 334 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 335 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 336 337 /// Edges that have already been computed as optimal. 338 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 339 340 /// Machine Function 341 MachineFunction *F; 342 343 /// A handle to the branch probability pass. 344 const MachineBranchProbabilityInfo *MBPI; 345 346 /// A handle to the function-wide block frequency pass. 347 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 348 349 /// A handle to the loop info. 350 MachineLoopInfo *MLI; 351 352 /// Preferred loop exit. 353 /// Member variable for convenience. It may be removed by duplication deep 354 /// in the call stack. 355 MachineBasicBlock *PreferredLoopExit; 356 357 /// A handle to the target's instruction info. 358 const TargetInstrInfo *TII; 359 360 /// A handle to the target's lowering info. 361 const TargetLoweringBase *TLI; 362 363 /// A handle to the post dominator tree. 364 MachinePostDominatorTree *MPDT; 365 366 /// Duplicator used to duplicate tails during placement. 367 /// 368 /// Placement decisions can open up new tail duplication opportunities, but 369 /// since tail duplication affects placement decisions of later blocks, it 370 /// must be done inline. 371 TailDuplicator TailDup; 372 373 /// Allocator and owner of BlockChain structures. 374 /// 375 /// We build BlockChains lazily while processing the loop structure of 376 /// a function. To reduce malloc traffic, we allocate them using this 377 /// slab-like allocator, and destroy them after the pass completes. An 378 /// important guarantee is that this allocator produces stable pointers to 379 /// the chains. 380 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 381 382 /// Function wide BasicBlock to BlockChain mapping. 383 /// 384 /// This mapping allows efficiently moving from any given basic block to the 385 /// BlockChain it participates in, if any. We use it to, among other things, 386 /// allow implicitly defining edges between chains as the existing edges 387 /// between basic blocks. 388 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 389 390 #ifndef NDEBUG 391 /// The set of basic blocks that have terminators that cannot be fully 392 /// analyzed. These basic blocks cannot be re-ordered safely by 393 /// MachineBlockPlacement, and we must preserve physical layout of these 394 /// blocks and their successors through the pass. 395 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 396 #endif 397 398 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 399 /// if the count goes to 0, add them to the appropriate work list. 400 void markChainSuccessors( 401 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 402 const BlockFilterSet *BlockFilter = nullptr); 403 404 /// Decrease the UnscheduledPredecessors count for a single block, and 405 /// if the count goes to 0, add them to the appropriate work list. 406 void markBlockSuccessors( 407 const BlockChain &Chain, const MachineBasicBlock *BB, 408 const MachineBasicBlock *LoopHeaderBB, 409 const BlockFilterSet *BlockFilter = nullptr); 410 411 BranchProbability 412 collectViableSuccessors( 413 const MachineBasicBlock *BB, const BlockChain &Chain, 414 const BlockFilterSet *BlockFilter, 415 SmallVector<MachineBasicBlock *, 4> &Successors); 416 bool shouldPredBlockBeOutlined( 417 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 418 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 419 BranchProbability SuccProb, BranchProbability HotProb); 420 bool repeatedlyTailDuplicateBlock( 421 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 422 const MachineBasicBlock *LoopHeaderBB, 423 BlockChain &Chain, BlockFilterSet *BlockFilter, 424 MachineFunction::iterator &PrevUnplacedBlockIt); 425 bool maybeTailDuplicateBlock( 426 MachineBasicBlock *BB, MachineBasicBlock *LPred, 427 BlockChain &Chain, BlockFilterSet *BlockFilter, 428 MachineFunction::iterator &PrevUnplacedBlockIt, 429 bool &DuplicatedToLPred); 430 bool hasBetterLayoutPredecessor( 431 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 432 const BlockChain &SuccChain, BranchProbability SuccProb, 433 BranchProbability RealSuccProb, const BlockChain &Chain, 434 const BlockFilterSet *BlockFilter); 435 BlockAndTailDupResult selectBestSuccessor( 436 const MachineBasicBlock *BB, const BlockChain &Chain, 437 const BlockFilterSet *BlockFilter); 438 MachineBasicBlock *selectBestCandidateBlock( 439 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 440 MachineBasicBlock *getFirstUnplacedBlock( 441 const BlockChain &PlacedChain, 442 MachineFunction::iterator &PrevUnplacedBlockIt, 443 const BlockFilterSet *BlockFilter); 444 445 /// Add a basic block to the work list if it is appropriate. 446 /// 447 /// If the optional parameter BlockFilter is provided, only MBB 448 /// present in the set will be added to the worklist. If nullptr 449 /// is provided, no filtering occurs. 450 void fillWorkLists(const MachineBasicBlock *MBB, 451 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 452 const BlockFilterSet *BlockFilter); 453 454 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 455 BlockFilterSet *BlockFilter = nullptr); 456 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 457 const MachineBasicBlock *OldTop); 458 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 459 const BlockFilterSet &LoopBlockSet); 460 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 461 const BlockFilterSet &LoopBlockSet); 462 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 463 const MachineBasicBlock *OldTop, 464 const MachineBasicBlock *ExitBB, 465 const BlockFilterSet &LoopBlockSet); 466 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 467 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 468 MachineBasicBlock *findBestLoopTop( 469 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 470 MachineBasicBlock *findBestLoopExit( 471 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 472 BlockFrequency &ExitFreq); 473 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 474 void buildLoopChains(const MachineLoop &L); 475 void rotateLoop( 476 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 477 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 478 void rotateLoopWithProfile( 479 BlockChain &LoopChain, const MachineLoop &L, 480 const BlockFilterSet &LoopBlockSet); 481 void buildCFGChains(); 482 void optimizeBranches(); 483 void alignBlocks(); 484 /// Returns true if a block should be tail-duplicated to increase fallthrough 485 /// opportunities. 486 bool shouldTailDuplicate(MachineBasicBlock *BB); 487 /// Check the edge frequencies to see if tail duplication will increase 488 /// fallthroughs. 489 bool isProfitableToTailDup( 490 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 491 BranchProbability QProb, 492 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 493 494 /// Check for a trellis layout. 495 bool isTrellis(const MachineBasicBlock *BB, 496 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 497 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 498 499 /// Get the best successor given a trellis layout. 500 BlockAndTailDupResult getBestTrellisSuccessor( 501 const MachineBasicBlock *BB, 502 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 503 BranchProbability AdjustedSumProb, const BlockChain &Chain, 504 const BlockFilterSet *BlockFilter); 505 506 /// Get the best pair of non-conflicting edges. 507 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 508 const MachineBasicBlock *BB, 509 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 510 511 /// Returns true if a block can tail duplicate into all unplaced 512 /// predecessors. Filters based on loop. 513 bool canTailDuplicateUnplacedPreds( 514 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 515 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 516 517 /// Find chains of triangles to tail-duplicate where a global analysis works, 518 /// but a local analysis would not find them. 519 void precomputeTriangleChains(); 520 521 public: 522 static char ID; // Pass identification, replacement for typeid 523 524 MachineBlockPlacement() : MachineFunctionPass(ID) { 525 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 526 } 527 528 bool runOnMachineFunction(MachineFunction &F) override; 529 530 bool allowTailDupPlacement() const { 531 assert(F); 532 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 533 } 534 535 void getAnalysisUsage(AnalysisUsage &AU) const override { 536 AU.addRequired<MachineBranchProbabilityInfo>(); 537 AU.addRequired<MachineBlockFrequencyInfo>(); 538 if (TailDupPlacement) 539 AU.addRequired<MachinePostDominatorTree>(); 540 AU.addRequired<MachineLoopInfo>(); 541 AU.addRequired<TargetPassConfig>(); 542 MachineFunctionPass::getAnalysisUsage(AU); 543 } 544 }; 545 546 } // end anonymous namespace 547 548 char MachineBlockPlacement::ID = 0; 549 550 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 551 552 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 553 "Branch Probability Basic Block Placement", false, false) 554 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 555 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 556 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 557 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 558 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 559 "Branch Probability Basic Block Placement", false, false) 560 561 #ifndef NDEBUG 562 /// Helper to print the name of a MBB. 563 /// 564 /// Only used by debug logging. 565 static std::string getBlockName(const MachineBasicBlock *BB) { 566 std::string Result; 567 raw_string_ostream OS(Result); 568 OS << printMBBReference(*BB); 569 OS << " ('" << BB->getName() << "')"; 570 OS.flush(); 571 return Result; 572 } 573 #endif 574 575 /// Mark a chain's successors as having one fewer preds. 576 /// 577 /// When a chain is being merged into the "placed" chain, this routine will 578 /// quickly walk the successors of each block in the chain and mark them as 579 /// having one fewer active predecessor. It also adds any successors of this 580 /// chain which reach the zero-predecessor state to the appropriate worklist. 581 void MachineBlockPlacement::markChainSuccessors( 582 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 583 const BlockFilterSet *BlockFilter) { 584 // Walk all the blocks in this chain, marking their successors as having 585 // a predecessor placed. 586 for (MachineBasicBlock *MBB : Chain) { 587 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 588 } 589 } 590 591 /// Mark a single block's successors as having one fewer preds. 592 /// 593 /// Under normal circumstances, this is only called by markChainSuccessors, 594 /// but if a block that was to be placed is completely tail-duplicated away, 595 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 596 /// for just that block. 597 void MachineBlockPlacement::markBlockSuccessors( 598 const BlockChain &Chain, const MachineBasicBlock *MBB, 599 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 600 // Add any successors for which this is the only un-placed in-loop 601 // predecessor to the worklist as a viable candidate for CFG-neutral 602 // placement. No subsequent placement of this block will violate the CFG 603 // shape, so we get to use heuristics to choose a favorable placement. 604 for (MachineBasicBlock *Succ : MBB->successors()) { 605 if (BlockFilter && !BlockFilter->count(Succ)) 606 continue; 607 BlockChain &SuccChain = *BlockToChain[Succ]; 608 // Disregard edges within a fixed chain, or edges to the loop header. 609 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 610 continue; 611 612 // This is a cross-chain edge that is within the loop, so decrement the 613 // loop predecessor count of the destination chain. 614 if (SuccChain.UnscheduledPredecessors == 0 || 615 --SuccChain.UnscheduledPredecessors > 0) 616 continue; 617 618 auto *NewBB = *SuccChain.begin(); 619 if (NewBB->isEHPad()) 620 EHPadWorkList.push_back(NewBB); 621 else 622 BlockWorkList.push_back(NewBB); 623 } 624 } 625 626 /// This helper function collects the set of successors of block 627 /// \p BB that are allowed to be its layout successors, and return 628 /// the total branch probability of edges from \p BB to those 629 /// blocks. 630 BranchProbability MachineBlockPlacement::collectViableSuccessors( 631 const MachineBasicBlock *BB, const BlockChain &Chain, 632 const BlockFilterSet *BlockFilter, 633 SmallVector<MachineBasicBlock *, 4> &Successors) { 634 // Adjust edge probabilities by excluding edges pointing to blocks that is 635 // either not in BlockFilter or is already in the current chain. Consider the 636 // following CFG: 637 // 638 // --->A 639 // | / \ 640 // | B C 641 // | \ / \ 642 // ----D E 643 // 644 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 645 // A->C is chosen as a fall-through, D won't be selected as a successor of C 646 // due to CFG constraint (the probability of C->D is not greater than 647 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 648 // when calculating the probability of C->D, D will be selected and we 649 // will get A C D B as the layout of this loop. 650 auto AdjustedSumProb = BranchProbability::getOne(); 651 for (MachineBasicBlock *Succ : BB->successors()) { 652 bool SkipSucc = false; 653 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 654 SkipSucc = true; 655 } else { 656 BlockChain *SuccChain = BlockToChain[Succ]; 657 if (SuccChain == &Chain) { 658 SkipSucc = true; 659 } else if (Succ != *SuccChain->begin()) { 660 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 661 << " -> Mid chain!\n"); 662 continue; 663 } 664 } 665 if (SkipSucc) 666 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 667 else 668 Successors.push_back(Succ); 669 } 670 671 return AdjustedSumProb; 672 } 673 674 /// The helper function returns the branch probability that is adjusted 675 /// or normalized over the new total \p AdjustedSumProb. 676 static BranchProbability 677 getAdjustedProbability(BranchProbability OrigProb, 678 BranchProbability AdjustedSumProb) { 679 BranchProbability SuccProb; 680 uint32_t SuccProbN = OrigProb.getNumerator(); 681 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 682 if (SuccProbN >= SuccProbD) 683 SuccProb = BranchProbability::getOne(); 684 else 685 SuccProb = BranchProbability(SuccProbN, SuccProbD); 686 687 return SuccProb; 688 } 689 690 /// Check if \p BB has exactly the successors in \p Successors. 691 static bool 692 hasSameSuccessors(MachineBasicBlock &BB, 693 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 694 if (BB.succ_size() != Successors.size()) 695 return false; 696 // We don't want to count self-loops 697 if (Successors.count(&BB)) 698 return false; 699 for (MachineBasicBlock *Succ : BB.successors()) 700 if (!Successors.count(Succ)) 701 return false; 702 return true; 703 } 704 705 /// Check if a block should be tail duplicated to increase fallthrough 706 /// opportunities. 707 /// \p BB Block to check. 708 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 709 // Blocks with single successors don't create additional fallthrough 710 // opportunities. Don't duplicate them. TODO: When conditional exits are 711 // analyzable, allow them to be duplicated. 712 bool IsSimple = TailDup.isSimpleBB(BB); 713 714 if (BB->succ_size() == 1) 715 return false; 716 return TailDup.shouldTailDuplicate(IsSimple, *BB); 717 } 718 719 /// Compare 2 BlockFrequency's with a small penalty for \p A. 720 /// In order to be conservative, we apply a X% penalty to account for 721 /// increased icache pressure and static heuristics. For small frequencies 722 /// we use only the numerators to improve accuracy. For simplicity, we assume the 723 /// penalty is less than 100% 724 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 725 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 726 uint64_t EntryFreq) { 727 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 728 BlockFrequency Gain = A - B; 729 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 730 } 731 732 /// Check the edge frequencies to see if tail duplication will increase 733 /// fallthroughs. It only makes sense to call this function when 734 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 735 /// always locally profitable if we would have picked \p Succ without 736 /// considering duplication. 737 bool MachineBlockPlacement::isProfitableToTailDup( 738 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 739 BranchProbability QProb, 740 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 741 // We need to do a probability calculation to make sure this is profitable. 742 // First: does succ have a successor that post-dominates? This affects the 743 // calculation. The 2 relevant cases are: 744 // BB BB 745 // | \Qout | \Qout 746 // P| C |P C 747 // = C' = C' 748 // | /Qin | /Qin 749 // | / | / 750 // Succ Succ 751 // / \ | \ V 752 // U/ =V |U \ 753 // / \ = D 754 // D E | / 755 // | / 756 // |/ 757 // PDom 758 // '=' : Branch taken for that CFG edge 759 // In the second case, Placing Succ while duplicating it into C prevents the 760 // fallthrough of Succ into either D or PDom, because they now have C as an 761 // unplaced predecessor 762 763 // Start by figuring out which case we fall into 764 MachineBasicBlock *PDom = nullptr; 765 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 766 // Only scan the relevant successors 767 auto AdjustedSuccSumProb = 768 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 769 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 770 auto BBFreq = MBFI->getBlockFreq(BB); 771 auto SuccFreq = MBFI->getBlockFreq(Succ); 772 BlockFrequency P = BBFreq * PProb; 773 BlockFrequency Qout = BBFreq * QProb; 774 uint64_t EntryFreq = MBFI->getEntryFreq(); 775 // If there are no more successors, it is profitable to copy, as it strictly 776 // increases fallthrough. 777 if (SuccSuccs.size() == 0) 778 return greaterWithBias(P, Qout, EntryFreq); 779 780 auto BestSuccSucc = BranchProbability::getZero(); 781 // Find the PDom or the best Succ if no PDom exists. 782 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 783 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 784 if (Prob > BestSuccSucc) 785 BestSuccSucc = Prob; 786 if (PDom == nullptr) 787 if (MPDT->dominates(SuccSucc, Succ)) { 788 PDom = SuccSucc; 789 break; 790 } 791 } 792 // For the comparisons, we need to know Succ's best incoming edge that isn't 793 // from BB. 794 auto SuccBestPred = BlockFrequency(0); 795 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 796 if (SuccPred == Succ || SuccPred == BB 797 || BlockToChain[SuccPred] == &Chain 798 || (BlockFilter && !BlockFilter->count(SuccPred))) 799 continue; 800 auto Freq = MBFI->getBlockFreq(SuccPred) 801 * MBPI->getEdgeProbability(SuccPred, Succ); 802 if (Freq > SuccBestPred) 803 SuccBestPred = Freq; 804 } 805 // Qin is Succ's best unplaced incoming edge that isn't BB 806 BlockFrequency Qin = SuccBestPred; 807 // If it doesn't have a post-dominating successor, here is the calculation: 808 // BB BB 809 // | \Qout | \ 810 // P| C | = 811 // = C' | C 812 // | /Qin | | 813 // | / | C' (+Succ) 814 // Succ Succ /| 815 // / \ | \/ | 816 // U/ =V | == | 817 // / \ | / \| 818 // D E D E 819 // '=' : Branch taken for that CFG edge 820 // Cost in the first case is: P + V 821 // For this calculation, we always assume P > Qout. If Qout > P 822 // The result of this function will be ignored at the caller. 823 // Let F = SuccFreq - Qin 824 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 825 826 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 827 BranchProbability UProb = BestSuccSucc; 828 BranchProbability VProb = AdjustedSuccSumProb - UProb; 829 BlockFrequency F = SuccFreq - Qin; 830 BlockFrequency V = SuccFreq * VProb; 831 BlockFrequency QinU = std::min(Qin, F) * UProb; 832 BlockFrequency BaseCost = P + V; 833 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 834 return greaterWithBias(BaseCost, DupCost, EntryFreq); 835 } 836 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 837 BranchProbability VProb = AdjustedSuccSumProb - UProb; 838 BlockFrequency U = SuccFreq * UProb; 839 BlockFrequency V = SuccFreq * VProb; 840 BlockFrequency F = SuccFreq - Qin; 841 // If there is a post-dominating successor, here is the calculation: 842 // BB BB BB BB 843 // | \Qout | \ | \Qout | \ 844 // |P C | = |P C | = 845 // = C' |P C = C' |P C 846 // | /Qin | | | /Qin | | 847 // | / | C' (+Succ) | / | C' (+Succ) 848 // Succ Succ /| Succ Succ /| 849 // | \ V | \/ | | \ V | \/ | 850 // |U \ |U /\ =? |U = |U /\ | 851 // = D = = =?| | D | = =| 852 // | / |/ D | / |/ D 853 // | / | / | = | / 854 // |/ | / |/ | = 855 // Dom Dom Dom Dom 856 // '=' : Branch taken for that CFG edge 857 // The cost for taken branches in the first case is P + U 858 // Let F = SuccFreq - Qin 859 // The cost in the second case (assuming independence), given the layout: 860 // BB, Succ, (C+Succ), D, Dom or the layout: 861 // BB, Succ, D, Dom, (C+Succ) 862 // is Qout + max(F, Qin) * U + min(F, Qin) 863 // compare P + U vs Qout + P * U + Qin. 864 // 865 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 866 // 867 // For the 3rd case, the cost is P + 2 * V 868 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 869 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 870 if (UProb > AdjustedSuccSumProb / 2 && 871 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 872 Chain, BlockFilter)) 873 // Cases 3 & 4 874 return greaterWithBias( 875 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 876 EntryFreq); 877 // Cases 1 & 2 878 return greaterWithBias((P + U), 879 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 880 std::max(Qin, F) * UProb), 881 EntryFreq); 882 } 883 884 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 885 /// successors form the lower part of a trellis. A successor set S forms the 886 /// lower part of a trellis if all of the predecessors of S are either in S or 887 /// have all of S as successors. We ignore trellises where BB doesn't have 2 888 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 889 /// are very uncommon and complex to compute optimally. Allowing edges within S 890 /// is not strictly a trellis, but the same algorithm works, so we allow it. 891 bool MachineBlockPlacement::isTrellis( 892 const MachineBasicBlock *BB, 893 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 894 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 895 // Technically BB could form a trellis with branching factor higher than 2. 896 // But that's extremely uncommon. 897 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 898 return false; 899 900 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 901 BB->succ_end()); 902 // To avoid reviewing the same predecessors twice. 903 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 904 905 for (MachineBasicBlock *Succ : ViableSuccs) { 906 int PredCount = 0; 907 for (auto SuccPred : Succ->predecessors()) { 908 // Allow triangle successors, but don't count them. 909 if (Successors.count(SuccPred)) { 910 // Make sure that it is actually a triangle. 911 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 912 if (!Successors.count(CheckSucc)) 913 return false; 914 continue; 915 } 916 const BlockChain *PredChain = BlockToChain[SuccPred]; 917 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 918 PredChain == &Chain || PredChain == BlockToChain[Succ]) 919 continue; 920 ++PredCount; 921 // Perform the successor check only once. 922 if (!SeenPreds.insert(SuccPred).second) 923 continue; 924 if (!hasSameSuccessors(*SuccPred, Successors)) 925 return false; 926 } 927 // If one of the successors has only BB as a predecessor, it is not a 928 // trellis. 929 if (PredCount < 1) 930 return false; 931 } 932 return true; 933 } 934 935 /// Pick the highest total weight pair of edges that can both be laid out. 936 /// The edges in \p Edges[0] are assumed to have a different destination than 937 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 938 /// the individual highest weight edges to the 2 different destinations, or in 939 /// case of a conflict, one of them should be replaced with a 2nd best edge. 940 std::pair<MachineBlockPlacement::WeightedEdge, 941 MachineBlockPlacement::WeightedEdge> 942 MachineBlockPlacement::getBestNonConflictingEdges( 943 const MachineBasicBlock *BB, 944 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 945 Edges) { 946 // Sort the edges, and then for each successor, find the best incoming 947 // predecessor. If the best incoming predecessors aren't the same, 948 // then that is clearly the best layout. If there is a conflict, one of the 949 // successors will have to fallthrough from the second best predecessor. We 950 // compare which combination is better overall. 951 952 // Sort for highest frequency. 953 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 954 955 llvm::stable_sort(Edges[0], Cmp); 956 llvm::stable_sort(Edges[1], Cmp); 957 auto BestA = Edges[0].begin(); 958 auto BestB = Edges[1].begin(); 959 // Arrange for the correct answer to be in BestA and BestB 960 // If the 2 best edges don't conflict, the answer is already there. 961 if (BestA->Src == BestB->Src) { 962 // Compare the total fallthrough of (Best + Second Best) for both pairs 963 auto SecondBestA = std::next(BestA); 964 auto SecondBestB = std::next(BestB); 965 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 966 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 967 if (BestAScore < BestBScore) 968 BestA = SecondBestA; 969 else 970 BestB = SecondBestB; 971 } 972 // Arrange for the BB edge to be in BestA if it exists. 973 if (BestB->Src == BB) 974 std::swap(BestA, BestB); 975 return std::make_pair(*BestA, *BestB); 976 } 977 978 /// Get the best successor from \p BB based on \p BB being part of a trellis. 979 /// We only handle trellises with 2 successors, so the algorithm is 980 /// straightforward: Find the best pair of edges that don't conflict. We find 981 /// the best incoming edge for each successor in the trellis. If those conflict, 982 /// we consider which of them should be replaced with the second best. 983 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 984 /// comes from \p BB, it will be in \p BestEdges[0] 985 MachineBlockPlacement::BlockAndTailDupResult 986 MachineBlockPlacement::getBestTrellisSuccessor( 987 const MachineBasicBlock *BB, 988 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 989 BranchProbability AdjustedSumProb, const BlockChain &Chain, 990 const BlockFilterSet *BlockFilter) { 991 992 BlockAndTailDupResult Result = {nullptr, false}; 993 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 994 BB->succ_end()); 995 996 // We assume size 2 because it's common. For general n, we would have to do 997 // the Hungarian algorithm, but it's not worth the complexity because more 998 // than 2 successors is fairly uncommon, and a trellis even more so. 999 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1000 return Result; 1001 1002 // Collect the edge frequencies of all edges that form the trellis. 1003 SmallVector<WeightedEdge, 8> Edges[2]; 1004 int SuccIndex = 0; 1005 for (auto Succ : ViableSuccs) { 1006 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1007 // Skip any placed predecessors that are not BB 1008 if (SuccPred != BB) 1009 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1010 BlockToChain[SuccPred] == &Chain || 1011 BlockToChain[SuccPred] == BlockToChain[Succ]) 1012 continue; 1013 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1014 MBPI->getEdgeProbability(SuccPred, Succ); 1015 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1016 } 1017 ++SuccIndex; 1018 } 1019 1020 // Pick the best combination of 2 edges from all the edges in the trellis. 1021 WeightedEdge BestA, BestB; 1022 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1023 1024 if (BestA.Src != BB) { 1025 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1026 // we shouldn't choose any successor. We've already looked and there's a 1027 // better fallthrough edge for all the successors. 1028 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1029 return Result; 1030 } 1031 1032 // Did we pick the triangle edge? If tail-duplication is profitable, do 1033 // that instead. Otherwise merge the triangle edge now while we know it is 1034 // optimal. 1035 if (BestA.Dest == BestB.Src) { 1036 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1037 // would be better. 1038 MachineBasicBlock *Succ1 = BestA.Dest; 1039 MachineBasicBlock *Succ2 = BestB.Dest; 1040 // Check to see if tail-duplication would be profitable. 1041 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1042 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1043 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1044 Chain, BlockFilter)) { 1045 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1046 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1047 dbgs() << " Selected: " << getBlockName(Succ2) 1048 << ", probability: " << Succ2Prob 1049 << " (Tail Duplicate)\n"); 1050 Result.BB = Succ2; 1051 Result.ShouldTailDup = true; 1052 return Result; 1053 } 1054 } 1055 // We have already computed the optimal edge for the other side of the 1056 // trellis. 1057 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1058 1059 auto TrellisSucc = BestA.Dest; 1060 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1061 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1062 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1063 << ", probability: " << SuccProb << " (Trellis)\n"); 1064 Result.BB = TrellisSucc; 1065 return Result; 1066 } 1067 1068 /// When the option allowTailDupPlacement() is on, this method checks if the 1069 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1070 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1071 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1072 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1073 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1074 if (!shouldTailDuplicate(Succ)) 1075 return false; 1076 1077 // The result of canTailDuplicate. 1078 bool Duplicate = true; 1079 // Number of possible duplication. 1080 unsigned int NumDup = 0; 1081 1082 // For CFG checking. 1083 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1084 BB->succ_end()); 1085 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1086 // Make sure all unplaced and unfiltered predecessors can be 1087 // tail-duplicated into. 1088 // Skip any blocks that are already placed or not in this loop. 1089 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1090 || BlockToChain[Pred] == &Chain) 1091 continue; 1092 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1093 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1094 // This will result in a trellis after tail duplication, so we don't 1095 // need to copy Succ into this predecessor. In the presence 1096 // of a trellis tail duplication can continue to be profitable. 1097 // For example: 1098 // A A 1099 // |\ |\ 1100 // | \ | \ 1101 // | C | C+BB 1102 // | / | | 1103 // |/ | | 1104 // BB => BB | 1105 // |\ |\/| 1106 // | \ |/\| 1107 // | D | D 1108 // | / | / 1109 // |/ |/ 1110 // Succ Succ 1111 // 1112 // After BB was duplicated into C, the layout looks like the one on the 1113 // right. BB and C now have the same successors. When considering 1114 // whether Succ can be duplicated into all its unplaced predecessors, we 1115 // ignore C. 1116 // We can do this because C already has a profitable fallthrough, namely 1117 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1118 // duplication and for this test. 1119 // 1120 // This allows trellises to be laid out in 2 separate chains 1121 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1122 // because it allows the creation of 2 fallthrough paths with links 1123 // between them, and we correctly identify the best layout for these 1124 // CFGs. We want to extend trellises that the user created in addition 1125 // to trellises created by tail-duplication, so we just look for the 1126 // CFG. 1127 continue; 1128 Duplicate = false; 1129 continue; 1130 } 1131 NumDup++; 1132 } 1133 1134 // No possible duplication in current filter set. 1135 if (NumDup == 0) 1136 return false; 1137 1138 // This is mainly for function exit BB. 1139 // The integrated tail duplication is really designed for increasing 1140 // fallthrough from predecessors from Succ to its successors. We may need 1141 // other machanism to handle different cases. 1142 if (Succ->succ_size() == 0) 1143 return true; 1144 1145 // Plus the already placed predecessor. 1146 NumDup++; 1147 1148 // If the duplication candidate has more unplaced predecessors than 1149 // successors, the extra duplication can't bring more fallthrough. 1150 // 1151 // Pred1 Pred2 Pred3 1152 // \ | / 1153 // \ | / 1154 // \ | / 1155 // Dup 1156 // / \ 1157 // / \ 1158 // Succ1 Succ2 1159 // 1160 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1161 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1162 // but the duplication into Pred3 can't increase fallthrough. 1163 // 1164 // A small number of extra duplication may not hurt too much. We need a better 1165 // heuristic to handle it. 1166 // 1167 // FIXME: we should selectively tail duplicate a BB into part of its 1168 // predecessors. 1169 if ((NumDup > Succ->succ_size()) || !Duplicate) 1170 return false; 1171 1172 return true; 1173 } 1174 1175 /// Find chains of triangles where we believe it would be profitable to 1176 /// tail-duplicate them all, but a local analysis would not find them. 1177 /// There are 3 ways this can be profitable: 1178 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1179 /// longer chains) 1180 /// 2) The chains are statically correlated. Branch probabilities have a very 1181 /// U-shaped distribution. 1182 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1183 /// If the branches in a chain are likely to be from the same side of the 1184 /// distribution as their predecessor, but are independent at runtime, this 1185 /// transformation is profitable. (Because the cost of being wrong is a small 1186 /// fixed cost, unlike the standard triangle layout where the cost of being 1187 /// wrong scales with the # of triangles.) 1188 /// 3) The chains are dynamically correlated. If the probability that a previous 1189 /// branch was taken positively influences whether the next branch will be 1190 /// taken 1191 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1192 void MachineBlockPlacement::precomputeTriangleChains() { 1193 struct TriangleChain { 1194 std::vector<MachineBasicBlock *> Edges; 1195 1196 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1197 : Edges({src, dst}) {} 1198 1199 void append(MachineBasicBlock *dst) { 1200 assert(getKey()->isSuccessor(dst) && 1201 "Attempting to append a block that is not a successor."); 1202 Edges.push_back(dst); 1203 } 1204 1205 unsigned count() const { return Edges.size() - 1; } 1206 1207 MachineBasicBlock *getKey() const { 1208 return Edges.back(); 1209 } 1210 }; 1211 1212 if (TriangleChainCount == 0) 1213 return; 1214 1215 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1216 // Map from last block to the chain that contains it. This allows us to extend 1217 // chains as we find new triangles. 1218 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1219 for (MachineBasicBlock &BB : *F) { 1220 // If BB doesn't have 2 successors, it doesn't start a triangle. 1221 if (BB.succ_size() != 2) 1222 continue; 1223 MachineBasicBlock *PDom = nullptr; 1224 for (MachineBasicBlock *Succ : BB.successors()) { 1225 if (!MPDT->dominates(Succ, &BB)) 1226 continue; 1227 PDom = Succ; 1228 break; 1229 } 1230 // If BB doesn't have a post-dominating successor, it doesn't form a 1231 // triangle. 1232 if (PDom == nullptr) 1233 continue; 1234 // If PDom has a hint that it is low probability, skip this triangle. 1235 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1236 continue; 1237 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1238 // we're looking for. 1239 if (!shouldTailDuplicate(PDom)) 1240 continue; 1241 bool CanTailDuplicate = true; 1242 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1243 // isn't the kind of triangle we're looking for. 1244 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1245 if (Pred == &BB) 1246 continue; 1247 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1248 CanTailDuplicate = false; 1249 break; 1250 } 1251 } 1252 // If we can't tail-duplicate PDom to its predecessors, then skip this 1253 // triangle. 1254 if (!CanTailDuplicate) 1255 continue; 1256 1257 // Now we have an interesting triangle. Insert it if it's not part of an 1258 // existing chain. 1259 // Note: This cannot be replaced with a call insert() or emplace() because 1260 // the find key is BB, but the insert/emplace key is PDom. 1261 auto Found = TriangleChainMap.find(&BB); 1262 // If it is, remove the chain from the map, grow it, and put it back in the 1263 // map with the end as the new key. 1264 if (Found != TriangleChainMap.end()) { 1265 TriangleChain Chain = std::move(Found->second); 1266 TriangleChainMap.erase(Found); 1267 Chain.append(PDom); 1268 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1269 } else { 1270 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1271 assert(InsertResult.second && "Block seen twice."); 1272 (void)InsertResult; 1273 } 1274 } 1275 1276 // Iterating over a DenseMap is safe here, because the only thing in the body 1277 // of the loop is inserting into another DenseMap (ComputedEdges). 1278 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1279 for (auto &ChainPair : TriangleChainMap) { 1280 TriangleChain &Chain = ChainPair.second; 1281 // Benchmarking has shown that due to branch correlation duplicating 2 or 1282 // more triangles is profitable, despite the calculations assuming 1283 // independence. 1284 if (Chain.count() < TriangleChainCount) 1285 continue; 1286 MachineBasicBlock *dst = Chain.Edges.back(); 1287 Chain.Edges.pop_back(); 1288 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1289 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1290 << getBlockName(dst) 1291 << " as pre-computed based on triangles.\n"); 1292 1293 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1294 assert(InsertResult.second && "Block seen twice."); 1295 (void)InsertResult; 1296 1297 dst = src; 1298 } 1299 } 1300 } 1301 1302 // When profile is not present, return the StaticLikelyProb. 1303 // When profile is available, we need to handle the triangle-shape CFG. 1304 static BranchProbability getLayoutSuccessorProbThreshold( 1305 const MachineBasicBlock *BB) { 1306 if (!BB->getParent()->getFunction().hasProfileData()) 1307 return BranchProbability(StaticLikelyProb, 100); 1308 if (BB->succ_size() == 2) { 1309 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1310 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1311 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1312 /* See case 1 below for the cost analysis. For BB->Succ to 1313 * be taken with smaller cost, the following needs to hold: 1314 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1315 * So the threshold T in the calculation below 1316 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1317 * So T / (1 - T) = 2, Yielding T = 2/3 1318 * Also adding user specified branch bias, we have 1319 * T = (2/3)*(ProfileLikelyProb/50) 1320 * = (2*ProfileLikelyProb)/150) 1321 */ 1322 return BranchProbability(2 * ProfileLikelyProb, 150); 1323 } 1324 } 1325 return BranchProbability(ProfileLikelyProb, 100); 1326 } 1327 1328 /// Checks to see if the layout candidate block \p Succ has a better layout 1329 /// predecessor than \c BB. If yes, returns true. 1330 /// \p SuccProb: The probability adjusted for only remaining blocks. 1331 /// Only used for logging 1332 /// \p RealSuccProb: The un-adjusted probability. 1333 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1334 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1335 /// considered 1336 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1337 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1338 const BlockChain &SuccChain, BranchProbability SuccProb, 1339 BranchProbability RealSuccProb, const BlockChain &Chain, 1340 const BlockFilterSet *BlockFilter) { 1341 1342 // There isn't a better layout when there are no unscheduled predecessors. 1343 if (SuccChain.UnscheduledPredecessors == 0) 1344 return false; 1345 1346 // There are two basic scenarios here: 1347 // ------------------------------------- 1348 // Case 1: triangular shape CFG (if-then): 1349 // BB 1350 // | \ 1351 // | \ 1352 // | Pred 1353 // | / 1354 // Succ 1355 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1356 // set Succ as the layout successor of BB. Picking Succ as BB's 1357 // successor breaks the CFG constraints (FIXME: define these constraints). 1358 // With this layout, Pred BB 1359 // is forced to be outlined, so the overall cost will be cost of the 1360 // branch taken from BB to Pred, plus the cost of back taken branch 1361 // from Pred to Succ, as well as the additional cost associated 1362 // with the needed unconditional jump instruction from Pred To Succ. 1363 1364 // The cost of the topological order layout is the taken branch cost 1365 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1366 // must hold: 1367 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1368 // < freq(BB->Succ) * taken_branch_cost. 1369 // Ignoring unconditional jump cost, we get 1370 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1371 // prob(BB->Succ) > 2 * prob(BB->Pred) 1372 // 1373 // When real profile data is available, we can precisely compute the 1374 // probability threshold that is needed for edge BB->Succ to be considered. 1375 // Without profile data, the heuristic requires the branch bias to be 1376 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1377 // ----------------------------------------------------------------- 1378 // Case 2: diamond like CFG (if-then-else): 1379 // S 1380 // / \ 1381 // | \ 1382 // BB Pred 1383 // \ / 1384 // Succ 1385 // .. 1386 // 1387 // The current block is BB and edge BB->Succ is now being evaluated. 1388 // Note that edge S->BB was previously already selected because 1389 // prob(S->BB) > prob(S->Pred). 1390 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1391 // choose Pred, we will have a topological ordering as shown on the left 1392 // in the picture below. If we choose Succ, we have the solution as shown 1393 // on the right: 1394 // 1395 // topo-order: 1396 // 1397 // S----- ---S 1398 // | | | | 1399 // ---BB | | BB 1400 // | | | | 1401 // | Pred-- | Succ-- 1402 // | | | | 1403 // ---Succ ---Pred-- 1404 // 1405 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1406 // = freq(S->Pred) + freq(S->BB) 1407 // 1408 // If we have profile data (i.e, branch probabilities can be trusted), the 1409 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1410 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1411 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1412 // means the cost of topological order is greater. 1413 // When profile data is not available, however, we need to be more 1414 // conservative. If the branch prediction is wrong, breaking the topo-order 1415 // will actually yield a layout with large cost. For this reason, we need 1416 // strong biased branch at block S with Prob(S->BB) in order to select 1417 // BB->Succ. This is equivalent to looking the CFG backward with backward 1418 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1419 // profile data). 1420 // -------------------------------------------------------------------------- 1421 // Case 3: forked diamond 1422 // S 1423 // / \ 1424 // / \ 1425 // BB Pred 1426 // | \ / | 1427 // | \ / | 1428 // | X | 1429 // | / \ | 1430 // | / \ | 1431 // S1 S2 1432 // 1433 // The current block is BB and edge BB->S1 is now being evaluated. 1434 // As above S->BB was already selected because 1435 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1436 // 1437 // topo-order: 1438 // 1439 // S-------| ---S 1440 // | | | | 1441 // ---BB | | BB 1442 // | | | | 1443 // | Pred----| | S1---- 1444 // | | | | 1445 // --(S1 or S2) ---Pred-- 1446 // | 1447 // S2 1448 // 1449 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1450 // + min(freq(Pred->S1), freq(Pred->S2)) 1451 // Non-topo-order cost: 1452 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1453 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1454 // is 0. Then the non topo layout is better when 1455 // freq(S->Pred) < freq(BB->S1). 1456 // This is exactly what is checked below. 1457 // Note there are other shapes that apply (Pred may not be a single block, 1458 // but they all fit this general pattern.) 1459 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1460 1461 // Make sure that a hot successor doesn't have a globally more 1462 // important predecessor. 1463 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1464 bool BadCFGConflict = false; 1465 1466 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1467 BlockChain *PredChain = BlockToChain[Pred]; 1468 if (Pred == Succ || PredChain == &SuccChain || 1469 (BlockFilter && !BlockFilter->count(Pred)) || 1470 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1471 // This check is redundant except for look ahead. This function is 1472 // called for lookahead by isProfitableToTailDup when BB hasn't been 1473 // placed yet. 1474 (Pred == BB)) 1475 continue; 1476 // Do backward checking. 1477 // For all cases above, we need a backward checking to filter out edges that 1478 // are not 'strongly' biased. 1479 // BB Pred 1480 // \ / 1481 // Succ 1482 // We select edge BB->Succ if 1483 // freq(BB->Succ) > freq(Succ) * HotProb 1484 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1485 // HotProb 1486 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1487 // Case 1 is covered too, because the first equation reduces to: 1488 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1489 BlockFrequency PredEdgeFreq = 1490 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1491 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1492 BadCFGConflict = true; 1493 break; 1494 } 1495 } 1496 1497 if (BadCFGConflict) { 1498 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1499 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 /// Select the best successor for a block. 1507 /// 1508 /// This looks across all successors of a particular block and attempts to 1509 /// select the "best" one to be the layout successor. It only considers direct 1510 /// successors which also pass the block filter. It will attempt to avoid 1511 /// breaking CFG structure, but cave and break such structures in the case of 1512 /// very hot successor edges. 1513 /// 1514 /// \returns The best successor block found, or null if none are viable, along 1515 /// with a boolean indicating if tail duplication is necessary. 1516 MachineBlockPlacement::BlockAndTailDupResult 1517 MachineBlockPlacement::selectBestSuccessor( 1518 const MachineBasicBlock *BB, const BlockChain &Chain, 1519 const BlockFilterSet *BlockFilter) { 1520 const BranchProbability HotProb(StaticLikelyProb, 100); 1521 1522 BlockAndTailDupResult BestSucc = { nullptr, false }; 1523 auto BestProb = BranchProbability::getZero(); 1524 1525 SmallVector<MachineBasicBlock *, 4> Successors; 1526 auto AdjustedSumProb = 1527 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1528 1529 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1530 << "\n"); 1531 1532 // if we already precomputed the best successor for BB, return that if still 1533 // applicable. 1534 auto FoundEdge = ComputedEdges.find(BB); 1535 if (FoundEdge != ComputedEdges.end()) { 1536 MachineBasicBlock *Succ = FoundEdge->second.BB; 1537 ComputedEdges.erase(FoundEdge); 1538 BlockChain *SuccChain = BlockToChain[Succ]; 1539 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1540 SuccChain != &Chain && Succ == *SuccChain->begin()) 1541 return FoundEdge->second; 1542 } 1543 1544 // if BB is part of a trellis, Use the trellis to determine the optimal 1545 // fallthrough edges 1546 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1547 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1548 BlockFilter); 1549 1550 // For blocks with CFG violations, we may be able to lay them out anyway with 1551 // tail-duplication. We keep this vector so we can perform the probability 1552 // calculations the minimum number of times. 1553 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1554 DupCandidates; 1555 for (MachineBasicBlock *Succ : Successors) { 1556 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1557 BranchProbability SuccProb = 1558 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1559 1560 BlockChain &SuccChain = *BlockToChain[Succ]; 1561 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1562 // predecessor that yields lower global cost. 1563 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1564 Chain, BlockFilter)) { 1565 // If tail duplication would make Succ profitable, place it. 1566 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1567 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1568 continue; 1569 } 1570 1571 LLVM_DEBUG( 1572 dbgs() << " Candidate: " << getBlockName(Succ) 1573 << ", probability: " << SuccProb 1574 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1575 << "\n"); 1576 1577 if (BestSucc.BB && BestProb >= SuccProb) { 1578 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1579 continue; 1580 } 1581 1582 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1583 BestSucc.BB = Succ; 1584 BestProb = SuccProb; 1585 } 1586 // Handle the tail duplication candidates in order of decreasing probability. 1587 // Stop at the first one that is profitable. Also stop if they are less 1588 // profitable than BestSucc. Position is important because we preserve it and 1589 // prefer first best match. Here we aren't comparing in order, so we capture 1590 // the position instead. 1591 llvm::stable_sort(DupCandidates, 1592 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1593 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1594 return std::get<0>(L) > std::get<0>(R); 1595 }); 1596 for (auto &Tup : DupCandidates) { 1597 BranchProbability DupProb; 1598 MachineBasicBlock *Succ; 1599 std::tie(DupProb, Succ) = Tup; 1600 if (DupProb < BestProb) 1601 break; 1602 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1603 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1604 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1605 << ", probability: " << DupProb 1606 << " (Tail Duplicate)\n"); 1607 BestSucc.BB = Succ; 1608 BestSucc.ShouldTailDup = true; 1609 break; 1610 } 1611 } 1612 1613 if (BestSucc.BB) 1614 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1615 1616 return BestSucc; 1617 } 1618 1619 /// Select the best block from a worklist. 1620 /// 1621 /// This looks through the provided worklist as a list of candidate basic 1622 /// blocks and select the most profitable one to place. The definition of 1623 /// profitable only really makes sense in the context of a loop. This returns 1624 /// the most frequently visited block in the worklist, which in the case of 1625 /// a loop, is the one most desirable to be physically close to the rest of the 1626 /// loop body in order to improve i-cache behavior. 1627 /// 1628 /// \returns The best block found, or null if none are viable. 1629 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1630 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1631 // Once we need to walk the worklist looking for a candidate, cleanup the 1632 // worklist of already placed entries. 1633 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1634 // some code complexity) into the loop below. 1635 WorkList.erase(llvm::remove_if(WorkList, 1636 [&](MachineBasicBlock *BB) { 1637 return BlockToChain.lookup(BB) == &Chain; 1638 }), 1639 WorkList.end()); 1640 1641 if (WorkList.empty()) 1642 return nullptr; 1643 1644 bool IsEHPad = WorkList[0]->isEHPad(); 1645 1646 MachineBasicBlock *BestBlock = nullptr; 1647 BlockFrequency BestFreq; 1648 for (MachineBasicBlock *MBB : WorkList) { 1649 assert(MBB->isEHPad() == IsEHPad && 1650 "EHPad mismatch between block and work list."); 1651 1652 BlockChain &SuccChain = *BlockToChain[MBB]; 1653 if (&SuccChain == &Chain) 1654 continue; 1655 1656 assert(SuccChain.UnscheduledPredecessors == 0 && 1657 "Found CFG-violating block"); 1658 1659 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1660 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1661 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1662 1663 // For ehpad, we layout the least probable first as to avoid jumping back 1664 // from least probable landingpads to more probable ones. 1665 // 1666 // FIXME: Using probability is probably (!) not the best way to achieve 1667 // this. We should probably have a more principled approach to layout 1668 // cleanup code. 1669 // 1670 // The goal is to get: 1671 // 1672 // +--------------------------+ 1673 // | V 1674 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1675 // 1676 // Rather than: 1677 // 1678 // +-------------------------------------+ 1679 // V | 1680 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1681 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1682 continue; 1683 1684 BestBlock = MBB; 1685 BestFreq = CandidateFreq; 1686 } 1687 1688 return BestBlock; 1689 } 1690 1691 /// Retrieve the first unplaced basic block. 1692 /// 1693 /// This routine is called when we are unable to use the CFG to walk through 1694 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1695 /// We walk through the function's blocks in order, starting from the 1696 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1697 /// re-scanning the entire sequence on repeated calls to this routine. 1698 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1699 const BlockChain &PlacedChain, 1700 MachineFunction::iterator &PrevUnplacedBlockIt, 1701 const BlockFilterSet *BlockFilter) { 1702 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1703 ++I) { 1704 if (BlockFilter && !BlockFilter->count(&*I)) 1705 continue; 1706 if (BlockToChain[&*I] != &PlacedChain) { 1707 PrevUnplacedBlockIt = I; 1708 // Now select the head of the chain to which the unplaced block belongs 1709 // as the block to place. This will force the entire chain to be placed, 1710 // and satisfies the requirements of merging chains. 1711 return *BlockToChain[&*I]->begin(); 1712 } 1713 } 1714 return nullptr; 1715 } 1716 1717 void MachineBlockPlacement::fillWorkLists( 1718 const MachineBasicBlock *MBB, 1719 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1720 const BlockFilterSet *BlockFilter = nullptr) { 1721 BlockChain &Chain = *BlockToChain[MBB]; 1722 if (!UpdatedPreds.insert(&Chain).second) 1723 return; 1724 1725 assert( 1726 Chain.UnscheduledPredecessors == 0 && 1727 "Attempting to place block with unscheduled predecessors in worklist."); 1728 for (MachineBasicBlock *ChainBB : Chain) { 1729 assert(BlockToChain[ChainBB] == &Chain && 1730 "Block in chain doesn't match BlockToChain map."); 1731 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1732 if (BlockFilter && !BlockFilter->count(Pred)) 1733 continue; 1734 if (BlockToChain[Pred] == &Chain) 1735 continue; 1736 ++Chain.UnscheduledPredecessors; 1737 } 1738 } 1739 1740 if (Chain.UnscheduledPredecessors != 0) 1741 return; 1742 1743 MachineBasicBlock *BB = *Chain.begin(); 1744 if (BB->isEHPad()) 1745 EHPadWorkList.push_back(BB); 1746 else 1747 BlockWorkList.push_back(BB); 1748 } 1749 1750 void MachineBlockPlacement::buildChain( 1751 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1752 BlockFilterSet *BlockFilter) { 1753 assert(HeadBB && "BB must not be null.\n"); 1754 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1755 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1756 1757 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1758 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1759 MachineBasicBlock *BB = *std::prev(Chain.end()); 1760 while (true) { 1761 assert(BB && "null block found at end of chain in loop."); 1762 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1763 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1764 1765 1766 // Look for the best viable successor if there is one to place immediately 1767 // after this block. 1768 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1769 MachineBasicBlock* BestSucc = Result.BB; 1770 bool ShouldTailDup = Result.ShouldTailDup; 1771 if (allowTailDupPlacement()) 1772 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1773 Chain, 1774 BlockFilter)); 1775 1776 // If an immediate successor isn't available, look for the best viable 1777 // block among those we've identified as not violating the loop's CFG at 1778 // this point. This won't be a fallthrough, but it will increase locality. 1779 if (!BestSucc) 1780 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1781 if (!BestSucc) 1782 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1783 1784 if (!BestSucc) { 1785 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1786 if (!BestSucc) 1787 break; 1788 1789 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1790 "layout successor until the CFG reduces\n"); 1791 } 1792 1793 // Placement may have changed tail duplication opportunities. 1794 // Check for that now. 1795 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1796 // If the chosen successor was duplicated into all its predecessors, 1797 // don't bother laying it out, just go round the loop again with BB as 1798 // the chain end. 1799 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1800 BlockFilter, PrevUnplacedBlockIt)) 1801 continue; 1802 } 1803 1804 // Place this block, updating the datastructures to reflect its placement. 1805 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1806 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1807 // we selected a successor that didn't fit naturally into the CFG. 1808 SuccChain.UnscheduledPredecessors = 0; 1809 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1810 << getBlockName(BestSucc) << "\n"); 1811 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1812 Chain.merge(BestSucc, &SuccChain); 1813 BB = *std::prev(Chain.end()); 1814 } 1815 1816 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1817 << getBlockName(*Chain.begin()) << "\n"); 1818 } 1819 1820 // If bottom of block BB has only one successor OldTop, in most cases it is 1821 // profitable to move it before OldTop, except the following case: 1822 // 1823 // -->OldTop<- 1824 // | . | 1825 // | . | 1826 // | . | 1827 // ---Pred | 1828 // | | 1829 // BB----- 1830 // 1831 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1832 // layout the other successor below it, so it can't reduce taken branch. 1833 // In this case we keep its original layout. 1834 bool 1835 MachineBlockPlacement::canMoveBottomBlockToTop( 1836 const MachineBasicBlock *BottomBlock, 1837 const MachineBasicBlock *OldTop) { 1838 if (BottomBlock->pred_size() != 1) 1839 return true; 1840 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1841 if (Pred->succ_size() != 2) 1842 return true; 1843 1844 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1845 if (OtherBB == BottomBlock) 1846 OtherBB = *Pred->succ_rbegin(); 1847 if (OtherBB == OldTop) 1848 return false; 1849 1850 return true; 1851 } 1852 1853 // Find out the possible fall through frequence to the top of a loop. 1854 BlockFrequency 1855 MachineBlockPlacement::TopFallThroughFreq( 1856 const MachineBasicBlock *Top, 1857 const BlockFilterSet &LoopBlockSet) { 1858 BlockFrequency MaxFreq = 0; 1859 for (MachineBasicBlock *Pred : Top->predecessors()) { 1860 BlockChain *PredChain = BlockToChain[Pred]; 1861 if (!LoopBlockSet.count(Pred) && 1862 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1863 // Found a Pred block can be placed before Top. 1864 // Check if Top is the best successor of Pred. 1865 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1866 bool TopOK = true; 1867 for (MachineBasicBlock *Succ : Pred->successors()) { 1868 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1869 BlockChain *SuccChain = BlockToChain[Succ]; 1870 // Check if Succ can be placed after Pred. 1871 // Succ should not be in any chain, or it is the head of some chain. 1872 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1873 (!SuccChain || Succ == *SuccChain->begin())) { 1874 TopOK = false; 1875 break; 1876 } 1877 } 1878 if (TopOK) { 1879 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1880 MBPI->getEdgeProbability(Pred, Top); 1881 if (EdgeFreq > MaxFreq) 1882 MaxFreq = EdgeFreq; 1883 } 1884 } 1885 } 1886 return MaxFreq; 1887 } 1888 1889 // Compute the fall through gains when move NewTop before OldTop. 1890 // 1891 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1892 // marked as "+" are increased fallthrough, this function computes 1893 // 1894 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1895 // 1896 // | 1897 // | - 1898 // V 1899 // --->OldTop 1900 // | . 1901 // | . 1902 // +| . + 1903 // | Pred ---> 1904 // | |- 1905 // | V 1906 // --- NewTop <--- 1907 // |- 1908 // V 1909 // 1910 BlockFrequency 1911 MachineBlockPlacement::FallThroughGains( 1912 const MachineBasicBlock *NewTop, 1913 const MachineBasicBlock *OldTop, 1914 const MachineBasicBlock *ExitBB, 1915 const BlockFilterSet &LoopBlockSet) { 1916 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1917 BlockFrequency FallThrough2Exit = 0; 1918 if (ExitBB) 1919 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1920 MBPI->getEdgeProbability(NewTop, ExitBB); 1921 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1922 MBPI->getEdgeProbability(NewTop, OldTop); 1923 1924 // Find the best Pred of NewTop. 1925 MachineBasicBlock *BestPred = nullptr; 1926 BlockFrequency FallThroughFromPred = 0; 1927 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1928 if (!LoopBlockSet.count(Pred)) 1929 continue; 1930 BlockChain *PredChain = BlockToChain[Pred]; 1931 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1932 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1933 MBPI->getEdgeProbability(Pred, NewTop); 1934 if (EdgeFreq > FallThroughFromPred) { 1935 FallThroughFromPred = EdgeFreq; 1936 BestPred = Pred; 1937 } 1938 } 1939 } 1940 1941 // If NewTop is not placed after Pred, another successor can be placed 1942 // after Pred. 1943 BlockFrequency NewFreq = 0; 1944 if (BestPred) { 1945 for (MachineBasicBlock *Succ : BestPred->successors()) { 1946 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1947 continue; 1948 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1949 continue; 1950 BlockChain *SuccChain = BlockToChain[Succ]; 1951 if ((SuccChain && (Succ != *SuccChain->begin())) || 1952 (SuccChain == BlockToChain[BestPred])) 1953 continue; 1954 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1955 MBPI->getEdgeProbability(BestPred, Succ); 1956 if (EdgeFreq > NewFreq) 1957 NewFreq = EdgeFreq; 1958 } 1959 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 1960 MBPI->getEdgeProbability(BestPred, NewTop); 1961 if (NewFreq > OrigEdgeFreq) { 1962 // If NewTop is not the best successor of Pred, then Pred doesn't 1963 // fallthrough to NewTop. So there is no FallThroughFromPred and 1964 // NewFreq. 1965 NewFreq = 0; 1966 FallThroughFromPred = 0; 1967 } 1968 } 1969 1970 BlockFrequency Result = 0; 1971 BlockFrequency Gains = BackEdgeFreq + NewFreq; 1972 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 1973 FallThroughFromPred; 1974 if (Gains > Lost) 1975 Result = Gains - Lost; 1976 return Result; 1977 } 1978 1979 /// Helper function of findBestLoopTop. Find the best loop top block 1980 /// from predecessors of old top. 1981 /// 1982 /// Look for a block which is strictly better than the old top for laying 1983 /// out before the old top of the loop. This looks for only two patterns: 1984 /// 1985 /// 1. a block has only one successor, the old loop top 1986 /// 1987 /// Because such a block will always result in an unconditional jump, 1988 /// rotating it in front of the old top is always profitable. 1989 /// 1990 /// 2. a block has two successors, one is old top, another is exit 1991 /// and it has more than one predecessors 1992 /// 1993 /// If it is below one of its predecessors P, only P can fall through to 1994 /// it, all other predecessors need a jump to it, and another conditional 1995 /// jump to loop header. If it is moved before loop header, all its 1996 /// predecessors jump to it, then fall through to loop header. So all its 1997 /// predecessors except P can reduce one taken branch. 1998 /// At the same time, move it before old top increases the taken branch 1999 /// to loop exit block, so the reduced taken branch will be compared with 2000 /// the increased taken branch to the loop exit block. 2001 MachineBasicBlock * 2002 MachineBlockPlacement::findBestLoopTopHelper( 2003 MachineBasicBlock *OldTop, 2004 const MachineLoop &L, 2005 const BlockFilterSet &LoopBlockSet) { 2006 // Check that the header hasn't been fused with a preheader block due to 2007 // crazy branches. If it has, we need to start with the header at the top to 2008 // prevent pulling the preheader into the loop body. 2009 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2010 if (!LoopBlockSet.count(*HeaderChain.begin())) 2011 return OldTop; 2012 2013 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2014 << "\n"); 2015 2016 BlockFrequency BestGains = 0; 2017 MachineBasicBlock *BestPred = nullptr; 2018 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2019 if (!LoopBlockSet.count(Pred)) 2020 continue; 2021 if (Pred == L.getHeader()) 2022 continue; 2023 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2024 << Pred->succ_size() << " successors, "; 2025 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2026 if (Pred->succ_size() > 2) 2027 continue; 2028 2029 MachineBasicBlock *OtherBB = nullptr; 2030 if (Pred->succ_size() == 2) { 2031 OtherBB = *Pred->succ_begin(); 2032 if (OtherBB == OldTop) 2033 OtherBB = *Pred->succ_rbegin(); 2034 } 2035 2036 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2037 continue; 2038 2039 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2040 LoopBlockSet); 2041 if ((Gains > 0) && (Gains > BestGains || 2042 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2043 BestPred = Pred; 2044 BestGains = Gains; 2045 } 2046 } 2047 2048 // If no direct predecessor is fine, just use the loop header. 2049 if (!BestPred) { 2050 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2051 return OldTop; 2052 } 2053 2054 // Walk backwards through any straight line of predecessors. 2055 while (BestPred->pred_size() == 1 && 2056 (*BestPred->pred_begin())->succ_size() == 1 && 2057 *BestPred->pred_begin() != L.getHeader()) 2058 BestPred = *BestPred->pred_begin(); 2059 2060 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2061 return BestPred; 2062 } 2063 2064 /// Find the best loop top block for layout. 2065 /// 2066 /// This function iteratively calls findBestLoopTopHelper, until no new better 2067 /// BB can be found. 2068 MachineBasicBlock * 2069 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2070 const BlockFilterSet &LoopBlockSet) { 2071 // Placing the latch block before the header may introduce an extra branch 2072 // that skips this block the first time the loop is executed, which we want 2073 // to avoid when optimising for size. 2074 // FIXME: in theory there is a case that does not introduce a new branch, 2075 // i.e. when the layout predecessor does not fallthrough to the loop header. 2076 // In practice this never happens though: there always seems to be a preheader 2077 // that can fallthrough and that is also placed before the header. 2078 if (F->getFunction().hasOptSize()) 2079 return L.getHeader(); 2080 2081 MachineBasicBlock *OldTop = nullptr; 2082 MachineBasicBlock *NewTop = L.getHeader(); 2083 while (NewTop != OldTop) { 2084 OldTop = NewTop; 2085 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2086 if (NewTop != OldTop) 2087 ComputedEdges[NewTop] = { OldTop, false }; 2088 } 2089 return NewTop; 2090 } 2091 2092 /// Find the best loop exiting block for layout. 2093 /// 2094 /// This routine implements the logic to analyze the loop looking for the best 2095 /// block to layout at the top of the loop. Typically this is done to maximize 2096 /// fallthrough opportunities. 2097 MachineBasicBlock * 2098 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2099 const BlockFilterSet &LoopBlockSet, 2100 BlockFrequency &ExitFreq) { 2101 // We don't want to layout the loop linearly in all cases. If the loop header 2102 // is just a normal basic block in the loop, we want to look for what block 2103 // within the loop is the best one to layout at the top. However, if the loop 2104 // header has be pre-merged into a chain due to predecessors not having 2105 // analyzable branches, *and* the predecessor it is merged with is *not* part 2106 // of the loop, rotating the header into the middle of the loop will create 2107 // a non-contiguous range of blocks which is Very Bad. So start with the 2108 // header and only rotate if safe. 2109 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2110 if (!LoopBlockSet.count(*HeaderChain.begin())) 2111 return nullptr; 2112 2113 BlockFrequency BestExitEdgeFreq; 2114 unsigned BestExitLoopDepth = 0; 2115 MachineBasicBlock *ExitingBB = nullptr; 2116 // If there are exits to outer loops, loop rotation can severely limit 2117 // fallthrough opportunities unless it selects such an exit. Keep a set of 2118 // blocks where rotating to exit with that block will reach an outer loop. 2119 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2120 2121 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2122 << getBlockName(L.getHeader()) << "\n"); 2123 for (MachineBasicBlock *MBB : L.getBlocks()) { 2124 BlockChain &Chain = *BlockToChain[MBB]; 2125 // Ensure that this block is at the end of a chain; otherwise it could be 2126 // mid-way through an inner loop or a successor of an unanalyzable branch. 2127 if (MBB != *std::prev(Chain.end())) 2128 continue; 2129 2130 // Now walk the successors. We need to establish whether this has a viable 2131 // exiting successor and whether it has a viable non-exiting successor. 2132 // We store the old exiting state and restore it if a viable looping 2133 // successor isn't found. 2134 MachineBasicBlock *OldExitingBB = ExitingBB; 2135 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2136 bool HasLoopingSucc = false; 2137 for (MachineBasicBlock *Succ : MBB->successors()) { 2138 if (Succ->isEHPad()) 2139 continue; 2140 if (Succ == MBB) 2141 continue; 2142 BlockChain &SuccChain = *BlockToChain[Succ]; 2143 // Don't split chains, either this chain or the successor's chain. 2144 if (&Chain == &SuccChain) { 2145 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2146 << getBlockName(Succ) << " (chain conflict)\n"); 2147 continue; 2148 } 2149 2150 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2151 if (LoopBlockSet.count(Succ)) { 2152 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2153 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2154 HasLoopingSucc = true; 2155 continue; 2156 } 2157 2158 unsigned SuccLoopDepth = 0; 2159 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2160 SuccLoopDepth = ExitLoop->getLoopDepth(); 2161 if (ExitLoop->contains(&L)) 2162 BlocksExitingToOuterLoop.insert(MBB); 2163 } 2164 2165 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2166 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2167 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2168 << "] ("; 2169 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2170 // Note that we bias this toward an existing layout successor to retain 2171 // incoming order in the absence of better information. The exit must have 2172 // a frequency higher than the current exit before we consider breaking 2173 // the layout. 2174 BranchProbability Bias(100 - ExitBlockBias, 100); 2175 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2176 ExitEdgeFreq > BestExitEdgeFreq || 2177 (MBB->isLayoutSuccessor(Succ) && 2178 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2179 BestExitEdgeFreq = ExitEdgeFreq; 2180 ExitingBB = MBB; 2181 } 2182 } 2183 2184 if (!HasLoopingSucc) { 2185 // Restore the old exiting state, no viable looping successor was found. 2186 ExitingBB = OldExitingBB; 2187 BestExitEdgeFreq = OldBestExitEdgeFreq; 2188 } 2189 } 2190 // Without a candidate exiting block or with only a single block in the 2191 // loop, just use the loop header to layout the loop. 2192 if (!ExitingBB) { 2193 LLVM_DEBUG( 2194 dbgs() << " No other candidate exit blocks, using loop header\n"); 2195 return nullptr; 2196 } 2197 if (L.getNumBlocks() == 1) { 2198 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2199 return nullptr; 2200 } 2201 2202 // Also, if we have exit blocks which lead to outer loops but didn't select 2203 // one of them as the exiting block we are rotating toward, disable loop 2204 // rotation altogether. 2205 if (!BlocksExitingToOuterLoop.empty() && 2206 !BlocksExitingToOuterLoop.count(ExitingBB)) 2207 return nullptr; 2208 2209 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2210 << "\n"); 2211 ExitFreq = BestExitEdgeFreq; 2212 return ExitingBB; 2213 } 2214 2215 /// Check if there is a fallthrough to loop header Top. 2216 /// 2217 /// 1. Look for a Pred that can be layout before Top. 2218 /// 2. Check if Top is the most possible successor of Pred. 2219 bool 2220 MachineBlockPlacement::hasViableTopFallthrough( 2221 const MachineBasicBlock *Top, 2222 const BlockFilterSet &LoopBlockSet) { 2223 for (MachineBasicBlock *Pred : Top->predecessors()) { 2224 BlockChain *PredChain = BlockToChain[Pred]; 2225 if (!LoopBlockSet.count(Pred) && 2226 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2227 // Found a Pred block can be placed before Top. 2228 // Check if Top is the best successor of Pred. 2229 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2230 bool TopOK = true; 2231 for (MachineBasicBlock *Succ : Pred->successors()) { 2232 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2233 BlockChain *SuccChain = BlockToChain[Succ]; 2234 // Check if Succ can be placed after Pred. 2235 // Succ should not be in any chain, or it is the head of some chain. 2236 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2237 TopOK = false; 2238 break; 2239 } 2240 } 2241 if (TopOK) 2242 return true; 2243 } 2244 } 2245 return false; 2246 } 2247 2248 /// Attempt to rotate an exiting block to the bottom of the loop. 2249 /// 2250 /// Once we have built a chain, try to rotate it to line up the hot exit block 2251 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2252 /// branches. For example, if the loop has fallthrough into its header and out 2253 /// of its bottom already, don't rotate it. 2254 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2255 const MachineBasicBlock *ExitingBB, 2256 BlockFrequency ExitFreq, 2257 const BlockFilterSet &LoopBlockSet) { 2258 if (!ExitingBB) 2259 return; 2260 2261 MachineBasicBlock *Top = *LoopChain.begin(); 2262 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2263 2264 // If ExitingBB is already the last one in a chain then nothing to do. 2265 if (Bottom == ExitingBB) 2266 return; 2267 2268 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2269 2270 // If the header has viable fallthrough, check whether the current loop 2271 // bottom is a viable exiting block. If so, bail out as rotating will 2272 // introduce an unnecessary branch. 2273 if (ViableTopFallthrough) { 2274 for (MachineBasicBlock *Succ : Bottom->successors()) { 2275 BlockChain *SuccChain = BlockToChain[Succ]; 2276 if (!LoopBlockSet.count(Succ) && 2277 (!SuccChain || Succ == *SuccChain->begin())) 2278 return; 2279 } 2280 2281 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2282 // frequency is larger than top fallthrough. 2283 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2284 if (FallThrough2Top >= ExitFreq) 2285 return; 2286 } 2287 2288 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2289 if (ExitIt == LoopChain.end()) 2290 return; 2291 2292 // Rotating a loop exit to the bottom when there is a fallthrough to top 2293 // trades the entry fallthrough for an exit fallthrough. 2294 // If there is no bottom->top edge, but the chosen exit block does have 2295 // a fallthrough, we break that fallthrough for nothing in return. 2296 2297 // Let's consider an example. We have a built chain of basic blocks 2298 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2299 // By doing a rotation we get 2300 // Bk+1, ..., Bn, B1, ..., Bk 2301 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2302 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2303 // It might be compensated by fallthrough Bn -> B1. 2304 // So we have a condition to avoid creation of extra branch by loop rotation. 2305 // All below must be true to avoid loop rotation: 2306 // If there is a fallthrough to top (B1) 2307 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2308 // There is no fallthrough from bottom (Bn) to top (B1). 2309 // Please note that there is no exit fallthrough from Bn because we checked it 2310 // above. 2311 if (ViableTopFallthrough) { 2312 assert(std::next(ExitIt) != LoopChain.end() && 2313 "Exit should not be last BB"); 2314 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2315 if (ExitingBB->isSuccessor(NextBlockInChain)) 2316 if (!Bottom->isSuccessor(Top)) 2317 return; 2318 } 2319 2320 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2321 << " at bottom\n"); 2322 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2323 } 2324 2325 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2326 /// 2327 /// With profile data, we can determine the cost in terms of missed fall through 2328 /// opportunities when rotating a loop chain and select the best rotation. 2329 /// Basically, there are three kinds of cost to consider for each rotation: 2330 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2331 /// the loop to the loop header. 2332 /// 2. The possibly missed fall through edges (if they exist) from the loop 2333 /// exits to BB out of the loop. 2334 /// 3. The missed fall through edge (if it exists) from the last BB to the 2335 /// first BB in the loop chain. 2336 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2337 /// We select the best rotation with the smallest cost. 2338 void MachineBlockPlacement::rotateLoopWithProfile( 2339 BlockChain &LoopChain, const MachineLoop &L, 2340 const BlockFilterSet &LoopBlockSet) { 2341 auto RotationPos = LoopChain.end(); 2342 2343 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2344 2345 // A utility lambda that scales up a block frequency by dividing it by a 2346 // branch probability which is the reciprocal of the scale. 2347 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2348 unsigned Scale) -> BlockFrequency { 2349 if (Scale == 0) 2350 return 0; 2351 // Use operator / between BlockFrequency and BranchProbability to implement 2352 // saturating multiplication. 2353 return Freq / BranchProbability(1, Scale); 2354 }; 2355 2356 // Compute the cost of the missed fall-through edge to the loop header if the 2357 // chain head is not the loop header. As we only consider natural loops with 2358 // single header, this computation can be done only once. 2359 BlockFrequency HeaderFallThroughCost(0); 2360 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2361 for (auto *Pred : ChainHeaderBB->predecessors()) { 2362 BlockChain *PredChain = BlockToChain[Pred]; 2363 if (!LoopBlockSet.count(Pred) && 2364 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2365 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2366 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2367 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2368 // If the predecessor has only an unconditional jump to the header, we 2369 // need to consider the cost of this jump. 2370 if (Pred->succ_size() == 1) 2371 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2372 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2373 } 2374 } 2375 2376 // Here we collect all exit blocks in the loop, and for each exit we find out 2377 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2378 // as the sum of frequencies of exit edges we collect here, excluding the exit 2379 // edge from the tail of the loop chain. 2380 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2381 for (auto BB : LoopChain) { 2382 auto LargestExitEdgeProb = BranchProbability::getZero(); 2383 for (auto *Succ : BB->successors()) { 2384 BlockChain *SuccChain = BlockToChain[Succ]; 2385 if (!LoopBlockSet.count(Succ) && 2386 (!SuccChain || Succ == *SuccChain->begin())) { 2387 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2388 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2389 } 2390 } 2391 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2392 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2393 ExitsWithFreq.emplace_back(BB, ExitFreq); 2394 } 2395 } 2396 2397 // In this loop we iterate every block in the loop chain and calculate the 2398 // cost assuming the block is the head of the loop chain. When the loop ends, 2399 // we should have found the best candidate as the loop chain's head. 2400 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2401 EndIter = LoopChain.end(); 2402 Iter != EndIter; Iter++, TailIter++) { 2403 // TailIter is used to track the tail of the loop chain if the block we are 2404 // checking (pointed by Iter) is the head of the chain. 2405 if (TailIter == LoopChain.end()) 2406 TailIter = LoopChain.begin(); 2407 2408 auto TailBB = *TailIter; 2409 2410 // Calculate the cost by putting this BB to the top. 2411 BlockFrequency Cost = 0; 2412 2413 // If the current BB is the loop header, we need to take into account the 2414 // cost of the missed fall through edge from outside of the loop to the 2415 // header. 2416 if (Iter != LoopChain.begin()) 2417 Cost += HeaderFallThroughCost; 2418 2419 // Collect the loop exit cost by summing up frequencies of all exit edges 2420 // except the one from the chain tail. 2421 for (auto &ExitWithFreq : ExitsWithFreq) 2422 if (TailBB != ExitWithFreq.first) 2423 Cost += ExitWithFreq.second; 2424 2425 // The cost of breaking the once fall-through edge from the tail to the top 2426 // of the loop chain. Here we need to consider three cases: 2427 // 1. If the tail node has only one successor, then we will get an 2428 // additional jmp instruction. So the cost here is (MisfetchCost + 2429 // JumpInstCost) * tail node frequency. 2430 // 2. If the tail node has two successors, then we may still get an 2431 // additional jmp instruction if the layout successor after the loop 2432 // chain is not its CFG successor. Note that the more frequently executed 2433 // jmp instruction will be put ahead of the other one. Assume the 2434 // frequency of those two branches are x and y, where x is the frequency 2435 // of the edge to the chain head, then the cost will be 2436 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2437 // 3. If the tail node has more than two successors (this rarely happens), 2438 // we won't consider any additional cost. 2439 if (TailBB->isSuccessor(*Iter)) { 2440 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2441 if (TailBB->succ_size() == 1) 2442 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2443 MisfetchCost + JumpInstCost); 2444 else if (TailBB->succ_size() == 2) { 2445 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2446 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2447 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2448 ? TailBBFreq * TailToHeadProb.getCompl() 2449 : TailToHeadFreq; 2450 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2451 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2452 } 2453 } 2454 2455 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2456 << getBlockName(*Iter) 2457 << " to the top: " << Cost.getFrequency() << "\n"); 2458 2459 if (Cost < SmallestRotationCost) { 2460 SmallestRotationCost = Cost; 2461 RotationPos = Iter; 2462 } 2463 } 2464 2465 if (RotationPos != LoopChain.end()) { 2466 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2467 << " to the top\n"); 2468 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2469 } 2470 } 2471 2472 /// Collect blocks in the given loop that are to be placed. 2473 /// 2474 /// When profile data is available, exclude cold blocks from the returned set; 2475 /// otherwise, collect all blocks in the loop. 2476 MachineBlockPlacement::BlockFilterSet 2477 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2478 BlockFilterSet LoopBlockSet; 2479 2480 // Filter cold blocks off from LoopBlockSet when profile data is available. 2481 // Collect the sum of frequencies of incoming edges to the loop header from 2482 // outside. If we treat the loop as a super block, this is the frequency of 2483 // the loop. Then for each block in the loop, we calculate the ratio between 2484 // its frequency and the frequency of the loop block. When it is too small, 2485 // don't add it to the loop chain. If there are outer loops, then this block 2486 // will be merged into the first outer loop chain for which this block is not 2487 // cold anymore. This needs precise profile data and we only do this when 2488 // profile data is available. 2489 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2490 BlockFrequency LoopFreq(0); 2491 for (auto LoopPred : L.getHeader()->predecessors()) 2492 if (!L.contains(LoopPred)) 2493 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2494 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2495 2496 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2497 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2498 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2499 continue; 2500 LoopBlockSet.insert(LoopBB); 2501 } 2502 } else 2503 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2504 2505 return LoopBlockSet; 2506 } 2507 2508 /// Forms basic block chains from the natural loop structures. 2509 /// 2510 /// These chains are designed to preserve the existing *structure* of the code 2511 /// as much as possible. We can then stitch the chains together in a way which 2512 /// both preserves the topological structure and minimizes taken conditional 2513 /// branches. 2514 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2515 // First recurse through any nested loops, building chains for those inner 2516 // loops. 2517 for (const MachineLoop *InnerLoop : L) 2518 buildLoopChains(*InnerLoop); 2519 2520 assert(BlockWorkList.empty() && 2521 "BlockWorkList not empty when starting to build loop chains."); 2522 assert(EHPadWorkList.empty() && 2523 "EHPadWorkList not empty when starting to build loop chains."); 2524 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2525 2526 // Check if we have profile data for this function. If yes, we will rotate 2527 // this loop by modeling costs more precisely which requires the profile data 2528 // for better layout. 2529 bool RotateLoopWithProfile = 2530 ForcePreciseRotationCost || 2531 (PreciseRotationCost && F->getFunction().hasProfileData()); 2532 2533 // First check to see if there is an obviously preferable top block for the 2534 // loop. This will default to the header, but may end up as one of the 2535 // predecessors to the header if there is one which will result in strictly 2536 // fewer branches in the loop body. 2537 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2538 2539 // If we selected just the header for the loop top, look for a potentially 2540 // profitable exit block in the event that rotating the loop can eliminate 2541 // branches by placing an exit edge at the bottom. 2542 // 2543 // Loops are processed innermost to uttermost, make sure we clear 2544 // PreferredLoopExit before processing a new loop. 2545 PreferredLoopExit = nullptr; 2546 BlockFrequency ExitFreq; 2547 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2548 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2549 2550 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2551 2552 // FIXME: This is a really lame way of walking the chains in the loop: we 2553 // walk the blocks, and use a set to prevent visiting a particular chain 2554 // twice. 2555 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2556 assert(LoopChain.UnscheduledPredecessors == 0 && 2557 "LoopChain should not have unscheduled predecessors."); 2558 UpdatedPreds.insert(&LoopChain); 2559 2560 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2561 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2562 2563 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2564 2565 if (RotateLoopWithProfile) 2566 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2567 else 2568 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2569 2570 LLVM_DEBUG({ 2571 // Crash at the end so we get all of the debugging output first. 2572 bool BadLoop = false; 2573 if (LoopChain.UnscheduledPredecessors) { 2574 BadLoop = true; 2575 dbgs() << "Loop chain contains a block without its preds placed!\n" 2576 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2577 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2578 } 2579 for (MachineBasicBlock *ChainBB : LoopChain) { 2580 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2581 if (!LoopBlockSet.remove(ChainBB)) { 2582 // We don't mark the loop as bad here because there are real situations 2583 // where this can occur. For example, with an unanalyzable fallthrough 2584 // from a loop block to a non-loop block or vice versa. 2585 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2586 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2587 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2588 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2589 } 2590 } 2591 2592 if (!LoopBlockSet.empty()) { 2593 BadLoop = true; 2594 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2595 dbgs() << "Loop contains blocks never placed into a chain!\n" 2596 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2597 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2598 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2599 } 2600 assert(!BadLoop && "Detected problems with the placement of this loop."); 2601 }); 2602 2603 BlockWorkList.clear(); 2604 EHPadWorkList.clear(); 2605 } 2606 2607 void MachineBlockPlacement::buildCFGChains() { 2608 // Ensure that every BB in the function has an associated chain to simplify 2609 // the assumptions of the remaining algorithm. 2610 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2611 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2612 ++FI) { 2613 MachineBasicBlock *BB = &*FI; 2614 BlockChain *Chain = 2615 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2616 // Also, merge any blocks which we cannot reason about and must preserve 2617 // the exact fallthrough behavior for. 2618 while (true) { 2619 Cond.clear(); 2620 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2621 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2622 break; 2623 2624 MachineFunction::iterator NextFI = std::next(FI); 2625 MachineBasicBlock *NextBB = &*NextFI; 2626 // Ensure that the layout successor is a viable block, as we know that 2627 // fallthrough is a possibility. 2628 assert(NextFI != FE && "Can't fallthrough past the last block."); 2629 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2630 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2631 << "\n"); 2632 Chain->merge(NextBB, nullptr); 2633 #ifndef NDEBUG 2634 BlocksWithUnanalyzableExits.insert(&*BB); 2635 #endif 2636 FI = NextFI; 2637 BB = NextBB; 2638 } 2639 } 2640 2641 // Build any loop-based chains. 2642 PreferredLoopExit = nullptr; 2643 for (MachineLoop *L : *MLI) 2644 buildLoopChains(*L); 2645 2646 assert(BlockWorkList.empty() && 2647 "BlockWorkList should be empty before building final chain."); 2648 assert(EHPadWorkList.empty() && 2649 "EHPadWorkList should be empty before building final chain."); 2650 2651 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2652 for (MachineBasicBlock &MBB : *F) 2653 fillWorkLists(&MBB, UpdatedPreds); 2654 2655 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2656 buildChain(&F->front(), FunctionChain); 2657 2658 #ifndef NDEBUG 2659 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2660 #endif 2661 LLVM_DEBUG({ 2662 // Crash at the end so we get all of the debugging output first. 2663 bool BadFunc = false; 2664 FunctionBlockSetType FunctionBlockSet; 2665 for (MachineBasicBlock &MBB : *F) 2666 FunctionBlockSet.insert(&MBB); 2667 2668 for (MachineBasicBlock *ChainBB : FunctionChain) 2669 if (!FunctionBlockSet.erase(ChainBB)) { 2670 BadFunc = true; 2671 dbgs() << "Function chain contains a block not in the function!\n" 2672 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2673 } 2674 2675 if (!FunctionBlockSet.empty()) { 2676 BadFunc = true; 2677 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2678 dbgs() << "Function contains blocks never placed into a chain!\n" 2679 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2680 } 2681 assert(!BadFunc && "Detected problems with the block placement."); 2682 }); 2683 2684 // Splice the blocks into place. 2685 MachineFunction::iterator InsertPos = F->begin(); 2686 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2687 for (MachineBasicBlock *ChainBB : FunctionChain) { 2688 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2689 : " ... ") 2690 << getBlockName(ChainBB) << "\n"); 2691 if (InsertPos != MachineFunction::iterator(ChainBB)) 2692 F->splice(InsertPos, ChainBB); 2693 else 2694 ++InsertPos; 2695 2696 // Update the terminator of the previous block. 2697 if (ChainBB == *FunctionChain.begin()) 2698 continue; 2699 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2700 2701 // FIXME: It would be awesome of updateTerminator would just return rather 2702 // than assert when the branch cannot be analyzed in order to remove this 2703 // boiler plate. 2704 Cond.clear(); 2705 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2706 2707 #ifndef NDEBUG 2708 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2709 // Given the exact block placement we chose, we may actually not _need_ to 2710 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2711 // do that at this point is a bug. 2712 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2713 !PrevBB->canFallThrough()) && 2714 "Unexpected block with un-analyzable fallthrough!"); 2715 Cond.clear(); 2716 TBB = FBB = nullptr; 2717 } 2718 #endif 2719 2720 // The "PrevBB" is not yet updated to reflect current code layout, so, 2721 // o. it may fall-through to a block without explicit "goto" instruction 2722 // before layout, and no longer fall-through it after layout; or 2723 // o. just opposite. 2724 // 2725 // analyzeBranch() may return erroneous value for FBB when these two 2726 // situations take place. For the first scenario FBB is mistakenly set NULL; 2727 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2728 // mistakenly pointing to "*BI". 2729 // Thus, if the future change needs to use FBB before the layout is set, it 2730 // has to correct FBB first by using the code similar to the following: 2731 // 2732 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2733 // PrevBB->updateTerminator(); 2734 // Cond.clear(); 2735 // TBB = FBB = nullptr; 2736 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2737 // // FIXME: This should never take place. 2738 // TBB = FBB = nullptr; 2739 // } 2740 // } 2741 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2742 PrevBB->updateTerminator(); 2743 } 2744 2745 // Fixup the last block. 2746 Cond.clear(); 2747 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2748 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2749 F->back().updateTerminator(); 2750 2751 BlockWorkList.clear(); 2752 EHPadWorkList.clear(); 2753 } 2754 2755 void MachineBlockPlacement::optimizeBranches() { 2756 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2757 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2758 2759 // Now that all the basic blocks in the chain have the proper layout, 2760 // make a final call to AnalyzeBranch with AllowModify set. 2761 // Indeed, the target may be able to optimize the branches in a way we 2762 // cannot because all branches may not be analyzable. 2763 // E.g., the target may be able to remove an unconditional branch to 2764 // a fallthrough when it occurs after predicated terminators. 2765 for (MachineBasicBlock *ChainBB : FunctionChain) { 2766 Cond.clear(); 2767 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2768 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2769 // If PrevBB has a two-way branch, try to re-order the branches 2770 // such that we branch to the successor with higher probability first. 2771 if (TBB && !Cond.empty() && FBB && 2772 MBPI->getEdgeProbability(ChainBB, FBB) > 2773 MBPI->getEdgeProbability(ChainBB, TBB) && 2774 !TII->reverseBranchCondition(Cond)) { 2775 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2776 << getBlockName(ChainBB) << "\n"); 2777 LLVM_DEBUG(dbgs() << " Edge probability: " 2778 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2779 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2780 DebugLoc dl; // FIXME: this is nowhere 2781 TII->removeBranch(*ChainBB); 2782 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2783 ChainBB->updateTerminator(); 2784 } 2785 } 2786 } 2787 } 2788 2789 void MachineBlockPlacement::alignBlocks() { 2790 // Walk through the backedges of the function now that we have fully laid out 2791 // the basic blocks and align the destination of each backedge. We don't rely 2792 // exclusively on the loop info here so that we can align backedges in 2793 // unnatural CFGs and backedges that were introduced purely because of the 2794 // loop rotations done during this layout pass. 2795 if (F->getFunction().hasMinSize() || 2796 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2797 return; 2798 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2799 if (FunctionChain.begin() == FunctionChain.end()) 2800 return; // Empty chain. 2801 2802 const BranchProbability ColdProb(1, 5); // 20% 2803 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2804 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2805 for (MachineBasicBlock *ChainBB : FunctionChain) { 2806 if (ChainBB == *FunctionChain.begin()) 2807 continue; 2808 2809 // Don't align non-looping basic blocks. These are unlikely to execute 2810 // enough times to matter in practice. Note that we'll still handle 2811 // unnatural CFGs inside of a natural outer loop (the common case) and 2812 // rotated loops. 2813 MachineLoop *L = MLI->getLoopFor(ChainBB); 2814 if (!L) 2815 continue; 2816 2817 const Align Align = TLI->getPrefLoopAlignment(L); 2818 if (Align == 1) 2819 continue; // Don't care about loop alignment. 2820 2821 // If the block is cold relative to the function entry don't waste space 2822 // aligning it. 2823 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2824 if (Freq < WeightedEntryFreq) 2825 continue; 2826 2827 // If the block is cold relative to its loop header, don't align it 2828 // regardless of what edges into the block exist. 2829 MachineBasicBlock *LoopHeader = L->getHeader(); 2830 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2831 if (Freq < (LoopHeaderFreq * ColdProb)) 2832 continue; 2833 2834 // Check for the existence of a non-layout predecessor which would benefit 2835 // from aligning this block. 2836 MachineBasicBlock *LayoutPred = 2837 &*std::prev(MachineFunction::iterator(ChainBB)); 2838 2839 // Force alignment if all the predecessors are jumps. We already checked 2840 // that the block isn't cold above. 2841 if (!LayoutPred->isSuccessor(ChainBB)) { 2842 ChainBB->setAlignment(Align); 2843 continue; 2844 } 2845 2846 // Align this block if the layout predecessor's edge into this block is 2847 // cold relative to the block. When this is true, other predecessors make up 2848 // all of the hot entries into the block and thus alignment is likely to be 2849 // important. 2850 BranchProbability LayoutProb = 2851 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2852 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2853 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2854 ChainBB->setAlignment(Align); 2855 } 2856 } 2857 2858 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2859 /// it was duplicated into its chain predecessor and removed. 2860 /// \p BB - Basic block that may be duplicated. 2861 /// 2862 /// \p LPred - Chosen layout predecessor of \p BB. 2863 /// Updated to be the chain end if LPred is removed. 2864 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2865 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2866 /// Used to identify which blocks to update predecessor 2867 /// counts. 2868 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2869 /// chosen in the given order due to unnatural CFG 2870 /// only needed if \p BB is removed and 2871 /// \p PrevUnplacedBlockIt pointed to \p BB. 2872 /// @return true if \p BB was removed. 2873 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2874 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2875 const MachineBasicBlock *LoopHeaderBB, 2876 BlockChain &Chain, BlockFilterSet *BlockFilter, 2877 MachineFunction::iterator &PrevUnplacedBlockIt) { 2878 bool Removed, DuplicatedToLPred; 2879 bool DuplicatedToOriginalLPred; 2880 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2881 PrevUnplacedBlockIt, 2882 DuplicatedToLPred); 2883 if (!Removed) 2884 return false; 2885 DuplicatedToOriginalLPred = DuplicatedToLPred; 2886 // Iteratively try to duplicate again. It can happen that a block that is 2887 // duplicated into is still small enough to be duplicated again. 2888 // No need to call markBlockSuccessors in this case, as the blocks being 2889 // duplicated from here on are already scheduled. 2890 // Note that DuplicatedToLPred always implies Removed. 2891 while (DuplicatedToLPred) { 2892 assert(Removed && "Block must have been removed to be duplicated into its " 2893 "layout predecessor."); 2894 MachineBasicBlock *DupBB, *DupPred; 2895 // The removal callback causes Chain.end() to be updated when a block is 2896 // removed. On the first pass through the loop, the chain end should be the 2897 // same as it was on function entry. On subsequent passes, because we are 2898 // duplicating the block at the end of the chain, if it is removed the 2899 // chain will have shrunk by one block. 2900 BlockChain::iterator ChainEnd = Chain.end(); 2901 DupBB = *(--ChainEnd); 2902 // Now try to duplicate again. 2903 if (ChainEnd == Chain.begin()) 2904 break; 2905 DupPred = *std::prev(ChainEnd); 2906 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2907 PrevUnplacedBlockIt, 2908 DuplicatedToLPred); 2909 } 2910 // If BB was duplicated into LPred, it is now scheduled. But because it was 2911 // removed, markChainSuccessors won't be called for its chain. Instead we 2912 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2913 // at the end because repeating the tail duplication can increase the number 2914 // of unscheduled predecessors. 2915 LPred = *std::prev(Chain.end()); 2916 if (DuplicatedToOriginalLPred) 2917 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2918 return true; 2919 } 2920 2921 /// Tail duplicate \p BB into (some) predecessors if profitable. 2922 /// \p BB - Basic block that may be duplicated 2923 /// \p LPred - Chosen layout predecessor of \p BB 2924 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2925 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2926 /// Used to identify which blocks to update predecessor 2927 /// counts. 2928 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2929 /// chosen in the given order due to unnatural CFG 2930 /// only needed if \p BB is removed and 2931 /// \p PrevUnplacedBlockIt pointed to \p BB. 2932 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2933 /// only be true if the block was removed. 2934 /// \return - True if the block was duplicated into all preds and removed. 2935 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2936 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2937 BlockChain &Chain, BlockFilterSet *BlockFilter, 2938 MachineFunction::iterator &PrevUnplacedBlockIt, 2939 bool &DuplicatedToLPred) { 2940 DuplicatedToLPred = false; 2941 if (!shouldTailDuplicate(BB)) 2942 return false; 2943 2944 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2945 << "\n"); 2946 2947 // This has to be a callback because none of it can be done after 2948 // BB is deleted. 2949 bool Removed = false; 2950 auto RemovalCallback = 2951 [&](MachineBasicBlock *RemBB) { 2952 // Signal to outer function 2953 Removed = true; 2954 2955 // Conservative default. 2956 bool InWorkList = true; 2957 // Remove from the Chain and Chain Map 2958 if (BlockToChain.count(RemBB)) { 2959 BlockChain *Chain = BlockToChain[RemBB]; 2960 InWorkList = Chain->UnscheduledPredecessors == 0; 2961 Chain->remove(RemBB); 2962 BlockToChain.erase(RemBB); 2963 } 2964 2965 // Handle the unplaced block iterator 2966 if (&(*PrevUnplacedBlockIt) == RemBB) { 2967 PrevUnplacedBlockIt++; 2968 } 2969 2970 // Handle the Work Lists 2971 if (InWorkList) { 2972 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2973 if (RemBB->isEHPad()) 2974 RemoveList = EHPadWorkList; 2975 RemoveList.erase( 2976 llvm::remove_if(RemoveList, 2977 [RemBB](MachineBasicBlock *BB) { 2978 return BB == RemBB; 2979 }), 2980 RemoveList.end()); 2981 } 2982 2983 // Handle the filter set 2984 if (BlockFilter) { 2985 BlockFilter->remove(RemBB); 2986 } 2987 2988 // Remove the block from loop info. 2989 MLI->removeBlock(RemBB); 2990 if (RemBB == PreferredLoopExit) 2991 PreferredLoopExit = nullptr; 2992 2993 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2994 << getBlockName(RemBB) << "\n"); 2995 }; 2996 auto RemovalCallbackRef = 2997 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2998 2999 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3000 bool IsSimple = TailDup.isSimpleBB(BB); 3001 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 3002 &DuplicatedPreds, &RemovalCallbackRef); 3003 3004 // Update UnscheduledPredecessors to reflect tail-duplication. 3005 DuplicatedToLPred = false; 3006 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3007 // We're only looking for unscheduled predecessors that match the filter. 3008 BlockChain* PredChain = BlockToChain[Pred]; 3009 if (Pred == LPred) 3010 DuplicatedToLPred = true; 3011 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3012 || PredChain == &Chain) 3013 continue; 3014 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3015 if (BlockFilter && !BlockFilter->count(NewSucc)) 3016 continue; 3017 BlockChain *NewChain = BlockToChain[NewSucc]; 3018 if (NewChain != &Chain && NewChain != PredChain) 3019 NewChain->UnscheduledPredecessors++; 3020 } 3021 } 3022 return Removed; 3023 } 3024 3025 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3026 if (skipFunction(MF.getFunction())) 3027 return false; 3028 3029 // Check for single-block functions and skip them. 3030 if (std::next(MF.begin()) == MF.end()) 3031 return false; 3032 3033 F = &MF; 3034 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3035 MBFI = std::make_unique<BranchFolder::MBFIWrapper>( 3036 getAnalysis<MachineBlockFrequencyInfo>()); 3037 MLI = &getAnalysis<MachineLoopInfo>(); 3038 TII = MF.getSubtarget().getInstrInfo(); 3039 TLI = MF.getSubtarget().getTargetLowering(); 3040 MPDT = nullptr; 3041 3042 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3043 // there are no MachineLoops. 3044 PreferredLoopExit = nullptr; 3045 3046 assert(BlockToChain.empty() && 3047 "BlockToChain map should be empty before starting placement."); 3048 assert(ComputedEdges.empty() && 3049 "Computed Edge map should be empty before starting placement."); 3050 3051 unsigned TailDupSize = TailDupPlacementThreshold; 3052 // If only the aggressive threshold is explicitly set, use it. 3053 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3054 TailDupPlacementThreshold.getNumOccurrences() == 0) 3055 TailDupSize = TailDupPlacementAggressiveThreshold; 3056 3057 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3058 // For aggressive optimization, we can adjust some thresholds to be less 3059 // conservative. 3060 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3061 // At O3 we should be more willing to copy blocks for tail duplication. This 3062 // increases size pressure, so we only do it at O3 3063 // Do this unless only the regular threshold is explicitly set. 3064 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3065 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3066 TailDupSize = TailDupPlacementAggressiveThreshold; 3067 } 3068 3069 if (allowTailDupPlacement()) { 3070 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3071 if (MF.getFunction().hasOptSize()) 3072 TailDupSize = 1; 3073 bool PreRegAlloc = false; 3074 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 3075 precomputeTriangleChains(); 3076 } 3077 3078 buildCFGChains(); 3079 3080 // Changing the layout can create new tail merging opportunities. 3081 // TailMerge can create jump into if branches that make CFG irreducible for 3082 // HW that requires structured CFG. 3083 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3084 PassConfig->getEnableTailMerge() && 3085 BranchFoldPlacement; 3086 // No tail merging opportunities if the block number is less than four. 3087 if (MF.size() > 3 && EnableTailMerge) { 3088 unsigned TailMergeSize = TailDupSize + 1; 3089 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 3090 *MBPI, TailMergeSize); 3091 3092 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 3093 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 3094 MMIWP ? &MMIWP->getMMI() : nullptr, MLI, 3095 /*AfterPlacement=*/true)) { 3096 // Redo the layout if tail merging creates/removes/moves blocks. 3097 BlockToChain.clear(); 3098 ComputedEdges.clear(); 3099 // Must redo the post-dominator tree if blocks were changed. 3100 if (MPDT) 3101 MPDT->runOnMachineFunction(MF); 3102 ChainAllocator.DestroyAll(); 3103 buildCFGChains(); 3104 } 3105 } 3106 3107 optimizeBranches(); 3108 alignBlocks(); 3109 3110 BlockToChain.clear(); 3111 ComputedEdges.clear(); 3112 ChainAllocator.DestroyAll(); 3113 3114 if (AlignAllBlock) 3115 // Align all of the blocks in the function to a specific alignment. 3116 for (MachineBasicBlock &MBB : MF) 3117 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3118 else if (AlignAllNonFallThruBlocks) { 3119 // Align all of the blocks that have no fall-through predecessors to a 3120 // specific alignment. 3121 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3122 auto LayoutPred = std::prev(MBI); 3123 if (!LayoutPred->isSuccessor(&*MBI)) 3124 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3125 } 3126 } 3127 if (ViewBlockLayoutWithBFI != GVDT_None && 3128 (ViewBlockFreqFuncName.empty() || 3129 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3130 MBFI->view("MBP." + MF.getName(), false); 3131 } 3132 3133 3134 // We always return true as we have no way to track whether the final order 3135 // differs from the original order. 3136 return true; 3137 } 3138 3139 namespace { 3140 3141 /// A pass to compute block placement statistics. 3142 /// 3143 /// A separate pass to compute interesting statistics for evaluating block 3144 /// placement. This is separate from the actual placement pass so that they can 3145 /// be computed in the absence of any placement transformations or when using 3146 /// alternative placement strategies. 3147 class MachineBlockPlacementStats : public MachineFunctionPass { 3148 /// A handle to the branch probability pass. 3149 const MachineBranchProbabilityInfo *MBPI; 3150 3151 /// A handle to the function-wide block frequency pass. 3152 const MachineBlockFrequencyInfo *MBFI; 3153 3154 public: 3155 static char ID; // Pass identification, replacement for typeid 3156 3157 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3158 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3159 } 3160 3161 bool runOnMachineFunction(MachineFunction &F) override; 3162 3163 void getAnalysisUsage(AnalysisUsage &AU) const override { 3164 AU.addRequired<MachineBranchProbabilityInfo>(); 3165 AU.addRequired<MachineBlockFrequencyInfo>(); 3166 AU.setPreservesAll(); 3167 MachineFunctionPass::getAnalysisUsage(AU); 3168 } 3169 }; 3170 3171 } // end anonymous namespace 3172 3173 char MachineBlockPlacementStats::ID = 0; 3174 3175 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3176 3177 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3178 "Basic Block Placement Stats", false, false) 3179 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3180 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3181 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3182 "Basic Block Placement Stats", false, false) 3183 3184 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3185 // Check for single-block functions and skip them. 3186 if (std::next(F.begin()) == F.end()) 3187 return false; 3188 3189 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3190 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3191 3192 for (MachineBasicBlock &MBB : F) { 3193 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3194 Statistic &NumBranches = 3195 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3196 Statistic &BranchTakenFreq = 3197 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3198 for (MachineBasicBlock *Succ : MBB.successors()) { 3199 // Skip if this successor is a fallthrough. 3200 if (MBB.isLayoutSuccessor(Succ)) 3201 continue; 3202 3203 BlockFrequency EdgeFreq = 3204 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3205 ++NumBranches; 3206 BranchTakenFreq += EdgeFreq.getFrequency(); 3207 } 3208 } 3209 3210 return false; 3211 } 3212