xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 2eb30fafa5f95d60353909c7c676431f2a29a745)
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "block-placement"
75 
76 STATISTIC(NumCondBranches, "Number of conditional branches");
77 STATISTIC(NumUncondBranches, "Number of unconditional branches");
78 STATISTIC(CondBranchTakenFreq,
79           "Potential frequency of taking conditional branches");
80 STATISTIC(UncondBranchTakenFreq,
81           "Potential frequency of taking unconditional branches");
82 
83 static cl::opt<unsigned> AlignAllBlock(
84     "align-all-blocks",
85     cl::desc("Force the alignment of all blocks in the function in log2 format "
86              "(e.g 4 means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
90     "align-all-nofallthru-blocks",
91     cl::desc("Force the alignment of all blocks that have no fall-through "
92              "predecessors (i.e. don't add nops that are executed). In log2 "
93              "format (e.g 4 means align on 16B boundaries)."),
94     cl::init(0), cl::Hidden);
95 
96 // FIXME: Find a good default for this flag and remove the flag.
97 static cl::opt<unsigned> ExitBlockBias(
98     "block-placement-exit-block-bias",
99     cl::desc("Block frequency percentage a loop exit block needs "
100              "over the original exit to be considered the new exit."),
101     cl::init(0), cl::Hidden);
102 
103 // Definition:
104 // - Outlining: placement of a basic block outside the chain or hot path.
105 
106 static cl::opt<unsigned> LoopToColdBlockRatio(
107     "loop-to-cold-block-ratio",
108     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
109              "(frequency of block) is greater than this ratio"),
110     cl::init(5), cl::Hidden);
111 
112 static cl::opt<bool> ForceLoopColdBlock(
113     "force-loop-cold-block",
114     cl::desc("Force outlining cold blocks from loops."),
115     cl::init(false), cl::Hidden);
116 
117 static cl::opt<bool>
118     PreciseRotationCost("precise-rotation-cost",
119                         cl::desc("Model the cost of loop rotation more "
120                                  "precisely by using profile data."),
121                         cl::init(false), cl::Hidden);
122 
123 static cl::opt<bool>
124     ForcePreciseRotationCost("force-precise-rotation-cost",
125                              cl::desc("Force the use of precise cost "
126                                       "loop rotation strategy."),
127                              cl::init(false), cl::Hidden);
128 
129 static cl::opt<unsigned> MisfetchCost(
130     "misfetch-cost",
131     cl::desc("Cost that models the probabilistic risk of an instruction "
132              "misfetch due to a jump comparing to falling through, whose cost "
133              "is zero."),
134     cl::init(1), cl::Hidden);
135 
136 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
137                                       cl::desc("Cost of jump instructions."),
138                                       cl::init(1), cl::Hidden);
139 static cl::opt<bool>
140 TailDupPlacement("tail-dup-placement",
141               cl::desc("Perform tail duplication during placement. "
142                        "Creates more fallthrough opportunites in "
143                        "outline branches."),
144               cl::init(true), cl::Hidden);
145 
146 static cl::opt<bool>
147 BranchFoldPlacement("branch-fold-placement",
148               cl::desc("Perform branch folding during placement. "
149                        "Reduces code size."),
150               cl::init(true), cl::Hidden);
151 
152 // Heuristic for tail duplication.
153 static cl::opt<unsigned> TailDupPlacementThreshold(
154     "tail-dup-placement-threshold",
155     cl::desc("Instruction cutoff for tail duplication during layout. "
156              "Tail merging during layout is forced to have a threshold "
157              "that won't conflict."), cl::init(2),
158     cl::Hidden);
159 
160 // Heuristic for aggressive tail duplication.
161 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
162     "tail-dup-placement-aggressive-threshold",
163     cl::desc("Instruction cutoff for aggressive tail duplication during "
164              "layout. Used at -O3. Tail merging during layout is forced to "
165              "have a threshold that won't conflict."), cl::init(4),
166     cl::Hidden);
167 
168 // Heuristic for tail duplication.
169 static cl::opt<unsigned> TailDupPlacementPenalty(
170     "tail-dup-placement-penalty",
171     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
172              "Copying can increase fallthrough, but it also increases icache "
173              "pressure. This parameter controls the penalty to account for that. "
174              "Percent as integer."),
175     cl::init(2),
176     cl::Hidden);
177 
178 // Heuristic for triangle chains.
179 static cl::opt<unsigned> TriangleChainCount(
180     "triangle-chain-count",
181     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
182              "triangle tail duplication heuristic to kick in. 0 to disable."),
183     cl::init(2),
184     cl::Hidden);
185 
186 extern cl::opt<unsigned> StaticLikelyProb;
187 extern cl::opt<unsigned> ProfileLikelyProb;
188 
189 // Internal option used to control BFI display only after MBP pass.
190 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
191 // -view-block-layout-with-bfi=
192 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
193 
194 // Command line option to specify the name of the function for CFG dump
195 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
196 extern cl::opt<std::string> ViewBlockFreqFuncName;
197 
198 namespace {
199 
200 class BlockChain;
201 
202 /// Type for our function-wide basic block -> block chain mapping.
203 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
204 
205 /// A chain of blocks which will be laid out contiguously.
206 ///
207 /// This is the datastructure representing a chain of consecutive blocks that
208 /// are profitable to layout together in order to maximize fallthrough
209 /// probabilities and code locality. We also can use a block chain to represent
210 /// a sequence of basic blocks which have some external (correctness)
211 /// requirement for sequential layout.
212 ///
213 /// Chains can be built around a single basic block and can be merged to grow
214 /// them. They participate in a block-to-chain mapping, which is updated
215 /// automatically as chains are merged together.
216 class BlockChain {
217   /// The sequence of blocks belonging to this chain.
218   ///
219   /// This is the sequence of blocks for a particular chain. These will be laid
220   /// out in-order within the function.
221   SmallVector<MachineBasicBlock *, 4> Blocks;
222 
223   /// A handle to the function-wide basic block to block chain mapping.
224   ///
225   /// This is retained in each block chain to simplify the computation of child
226   /// block chains for SCC-formation and iteration. We store the edges to child
227   /// basic blocks, and map them back to their associated chains using this
228   /// structure.
229   BlockToChainMapType &BlockToChain;
230 
231 public:
232   /// Construct a new BlockChain.
233   ///
234   /// This builds a new block chain representing a single basic block in the
235   /// function. It also registers itself as the chain that block participates
236   /// in with the BlockToChain mapping.
237   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
238       : Blocks(1, BB), BlockToChain(BlockToChain) {
239     assert(BB && "Cannot create a chain with a null basic block");
240     BlockToChain[BB] = this;
241   }
242 
243   /// Iterator over blocks within the chain.
244   using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
245   using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
246 
247   /// Beginning of blocks within the chain.
248   iterator begin() { return Blocks.begin(); }
249   const_iterator begin() const { return Blocks.begin(); }
250 
251   /// End of blocks within the chain.
252   iterator end() { return Blocks.end(); }
253   const_iterator end() const { return Blocks.end(); }
254 
255   bool remove(MachineBasicBlock* BB) {
256     for(iterator i = begin(); i != end(); ++i) {
257       if (*i == BB) {
258         Blocks.erase(i);
259         return true;
260       }
261     }
262     return false;
263   }
264 
265   /// Merge a block chain into this one.
266   ///
267   /// This routine merges a block chain into this one. It takes care of forming
268   /// a contiguous sequence of basic blocks, updating the edge list, and
269   /// updating the block -> chain mapping. It does not free or tear down the
270   /// old chain, but the old chain's block list is no longer valid.
271   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
272     assert(BB && "Can't merge a null block.");
273     assert(!Blocks.empty() && "Can't merge into an empty chain.");
274 
275     // Fast path in case we don't have a chain already.
276     if (!Chain) {
277       assert(!BlockToChain[BB] &&
278              "Passed chain is null, but BB has entry in BlockToChain.");
279       Blocks.push_back(BB);
280       BlockToChain[BB] = this;
281       return;
282     }
283 
284     assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
285     assert(Chain->begin() != Chain->end());
286 
287     // Update the incoming blocks to point to this chain, and add them to the
288     // chain structure.
289     for (MachineBasicBlock *ChainBB : *Chain) {
290       Blocks.push_back(ChainBB);
291       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
292       BlockToChain[ChainBB] = this;
293     }
294   }
295 
296 #ifndef NDEBUG
297   /// Dump the blocks in this chain.
298   LLVM_DUMP_METHOD void dump() {
299     for (MachineBasicBlock *MBB : *this)
300       MBB->dump();
301   }
302 #endif // NDEBUG
303 
304   /// Count of predecessors of any block within the chain which have not
305   /// yet been scheduled.  In general, we will delay scheduling this chain
306   /// until those predecessors are scheduled (or we find a sufficiently good
307   /// reason to override this heuristic.)  Note that when forming loop chains,
308   /// blocks outside the loop are ignored and treated as if they were already
309   /// scheduled.
310   ///
311   /// Note: This field is reinitialized multiple times - once for each loop,
312   /// and then once for the function as a whole.
313   unsigned UnscheduledPredecessors = 0;
314 };
315 
316 class MachineBlockPlacement : public MachineFunctionPass {
317   /// A type for a block filter set.
318   using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
319 
320   /// Pair struct containing basic block and taildup profitability
321   struct BlockAndTailDupResult {
322     MachineBasicBlock *BB;
323     bool ShouldTailDup;
324   };
325 
326   /// Triple struct containing edge weight and the edge.
327   struct WeightedEdge {
328     BlockFrequency Weight;
329     MachineBasicBlock *Src;
330     MachineBasicBlock *Dest;
331   };
332 
333   /// work lists of blocks that are ready to be laid out
334   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
335   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
336 
337   /// Edges that have already been computed as optimal.
338   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
339 
340   /// Machine Function
341   MachineFunction *F;
342 
343   /// A handle to the branch probability pass.
344   const MachineBranchProbabilityInfo *MBPI;
345 
346   /// A handle to the function-wide block frequency pass.
347   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
348 
349   /// A handle to the loop info.
350   MachineLoopInfo *MLI;
351 
352   /// Preferred loop exit.
353   /// Member variable for convenience. It may be removed by duplication deep
354   /// in the call stack.
355   MachineBasicBlock *PreferredLoopExit;
356 
357   /// A handle to the target's instruction info.
358   const TargetInstrInfo *TII;
359 
360   /// A handle to the target's lowering info.
361   const TargetLoweringBase *TLI;
362 
363   /// A handle to the post dominator tree.
364   MachinePostDominatorTree *MPDT;
365 
366   /// Duplicator used to duplicate tails during placement.
367   ///
368   /// Placement decisions can open up new tail duplication opportunities, but
369   /// since tail duplication affects placement decisions of later blocks, it
370   /// must be done inline.
371   TailDuplicator TailDup;
372 
373   /// Allocator and owner of BlockChain structures.
374   ///
375   /// We build BlockChains lazily while processing the loop structure of
376   /// a function. To reduce malloc traffic, we allocate them using this
377   /// slab-like allocator, and destroy them after the pass completes. An
378   /// important guarantee is that this allocator produces stable pointers to
379   /// the chains.
380   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
381 
382   /// Function wide BasicBlock to BlockChain mapping.
383   ///
384   /// This mapping allows efficiently moving from any given basic block to the
385   /// BlockChain it participates in, if any. We use it to, among other things,
386   /// allow implicitly defining edges between chains as the existing edges
387   /// between basic blocks.
388   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
389 
390 #ifndef NDEBUG
391   /// The set of basic blocks that have terminators that cannot be fully
392   /// analyzed.  These basic blocks cannot be re-ordered safely by
393   /// MachineBlockPlacement, and we must preserve physical layout of these
394   /// blocks and their successors through the pass.
395   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
396 #endif
397 
398   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
399   /// if the count goes to 0, add them to the appropriate work list.
400   void markChainSuccessors(
401       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
402       const BlockFilterSet *BlockFilter = nullptr);
403 
404   /// Decrease the UnscheduledPredecessors count for a single block, and
405   /// if the count goes to 0, add them to the appropriate work list.
406   void markBlockSuccessors(
407       const BlockChain &Chain, const MachineBasicBlock *BB,
408       const MachineBasicBlock *LoopHeaderBB,
409       const BlockFilterSet *BlockFilter = nullptr);
410 
411   BranchProbability
412   collectViableSuccessors(
413       const MachineBasicBlock *BB, const BlockChain &Chain,
414       const BlockFilterSet *BlockFilter,
415       SmallVector<MachineBasicBlock *, 4> &Successors);
416   bool shouldPredBlockBeOutlined(
417       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
418       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
419       BranchProbability SuccProb, BranchProbability HotProb);
420   bool repeatedlyTailDuplicateBlock(
421       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
422       const MachineBasicBlock *LoopHeaderBB,
423       BlockChain &Chain, BlockFilterSet *BlockFilter,
424       MachineFunction::iterator &PrevUnplacedBlockIt);
425   bool maybeTailDuplicateBlock(
426       MachineBasicBlock *BB, MachineBasicBlock *LPred,
427       BlockChain &Chain, BlockFilterSet *BlockFilter,
428       MachineFunction::iterator &PrevUnplacedBlockIt,
429       bool &DuplicatedToLPred);
430   bool hasBetterLayoutPredecessor(
431       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
432       const BlockChain &SuccChain, BranchProbability SuccProb,
433       BranchProbability RealSuccProb, const BlockChain &Chain,
434       const BlockFilterSet *BlockFilter);
435   BlockAndTailDupResult selectBestSuccessor(
436       const MachineBasicBlock *BB, const BlockChain &Chain,
437       const BlockFilterSet *BlockFilter);
438   MachineBasicBlock *selectBestCandidateBlock(
439       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
440   MachineBasicBlock *getFirstUnplacedBlock(
441       const BlockChain &PlacedChain,
442       MachineFunction::iterator &PrevUnplacedBlockIt,
443       const BlockFilterSet *BlockFilter);
444 
445   /// Add a basic block to the work list if it is appropriate.
446   ///
447   /// If the optional parameter BlockFilter is provided, only MBB
448   /// present in the set will be added to the worklist. If nullptr
449   /// is provided, no filtering occurs.
450   void fillWorkLists(const MachineBasicBlock *MBB,
451                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
452                      const BlockFilterSet *BlockFilter);
453 
454   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
455                   BlockFilterSet *BlockFilter = nullptr);
456   bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
457                                const MachineBasicBlock *OldTop);
458   bool hasViableTopFallthrough(const MachineBasicBlock *Top,
459                                const BlockFilterSet &LoopBlockSet);
460   BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
461                                     const BlockFilterSet &LoopBlockSet);
462   BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
463                                   const MachineBasicBlock *OldTop,
464                                   const MachineBasicBlock *ExitBB,
465                                   const BlockFilterSet &LoopBlockSet);
466   MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
467       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
468   MachineBasicBlock *findBestLoopTop(
469       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
470   MachineBasicBlock *findBestLoopExit(
471       const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
472       BlockFrequency &ExitFreq);
473   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
474   void buildLoopChains(const MachineLoop &L);
475   void rotateLoop(
476       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
477       BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
478   void rotateLoopWithProfile(
479       BlockChain &LoopChain, const MachineLoop &L,
480       const BlockFilterSet &LoopBlockSet);
481   void buildCFGChains();
482   void optimizeBranches();
483   void alignBlocks();
484   /// Returns true if a block should be tail-duplicated to increase fallthrough
485   /// opportunities.
486   bool shouldTailDuplicate(MachineBasicBlock *BB);
487   /// Check the edge frequencies to see if tail duplication will increase
488   /// fallthroughs.
489   bool isProfitableToTailDup(
490     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
491     BranchProbability QProb,
492     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
493 
494   /// Check for a trellis layout.
495   bool isTrellis(const MachineBasicBlock *BB,
496                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
497                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
498 
499   /// Get the best successor given a trellis layout.
500   BlockAndTailDupResult getBestTrellisSuccessor(
501       const MachineBasicBlock *BB,
502       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
503       BranchProbability AdjustedSumProb, const BlockChain &Chain,
504       const BlockFilterSet *BlockFilter);
505 
506   /// Get the best pair of non-conflicting edges.
507   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
508       const MachineBasicBlock *BB,
509       MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
510 
511   /// Returns true if a block can tail duplicate into all unplaced
512   /// predecessors. Filters based on loop.
513   bool canTailDuplicateUnplacedPreds(
514       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
515       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
516 
517   /// Find chains of triangles to tail-duplicate where a global analysis works,
518   /// but a local analysis would not find them.
519   void precomputeTriangleChains();
520 
521 public:
522   static char ID; // Pass identification, replacement for typeid
523 
524   MachineBlockPlacement() : MachineFunctionPass(ID) {
525     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
526   }
527 
528   bool runOnMachineFunction(MachineFunction &F) override;
529 
530   bool allowTailDupPlacement() const {
531     assert(F);
532     return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
533   }
534 
535   void getAnalysisUsage(AnalysisUsage &AU) const override {
536     AU.addRequired<MachineBranchProbabilityInfo>();
537     AU.addRequired<MachineBlockFrequencyInfo>();
538     if (TailDupPlacement)
539       AU.addRequired<MachinePostDominatorTree>();
540     AU.addRequired<MachineLoopInfo>();
541     AU.addRequired<TargetPassConfig>();
542     MachineFunctionPass::getAnalysisUsage(AU);
543   }
544 };
545 
546 } // end anonymous namespace
547 
548 char MachineBlockPlacement::ID = 0;
549 
550 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
551 
552 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
553                       "Branch Probability Basic Block Placement", false, false)
554 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
555 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
556 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
557 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
558 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
559                     "Branch Probability Basic Block Placement", false, false)
560 
561 #ifndef NDEBUG
562 /// Helper to print the name of a MBB.
563 ///
564 /// Only used by debug logging.
565 static std::string getBlockName(const MachineBasicBlock *BB) {
566   std::string Result;
567   raw_string_ostream OS(Result);
568   OS << printMBBReference(*BB);
569   OS << " ('" << BB->getName() << "')";
570   OS.flush();
571   return Result;
572 }
573 #endif
574 
575 /// Mark a chain's successors as having one fewer preds.
576 ///
577 /// When a chain is being merged into the "placed" chain, this routine will
578 /// quickly walk the successors of each block in the chain and mark them as
579 /// having one fewer active predecessor. It also adds any successors of this
580 /// chain which reach the zero-predecessor state to the appropriate worklist.
581 void MachineBlockPlacement::markChainSuccessors(
582     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
583     const BlockFilterSet *BlockFilter) {
584   // Walk all the blocks in this chain, marking their successors as having
585   // a predecessor placed.
586   for (MachineBasicBlock *MBB : Chain) {
587     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
588   }
589 }
590 
591 /// Mark a single block's successors as having one fewer preds.
592 ///
593 /// Under normal circumstances, this is only called by markChainSuccessors,
594 /// but if a block that was to be placed is completely tail-duplicated away,
595 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
596 /// for just that block.
597 void MachineBlockPlacement::markBlockSuccessors(
598     const BlockChain &Chain, const MachineBasicBlock *MBB,
599     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
600   // Add any successors for which this is the only un-placed in-loop
601   // predecessor to the worklist as a viable candidate for CFG-neutral
602   // placement. No subsequent placement of this block will violate the CFG
603   // shape, so we get to use heuristics to choose a favorable placement.
604   for (MachineBasicBlock *Succ : MBB->successors()) {
605     if (BlockFilter && !BlockFilter->count(Succ))
606       continue;
607     BlockChain &SuccChain = *BlockToChain[Succ];
608     // Disregard edges within a fixed chain, or edges to the loop header.
609     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
610       continue;
611 
612     // This is a cross-chain edge that is within the loop, so decrement the
613     // loop predecessor count of the destination chain.
614     if (SuccChain.UnscheduledPredecessors == 0 ||
615         --SuccChain.UnscheduledPredecessors > 0)
616       continue;
617 
618     auto *NewBB = *SuccChain.begin();
619     if (NewBB->isEHPad())
620       EHPadWorkList.push_back(NewBB);
621     else
622       BlockWorkList.push_back(NewBB);
623   }
624 }
625 
626 /// This helper function collects the set of successors of block
627 /// \p BB that are allowed to be its layout successors, and return
628 /// the total branch probability of edges from \p BB to those
629 /// blocks.
630 BranchProbability MachineBlockPlacement::collectViableSuccessors(
631     const MachineBasicBlock *BB, const BlockChain &Chain,
632     const BlockFilterSet *BlockFilter,
633     SmallVector<MachineBasicBlock *, 4> &Successors) {
634   // Adjust edge probabilities by excluding edges pointing to blocks that is
635   // either not in BlockFilter or is already in the current chain. Consider the
636   // following CFG:
637   //
638   //     --->A
639   //     |  / \
640   //     | B   C
641   //     |  \ / \
642   //     ----D   E
643   //
644   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
645   // A->C is chosen as a fall-through, D won't be selected as a successor of C
646   // due to CFG constraint (the probability of C->D is not greater than
647   // HotProb to break topo-order). If we exclude E that is not in BlockFilter
648   // when calculating the probability of C->D, D will be selected and we
649   // will get A C D B as the layout of this loop.
650   auto AdjustedSumProb = BranchProbability::getOne();
651   for (MachineBasicBlock *Succ : BB->successors()) {
652     bool SkipSucc = false;
653     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
654       SkipSucc = true;
655     } else {
656       BlockChain *SuccChain = BlockToChain[Succ];
657       if (SuccChain == &Chain) {
658         SkipSucc = true;
659       } else if (Succ != *SuccChain->begin()) {
660         LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
661                           << " -> Mid chain!\n");
662         continue;
663       }
664     }
665     if (SkipSucc)
666       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
667     else
668       Successors.push_back(Succ);
669   }
670 
671   return AdjustedSumProb;
672 }
673 
674 /// The helper function returns the branch probability that is adjusted
675 /// or normalized over the new total \p AdjustedSumProb.
676 static BranchProbability
677 getAdjustedProbability(BranchProbability OrigProb,
678                        BranchProbability AdjustedSumProb) {
679   BranchProbability SuccProb;
680   uint32_t SuccProbN = OrigProb.getNumerator();
681   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
682   if (SuccProbN >= SuccProbD)
683     SuccProb = BranchProbability::getOne();
684   else
685     SuccProb = BranchProbability(SuccProbN, SuccProbD);
686 
687   return SuccProb;
688 }
689 
690 /// Check if \p BB has exactly the successors in \p Successors.
691 static bool
692 hasSameSuccessors(MachineBasicBlock &BB,
693                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
694   if (BB.succ_size() != Successors.size())
695     return false;
696   // We don't want to count self-loops
697   if (Successors.count(&BB))
698     return false;
699   for (MachineBasicBlock *Succ : BB.successors())
700     if (!Successors.count(Succ))
701       return false;
702   return true;
703 }
704 
705 /// Check if a block should be tail duplicated to increase fallthrough
706 /// opportunities.
707 /// \p BB Block to check.
708 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
709   // Blocks with single successors don't create additional fallthrough
710   // opportunities. Don't duplicate them. TODO: When conditional exits are
711   // analyzable, allow them to be duplicated.
712   bool IsSimple = TailDup.isSimpleBB(BB);
713 
714   if (BB->succ_size() == 1)
715     return false;
716   return TailDup.shouldTailDuplicate(IsSimple, *BB);
717 }
718 
719 /// Compare 2 BlockFrequency's with a small penalty for \p A.
720 /// In order to be conservative, we apply a X% penalty to account for
721 /// increased icache pressure and static heuristics. For small frequencies
722 /// we use only the numerators to improve accuracy. For simplicity, we assume the
723 /// penalty is less than 100%
724 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
725 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
726                             uint64_t EntryFreq) {
727   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
728   BlockFrequency Gain = A - B;
729   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
730 }
731 
732 /// Check the edge frequencies to see if tail duplication will increase
733 /// fallthroughs. It only makes sense to call this function when
734 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
735 /// always locally profitable if we would have picked \p Succ without
736 /// considering duplication.
737 bool MachineBlockPlacement::isProfitableToTailDup(
738     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
739     BranchProbability QProb,
740     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
741   // We need to do a probability calculation to make sure this is profitable.
742   // First: does succ have a successor that post-dominates? This affects the
743   // calculation. The 2 relevant cases are:
744   //    BB         BB
745   //    | \Qout    | \Qout
746   //   P|  C       |P C
747   //    =   C'     =   C'
748   //    |  /Qin    |  /Qin
749   //    | /        | /
750   //    Succ       Succ
751   //    / \        | \  V
752   //  U/   =V      |U \
753   //  /     \      =   D
754   //  D      E     |  /
755   //               | /
756   //               |/
757   //               PDom
758   //  '=' : Branch taken for that CFG edge
759   // In the second case, Placing Succ while duplicating it into C prevents the
760   // fallthrough of Succ into either D or PDom, because they now have C as an
761   // unplaced predecessor
762 
763   // Start by figuring out which case we fall into
764   MachineBasicBlock *PDom = nullptr;
765   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
766   // Only scan the relevant successors
767   auto AdjustedSuccSumProb =
768       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
769   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
770   auto BBFreq = MBFI->getBlockFreq(BB);
771   auto SuccFreq = MBFI->getBlockFreq(Succ);
772   BlockFrequency P = BBFreq * PProb;
773   BlockFrequency Qout = BBFreq * QProb;
774   uint64_t EntryFreq = MBFI->getEntryFreq();
775   // If there are no more successors, it is profitable to copy, as it strictly
776   // increases fallthrough.
777   if (SuccSuccs.size() == 0)
778     return greaterWithBias(P, Qout, EntryFreq);
779 
780   auto BestSuccSucc = BranchProbability::getZero();
781   // Find the PDom or the best Succ if no PDom exists.
782   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
783     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
784     if (Prob > BestSuccSucc)
785       BestSuccSucc = Prob;
786     if (PDom == nullptr)
787       if (MPDT->dominates(SuccSucc, Succ)) {
788         PDom = SuccSucc;
789         break;
790       }
791   }
792   // For the comparisons, we need to know Succ's best incoming edge that isn't
793   // from BB.
794   auto SuccBestPred = BlockFrequency(0);
795   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
796     if (SuccPred == Succ || SuccPred == BB
797         || BlockToChain[SuccPred] == &Chain
798         || (BlockFilter && !BlockFilter->count(SuccPred)))
799       continue;
800     auto Freq = MBFI->getBlockFreq(SuccPred)
801         * MBPI->getEdgeProbability(SuccPred, Succ);
802     if (Freq > SuccBestPred)
803       SuccBestPred = Freq;
804   }
805   // Qin is Succ's best unplaced incoming edge that isn't BB
806   BlockFrequency Qin = SuccBestPred;
807   // If it doesn't have a post-dominating successor, here is the calculation:
808   //    BB        BB
809   //    | \Qout   |  \
810   //   P|  C      |   =
811   //    =   C'    |    C
812   //    |  /Qin   |     |
813   //    | /       |     C' (+Succ)
814   //    Succ      Succ /|
815   //    / \       |  \/ |
816   //  U/   =V     |  == |
817   //  /     \     | /  \|
818   //  D      E    D     E
819   //  '=' : Branch taken for that CFG edge
820   //  Cost in the first case is: P + V
821   //  For this calculation, we always assume P > Qout. If Qout > P
822   //  The result of this function will be ignored at the caller.
823   //  Let F = SuccFreq - Qin
824   //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
825 
826   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
827     BranchProbability UProb = BestSuccSucc;
828     BranchProbability VProb = AdjustedSuccSumProb - UProb;
829     BlockFrequency F = SuccFreq - Qin;
830     BlockFrequency V = SuccFreq * VProb;
831     BlockFrequency QinU = std::min(Qin, F) * UProb;
832     BlockFrequency BaseCost = P + V;
833     BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
834     return greaterWithBias(BaseCost, DupCost, EntryFreq);
835   }
836   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
837   BranchProbability VProb = AdjustedSuccSumProb - UProb;
838   BlockFrequency U = SuccFreq * UProb;
839   BlockFrequency V = SuccFreq * VProb;
840   BlockFrequency F = SuccFreq - Qin;
841   // If there is a post-dominating successor, here is the calculation:
842   // BB         BB                 BB          BB
843   // | \Qout    |   \               | \Qout     |  \
844   // |P C       |    =              |P C        |   =
845   // =   C'     |P    C             =   C'      |P   C
846   // |  /Qin    |      |            |  /Qin     |     |
847   // | /        |      C' (+Succ)   | /         |     C' (+Succ)
848   // Succ       Succ  /|            Succ        Succ /|
849   // | \  V     |   \/ |            | \  V      |  \/ |
850   // |U \       |U  /\ =?           |U =        |U /\ |
851   // =   D      = =  =?|            |   D       | =  =|
852   // |  /       |/     D            |  /        |/    D
853   // | /        |     /             | =         |    /
854   // |/         |    /              |/          |   =
855   // Dom         Dom                Dom         Dom
856   //  '=' : Branch taken for that CFG edge
857   // The cost for taken branches in the first case is P + U
858   // Let F = SuccFreq - Qin
859   // The cost in the second case (assuming independence), given the layout:
860   // BB, Succ, (C+Succ), D, Dom or the layout:
861   // BB, Succ, D, Dom, (C+Succ)
862   // is Qout + max(F, Qin) * U + min(F, Qin)
863   // compare P + U vs Qout + P * U + Qin.
864   //
865   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
866   //
867   // For the 3rd case, the cost is P + 2 * V
868   // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
869   // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
870   if (UProb > AdjustedSuccSumProb / 2 &&
871       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
872                                   Chain, BlockFilter))
873     // Cases 3 & 4
874     return greaterWithBias(
875         (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
876         EntryFreq);
877   // Cases 1 & 2
878   return greaterWithBias((P + U),
879                          (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
880                           std::max(Qin, F) * UProb),
881                          EntryFreq);
882 }
883 
884 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
885 /// successors form the lower part of a trellis. A successor set S forms the
886 /// lower part of a trellis if all of the predecessors of S are either in S or
887 /// have all of S as successors. We ignore trellises where BB doesn't have 2
888 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
889 /// are very uncommon and complex to compute optimally. Allowing edges within S
890 /// is not strictly a trellis, but the same algorithm works, so we allow it.
891 bool MachineBlockPlacement::isTrellis(
892     const MachineBasicBlock *BB,
893     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
894     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
895   // Technically BB could form a trellis with branching factor higher than 2.
896   // But that's extremely uncommon.
897   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
898     return false;
899 
900   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
901                                                        BB->succ_end());
902   // To avoid reviewing the same predecessors twice.
903   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
904 
905   for (MachineBasicBlock *Succ : ViableSuccs) {
906     int PredCount = 0;
907     for (auto SuccPred : Succ->predecessors()) {
908       // Allow triangle successors, but don't count them.
909       if (Successors.count(SuccPred)) {
910         // Make sure that it is actually a triangle.
911         for (MachineBasicBlock *CheckSucc : SuccPred->successors())
912           if (!Successors.count(CheckSucc))
913             return false;
914         continue;
915       }
916       const BlockChain *PredChain = BlockToChain[SuccPred];
917       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
918           PredChain == &Chain || PredChain == BlockToChain[Succ])
919         continue;
920       ++PredCount;
921       // Perform the successor check only once.
922       if (!SeenPreds.insert(SuccPred).second)
923         continue;
924       if (!hasSameSuccessors(*SuccPred, Successors))
925         return false;
926     }
927     // If one of the successors has only BB as a predecessor, it is not a
928     // trellis.
929     if (PredCount < 1)
930       return false;
931   }
932   return true;
933 }
934 
935 /// Pick the highest total weight pair of edges that can both be laid out.
936 /// The edges in \p Edges[0] are assumed to have a different destination than
937 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
938 /// the individual highest weight edges to the 2 different destinations, or in
939 /// case of a conflict, one of them should be replaced with a 2nd best edge.
940 std::pair<MachineBlockPlacement::WeightedEdge,
941           MachineBlockPlacement::WeightedEdge>
942 MachineBlockPlacement::getBestNonConflictingEdges(
943     const MachineBasicBlock *BB,
944     MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
945         Edges) {
946   // Sort the edges, and then for each successor, find the best incoming
947   // predecessor. If the best incoming predecessors aren't the same,
948   // then that is clearly the best layout. If there is a conflict, one of the
949   // successors will have to fallthrough from the second best predecessor. We
950   // compare which combination is better overall.
951 
952   // Sort for highest frequency.
953   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
954 
955   llvm::stable_sort(Edges[0], Cmp);
956   llvm::stable_sort(Edges[1], Cmp);
957   auto BestA = Edges[0].begin();
958   auto BestB = Edges[1].begin();
959   // Arrange for the correct answer to be in BestA and BestB
960   // If the 2 best edges don't conflict, the answer is already there.
961   if (BestA->Src == BestB->Src) {
962     // Compare the total fallthrough of (Best + Second Best) for both pairs
963     auto SecondBestA = std::next(BestA);
964     auto SecondBestB = std::next(BestB);
965     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
966     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
967     if (BestAScore < BestBScore)
968       BestA = SecondBestA;
969     else
970       BestB = SecondBestB;
971   }
972   // Arrange for the BB edge to be in BestA if it exists.
973   if (BestB->Src == BB)
974     std::swap(BestA, BestB);
975   return std::make_pair(*BestA, *BestB);
976 }
977 
978 /// Get the best successor from \p BB based on \p BB being part of a trellis.
979 /// We only handle trellises with 2 successors, so the algorithm is
980 /// straightforward: Find the best pair of edges that don't conflict. We find
981 /// the best incoming edge for each successor in the trellis. If those conflict,
982 /// we consider which of them should be replaced with the second best.
983 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
984 /// comes from \p BB, it will be in \p BestEdges[0]
985 MachineBlockPlacement::BlockAndTailDupResult
986 MachineBlockPlacement::getBestTrellisSuccessor(
987     const MachineBasicBlock *BB,
988     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
989     BranchProbability AdjustedSumProb, const BlockChain &Chain,
990     const BlockFilterSet *BlockFilter) {
991 
992   BlockAndTailDupResult Result = {nullptr, false};
993   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
994                                                        BB->succ_end());
995 
996   // We assume size 2 because it's common. For general n, we would have to do
997   // the Hungarian algorithm, but it's not worth the complexity because more
998   // than 2 successors is fairly uncommon, and a trellis even more so.
999   if (Successors.size() != 2 || ViableSuccs.size() != 2)
1000     return Result;
1001 
1002   // Collect the edge frequencies of all edges that form the trellis.
1003   SmallVector<WeightedEdge, 8> Edges[2];
1004   int SuccIndex = 0;
1005   for (auto Succ : ViableSuccs) {
1006     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1007       // Skip any placed predecessors that are not BB
1008       if (SuccPred != BB)
1009         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1010             BlockToChain[SuccPred] == &Chain ||
1011             BlockToChain[SuccPred] == BlockToChain[Succ])
1012           continue;
1013       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1014                                 MBPI->getEdgeProbability(SuccPred, Succ);
1015       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1016     }
1017     ++SuccIndex;
1018   }
1019 
1020   // Pick the best combination of 2 edges from all the edges in the trellis.
1021   WeightedEdge BestA, BestB;
1022   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1023 
1024   if (BestA.Src != BB) {
1025     // If we have a trellis, and BB doesn't have the best fallthrough edges,
1026     // we shouldn't choose any successor. We've already looked and there's a
1027     // better fallthrough edge for all the successors.
1028     LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1029     return Result;
1030   }
1031 
1032   // Did we pick the triangle edge? If tail-duplication is profitable, do
1033   // that instead. Otherwise merge the triangle edge now while we know it is
1034   // optimal.
1035   if (BestA.Dest == BestB.Src) {
1036     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1037     // would be better.
1038     MachineBasicBlock *Succ1 = BestA.Dest;
1039     MachineBasicBlock *Succ2 = BestB.Dest;
1040     // Check to see if tail-duplication would be profitable.
1041     if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1042         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1043         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1044                               Chain, BlockFilter)) {
1045       LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1046                      MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1047                  dbgs() << "    Selected: " << getBlockName(Succ2)
1048                         << ", probability: " << Succ2Prob
1049                         << " (Tail Duplicate)\n");
1050       Result.BB = Succ2;
1051       Result.ShouldTailDup = true;
1052       return Result;
1053     }
1054   }
1055   // We have already computed the optimal edge for the other side of the
1056   // trellis.
1057   ComputedEdges[BestB.Src] = { BestB.Dest, false };
1058 
1059   auto TrellisSucc = BestA.Dest;
1060   LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1061                  MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1062              dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1063                     << ", probability: " << SuccProb << " (Trellis)\n");
1064   Result.BB = TrellisSucc;
1065   return Result;
1066 }
1067 
1068 /// When the option allowTailDupPlacement() is on, this method checks if the
1069 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1070 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1071 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1072     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1073     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1074   if (!shouldTailDuplicate(Succ))
1075     return false;
1076 
1077   // The result of canTailDuplicate.
1078   bool Duplicate = true;
1079   // Number of possible duplication.
1080   unsigned int NumDup = 0;
1081 
1082   // For CFG checking.
1083   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1084                                                        BB->succ_end());
1085   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1086     // Make sure all unplaced and unfiltered predecessors can be
1087     // tail-duplicated into.
1088     // Skip any blocks that are already placed or not in this loop.
1089     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1090         || BlockToChain[Pred] == &Chain)
1091       continue;
1092     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1093       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1094         // This will result in a trellis after tail duplication, so we don't
1095         // need to copy Succ into this predecessor. In the presence
1096         // of a trellis tail duplication can continue to be profitable.
1097         // For example:
1098         // A            A
1099         // |\           |\
1100         // | \          | \
1101         // |  C         |  C+BB
1102         // | /          |  |
1103         // |/           |  |
1104         // BB    =>     BB |
1105         // |\           |\/|
1106         // | \          |/\|
1107         // |  D         |  D
1108         // | /          | /
1109         // |/           |/
1110         // Succ         Succ
1111         //
1112         // After BB was duplicated into C, the layout looks like the one on the
1113         // right. BB and C now have the same successors. When considering
1114         // whether Succ can be duplicated into all its unplaced predecessors, we
1115         // ignore C.
1116         // We can do this because C already has a profitable fallthrough, namely
1117         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1118         // duplication and for this test.
1119         //
1120         // This allows trellises to be laid out in 2 separate chains
1121         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1122         // because it allows the creation of 2 fallthrough paths with links
1123         // between them, and we correctly identify the best layout for these
1124         // CFGs. We want to extend trellises that the user created in addition
1125         // to trellises created by tail-duplication, so we just look for the
1126         // CFG.
1127         continue;
1128       Duplicate = false;
1129       continue;
1130     }
1131     NumDup++;
1132   }
1133 
1134   // No possible duplication in current filter set.
1135   if (NumDup == 0)
1136     return false;
1137 
1138   // This is mainly for function exit BB.
1139   // The integrated tail duplication is really designed for increasing
1140   // fallthrough from predecessors from Succ to its successors. We may need
1141   // other machanism to handle different cases.
1142   if (Succ->succ_size() == 0)
1143     return true;
1144 
1145   // Plus the already placed predecessor.
1146   NumDup++;
1147 
1148   // If the duplication candidate has more unplaced predecessors than
1149   // successors, the extra duplication can't bring more fallthrough.
1150   //
1151   //     Pred1 Pred2 Pred3
1152   //         \   |   /
1153   //          \  |  /
1154   //           \ | /
1155   //            Dup
1156   //            / \
1157   //           /   \
1158   //       Succ1  Succ2
1159   //
1160   // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1161   // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1162   // but the duplication into Pred3 can't increase fallthrough.
1163   //
1164   // A small number of extra duplication may not hurt too much. We need a better
1165   // heuristic to handle it.
1166   //
1167   // FIXME: we should selectively tail duplicate a BB into part of its
1168   // predecessors.
1169   if ((NumDup > Succ->succ_size()) || !Duplicate)
1170     return false;
1171 
1172   return true;
1173 }
1174 
1175 /// Find chains of triangles where we believe it would be profitable to
1176 /// tail-duplicate them all, but a local analysis would not find them.
1177 /// There are 3 ways this can be profitable:
1178 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1179 ///    longer chains)
1180 /// 2) The chains are statically correlated. Branch probabilities have a very
1181 ///    U-shaped distribution.
1182 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1183 ///    If the branches in a chain are likely to be from the same side of the
1184 ///    distribution as their predecessor, but are independent at runtime, this
1185 ///    transformation is profitable. (Because the cost of being wrong is a small
1186 ///    fixed cost, unlike the standard triangle layout where the cost of being
1187 ///    wrong scales with the # of triangles.)
1188 /// 3) The chains are dynamically correlated. If the probability that a previous
1189 ///    branch was taken positively influences whether the next branch will be
1190 ///    taken
1191 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1192 void MachineBlockPlacement::precomputeTriangleChains() {
1193   struct TriangleChain {
1194     std::vector<MachineBasicBlock *> Edges;
1195 
1196     TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1197         : Edges({src, dst}) {}
1198 
1199     void append(MachineBasicBlock *dst) {
1200       assert(getKey()->isSuccessor(dst) &&
1201              "Attempting to append a block that is not a successor.");
1202       Edges.push_back(dst);
1203     }
1204 
1205     unsigned count() const { return Edges.size() - 1; }
1206 
1207     MachineBasicBlock *getKey() const {
1208       return Edges.back();
1209     }
1210   };
1211 
1212   if (TriangleChainCount == 0)
1213     return;
1214 
1215   LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1216   // Map from last block to the chain that contains it. This allows us to extend
1217   // chains as we find new triangles.
1218   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1219   for (MachineBasicBlock &BB : *F) {
1220     // If BB doesn't have 2 successors, it doesn't start a triangle.
1221     if (BB.succ_size() != 2)
1222       continue;
1223     MachineBasicBlock *PDom = nullptr;
1224     for (MachineBasicBlock *Succ : BB.successors()) {
1225       if (!MPDT->dominates(Succ, &BB))
1226         continue;
1227       PDom = Succ;
1228       break;
1229     }
1230     // If BB doesn't have a post-dominating successor, it doesn't form a
1231     // triangle.
1232     if (PDom == nullptr)
1233       continue;
1234     // If PDom has a hint that it is low probability, skip this triangle.
1235     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1236       continue;
1237     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1238     // we're looking for.
1239     if (!shouldTailDuplicate(PDom))
1240       continue;
1241     bool CanTailDuplicate = true;
1242     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1243     // isn't the kind of triangle we're looking for.
1244     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1245       if (Pred == &BB)
1246         continue;
1247       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1248         CanTailDuplicate = false;
1249         break;
1250       }
1251     }
1252     // If we can't tail-duplicate PDom to its predecessors, then skip this
1253     // triangle.
1254     if (!CanTailDuplicate)
1255       continue;
1256 
1257     // Now we have an interesting triangle. Insert it if it's not part of an
1258     // existing chain.
1259     // Note: This cannot be replaced with a call insert() or emplace() because
1260     // the find key is BB, but the insert/emplace key is PDom.
1261     auto Found = TriangleChainMap.find(&BB);
1262     // If it is, remove the chain from the map, grow it, and put it back in the
1263     // map with the end as the new key.
1264     if (Found != TriangleChainMap.end()) {
1265       TriangleChain Chain = std::move(Found->second);
1266       TriangleChainMap.erase(Found);
1267       Chain.append(PDom);
1268       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1269     } else {
1270       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1271       assert(InsertResult.second && "Block seen twice.");
1272       (void)InsertResult;
1273     }
1274   }
1275 
1276   // Iterating over a DenseMap is safe here, because the only thing in the body
1277   // of the loop is inserting into another DenseMap (ComputedEdges).
1278   // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1279   for (auto &ChainPair : TriangleChainMap) {
1280     TriangleChain &Chain = ChainPair.second;
1281     // Benchmarking has shown that due to branch correlation duplicating 2 or
1282     // more triangles is profitable, despite the calculations assuming
1283     // independence.
1284     if (Chain.count() < TriangleChainCount)
1285       continue;
1286     MachineBasicBlock *dst = Chain.Edges.back();
1287     Chain.Edges.pop_back();
1288     for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1289       LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1290                         << getBlockName(dst)
1291                         << " as pre-computed based on triangles.\n");
1292 
1293       auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1294       assert(InsertResult.second && "Block seen twice.");
1295       (void)InsertResult;
1296 
1297       dst = src;
1298     }
1299   }
1300 }
1301 
1302 // When profile is not present, return the StaticLikelyProb.
1303 // When profile is available, we need to handle the triangle-shape CFG.
1304 static BranchProbability getLayoutSuccessorProbThreshold(
1305       const MachineBasicBlock *BB) {
1306   if (!BB->getParent()->getFunction().hasProfileData())
1307     return BranchProbability(StaticLikelyProb, 100);
1308   if (BB->succ_size() == 2) {
1309     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1310     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1311     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1312       /* See case 1 below for the cost analysis. For BB->Succ to
1313        * be taken with smaller cost, the following needs to hold:
1314        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1315        *   So the threshold T in the calculation below
1316        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1317        *   So T / (1 - T) = 2, Yielding T = 2/3
1318        * Also adding user specified branch bias, we have
1319        *   T = (2/3)*(ProfileLikelyProb/50)
1320        *     = (2*ProfileLikelyProb)/150)
1321        */
1322       return BranchProbability(2 * ProfileLikelyProb, 150);
1323     }
1324   }
1325   return BranchProbability(ProfileLikelyProb, 100);
1326 }
1327 
1328 /// Checks to see if the layout candidate block \p Succ has a better layout
1329 /// predecessor than \c BB. If yes, returns true.
1330 /// \p SuccProb: The probability adjusted for only remaining blocks.
1331 ///   Only used for logging
1332 /// \p RealSuccProb: The un-adjusted probability.
1333 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1334 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1335 ///    considered
1336 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1337     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1338     const BlockChain &SuccChain, BranchProbability SuccProb,
1339     BranchProbability RealSuccProb, const BlockChain &Chain,
1340     const BlockFilterSet *BlockFilter) {
1341 
1342   // There isn't a better layout when there are no unscheduled predecessors.
1343   if (SuccChain.UnscheduledPredecessors == 0)
1344     return false;
1345 
1346   // There are two basic scenarios here:
1347   // -------------------------------------
1348   // Case 1: triangular shape CFG (if-then):
1349   //     BB
1350   //     | \
1351   //     |  \
1352   //     |   Pred
1353   //     |   /
1354   //     Succ
1355   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1356   // set Succ as the layout successor of BB. Picking Succ as BB's
1357   // successor breaks the CFG constraints (FIXME: define these constraints).
1358   // With this layout, Pred BB
1359   // is forced to be outlined, so the overall cost will be cost of the
1360   // branch taken from BB to Pred, plus the cost of back taken branch
1361   // from Pred to Succ, as well as the additional cost associated
1362   // with the needed unconditional jump instruction from Pred To Succ.
1363 
1364   // The cost of the topological order layout is the taken branch cost
1365   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1366   // must hold:
1367   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1368   //      < freq(BB->Succ) *  taken_branch_cost.
1369   // Ignoring unconditional jump cost, we get
1370   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1371   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1372   //
1373   // When real profile data is available, we can precisely compute the
1374   // probability threshold that is needed for edge BB->Succ to be considered.
1375   // Without profile data, the heuristic requires the branch bias to be
1376   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1377   // -----------------------------------------------------------------
1378   // Case 2: diamond like CFG (if-then-else):
1379   //     S
1380   //    / \
1381   //   |   \
1382   //  BB    Pred
1383   //   \    /
1384   //    Succ
1385   //    ..
1386   //
1387   // The current block is BB and edge BB->Succ is now being evaluated.
1388   // Note that edge S->BB was previously already selected because
1389   // prob(S->BB) > prob(S->Pred).
1390   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1391   // choose Pred, we will have a topological ordering as shown on the left
1392   // in the picture below. If we choose Succ, we have the solution as shown
1393   // on the right:
1394   //
1395   //   topo-order:
1396   //
1397   //       S-----                             ---S
1398   //       |    |                             |  |
1399   //    ---BB   |                             |  BB
1400   //    |       |                             |  |
1401   //    |  Pred--                             |  Succ--
1402   //    |  |                                  |       |
1403   //    ---Succ                               ---Pred--
1404   //
1405   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1406   //      = freq(S->Pred) + freq(S->BB)
1407   //
1408   // If we have profile data (i.e, branch probabilities can be trusted), the
1409   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1410   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1411   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1412   // means the cost of topological order is greater.
1413   // When profile data is not available, however, we need to be more
1414   // conservative. If the branch prediction is wrong, breaking the topo-order
1415   // will actually yield a layout with large cost. For this reason, we need
1416   // strong biased branch at block S with Prob(S->BB) in order to select
1417   // BB->Succ. This is equivalent to looking the CFG backward with backward
1418   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1419   // profile data).
1420   // --------------------------------------------------------------------------
1421   // Case 3: forked diamond
1422   //       S
1423   //      / \
1424   //     /   \
1425   //   BB    Pred
1426   //   | \   / |
1427   //   |  \ /  |
1428   //   |   X   |
1429   //   |  / \  |
1430   //   | /   \ |
1431   //   S1     S2
1432   //
1433   // The current block is BB and edge BB->S1 is now being evaluated.
1434   // As above S->BB was already selected because
1435   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1436   //
1437   // topo-order:
1438   //
1439   //     S-------|                     ---S
1440   //     |       |                     |  |
1441   //  ---BB      |                     |  BB
1442   //  |          |                     |  |
1443   //  |  Pred----|                     |  S1----
1444   //  |  |                             |       |
1445   //  --(S1 or S2)                     ---Pred--
1446   //                                        |
1447   //                                       S2
1448   //
1449   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1450   //    + min(freq(Pred->S1), freq(Pred->S2))
1451   // Non-topo-order cost:
1452   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1453   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1454   // is 0. Then the non topo layout is better when
1455   // freq(S->Pred) < freq(BB->S1).
1456   // This is exactly what is checked below.
1457   // Note there are other shapes that apply (Pred may not be a single block,
1458   // but they all fit this general pattern.)
1459   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1460 
1461   // Make sure that a hot successor doesn't have a globally more
1462   // important predecessor.
1463   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1464   bool BadCFGConflict = false;
1465 
1466   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1467     BlockChain *PredChain = BlockToChain[Pred];
1468     if (Pred == Succ || PredChain == &SuccChain ||
1469         (BlockFilter && !BlockFilter->count(Pred)) ||
1470         PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1471         // This check is redundant except for look ahead. This function is
1472         // called for lookahead by isProfitableToTailDup when BB hasn't been
1473         // placed yet.
1474         (Pred == BB))
1475       continue;
1476     // Do backward checking.
1477     // For all cases above, we need a backward checking to filter out edges that
1478     // are not 'strongly' biased.
1479     // BB  Pred
1480     //  \ /
1481     //  Succ
1482     // We select edge BB->Succ if
1483     //      freq(BB->Succ) > freq(Succ) * HotProb
1484     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1485     //      HotProb
1486     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1487     // Case 1 is covered too, because the first equation reduces to:
1488     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1489     BlockFrequency PredEdgeFreq =
1490         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1491     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1492       BadCFGConflict = true;
1493       break;
1494     }
1495   }
1496 
1497   if (BadCFGConflict) {
1498     LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1499                       << SuccProb << " (prob) (non-cold CFG conflict)\n");
1500     return true;
1501   }
1502 
1503   return false;
1504 }
1505 
1506 /// Select the best successor for a block.
1507 ///
1508 /// This looks across all successors of a particular block and attempts to
1509 /// select the "best" one to be the layout successor. It only considers direct
1510 /// successors which also pass the block filter. It will attempt to avoid
1511 /// breaking CFG structure, but cave and break such structures in the case of
1512 /// very hot successor edges.
1513 ///
1514 /// \returns The best successor block found, or null if none are viable, along
1515 /// with a boolean indicating if tail duplication is necessary.
1516 MachineBlockPlacement::BlockAndTailDupResult
1517 MachineBlockPlacement::selectBestSuccessor(
1518     const MachineBasicBlock *BB, const BlockChain &Chain,
1519     const BlockFilterSet *BlockFilter) {
1520   const BranchProbability HotProb(StaticLikelyProb, 100);
1521 
1522   BlockAndTailDupResult BestSucc = { nullptr, false };
1523   auto BestProb = BranchProbability::getZero();
1524 
1525   SmallVector<MachineBasicBlock *, 4> Successors;
1526   auto AdjustedSumProb =
1527       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1528 
1529   LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1530                     << "\n");
1531 
1532   // if we already precomputed the best successor for BB, return that if still
1533   // applicable.
1534   auto FoundEdge = ComputedEdges.find(BB);
1535   if (FoundEdge != ComputedEdges.end()) {
1536     MachineBasicBlock *Succ = FoundEdge->second.BB;
1537     ComputedEdges.erase(FoundEdge);
1538     BlockChain *SuccChain = BlockToChain[Succ];
1539     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1540         SuccChain != &Chain && Succ == *SuccChain->begin())
1541       return FoundEdge->second;
1542   }
1543 
1544   // if BB is part of a trellis, Use the trellis to determine the optimal
1545   // fallthrough edges
1546   if (isTrellis(BB, Successors, Chain, BlockFilter))
1547     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1548                                    BlockFilter);
1549 
1550   // For blocks with CFG violations, we may be able to lay them out anyway with
1551   // tail-duplication. We keep this vector so we can perform the probability
1552   // calculations the minimum number of times.
1553   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1554       DupCandidates;
1555   for (MachineBasicBlock *Succ : Successors) {
1556     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1557     BranchProbability SuccProb =
1558         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1559 
1560     BlockChain &SuccChain = *BlockToChain[Succ];
1561     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1562     // predecessor that yields lower global cost.
1563     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1564                                    Chain, BlockFilter)) {
1565       // If tail duplication would make Succ profitable, place it.
1566       if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1567         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1568       continue;
1569     }
1570 
1571     LLVM_DEBUG(
1572         dbgs() << "    Candidate: " << getBlockName(Succ)
1573                << ", probability: " << SuccProb
1574                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1575                << "\n");
1576 
1577     if (BestSucc.BB && BestProb >= SuccProb) {
1578       LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1579       continue;
1580     }
1581 
1582     LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1583     BestSucc.BB = Succ;
1584     BestProb = SuccProb;
1585   }
1586   // Handle the tail duplication candidates in order of decreasing probability.
1587   // Stop at the first one that is profitable. Also stop if they are less
1588   // profitable than BestSucc. Position is important because we preserve it and
1589   // prefer first best match. Here we aren't comparing in order, so we capture
1590   // the position instead.
1591   llvm::stable_sort(DupCandidates,
1592                     [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1593                        std::tuple<BranchProbability, MachineBasicBlock *> R) {
1594                       return std::get<0>(L) > std::get<0>(R);
1595                     });
1596   for (auto &Tup : DupCandidates) {
1597     BranchProbability DupProb;
1598     MachineBasicBlock *Succ;
1599     std::tie(DupProb, Succ) = Tup;
1600     if (DupProb < BestProb)
1601       break;
1602     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1603         && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1604       LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1605                         << ", probability: " << DupProb
1606                         << " (Tail Duplicate)\n");
1607       BestSucc.BB = Succ;
1608       BestSucc.ShouldTailDup = true;
1609       break;
1610     }
1611   }
1612 
1613   if (BestSucc.BB)
1614     LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1615 
1616   return BestSucc;
1617 }
1618 
1619 /// Select the best block from a worklist.
1620 ///
1621 /// This looks through the provided worklist as a list of candidate basic
1622 /// blocks and select the most profitable one to place. The definition of
1623 /// profitable only really makes sense in the context of a loop. This returns
1624 /// the most frequently visited block in the worklist, which in the case of
1625 /// a loop, is the one most desirable to be physically close to the rest of the
1626 /// loop body in order to improve i-cache behavior.
1627 ///
1628 /// \returns The best block found, or null if none are viable.
1629 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1630     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1631   // Once we need to walk the worklist looking for a candidate, cleanup the
1632   // worklist of already placed entries.
1633   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1634   // some code complexity) into the loop below.
1635   WorkList.erase(llvm::remove_if(WorkList,
1636                                  [&](MachineBasicBlock *BB) {
1637                                    return BlockToChain.lookup(BB) == &Chain;
1638                                  }),
1639                  WorkList.end());
1640 
1641   if (WorkList.empty())
1642     return nullptr;
1643 
1644   bool IsEHPad = WorkList[0]->isEHPad();
1645 
1646   MachineBasicBlock *BestBlock = nullptr;
1647   BlockFrequency BestFreq;
1648   for (MachineBasicBlock *MBB : WorkList) {
1649     assert(MBB->isEHPad() == IsEHPad &&
1650            "EHPad mismatch between block and work list.");
1651 
1652     BlockChain &SuccChain = *BlockToChain[MBB];
1653     if (&SuccChain == &Chain)
1654       continue;
1655 
1656     assert(SuccChain.UnscheduledPredecessors == 0 &&
1657            "Found CFG-violating block");
1658 
1659     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1660     LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1661                MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1662 
1663     // For ehpad, we layout the least probable first as to avoid jumping back
1664     // from least probable landingpads to more probable ones.
1665     //
1666     // FIXME: Using probability is probably (!) not the best way to achieve
1667     // this. We should probably have a more principled approach to layout
1668     // cleanup code.
1669     //
1670     // The goal is to get:
1671     //
1672     //                 +--------------------------+
1673     //                 |                          V
1674     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1675     //
1676     // Rather than:
1677     //
1678     //                 +-------------------------------------+
1679     //                 V                                     |
1680     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1681     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1682       continue;
1683 
1684     BestBlock = MBB;
1685     BestFreq = CandidateFreq;
1686   }
1687 
1688   return BestBlock;
1689 }
1690 
1691 /// Retrieve the first unplaced basic block.
1692 ///
1693 /// This routine is called when we are unable to use the CFG to walk through
1694 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1695 /// We walk through the function's blocks in order, starting from the
1696 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1697 /// re-scanning the entire sequence on repeated calls to this routine.
1698 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1699     const BlockChain &PlacedChain,
1700     MachineFunction::iterator &PrevUnplacedBlockIt,
1701     const BlockFilterSet *BlockFilter) {
1702   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1703        ++I) {
1704     if (BlockFilter && !BlockFilter->count(&*I))
1705       continue;
1706     if (BlockToChain[&*I] != &PlacedChain) {
1707       PrevUnplacedBlockIt = I;
1708       // Now select the head of the chain to which the unplaced block belongs
1709       // as the block to place. This will force the entire chain to be placed,
1710       // and satisfies the requirements of merging chains.
1711       return *BlockToChain[&*I]->begin();
1712     }
1713   }
1714   return nullptr;
1715 }
1716 
1717 void MachineBlockPlacement::fillWorkLists(
1718     const MachineBasicBlock *MBB,
1719     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1720     const BlockFilterSet *BlockFilter = nullptr) {
1721   BlockChain &Chain = *BlockToChain[MBB];
1722   if (!UpdatedPreds.insert(&Chain).second)
1723     return;
1724 
1725   assert(
1726       Chain.UnscheduledPredecessors == 0 &&
1727       "Attempting to place block with unscheduled predecessors in worklist.");
1728   for (MachineBasicBlock *ChainBB : Chain) {
1729     assert(BlockToChain[ChainBB] == &Chain &&
1730            "Block in chain doesn't match BlockToChain map.");
1731     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1732       if (BlockFilter && !BlockFilter->count(Pred))
1733         continue;
1734       if (BlockToChain[Pred] == &Chain)
1735         continue;
1736       ++Chain.UnscheduledPredecessors;
1737     }
1738   }
1739 
1740   if (Chain.UnscheduledPredecessors != 0)
1741     return;
1742 
1743   MachineBasicBlock *BB = *Chain.begin();
1744   if (BB->isEHPad())
1745     EHPadWorkList.push_back(BB);
1746   else
1747     BlockWorkList.push_back(BB);
1748 }
1749 
1750 void MachineBlockPlacement::buildChain(
1751     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1752     BlockFilterSet *BlockFilter) {
1753   assert(HeadBB && "BB must not be null.\n");
1754   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1755   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1756 
1757   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1758   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1759   MachineBasicBlock *BB = *std::prev(Chain.end());
1760   while (true) {
1761     assert(BB && "null block found at end of chain in loop.");
1762     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1763     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1764 
1765 
1766     // Look for the best viable successor if there is one to place immediately
1767     // after this block.
1768     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1769     MachineBasicBlock* BestSucc = Result.BB;
1770     bool ShouldTailDup = Result.ShouldTailDup;
1771     if (allowTailDupPlacement())
1772       ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1773                                                                   Chain,
1774                                                                   BlockFilter));
1775 
1776     // If an immediate successor isn't available, look for the best viable
1777     // block among those we've identified as not violating the loop's CFG at
1778     // this point. This won't be a fallthrough, but it will increase locality.
1779     if (!BestSucc)
1780       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1781     if (!BestSucc)
1782       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1783 
1784     if (!BestSucc) {
1785       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1786       if (!BestSucc)
1787         break;
1788 
1789       LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1790                            "layout successor until the CFG reduces\n");
1791     }
1792 
1793     // Placement may have changed tail duplication opportunities.
1794     // Check for that now.
1795     if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1796       // If the chosen successor was duplicated into all its predecessors,
1797       // don't bother laying it out, just go round the loop again with BB as
1798       // the chain end.
1799       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1800                                        BlockFilter, PrevUnplacedBlockIt))
1801         continue;
1802     }
1803 
1804     // Place this block, updating the datastructures to reflect its placement.
1805     BlockChain &SuccChain = *BlockToChain[BestSucc];
1806     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1807     // we selected a successor that didn't fit naturally into the CFG.
1808     SuccChain.UnscheduledPredecessors = 0;
1809     LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1810                       << getBlockName(BestSucc) << "\n");
1811     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1812     Chain.merge(BestSucc, &SuccChain);
1813     BB = *std::prev(Chain.end());
1814   }
1815 
1816   LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1817                     << getBlockName(*Chain.begin()) << "\n");
1818 }
1819 
1820 // If bottom of block BB has only one successor OldTop, in most cases it is
1821 // profitable to move it before OldTop, except the following case:
1822 //
1823 //     -->OldTop<-
1824 //     |    .    |
1825 //     |    .    |
1826 //     |    .    |
1827 //     ---Pred   |
1828 //          |    |
1829 //         BB-----
1830 //
1831 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1832 // layout the other successor below it, so it can't reduce taken branch.
1833 // In this case we keep its original layout.
1834 bool
1835 MachineBlockPlacement::canMoveBottomBlockToTop(
1836     const MachineBasicBlock *BottomBlock,
1837     const MachineBasicBlock *OldTop) {
1838   if (BottomBlock->pred_size() != 1)
1839     return true;
1840   MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1841   if (Pred->succ_size() != 2)
1842     return true;
1843 
1844   MachineBasicBlock *OtherBB = *Pred->succ_begin();
1845   if (OtherBB == BottomBlock)
1846     OtherBB = *Pred->succ_rbegin();
1847   if (OtherBB == OldTop)
1848     return false;
1849 
1850   return true;
1851 }
1852 
1853 // Find out the possible fall through frequence to the top of a loop.
1854 BlockFrequency
1855 MachineBlockPlacement::TopFallThroughFreq(
1856     const MachineBasicBlock *Top,
1857     const BlockFilterSet &LoopBlockSet) {
1858   BlockFrequency MaxFreq = 0;
1859   for (MachineBasicBlock *Pred : Top->predecessors()) {
1860     BlockChain *PredChain = BlockToChain[Pred];
1861     if (!LoopBlockSet.count(Pred) &&
1862         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1863       // Found a Pred block can be placed before Top.
1864       // Check if Top is the best successor of Pred.
1865       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1866       bool TopOK = true;
1867       for (MachineBasicBlock *Succ : Pred->successors()) {
1868         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1869         BlockChain *SuccChain = BlockToChain[Succ];
1870         // Check if Succ can be placed after Pred.
1871         // Succ should not be in any chain, or it is the head of some chain.
1872         if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1873             (!SuccChain || Succ == *SuccChain->begin())) {
1874           TopOK = false;
1875           break;
1876         }
1877       }
1878       if (TopOK) {
1879         BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1880                                   MBPI->getEdgeProbability(Pred, Top);
1881         if (EdgeFreq > MaxFreq)
1882           MaxFreq = EdgeFreq;
1883       }
1884     }
1885   }
1886   return MaxFreq;
1887 }
1888 
1889 // Compute the fall through gains when move NewTop before OldTop.
1890 //
1891 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1892 // marked as "+" are increased fallthrough, this function computes
1893 //
1894 //      SUM(increased fallthrough) - SUM(decreased fallthrough)
1895 //
1896 //              |
1897 //              | -
1898 //              V
1899 //        --->OldTop
1900 //        |     .
1901 //        |     .
1902 //       +|     .    +
1903 //        |   Pred --->
1904 //        |     |-
1905 //        |     V
1906 //        --- NewTop <---
1907 //              |-
1908 //              V
1909 //
1910 BlockFrequency
1911 MachineBlockPlacement::FallThroughGains(
1912     const MachineBasicBlock *NewTop,
1913     const MachineBasicBlock *OldTop,
1914     const MachineBasicBlock *ExitBB,
1915     const BlockFilterSet &LoopBlockSet) {
1916   BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1917   BlockFrequency FallThrough2Exit = 0;
1918   if (ExitBB)
1919     FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1920         MBPI->getEdgeProbability(NewTop, ExitBB);
1921   BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1922       MBPI->getEdgeProbability(NewTop, OldTop);
1923 
1924   // Find the best Pred of NewTop.
1925    MachineBasicBlock *BestPred = nullptr;
1926    BlockFrequency FallThroughFromPred = 0;
1927    for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1928      if (!LoopBlockSet.count(Pred))
1929        continue;
1930      BlockChain *PredChain = BlockToChain[Pred];
1931      if (!PredChain || Pred == *std::prev(PredChain->end())) {
1932        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1933            MBPI->getEdgeProbability(Pred, NewTop);
1934        if (EdgeFreq > FallThroughFromPred) {
1935          FallThroughFromPred = EdgeFreq;
1936          BestPred = Pred;
1937        }
1938      }
1939    }
1940 
1941    // If NewTop is not placed after Pred, another successor can be placed
1942    // after Pred.
1943    BlockFrequency NewFreq = 0;
1944    if (BestPred) {
1945      for (MachineBasicBlock *Succ : BestPred->successors()) {
1946        if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1947          continue;
1948        if (ComputedEdges.find(Succ) != ComputedEdges.end())
1949          continue;
1950        BlockChain *SuccChain = BlockToChain[Succ];
1951        if ((SuccChain && (Succ != *SuccChain->begin())) ||
1952            (SuccChain == BlockToChain[BestPred]))
1953          continue;
1954        BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1955            MBPI->getEdgeProbability(BestPred, Succ);
1956        if (EdgeFreq > NewFreq)
1957          NewFreq = EdgeFreq;
1958      }
1959      BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1960          MBPI->getEdgeProbability(BestPred, NewTop);
1961      if (NewFreq > OrigEdgeFreq) {
1962        // If NewTop is not the best successor of Pred, then Pred doesn't
1963        // fallthrough to NewTop. So there is no FallThroughFromPred and
1964        // NewFreq.
1965        NewFreq = 0;
1966        FallThroughFromPred = 0;
1967      }
1968    }
1969 
1970    BlockFrequency Result = 0;
1971    BlockFrequency Gains = BackEdgeFreq + NewFreq;
1972    BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1973        FallThroughFromPred;
1974    if (Gains > Lost)
1975      Result = Gains - Lost;
1976    return Result;
1977 }
1978 
1979 /// Helper function of findBestLoopTop. Find the best loop top block
1980 /// from predecessors of old top.
1981 ///
1982 /// Look for a block which is strictly better than the old top for laying
1983 /// out before the old top of the loop. This looks for only two patterns:
1984 ///
1985 ///     1. a block has only one successor, the old loop top
1986 ///
1987 ///        Because such a block will always result in an unconditional jump,
1988 ///        rotating it in front of the old top is always profitable.
1989 ///
1990 ///     2. a block has two successors, one is old top, another is exit
1991 ///        and it has more than one predecessors
1992 ///
1993 ///        If it is below one of its predecessors P, only P can fall through to
1994 ///        it, all other predecessors need a jump to it, and another conditional
1995 ///        jump to loop header. If it is moved before loop header, all its
1996 ///        predecessors jump to it, then fall through to loop header. So all its
1997 ///        predecessors except P can reduce one taken branch.
1998 ///        At the same time, move it before old top increases the taken branch
1999 ///        to loop exit block, so the reduced taken branch will be compared with
2000 ///        the increased taken branch to the loop exit block.
2001 MachineBasicBlock *
2002 MachineBlockPlacement::findBestLoopTopHelper(
2003     MachineBasicBlock *OldTop,
2004     const MachineLoop &L,
2005     const BlockFilterSet &LoopBlockSet) {
2006   // Check that the header hasn't been fused with a preheader block due to
2007   // crazy branches. If it has, we need to start with the header at the top to
2008   // prevent pulling the preheader into the loop body.
2009   BlockChain &HeaderChain = *BlockToChain[OldTop];
2010   if (!LoopBlockSet.count(*HeaderChain.begin()))
2011     return OldTop;
2012 
2013   LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2014                     << "\n");
2015 
2016   BlockFrequency BestGains = 0;
2017   MachineBasicBlock *BestPred = nullptr;
2018   for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2019     if (!LoopBlockSet.count(Pred))
2020       continue;
2021     if (Pred == L.getHeader())
2022       continue;
2023     LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2024                       << Pred->succ_size() << " successors, ";
2025                MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2026     if (Pred->succ_size() > 2)
2027       continue;
2028 
2029     MachineBasicBlock *OtherBB = nullptr;
2030     if (Pred->succ_size() == 2) {
2031       OtherBB = *Pred->succ_begin();
2032       if (OtherBB == OldTop)
2033         OtherBB = *Pred->succ_rbegin();
2034     }
2035 
2036     if (!canMoveBottomBlockToTop(Pred, OldTop))
2037       continue;
2038 
2039     BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2040                                             LoopBlockSet);
2041     if ((Gains > 0) && (Gains > BestGains ||
2042         ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2043       BestPred = Pred;
2044       BestGains = Gains;
2045     }
2046   }
2047 
2048   // If no direct predecessor is fine, just use the loop header.
2049   if (!BestPred) {
2050     LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2051     return OldTop;
2052   }
2053 
2054   // Walk backwards through any straight line of predecessors.
2055   while (BestPred->pred_size() == 1 &&
2056          (*BestPred->pred_begin())->succ_size() == 1 &&
2057          *BestPred->pred_begin() != L.getHeader())
2058     BestPred = *BestPred->pred_begin();
2059 
2060   LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2061   return BestPred;
2062 }
2063 
2064 /// Find the best loop top block for layout.
2065 ///
2066 /// This function iteratively calls findBestLoopTopHelper, until no new better
2067 /// BB can be found.
2068 MachineBasicBlock *
2069 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2070                                        const BlockFilterSet &LoopBlockSet) {
2071   // Placing the latch block before the header may introduce an extra branch
2072   // that skips this block the first time the loop is executed, which we want
2073   // to avoid when optimising for size.
2074   // FIXME: in theory there is a case that does not introduce a new branch,
2075   // i.e. when the layout predecessor does not fallthrough to the loop header.
2076   // In practice this never happens though: there always seems to be a preheader
2077   // that can fallthrough and that is also placed before the header.
2078   if (F->getFunction().hasOptSize())
2079     return L.getHeader();
2080 
2081   MachineBasicBlock *OldTop = nullptr;
2082   MachineBasicBlock *NewTop = L.getHeader();
2083   while (NewTop != OldTop) {
2084     OldTop = NewTop;
2085     NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2086     if (NewTop != OldTop)
2087       ComputedEdges[NewTop] = { OldTop, false };
2088   }
2089   return NewTop;
2090 }
2091 
2092 /// Find the best loop exiting block for layout.
2093 ///
2094 /// This routine implements the logic to analyze the loop looking for the best
2095 /// block to layout at the top of the loop. Typically this is done to maximize
2096 /// fallthrough opportunities.
2097 MachineBasicBlock *
2098 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2099                                         const BlockFilterSet &LoopBlockSet,
2100                                         BlockFrequency &ExitFreq) {
2101   // We don't want to layout the loop linearly in all cases. If the loop header
2102   // is just a normal basic block in the loop, we want to look for what block
2103   // within the loop is the best one to layout at the top. However, if the loop
2104   // header has be pre-merged into a chain due to predecessors not having
2105   // analyzable branches, *and* the predecessor it is merged with is *not* part
2106   // of the loop, rotating the header into the middle of the loop will create
2107   // a non-contiguous range of blocks which is Very Bad. So start with the
2108   // header and only rotate if safe.
2109   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2110   if (!LoopBlockSet.count(*HeaderChain.begin()))
2111     return nullptr;
2112 
2113   BlockFrequency BestExitEdgeFreq;
2114   unsigned BestExitLoopDepth = 0;
2115   MachineBasicBlock *ExitingBB = nullptr;
2116   // If there are exits to outer loops, loop rotation can severely limit
2117   // fallthrough opportunities unless it selects such an exit. Keep a set of
2118   // blocks where rotating to exit with that block will reach an outer loop.
2119   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2120 
2121   LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2122                     << getBlockName(L.getHeader()) << "\n");
2123   for (MachineBasicBlock *MBB : L.getBlocks()) {
2124     BlockChain &Chain = *BlockToChain[MBB];
2125     // Ensure that this block is at the end of a chain; otherwise it could be
2126     // mid-way through an inner loop or a successor of an unanalyzable branch.
2127     if (MBB != *std::prev(Chain.end()))
2128       continue;
2129 
2130     // Now walk the successors. We need to establish whether this has a viable
2131     // exiting successor and whether it has a viable non-exiting successor.
2132     // We store the old exiting state and restore it if a viable looping
2133     // successor isn't found.
2134     MachineBasicBlock *OldExitingBB = ExitingBB;
2135     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2136     bool HasLoopingSucc = false;
2137     for (MachineBasicBlock *Succ : MBB->successors()) {
2138       if (Succ->isEHPad())
2139         continue;
2140       if (Succ == MBB)
2141         continue;
2142       BlockChain &SuccChain = *BlockToChain[Succ];
2143       // Don't split chains, either this chain or the successor's chain.
2144       if (&Chain == &SuccChain) {
2145         LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2146                           << getBlockName(Succ) << " (chain conflict)\n");
2147         continue;
2148       }
2149 
2150       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2151       if (LoopBlockSet.count(Succ)) {
2152         LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2153                           << getBlockName(Succ) << " (" << SuccProb << ")\n");
2154         HasLoopingSucc = true;
2155         continue;
2156       }
2157 
2158       unsigned SuccLoopDepth = 0;
2159       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2160         SuccLoopDepth = ExitLoop->getLoopDepth();
2161         if (ExitLoop->contains(&L))
2162           BlocksExitingToOuterLoop.insert(MBB);
2163       }
2164 
2165       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2166       LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2167                         << getBlockName(Succ) << " [L:" << SuccLoopDepth
2168                         << "] (";
2169                  MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2170       // Note that we bias this toward an existing layout successor to retain
2171       // incoming order in the absence of better information. The exit must have
2172       // a frequency higher than the current exit before we consider breaking
2173       // the layout.
2174       BranchProbability Bias(100 - ExitBlockBias, 100);
2175       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2176           ExitEdgeFreq > BestExitEdgeFreq ||
2177           (MBB->isLayoutSuccessor(Succ) &&
2178            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2179         BestExitEdgeFreq = ExitEdgeFreq;
2180         ExitingBB = MBB;
2181       }
2182     }
2183 
2184     if (!HasLoopingSucc) {
2185       // Restore the old exiting state, no viable looping successor was found.
2186       ExitingBB = OldExitingBB;
2187       BestExitEdgeFreq = OldBestExitEdgeFreq;
2188     }
2189   }
2190   // Without a candidate exiting block or with only a single block in the
2191   // loop, just use the loop header to layout the loop.
2192   if (!ExitingBB) {
2193     LLVM_DEBUG(
2194         dbgs() << "    No other candidate exit blocks, using loop header\n");
2195     return nullptr;
2196   }
2197   if (L.getNumBlocks() == 1) {
2198     LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2199     return nullptr;
2200   }
2201 
2202   // Also, if we have exit blocks which lead to outer loops but didn't select
2203   // one of them as the exiting block we are rotating toward, disable loop
2204   // rotation altogether.
2205   if (!BlocksExitingToOuterLoop.empty() &&
2206       !BlocksExitingToOuterLoop.count(ExitingBB))
2207     return nullptr;
2208 
2209   LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2210                     << "\n");
2211   ExitFreq = BestExitEdgeFreq;
2212   return ExitingBB;
2213 }
2214 
2215 /// Check if there is a fallthrough to loop header Top.
2216 ///
2217 ///   1. Look for a Pred that can be layout before Top.
2218 ///   2. Check if Top is the most possible successor of Pred.
2219 bool
2220 MachineBlockPlacement::hasViableTopFallthrough(
2221     const MachineBasicBlock *Top,
2222     const BlockFilterSet &LoopBlockSet) {
2223   for (MachineBasicBlock *Pred : Top->predecessors()) {
2224     BlockChain *PredChain = BlockToChain[Pred];
2225     if (!LoopBlockSet.count(Pred) &&
2226         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2227       // Found a Pred block can be placed before Top.
2228       // Check if Top is the best successor of Pred.
2229       auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2230       bool TopOK = true;
2231       for (MachineBasicBlock *Succ : Pred->successors()) {
2232         auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2233         BlockChain *SuccChain = BlockToChain[Succ];
2234         // Check if Succ can be placed after Pred.
2235         // Succ should not be in any chain, or it is the head of some chain.
2236         if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2237           TopOK = false;
2238           break;
2239         }
2240       }
2241       if (TopOK)
2242         return true;
2243     }
2244   }
2245   return false;
2246 }
2247 
2248 /// Attempt to rotate an exiting block to the bottom of the loop.
2249 ///
2250 /// Once we have built a chain, try to rotate it to line up the hot exit block
2251 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2252 /// branches. For example, if the loop has fallthrough into its header and out
2253 /// of its bottom already, don't rotate it.
2254 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2255                                        const MachineBasicBlock *ExitingBB,
2256                                        BlockFrequency ExitFreq,
2257                                        const BlockFilterSet &LoopBlockSet) {
2258   if (!ExitingBB)
2259     return;
2260 
2261   MachineBasicBlock *Top = *LoopChain.begin();
2262   MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2263 
2264   // If ExitingBB is already the last one in a chain then nothing to do.
2265   if (Bottom == ExitingBB)
2266     return;
2267 
2268   bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2269 
2270   // If the header has viable fallthrough, check whether the current loop
2271   // bottom is a viable exiting block. If so, bail out as rotating will
2272   // introduce an unnecessary branch.
2273   if (ViableTopFallthrough) {
2274     for (MachineBasicBlock *Succ : Bottom->successors()) {
2275       BlockChain *SuccChain = BlockToChain[Succ];
2276       if (!LoopBlockSet.count(Succ) &&
2277           (!SuccChain || Succ == *SuccChain->begin()))
2278         return;
2279     }
2280 
2281     // Rotate will destroy the top fallthrough, we need to ensure the new exit
2282     // frequency is larger than top fallthrough.
2283     BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2284     if (FallThrough2Top >= ExitFreq)
2285       return;
2286   }
2287 
2288   BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2289   if (ExitIt == LoopChain.end())
2290     return;
2291 
2292   // Rotating a loop exit to the bottom when there is a fallthrough to top
2293   // trades the entry fallthrough for an exit fallthrough.
2294   // If there is no bottom->top edge, but the chosen exit block does have
2295   // a fallthrough, we break that fallthrough for nothing in return.
2296 
2297   // Let's consider an example. We have a built chain of basic blocks
2298   // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2299   // By doing a rotation we get
2300   // Bk+1, ..., Bn, B1, ..., Bk
2301   // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2302   // If we had a fallthrough Bk -> Bk+1 it is broken now.
2303   // It might be compensated by fallthrough Bn -> B1.
2304   // So we have a condition to avoid creation of extra branch by loop rotation.
2305   // All below must be true to avoid loop rotation:
2306   //   If there is a fallthrough to top (B1)
2307   //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2308   //   There is no fallthrough from bottom (Bn) to top (B1).
2309   // Please note that there is no exit fallthrough from Bn because we checked it
2310   // above.
2311   if (ViableTopFallthrough) {
2312     assert(std::next(ExitIt) != LoopChain.end() &&
2313            "Exit should not be last BB");
2314     MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2315     if (ExitingBB->isSuccessor(NextBlockInChain))
2316       if (!Bottom->isSuccessor(Top))
2317         return;
2318   }
2319 
2320   LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2321                     << " at bottom\n");
2322   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2323 }
2324 
2325 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2326 ///
2327 /// With profile data, we can determine the cost in terms of missed fall through
2328 /// opportunities when rotating a loop chain and select the best rotation.
2329 /// Basically, there are three kinds of cost to consider for each rotation:
2330 ///    1. The possibly missed fall through edge (if it exists) from BB out of
2331 ///    the loop to the loop header.
2332 ///    2. The possibly missed fall through edges (if they exist) from the loop
2333 ///    exits to BB out of the loop.
2334 ///    3. The missed fall through edge (if it exists) from the last BB to the
2335 ///    first BB in the loop chain.
2336 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
2337 ///  We select the best rotation with the smallest cost.
2338 void MachineBlockPlacement::rotateLoopWithProfile(
2339     BlockChain &LoopChain, const MachineLoop &L,
2340     const BlockFilterSet &LoopBlockSet) {
2341   auto RotationPos = LoopChain.end();
2342 
2343   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2344 
2345   // A utility lambda that scales up a block frequency by dividing it by a
2346   // branch probability which is the reciprocal of the scale.
2347   auto ScaleBlockFrequency = [](BlockFrequency Freq,
2348                                 unsigned Scale) -> BlockFrequency {
2349     if (Scale == 0)
2350       return 0;
2351     // Use operator / between BlockFrequency and BranchProbability to implement
2352     // saturating multiplication.
2353     return Freq / BranchProbability(1, Scale);
2354   };
2355 
2356   // Compute the cost of the missed fall-through edge to the loop header if the
2357   // chain head is not the loop header. As we only consider natural loops with
2358   // single header, this computation can be done only once.
2359   BlockFrequency HeaderFallThroughCost(0);
2360   MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2361   for (auto *Pred : ChainHeaderBB->predecessors()) {
2362     BlockChain *PredChain = BlockToChain[Pred];
2363     if (!LoopBlockSet.count(Pred) &&
2364         (!PredChain || Pred == *std::prev(PredChain->end()))) {
2365       auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2366           MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2367       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2368       // If the predecessor has only an unconditional jump to the header, we
2369       // need to consider the cost of this jump.
2370       if (Pred->succ_size() == 1)
2371         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2372       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2373     }
2374   }
2375 
2376   // Here we collect all exit blocks in the loop, and for each exit we find out
2377   // its hottest exit edge. For each loop rotation, we define the loop exit cost
2378   // as the sum of frequencies of exit edges we collect here, excluding the exit
2379   // edge from the tail of the loop chain.
2380   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2381   for (auto BB : LoopChain) {
2382     auto LargestExitEdgeProb = BranchProbability::getZero();
2383     for (auto *Succ : BB->successors()) {
2384       BlockChain *SuccChain = BlockToChain[Succ];
2385       if (!LoopBlockSet.count(Succ) &&
2386           (!SuccChain || Succ == *SuccChain->begin())) {
2387         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2388         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2389       }
2390     }
2391     if (LargestExitEdgeProb > BranchProbability::getZero()) {
2392       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2393       ExitsWithFreq.emplace_back(BB, ExitFreq);
2394     }
2395   }
2396 
2397   // In this loop we iterate every block in the loop chain and calculate the
2398   // cost assuming the block is the head of the loop chain. When the loop ends,
2399   // we should have found the best candidate as the loop chain's head.
2400   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2401             EndIter = LoopChain.end();
2402        Iter != EndIter; Iter++, TailIter++) {
2403     // TailIter is used to track the tail of the loop chain if the block we are
2404     // checking (pointed by Iter) is the head of the chain.
2405     if (TailIter == LoopChain.end())
2406       TailIter = LoopChain.begin();
2407 
2408     auto TailBB = *TailIter;
2409 
2410     // Calculate the cost by putting this BB to the top.
2411     BlockFrequency Cost = 0;
2412 
2413     // If the current BB is the loop header, we need to take into account the
2414     // cost of the missed fall through edge from outside of the loop to the
2415     // header.
2416     if (Iter != LoopChain.begin())
2417       Cost += HeaderFallThroughCost;
2418 
2419     // Collect the loop exit cost by summing up frequencies of all exit edges
2420     // except the one from the chain tail.
2421     for (auto &ExitWithFreq : ExitsWithFreq)
2422       if (TailBB != ExitWithFreq.first)
2423         Cost += ExitWithFreq.second;
2424 
2425     // The cost of breaking the once fall-through edge from the tail to the top
2426     // of the loop chain. Here we need to consider three cases:
2427     // 1. If the tail node has only one successor, then we will get an
2428     //    additional jmp instruction. So the cost here is (MisfetchCost +
2429     //    JumpInstCost) * tail node frequency.
2430     // 2. If the tail node has two successors, then we may still get an
2431     //    additional jmp instruction if the layout successor after the loop
2432     //    chain is not its CFG successor. Note that the more frequently executed
2433     //    jmp instruction will be put ahead of the other one. Assume the
2434     //    frequency of those two branches are x and y, where x is the frequency
2435     //    of the edge to the chain head, then the cost will be
2436     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2437     // 3. If the tail node has more than two successors (this rarely happens),
2438     //    we won't consider any additional cost.
2439     if (TailBB->isSuccessor(*Iter)) {
2440       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2441       if (TailBB->succ_size() == 1)
2442         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2443                                     MisfetchCost + JumpInstCost);
2444       else if (TailBB->succ_size() == 2) {
2445         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2446         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2447         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2448                                   ? TailBBFreq * TailToHeadProb.getCompl()
2449                                   : TailToHeadFreq;
2450         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2451                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2452       }
2453     }
2454 
2455     LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2456                       << getBlockName(*Iter)
2457                       << " to the top: " << Cost.getFrequency() << "\n");
2458 
2459     if (Cost < SmallestRotationCost) {
2460       SmallestRotationCost = Cost;
2461       RotationPos = Iter;
2462     }
2463   }
2464 
2465   if (RotationPos != LoopChain.end()) {
2466     LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2467                       << " to the top\n");
2468     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2469   }
2470 }
2471 
2472 /// Collect blocks in the given loop that are to be placed.
2473 ///
2474 /// When profile data is available, exclude cold blocks from the returned set;
2475 /// otherwise, collect all blocks in the loop.
2476 MachineBlockPlacement::BlockFilterSet
2477 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2478   BlockFilterSet LoopBlockSet;
2479 
2480   // Filter cold blocks off from LoopBlockSet when profile data is available.
2481   // Collect the sum of frequencies of incoming edges to the loop header from
2482   // outside. If we treat the loop as a super block, this is the frequency of
2483   // the loop. Then for each block in the loop, we calculate the ratio between
2484   // its frequency and the frequency of the loop block. When it is too small,
2485   // don't add it to the loop chain. If there are outer loops, then this block
2486   // will be merged into the first outer loop chain for which this block is not
2487   // cold anymore. This needs precise profile data and we only do this when
2488   // profile data is available.
2489   if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2490     BlockFrequency LoopFreq(0);
2491     for (auto LoopPred : L.getHeader()->predecessors())
2492       if (!L.contains(LoopPred))
2493         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2494                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2495 
2496     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2497       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2498       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2499         continue;
2500       LoopBlockSet.insert(LoopBB);
2501     }
2502   } else
2503     LoopBlockSet.insert(L.block_begin(), L.block_end());
2504 
2505   return LoopBlockSet;
2506 }
2507 
2508 /// Forms basic block chains from the natural loop structures.
2509 ///
2510 /// These chains are designed to preserve the existing *structure* of the code
2511 /// as much as possible. We can then stitch the chains together in a way which
2512 /// both preserves the topological structure and minimizes taken conditional
2513 /// branches.
2514 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2515   // First recurse through any nested loops, building chains for those inner
2516   // loops.
2517   for (const MachineLoop *InnerLoop : L)
2518     buildLoopChains(*InnerLoop);
2519 
2520   assert(BlockWorkList.empty() &&
2521          "BlockWorkList not empty when starting to build loop chains.");
2522   assert(EHPadWorkList.empty() &&
2523          "EHPadWorkList not empty when starting to build loop chains.");
2524   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2525 
2526   // Check if we have profile data for this function. If yes, we will rotate
2527   // this loop by modeling costs more precisely which requires the profile data
2528   // for better layout.
2529   bool RotateLoopWithProfile =
2530       ForcePreciseRotationCost ||
2531       (PreciseRotationCost && F->getFunction().hasProfileData());
2532 
2533   // First check to see if there is an obviously preferable top block for the
2534   // loop. This will default to the header, but may end up as one of the
2535   // predecessors to the header if there is one which will result in strictly
2536   // fewer branches in the loop body.
2537   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2538 
2539   // If we selected just the header for the loop top, look for a potentially
2540   // profitable exit block in the event that rotating the loop can eliminate
2541   // branches by placing an exit edge at the bottom.
2542   //
2543   // Loops are processed innermost to uttermost, make sure we clear
2544   // PreferredLoopExit before processing a new loop.
2545   PreferredLoopExit = nullptr;
2546   BlockFrequency ExitFreq;
2547   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2548     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2549 
2550   BlockChain &LoopChain = *BlockToChain[LoopTop];
2551 
2552   // FIXME: This is a really lame way of walking the chains in the loop: we
2553   // walk the blocks, and use a set to prevent visiting a particular chain
2554   // twice.
2555   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2556   assert(LoopChain.UnscheduledPredecessors == 0 &&
2557          "LoopChain should not have unscheduled predecessors.");
2558   UpdatedPreds.insert(&LoopChain);
2559 
2560   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2561     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2562 
2563   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2564 
2565   if (RotateLoopWithProfile)
2566     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2567   else
2568     rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2569 
2570   LLVM_DEBUG({
2571     // Crash at the end so we get all of the debugging output first.
2572     bool BadLoop = false;
2573     if (LoopChain.UnscheduledPredecessors) {
2574       BadLoop = true;
2575       dbgs() << "Loop chain contains a block without its preds placed!\n"
2576              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2577              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2578     }
2579     for (MachineBasicBlock *ChainBB : LoopChain) {
2580       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2581       if (!LoopBlockSet.remove(ChainBB)) {
2582         // We don't mark the loop as bad here because there are real situations
2583         // where this can occur. For example, with an unanalyzable fallthrough
2584         // from a loop block to a non-loop block or vice versa.
2585         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2586                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2587                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2588                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2589       }
2590     }
2591 
2592     if (!LoopBlockSet.empty()) {
2593       BadLoop = true;
2594       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2595         dbgs() << "Loop contains blocks never placed into a chain!\n"
2596                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2597                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2598                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2599     }
2600     assert(!BadLoop && "Detected problems with the placement of this loop.");
2601   });
2602 
2603   BlockWorkList.clear();
2604   EHPadWorkList.clear();
2605 }
2606 
2607 void MachineBlockPlacement::buildCFGChains() {
2608   // Ensure that every BB in the function has an associated chain to simplify
2609   // the assumptions of the remaining algorithm.
2610   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2611   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2612        ++FI) {
2613     MachineBasicBlock *BB = &*FI;
2614     BlockChain *Chain =
2615         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2616     // Also, merge any blocks which we cannot reason about and must preserve
2617     // the exact fallthrough behavior for.
2618     while (true) {
2619       Cond.clear();
2620       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2621       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2622         break;
2623 
2624       MachineFunction::iterator NextFI = std::next(FI);
2625       MachineBasicBlock *NextBB = &*NextFI;
2626       // Ensure that the layout successor is a viable block, as we know that
2627       // fallthrough is a possibility.
2628       assert(NextFI != FE && "Can't fallthrough past the last block.");
2629       LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2630                         << getBlockName(BB) << " -> " << getBlockName(NextBB)
2631                         << "\n");
2632       Chain->merge(NextBB, nullptr);
2633 #ifndef NDEBUG
2634       BlocksWithUnanalyzableExits.insert(&*BB);
2635 #endif
2636       FI = NextFI;
2637       BB = NextBB;
2638     }
2639   }
2640 
2641   // Build any loop-based chains.
2642   PreferredLoopExit = nullptr;
2643   for (MachineLoop *L : *MLI)
2644     buildLoopChains(*L);
2645 
2646   assert(BlockWorkList.empty() &&
2647          "BlockWorkList should be empty before building final chain.");
2648   assert(EHPadWorkList.empty() &&
2649          "EHPadWorkList should be empty before building final chain.");
2650 
2651   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2652   for (MachineBasicBlock &MBB : *F)
2653     fillWorkLists(&MBB, UpdatedPreds);
2654 
2655   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2656   buildChain(&F->front(), FunctionChain);
2657 
2658 #ifndef NDEBUG
2659   using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2660 #endif
2661   LLVM_DEBUG({
2662     // Crash at the end so we get all of the debugging output first.
2663     bool BadFunc = false;
2664     FunctionBlockSetType FunctionBlockSet;
2665     for (MachineBasicBlock &MBB : *F)
2666       FunctionBlockSet.insert(&MBB);
2667 
2668     for (MachineBasicBlock *ChainBB : FunctionChain)
2669       if (!FunctionBlockSet.erase(ChainBB)) {
2670         BadFunc = true;
2671         dbgs() << "Function chain contains a block not in the function!\n"
2672                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2673       }
2674 
2675     if (!FunctionBlockSet.empty()) {
2676       BadFunc = true;
2677       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2678         dbgs() << "Function contains blocks never placed into a chain!\n"
2679                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2680     }
2681     assert(!BadFunc && "Detected problems with the block placement.");
2682   });
2683 
2684   // Splice the blocks into place.
2685   MachineFunction::iterator InsertPos = F->begin();
2686   LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2687   for (MachineBasicBlock *ChainBB : FunctionChain) {
2688     LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2689                                                             : "          ... ")
2690                       << getBlockName(ChainBB) << "\n");
2691     if (InsertPos != MachineFunction::iterator(ChainBB))
2692       F->splice(InsertPos, ChainBB);
2693     else
2694       ++InsertPos;
2695 
2696     // Update the terminator of the previous block.
2697     if (ChainBB == *FunctionChain.begin())
2698       continue;
2699     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2700 
2701     // FIXME: It would be awesome of updateTerminator would just return rather
2702     // than assert when the branch cannot be analyzed in order to remove this
2703     // boiler plate.
2704     Cond.clear();
2705     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2706 
2707 #ifndef NDEBUG
2708     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2709       // Given the exact block placement we chose, we may actually not _need_ to
2710       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2711       // do that at this point is a bug.
2712       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2713               !PrevBB->canFallThrough()) &&
2714              "Unexpected block with un-analyzable fallthrough!");
2715       Cond.clear();
2716       TBB = FBB = nullptr;
2717     }
2718 #endif
2719 
2720     // The "PrevBB" is not yet updated to reflect current code layout, so,
2721     //   o. it may fall-through to a block without explicit "goto" instruction
2722     //      before layout, and no longer fall-through it after layout; or
2723     //   o. just opposite.
2724     //
2725     // analyzeBranch() may return erroneous value for FBB when these two
2726     // situations take place. For the first scenario FBB is mistakenly set NULL;
2727     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2728     // mistakenly pointing to "*BI".
2729     // Thus, if the future change needs to use FBB before the layout is set, it
2730     // has to correct FBB first by using the code similar to the following:
2731     //
2732     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2733     //   PrevBB->updateTerminator();
2734     //   Cond.clear();
2735     //   TBB = FBB = nullptr;
2736     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2737     //     // FIXME: This should never take place.
2738     //     TBB = FBB = nullptr;
2739     //   }
2740     // }
2741     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2742       PrevBB->updateTerminator();
2743   }
2744 
2745   // Fixup the last block.
2746   Cond.clear();
2747   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2748   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2749     F->back().updateTerminator();
2750 
2751   BlockWorkList.clear();
2752   EHPadWorkList.clear();
2753 }
2754 
2755 void MachineBlockPlacement::optimizeBranches() {
2756   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2757   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2758 
2759   // Now that all the basic blocks in the chain have the proper layout,
2760   // make a final call to AnalyzeBranch with AllowModify set.
2761   // Indeed, the target may be able to optimize the branches in a way we
2762   // cannot because all branches may not be analyzable.
2763   // E.g., the target may be able to remove an unconditional branch to
2764   // a fallthrough when it occurs after predicated terminators.
2765   for (MachineBasicBlock *ChainBB : FunctionChain) {
2766     Cond.clear();
2767     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2768     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2769       // If PrevBB has a two-way branch, try to re-order the branches
2770       // such that we branch to the successor with higher probability first.
2771       if (TBB && !Cond.empty() && FBB &&
2772           MBPI->getEdgeProbability(ChainBB, FBB) >
2773               MBPI->getEdgeProbability(ChainBB, TBB) &&
2774           !TII->reverseBranchCondition(Cond)) {
2775         LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2776                           << getBlockName(ChainBB) << "\n");
2777         LLVM_DEBUG(dbgs() << "    Edge probability: "
2778                           << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2779                           << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2780         DebugLoc dl; // FIXME: this is nowhere
2781         TII->removeBranch(*ChainBB);
2782         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2783         ChainBB->updateTerminator();
2784       }
2785     }
2786   }
2787 }
2788 
2789 void MachineBlockPlacement::alignBlocks() {
2790   // Walk through the backedges of the function now that we have fully laid out
2791   // the basic blocks and align the destination of each backedge. We don't rely
2792   // exclusively on the loop info here so that we can align backedges in
2793   // unnatural CFGs and backedges that were introduced purely because of the
2794   // loop rotations done during this layout pass.
2795   if (F->getFunction().hasMinSize() ||
2796       (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2797     return;
2798   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2799   if (FunctionChain.begin() == FunctionChain.end())
2800     return; // Empty chain.
2801 
2802   const BranchProbability ColdProb(1, 5); // 20%
2803   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2804   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2805   for (MachineBasicBlock *ChainBB : FunctionChain) {
2806     if (ChainBB == *FunctionChain.begin())
2807       continue;
2808 
2809     // Don't align non-looping basic blocks. These are unlikely to execute
2810     // enough times to matter in practice. Note that we'll still handle
2811     // unnatural CFGs inside of a natural outer loop (the common case) and
2812     // rotated loops.
2813     MachineLoop *L = MLI->getLoopFor(ChainBB);
2814     if (!L)
2815       continue;
2816 
2817     const Align Align = TLI->getPrefLoopAlignment(L);
2818     if (Align == 1)
2819       continue; // Don't care about loop alignment.
2820 
2821     // If the block is cold relative to the function entry don't waste space
2822     // aligning it.
2823     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2824     if (Freq < WeightedEntryFreq)
2825       continue;
2826 
2827     // If the block is cold relative to its loop header, don't align it
2828     // regardless of what edges into the block exist.
2829     MachineBasicBlock *LoopHeader = L->getHeader();
2830     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2831     if (Freq < (LoopHeaderFreq * ColdProb))
2832       continue;
2833 
2834     // Check for the existence of a non-layout predecessor which would benefit
2835     // from aligning this block.
2836     MachineBasicBlock *LayoutPred =
2837         &*std::prev(MachineFunction::iterator(ChainBB));
2838 
2839     // Force alignment if all the predecessors are jumps. We already checked
2840     // that the block isn't cold above.
2841     if (!LayoutPred->isSuccessor(ChainBB)) {
2842       ChainBB->setAlignment(Align);
2843       continue;
2844     }
2845 
2846     // Align this block if the layout predecessor's edge into this block is
2847     // cold relative to the block. When this is true, other predecessors make up
2848     // all of the hot entries into the block and thus alignment is likely to be
2849     // important.
2850     BranchProbability LayoutProb =
2851         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2852     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2853     if (LayoutEdgeFreq <= (Freq * ColdProb))
2854       ChainBB->setAlignment(Align);
2855   }
2856 }
2857 
2858 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2859 /// it was duplicated into its chain predecessor and removed.
2860 /// \p BB    - Basic block that may be duplicated.
2861 ///
2862 /// \p LPred - Chosen layout predecessor of \p BB.
2863 ///            Updated to be the chain end if LPred is removed.
2864 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2865 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2866 ///                  Used to identify which blocks to update predecessor
2867 ///                  counts.
2868 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2869 ///                          chosen in the given order due to unnatural CFG
2870 ///                          only needed if \p BB is removed and
2871 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2872 /// @return true if \p BB was removed.
2873 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2874     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2875     const MachineBasicBlock *LoopHeaderBB,
2876     BlockChain &Chain, BlockFilterSet *BlockFilter,
2877     MachineFunction::iterator &PrevUnplacedBlockIt) {
2878   bool Removed, DuplicatedToLPred;
2879   bool DuplicatedToOriginalLPred;
2880   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2881                                     PrevUnplacedBlockIt,
2882                                     DuplicatedToLPred);
2883   if (!Removed)
2884     return false;
2885   DuplicatedToOriginalLPred = DuplicatedToLPred;
2886   // Iteratively try to duplicate again. It can happen that a block that is
2887   // duplicated into is still small enough to be duplicated again.
2888   // No need to call markBlockSuccessors in this case, as the blocks being
2889   // duplicated from here on are already scheduled.
2890   // Note that DuplicatedToLPred always implies Removed.
2891   while (DuplicatedToLPred) {
2892     assert(Removed && "Block must have been removed to be duplicated into its "
2893            "layout predecessor.");
2894     MachineBasicBlock *DupBB, *DupPred;
2895     // The removal callback causes Chain.end() to be updated when a block is
2896     // removed. On the first pass through the loop, the chain end should be the
2897     // same as it was on function entry. On subsequent passes, because we are
2898     // duplicating the block at the end of the chain, if it is removed the
2899     // chain will have shrunk by one block.
2900     BlockChain::iterator ChainEnd = Chain.end();
2901     DupBB = *(--ChainEnd);
2902     // Now try to duplicate again.
2903     if (ChainEnd == Chain.begin())
2904       break;
2905     DupPred = *std::prev(ChainEnd);
2906     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2907                                       PrevUnplacedBlockIt,
2908                                       DuplicatedToLPred);
2909   }
2910   // If BB was duplicated into LPred, it is now scheduled. But because it was
2911   // removed, markChainSuccessors won't be called for its chain. Instead we
2912   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2913   // at the end because repeating the tail duplication can increase the number
2914   // of unscheduled predecessors.
2915   LPred = *std::prev(Chain.end());
2916   if (DuplicatedToOriginalLPred)
2917     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2918   return true;
2919 }
2920 
2921 /// Tail duplicate \p BB into (some) predecessors if profitable.
2922 /// \p BB    - Basic block that may be duplicated
2923 /// \p LPred - Chosen layout predecessor of \p BB
2924 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2925 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2926 ///                  Used to identify which blocks to update predecessor
2927 ///                  counts.
2928 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2929 ///                          chosen in the given order due to unnatural CFG
2930 ///                          only needed if \p BB is removed and
2931 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2932 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2933 ///                        only be true if the block was removed.
2934 /// \return  - True if the block was duplicated into all preds and removed.
2935 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2936     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2937     BlockChain &Chain, BlockFilterSet *BlockFilter,
2938     MachineFunction::iterator &PrevUnplacedBlockIt,
2939     bool &DuplicatedToLPred) {
2940   DuplicatedToLPred = false;
2941   if (!shouldTailDuplicate(BB))
2942     return false;
2943 
2944   LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2945                     << "\n");
2946 
2947   // This has to be a callback because none of it can be done after
2948   // BB is deleted.
2949   bool Removed = false;
2950   auto RemovalCallback =
2951       [&](MachineBasicBlock *RemBB) {
2952         // Signal to outer function
2953         Removed = true;
2954 
2955         // Conservative default.
2956         bool InWorkList = true;
2957         // Remove from the Chain and Chain Map
2958         if (BlockToChain.count(RemBB)) {
2959           BlockChain *Chain = BlockToChain[RemBB];
2960           InWorkList = Chain->UnscheduledPredecessors == 0;
2961           Chain->remove(RemBB);
2962           BlockToChain.erase(RemBB);
2963         }
2964 
2965         // Handle the unplaced block iterator
2966         if (&(*PrevUnplacedBlockIt) == RemBB) {
2967           PrevUnplacedBlockIt++;
2968         }
2969 
2970         // Handle the Work Lists
2971         if (InWorkList) {
2972           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2973           if (RemBB->isEHPad())
2974             RemoveList = EHPadWorkList;
2975           RemoveList.erase(
2976               llvm::remove_if(RemoveList,
2977                               [RemBB](MachineBasicBlock *BB) {
2978                                 return BB == RemBB;
2979                               }),
2980               RemoveList.end());
2981         }
2982 
2983         // Handle the filter set
2984         if (BlockFilter) {
2985           BlockFilter->remove(RemBB);
2986         }
2987 
2988         // Remove the block from loop info.
2989         MLI->removeBlock(RemBB);
2990         if (RemBB == PreferredLoopExit)
2991           PreferredLoopExit = nullptr;
2992 
2993         LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2994                           << getBlockName(RemBB) << "\n");
2995       };
2996   auto RemovalCallbackRef =
2997       function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2998 
2999   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3000   bool IsSimple = TailDup.isSimpleBB(BB);
3001   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
3002                                  &DuplicatedPreds, &RemovalCallbackRef);
3003 
3004   // Update UnscheduledPredecessors to reflect tail-duplication.
3005   DuplicatedToLPred = false;
3006   for (MachineBasicBlock *Pred : DuplicatedPreds) {
3007     // We're only looking for unscheduled predecessors that match the filter.
3008     BlockChain* PredChain = BlockToChain[Pred];
3009     if (Pred == LPred)
3010       DuplicatedToLPred = true;
3011     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3012         || PredChain == &Chain)
3013       continue;
3014     for (MachineBasicBlock *NewSucc : Pred->successors()) {
3015       if (BlockFilter && !BlockFilter->count(NewSucc))
3016         continue;
3017       BlockChain *NewChain = BlockToChain[NewSucc];
3018       if (NewChain != &Chain && NewChain != PredChain)
3019         NewChain->UnscheduledPredecessors++;
3020     }
3021   }
3022   return Removed;
3023 }
3024 
3025 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3026   if (skipFunction(MF.getFunction()))
3027     return false;
3028 
3029   // Check for single-block functions and skip them.
3030   if (std::next(MF.begin()) == MF.end())
3031     return false;
3032 
3033   F = &MF;
3034   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3035   MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
3036       getAnalysis<MachineBlockFrequencyInfo>());
3037   MLI = &getAnalysis<MachineLoopInfo>();
3038   TII = MF.getSubtarget().getInstrInfo();
3039   TLI = MF.getSubtarget().getTargetLowering();
3040   MPDT = nullptr;
3041 
3042   // Initialize PreferredLoopExit to nullptr here since it may never be set if
3043   // there are no MachineLoops.
3044   PreferredLoopExit = nullptr;
3045 
3046   assert(BlockToChain.empty() &&
3047          "BlockToChain map should be empty before starting placement.");
3048   assert(ComputedEdges.empty() &&
3049          "Computed Edge map should be empty before starting placement.");
3050 
3051   unsigned TailDupSize = TailDupPlacementThreshold;
3052   // If only the aggressive threshold is explicitly set, use it.
3053   if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3054       TailDupPlacementThreshold.getNumOccurrences() == 0)
3055     TailDupSize = TailDupPlacementAggressiveThreshold;
3056 
3057   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3058   // For aggressive optimization, we can adjust some thresholds to be less
3059   // conservative.
3060   if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3061     // At O3 we should be more willing to copy blocks for tail duplication. This
3062     // increases size pressure, so we only do it at O3
3063     // Do this unless only the regular threshold is explicitly set.
3064     if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3065         TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3066       TailDupSize = TailDupPlacementAggressiveThreshold;
3067   }
3068 
3069   if (allowTailDupPlacement()) {
3070     MPDT = &getAnalysis<MachinePostDominatorTree>();
3071     if (MF.getFunction().hasOptSize())
3072       TailDupSize = 1;
3073     bool PreRegAlloc = false;
3074     TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3075     precomputeTriangleChains();
3076   }
3077 
3078   buildCFGChains();
3079 
3080   // Changing the layout can create new tail merging opportunities.
3081   // TailMerge can create jump into if branches that make CFG irreducible for
3082   // HW that requires structured CFG.
3083   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3084                          PassConfig->getEnableTailMerge() &&
3085                          BranchFoldPlacement;
3086   // No tail merging opportunities if the block number is less than four.
3087   if (MF.size() > 3 && EnableTailMerge) {
3088     unsigned TailMergeSize = TailDupSize + 1;
3089     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3090                     *MBPI, TailMergeSize);
3091 
3092     auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
3093     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3094                             MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
3095                             /*AfterPlacement=*/true)) {
3096       // Redo the layout if tail merging creates/removes/moves blocks.
3097       BlockToChain.clear();
3098       ComputedEdges.clear();
3099       // Must redo the post-dominator tree if blocks were changed.
3100       if (MPDT)
3101         MPDT->runOnMachineFunction(MF);
3102       ChainAllocator.DestroyAll();
3103       buildCFGChains();
3104     }
3105   }
3106 
3107   optimizeBranches();
3108   alignBlocks();
3109 
3110   BlockToChain.clear();
3111   ComputedEdges.clear();
3112   ChainAllocator.DestroyAll();
3113 
3114   if (AlignAllBlock)
3115     // Align all of the blocks in the function to a specific alignment.
3116     for (MachineBasicBlock &MBB : MF)
3117       MBB.setAlignment(Align(1ULL << AlignAllBlock));
3118   else if (AlignAllNonFallThruBlocks) {
3119     // Align all of the blocks that have no fall-through predecessors to a
3120     // specific alignment.
3121     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3122       auto LayoutPred = std::prev(MBI);
3123       if (!LayoutPred->isSuccessor(&*MBI))
3124         MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3125     }
3126   }
3127   if (ViewBlockLayoutWithBFI != GVDT_None &&
3128       (ViewBlockFreqFuncName.empty() ||
3129        F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3130     MBFI->view("MBP." + MF.getName(), false);
3131   }
3132 
3133 
3134   // We always return true as we have no way to track whether the final order
3135   // differs from the original order.
3136   return true;
3137 }
3138 
3139 namespace {
3140 
3141 /// A pass to compute block placement statistics.
3142 ///
3143 /// A separate pass to compute interesting statistics for evaluating block
3144 /// placement. This is separate from the actual placement pass so that they can
3145 /// be computed in the absence of any placement transformations or when using
3146 /// alternative placement strategies.
3147 class MachineBlockPlacementStats : public MachineFunctionPass {
3148   /// A handle to the branch probability pass.
3149   const MachineBranchProbabilityInfo *MBPI;
3150 
3151   /// A handle to the function-wide block frequency pass.
3152   const MachineBlockFrequencyInfo *MBFI;
3153 
3154 public:
3155   static char ID; // Pass identification, replacement for typeid
3156 
3157   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3158     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3159   }
3160 
3161   bool runOnMachineFunction(MachineFunction &F) override;
3162 
3163   void getAnalysisUsage(AnalysisUsage &AU) const override {
3164     AU.addRequired<MachineBranchProbabilityInfo>();
3165     AU.addRequired<MachineBlockFrequencyInfo>();
3166     AU.setPreservesAll();
3167     MachineFunctionPass::getAnalysisUsage(AU);
3168   }
3169 };
3170 
3171 } // end anonymous namespace
3172 
3173 char MachineBlockPlacementStats::ID = 0;
3174 
3175 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3176 
3177 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3178                       "Basic Block Placement Stats", false, false)
3179 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3180 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3181 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3182                     "Basic Block Placement Stats", false, false)
3183 
3184 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3185   // Check for single-block functions and skip them.
3186   if (std::next(F.begin()) == F.end())
3187     return false;
3188 
3189   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3190   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3191 
3192   for (MachineBasicBlock &MBB : F) {
3193     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3194     Statistic &NumBranches =
3195         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3196     Statistic &BranchTakenFreq =
3197         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3198     for (MachineBasicBlock *Succ : MBB.successors()) {
3199       // Skip if this successor is a fallthrough.
3200       if (MBB.isLayoutSuccessor(Succ))
3201         continue;
3202 
3203       BlockFrequency EdgeFreq =
3204           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3205       ++NumBranches;
3206       BranchTakenFreq += EdgeFreq.getFrequency();
3207     }
3208   }
3209 
3210   return false;
3211 }
3212