1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "BranchFolding.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/TailDuplicator.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetLowering.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Allocator.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "block-placement" 75 76 STATISTIC(NumCondBranches, "Number of conditional branches"); 77 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 78 STATISTIC(CondBranchTakenFreq, 79 "Potential frequency of taking conditional branches"); 80 STATISTIC(UncondBranchTakenFreq, 81 "Potential frequency of taking unconditional branches"); 82 83 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 84 cl::desc("Force the alignment of all " 85 "blocks in the function."), 86 cl::init(0), cl::Hidden); 87 88 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 89 "align-all-nofallthru-blocks", 90 cl::desc("Force the alignment of all " 91 "blocks that have no fall-through predecessors (i.e. don't add " 92 "nops that are executed)."), 93 cl::init(0), cl::Hidden); 94 95 // FIXME: Find a good default for this flag and remove the flag. 96 static cl::opt<unsigned> ExitBlockBias( 97 "block-placement-exit-block-bias", 98 cl::desc("Block frequency percentage a loop exit block needs " 99 "over the original exit to be considered the new exit."), 100 cl::init(0), cl::Hidden); 101 102 // Definition: 103 // - Outlining: placement of a basic block outside the chain or hot path. 104 105 static cl::opt<unsigned> LoopToColdBlockRatio( 106 "loop-to-cold-block-ratio", 107 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 108 "(frequency of block) is greater than this ratio"), 109 cl::init(5), cl::Hidden); 110 111 static cl::opt<bool> ForceLoopColdBlock( 112 "force-loop-cold-block", 113 cl::desc("Force outlining cold blocks from loops."), 114 cl::init(false), cl::Hidden); 115 116 static cl::opt<bool> 117 PreciseRotationCost("precise-rotation-cost", 118 cl::desc("Model the cost of loop rotation more " 119 "precisely by using profile data."), 120 cl::init(false), cl::Hidden); 121 122 static cl::opt<bool> 123 ForcePreciseRotationCost("force-precise-rotation-cost", 124 cl::desc("Force the use of precise cost " 125 "loop rotation strategy."), 126 cl::init(false), cl::Hidden); 127 128 static cl::opt<unsigned> MisfetchCost( 129 "misfetch-cost", 130 cl::desc("Cost that models the probabilistic risk of an instruction " 131 "misfetch due to a jump comparing to falling through, whose cost " 132 "is zero."), 133 cl::init(1), cl::Hidden); 134 135 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 136 cl::desc("Cost of jump instructions."), 137 cl::init(1), cl::Hidden); 138 static cl::opt<bool> 139 TailDupPlacement("tail-dup-placement", 140 cl::desc("Perform tail duplication during placement. " 141 "Creates more fallthrough opportunites in " 142 "outline branches."), 143 cl::init(true), cl::Hidden); 144 145 static cl::opt<bool> 146 BranchFoldPlacement("branch-fold-placement", 147 cl::desc("Perform branch folding during placement. " 148 "Reduces code size."), 149 cl::init(true), cl::Hidden); 150 151 // Heuristic for tail duplication. 152 static cl::opt<unsigned> TailDupPlacementThreshold( 153 "tail-dup-placement-threshold", 154 cl::desc("Instruction cutoff for tail duplication during layout. " 155 "Tail merging during layout is forced to have a threshold " 156 "that won't conflict."), cl::init(2), 157 cl::Hidden); 158 159 // Heuristic for aggressive tail duplication. 160 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 161 "tail-dup-placement-aggressive-threshold", 162 cl::desc("Instruction cutoff for aggressive tail duplication during " 163 "layout. Used at -O3. Tail merging during layout is forced to " 164 "have a threshold that won't conflict."), cl::init(4), 165 cl::Hidden); 166 167 // Heuristic for tail duplication. 168 static cl::opt<unsigned> TailDupPlacementPenalty( 169 "tail-dup-placement-penalty", 170 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 171 "Copying can increase fallthrough, but it also increases icache " 172 "pressure. This parameter controls the penalty to account for that. " 173 "Percent as integer."), 174 cl::init(2), 175 cl::Hidden); 176 177 // Heuristic for triangle chains. 178 static cl::opt<unsigned> TriangleChainCount( 179 "triangle-chain-count", 180 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 181 "triangle tail duplication heuristic to kick in. 0 to disable."), 182 cl::init(2), 183 cl::Hidden); 184 185 extern cl::opt<unsigned> StaticLikelyProb; 186 extern cl::opt<unsigned> ProfileLikelyProb; 187 188 // Internal option used to control BFI display only after MBP pass. 189 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 190 // -view-block-layout-with-bfi= 191 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 192 193 // Command line option to specify the name of the function for CFG dump 194 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 195 extern cl::opt<std::string> ViewBlockFreqFuncName; 196 197 namespace { 198 199 class BlockChain; 200 201 /// \brief Type for our function-wide basic block -> block chain mapping. 202 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 203 204 /// \brief A chain of blocks which will be laid out contiguously. 205 /// 206 /// This is the datastructure representing a chain of consecutive blocks that 207 /// are profitable to layout together in order to maximize fallthrough 208 /// probabilities and code locality. We also can use a block chain to represent 209 /// a sequence of basic blocks which have some external (correctness) 210 /// requirement for sequential layout. 211 /// 212 /// Chains can be built around a single basic block and can be merged to grow 213 /// them. They participate in a block-to-chain mapping, which is updated 214 /// automatically as chains are merged together. 215 class BlockChain { 216 /// \brief The sequence of blocks belonging to this chain. 217 /// 218 /// This is the sequence of blocks for a particular chain. These will be laid 219 /// out in-order within the function. 220 SmallVector<MachineBasicBlock *, 4> Blocks; 221 222 /// \brief A handle to the function-wide basic block to block chain mapping. 223 /// 224 /// This is retained in each block chain to simplify the computation of child 225 /// block chains for SCC-formation and iteration. We store the edges to child 226 /// basic blocks, and map them back to their associated chains using this 227 /// structure. 228 BlockToChainMapType &BlockToChain; 229 230 public: 231 /// \brief Construct a new BlockChain. 232 /// 233 /// This builds a new block chain representing a single basic block in the 234 /// function. It also registers itself as the chain that block participates 235 /// in with the BlockToChain mapping. 236 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 237 : Blocks(1, BB), BlockToChain(BlockToChain) { 238 assert(BB && "Cannot create a chain with a null basic block"); 239 BlockToChain[BB] = this; 240 } 241 242 /// \brief Iterator over blocks within the chain. 243 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 244 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 245 246 /// \brief Beginning of blocks within the chain. 247 iterator begin() { return Blocks.begin(); } 248 const_iterator begin() const { return Blocks.begin(); } 249 250 /// \brief End of blocks within the chain. 251 iterator end() { return Blocks.end(); } 252 const_iterator end() const { return Blocks.end(); } 253 254 bool remove(MachineBasicBlock* BB) { 255 for(iterator i = begin(); i != end(); ++i) { 256 if (*i == BB) { 257 Blocks.erase(i); 258 return true; 259 } 260 } 261 return false; 262 } 263 264 /// \brief Merge a block chain into this one. 265 /// 266 /// This routine merges a block chain into this one. It takes care of forming 267 /// a contiguous sequence of basic blocks, updating the edge list, and 268 /// updating the block -> chain mapping. It does not free or tear down the 269 /// old chain, but the old chain's block list is no longer valid. 270 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 271 assert(BB && "Can't merge a null block."); 272 assert(!Blocks.empty() && "Can't merge into an empty chain."); 273 274 // Fast path in case we don't have a chain already. 275 if (!Chain) { 276 assert(!BlockToChain[BB] && 277 "Passed chain is null, but BB has entry in BlockToChain."); 278 Blocks.push_back(BB); 279 BlockToChain[BB] = this; 280 return; 281 } 282 283 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 284 assert(Chain->begin() != Chain->end()); 285 286 // Update the incoming blocks to point to this chain, and add them to the 287 // chain structure. 288 for (MachineBasicBlock *ChainBB : *Chain) { 289 Blocks.push_back(ChainBB); 290 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 291 BlockToChain[ChainBB] = this; 292 } 293 } 294 295 #ifndef NDEBUG 296 /// \brief Dump the blocks in this chain. 297 LLVM_DUMP_METHOD void dump() { 298 for (MachineBasicBlock *MBB : *this) 299 MBB->dump(); 300 } 301 #endif // NDEBUG 302 303 /// \brief Count of predecessors of any block within the chain which have not 304 /// yet been scheduled. In general, we will delay scheduling this chain 305 /// until those predecessors are scheduled (or we find a sufficiently good 306 /// reason to override this heuristic.) Note that when forming loop chains, 307 /// blocks outside the loop are ignored and treated as if they were already 308 /// scheduled. 309 /// 310 /// Note: This field is reinitialized multiple times - once for each loop, 311 /// and then once for the function as a whole. 312 unsigned UnscheduledPredecessors = 0; 313 }; 314 315 class MachineBlockPlacement : public MachineFunctionPass { 316 /// \brief A type for a block filter set. 317 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 318 319 /// Pair struct containing basic block and taildup profitiability 320 struct BlockAndTailDupResult { 321 MachineBasicBlock *BB; 322 bool ShouldTailDup; 323 }; 324 325 /// Triple struct containing edge weight and the edge. 326 struct WeightedEdge { 327 BlockFrequency Weight; 328 MachineBasicBlock *Src; 329 MachineBasicBlock *Dest; 330 }; 331 332 /// \brief work lists of blocks that are ready to be laid out 333 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 334 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 335 336 /// Edges that have already been computed as optimal. 337 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 338 339 /// \brief Machine Function 340 MachineFunction *F; 341 342 /// \brief A handle to the branch probability pass. 343 const MachineBranchProbabilityInfo *MBPI; 344 345 /// \brief A handle to the function-wide block frequency pass. 346 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 347 348 /// \brief A handle to the loop info. 349 MachineLoopInfo *MLI; 350 351 /// \brief Preferred loop exit. 352 /// Member variable for convenience. It may be removed by duplication deep 353 /// in the call stack. 354 MachineBasicBlock *PreferredLoopExit; 355 356 /// \brief A handle to the target's instruction info. 357 const TargetInstrInfo *TII; 358 359 /// \brief A handle to the target's lowering info. 360 const TargetLoweringBase *TLI; 361 362 /// \brief A handle to the post dominator tree. 363 MachinePostDominatorTree *MPDT; 364 365 /// \brief Duplicator used to duplicate tails during placement. 366 /// 367 /// Placement decisions can open up new tail duplication opportunities, but 368 /// since tail duplication affects placement decisions of later blocks, it 369 /// must be done inline. 370 TailDuplicator TailDup; 371 372 /// \brief Allocator and owner of BlockChain structures. 373 /// 374 /// We build BlockChains lazily while processing the loop structure of 375 /// a function. To reduce malloc traffic, we allocate them using this 376 /// slab-like allocator, and destroy them after the pass completes. An 377 /// important guarantee is that this allocator produces stable pointers to 378 /// the chains. 379 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 380 381 /// \brief Function wide BasicBlock to BlockChain mapping. 382 /// 383 /// This mapping allows efficiently moving from any given basic block to the 384 /// BlockChain it participates in, if any. We use it to, among other things, 385 /// allow implicitly defining edges between chains as the existing edges 386 /// between basic blocks. 387 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 388 389 #ifndef NDEBUG 390 /// The set of basic blocks that have terminators that cannot be fully 391 /// analyzed. These basic blocks cannot be re-ordered safely by 392 /// MachineBlockPlacement, and we must preserve physical layout of these 393 /// blocks and their successors through the pass. 394 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 395 #endif 396 397 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 398 /// if the count goes to 0, add them to the appropriate work list. 399 void markChainSuccessors( 400 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 401 const BlockFilterSet *BlockFilter = nullptr); 402 403 /// Decrease the UnscheduledPredecessors count for a single block, and 404 /// if the count goes to 0, add them to the appropriate work list. 405 void markBlockSuccessors( 406 const BlockChain &Chain, const MachineBasicBlock *BB, 407 const MachineBasicBlock *LoopHeaderBB, 408 const BlockFilterSet *BlockFilter = nullptr); 409 410 BranchProbability 411 collectViableSuccessors( 412 const MachineBasicBlock *BB, const BlockChain &Chain, 413 const BlockFilterSet *BlockFilter, 414 SmallVector<MachineBasicBlock *, 4> &Successors); 415 bool shouldPredBlockBeOutlined( 416 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 417 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 418 BranchProbability SuccProb, BranchProbability HotProb); 419 bool repeatedlyTailDuplicateBlock( 420 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 421 const MachineBasicBlock *LoopHeaderBB, 422 BlockChain &Chain, BlockFilterSet *BlockFilter, 423 MachineFunction::iterator &PrevUnplacedBlockIt); 424 bool maybeTailDuplicateBlock( 425 MachineBasicBlock *BB, MachineBasicBlock *LPred, 426 BlockChain &Chain, BlockFilterSet *BlockFilter, 427 MachineFunction::iterator &PrevUnplacedBlockIt, 428 bool &DuplicatedToPred); 429 bool hasBetterLayoutPredecessor( 430 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 431 const BlockChain &SuccChain, BranchProbability SuccProb, 432 BranchProbability RealSuccProb, const BlockChain &Chain, 433 const BlockFilterSet *BlockFilter); 434 BlockAndTailDupResult selectBestSuccessor( 435 const MachineBasicBlock *BB, const BlockChain &Chain, 436 const BlockFilterSet *BlockFilter); 437 MachineBasicBlock *selectBestCandidateBlock( 438 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 439 MachineBasicBlock *getFirstUnplacedBlock( 440 const BlockChain &PlacedChain, 441 MachineFunction::iterator &PrevUnplacedBlockIt, 442 const BlockFilterSet *BlockFilter); 443 444 /// \brief Add a basic block to the work list if it is appropriate. 445 /// 446 /// If the optional parameter BlockFilter is provided, only MBB 447 /// present in the set will be added to the worklist. If nullptr 448 /// is provided, no filtering occurs. 449 void fillWorkLists(const MachineBasicBlock *MBB, 450 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 451 const BlockFilterSet *BlockFilter); 452 453 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 454 BlockFilterSet *BlockFilter = nullptr); 455 MachineBasicBlock *findBestLoopTop( 456 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 457 MachineBasicBlock *findBestLoopExit( 458 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 459 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 460 void buildLoopChains(const MachineLoop &L); 461 void rotateLoop( 462 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 463 const BlockFilterSet &LoopBlockSet); 464 void rotateLoopWithProfile( 465 BlockChain &LoopChain, const MachineLoop &L, 466 const BlockFilterSet &LoopBlockSet); 467 void buildCFGChains(); 468 void optimizeBranches(); 469 void alignBlocks(); 470 /// Returns true if a block should be tail-duplicated to increase fallthrough 471 /// opportunities. 472 bool shouldTailDuplicate(MachineBasicBlock *BB); 473 /// Check the edge frequencies to see if tail duplication will increase 474 /// fallthroughs. 475 bool isProfitableToTailDup( 476 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 477 BranchProbability AdjustedSumProb, 478 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 479 480 /// Check for a trellis layout. 481 bool isTrellis(const MachineBasicBlock *BB, 482 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 483 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 484 485 /// Get the best successor given a trellis layout. 486 BlockAndTailDupResult getBestTrellisSuccessor( 487 const MachineBasicBlock *BB, 488 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 489 BranchProbability AdjustedSumProb, const BlockChain &Chain, 490 const BlockFilterSet *BlockFilter); 491 492 /// Get the best pair of non-conflicting edges. 493 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 494 const MachineBasicBlock *BB, 495 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 496 497 /// Returns true if a block can tail duplicate into all unplaced 498 /// predecessors. Filters based on loop. 499 bool canTailDuplicateUnplacedPreds( 500 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 501 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 502 503 /// Find chains of triangles to tail-duplicate where a global analysis works, 504 /// but a local analysis would not find them. 505 void precomputeTriangleChains(); 506 507 public: 508 static char ID; // Pass identification, replacement for typeid 509 510 MachineBlockPlacement() : MachineFunctionPass(ID) { 511 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 512 } 513 514 bool runOnMachineFunction(MachineFunction &F) override; 515 516 void getAnalysisUsage(AnalysisUsage &AU) const override { 517 AU.addRequired<MachineBranchProbabilityInfo>(); 518 AU.addRequired<MachineBlockFrequencyInfo>(); 519 if (TailDupPlacement) 520 AU.addRequired<MachinePostDominatorTree>(); 521 AU.addRequired<MachineLoopInfo>(); 522 AU.addRequired<TargetPassConfig>(); 523 MachineFunctionPass::getAnalysisUsage(AU); 524 } 525 }; 526 527 } // end anonymous namespace 528 529 char MachineBlockPlacement::ID = 0; 530 531 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 532 533 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 534 "Branch Probability Basic Block Placement", false, false) 535 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 536 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 537 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 538 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 539 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 540 "Branch Probability Basic Block Placement", false, false) 541 542 #ifndef NDEBUG 543 /// \brief Helper to print the name of a MBB. 544 /// 545 /// Only used by debug logging. 546 static std::string getBlockName(const MachineBasicBlock *BB) { 547 std::string Result; 548 raw_string_ostream OS(Result); 549 OS << printMBBReference(*BB); 550 OS << " ('" << BB->getName() << "')"; 551 OS.flush(); 552 return Result; 553 } 554 #endif 555 556 /// \brief Mark a chain's successors as having one fewer preds. 557 /// 558 /// When a chain is being merged into the "placed" chain, this routine will 559 /// quickly walk the successors of each block in the chain and mark them as 560 /// having one fewer active predecessor. It also adds any successors of this 561 /// chain which reach the zero-predecessor state to the appropriate worklist. 562 void MachineBlockPlacement::markChainSuccessors( 563 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 564 const BlockFilterSet *BlockFilter) { 565 // Walk all the blocks in this chain, marking their successors as having 566 // a predecessor placed. 567 for (MachineBasicBlock *MBB : Chain) { 568 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 569 } 570 } 571 572 /// \brief Mark a single block's successors as having one fewer preds. 573 /// 574 /// Under normal circumstances, this is only called by markChainSuccessors, 575 /// but if a block that was to be placed is completely tail-duplicated away, 576 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 577 /// for just that block. 578 void MachineBlockPlacement::markBlockSuccessors( 579 const BlockChain &Chain, const MachineBasicBlock *MBB, 580 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 581 // Add any successors for which this is the only un-placed in-loop 582 // predecessor to the worklist as a viable candidate for CFG-neutral 583 // placement. No subsequent placement of this block will violate the CFG 584 // shape, so we get to use heuristics to choose a favorable placement. 585 for (MachineBasicBlock *Succ : MBB->successors()) { 586 if (BlockFilter && !BlockFilter->count(Succ)) 587 continue; 588 BlockChain &SuccChain = *BlockToChain[Succ]; 589 // Disregard edges within a fixed chain, or edges to the loop header. 590 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 591 continue; 592 593 // This is a cross-chain edge that is within the loop, so decrement the 594 // loop predecessor count of the destination chain. 595 if (SuccChain.UnscheduledPredecessors == 0 || 596 --SuccChain.UnscheduledPredecessors > 0) 597 continue; 598 599 auto *NewBB = *SuccChain.begin(); 600 if (NewBB->isEHPad()) 601 EHPadWorkList.push_back(NewBB); 602 else 603 BlockWorkList.push_back(NewBB); 604 } 605 } 606 607 /// This helper function collects the set of successors of block 608 /// \p BB that are allowed to be its layout successors, and return 609 /// the total branch probability of edges from \p BB to those 610 /// blocks. 611 BranchProbability MachineBlockPlacement::collectViableSuccessors( 612 const MachineBasicBlock *BB, const BlockChain &Chain, 613 const BlockFilterSet *BlockFilter, 614 SmallVector<MachineBasicBlock *, 4> &Successors) { 615 // Adjust edge probabilities by excluding edges pointing to blocks that is 616 // either not in BlockFilter or is already in the current chain. Consider the 617 // following CFG: 618 // 619 // --->A 620 // | / \ 621 // | B C 622 // | \ / \ 623 // ----D E 624 // 625 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 626 // A->C is chosen as a fall-through, D won't be selected as a successor of C 627 // due to CFG constraint (the probability of C->D is not greater than 628 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 629 // when calculating the probability of C->D, D will be selected and we 630 // will get A C D B as the layout of this loop. 631 auto AdjustedSumProb = BranchProbability::getOne(); 632 for (MachineBasicBlock *Succ : BB->successors()) { 633 bool SkipSucc = false; 634 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 635 SkipSucc = true; 636 } else { 637 BlockChain *SuccChain = BlockToChain[Succ]; 638 if (SuccChain == &Chain) { 639 SkipSucc = true; 640 } else if (Succ != *SuccChain->begin()) { 641 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 642 continue; 643 } 644 } 645 if (SkipSucc) 646 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 647 else 648 Successors.push_back(Succ); 649 } 650 651 return AdjustedSumProb; 652 } 653 654 /// The helper function returns the branch probability that is adjusted 655 /// or normalized over the new total \p AdjustedSumProb. 656 static BranchProbability 657 getAdjustedProbability(BranchProbability OrigProb, 658 BranchProbability AdjustedSumProb) { 659 BranchProbability SuccProb; 660 uint32_t SuccProbN = OrigProb.getNumerator(); 661 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 662 if (SuccProbN >= SuccProbD) 663 SuccProb = BranchProbability::getOne(); 664 else 665 SuccProb = BranchProbability(SuccProbN, SuccProbD); 666 667 return SuccProb; 668 } 669 670 /// Check if \p BB has exactly the successors in \p Successors. 671 static bool 672 hasSameSuccessors(MachineBasicBlock &BB, 673 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 674 if (BB.succ_size() != Successors.size()) 675 return false; 676 // We don't want to count self-loops 677 if (Successors.count(&BB)) 678 return false; 679 for (MachineBasicBlock *Succ : BB.successors()) 680 if (!Successors.count(Succ)) 681 return false; 682 return true; 683 } 684 685 /// Check if a block should be tail duplicated to increase fallthrough 686 /// opportunities. 687 /// \p BB Block to check. 688 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 689 // Blocks with single successors don't create additional fallthrough 690 // opportunities. Don't duplicate them. TODO: When conditional exits are 691 // analyzable, allow them to be duplicated. 692 bool IsSimple = TailDup.isSimpleBB(BB); 693 694 if (BB->succ_size() == 1) 695 return false; 696 return TailDup.shouldTailDuplicate(IsSimple, *BB); 697 } 698 699 /// Compare 2 BlockFrequency's with a small penalty for \p A. 700 /// In order to be conservative, we apply a X% penalty to account for 701 /// increased icache pressure and static heuristics. For small frequencies 702 /// we use only the numerators to improve accuracy. For simplicity, we assume the 703 /// penalty is less than 100% 704 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 705 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 706 uint64_t EntryFreq) { 707 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 708 BlockFrequency Gain = A - B; 709 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 710 } 711 712 /// Check the edge frequencies to see if tail duplication will increase 713 /// fallthroughs. It only makes sense to call this function when 714 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 715 /// always locally profitable if we would have picked \p Succ without 716 /// considering duplication. 717 bool MachineBlockPlacement::isProfitableToTailDup( 718 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 719 BranchProbability QProb, 720 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 721 // We need to do a probability calculation to make sure this is profitable. 722 // First: does succ have a successor that post-dominates? This affects the 723 // calculation. The 2 relevant cases are: 724 // BB BB 725 // | \Qout | \Qout 726 // P| C |P C 727 // = C' = C' 728 // | /Qin | /Qin 729 // | / | / 730 // Succ Succ 731 // / \ | \ V 732 // U/ =V |U \ 733 // / \ = D 734 // D E | / 735 // | / 736 // |/ 737 // PDom 738 // '=' : Branch taken for that CFG edge 739 // In the second case, Placing Succ while duplicating it into C prevents the 740 // fallthrough of Succ into either D or PDom, because they now have C as an 741 // unplaced predecessor 742 743 // Start by figuring out which case we fall into 744 MachineBasicBlock *PDom = nullptr; 745 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 746 // Only scan the relevant successors 747 auto AdjustedSuccSumProb = 748 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 749 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 750 auto BBFreq = MBFI->getBlockFreq(BB); 751 auto SuccFreq = MBFI->getBlockFreq(Succ); 752 BlockFrequency P = BBFreq * PProb; 753 BlockFrequency Qout = BBFreq * QProb; 754 uint64_t EntryFreq = MBFI->getEntryFreq(); 755 // If there are no more successors, it is profitable to copy, as it strictly 756 // increases fallthrough. 757 if (SuccSuccs.size() == 0) 758 return greaterWithBias(P, Qout, EntryFreq); 759 760 auto BestSuccSucc = BranchProbability::getZero(); 761 // Find the PDom or the best Succ if no PDom exists. 762 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 763 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 764 if (Prob > BestSuccSucc) 765 BestSuccSucc = Prob; 766 if (PDom == nullptr) 767 if (MPDT->dominates(SuccSucc, Succ)) { 768 PDom = SuccSucc; 769 break; 770 } 771 } 772 // For the comparisons, we need to know Succ's best incoming edge that isn't 773 // from BB. 774 auto SuccBestPred = BlockFrequency(0); 775 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 776 if (SuccPred == Succ || SuccPred == BB 777 || BlockToChain[SuccPred] == &Chain 778 || (BlockFilter && !BlockFilter->count(SuccPred))) 779 continue; 780 auto Freq = MBFI->getBlockFreq(SuccPred) 781 * MBPI->getEdgeProbability(SuccPred, Succ); 782 if (Freq > SuccBestPred) 783 SuccBestPred = Freq; 784 } 785 // Qin is Succ's best unplaced incoming edge that isn't BB 786 BlockFrequency Qin = SuccBestPred; 787 // If it doesn't have a post-dominating successor, here is the calculation: 788 // BB BB 789 // | \Qout | \ 790 // P| C | = 791 // = C' | C 792 // | /Qin | | 793 // | / | C' (+Succ) 794 // Succ Succ /| 795 // / \ | \/ | 796 // U/ =V | == | 797 // / \ | / \| 798 // D E D E 799 // '=' : Branch taken for that CFG edge 800 // Cost in the first case is: P + V 801 // For this calculation, we always assume P > Qout. If Qout > P 802 // The result of this function will be ignored at the caller. 803 // Let F = SuccFreq - Qin 804 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 805 806 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 807 BranchProbability UProb = BestSuccSucc; 808 BranchProbability VProb = AdjustedSuccSumProb - UProb; 809 BlockFrequency F = SuccFreq - Qin; 810 BlockFrequency V = SuccFreq * VProb; 811 BlockFrequency QinU = std::min(Qin, F) * UProb; 812 BlockFrequency BaseCost = P + V; 813 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 814 return greaterWithBias(BaseCost, DupCost, EntryFreq); 815 } 816 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 817 BranchProbability VProb = AdjustedSuccSumProb - UProb; 818 BlockFrequency U = SuccFreq * UProb; 819 BlockFrequency V = SuccFreq * VProb; 820 BlockFrequency F = SuccFreq - Qin; 821 // If there is a post-dominating successor, here is the calculation: 822 // BB BB BB BB 823 // | \Qout | \ | \Qout | \ 824 // |P C | = |P C | = 825 // = C' |P C = C' |P C 826 // | /Qin | | | /Qin | | 827 // | / | C' (+Succ) | / | C' (+Succ) 828 // Succ Succ /| Succ Succ /| 829 // | \ V | \/ | | \ V | \/ | 830 // |U \ |U /\ =? |U = |U /\ | 831 // = D = = =?| | D | = =| 832 // | / |/ D | / |/ D 833 // | / | / | = | / 834 // |/ | / |/ | = 835 // Dom Dom Dom Dom 836 // '=' : Branch taken for that CFG edge 837 // The cost for taken branches in the first case is P + U 838 // Let F = SuccFreq - Qin 839 // The cost in the second case (assuming independence), given the layout: 840 // BB, Succ, (C+Succ), D, Dom or the layout: 841 // BB, Succ, D, Dom, (C+Succ) 842 // is Qout + max(F, Qin) * U + min(F, Qin) 843 // compare P + U vs Qout + P * U + Qin. 844 // 845 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 846 // 847 // For the 3rd case, the cost is P + 2 * V 848 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 849 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 850 if (UProb > AdjustedSuccSumProb / 2 && 851 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 852 Chain, BlockFilter)) 853 // Cases 3 & 4 854 return greaterWithBias( 855 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 856 EntryFreq); 857 // Cases 1 & 2 858 return greaterWithBias((P + U), 859 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 860 std::max(Qin, F) * UProb), 861 EntryFreq); 862 } 863 864 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 865 /// successors form the lower part of a trellis. A successor set S forms the 866 /// lower part of a trellis if all of the predecessors of S are either in S or 867 /// have all of S as successors. We ignore trellises where BB doesn't have 2 868 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 869 /// are very uncommon and complex to compute optimally. Allowing edges within S 870 /// is not strictly a trellis, but the same algorithm works, so we allow it. 871 bool MachineBlockPlacement::isTrellis( 872 const MachineBasicBlock *BB, 873 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 874 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 875 // Technically BB could form a trellis with branching factor higher than 2. 876 // But that's extremely uncommon. 877 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 878 return false; 879 880 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 881 BB->succ_end()); 882 // To avoid reviewing the same predecessors twice. 883 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 884 885 for (MachineBasicBlock *Succ : ViableSuccs) { 886 int PredCount = 0; 887 for (auto SuccPred : Succ->predecessors()) { 888 // Allow triangle successors, but don't count them. 889 if (Successors.count(SuccPred)) { 890 // Make sure that it is actually a triangle. 891 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 892 if (!Successors.count(CheckSucc)) 893 return false; 894 continue; 895 } 896 const BlockChain *PredChain = BlockToChain[SuccPred]; 897 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 898 PredChain == &Chain || PredChain == BlockToChain[Succ]) 899 continue; 900 ++PredCount; 901 // Perform the successor check only once. 902 if (!SeenPreds.insert(SuccPred).second) 903 continue; 904 if (!hasSameSuccessors(*SuccPred, Successors)) 905 return false; 906 } 907 // If one of the successors has only BB as a predecessor, it is not a 908 // trellis. 909 if (PredCount < 1) 910 return false; 911 } 912 return true; 913 } 914 915 /// Pick the highest total weight pair of edges that can both be laid out. 916 /// The edges in \p Edges[0] are assumed to have a different destination than 917 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 918 /// the individual highest weight edges to the 2 different destinations, or in 919 /// case of a conflict, one of them should be replaced with a 2nd best edge. 920 std::pair<MachineBlockPlacement::WeightedEdge, 921 MachineBlockPlacement::WeightedEdge> 922 MachineBlockPlacement::getBestNonConflictingEdges( 923 const MachineBasicBlock *BB, 924 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 925 Edges) { 926 // Sort the edges, and then for each successor, find the best incoming 927 // predecessor. If the best incoming predecessors aren't the same, 928 // then that is clearly the best layout. If there is a conflict, one of the 929 // successors will have to fallthrough from the second best predecessor. We 930 // compare which combination is better overall. 931 932 // Sort for highest frequency. 933 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 934 935 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 936 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 937 auto BestA = Edges[0].begin(); 938 auto BestB = Edges[1].begin(); 939 // Arrange for the correct answer to be in BestA and BestB 940 // If the 2 best edges don't conflict, the answer is already there. 941 if (BestA->Src == BestB->Src) { 942 // Compare the total fallthrough of (Best + Second Best) for both pairs 943 auto SecondBestA = std::next(BestA); 944 auto SecondBestB = std::next(BestB); 945 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 946 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 947 if (BestAScore < BestBScore) 948 BestA = SecondBestA; 949 else 950 BestB = SecondBestB; 951 } 952 // Arrange for the BB edge to be in BestA if it exists. 953 if (BestB->Src == BB) 954 std::swap(BestA, BestB); 955 return std::make_pair(*BestA, *BestB); 956 } 957 958 /// Get the best successor from \p BB based on \p BB being part of a trellis. 959 /// We only handle trellises with 2 successors, so the algorithm is 960 /// straightforward: Find the best pair of edges that don't conflict. We find 961 /// the best incoming edge for each successor in the trellis. If those conflict, 962 /// we consider which of them should be replaced with the second best. 963 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 964 /// comes from \p BB, it will be in \p BestEdges[0] 965 MachineBlockPlacement::BlockAndTailDupResult 966 MachineBlockPlacement::getBestTrellisSuccessor( 967 const MachineBasicBlock *BB, 968 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 969 BranchProbability AdjustedSumProb, const BlockChain &Chain, 970 const BlockFilterSet *BlockFilter) { 971 972 BlockAndTailDupResult Result = {nullptr, false}; 973 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 974 BB->succ_end()); 975 976 // We assume size 2 because it's common. For general n, we would have to do 977 // the Hungarian algorithm, but it's not worth the complexity because more 978 // than 2 successors is fairly uncommon, and a trellis even more so. 979 if (Successors.size() != 2 || ViableSuccs.size() != 2) 980 return Result; 981 982 // Collect the edge frequencies of all edges that form the trellis. 983 SmallVector<WeightedEdge, 8> Edges[2]; 984 int SuccIndex = 0; 985 for (auto Succ : ViableSuccs) { 986 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 987 // Skip any placed predecessors that are not BB 988 if (SuccPred != BB) 989 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 990 BlockToChain[SuccPred] == &Chain || 991 BlockToChain[SuccPred] == BlockToChain[Succ]) 992 continue; 993 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 994 MBPI->getEdgeProbability(SuccPred, Succ); 995 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 996 } 997 ++SuccIndex; 998 } 999 1000 // Pick the best combination of 2 edges from all the edges in the trellis. 1001 WeightedEdge BestA, BestB; 1002 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1003 1004 if (BestA.Src != BB) { 1005 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1006 // we shouldn't choose any successor. We've already looked and there's a 1007 // better fallthrough edge for all the successors. 1008 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1009 return Result; 1010 } 1011 1012 // Did we pick the triangle edge? If tail-duplication is profitable, do 1013 // that instead. Otherwise merge the triangle edge now while we know it is 1014 // optimal. 1015 if (BestA.Dest == BestB.Src) { 1016 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1017 // would be better. 1018 MachineBasicBlock *Succ1 = BestA.Dest; 1019 MachineBasicBlock *Succ2 = BestB.Dest; 1020 // Check to see if tail-duplication would be profitable. 1021 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 1022 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1023 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1024 Chain, BlockFilter)) { 1025 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1026 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1027 dbgs() << " Selected: " << getBlockName(Succ2) 1028 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 1029 Result.BB = Succ2; 1030 Result.ShouldTailDup = true; 1031 return Result; 1032 } 1033 } 1034 // We have already computed the optimal edge for the other side of the 1035 // trellis. 1036 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1037 1038 auto TrellisSucc = BestA.Dest; 1039 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1040 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1041 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1042 << ", probability: " << SuccProb << " (Trellis)\n"); 1043 Result.BB = TrellisSucc; 1044 return Result; 1045 } 1046 1047 /// When the option TailDupPlacement is on, this method checks if the 1048 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1049 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1050 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1051 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1052 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1053 if (!shouldTailDuplicate(Succ)) 1054 return false; 1055 1056 // For CFG checking. 1057 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1058 BB->succ_end()); 1059 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1060 // Make sure all unplaced and unfiltered predecessors can be 1061 // tail-duplicated into. 1062 // Skip any blocks that are already placed or not in this loop. 1063 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1064 || BlockToChain[Pred] == &Chain) 1065 continue; 1066 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1067 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1068 // This will result in a trellis after tail duplication, so we don't 1069 // need to copy Succ into this predecessor. In the presence 1070 // of a trellis tail duplication can continue to be profitable. 1071 // For example: 1072 // A A 1073 // |\ |\ 1074 // | \ | \ 1075 // | C | C+BB 1076 // | / | | 1077 // |/ | | 1078 // BB => BB | 1079 // |\ |\/| 1080 // | \ |/\| 1081 // | D | D 1082 // | / | / 1083 // |/ |/ 1084 // Succ Succ 1085 // 1086 // After BB was duplicated into C, the layout looks like the one on the 1087 // right. BB and C now have the same successors. When considering 1088 // whether Succ can be duplicated into all its unplaced predecessors, we 1089 // ignore C. 1090 // We can do this because C already has a profitable fallthrough, namely 1091 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1092 // duplication and for this test. 1093 // 1094 // This allows trellises to be laid out in 2 separate chains 1095 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1096 // because it allows the creation of 2 fallthrough paths with links 1097 // between them, and we correctly identify the best layout for these 1098 // CFGs. We want to extend trellises that the user created in addition 1099 // to trellises created by tail-duplication, so we just look for the 1100 // CFG. 1101 continue; 1102 return false; 1103 } 1104 } 1105 return true; 1106 } 1107 1108 /// Find chains of triangles where we believe it would be profitable to 1109 /// tail-duplicate them all, but a local analysis would not find them. 1110 /// There are 3 ways this can be profitable: 1111 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1112 /// longer chains) 1113 /// 2) The chains are statically correlated. Branch probabilities have a very 1114 /// U-shaped distribution. 1115 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1116 /// If the branches in a chain are likely to be from the same side of the 1117 /// distribution as their predecessor, but are independent at runtime, this 1118 /// transformation is profitable. (Because the cost of being wrong is a small 1119 /// fixed cost, unlike the standard triangle layout where the cost of being 1120 /// wrong scales with the # of triangles.) 1121 /// 3) The chains are dynamically correlated. If the probability that a previous 1122 /// branch was taken positively influences whether the next branch will be 1123 /// taken 1124 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1125 void MachineBlockPlacement::precomputeTriangleChains() { 1126 struct TriangleChain { 1127 std::vector<MachineBasicBlock *> Edges; 1128 1129 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1130 : Edges({src, dst}) {} 1131 1132 void append(MachineBasicBlock *dst) { 1133 assert(getKey()->isSuccessor(dst) && 1134 "Attempting to append a block that is not a successor."); 1135 Edges.push_back(dst); 1136 } 1137 1138 unsigned count() const { return Edges.size() - 1; } 1139 1140 MachineBasicBlock *getKey() const { 1141 return Edges.back(); 1142 } 1143 }; 1144 1145 if (TriangleChainCount == 0) 1146 return; 1147 1148 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1149 // Map from last block to the chain that contains it. This allows us to extend 1150 // chains as we find new triangles. 1151 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1152 for (MachineBasicBlock &BB : *F) { 1153 // If BB doesn't have 2 successors, it doesn't start a triangle. 1154 if (BB.succ_size() != 2) 1155 continue; 1156 MachineBasicBlock *PDom = nullptr; 1157 for (MachineBasicBlock *Succ : BB.successors()) { 1158 if (!MPDT->dominates(Succ, &BB)) 1159 continue; 1160 PDom = Succ; 1161 break; 1162 } 1163 // If BB doesn't have a post-dominating successor, it doesn't form a 1164 // triangle. 1165 if (PDom == nullptr) 1166 continue; 1167 // If PDom has a hint that it is low probability, skip this triangle. 1168 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1169 continue; 1170 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1171 // we're looking for. 1172 if (!shouldTailDuplicate(PDom)) 1173 continue; 1174 bool CanTailDuplicate = true; 1175 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1176 // isn't the kind of triangle we're looking for. 1177 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1178 if (Pred == &BB) 1179 continue; 1180 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1181 CanTailDuplicate = false; 1182 break; 1183 } 1184 } 1185 // If we can't tail-duplicate PDom to its predecessors, then skip this 1186 // triangle. 1187 if (!CanTailDuplicate) 1188 continue; 1189 1190 // Now we have an interesting triangle. Insert it if it's not part of an 1191 // existing chain. 1192 // Note: This cannot be replaced with a call insert() or emplace() because 1193 // the find key is BB, but the insert/emplace key is PDom. 1194 auto Found = TriangleChainMap.find(&BB); 1195 // If it is, remove the chain from the map, grow it, and put it back in the 1196 // map with the end as the new key. 1197 if (Found != TriangleChainMap.end()) { 1198 TriangleChain Chain = std::move(Found->second); 1199 TriangleChainMap.erase(Found); 1200 Chain.append(PDom); 1201 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1202 } else { 1203 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1204 assert(InsertResult.second && "Block seen twice."); 1205 (void)InsertResult; 1206 } 1207 } 1208 1209 // Iterating over a DenseMap is safe here, because the only thing in the body 1210 // of the loop is inserting into another DenseMap (ComputedEdges). 1211 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1212 for (auto &ChainPair : TriangleChainMap) { 1213 TriangleChain &Chain = ChainPair.second; 1214 // Benchmarking has shown that due to branch correlation duplicating 2 or 1215 // more triangles is profitable, despite the calculations assuming 1216 // independence. 1217 if (Chain.count() < TriangleChainCount) 1218 continue; 1219 MachineBasicBlock *dst = Chain.Edges.back(); 1220 Chain.Edges.pop_back(); 1221 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1222 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1223 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1224 1225 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1226 assert(InsertResult.second && "Block seen twice."); 1227 (void)InsertResult; 1228 1229 dst = src; 1230 } 1231 } 1232 } 1233 1234 // When profile is not present, return the StaticLikelyProb. 1235 // When profile is available, we need to handle the triangle-shape CFG. 1236 static BranchProbability getLayoutSuccessorProbThreshold( 1237 const MachineBasicBlock *BB) { 1238 if (!BB->getParent()->getFunction()->getEntryCount()) 1239 return BranchProbability(StaticLikelyProb, 100); 1240 if (BB->succ_size() == 2) { 1241 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1242 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1243 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1244 /* See case 1 below for the cost analysis. For BB->Succ to 1245 * be taken with smaller cost, the following needs to hold: 1246 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1247 * So the threshold T in the calculation below 1248 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1249 * So T / (1 - T) = 2, Yielding T = 2/3 1250 * Also adding user specified branch bias, we have 1251 * T = (2/3)*(ProfileLikelyProb/50) 1252 * = (2*ProfileLikelyProb)/150) 1253 */ 1254 return BranchProbability(2 * ProfileLikelyProb, 150); 1255 } 1256 } 1257 return BranchProbability(ProfileLikelyProb, 100); 1258 } 1259 1260 /// Checks to see if the layout candidate block \p Succ has a better layout 1261 /// predecessor than \c BB. If yes, returns true. 1262 /// \p SuccProb: The probability adjusted for only remaining blocks. 1263 /// Only used for logging 1264 /// \p RealSuccProb: The un-adjusted probability. 1265 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1266 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1267 /// considered 1268 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1269 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1270 const BlockChain &SuccChain, BranchProbability SuccProb, 1271 BranchProbability RealSuccProb, const BlockChain &Chain, 1272 const BlockFilterSet *BlockFilter) { 1273 1274 // There isn't a better layout when there are no unscheduled predecessors. 1275 if (SuccChain.UnscheduledPredecessors == 0) 1276 return false; 1277 1278 // There are two basic scenarios here: 1279 // ------------------------------------- 1280 // Case 1: triangular shape CFG (if-then): 1281 // BB 1282 // | \ 1283 // | \ 1284 // | Pred 1285 // | / 1286 // Succ 1287 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1288 // set Succ as the layout successor of BB. Picking Succ as BB's 1289 // successor breaks the CFG constraints (FIXME: define these constraints). 1290 // With this layout, Pred BB 1291 // is forced to be outlined, so the overall cost will be cost of the 1292 // branch taken from BB to Pred, plus the cost of back taken branch 1293 // from Pred to Succ, as well as the additional cost associated 1294 // with the needed unconditional jump instruction from Pred To Succ. 1295 1296 // The cost of the topological order layout is the taken branch cost 1297 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1298 // must hold: 1299 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1300 // < freq(BB->Succ) * taken_branch_cost. 1301 // Ignoring unconditional jump cost, we get 1302 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1303 // prob(BB->Succ) > 2 * prob(BB->Pred) 1304 // 1305 // When real profile data is available, we can precisely compute the 1306 // probability threshold that is needed for edge BB->Succ to be considered. 1307 // Without profile data, the heuristic requires the branch bias to be 1308 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1309 // ----------------------------------------------------------------- 1310 // Case 2: diamond like CFG (if-then-else): 1311 // S 1312 // / \ 1313 // | \ 1314 // BB Pred 1315 // \ / 1316 // Succ 1317 // .. 1318 // 1319 // The current block is BB and edge BB->Succ is now being evaluated. 1320 // Note that edge S->BB was previously already selected because 1321 // prob(S->BB) > prob(S->Pred). 1322 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1323 // choose Pred, we will have a topological ordering as shown on the left 1324 // in the picture below. If we choose Succ, we have the solution as shown 1325 // on the right: 1326 // 1327 // topo-order: 1328 // 1329 // S----- ---S 1330 // | | | | 1331 // ---BB | | BB 1332 // | | | | 1333 // | Pred-- | Succ-- 1334 // | | | | 1335 // ---Succ ---Pred-- 1336 // 1337 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1338 // = freq(S->Pred) + freq(S->BB) 1339 // 1340 // If we have profile data (i.e, branch probabilities can be trusted), the 1341 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1342 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1343 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1344 // means the cost of topological order is greater. 1345 // When profile data is not available, however, we need to be more 1346 // conservative. If the branch prediction is wrong, breaking the topo-order 1347 // will actually yield a layout with large cost. For this reason, we need 1348 // strong biased branch at block S with Prob(S->BB) in order to select 1349 // BB->Succ. This is equivalent to looking the CFG backward with backward 1350 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1351 // profile data). 1352 // -------------------------------------------------------------------------- 1353 // Case 3: forked diamond 1354 // S 1355 // / \ 1356 // / \ 1357 // BB Pred 1358 // | \ / | 1359 // | \ / | 1360 // | X | 1361 // | / \ | 1362 // | / \ | 1363 // S1 S2 1364 // 1365 // The current block is BB and edge BB->S1 is now being evaluated. 1366 // As above S->BB was already selected because 1367 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1368 // 1369 // topo-order: 1370 // 1371 // S-------| ---S 1372 // | | | | 1373 // ---BB | | BB 1374 // | | | | 1375 // | Pred----| | S1---- 1376 // | | | | 1377 // --(S1 or S2) ---Pred-- 1378 // | 1379 // S2 1380 // 1381 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1382 // + min(freq(Pred->S1), freq(Pred->S2)) 1383 // Non-topo-order cost: 1384 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1385 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1386 // is 0. Then the non topo layout is better when 1387 // freq(S->Pred) < freq(BB->S1). 1388 // This is exactly what is checked below. 1389 // Note there are other shapes that apply (Pred may not be a single block, 1390 // but they all fit this general pattern.) 1391 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1392 1393 // Make sure that a hot successor doesn't have a globally more 1394 // important predecessor. 1395 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1396 bool BadCFGConflict = false; 1397 1398 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1399 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1400 (BlockFilter && !BlockFilter->count(Pred)) || 1401 BlockToChain[Pred] == &Chain || 1402 // This check is redundant except for look ahead. This function is 1403 // called for lookahead by isProfitableToTailDup when BB hasn't been 1404 // placed yet. 1405 (Pred == BB)) 1406 continue; 1407 // Do backward checking. 1408 // For all cases above, we need a backward checking to filter out edges that 1409 // are not 'strongly' biased. 1410 // BB Pred 1411 // \ / 1412 // Succ 1413 // We select edge BB->Succ if 1414 // freq(BB->Succ) > freq(Succ) * HotProb 1415 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1416 // HotProb 1417 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1418 // Case 1 is covered too, because the first equation reduces to: 1419 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1420 BlockFrequency PredEdgeFreq = 1421 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1422 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1423 BadCFGConflict = true; 1424 break; 1425 } 1426 } 1427 1428 if (BadCFGConflict) { 1429 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1430 << " (prob) (non-cold CFG conflict)\n"); 1431 return true; 1432 } 1433 1434 return false; 1435 } 1436 1437 /// \brief Select the best successor for a block. 1438 /// 1439 /// This looks across all successors of a particular block and attempts to 1440 /// select the "best" one to be the layout successor. It only considers direct 1441 /// successors which also pass the block filter. It will attempt to avoid 1442 /// breaking CFG structure, but cave and break such structures in the case of 1443 /// very hot successor edges. 1444 /// 1445 /// \returns The best successor block found, or null if none are viable, along 1446 /// with a boolean indicating if tail duplication is necessary. 1447 MachineBlockPlacement::BlockAndTailDupResult 1448 MachineBlockPlacement::selectBestSuccessor( 1449 const MachineBasicBlock *BB, const BlockChain &Chain, 1450 const BlockFilterSet *BlockFilter) { 1451 const BranchProbability HotProb(StaticLikelyProb, 100); 1452 1453 BlockAndTailDupResult BestSucc = { nullptr, false }; 1454 auto BestProb = BranchProbability::getZero(); 1455 1456 SmallVector<MachineBasicBlock *, 4> Successors; 1457 auto AdjustedSumProb = 1458 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1459 1460 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1461 1462 // if we already precomputed the best successor for BB, return that if still 1463 // applicable. 1464 auto FoundEdge = ComputedEdges.find(BB); 1465 if (FoundEdge != ComputedEdges.end()) { 1466 MachineBasicBlock *Succ = FoundEdge->second.BB; 1467 ComputedEdges.erase(FoundEdge); 1468 BlockChain *SuccChain = BlockToChain[Succ]; 1469 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1470 SuccChain != &Chain && Succ == *SuccChain->begin()) 1471 return FoundEdge->second; 1472 } 1473 1474 // if BB is part of a trellis, Use the trellis to determine the optimal 1475 // fallthrough edges 1476 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1477 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1478 BlockFilter); 1479 1480 // For blocks with CFG violations, we may be able to lay them out anyway with 1481 // tail-duplication. We keep this vector so we can perform the probability 1482 // calculations the minimum number of times. 1483 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1484 DupCandidates; 1485 for (MachineBasicBlock *Succ : Successors) { 1486 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1487 BranchProbability SuccProb = 1488 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1489 1490 BlockChain &SuccChain = *BlockToChain[Succ]; 1491 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1492 // predecessor that yields lower global cost. 1493 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1494 Chain, BlockFilter)) { 1495 // If tail duplication would make Succ profitable, place it. 1496 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1497 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1498 continue; 1499 } 1500 1501 DEBUG( 1502 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1503 << SuccProb 1504 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1505 << "\n"); 1506 1507 if (BestSucc.BB && BestProb >= SuccProb) { 1508 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1509 continue; 1510 } 1511 1512 DEBUG(dbgs() << " Setting it as best candidate\n"); 1513 BestSucc.BB = Succ; 1514 BestProb = SuccProb; 1515 } 1516 // Handle the tail duplication candidates in order of decreasing probability. 1517 // Stop at the first one that is profitable. Also stop if they are less 1518 // profitable than BestSucc. Position is important because we preserve it and 1519 // prefer first best match. Here we aren't comparing in order, so we capture 1520 // the position instead. 1521 if (DupCandidates.size() != 0) { 1522 auto cmp = 1523 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1524 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1525 return std::get<0>(a) > std::get<0>(b); 1526 }; 1527 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1528 } 1529 for(auto &Tup : DupCandidates) { 1530 BranchProbability DupProb; 1531 MachineBasicBlock *Succ; 1532 std::tie(DupProb, Succ) = Tup; 1533 if (DupProb < BestProb) 1534 break; 1535 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1536 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1537 DEBUG( 1538 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1539 << DupProb 1540 << " (Tail Duplicate)\n"); 1541 BestSucc.BB = Succ; 1542 BestSucc.ShouldTailDup = true; 1543 break; 1544 } 1545 } 1546 1547 if (BestSucc.BB) 1548 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1549 1550 return BestSucc; 1551 } 1552 1553 /// \brief Select the best block from a worklist. 1554 /// 1555 /// This looks through the provided worklist as a list of candidate basic 1556 /// blocks and select the most profitable one to place. The definition of 1557 /// profitable only really makes sense in the context of a loop. This returns 1558 /// the most frequently visited block in the worklist, which in the case of 1559 /// a loop, is the one most desirable to be physically close to the rest of the 1560 /// loop body in order to improve i-cache behavior. 1561 /// 1562 /// \returns The best block found, or null if none are viable. 1563 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1564 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1565 // Once we need to walk the worklist looking for a candidate, cleanup the 1566 // worklist of already placed entries. 1567 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1568 // some code complexity) into the loop below. 1569 WorkList.erase(llvm::remove_if(WorkList, 1570 [&](MachineBasicBlock *BB) { 1571 return BlockToChain.lookup(BB) == &Chain; 1572 }), 1573 WorkList.end()); 1574 1575 if (WorkList.empty()) 1576 return nullptr; 1577 1578 bool IsEHPad = WorkList[0]->isEHPad(); 1579 1580 MachineBasicBlock *BestBlock = nullptr; 1581 BlockFrequency BestFreq; 1582 for (MachineBasicBlock *MBB : WorkList) { 1583 assert(MBB->isEHPad() == IsEHPad && 1584 "EHPad mismatch between block and work list."); 1585 1586 BlockChain &SuccChain = *BlockToChain[MBB]; 1587 if (&SuccChain == &Chain) 1588 continue; 1589 1590 assert(SuccChain.UnscheduledPredecessors == 0 && 1591 "Found CFG-violating block"); 1592 1593 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1594 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1595 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1596 1597 // For ehpad, we layout the least probable first as to avoid jumping back 1598 // from least probable landingpads to more probable ones. 1599 // 1600 // FIXME: Using probability is probably (!) not the best way to achieve 1601 // this. We should probably have a more principled approach to layout 1602 // cleanup code. 1603 // 1604 // The goal is to get: 1605 // 1606 // +--------------------------+ 1607 // | V 1608 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1609 // 1610 // Rather than: 1611 // 1612 // +-------------------------------------+ 1613 // V | 1614 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1615 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1616 continue; 1617 1618 BestBlock = MBB; 1619 BestFreq = CandidateFreq; 1620 } 1621 1622 return BestBlock; 1623 } 1624 1625 /// \brief Retrieve the first unplaced basic block. 1626 /// 1627 /// This routine is called when we are unable to use the CFG to walk through 1628 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1629 /// We walk through the function's blocks in order, starting from the 1630 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1631 /// re-scanning the entire sequence on repeated calls to this routine. 1632 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1633 const BlockChain &PlacedChain, 1634 MachineFunction::iterator &PrevUnplacedBlockIt, 1635 const BlockFilterSet *BlockFilter) { 1636 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1637 ++I) { 1638 if (BlockFilter && !BlockFilter->count(&*I)) 1639 continue; 1640 if (BlockToChain[&*I] != &PlacedChain) { 1641 PrevUnplacedBlockIt = I; 1642 // Now select the head of the chain to which the unplaced block belongs 1643 // as the block to place. This will force the entire chain to be placed, 1644 // and satisfies the requirements of merging chains. 1645 return *BlockToChain[&*I]->begin(); 1646 } 1647 } 1648 return nullptr; 1649 } 1650 1651 void MachineBlockPlacement::fillWorkLists( 1652 const MachineBasicBlock *MBB, 1653 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1654 const BlockFilterSet *BlockFilter = nullptr) { 1655 BlockChain &Chain = *BlockToChain[MBB]; 1656 if (!UpdatedPreds.insert(&Chain).second) 1657 return; 1658 1659 assert( 1660 Chain.UnscheduledPredecessors == 0 && 1661 "Attempting to place block with unscheduled predecessors in worklist."); 1662 for (MachineBasicBlock *ChainBB : Chain) { 1663 assert(BlockToChain[ChainBB] == &Chain && 1664 "Block in chain doesn't match BlockToChain map."); 1665 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1666 if (BlockFilter && !BlockFilter->count(Pred)) 1667 continue; 1668 if (BlockToChain[Pred] == &Chain) 1669 continue; 1670 ++Chain.UnscheduledPredecessors; 1671 } 1672 } 1673 1674 if (Chain.UnscheduledPredecessors != 0) 1675 return; 1676 1677 MachineBasicBlock *BB = *Chain.begin(); 1678 if (BB->isEHPad()) 1679 EHPadWorkList.push_back(BB); 1680 else 1681 BlockWorkList.push_back(BB); 1682 } 1683 1684 void MachineBlockPlacement::buildChain( 1685 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1686 BlockFilterSet *BlockFilter) { 1687 assert(HeadBB && "BB must not be null.\n"); 1688 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1689 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1690 1691 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1692 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1693 MachineBasicBlock *BB = *std::prev(Chain.end()); 1694 while (true) { 1695 assert(BB && "null block found at end of chain in loop."); 1696 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1697 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1698 1699 1700 // Look for the best viable successor if there is one to place immediately 1701 // after this block. 1702 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1703 MachineBasicBlock* BestSucc = Result.BB; 1704 bool ShouldTailDup = Result.ShouldTailDup; 1705 if (TailDupPlacement) 1706 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1707 1708 // If an immediate successor isn't available, look for the best viable 1709 // block among those we've identified as not violating the loop's CFG at 1710 // this point. This won't be a fallthrough, but it will increase locality. 1711 if (!BestSucc) 1712 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1713 if (!BestSucc) 1714 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1715 1716 if (!BestSucc) { 1717 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1718 if (!BestSucc) 1719 break; 1720 1721 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1722 "layout successor until the CFG reduces\n"); 1723 } 1724 1725 // Placement may have changed tail duplication opportunities. 1726 // Check for that now. 1727 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1728 // If the chosen successor was duplicated into all its predecessors, 1729 // don't bother laying it out, just go round the loop again with BB as 1730 // the chain end. 1731 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1732 BlockFilter, PrevUnplacedBlockIt)) 1733 continue; 1734 } 1735 1736 // Place this block, updating the datastructures to reflect its placement. 1737 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1738 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1739 // we selected a successor that didn't fit naturally into the CFG. 1740 SuccChain.UnscheduledPredecessors = 0; 1741 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1742 << getBlockName(BestSucc) << "\n"); 1743 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1744 Chain.merge(BestSucc, &SuccChain); 1745 BB = *std::prev(Chain.end()); 1746 } 1747 1748 DEBUG(dbgs() << "Finished forming chain for header block " 1749 << getBlockName(*Chain.begin()) << "\n"); 1750 } 1751 1752 /// \brief Find the best loop top block for layout. 1753 /// 1754 /// Look for a block which is strictly better than the loop header for laying 1755 /// out at the top of the loop. This looks for one and only one pattern: 1756 /// a latch block with no conditional exit. This block will cause a conditional 1757 /// jump around it or will be the bottom of the loop if we lay it out in place, 1758 /// but if it it doesn't end up at the bottom of the loop for any reason, 1759 /// rotation alone won't fix it. Because such a block will always result in an 1760 /// unconditional jump (for the backedge) rotating it in front of the loop 1761 /// header is always profitable. 1762 MachineBasicBlock * 1763 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1764 const BlockFilterSet &LoopBlockSet) { 1765 // Placing the latch block before the header may introduce an extra branch 1766 // that skips this block the first time the loop is executed, which we want 1767 // to avoid when optimising for size. 1768 // FIXME: in theory there is a case that does not introduce a new branch, 1769 // i.e. when the layout predecessor does not fallthrough to the loop header. 1770 // In practice this never happens though: there always seems to be a preheader 1771 // that can fallthrough and that is also placed before the header. 1772 if (F->getFunction()->optForSize()) 1773 return L.getHeader(); 1774 1775 // Check that the header hasn't been fused with a preheader block due to 1776 // crazy branches. If it has, we need to start with the header at the top to 1777 // prevent pulling the preheader into the loop body. 1778 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1779 if (!LoopBlockSet.count(*HeaderChain.begin())) 1780 return L.getHeader(); 1781 1782 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1783 << "\n"); 1784 1785 BlockFrequency BestPredFreq; 1786 MachineBasicBlock *BestPred = nullptr; 1787 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1788 if (!LoopBlockSet.count(Pred)) 1789 continue; 1790 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1791 << Pred->succ_size() << " successors, "; 1792 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1793 if (Pred->succ_size() > 1) 1794 continue; 1795 1796 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1797 if (!BestPred || PredFreq > BestPredFreq || 1798 (!(PredFreq < BestPredFreq) && 1799 Pred->isLayoutSuccessor(L.getHeader()))) { 1800 BestPred = Pred; 1801 BestPredFreq = PredFreq; 1802 } 1803 } 1804 1805 // If no direct predecessor is fine, just use the loop header. 1806 if (!BestPred) { 1807 DEBUG(dbgs() << " final top unchanged\n"); 1808 return L.getHeader(); 1809 } 1810 1811 // Walk backwards through any straight line of predecessors. 1812 while (BestPred->pred_size() == 1 && 1813 (*BestPred->pred_begin())->succ_size() == 1 && 1814 *BestPred->pred_begin() != L.getHeader()) 1815 BestPred = *BestPred->pred_begin(); 1816 1817 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1818 return BestPred; 1819 } 1820 1821 /// \brief Find the best loop exiting block for layout. 1822 /// 1823 /// This routine implements the logic to analyze the loop looking for the best 1824 /// block to layout at the top of the loop. Typically this is done to maximize 1825 /// fallthrough opportunities. 1826 MachineBasicBlock * 1827 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1828 const BlockFilterSet &LoopBlockSet) { 1829 // We don't want to layout the loop linearly in all cases. If the loop header 1830 // is just a normal basic block in the loop, we want to look for what block 1831 // within the loop is the best one to layout at the top. However, if the loop 1832 // header has be pre-merged into a chain due to predecessors not having 1833 // analyzable branches, *and* the predecessor it is merged with is *not* part 1834 // of the loop, rotating the header into the middle of the loop will create 1835 // a non-contiguous range of blocks which is Very Bad. So start with the 1836 // header and only rotate if safe. 1837 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1838 if (!LoopBlockSet.count(*HeaderChain.begin())) 1839 return nullptr; 1840 1841 BlockFrequency BestExitEdgeFreq; 1842 unsigned BestExitLoopDepth = 0; 1843 MachineBasicBlock *ExitingBB = nullptr; 1844 // If there are exits to outer loops, loop rotation can severely limit 1845 // fallthrough opportunities unless it selects such an exit. Keep a set of 1846 // blocks where rotating to exit with that block will reach an outer loop. 1847 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1848 1849 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1850 << "\n"); 1851 for (MachineBasicBlock *MBB : L.getBlocks()) { 1852 BlockChain &Chain = *BlockToChain[MBB]; 1853 // Ensure that this block is at the end of a chain; otherwise it could be 1854 // mid-way through an inner loop or a successor of an unanalyzable branch. 1855 if (MBB != *std::prev(Chain.end())) 1856 continue; 1857 1858 // Now walk the successors. We need to establish whether this has a viable 1859 // exiting successor and whether it has a viable non-exiting successor. 1860 // We store the old exiting state and restore it if a viable looping 1861 // successor isn't found. 1862 MachineBasicBlock *OldExitingBB = ExitingBB; 1863 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1864 bool HasLoopingSucc = false; 1865 for (MachineBasicBlock *Succ : MBB->successors()) { 1866 if (Succ->isEHPad()) 1867 continue; 1868 if (Succ == MBB) 1869 continue; 1870 BlockChain &SuccChain = *BlockToChain[Succ]; 1871 // Don't split chains, either this chain or the successor's chain. 1872 if (&Chain == &SuccChain) { 1873 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1874 << getBlockName(Succ) << " (chain conflict)\n"); 1875 continue; 1876 } 1877 1878 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1879 if (LoopBlockSet.count(Succ)) { 1880 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1881 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1882 HasLoopingSucc = true; 1883 continue; 1884 } 1885 1886 unsigned SuccLoopDepth = 0; 1887 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1888 SuccLoopDepth = ExitLoop->getLoopDepth(); 1889 if (ExitLoop->contains(&L)) 1890 BlocksExitingToOuterLoop.insert(MBB); 1891 } 1892 1893 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1894 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1895 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1896 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1897 // Note that we bias this toward an existing layout successor to retain 1898 // incoming order in the absence of better information. The exit must have 1899 // a frequency higher than the current exit before we consider breaking 1900 // the layout. 1901 BranchProbability Bias(100 - ExitBlockBias, 100); 1902 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1903 ExitEdgeFreq > BestExitEdgeFreq || 1904 (MBB->isLayoutSuccessor(Succ) && 1905 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1906 BestExitEdgeFreq = ExitEdgeFreq; 1907 ExitingBB = MBB; 1908 } 1909 } 1910 1911 if (!HasLoopingSucc) { 1912 // Restore the old exiting state, no viable looping successor was found. 1913 ExitingBB = OldExitingBB; 1914 BestExitEdgeFreq = OldBestExitEdgeFreq; 1915 } 1916 } 1917 // Without a candidate exiting block or with only a single block in the 1918 // loop, just use the loop header to layout the loop. 1919 if (!ExitingBB) { 1920 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1921 return nullptr; 1922 } 1923 if (L.getNumBlocks() == 1) { 1924 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1925 return nullptr; 1926 } 1927 1928 // Also, if we have exit blocks which lead to outer loops but didn't select 1929 // one of them as the exiting block we are rotating toward, disable loop 1930 // rotation altogether. 1931 if (!BlocksExitingToOuterLoop.empty() && 1932 !BlocksExitingToOuterLoop.count(ExitingBB)) 1933 return nullptr; 1934 1935 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1936 return ExitingBB; 1937 } 1938 1939 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1940 /// 1941 /// Once we have built a chain, try to rotate it to line up the hot exit block 1942 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1943 /// branches. For example, if the loop has fallthrough into its header and out 1944 /// of its bottom already, don't rotate it. 1945 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1946 const MachineBasicBlock *ExitingBB, 1947 const BlockFilterSet &LoopBlockSet) { 1948 if (!ExitingBB) 1949 return; 1950 1951 MachineBasicBlock *Top = *LoopChain.begin(); 1952 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1953 1954 // If ExitingBB is already the last one in a chain then nothing to do. 1955 if (Bottom == ExitingBB) 1956 return; 1957 1958 bool ViableTopFallthrough = false; 1959 for (MachineBasicBlock *Pred : Top->predecessors()) { 1960 BlockChain *PredChain = BlockToChain[Pred]; 1961 if (!LoopBlockSet.count(Pred) && 1962 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1963 ViableTopFallthrough = true; 1964 break; 1965 } 1966 } 1967 1968 // If the header has viable fallthrough, check whether the current loop 1969 // bottom is a viable exiting block. If so, bail out as rotating will 1970 // introduce an unnecessary branch. 1971 if (ViableTopFallthrough) { 1972 for (MachineBasicBlock *Succ : Bottom->successors()) { 1973 BlockChain *SuccChain = BlockToChain[Succ]; 1974 if (!LoopBlockSet.count(Succ) && 1975 (!SuccChain || Succ == *SuccChain->begin())) 1976 return; 1977 } 1978 } 1979 1980 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 1981 if (ExitIt == LoopChain.end()) 1982 return; 1983 1984 // Rotating a loop exit to the bottom when there is a fallthrough to top 1985 // trades the entry fallthrough for an exit fallthrough. 1986 // If there is no bottom->top edge, but the chosen exit block does have 1987 // a fallthrough, we break that fallthrough for nothing in return. 1988 1989 // Let's consider an example. We have a built chain of basic blocks 1990 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 1991 // By doing a rotation we get 1992 // Bk+1, ..., Bn, B1, ..., Bk 1993 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 1994 // If we had a fallthrough Bk -> Bk+1 it is broken now. 1995 // It might be compensated by fallthrough Bn -> B1. 1996 // So we have a condition to avoid creation of extra branch by loop rotation. 1997 // All below must be true to avoid loop rotation: 1998 // If there is a fallthrough to top (B1) 1999 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2000 // There is no fallthrough from bottom (Bn) to top (B1). 2001 // Please note that there is no exit fallthrough from Bn because we checked it 2002 // above. 2003 if (ViableTopFallthrough) { 2004 assert(std::next(ExitIt) != LoopChain.end() && 2005 "Exit should not be last BB"); 2006 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2007 if (ExitingBB->isSuccessor(NextBlockInChain)) 2008 if (!Bottom->isSuccessor(Top)) 2009 return; 2010 } 2011 2012 DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2013 << " at bottom\n"); 2014 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2015 } 2016 2017 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 2018 /// 2019 /// With profile data, we can determine the cost in terms of missed fall through 2020 /// opportunities when rotating a loop chain and select the best rotation. 2021 /// Basically, there are three kinds of cost to consider for each rotation: 2022 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2023 /// the loop to the loop header. 2024 /// 2. The possibly missed fall through edges (if they exist) from the loop 2025 /// exits to BB out of the loop. 2026 /// 3. The missed fall through edge (if it exists) from the last BB to the 2027 /// first BB in the loop chain. 2028 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2029 /// We select the best rotation with the smallest cost. 2030 void MachineBlockPlacement::rotateLoopWithProfile( 2031 BlockChain &LoopChain, const MachineLoop &L, 2032 const BlockFilterSet &LoopBlockSet) { 2033 auto HeaderBB = L.getHeader(); 2034 auto HeaderIter = llvm::find(LoopChain, HeaderBB); 2035 auto RotationPos = LoopChain.end(); 2036 2037 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2038 2039 // A utility lambda that scales up a block frequency by dividing it by a 2040 // branch probability which is the reciprocal of the scale. 2041 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2042 unsigned Scale) -> BlockFrequency { 2043 if (Scale == 0) 2044 return 0; 2045 // Use operator / between BlockFrequency and BranchProbability to implement 2046 // saturating multiplication. 2047 return Freq / BranchProbability(1, Scale); 2048 }; 2049 2050 // Compute the cost of the missed fall-through edge to the loop header if the 2051 // chain head is not the loop header. As we only consider natural loops with 2052 // single header, this computation can be done only once. 2053 BlockFrequency HeaderFallThroughCost(0); 2054 for (auto *Pred : HeaderBB->predecessors()) { 2055 BlockChain *PredChain = BlockToChain[Pred]; 2056 if (!LoopBlockSet.count(Pred) && 2057 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2058 auto EdgeFreq = 2059 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2060 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2061 // If the predecessor has only an unconditional jump to the header, we 2062 // need to consider the cost of this jump. 2063 if (Pred->succ_size() == 1) 2064 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2065 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2066 } 2067 } 2068 2069 // Here we collect all exit blocks in the loop, and for each exit we find out 2070 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2071 // as the sum of frequencies of exit edges we collect here, excluding the exit 2072 // edge from the tail of the loop chain. 2073 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2074 for (auto BB : LoopChain) { 2075 auto LargestExitEdgeProb = BranchProbability::getZero(); 2076 for (auto *Succ : BB->successors()) { 2077 BlockChain *SuccChain = BlockToChain[Succ]; 2078 if (!LoopBlockSet.count(Succ) && 2079 (!SuccChain || Succ == *SuccChain->begin())) { 2080 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2081 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2082 } 2083 } 2084 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2085 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2086 ExitsWithFreq.emplace_back(BB, ExitFreq); 2087 } 2088 } 2089 2090 // In this loop we iterate every block in the loop chain and calculate the 2091 // cost assuming the block is the head of the loop chain. When the loop ends, 2092 // we should have found the best candidate as the loop chain's head. 2093 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2094 EndIter = LoopChain.end(); 2095 Iter != EndIter; Iter++, TailIter++) { 2096 // TailIter is used to track the tail of the loop chain if the block we are 2097 // checking (pointed by Iter) is the head of the chain. 2098 if (TailIter == LoopChain.end()) 2099 TailIter = LoopChain.begin(); 2100 2101 auto TailBB = *TailIter; 2102 2103 // Calculate the cost by putting this BB to the top. 2104 BlockFrequency Cost = 0; 2105 2106 // If the current BB is the loop header, we need to take into account the 2107 // cost of the missed fall through edge from outside of the loop to the 2108 // header. 2109 if (Iter != HeaderIter) 2110 Cost += HeaderFallThroughCost; 2111 2112 // Collect the loop exit cost by summing up frequencies of all exit edges 2113 // except the one from the chain tail. 2114 for (auto &ExitWithFreq : ExitsWithFreq) 2115 if (TailBB != ExitWithFreq.first) 2116 Cost += ExitWithFreq.second; 2117 2118 // The cost of breaking the once fall-through edge from the tail to the top 2119 // of the loop chain. Here we need to consider three cases: 2120 // 1. If the tail node has only one successor, then we will get an 2121 // additional jmp instruction. So the cost here is (MisfetchCost + 2122 // JumpInstCost) * tail node frequency. 2123 // 2. If the tail node has two successors, then we may still get an 2124 // additional jmp instruction if the layout successor after the loop 2125 // chain is not its CFG successor. Note that the more frequently executed 2126 // jmp instruction will be put ahead of the other one. Assume the 2127 // frequency of those two branches are x and y, where x is the frequency 2128 // of the edge to the chain head, then the cost will be 2129 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2130 // 3. If the tail node has more than two successors (this rarely happens), 2131 // we won't consider any additional cost. 2132 if (TailBB->isSuccessor(*Iter)) { 2133 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2134 if (TailBB->succ_size() == 1) 2135 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2136 MisfetchCost + JumpInstCost); 2137 else if (TailBB->succ_size() == 2) { 2138 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2139 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2140 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2141 ? TailBBFreq * TailToHeadProb.getCompl() 2142 : TailToHeadFreq; 2143 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2144 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2145 } 2146 } 2147 2148 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2149 << " to the top: " << Cost.getFrequency() << "\n"); 2150 2151 if (Cost < SmallestRotationCost) { 2152 SmallestRotationCost = Cost; 2153 RotationPos = Iter; 2154 } 2155 } 2156 2157 if (RotationPos != LoopChain.end()) { 2158 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2159 << " to the top\n"); 2160 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2161 } 2162 } 2163 2164 /// \brief Collect blocks in the given loop that are to be placed. 2165 /// 2166 /// When profile data is available, exclude cold blocks from the returned set; 2167 /// otherwise, collect all blocks in the loop. 2168 MachineBlockPlacement::BlockFilterSet 2169 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2170 BlockFilterSet LoopBlockSet; 2171 2172 // Filter cold blocks off from LoopBlockSet when profile data is available. 2173 // Collect the sum of frequencies of incoming edges to the loop header from 2174 // outside. If we treat the loop as a super block, this is the frequency of 2175 // the loop. Then for each block in the loop, we calculate the ratio between 2176 // its frequency and the frequency of the loop block. When it is too small, 2177 // don't add it to the loop chain. If there are outer loops, then this block 2178 // will be merged into the first outer loop chain for which this block is not 2179 // cold anymore. This needs precise profile data and we only do this when 2180 // profile data is available. 2181 if (F->getFunction()->getEntryCount() || ForceLoopColdBlock) { 2182 BlockFrequency LoopFreq(0); 2183 for (auto LoopPred : L.getHeader()->predecessors()) 2184 if (!L.contains(LoopPred)) 2185 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2186 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2187 2188 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2189 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2190 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2191 continue; 2192 LoopBlockSet.insert(LoopBB); 2193 } 2194 } else 2195 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2196 2197 return LoopBlockSet; 2198 } 2199 2200 /// \brief Forms basic block chains from the natural loop structures. 2201 /// 2202 /// These chains are designed to preserve the existing *structure* of the code 2203 /// as much as possible. We can then stitch the chains together in a way which 2204 /// both preserves the topological structure and minimizes taken conditional 2205 /// branches. 2206 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2207 // First recurse through any nested loops, building chains for those inner 2208 // loops. 2209 for (const MachineLoop *InnerLoop : L) 2210 buildLoopChains(*InnerLoop); 2211 2212 assert(BlockWorkList.empty() && 2213 "BlockWorkList not empty when starting to build loop chains."); 2214 assert(EHPadWorkList.empty() && 2215 "EHPadWorkList not empty when starting to build loop chains."); 2216 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2217 2218 // Check if we have profile data for this function. If yes, we will rotate 2219 // this loop by modeling costs more precisely which requires the profile data 2220 // for better layout. 2221 bool RotateLoopWithProfile = 2222 ForcePreciseRotationCost || 2223 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2224 2225 // First check to see if there is an obviously preferable top block for the 2226 // loop. This will default to the header, but may end up as one of the 2227 // predecessors to the header if there is one which will result in strictly 2228 // fewer branches in the loop body. 2229 // When we use profile data to rotate the loop, this is unnecessary. 2230 MachineBasicBlock *LoopTop = 2231 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2232 2233 // If we selected just the header for the loop top, look for a potentially 2234 // profitable exit block in the event that rotating the loop can eliminate 2235 // branches by placing an exit edge at the bottom. 2236 // 2237 // Loops are processed innermost to uttermost, make sure we clear 2238 // PreferredLoopExit before processing a new loop. 2239 PreferredLoopExit = nullptr; 2240 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2241 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2242 2243 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2244 2245 // FIXME: This is a really lame way of walking the chains in the loop: we 2246 // walk the blocks, and use a set to prevent visiting a particular chain 2247 // twice. 2248 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2249 assert(LoopChain.UnscheduledPredecessors == 0 && 2250 "LoopChain should not have unscheduled predecessors."); 2251 UpdatedPreds.insert(&LoopChain); 2252 2253 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2254 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2255 2256 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2257 2258 if (RotateLoopWithProfile) 2259 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2260 else 2261 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2262 2263 DEBUG({ 2264 // Crash at the end so we get all of the debugging output first. 2265 bool BadLoop = false; 2266 if (LoopChain.UnscheduledPredecessors) { 2267 BadLoop = true; 2268 dbgs() << "Loop chain contains a block without its preds placed!\n" 2269 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2270 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2271 } 2272 for (MachineBasicBlock *ChainBB : LoopChain) { 2273 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2274 if (!LoopBlockSet.remove(ChainBB)) { 2275 // We don't mark the loop as bad here because there are real situations 2276 // where this can occur. For example, with an unanalyzable fallthrough 2277 // from a loop block to a non-loop block or vice versa. 2278 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2279 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2280 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2281 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2282 } 2283 } 2284 2285 if (!LoopBlockSet.empty()) { 2286 BadLoop = true; 2287 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2288 dbgs() << "Loop contains blocks never placed into a chain!\n" 2289 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2290 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2291 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2292 } 2293 assert(!BadLoop && "Detected problems with the placement of this loop."); 2294 }); 2295 2296 BlockWorkList.clear(); 2297 EHPadWorkList.clear(); 2298 } 2299 2300 void MachineBlockPlacement::buildCFGChains() { 2301 // Ensure that every BB in the function has an associated chain to simplify 2302 // the assumptions of the remaining algorithm. 2303 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2304 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2305 ++FI) { 2306 MachineBasicBlock *BB = &*FI; 2307 BlockChain *Chain = 2308 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2309 // Also, merge any blocks which we cannot reason about and must preserve 2310 // the exact fallthrough behavior for. 2311 while (true) { 2312 Cond.clear(); 2313 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2314 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2315 break; 2316 2317 MachineFunction::iterator NextFI = std::next(FI); 2318 MachineBasicBlock *NextBB = &*NextFI; 2319 // Ensure that the layout successor is a viable block, as we know that 2320 // fallthrough is a possibility. 2321 assert(NextFI != FE && "Can't fallthrough past the last block."); 2322 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2323 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2324 << "\n"); 2325 Chain->merge(NextBB, nullptr); 2326 #ifndef NDEBUG 2327 BlocksWithUnanalyzableExits.insert(&*BB); 2328 #endif 2329 FI = NextFI; 2330 BB = NextBB; 2331 } 2332 } 2333 2334 // Build any loop-based chains. 2335 PreferredLoopExit = nullptr; 2336 for (MachineLoop *L : *MLI) 2337 buildLoopChains(*L); 2338 2339 assert(BlockWorkList.empty() && 2340 "BlockWorkList should be empty before building final chain."); 2341 assert(EHPadWorkList.empty() && 2342 "EHPadWorkList should be empty before building final chain."); 2343 2344 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2345 for (MachineBasicBlock &MBB : *F) 2346 fillWorkLists(&MBB, UpdatedPreds); 2347 2348 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2349 buildChain(&F->front(), FunctionChain); 2350 2351 #ifndef NDEBUG 2352 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2353 #endif 2354 DEBUG({ 2355 // Crash at the end so we get all of the debugging output first. 2356 bool BadFunc = false; 2357 FunctionBlockSetType FunctionBlockSet; 2358 for (MachineBasicBlock &MBB : *F) 2359 FunctionBlockSet.insert(&MBB); 2360 2361 for (MachineBasicBlock *ChainBB : FunctionChain) 2362 if (!FunctionBlockSet.erase(ChainBB)) { 2363 BadFunc = true; 2364 dbgs() << "Function chain contains a block not in the function!\n" 2365 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2366 } 2367 2368 if (!FunctionBlockSet.empty()) { 2369 BadFunc = true; 2370 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2371 dbgs() << "Function contains blocks never placed into a chain!\n" 2372 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2373 } 2374 assert(!BadFunc && "Detected problems with the block placement."); 2375 }); 2376 2377 // Splice the blocks into place. 2378 MachineFunction::iterator InsertPos = F->begin(); 2379 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2380 for (MachineBasicBlock *ChainBB : FunctionChain) { 2381 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2382 : " ... ") 2383 << getBlockName(ChainBB) << "\n"); 2384 if (InsertPos != MachineFunction::iterator(ChainBB)) 2385 F->splice(InsertPos, ChainBB); 2386 else 2387 ++InsertPos; 2388 2389 // Update the terminator of the previous block. 2390 if (ChainBB == *FunctionChain.begin()) 2391 continue; 2392 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2393 2394 // FIXME: It would be awesome of updateTerminator would just return rather 2395 // than assert when the branch cannot be analyzed in order to remove this 2396 // boiler plate. 2397 Cond.clear(); 2398 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2399 2400 #ifndef NDEBUG 2401 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2402 // Given the exact block placement we chose, we may actually not _need_ to 2403 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2404 // do that at this point is a bug. 2405 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2406 !PrevBB->canFallThrough()) && 2407 "Unexpected block with un-analyzable fallthrough!"); 2408 Cond.clear(); 2409 TBB = FBB = nullptr; 2410 } 2411 #endif 2412 2413 // The "PrevBB" is not yet updated to reflect current code layout, so, 2414 // o. it may fall-through to a block without explicit "goto" instruction 2415 // before layout, and no longer fall-through it after layout; or 2416 // o. just opposite. 2417 // 2418 // analyzeBranch() may return erroneous value for FBB when these two 2419 // situations take place. For the first scenario FBB is mistakenly set NULL; 2420 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2421 // mistakenly pointing to "*BI". 2422 // Thus, if the future change needs to use FBB before the layout is set, it 2423 // has to correct FBB first by using the code similar to the following: 2424 // 2425 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2426 // PrevBB->updateTerminator(); 2427 // Cond.clear(); 2428 // TBB = FBB = nullptr; 2429 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2430 // // FIXME: This should never take place. 2431 // TBB = FBB = nullptr; 2432 // } 2433 // } 2434 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2435 PrevBB->updateTerminator(); 2436 } 2437 2438 // Fixup the last block. 2439 Cond.clear(); 2440 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2441 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2442 F->back().updateTerminator(); 2443 2444 BlockWorkList.clear(); 2445 EHPadWorkList.clear(); 2446 } 2447 2448 void MachineBlockPlacement::optimizeBranches() { 2449 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2450 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2451 2452 // Now that all the basic blocks in the chain have the proper layout, 2453 // make a final call to AnalyzeBranch with AllowModify set. 2454 // Indeed, the target may be able to optimize the branches in a way we 2455 // cannot because all branches may not be analyzable. 2456 // E.g., the target may be able to remove an unconditional branch to 2457 // a fallthrough when it occurs after predicated terminators. 2458 for (MachineBasicBlock *ChainBB : FunctionChain) { 2459 Cond.clear(); 2460 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2461 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2462 // If PrevBB has a two-way branch, try to re-order the branches 2463 // such that we branch to the successor with higher probability first. 2464 if (TBB && !Cond.empty() && FBB && 2465 MBPI->getEdgeProbability(ChainBB, FBB) > 2466 MBPI->getEdgeProbability(ChainBB, TBB) && 2467 !TII->reverseBranchCondition(Cond)) { 2468 DEBUG(dbgs() << "Reverse order of the two branches: " 2469 << getBlockName(ChainBB) << "\n"); 2470 DEBUG(dbgs() << " Edge probability: " 2471 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2472 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2473 DebugLoc dl; // FIXME: this is nowhere 2474 TII->removeBranch(*ChainBB); 2475 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2476 ChainBB->updateTerminator(); 2477 } 2478 } 2479 } 2480 } 2481 2482 void MachineBlockPlacement::alignBlocks() { 2483 // Walk through the backedges of the function now that we have fully laid out 2484 // the basic blocks and align the destination of each backedge. We don't rely 2485 // exclusively on the loop info here so that we can align backedges in 2486 // unnatural CFGs and backedges that were introduced purely because of the 2487 // loop rotations done during this layout pass. 2488 if (F->getFunction()->optForSize()) 2489 return; 2490 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2491 if (FunctionChain.begin() == FunctionChain.end()) 2492 return; // Empty chain. 2493 2494 const BranchProbability ColdProb(1, 5); // 20% 2495 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2496 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2497 for (MachineBasicBlock *ChainBB : FunctionChain) { 2498 if (ChainBB == *FunctionChain.begin()) 2499 continue; 2500 2501 // Don't align non-looping basic blocks. These are unlikely to execute 2502 // enough times to matter in practice. Note that we'll still handle 2503 // unnatural CFGs inside of a natural outer loop (the common case) and 2504 // rotated loops. 2505 MachineLoop *L = MLI->getLoopFor(ChainBB); 2506 if (!L) 2507 continue; 2508 2509 unsigned Align = TLI->getPrefLoopAlignment(L); 2510 if (!Align) 2511 continue; // Don't care about loop alignment. 2512 2513 // If the block is cold relative to the function entry don't waste space 2514 // aligning it. 2515 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2516 if (Freq < WeightedEntryFreq) 2517 continue; 2518 2519 // If the block is cold relative to its loop header, don't align it 2520 // regardless of what edges into the block exist. 2521 MachineBasicBlock *LoopHeader = L->getHeader(); 2522 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2523 if (Freq < (LoopHeaderFreq * ColdProb)) 2524 continue; 2525 2526 // Check for the existence of a non-layout predecessor which would benefit 2527 // from aligning this block. 2528 MachineBasicBlock *LayoutPred = 2529 &*std::prev(MachineFunction::iterator(ChainBB)); 2530 2531 // Force alignment if all the predecessors are jumps. We already checked 2532 // that the block isn't cold above. 2533 if (!LayoutPred->isSuccessor(ChainBB)) { 2534 ChainBB->setAlignment(Align); 2535 continue; 2536 } 2537 2538 // Align this block if the layout predecessor's edge into this block is 2539 // cold relative to the block. When this is true, other predecessors make up 2540 // all of the hot entries into the block and thus alignment is likely to be 2541 // important. 2542 BranchProbability LayoutProb = 2543 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2544 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2545 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2546 ChainBB->setAlignment(Align); 2547 } 2548 } 2549 2550 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2551 /// it was duplicated into its chain predecessor and removed. 2552 /// \p BB - Basic block that may be duplicated. 2553 /// 2554 /// \p LPred - Chosen layout predecessor of \p BB. 2555 /// Updated to be the chain end if LPred is removed. 2556 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2557 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2558 /// Used to identify which blocks to update predecessor 2559 /// counts. 2560 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2561 /// chosen in the given order due to unnatural CFG 2562 /// only needed if \p BB is removed and 2563 /// \p PrevUnplacedBlockIt pointed to \p BB. 2564 /// @return true if \p BB was removed. 2565 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2566 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2567 const MachineBasicBlock *LoopHeaderBB, 2568 BlockChain &Chain, BlockFilterSet *BlockFilter, 2569 MachineFunction::iterator &PrevUnplacedBlockIt) { 2570 bool Removed, DuplicatedToLPred; 2571 bool DuplicatedToOriginalLPred; 2572 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2573 PrevUnplacedBlockIt, 2574 DuplicatedToLPred); 2575 if (!Removed) 2576 return false; 2577 DuplicatedToOriginalLPred = DuplicatedToLPred; 2578 // Iteratively try to duplicate again. It can happen that a block that is 2579 // duplicated into is still small enough to be duplicated again. 2580 // No need to call markBlockSuccessors in this case, as the blocks being 2581 // duplicated from here on are already scheduled. 2582 // Note that DuplicatedToLPred always implies Removed. 2583 while (DuplicatedToLPred) { 2584 assert(Removed && "Block must have been removed to be duplicated into its " 2585 "layout predecessor."); 2586 MachineBasicBlock *DupBB, *DupPred; 2587 // The removal callback causes Chain.end() to be updated when a block is 2588 // removed. On the first pass through the loop, the chain end should be the 2589 // same as it was on function entry. On subsequent passes, because we are 2590 // duplicating the block at the end of the chain, if it is removed the 2591 // chain will have shrunk by one block. 2592 BlockChain::iterator ChainEnd = Chain.end(); 2593 DupBB = *(--ChainEnd); 2594 // Now try to duplicate again. 2595 if (ChainEnd == Chain.begin()) 2596 break; 2597 DupPred = *std::prev(ChainEnd); 2598 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2599 PrevUnplacedBlockIt, 2600 DuplicatedToLPred); 2601 } 2602 // If BB was duplicated into LPred, it is now scheduled. But because it was 2603 // removed, markChainSuccessors won't be called for its chain. Instead we 2604 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2605 // at the end because repeating the tail duplication can increase the number 2606 // of unscheduled predecessors. 2607 LPred = *std::prev(Chain.end()); 2608 if (DuplicatedToOriginalLPred) 2609 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2610 return true; 2611 } 2612 2613 /// Tail duplicate \p BB into (some) predecessors if profitable. 2614 /// \p BB - Basic block that may be duplicated 2615 /// \p LPred - Chosen layout predecessor of \p BB 2616 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2617 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2618 /// Used to identify which blocks to update predecessor 2619 /// counts. 2620 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2621 /// chosen in the given order due to unnatural CFG 2622 /// only needed if \p BB is removed and 2623 /// \p PrevUnplacedBlockIt pointed to \p BB. 2624 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2625 /// only be true if the block was removed. 2626 /// \return - True if the block was duplicated into all preds and removed. 2627 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2628 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2629 BlockChain &Chain, BlockFilterSet *BlockFilter, 2630 MachineFunction::iterator &PrevUnplacedBlockIt, 2631 bool &DuplicatedToLPred) { 2632 DuplicatedToLPred = false; 2633 if (!shouldTailDuplicate(BB)) 2634 return false; 2635 2636 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2637 << BB->getNumber() << "\n"); 2638 2639 // This has to be a callback because none of it can be done after 2640 // BB is deleted. 2641 bool Removed = false; 2642 auto RemovalCallback = 2643 [&](MachineBasicBlock *RemBB) { 2644 // Signal to outer function 2645 Removed = true; 2646 2647 // Conservative default. 2648 bool InWorkList = true; 2649 // Remove from the Chain and Chain Map 2650 if (BlockToChain.count(RemBB)) { 2651 BlockChain *Chain = BlockToChain[RemBB]; 2652 InWorkList = Chain->UnscheduledPredecessors == 0; 2653 Chain->remove(RemBB); 2654 BlockToChain.erase(RemBB); 2655 } 2656 2657 // Handle the unplaced block iterator 2658 if (&(*PrevUnplacedBlockIt) == RemBB) { 2659 PrevUnplacedBlockIt++; 2660 } 2661 2662 // Handle the Work Lists 2663 if (InWorkList) { 2664 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2665 if (RemBB->isEHPad()) 2666 RemoveList = EHPadWorkList; 2667 RemoveList.erase( 2668 llvm::remove_if(RemoveList, 2669 [RemBB](MachineBasicBlock *BB) { 2670 return BB == RemBB; 2671 }), 2672 RemoveList.end()); 2673 } 2674 2675 // Handle the filter set 2676 if (BlockFilter) { 2677 BlockFilter->remove(RemBB); 2678 } 2679 2680 // Remove the block from loop info. 2681 MLI->removeBlock(RemBB); 2682 if (RemBB == PreferredLoopExit) 2683 PreferredLoopExit = nullptr; 2684 2685 DEBUG(dbgs() << "TailDuplicator deleted block: " 2686 << getBlockName(RemBB) << "\n"); 2687 }; 2688 auto RemovalCallbackRef = 2689 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2690 2691 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2692 bool IsSimple = TailDup.isSimpleBB(BB); 2693 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2694 &DuplicatedPreds, &RemovalCallbackRef); 2695 2696 // Update UnscheduledPredecessors to reflect tail-duplication. 2697 DuplicatedToLPred = false; 2698 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2699 // We're only looking for unscheduled predecessors that match the filter. 2700 BlockChain* PredChain = BlockToChain[Pred]; 2701 if (Pred == LPred) 2702 DuplicatedToLPred = true; 2703 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2704 || PredChain == &Chain) 2705 continue; 2706 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2707 if (BlockFilter && !BlockFilter->count(NewSucc)) 2708 continue; 2709 BlockChain *NewChain = BlockToChain[NewSucc]; 2710 if (NewChain != &Chain && NewChain != PredChain) 2711 NewChain->UnscheduledPredecessors++; 2712 } 2713 } 2714 return Removed; 2715 } 2716 2717 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2718 if (skipFunction(*MF.getFunction())) 2719 return false; 2720 2721 // Check for single-block functions and skip them. 2722 if (std::next(MF.begin()) == MF.end()) 2723 return false; 2724 2725 F = &MF; 2726 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2727 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2728 getAnalysis<MachineBlockFrequencyInfo>()); 2729 MLI = &getAnalysis<MachineLoopInfo>(); 2730 TII = MF.getSubtarget().getInstrInfo(); 2731 TLI = MF.getSubtarget().getTargetLowering(); 2732 MPDT = nullptr; 2733 2734 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2735 // there are no MachineLoops. 2736 PreferredLoopExit = nullptr; 2737 2738 assert(BlockToChain.empty() && 2739 "BlockToChain map should be empty before starting placement."); 2740 assert(ComputedEdges.empty() && 2741 "Computed Edge map should be empty before starting placement."); 2742 2743 unsigned TailDupSize = TailDupPlacementThreshold; 2744 // If only the aggressive threshold is explicitly set, use it. 2745 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2746 TailDupPlacementThreshold.getNumOccurrences() == 0) 2747 TailDupSize = TailDupPlacementAggressiveThreshold; 2748 2749 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2750 // For agressive optimization, we can adjust some thresholds to be less 2751 // conservative. 2752 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2753 // At O3 we should be more willing to copy blocks for tail duplication. This 2754 // increases size pressure, so we only do it at O3 2755 // Do this unless only the regular threshold is explicitly set. 2756 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2757 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2758 TailDupSize = TailDupPlacementAggressiveThreshold; 2759 } 2760 2761 if (TailDupPlacement) { 2762 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2763 if (MF.getFunction()->optForSize()) 2764 TailDupSize = 1; 2765 bool PreRegAlloc = false; 2766 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 2767 precomputeTriangleChains(); 2768 } 2769 2770 buildCFGChains(); 2771 2772 // Changing the layout can create new tail merging opportunities. 2773 // TailMerge can create jump into if branches that make CFG irreducible for 2774 // HW that requires structured CFG. 2775 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2776 PassConfig->getEnableTailMerge() && 2777 BranchFoldPlacement; 2778 // No tail merging opportunities if the block number is less than four. 2779 if (MF.size() > 3 && EnableTailMerge) { 2780 unsigned TailMergeSize = TailDupSize + 1; 2781 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2782 *MBPI, TailMergeSize); 2783 2784 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2785 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2786 /*AfterBlockPlacement=*/true)) { 2787 // Redo the layout if tail merging creates/removes/moves blocks. 2788 BlockToChain.clear(); 2789 ComputedEdges.clear(); 2790 // Must redo the post-dominator tree if blocks were changed. 2791 if (MPDT) 2792 MPDT->runOnMachineFunction(MF); 2793 ChainAllocator.DestroyAll(); 2794 buildCFGChains(); 2795 } 2796 } 2797 2798 optimizeBranches(); 2799 alignBlocks(); 2800 2801 BlockToChain.clear(); 2802 ComputedEdges.clear(); 2803 ChainAllocator.DestroyAll(); 2804 2805 if (AlignAllBlock) 2806 // Align all of the blocks in the function to a specific alignment. 2807 for (MachineBasicBlock &MBB : MF) 2808 MBB.setAlignment(AlignAllBlock); 2809 else if (AlignAllNonFallThruBlocks) { 2810 // Align all of the blocks that have no fall-through predecessors to a 2811 // specific alignment. 2812 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2813 auto LayoutPred = std::prev(MBI); 2814 if (!LayoutPred->isSuccessor(&*MBI)) 2815 MBI->setAlignment(AlignAllNonFallThruBlocks); 2816 } 2817 } 2818 if (ViewBlockLayoutWithBFI != GVDT_None && 2819 (ViewBlockFreqFuncName.empty() || 2820 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2821 MBFI->view("MBP." + MF.getName(), false); 2822 } 2823 2824 2825 // We always return true as we have no way to track whether the final order 2826 // differs from the original order. 2827 return true; 2828 } 2829 2830 namespace { 2831 2832 /// \brief A pass to compute block placement statistics. 2833 /// 2834 /// A separate pass to compute interesting statistics for evaluating block 2835 /// placement. This is separate from the actual placement pass so that they can 2836 /// be computed in the absence of any placement transformations or when using 2837 /// alternative placement strategies. 2838 class MachineBlockPlacementStats : public MachineFunctionPass { 2839 /// \brief A handle to the branch probability pass. 2840 const MachineBranchProbabilityInfo *MBPI; 2841 2842 /// \brief A handle to the function-wide block frequency pass. 2843 const MachineBlockFrequencyInfo *MBFI; 2844 2845 public: 2846 static char ID; // Pass identification, replacement for typeid 2847 2848 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2849 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2850 } 2851 2852 bool runOnMachineFunction(MachineFunction &F) override; 2853 2854 void getAnalysisUsage(AnalysisUsage &AU) const override { 2855 AU.addRequired<MachineBranchProbabilityInfo>(); 2856 AU.addRequired<MachineBlockFrequencyInfo>(); 2857 AU.setPreservesAll(); 2858 MachineFunctionPass::getAnalysisUsage(AU); 2859 } 2860 }; 2861 2862 } // end anonymous namespace 2863 2864 char MachineBlockPlacementStats::ID = 0; 2865 2866 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2867 2868 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2869 "Basic Block Placement Stats", false, false) 2870 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2871 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2872 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2873 "Basic Block Placement Stats", false, false) 2874 2875 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2876 // Check for single-block functions and skip them. 2877 if (std::next(F.begin()) == F.end()) 2878 return false; 2879 2880 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2881 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2882 2883 for (MachineBasicBlock &MBB : F) { 2884 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2885 Statistic &NumBranches = 2886 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2887 Statistic &BranchTakenFreq = 2888 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2889 for (MachineBasicBlock *Succ : MBB.successors()) { 2890 // Skip if this successor is a fallthrough. 2891 if (MBB.isLayoutSuccessor(Succ)) 2892 continue; 2893 2894 BlockFrequency EdgeFreq = 2895 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2896 ++NumBranches; 2897 BranchTakenFreq += EdgeFreq.getFrequency(); 2898 } 2899 } 2900 2901 return false; 2902 } 2903