xref: /llvm-project/llvm/lib/CodeGen/MachineBlockPlacement.cpp (revision 1fa60307675bd08213ee7ac9638776e9f677a2c6)
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetSubtargetInfo.h"
52 #include <algorithm>
53 #include <forward_list>
54 #include <functional>
55 #include <utility>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "block-placement"
59 
60 STATISTIC(NumCondBranches, "Number of conditional branches");
61 STATISTIC(NumUncondBranches, "Number of unconditional branches");
62 STATISTIC(CondBranchTakenFreq,
63           "Potential frequency of taking conditional branches");
64 STATISTIC(UncondBranchTakenFreq,
65           "Potential frequency of taking unconditional branches");
66 
67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
68                                        cl::desc("Force the alignment of all "
69                                                 "blocks in the function."),
70                                        cl::init(0), cl::Hidden);
71 
72 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
73     "align-all-nofallthru-blocks",
74     cl::desc("Force the alignment of all "
75              "blocks that have no fall-through predecessors (i.e. don't add "
76              "nops that are executed)."),
77     cl::init(0), cl::Hidden);
78 
79 // FIXME: Find a good default for this flag and remove the flag.
80 static cl::opt<unsigned> ExitBlockBias(
81     "block-placement-exit-block-bias",
82     cl::desc("Block frequency percentage a loop exit block needs "
83              "over the original exit to be considered the new exit."),
84     cl::init(0), cl::Hidden);
85 
86 // Definition:
87 // - Outlining: placement of a basic block outside the chain or hot path.
88 
89 static cl::opt<unsigned> LoopToColdBlockRatio(
90     "loop-to-cold-block-ratio",
91     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
92              "(frequency of block) is greater than this ratio"),
93     cl::init(5), cl::Hidden);
94 
95 static cl::opt<bool>
96     PreciseRotationCost("precise-rotation-cost",
97                         cl::desc("Model the cost of loop rotation more "
98                                  "precisely by using profile data."),
99                         cl::init(false), cl::Hidden);
100 static cl::opt<bool>
101     ForcePreciseRotationCost("force-precise-rotation-cost",
102                              cl::desc("Force the use of precise cost "
103                                       "loop rotation strategy."),
104                              cl::init(false), cl::Hidden);
105 
106 static cl::opt<unsigned> MisfetchCost(
107     "misfetch-cost",
108     cl::desc("Cost that models the probabilistic risk of an instruction "
109              "misfetch due to a jump comparing to falling through, whose cost "
110              "is zero."),
111     cl::init(1), cl::Hidden);
112 
113 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
114                                       cl::desc("Cost of jump instructions."),
115                                       cl::init(1), cl::Hidden);
116 static cl::opt<bool>
117 TailDupPlacement("tail-dup-placement",
118               cl::desc("Perform tail duplication during placement. "
119                        "Creates more fallthrough opportunites in "
120                        "outline branches."),
121               cl::init(true), cl::Hidden);
122 
123 static cl::opt<bool>
124 BranchFoldPlacement("branch-fold-placement",
125               cl::desc("Perform branch folding during placement. "
126                        "Reduces code size."),
127               cl::init(true), cl::Hidden);
128 
129 // Heuristic for tail duplication.
130 static cl::opt<unsigned> TailDupPlacementThreshold(
131     "tail-dup-placement-threshold",
132     cl::desc("Instruction cutoff for tail duplication during layout. "
133              "Tail merging during layout is forced to have a threshold "
134              "that won't conflict."), cl::init(2),
135     cl::Hidden);
136 
137 // Heuristic for tail duplication.
138 static cl::opt<unsigned> TailDupPlacementPenalty(
139     "tail-dup-placement-penalty",
140     cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
141              "Copying can increase fallthrough, but it also increases icache "
142              "pressure. This parameter controls the penalty to account for that. "
143              "Percent as integer."),
144     cl::init(2),
145     cl::Hidden);
146 
147 // Heuristic for triangle chains.
148 static cl::opt<unsigned> TriangleChainCount(
149     "triangle-chain-count",
150     cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
151              "triangle tail duplication heuristic to kick in. 0 to disable."),
152     cl::init(3),
153     cl::Hidden);
154 
155 extern cl::opt<unsigned> StaticLikelyProb;
156 extern cl::opt<unsigned> ProfileLikelyProb;
157 
158 // Internal option used to control BFI display only after MBP pass.
159 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
160 // -view-block-layout-with-bfi=
161 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
162 
163 // Command line option to specify the name of the function for CFG dump
164 // Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
165 extern cl::opt<std::string> ViewBlockFreqFuncName;
166 
167 namespace {
168 class BlockChain;
169 /// \brief Type for our function-wide basic block -> block chain mapping.
170 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType;
171 }
172 
173 namespace {
174 /// \brief A chain of blocks which will be laid out contiguously.
175 ///
176 /// This is the datastructure representing a chain of consecutive blocks that
177 /// are profitable to layout together in order to maximize fallthrough
178 /// probabilities and code locality. We also can use a block chain to represent
179 /// a sequence of basic blocks which have some external (correctness)
180 /// requirement for sequential layout.
181 ///
182 /// Chains can be built around a single basic block and can be merged to grow
183 /// them. They participate in a block-to-chain mapping, which is updated
184 /// automatically as chains are merged together.
185 class BlockChain {
186   /// \brief The sequence of blocks belonging to this chain.
187   ///
188   /// This is the sequence of blocks for a particular chain. These will be laid
189   /// out in-order within the function.
190   SmallVector<MachineBasicBlock *, 4> Blocks;
191 
192   /// \brief A handle to the function-wide basic block to block chain mapping.
193   ///
194   /// This is retained in each block chain to simplify the computation of child
195   /// block chains for SCC-formation and iteration. We store the edges to child
196   /// basic blocks, and map them back to their associated chains using this
197   /// structure.
198   BlockToChainMapType &BlockToChain;
199 
200 public:
201   /// \brief Construct a new BlockChain.
202   ///
203   /// This builds a new block chain representing a single basic block in the
204   /// function. It also registers itself as the chain that block participates
205   /// in with the BlockToChain mapping.
206   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
207       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
208     assert(BB && "Cannot create a chain with a null basic block");
209     BlockToChain[BB] = this;
210   }
211 
212   /// \brief Iterator over blocks within the chain.
213   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
214   typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator;
215 
216   /// \brief Beginning of blocks within the chain.
217   iterator begin() { return Blocks.begin(); }
218   const_iterator begin() const { return Blocks.begin(); }
219 
220   /// \brief End of blocks within the chain.
221   iterator end() { return Blocks.end(); }
222   const_iterator end() const { return Blocks.end(); }
223 
224   bool remove(MachineBasicBlock* BB) {
225     for(iterator i = begin(); i != end(); ++i) {
226       if (*i == BB) {
227         Blocks.erase(i);
228         return true;
229       }
230     }
231     return false;
232   }
233 
234   /// \brief Merge a block chain into this one.
235   ///
236   /// This routine merges a block chain into this one. It takes care of forming
237   /// a contiguous sequence of basic blocks, updating the edge list, and
238   /// updating the block -> chain mapping. It does not free or tear down the
239   /// old chain, but the old chain's block list is no longer valid.
240   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
241     assert(BB);
242     assert(!Blocks.empty());
243 
244     // Fast path in case we don't have a chain already.
245     if (!Chain) {
246       assert(!BlockToChain[BB]);
247       Blocks.push_back(BB);
248       BlockToChain[BB] = this;
249       return;
250     }
251 
252     assert(BB == *Chain->begin());
253     assert(Chain->begin() != Chain->end());
254 
255     // Update the incoming blocks to point to this chain, and add them to the
256     // chain structure.
257     for (MachineBasicBlock *ChainBB : *Chain) {
258       Blocks.push_back(ChainBB);
259       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
260       BlockToChain[ChainBB] = this;
261     }
262   }
263 
264 #ifndef NDEBUG
265   /// \brief Dump the blocks in this chain.
266   LLVM_DUMP_METHOD void dump() {
267     for (MachineBasicBlock *MBB : *this)
268       MBB->dump();
269   }
270 #endif // NDEBUG
271 
272   /// \brief Count of predecessors of any block within the chain which have not
273   /// yet been scheduled.  In general, we will delay scheduling this chain
274   /// until those predecessors are scheduled (or we find a sufficiently good
275   /// reason to override this heuristic.)  Note that when forming loop chains,
276   /// blocks outside the loop are ignored and treated as if they were already
277   /// scheduled.
278   ///
279   /// Note: This field is reinitialized multiple times - once for each loop,
280   /// and then once for the function as a whole.
281   unsigned UnscheduledPredecessors;
282 };
283 }
284 
285 namespace {
286 class MachineBlockPlacement : public MachineFunctionPass {
287   /// \brief A typedef for a block filter set.
288   typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet;
289 
290   /// Pair struct containing basic block and taildup profitiability
291   struct BlockAndTailDupResult {
292     MachineBasicBlock *BB;
293     bool ShouldTailDup;
294   };
295 
296   /// Triple struct containing edge weight and the edge.
297   struct WeightedEdge {
298     BlockFrequency Weight;
299     MachineBasicBlock *Src;
300     MachineBasicBlock *Dest;
301   };
302 
303   /// \brief work lists of blocks that are ready to be laid out
304   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
305   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
306 
307   /// Edges that have already been computed as optimal.
308   DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
309 
310   /// \brief Machine Function
311   MachineFunction *F;
312 
313   /// \brief A handle to the branch probability pass.
314   const MachineBranchProbabilityInfo *MBPI;
315 
316   /// \brief A handle to the function-wide block frequency pass.
317   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
318 
319   /// \brief A handle to the loop info.
320   MachineLoopInfo *MLI;
321 
322   /// \brief Preferred loop exit.
323   /// Member variable for convenience. It may be removed by duplication deep
324   /// in the call stack.
325   MachineBasicBlock *PreferredLoopExit;
326 
327   /// \brief A handle to the target's instruction info.
328   const TargetInstrInfo *TII;
329 
330   /// \brief A handle to the target's lowering info.
331   const TargetLoweringBase *TLI;
332 
333   /// \brief A handle to the post dominator tree.
334   MachinePostDominatorTree *MPDT;
335 
336   /// \brief Duplicator used to duplicate tails during placement.
337   ///
338   /// Placement decisions can open up new tail duplication opportunities, but
339   /// since tail duplication affects placement decisions of later blocks, it
340   /// must be done inline.
341   TailDuplicator TailDup;
342 
343   /// \brief Allocator and owner of BlockChain structures.
344   ///
345   /// We build BlockChains lazily while processing the loop structure of
346   /// a function. To reduce malloc traffic, we allocate them using this
347   /// slab-like allocator, and destroy them after the pass completes. An
348   /// important guarantee is that this allocator produces stable pointers to
349   /// the chains.
350   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
351 
352   /// \brief Function wide BasicBlock to BlockChain mapping.
353   ///
354   /// This mapping allows efficiently moving from any given basic block to the
355   /// BlockChain it participates in, if any. We use it to, among other things,
356   /// allow implicitly defining edges between chains as the existing edges
357   /// between basic blocks.
358   DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
359 
360 #ifndef NDEBUG
361   /// The set of basic blocks that have terminators that cannot be fully
362   /// analyzed.  These basic blocks cannot be re-ordered safely by
363   /// MachineBlockPlacement, and we must preserve physical layout of these
364   /// blocks and their successors through the pass.
365   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
366 #endif
367 
368   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
369   /// if the count goes to 0, add them to the appropriate work list.
370   void markChainSuccessors(
371       const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
372       const BlockFilterSet *BlockFilter = nullptr);
373 
374   /// Decrease the UnscheduledPredecessors count for a single block, and
375   /// if the count goes to 0, add them to the appropriate work list.
376   void markBlockSuccessors(
377       const BlockChain &Chain, const MachineBasicBlock *BB,
378       const MachineBasicBlock *LoopHeaderBB,
379       const BlockFilterSet *BlockFilter = nullptr);
380 
381   BranchProbability
382   collectViableSuccessors(
383       const MachineBasicBlock *BB, const BlockChain &Chain,
384       const BlockFilterSet *BlockFilter,
385       SmallVector<MachineBasicBlock *, 4> &Successors);
386   bool shouldPredBlockBeOutlined(
387       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
388       const BlockChain &Chain, const BlockFilterSet *BlockFilter,
389       BranchProbability SuccProb, BranchProbability HotProb);
390   bool repeatedlyTailDuplicateBlock(
391       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
392       const MachineBasicBlock *LoopHeaderBB,
393       BlockChain &Chain, BlockFilterSet *BlockFilter,
394       MachineFunction::iterator &PrevUnplacedBlockIt);
395   bool maybeTailDuplicateBlock(
396       MachineBasicBlock *BB, MachineBasicBlock *LPred,
397       BlockChain &Chain, BlockFilterSet *BlockFilter,
398       MachineFunction::iterator &PrevUnplacedBlockIt,
399       bool &DuplicatedToPred);
400   bool hasBetterLayoutPredecessor(
401       const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
402       const BlockChain &SuccChain, BranchProbability SuccProb,
403       BranchProbability RealSuccProb, const BlockChain &Chain,
404       const BlockFilterSet *BlockFilter);
405   BlockAndTailDupResult selectBestSuccessor(
406       const MachineBasicBlock *BB, const BlockChain &Chain,
407       const BlockFilterSet *BlockFilter);
408   MachineBasicBlock *selectBestCandidateBlock(
409       const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
410   MachineBasicBlock *getFirstUnplacedBlock(
411       const BlockChain &PlacedChain,
412       MachineFunction::iterator &PrevUnplacedBlockIt,
413       const BlockFilterSet *BlockFilter);
414 
415   /// \brief Add a basic block to the work list if it is appropriate.
416   ///
417   /// If the optional parameter BlockFilter is provided, only MBB
418   /// present in the set will be added to the worklist. If nullptr
419   /// is provided, no filtering occurs.
420   void fillWorkLists(const MachineBasicBlock *MBB,
421                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
422                      const BlockFilterSet *BlockFilter);
423   void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
424                   BlockFilterSet *BlockFilter = nullptr);
425   MachineBasicBlock *findBestLoopTop(
426       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
427   MachineBasicBlock *findBestLoopExit(
428       const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
429   BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
430   void buildLoopChains(const MachineLoop &L);
431   void rotateLoop(
432       BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
433       const BlockFilterSet &LoopBlockSet);
434   void rotateLoopWithProfile(
435       BlockChain &LoopChain, const MachineLoop &L,
436       const BlockFilterSet &LoopBlockSet);
437   void buildCFGChains();
438   void optimizeBranches();
439   void alignBlocks();
440   /// Returns true if a block should be tail-duplicated to increase fallthrough
441   /// opportunities.
442   bool shouldTailDuplicate(MachineBasicBlock *BB);
443   /// Check the edge frequencies to see if tail duplication will increase
444   /// fallthroughs.
445   bool isProfitableToTailDup(
446     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
447     BranchProbability AdjustedSumProb,
448     const BlockChain &Chain, const BlockFilterSet *BlockFilter);
449   /// Check for a trellis layout.
450   bool isTrellis(const MachineBasicBlock *BB,
451                  const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
452                  const BlockChain &Chain, const BlockFilterSet *BlockFilter);
453   /// Get the best successor given a trellis layout.
454   BlockAndTailDupResult getBestTrellisSuccessor(
455       const MachineBasicBlock *BB,
456       const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
457       BranchProbability AdjustedSumProb, const BlockChain &Chain,
458       const BlockFilterSet *BlockFilter);
459   /// Get the best pair of non-conflicting edges.
460   static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
461       const MachineBasicBlock *BB,
462       SmallVector<SmallVector<WeightedEdge, 8>, 2> &Edges);
463   /// Returns true if a block can tail duplicate into all unplaced
464   /// predecessors. Filters based on loop.
465   bool canTailDuplicateUnplacedPreds(
466       const MachineBasicBlock *BB, MachineBasicBlock *Succ,
467       const BlockChain &Chain, const BlockFilterSet *BlockFilter);
468   /// Find chains of triangles to tail-duplicate where a global analysis works,
469   /// but a local analysis would not find them.
470   void precomputeTriangleChains();
471 
472 public:
473   static char ID; // Pass identification, replacement for typeid
474   MachineBlockPlacement() : MachineFunctionPass(ID) {
475     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
476   }
477 
478   bool runOnMachineFunction(MachineFunction &F) override;
479 
480   void getAnalysisUsage(AnalysisUsage &AU) const override {
481     AU.addRequired<MachineBranchProbabilityInfo>();
482     AU.addRequired<MachineBlockFrequencyInfo>();
483     if (TailDupPlacement)
484       AU.addRequired<MachinePostDominatorTree>();
485     AU.addRequired<MachineLoopInfo>();
486     AU.addRequired<TargetPassConfig>();
487     MachineFunctionPass::getAnalysisUsage(AU);
488   }
489 };
490 }
491 
492 char MachineBlockPlacement::ID = 0;
493 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
494 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
495                       "Branch Probability Basic Block Placement", false, false)
496 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
497 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
498 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
499 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
500 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
501                     "Branch Probability Basic Block Placement", false, false)
502 
503 #ifndef NDEBUG
504 /// \brief Helper to print the name of a MBB.
505 ///
506 /// Only used by debug logging.
507 static std::string getBlockName(const MachineBasicBlock *BB) {
508   std::string Result;
509   raw_string_ostream OS(Result);
510   OS << "BB#" << BB->getNumber();
511   OS << " ('" << BB->getName() << "')";
512   OS.flush();
513   return Result;
514 }
515 #endif
516 
517 /// \brief Mark a chain's successors as having one fewer preds.
518 ///
519 /// When a chain is being merged into the "placed" chain, this routine will
520 /// quickly walk the successors of each block in the chain and mark them as
521 /// having one fewer active predecessor. It also adds any successors of this
522 /// chain which reach the zero-predecessor state to the appropriate worklist.
523 void MachineBlockPlacement::markChainSuccessors(
524     const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
525     const BlockFilterSet *BlockFilter) {
526   // Walk all the blocks in this chain, marking their successors as having
527   // a predecessor placed.
528   for (MachineBasicBlock *MBB : Chain) {
529     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
530   }
531 }
532 
533 /// \brief Mark a single block's successors as having one fewer preds.
534 ///
535 /// Under normal circumstances, this is only called by markChainSuccessors,
536 /// but if a block that was to be placed is completely tail-duplicated away,
537 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
538 /// for just that block.
539 void MachineBlockPlacement::markBlockSuccessors(
540     const BlockChain &Chain, const MachineBasicBlock *MBB,
541     const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
542   // Add any successors for which this is the only un-placed in-loop
543   // predecessor to the worklist as a viable candidate for CFG-neutral
544   // placement. No subsequent placement of this block will violate the CFG
545   // shape, so we get to use heuristics to choose a favorable placement.
546   for (MachineBasicBlock *Succ : MBB->successors()) {
547     if (BlockFilter && !BlockFilter->count(Succ))
548       continue;
549     BlockChain &SuccChain = *BlockToChain[Succ];
550     // Disregard edges within a fixed chain, or edges to the loop header.
551     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
552       continue;
553 
554     // This is a cross-chain edge that is within the loop, so decrement the
555     // loop predecessor count of the destination chain.
556     if (SuccChain.UnscheduledPredecessors == 0 ||
557         --SuccChain.UnscheduledPredecessors > 0)
558       continue;
559 
560     auto *NewBB = *SuccChain.begin();
561     if (NewBB->isEHPad())
562       EHPadWorkList.push_back(NewBB);
563     else
564       BlockWorkList.push_back(NewBB);
565   }
566 }
567 
568 /// This helper function collects the set of successors of block
569 /// \p BB that are allowed to be its layout successors, and return
570 /// the total branch probability of edges from \p BB to those
571 /// blocks.
572 BranchProbability MachineBlockPlacement::collectViableSuccessors(
573     const MachineBasicBlock *BB, const BlockChain &Chain,
574     const BlockFilterSet *BlockFilter,
575     SmallVector<MachineBasicBlock *, 4> &Successors) {
576   // Adjust edge probabilities by excluding edges pointing to blocks that is
577   // either not in BlockFilter or is already in the current chain. Consider the
578   // following CFG:
579   //
580   //     --->A
581   //     |  / \
582   //     | B   C
583   //     |  \ / \
584   //     ----D   E
585   //
586   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
587   // A->C is chosen as a fall-through, D won't be selected as a successor of C
588   // due to CFG constraint (the probability of C->D is not greater than
589   // HotProb to break top-order). If we exclude E that is not in BlockFilter
590   // when calculating the  probability of C->D, D will be selected and we
591   // will get A C D B as the layout of this loop.
592   auto AdjustedSumProb = BranchProbability::getOne();
593   for (MachineBasicBlock *Succ : BB->successors()) {
594     bool SkipSucc = false;
595     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
596       SkipSucc = true;
597     } else {
598       BlockChain *SuccChain = BlockToChain[Succ];
599       if (SuccChain == &Chain) {
600         SkipSucc = true;
601       } else if (Succ != *SuccChain->begin()) {
602         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
603         continue;
604       }
605     }
606     if (SkipSucc)
607       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
608     else
609       Successors.push_back(Succ);
610   }
611 
612   return AdjustedSumProb;
613 }
614 
615 /// The helper function returns the branch probability that is adjusted
616 /// or normalized over the new total \p AdjustedSumProb.
617 static BranchProbability
618 getAdjustedProbability(BranchProbability OrigProb,
619                        BranchProbability AdjustedSumProb) {
620   BranchProbability SuccProb;
621   uint32_t SuccProbN = OrigProb.getNumerator();
622   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
623   if (SuccProbN >= SuccProbD)
624     SuccProb = BranchProbability::getOne();
625   else
626     SuccProb = BranchProbability(SuccProbN, SuccProbD);
627 
628   return SuccProb;
629 }
630 
631 /// Check if \p BB has exactly the successors in \p Successors.
632 static bool
633 hasSameSuccessors(MachineBasicBlock &BB,
634                   SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
635   if (BB.succ_size() != Successors.size())
636     return false;
637   // We don't want to count self-loops
638   if (Successors.count(&BB))
639     return false;
640   for (MachineBasicBlock *Succ : BB.successors())
641     if (!Successors.count(Succ))
642       return false;
643   return true;
644 }
645 
646 /// Check if a block should be tail duplicated to increase fallthrough
647 /// opportunities.
648 /// \p BB Block to check.
649 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
650   // Blocks with single successors don't create additional fallthrough
651   // opportunities. Don't duplicate them. TODO: When conditional exits are
652   // analyzable, allow them to be duplicated.
653   bool IsSimple = TailDup.isSimpleBB(BB);
654 
655   if (BB->succ_size() == 1)
656     return false;
657   return TailDup.shouldTailDuplicate(IsSimple, *BB);
658 }
659 
660 /// Compare 2 BlockFrequency's with a small penalty for \p A.
661 /// In order to be conservative, we apply a X% penalty to account for
662 /// increased icache pressure and static heuristics. For small frequencies
663 /// we use only the numerators to improve accuracy. For simplicity, we assume the
664 /// penalty is less than 100%
665 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
666 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
667                             uint64_t EntryFreq) {
668   BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
669   BlockFrequency Gain = A - B;
670   return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
671 }
672 
673 /// Check the edge frequencies to see if tail duplication will increase
674 /// fallthroughs. It only makes sense to call this function when
675 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
676 /// always locally profitable if we would have picked \p Succ without
677 /// considering duplication.
678 bool MachineBlockPlacement::isProfitableToTailDup(
679     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
680     BranchProbability QProb,
681     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
682   // We need to do a probability calculation to make sure this is profitable.
683   // First: does succ have a successor that post-dominates? This affects the
684   // calculation. The 2 relevant cases are:
685   //    BB         BB
686   //    | \Qout    | \Qout
687   //   P|  C       |P C
688   //    =   C'     =   C'
689   //    |  /Qin    |  /Qin
690   //    | /        | /
691   //    Succ       Succ
692   //    / \        | \  V
693   //  U/   =V      |U \
694   //  /     \      =   D
695   //  D      E     |  /
696   //               | /
697   //               |/
698   //               PDom
699   //  '=' : Branch taken for that CFG edge
700   // In the second case, Placing Succ while duplicating it into C prevents the
701   // fallthrough of Succ into either D or PDom, because they now have C as an
702   // unplaced predecessor
703 
704   // Start by figuring out which case we fall into
705   MachineBasicBlock *PDom = nullptr;
706   SmallVector<MachineBasicBlock *, 4> SuccSuccs;
707   // Only scan the relevant successors
708   auto AdjustedSuccSumProb =
709       collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
710   BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
711   auto BBFreq = MBFI->getBlockFreq(BB);
712   auto SuccFreq = MBFI->getBlockFreq(Succ);
713   BlockFrequency P = BBFreq * PProb;
714   BlockFrequency Qout = BBFreq * QProb;
715   uint64_t EntryFreq = MBFI->getEntryFreq();
716   // If there are no more successors, it is profitable to copy, as it strictly
717   // increases fallthrough.
718   if (SuccSuccs.size() == 0)
719     return greaterWithBias(P, Qout, EntryFreq);
720 
721   auto BestSuccSucc = BranchProbability::getZero();
722   // Find the PDom or the best Succ if no PDom exists.
723   for (MachineBasicBlock *SuccSucc : SuccSuccs) {
724     auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
725     if (Prob > BestSuccSucc)
726       BestSuccSucc = Prob;
727     if (PDom == nullptr)
728       if (MPDT->dominates(SuccSucc, Succ)) {
729         PDom = SuccSucc;
730         break;
731       }
732   }
733   // For the comparisons, we need to know Succ's best incoming edge that isn't
734   // from BB.
735   auto SuccBestPred = BlockFrequency(0);
736   for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
737     if (SuccPred == Succ || SuccPred == BB
738         || BlockToChain[SuccPred] == &Chain
739         || (BlockFilter && !BlockFilter->count(SuccPred)))
740       continue;
741     auto Freq = MBFI->getBlockFreq(SuccPred)
742         * MBPI->getEdgeProbability(SuccPred, Succ);
743     if (Freq > SuccBestPred)
744       SuccBestPred = Freq;
745   }
746   // Qin is Succ's best unplaced incoming edge that isn't BB
747   BlockFrequency Qin = SuccBestPred;
748   // If it doesn't have a post-dominating successor, here is the calculation:
749   //    BB        BB
750   //    | \Qout   |  \
751   //   P|  C      |   =
752   //    =   C'    |    C
753   //    |  /Qin   |     |
754   //    | /       |     C' (+Succ)
755   //    Succ      Succ /|
756   //    / \       |  \/ |
757   //  U/   =V     |  == |
758   //  /     \     | /  \|
759   //  D      E    D     E
760   //  '=' : Branch taken for that CFG edge
761   //  Cost in the first case is: P + V
762   //  For this calculation, we always assume P > Qout. If Qout > P
763   //  The result of this function will be ignored at the caller.
764   //  Cost in the second case is: Qout + Qin * U + P * V
765 
766   if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
767     BranchProbability UProb = BestSuccSucc;
768     BranchProbability VProb = AdjustedSuccSumProb - UProb;
769     BlockFrequency V = SuccFreq * VProb;
770     BlockFrequency QinU = Qin * UProb;
771     BlockFrequency BaseCost = P + V;
772     BlockFrequency DupCost = Qout + QinU + P * VProb;
773     return greaterWithBias(BaseCost, DupCost, EntryFreq);
774   }
775   BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
776   BranchProbability VProb = AdjustedSuccSumProb - UProb;
777   BlockFrequency U = SuccFreq * UProb;
778   BlockFrequency V = SuccFreq * VProb;
779   // If there is a post-dominating successor, here is the calculation:
780   // BB         BB                 BB          BB
781   // | \Qout    |  \               | \Qout     |  \
782   // |P C       |   =              |P C        |   =
783   // =   C'     |P   C             =   C'      |P   C
784   // |  /Qin    |     |            |  /Qin     |     |
785   // | /        |     C' (+Succ)   | /         |     C' (+Succ)
786   // Succ       Succ /|            Succ        Succ /|
787   // | \  V     |  \/ |            | \  V      |  \/ |
788   // |U \       |U /\ |            |U =        |U /\ |
789   // =   D      = =  \=            |   D       | =  =|
790   // |  /       |/    D            |  /        |/    D
791   // | /        |    /             | =         |    /
792   // |/         |   /              |/          |   =
793   // Dom        Dom                Dom         Dom
794   //  '=' : Branch taken for that CFG edge
795   // The cost for taken branches in the first case is P + U
796   // The cost in the second case (assuming independence), given the layout:
797   // BB, Succ, (C+Succ), D, Dom
798   // is Qout + P * V + Qin * U
799   // compare P + U vs Qout + P * U + Qin.
800   //
801   // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
802   //
803   // For the 3rd case, the cost is P + 2 * V
804   // For the 4th case, the cost is Qout + Qin * U + P * V + V
805   // We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V
806   if (UProb > AdjustedSuccSumProb / 2 &&
807       !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
808                                   Chain, BlockFilter))
809     // Cases 3 & 4
810     return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb),
811                            EntryFreq);
812   // Cases 1 & 2
813   return greaterWithBias(
814       (P + U), (Qout + Qin * AdjustedSuccSumProb + P * UProb), EntryFreq);
815 }
816 
817 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
818 /// successors form the lower part of a trellis. A successor set S forms the
819 /// lower part of a trellis if all of the predecessors of S are either in S or
820 /// have all of S as successors. We ignore trellises where BB doesn't have 2
821 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
822 /// are very uncommon and complex to compute optimally. Allowing edges within S
823 /// is not strictly a trellis, but the same algorithm works, so we allow it.
824 bool MachineBlockPlacement::isTrellis(
825     const MachineBasicBlock *BB,
826     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
827     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
828   // Technically BB could form a trellis with branching factor higher than 2.
829   // But that's extremely uncommon.
830   if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
831     return false;
832 
833   SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
834                                                        BB->succ_end());
835   // To avoid reviewing the same predecessors twice.
836   SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
837 
838   for (MachineBasicBlock *Succ : ViableSuccs) {
839     int PredCount = 0;
840     for (auto SuccPred : Succ->predecessors()) {
841       // Allow triangle successors, but don't count them.
842       if (Successors.count(SuccPred))
843         continue;
844       const BlockChain *PredChain = BlockToChain[SuccPred];
845       if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
846           PredChain == &Chain || PredChain == BlockToChain[Succ])
847         continue;
848       ++PredCount;
849       // Perform the successor check only once.
850       if (!SeenPreds.insert(SuccPred).second)
851         continue;
852       if (!hasSameSuccessors(*SuccPred, Successors))
853         return false;
854     }
855     // If one of the successors has only BB as a predecessor, it is not a
856     // trellis.
857     if (PredCount < 1)
858       return false;
859   }
860   return true;
861 }
862 
863 /// Pick the highest total weight pair of edges that can both be laid out.
864 /// The edges in \p Edges[0] are assumed to have a different destination than
865 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
866 /// the individual highest weight edges to the 2 different destinations, or in
867 /// case of a conflict, one of them should be replaced with a 2nd best edge.
868 std::pair<MachineBlockPlacement::WeightedEdge,
869           MachineBlockPlacement::WeightedEdge>
870 MachineBlockPlacement::getBestNonConflictingEdges(
871     const MachineBasicBlock *BB,
872     SmallVector<SmallVector<MachineBlockPlacement::WeightedEdge, 8>, 2>
873         &Edges) {
874   // Sort the edges, and then for each successor, find the best incoming
875   // predecessor. If the best incoming predecessors aren't the same,
876   // then that is clearly the best layout. If there is a conflict, one of the
877   // successors will have to fallthrough from the second best predecessor. We
878   // compare which combination is better overall.
879 
880   // Sort for highest frequency.
881   auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
882 
883   std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp);
884   std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp);
885   auto BestA = Edges[0].begin();
886   auto BestB = Edges[1].begin();
887   // Arrange for the correct answer to be in BestA and BestB
888   // If the 2 best edges don't conflict, the answer is already there.
889   if (BestA->Src == BestB->Src) {
890     // Compare the total fallthrough of (Best + Second Best) for both pairs
891     auto SecondBestA = std::next(BestA);
892     auto SecondBestB = std::next(BestB);
893     BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
894     BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
895     if (BestAScore < BestBScore)
896       BestA = SecondBestA;
897     else
898       BestB = SecondBestB;
899   }
900   // Arrange for the BB edge to be in BestA if it exists.
901   if (BestB->Src == BB)
902     std::swap(BestA, BestB);
903   return std::make_pair(*BestA, *BestB);
904 }
905 
906 /// Get the best successor from \p BB based on \p BB being part of a trellis.
907 /// We only handle trellises with 2 successors, so the algorithm is
908 /// straightforward: Find the best pair of edges that don't conflict. We find
909 /// the best incoming edge for each successor in the trellis. If those conflict,
910 /// we consider which of them should be replaced with the second best.
911 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
912 /// comes from \p BB, it will be in \p BestEdges[0]
913 MachineBlockPlacement::BlockAndTailDupResult
914 MachineBlockPlacement::getBestTrellisSuccessor(
915     const MachineBasicBlock *BB,
916     const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
917     BranchProbability AdjustedSumProb, const BlockChain &Chain,
918     const BlockFilterSet *BlockFilter) {
919 
920   BlockAndTailDupResult Result = {nullptr, false};
921   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
922                                                        BB->succ_end());
923 
924   // We assume size 2 because it's common. For general n, we would have to do
925   // the Hungarian algorithm, but it's not worth the complexity because more
926   // than 2 successors is fairly uncommon, and a trellis even more so.
927   if (Successors.size() != 2 || ViableSuccs.size() != 2)
928     return Result;
929 
930   // Collect the edge frequencies of all edges that form the trellis.
931   SmallVector<SmallVector<WeightedEdge, 8>, 2> Edges(2);
932   int SuccIndex = 0;
933   for (auto Succ : ViableSuccs) {
934     for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
935       // Skip any placed predecessors that are not BB
936       if (SuccPred != BB)
937         if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
938             BlockToChain[SuccPred] == &Chain ||
939             BlockToChain[SuccPred] == BlockToChain[Succ])
940           continue;
941       BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
942                                 MBPI->getEdgeProbability(SuccPred, Succ);
943       Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
944     }
945     ++SuccIndex;
946   }
947 
948   // Pick the best combination of 2 edges from all the edges in the trellis.
949   WeightedEdge BestA, BestB;
950   std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
951 
952   if (BestA.Src != BB) {
953     // If we have a trellis, and BB doesn't have the best fallthrough edges,
954     // we shouldn't choose any successor. We've already looked and there's a
955     // better fallthrough edge for all the successors.
956     DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
957     return Result;
958   }
959 
960   // Did we pick the triangle edge? If tail-duplication is profitable, do
961   // that instead. Otherwise merge the triangle edge now while we know it is
962   // optimal.
963   if (BestA.Dest == BestB.Src) {
964     // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
965     // would be better.
966     MachineBasicBlock *Succ1 = BestA.Dest;
967     MachineBasicBlock *Succ2 = BestB.Dest;
968     // Check to see if tail-duplication would be profitable.
969     if (TailDupPlacement && shouldTailDuplicate(Succ2) &&
970         canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
971         isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
972                               Chain, BlockFilter)) {
973       DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
974                 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
975             dbgs() << "    Selected: " << getBlockName(Succ2)
976                    << ", probability: " << Succ2Prob << " (Tail Duplicate)\n");
977       Result.BB = Succ2;
978       Result.ShouldTailDup = true;
979       return Result;
980     }
981   }
982   // We have already computed the optimal edge for the other side of the
983   // trellis.
984   ComputedEdges[BestB.Src] = { BestB.Dest, false };
985 
986   auto TrellisSucc = BestA.Dest;
987   DEBUG(BranchProbability SuccProb = getAdjustedProbability(
988             MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
989         dbgs() << "    Selected: " << getBlockName(TrellisSucc)
990                << ", probability: " << SuccProb << " (Trellis)\n");
991   Result.BB = TrellisSucc;
992   return Result;
993 }
994 
995 /// When the option TailDupPlacement is on, this method checks if the
996 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
997 /// into all of its unplaced, unfiltered predecessors, that are not BB.
998 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
999     const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1000     const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1001   if (!shouldTailDuplicate(Succ))
1002     return false;
1003 
1004   // For CFG checking.
1005   SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1006                                                        BB->succ_end());
1007   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1008     // Make sure all unplaced and unfiltered predecessors can be
1009     // tail-duplicated into.
1010     // Skip any blocks that are already placed or not in this loop.
1011     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1012         || BlockToChain[Pred] == &Chain)
1013       continue;
1014     if (!TailDup.canTailDuplicate(Succ, Pred)) {
1015       if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1016         // This will result in a trellis after tail duplication, so we don't
1017         // need to copy Succ into this predecessor. In the presence
1018         // of a trellis tail duplication can continue to be profitable.
1019         // For example:
1020         // A            A
1021         // |\           |\
1022         // | \          | \
1023         // |  C         |  C+BB
1024         // | /          |  |
1025         // |/           |  |
1026         // BB    =>     BB |
1027         // |\           |\/|
1028         // | \          |/\|
1029         // |  D         |  D
1030         // | /          | /
1031         // |/           |/
1032         // Succ         Succ
1033         //
1034         // After BB was duplicated into C, the layout looks like the one on the
1035         // right. BB and C now have the same successors. When considering
1036         // whether Succ can be duplicated into all its unplaced predecessors, we
1037         // ignore C.
1038         // We can do this because C already has a profitable fallthrough, namely
1039         // D. TODO(iteratee): ignore sufficiently cold predecessors for
1040         // duplication and for this test.
1041         //
1042         // This allows trellises to be laid out in 2 separate chains
1043         // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1044         // because it allows the creation of 2 fallthrough paths with links
1045         // between them, and we correctly identify the best layout for these
1046         // CFGs. We want to extend trellises that the user created in addition
1047         // to trellises created by tail-duplication, so we just look for the
1048         // CFG.
1049         continue;
1050       return false;
1051     }
1052   }
1053   return true;
1054 }
1055 
1056 /// Find chains of triangles where we believe it would be profitable to
1057 /// tail-duplicate them all, but a local analysis would not find them.
1058 /// There are 3 ways this can be profitable:
1059 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1060 ///    longer chains)
1061 /// 2) The chains are statically correlated. Branch probabilities have a very
1062 ///    U-shaped distribution.
1063 ///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1064 ///    If the branches in a chain are likely to be from the same side of the
1065 ///    distribution as their predecessor, but are independent at runtime, this
1066 ///    transformation is profitable. (Because the cost of being wrong is a small
1067 ///    fixed cost, unlike the standard triangle layout where the cost of being
1068 ///    wrong scales with the # of triangles.)
1069 /// 3) The chains are dynamically correlated. If the probability that a previous
1070 ///    branch was taken positively influences whether the next branch will be
1071 ///    taken
1072 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1073 void MachineBlockPlacement::precomputeTriangleChains() {
1074   struct TriangleChain {
1075     unsigned Count;
1076     std::forward_list<MachineBasicBlock*> Edges;
1077     TriangleChain(MachineBasicBlock* src, MachineBasicBlock *dst) {
1078       Edges.push_front(src);
1079       Edges.push_front(dst);
1080       Count = 1;
1081     }
1082 
1083     void append(MachineBasicBlock *dst) {
1084       assert(!Edges.empty() && Edges.front()->isSuccessor(dst) &&
1085              "Attempting to append a block that is not a successor.");
1086       Edges.push_front(dst);
1087       ++Count;
1088     }
1089 
1090     MachineBasicBlock *getKey() {
1091       return Edges.front();
1092     }
1093   };
1094 
1095   if (TriangleChainCount == 0)
1096     return;
1097 
1098   DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1099   // Map from last block to the chain that contains it. This allows us to extend
1100   // chains as we find new triangles.
1101   DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1102   for (MachineBasicBlock &BB : *F) {
1103     // If BB doesn't have 2 successors, it doesn't start a triangle.
1104     if (BB.succ_size() != 2)
1105       continue;
1106     MachineBasicBlock *PDom = nullptr;
1107     for (MachineBasicBlock *Succ : BB.successors()) {
1108       if (!MPDT->dominates(Succ, &BB))
1109         continue;
1110       PDom = Succ;
1111       break;
1112     }
1113     // If BB doesn't have a post-dominating successor, it doesn't form a
1114     // triangle.
1115     if (PDom == nullptr)
1116       continue;
1117     // If PDom has a hint that it is low probability, skip this triangle.
1118     if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1119       continue;
1120     // If PDom isn't eligible for duplication, this isn't the kind of triangle
1121     // we're looking for.
1122     if (!shouldTailDuplicate(PDom))
1123       continue;
1124     bool CanTailDuplicate = true;
1125     // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1126     // isn't the kind of triangle we're looking for.
1127     for (MachineBasicBlock* Pred : PDom->predecessors()) {
1128       if (Pred == &BB)
1129         continue;
1130       if (!TailDup.canTailDuplicate(PDom, Pred)) {
1131         CanTailDuplicate = false;
1132         break;
1133       }
1134     }
1135     // If we can't tail-duplicate PDom to its predecessors, then skip this
1136     // triangle.
1137     if (!CanTailDuplicate)
1138       continue;
1139 
1140     // Now we have an interesting triangle. Insert it if it's not part of an
1141     // existing chain
1142     // Note: This cannot be replaced with a call insert() or emplace() because
1143     // the find key is BB, but the insert/emplace key is PDom.
1144     auto Found = TriangleChainMap.find(&BB);
1145     // If it is, remove the chain from the map, grow it, and put it back in the
1146     // map with the end as the new key.
1147     if (Found != TriangleChainMap.end()) {
1148       TriangleChain Chain = std::move(Found->second);
1149       TriangleChainMap.erase(Found);
1150       Chain.append(PDom);
1151       TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1152     } else {
1153       auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1154       assert (InsertResult.second && "Block seen twice.");
1155       (void) InsertResult;
1156     }
1157   }
1158 
1159   for (auto &ChainPair : TriangleChainMap) {
1160     TriangleChain &Chain = ChainPair.second;
1161     // Benchmarking has shown that due to branch correlation duplicating 2 or
1162     // more triangles is profitable, despite the calculations assuming
1163     // independence.
1164     if (Chain.Count < TriangleChainCount)
1165       continue;
1166     MachineBasicBlock *dst = Chain.Edges.front();
1167     Chain.Edges.pop_front();
1168     for (MachineBasicBlock *src : Chain.Edges) {
1169       DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" <<
1170             getBlockName(dst) << " as pre-computed based on triangles.\n");
1171       ComputedEdges[src] = { dst, true };
1172       dst = src;
1173     }
1174   }
1175 }
1176 
1177 // When profile is not present, return the StaticLikelyProb.
1178 // When profile is available, we need to handle the triangle-shape CFG.
1179 static BranchProbability getLayoutSuccessorProbThreshold(
1180       const MachineBasicBlock *BB) {
1181   if (!BB->getParent()->getFunction()->getEntryCount())
1182     return BranchProbability(StaticLikelyProb, 100);
1183   if (BB->succ_size() == 2) {
1184     const MachineBasicBlock *Succ1 = *BB->succ_begin();
1185     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1186     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1187       /* See case 1 below for the cost analysis. For BB->Succ to
1188        * be taken with smaller cost, the following needs to hold:
1189        *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1190        *   So the threshold T in the calculation below
1191        *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1192        *   So T / (1 - T) = 2, Yielding T = 2/3
1193        * Also adding user specified branch bias, we have
1194        *   T = (2/3)*(ProfileLikelyProb/50)
1195        *     = (2*ProfileLikelyProb)/150)
1196        */
1197       return BranchProbability(2 * ProfileLikelyProb, 150);
1198     }
1199   }
1200   return BranchProbability(ProfileLikelyProb, 100);
1201 }
1202 
1203 /// Checks to see if the layout candidate block \p Succ has a better layout
1204 /// predecessor than \c BB. If yes, returns true.
1205 /// \p SuccProb: The probability adjusted for only remaining blocks.
1206 ///   Only used for logging
1207 /// \p RealSuccProb: The un-adjusted probability.
1208 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1209 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1210 ///    considered
1211 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1212     const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1213     const BlockChain &SuccChain, BranchProbability SuccProb,
1214     BranchProbability RealSuccProb, const BlockChain &Chain,
1215     const BlockFilterSet *BlockFilter) {
1216 
1217   // There isn't a better layout when there are no unscheduled predecessors.
1218   if (SuccChain.UnscheduledPredecessors == 0)
1219     return false;
1220 
1221   // There are two basic scenarios here:
1222   // -------------------------------------
1223   // Case 1: triangular shape CFG (if-then):
1224   //     BB
1225   //     | \
1226   //     |  \
1227   //     |   Pred
1228   //     |   /
1229   //     Succ
1230   // In this case, we are evaluating whether to select edge -> Succ, e.g.
1231   // set Succ as the layout successor of BB. Picking Succ as BB's
1232   // successor breaks the CFG constraints (FIXME: define these constraints).
1233   // With this layout, Pred BB
1234   // is forced to be outlined, so the overall cost will be cost of the
1235   // branch taken from BB to Pred, plus the cost of back taken branch
1236   // from Pred to Succ, as well as the additional cost associated
1237   // with the needed unconditional jump instruction from Pred To Succ.
1238 
1239   // The cost of the topological order layout is the taken branch cost
1240   // from BB to Succ, so to make BB->Succ a viable candidate, the following
1241   // must hold:
1242   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1243   //      < freq(BB->Succ) *  taken_branch_cost.
1244   // Ignoring unconditional jump cost, we get
1245   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1246   //    prob(BB->Succ) > 2 * prob(BB->Pred)
1247   //
1248   // When real profile data is available, we can precisely compute the
1249   // probability threshold that is needed for edge BB->Succ to be considered.
1250   // Without profile data, the heuristic requires the branch bias to be
1251   // a lot larger to make sure the signal is very strong (e.g. 80% default).
1252   // -----------------------------------------------------------------
1253   // Case 2: diamond like CFG (if-then-else):
1254   //     S
1255   //    / \
1256   //   |   \
1257   //  BB    Pred
1258   //   \    /
1259   //    Succ
1260   //    ..
1261   //
1262   // The current block is BB and edge BB->Succ is now being evaluated.
1263   // Note that edge S->BB was previously already selected because
1264   // prob(S->BB) > prob(S->Pred).
1265   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1266   // choose Pred, we will have a topological ordering as shown on the left
1267   // in the picture below. If we choose Succ, we have the solution as shown
1268   // on the right:
1269   //
1270   //   topo-order:
1271   //
1272   //       S-----                             ---S
1273   //       |    |                             |  |
1274   //    ---BB   |                             |  BB
1275   //    |       |                             |  |
1276   //    |  pred--                             |  Succ--
1277   //    |  |                                  |       |
1278   //    ---succ                               ---pred--
1279   //
1280   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1281   //      = freq(S->Pred) + freq(S->BB)
1282   //
1283   // If we have profile data (i.e, branch probabilities can be trusted), the
1284   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1285   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1286   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1287   // means the cost of topological order is greater.
1288   // When profile data is not available, however, we need to be more
1289   // conservative. If the branch prediction is wrong, breaking the topo-order
1290   // will actually yield a layout with large cost. For this reason, we need
1291   // strong biased branch at block S with Prob(S->BB) in order to select
1292   // BB->Succ. This is equivalent to looking the CFG backward with backward
1293   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1294   // profile data).
1295   // --------------------------------------------------------------------------
1296   // Case 3: forked diamond
1297   //       S
1298   //      / \
1299   //     /   \
1300   //   BB    Pred
1301   //   | \   / |
1302   //   |  \ /  |
1303   //   |   X   |
1304   //   |  / \  |
1305   //   | /   \ |
1306   //   S1     S2
1307   //
1308   // The current block is BB and edge BB->S1 is now being evaluated.
1309   // As above S->BB was already selected because
1310   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1311   //
1312   // topo-order:
1313   //
1314   //     S-------|                     ---S
1315   //     |       |                     |  |
1316   //  ---BB      |                     |  BB
1317   //  |          |                     |  |
1318   //  |  Pred----|                     |  S1----
1319   //  |  |                             |       |
1320   //  --(S1 or S2)                     ---Pred--
1321   //                                        |
1322   //                                       S2
1323   //
1324   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1325   //    + min(freq(Pred->S1), freq(Pred->S2))
1326   // Non-topo-order cost:
1327   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1328   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1329   // is 0. Then the non topo layout is better when
1330   // freq(S->Pred) < freq(BB->S1).
1331   // This is exactly what is checked below.
1332   // Note there are other shapes that apply (Pred may not be a single block,
1333   // but they all fit this general pattern.)
1334   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1335 
1336   // Make sure that a hot successor doesn't have a globally more
1337   // important predecessor.
1338   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1339   bool BadCFGConflict = false;
1340 
1341   for (MachineBasicBlock *Pred : Succ->predecessors()) {
1342     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1343         (BlockFilter && !BlockFilter->count(Pred)) ||
1344         BlockToChain[Pred] == &Chain ||
1345         // This check is redundant except for look ahead. This function is
1346         // called for lookahead by isProfitableToTailDup when BB hasn't been
1347         // placed yet.
1348         (Pred == BB))
1349       continue;
1350     // Do backward checking.
1351     // For all cases above, we need a backward checking to filter out edges that
1352     // are not 'strongly' biased.
1353     // BB  Pred
1354     //  \ /
1355     //  Succ
1356     // We select edge BB->Succ if
1357     //      freq(BB->Succ) > freq(Succ) * HotProb
1358     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1359     //      HotProb
1360     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1361     // Case 1 is covered too, because the first equation reduces to:
1362     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1363     BlockFrequency PredEdgeFreq =
1364         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1365     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1366       BadCFGConflict = true;
1367       break;
1368     }
1369   }
1370 
1371   if (BadCFGConflict) {
1372     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
1373                  << " (prob) (non-cold CFG conflict)\n");
1374     return true;
1375   }
1376 
1377   return false;
1378 }
1379 
1380 /// \brief Select the best successor for a block.
1381 ///
1382 /// This looks across all successors of a particular block and attempts to
1383 /// select the "best" one to be the layout successor. It only considers direct
1384 /// successors which also pass the block filter. It will attempt to avoid
1385 /// breaking CFG structure, but cave and break such structures in the case of
1386 /// very hot successor edges.
1387 ///
1388 /// \returns The best successor block found, or null if none are viable, along
1389 /// with a boolean indicating if tail duplication is necessary.
1390 MachineBlockPlacement::BlockAndTailDupResult
1391 MachineBlockPlacement::selectBestSuccessor(
1392     const MachineBasicBlock *BB, const BlockChain &Chain,
1393     const BlockFilterSet *BlockFilter) {
1394   const BranchProbability HotProb(StaticLikelyProb, 100);
1395 
1396   BlockAndTailDupResult BestSucc = { nullptr, false };
1397   auto BestProb = BranchProbability::getZero();
1398 
1399   SmallVector<MachineBasicBlock *, 4> Successors;
1400   auto AdjustedSumProb =
1401       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1402 
1403   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
1404 
1405   // if we already precomputed the best successor for BB, return that if still
1406   // applicable.
1407   auto FoundEdge = ComputedEdges.find(BB);
1408   if (FoundEdge != ComputedEdges.end()) {
1409     MachineBasicBlock *Succ = FoundEdge->second.BB;
1410     ComputedEdges.erase(FoundEdge);
1411     BlockChain *SuccChain = BlockToChain[Succ];
1412     if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1413         SuccChain != &Chain && Succ == *SuccChain->begin())
1414       return FoundEdge->second;
1415   }
1416 
1417   // if BB is part of a trellis, Use the trellis to determine the optimal
1418   // fallthrough edges
1419   if (isTrellis(BB, Successors, Chain, BlockFilter))
1420     return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1421                                    BlockFilter);
1422 
1423   // For blocks with CFG violations, we may be able to lay them out anyway with
1424   // tail-duplication. We keep this vector so we can perform the probability
1425   // calculations the minimum number of times.
1426   SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1427       DupCandidates;
1428   for (MachineBasicBlock *Succ : Successors) {
1429     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1430     BranchProbability SuccProb =
1431         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1432 
1433     BlockChain &SuccChain = *BlockToChain[Succ];
1434     // Skip the edge \c BB->Succ if block \c Succ has a better layout
1435     // predecessor that yields lower global cost.
1436     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1437                                    Chain, BlockFilter)) {
1438       // If tail duplication would make Succ profitable, place it.
1439       if (TailDupPlacement && shouldTailDuplicate(Succ))
1440         DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1441       continue;
1442     }
1443 
1444     DEBUG(
1445         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1446                << SuccProb
1447                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1448                << "\n");
1449 
1450     if (BestSucc.BB && BestProb >= SuccProb) {
1451       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1452       continue;
1453     }
1454 
1455     DEBUG(dbgs() << "    Setting it as best candidate\n");
1456     BestSucc.BB = Succ;
1457     BestProb = SuccProb;
1458   }
1459   // Handle the tail duplication candidates in order of decreasing probability.
1460   // Stop at the first one that is profitable. Also stop if they are less
1461   // profitable than BestSucc. Position is important because we preserve it and
1462   // prefer first best match. Here we aren't comparing in order, so we capture
1463   // the position instead.
1464   if (DupCandidates.size() != 0) {
1465     auto cmp =
1466         [](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
1467            const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
1468           return std::get<0>(a) > std::get<0>(b);
1469         };
1470     std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
1471   }
1472   for(auto &Tup : DupCandidates) {
1473     BranchProbability DupProb;
1474     MachineBasicBlock *Succ;
1475     std::tie(DupProb, Succ) = Tup;
1476     if (DupProb < BestProb)
1477       break;
1478     if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1479         // If tail duplication gives us fallthrough when we otherwise wouldn't
1480         // have it, that is a strict gain.
1481         && (BestSucc.BB == nullptr
1482             || isProfitableToTailDup(BB, Succ, BestProb, Chain,
1483                                      BlockFilter))) {
1484       DEBUG(
1485           dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
1486                  << DupProb
1487                  << " (Tail Duplicate)\n");
1488       BestSucc.BB = Succ;
1489       BestSucc.ShouldTailDup = true;
1490       break;
1491     }
1492   }
1493 
1494   if (BestSucc.BB)
1495     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1496 
1497   return BestSucc;
1498 }
1499 
1500 /// \brief Select the best block from a worklist.
1501 ///
1502 /// This looks through the provided worklist as a list of candidate basic
1503 /// blocks and select the most profitable one to place. The definition of
1504 /// profitable only really makes sense in the context of a loop. This returns
1505 /// the most frequently visited block in the worklist, which in the case of
1506 /// a loop, is the one most desirable to be physically close to the rest of the
1507 /// loop body in order to improve i-cache behavior.
1508 ///
1509 /// \returns The best block found, or null if none are viable.
1510 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1511     const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1512   // Once we need to walk the worklist looking for a candidate, cleanup the
1513   // worklist of already placed entries.
1514   // FIXME: If this shows up on profiles, it could be folded (at the cost of
1515   // some code complexity) into the loop below.
1516   WorkList.erase(remove_if(WorkList,
1517                            [&](MachineBasicBlock *BB) {
1518                              return BlockToChain.lookup(BB) == &Chain;
1519                            }),
1520                  WorkList.end());
1521 
1522   if (WorkList.empty())
1523     return nullptr;
1524 
1525   bool IsEHPad = WorkList[0]->isEHPad();
1526 
1527   MachineBasicBlock *BestBlock = nullptr;
1528   BlockFrequency BestFreq;
1529   for (MachineBasicBlock *MBB : WorkList) {
1530     assert(MBB->isEHPad() == IsEHPad);
1531 
1532     BlockChain &SuccChain = *BlockToChain[MBB];
1533     if (&SuccChain == &Chain)
1534       continue;
1535 
1536     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
1537 
1538     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1539     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1540           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1541 
1542     // For ehpad, we layout the least probable first as to avoid jumping back
1543     // from least probable landingpads to more probable ones.
1544     //
1545     // FIXME: Using probability is probably (!) not the best way to achieve
1546     // this. We should probably have a more principled approach to layout
1547     // cleanup code.
1548     //
1549     // The goal is to get:
1550     //
1551     //                 +--------------------------+
1552     //                 |                          V
1553     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1554     //
1555     // Rather than:
1556     //
1557     //                 +-------------------------------------+
1558     //                 V                                     |
1559     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1560     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1561       continue;
1562 
1563     BestBlock = MBB;
1564     BestFreq = CandidateFreq;
1565   }
1566 
1567   return BestBlock;
1568 }
1569 
1570 /// \brief Retrieve the first unplaced basic block.
1571 ///
1572 /// This routine is called when we are unable to use the CFG to walk through
1573 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1574 /// We walk through the function's blocks in order, starting from the
1575 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1576 /// re-scanning the entire sequence on repeated calls to this routine.
1577 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1578     const BlockChain &PlacedChain,
1579     MachineFunction::iterator &PrevUnplacedBlockIt,
1580     const BlockFilterSet *BlockFilter) {
1581   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1582        ++I) {
1583     if (BlockFilter && !BlockFilter->count(&*I))
1584       continue;
1585     if (BlockToChain[&*I] != &PlacedChain) {
1586       PrevUnplacedBlockIt = I;
1587       // Now select the head of the chain to which the unplaced block belongs
1588       // as the block to place. This will force the entire chain to be placed,
1589       // and satisfies the requirements of merging chains.
1590       return *BlockToChain[&*I]->begin();
1591     }
1592   }
1593   return nullptr;
1594 }
1595 
1596 void MachineBlockPlacement::fillWorkLists(
1597     const MachineBasicBlock *MBB,
1598     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1599     const BlockFilterSet *BlockFilter = nullptr) {
1600   BlockChain &Chain = *BlockToChain[MBB];
1601   if (!UpdatedPreds.insert(&Chain).second)
1602     return;
1603 
1604   assert(Chain.UnscheduledPredecessors == 0);
1605   for (MachineBasicBlock *ChainBB : Chain) {
1606     assert(BlockToChain[ChainBB] == &Chain);
1607     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1608       if (BlockFilter && !BlockFilter->count(Pred))
1609         continue;
1610       if (BlockToChain[Pred] == &Chain)
1611         continue;
1612       ++Chain.UnscheduledPredecessors;
1613     }
1614   }
1615 
1616   if (Chain.UnscheduledPredecessors != 0)
1617     return;
1618 
1619   MachineBasicBlock *BB = *Chain.begin();
1620   if (BB->isEHPad())
1621     EHPadWorkList.push_back(BB);
1622   else
1623     BlockWorkList.push_back(BB);
1624 }
1625 
1626 void MachineBlockPlacement::buildChain(
1627     const MachineBasicBlock *HeadBB, BlockChain &Chain,
1628     BlockFilterSet *BlockFilter) {
1629   assert(HeadBB && "BB must not be null.\n");
1630   assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1631   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1632 
1633   const MachineBasicBlock *LoopHeaderBB = HeadBB;
1634   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1635   MachineBasicBlock *BB = *std::prev(Chain.end());
1636   for (;;) {
1637     assert(BB && "null block found at end of chain in loop.");
1638     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1639     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1640 
1641 
1642     // Look for the best viable successor if there is one to place immediately
1643     // after this block.
1644     auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1645     MachineBasicBlock* BestSucc = Result.BB;
1646     bool ShouldTailDup = Result.ShouldTailDup;
1647     if (TailDupPlacement)
1648       ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1649 
1650     // If an immediate successor isn't available, look for the best viable
1651     // block among those we've identified as not violating the loop's CFG at
1652     // this point. This won't be a fallthrough, but it will increase locality.
1653     if (!BestSucc)
1654       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1655     if (!BestSucc)
1656       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1657 
1658     if (!BestSucc) {
1659       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1660       if (!BestSucc)
1661         break;
1662 
1663       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1664                       "layout successor until the CFG reduces\n");
1665     }
1666 
1667     // Placement may have changed tail duplication opportunities.
1668     // Check for that now.
1669     if (TailDupPlacement && BestSucc && ShouldTailDup) {
1670       // If the chosen successor was duplicated into all its predecessors,
1671       // don't bother laying it out, just go round the loop again with BB as
1672       // the chain end.
1673       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1674                                        BlockFilter, PrevUnplacedBlockIt))
1675         continue;
1676     }
1677 
1678     // Place this block, updating the datastructures to reflect its placement.
1679     BlockChain &SuccChain = *BlockToChain[BestSucc];
1680     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1681     // we selected a successor that didn't fit naturally into the CFG.
1682     SuccChain.UnscheduledPredecessors = 0;
1683     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1684                  << getBlockName(BestSucc) << "\n");
1685     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1686     Chain.merge(BestSucc, &SuccChain);
1687     BB = *std::prev(Chain.end());
1688   }
1689 
1690   DEBUG(dbgs() << "Finished forming chain for header block "
1691                << getBlockName(*Chain.begin()) << "\n");
1692 }
1693 
1694 /// \brief Find the best loop top block for layout.
1695 ///
1696 /// Look for a block which is strictly better than the loop header for laying
1697 /// out at the top of the loop. This looks for one and only one pattern:
1698 /// a latch block with no conditional exit. This block will cause a conditional
1699 /// jump around it or will be the bottom of the loop if we lay it out in place,
1700 /// but if it it doesn't end up at the bottom of the loop for any reason,
1701 /// rotation alone won't fix it. Because such a block will always result in an
1702 /// unconditional jump (for the backedge) rotating it in front of the loop
1703 /// header is always profitable.
1704 MachineBasicBlock *
1705 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
1706                                        const BlockFilterSet &LoopBlockSet) {
1707   // Placing the latch block before the header may introduce an extra branch
1708   // that skips this block the first time the loop is executed, which we want
1709   // to avoid when optimising for size.
1710   // FIXME: in theory there is a case that does not introduce a new branch,
1711   // i.e. when the layout predecessor does not fallthrough to the loop header.
1712   // In practice this never happens though: there always seems to be a preheader
1713   // that can fallthrough and that is also placed before the header.
1714   if (F->getFunction()->optForSize())
1715     return L.getHeader();
1716 
1717   // Check that the header hasn't been fused with a preheader block due to
1718   // crazy branches. If it has, we need to start with the header at the top to
1719   // prevent pulling the preheader into the loop body.
1720   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1721   if (!LoopBlockSet.count(*HeaderChain.begin()))
1722     return L.getHeader();
1723 
1724   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1725                << "\n");
1726 
1727   BlockFrequency BestPredFreq;
1728   MachineBasicBlock *BestPred = nullptr;
1729   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1730     if (!LoopBlockSet.count(Pred))
1731       continue;
1732     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1733                  << Pred->succ_size() << " successors, ";
1734           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1735     if (Pred->succ_size() > 1)
1736       continue;
1737 
1738     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1739     if (!BestPred || PredFreq > BestPredFreq ||
1740         (!(PredFreq < BestPredFreq) &&
1741          Pred->isLayoutSuccessor(L.getHeader()))) {
1742       BestPred = Pred;
1743       BestPredFreq = PredFreq;
1744     }
1745   }
1746 
1747   // If no direct predecessor is fine, just use the loop header.
1748   if (!BestPred) {
1749     DEBUG(dbgs() << "    final top unchanged\n");
1750     return L.getHeader();
1751   }
1752 
1753   // Walk backwards through any straight line of predecessors.
1754   while (BestPred->pred_size() == 1 &&
1755          (*BestPred->pred_begin())->succ_size() == 1 &&
1756          *BestPred->pred_begin() != L.getHeader())
1757     BestPred = *BestPred->pred_begin();
1758 
1759   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1760   return BestPred;
1761 }
1762 
1763 /// \brief Find the best loop exiting block for layout.
1764 ///
1765 /// This routine implements the logic to analyze the loop looking for the best
1766 /// block to layout at the top of the loop. Typically this is done to maximize
1767 /// fallthrough opportunities.
1768 MachineBasicBlock *
1769 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
1770                                         const BlockFilterSet &LoopBlockSet) {
1771   // We don't want to layout the loop linearly in all cases. If the loop header
1772   // is just a normal basic block in the loop, we want to look for what block
1773   // within the loop is the best one to layout at the top. However, if the loop
1774   // header has be pre-merged into a chain due to predecessors not having
1775   // analyzable branches, *and* the predecessor it is merged with is *not* part
1776   // of the loop, rotating the header into the middle of the loop will create
1777   // a non-contiguous range of blocks which is Very Bad. So start with the
1778   // header and only rotate if safe.
1779   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1780   if (!LoopBlockSet.count(*HeaderChain.begin()))
1781     return nullptr;
1782 
1783   BlockFrequency BestExitEdgeFreq;
1784   unsigned BestExitLoopDepth = 0;
1785   MachineBasicBlock *ExitingBB = nullptr;
1786   // If there are exits to outer loops, loop rotation can severely limit
1787   // fallthrough opportunities unless it selects such an exit. Keep a set of
1788   // blocks where rotating to exit with that block will reach an outer loop.
1789   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1790 
1791   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1792                << "\n");
1793   for (MachineBasicBlock *MBB : L.getBlocks()) {
1794     BlockChain &Chain = *BlockToChain[MBB];
1795     // Ensure that this block is at the end of a chain; otherwise it could be
1796     // mid-way through an inner loop or a successor of an unanalyzable branch.
1797     if (MBB != *std::prev(Chain.end()))
1798       continue;
1799 
1800     // Now walk the successors. We need to establish whether this has a viable
1801     // exiting successor and whether it has a viable non-exiting successor.
1802     // We store the old exiting state and restore it if a viable looping
1803     // successor isn't found.
1804     MachineBasicBlock *OldExitingBB = ExitingBB;
1805     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1806     bool HasLoopingSucc = false;
1807     for (MachineBasicBlock *Succ : MBB->successors()) {
1808       if (Succ->isEHPad())
1809         continue;
1810       if (Succ == MBB)
1811         continue;
1812       BlockChain &SuccChain = *BlockToChain[Succ];
1813       // Don't split chains, either this chain or the successor's chain.
1814       if (&Chain == &SuccChain) {
1815         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1816                      << getBlockName(Succ) << " (chain conflict)\n");
1817         continue;
1818       }
1819 
1820       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1821       if (LoopBlockSet.count(Succ)) {
1822         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1823                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1824         HasLoopingSucc = true;
1825         continue;
1826       }
1827 
1828       unsigned SuccLoopDepth = 0;
1829       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1830         SuccLoopDepth = ExitLoop->getLoopDepth();
1831         if (ExitLoop->contains(&L))
1832           BlocksExitingToOuterLoop.insert(MBB);
1833       }
1834 
1835       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1836       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1837                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1838             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1839       // Note that we bias this toward an existing layout successor to retain
1840       // incoming order in the absence of better information. The exit must have
1841       // a frequency higher than the current exit before we consider breaking
1842       // the layout.
1843       BranchProbability Bias(100 - ExitBlockBias, 100);
1844       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1845           ExitEdgeFreq > BestExitEdgeFreq ||
1846           (MBB->isLayoutSuccessor(Succ) &&
1847            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1848         BestExitEdgeFreq = ExitEdgeFreq;
1849         ExitingBB = MBB;
1850       }
1851     }
1852 
1853     if (!HasLoopingSucc) {
1854       // Restore the old exiting state, no viable looping successor was found.
1855       ExitingBB = OldExitingBB;
1856       BestExitEdgeFreq = OldBestExitEdgeFreq;
1857     }
1858   }
1859   // Without a candidate exiting block or with only a single block in the
1860   // loop, just use the loop header to layout the loop.
1861   if (!ExitingBB) {
1862     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1863     return nullptr;
1864   }
1865   if (L.getNumBlocks() == 1) {
1866     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1867     return nullptr;
1868   }
1869 
1870   // Also, if we have exit blocks which lead to outer loops but didn't select
1871   // one of them as the exiting block we are rotating toward, disable loop
1872   // rotation altogether.
1873   if (!BlocksExitingToOuterLoop.empty() &&
1874       !BlocksExitingToOuterLoop.count(ExitingBB))
1875     return nullptr;
1876 
1877   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1878   return ExitingBB;
1879 }
1880 
1881 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1882 ///
1883 /// Once we have built a chain, try to rotate it to line up the hot exit block
1884 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1885 /// branches. For example, if the loop has fallthrough into its header and out
1886 /// of its bottom already, don't rotate it.
1887 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1888                                        const MachineBasicBlock *ExitingBB,
1889                                        const BlockFilterSet &LoopBlockSet) {
1890   if (!ExitingBB)
1891     return;
1892 
1893   MachineBasicBlock *Top = *LoopChain.begin();
1894   bool ViableTopFallthrough = false;
1895   for (MachineBasicBlock *Pred : Top->predecessors()) {
1896     BlockChain *PredChain = BlockToChain[Pred];
1897     if (!LoopBlockSet.count(Pred) &&
1898         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1899       ViableTopFallthrough = true;
1900       break;
1901     }
1902   }
1903 
1904   // If the header has viable fallthrough, check whether the current loop
1905   // bottom is a viable exiting block. If so, bail out as rotating will
1906   // introduce an unnecessary branch.
1907   if (ViableTopFallthrough) {
1908     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1909     for (MachineBasicBlock *Succ : Bottom->successors()) {
1910       BlockChain *SuccChain = BlockToChain[Succ];
1911       if (!LoopBlockSet.count(Succ) &&
1912           (!SuccChain || Succ == *SuccChain->begin()))
1913         return;
1914     }
1915   }
1916 
1917   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1918   if (ExitIt == LoopChain.end())
1919     return;
1920 
1921   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1922 }
1923 
1924 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1925 ///
1926 /// With profile data, we can determine the cost in terms of missed fall through
1927 /// opportunities when rotating a loop chain and select the best rotation.
1928 /// Basically, there are three kinds of cost to consider for each rotation:
1929 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1930 ///    the loop to the loop header.
1931 ///    2. The possibly missed fall through edges (if they exist) from the loop
1932 ///    exits to BB out of the loop.
1933 ///    3. The missed fall through edge (if it exists) from the last BB to the
1934 ///    first BB in the loop chain.
1935 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1936 ///  We select the best rotation with the smallest cost.
1937 void MachineBlockPlacement::rotateLoopWithProfile(
1938     BlockChain &LoopChain, const MachineLoop &L,
1939     const BlockFilterSet &LoopBlockSet) {
1940   auto HeaderBB = L.getHeader();
1941   auto HeaderIter = find(LoopChain, HeaderBB);
1942   auto RotationPos = LoopChain.end();
1943 
1944   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1945 
1946   // A utility lambda that scales up a block frequency by dividing it by a
1947   // branch probability which is the reciprocal of the scale.
1948   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1949                                 unsigned Scale) -> BlockFrequency {
1950     if (Scale == 0)
1951       return 0;
1952     // Use operator / between BlockFrequency and BranchProbability to implement
1953     // saturating multiplication.
1954     return Freq / BranchProbability(1, Scale);
1955   };
1956 
1957   // Compute the cost of the missed fall-through edge to the loop header if the
1958   // chain head is not the loop header. As we only consider natural loops with
1959   // single header, this computation can be done only once.
1960   BlockFrequency HeaderFallThroughCost(0);
1961   for (auto *Pred : HeaderBB->predecessors()) {
1962     BlockChain *PredChain = BlockToChain[Pred];
1963     if (!LoopBlockSet.count(Pred) &&
1964         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1965       auto EdgeFreq =
1966           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1967       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1968       // If the predecessor has only an unconditional jump to the header, we
1969       // need to consider the cost of this jump.
1970       if (Pred->succ_size() == 1)
1971         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1972       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1973     }
1974   }
1975 
1976   // Here we collect all exit blocks in the loop, and for each exit we find out
1977   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1978   // as the sum of frequencies of exit edges we collect here, excluding the exit
1979   // edge from the tail of the loop chain.
1980   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1981   for (auto BB : LoopChain) {
1982     auto LargestExitEdgeProb = BranchProbability::getZero();
1983     for (auto *Succ : BB->successors()) {
1984       BlockChain *SuccChain = BlockToChain[Succ];
1985       if (!LoopBlockSet.count(Succ) &&
1986           (!SuccChain || Succ == *SuccChain->begin())) {
1987         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1988         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1989       }
1990     }
1991     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1992       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1993       ExitsWithFreq.emplace_back(BB, ExitFreq);
1994     }
1995   }
1996 
1997   // In this loop we iterate every block in the loop chain and calculate the
1998   // cost assuming the block is the head of the loop chain. When the loop ends,
1999   // we should have found the best candidate as the loop chain's head.
2000   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2001             EndIter = LoopChain.end();
2002        Iter != EndIter; Iter++, TailIter++) {
2003     // TailIter is used to track the tail of the loop chain if the block we are
2004     // checking (pointed by Iter) is the head of the chain.
2005     if (TailIter == LoopChain.end())
2006       TailIter = LoopChain.begin();
2007 
2008     auto TailBB = *TailIter;
2009 
2010     // Calculate the cost by putting this BB to the top.
2011     BlockFrequency Cost = 0;
2012 
2013     // If the current BB is the loop header, we need to take into account the
2014     // cost of the missed fall through edge from outside of the loop to the
2015     // header.
2016     if (Iter != HeaderIter)
2017       Cost += HeaderFallThroughCost;
2018 
2019     // Collect the loop exit cost by summing up frequencies of all exit edges
2020     // except the one from the chain tail.
2021     for (auto &ExitWithFreq : ExitsWithFreq)
2022       if (TailBB != ExitWithFreq.first)
2023         Cost += ExitWithFreq.second;
2024 
2025     // The cost of breaking the once fall-through edge from the tail to the top
2026     // of the loop chain. Here we need to consider three cases:
2027     // 1. If the tail node has only one successor, then we will get an
2028     //    additional jmp instruction. So the cost here is (MisfetchCost +
2029     //    JumpInstCost) * tail node frequency.
2030     // 2. If the tail node has two successors, then we may still get an
2031     //    additional jmp instruction if the layout successor after the loop
2032     //    chain is not its CFG successor. Note that the more frequently executed
2033     //    jmp instruction will be put ahead of the other one. Assume the
2034     //    frequency of those two branches are x and y, where x is the frequency
2035     //    of the edge to the chain head, then the cost will be
2036     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2037     // 3. If the tail node has more than two successors (this rarely happens),
2038     //    we won't consider any additional cost.
2039     if (TailBB->isSuccessor(*Iter)) {
2040       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2041       if (TailBB->succ_size() == 1)
2042         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2043                                     MisfetchCost + JumpInstCost);
2044       else if (TailBB->succ_size() == 2) {
2045         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2046         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2047         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2048                                   ? TailBBFreq * TailToHeadProb.getCompl()
2049                                   : TailToHeadFreq;
2050         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2051                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2052       }
2053     }
2054 
2055     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
2056                  << " to the top: " << Cost.getFrequency() << "\n");
2057 
2058     if (Cost < SmallestRotationCost) {
2059       SmallestRotationCost = Cost;
2060       RotationPos = Iter;
2061     }
2062   }
2063 
2064   if (RotationPos != LoopChain.end()) {
2065     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2066                  << " to the top\n");
2067     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2068   }
2069 }
2070 
2071 /// \brief Collect blocks in the given loop that are to be placed.
2072 ///
2073 /// When profile data is available, exclude cold blocks from the returned set;
2074 /// otherwise, collect all blocks in the loop.
2075 MachineBlockPlacement::BlockFilterSet
2076 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2077   BlockFilterSet LoopBlockSet;
2078 
2079   // Filter cold blocks off from LoopBlockSet when profile data is available.
2080   // Collect the sum of frequencies of incoming edges to the loop header from
2081   // outside. If we treat the loop as a super block, this is the frequency of
2082   // the loop. Then for each block in the loop, we calculate the ratio between
2083   // its frequency and the frequency of the loop block. When it is too small,
2084   // don't add it to the loop chain. If there are outer loops, then this block
2085   // will be merged into the first outer loop chain for which this block is not
2086   // cold anymore. This needs precise profile data and we only do this when
2087   // profile data is available.
2088   if (F->getFunction()->getEntryCount()) {
2089     BlockFrequency LoopFreq(0);
2090     for (auto LoopPred : L.getHeader()->predecessors())
2091       if (!L.contains(LoopPred))
2092         LoopFreq += MBFI->getBlockFreq(LoopPred) *
2093                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
2094 
2095     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2096       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2097       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2098         continue;
2099       LoopBlockSet.insert(LoopBB);
2100     }
2101   } else
2102     LoopBlockSet.insert(L.block_begin(), L.block_end());
2103 
2104   return LoopBlockSet;
2105 }
2106 
2107 /// \brief Forms basic block chains from the natural loop structures.
2108 ///
2109 /// These chains are designed to preserve the existing *structure* of the code
2110 /// as much as possible. We can then stitch the chains together in a way which
2111 /// both preserves the topological structure and minimizes taken conditional
2112 /// branches.
2113 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2114   // First recurse through any nested loops, building chains for those inner
2115   // loops.
2116   for (const MachineLoop *InnerLoop : L)
2117     buildLoopChains(*InnerLoop);
2118 
2119   assert(BlockWorkList.empty());
2120   assert(EHPadWorkList.empty());
2121   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2122 
2123   // Check if we have profile data for this function. If yes, we will rotate
2124   // this loop by modeling costs more precisely which requires the profile data
2125   // for better layout.
2126   bool RotateLoopWithProfile =
2127       ForcePreciseRotationCost ||
2128       (PreciseRotationCost && F->getFunction()->getEntryCount());
2129 
2130   // First check to see if there is an obviously preferable top block for the
2131   // loop. This will default to the header, but may end up as one of the
2132   // predecessors to the header if there is one which will result in strictly
2133   // fewer branches in the loop body.
2134   // When we use profile data to rotate the loop, this is unnecessary.
2135   MachineBasicBlock *LoopTop =
2136       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
2137 
2138   // If we selected just the header for the loop top, look for a potentially
2139   // profitable exit block in the event that rotating the loop can eliminate
2140   // branches by placing an exit edge at the bottom.
2141   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2142     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2143 
2144   BlockChain &LoopChain = *BlockToChain[LoopTop];
2145 
2146   // FIXME: This is a really lame way of walking the chains in the loop: we
2147   // walk the blocks, and use a set to prevent visiting a particular chain
2148   // twice.
2149   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2150   assert(LoopChain.UnscheduledPredecessors == 0);
2151   UpdatedPreds.insert(&LoopChain);
2152 
2153   for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2154     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2155 
2156   buildChain(LoopTop, LoopChain, &LoopBlockSet);
2157 
2158   if (RotateLoopWithProfile)
2159     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2160   else
2161     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2162 
2163   DEBUG({
2164     // Crash at the end so we get all of the debugging output first.
2165     bool BadLoop = false;
2166     if (LoopChain.UnscheduledPredecessors) {
2167       BadLoop = true;
2168       dbgs() << "Loop chain contains a block without its preds placed!\n"
2169              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2170              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2171     }
2172     for (MachineBasicBlock *ChainBB : LoopChain) {
2173       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2174       if (!LoopBlockSet.remove(ChainBB)) {
2175         // We don't mark the loop as bad here because there are real situations
2176         // where this can occur. For example, with an unanalyzable fallthrough
2177         // from a loop block to a non-loop block or vice versa.
2178         dbgs() << "Loop chain contains a block not contained by the loop!\n"
2179                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2180                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2181                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2182       }
2183     }
2184 
2185     if (!LoopBlockSet.empty()) {
2186       BadLoop = true;
2187       for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2188         dbgs() << "Loop contains blocks never placed into a chain!\n"
2189                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2190                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2191                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2192     }
2193     assert(!BadLoop && "Detected problems with the placement of this loop.");
2194   });
2195 
2196   BlockWorkList.clear();
2197   EHPadWorkList.clear();
2198 }
2199 
2200 void MachineBlockPlacement::buildCFGChains() {
2201   // Ensure that every BB in the function has an associated chain to simplify
2202   // the assumptions of the remaining algorithm.
2203   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2204   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2205        ++FI) {
2206     MachineBasicBlock *BB = &*FI;
2207     BlockChain *Chain =
2208         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2209     // Also, merge any blocks which we cannot reason about and must preserve
2210     // the exact fallthrough behavior for.
2211     for (;;) {
2212       Cond.clear();
2213       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2214       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2215         break;
2216 
2217       MachineFunction::iterator NextFI = std::next(FI);
2218       MachineBasicBlock *NextBB = &*NextFI;
2219       // Ensure that the layout successor is a viable block, as we know that
2220       // fallthrough is a possibility.
2221       assert(NextFI != FE && "Can't fallthrough past the last block.");
2222       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2223                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
2224                    << "\n");
2225       Chain->merge(NextBB, nullptr);
2226 #ifndef NDEBUG
2227       BlocksWithUnanalyzableExits.insert(&*BB);
2228 #endif
2229       FI = NextFI;
2230       BB = NextBB;
2231     }
2232   }
2233 
2234   // Build any loop-based chains.
2235   PreferredLoopExit = nullptr;
2236   for (MachineLoop *L : *MLI)
2237     buildLoopChains(*L);
2238 
2239   assert(BlockWorkList.empty());
2240   assert(EHPadWorkList.empty());
2241 
2242   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2243   for (MachineBasicBlock &MBB : *F)
2244     fillWorkLists(&MBB, UpdatedPreds);
2245 
2246   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2247   buildChain(&F->front(), FunctionChain);
2248 
2249 #ifndef NDEBUG
2250   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
2251 #endif
2252   DEBUG({
2253     // Crash at the end so we get all of the debugging output first.
2254     bool BadFunc = false;
2255     FunctionBlockSetType FunctionBlockSet;
2256     for (MachineBasicBlock &MBB : *F)
2257       FunctionBlockSet.insert(&MBB);
2258 
2259     for (MachineBasicBlock *ChainBB : FunctionChain)
2260       if (!FunctionBlockSet.erase(ChainBB)) {
2261         BadFunc = true;
2262         dbgs() << "Function chain contains a block not in the function!\n"
2263                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2264       }
2265 
2266     if (!FunctionBlockSet.empty()) {
2267       BadFunc = true;
2268       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2269         dbgs() << "Function contains blocks never placed into a chain!\n"
2270                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2271     }
2272     assert(!BadFunc && "Detected problems with the block placement.");
2273   });
2274 
2275   // Splice the blocks into place.
2276   MachineFunction::iterator InsertPos = F->begin();
2277   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
2278   for (MachineBasicBlock *ChainBB : FunctionChain) {
2279     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2280                                                        : "          ... ")
2281                  << getBlockName(ChainBB) << "\n");
2282     if (InsertPos != MachineFunction::iterator(ChainBB))
2283       F->splice(InsertPos, ChainBB);
2284     else
2285       ++InsertPos;
2286 
2287     // Update the terminator of the previous block.
2288     if (ChainBB == *FunctionChain.begin())
2289       continue;
2290     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2291 
2292     // FIXME: It would be awesome of updateTerminator would just return rather
2293     // than assert when the branch cannot be analyzed in order to remove this
2294     // boiler plate.
2295     Cond.clear();
2296     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2297 
2298 #ifndef NDEBUG
2299     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2300       // Given the exact block placement we chose, we may actually not _need_ to
2301       // be able to edit PrevBB's terminator sequence, but not being _able_ to
2302       // do that at this point is a bug.
2303       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2304               !PrevBB->canFallThrough()) &&
2305              "Unexpected block with un-analyzable fallthrough!");
2306       Cond.clear();
2307       TBB = FBB = nullptr;
2308     }
2309 #endif
2310 
2311     // The "PrevBB" is not yet updated to reflect current code layout, so,
2312     //   o. it may fall-through to a block without explicit "goto" instruction
2313     //      before layout, and no longer fall-through it after layout; or
2314     //   o. just opposite.
2315     //
2316     // analyzeBranch() may return erroneous value for FBB when these two
2317     // situations take place. For the first scenario FBB is mistakenly set NULL;
2318     // for the 2nd scenario, the FBB, which is expected to be NULL, is
2319     // mistakenly pointing to "*BI".
2320     // Thus, if the future change needs to use FBB before the layout is set, it
2321     // has to correct FBB first by using the code similar to the following:
2322     //
2323     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2324     //   PrevBB->updateTerminator();
2325     //   Cond.clear();
2326     //   TBB = FBB = nullptr;
2327     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2328     //     // FIXME: This should never take place.
2329     //     TBB = FBB = nullptr;
2330     //   }
2331     // }
2332     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2333       PrevBB->updateTerminator();
2334   }
2335 
2336   // Fixup the last block.
2337   Cond.clear();
2338   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2339   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2340     F->back().updateTerminator();
2341 
2342   BlockWorkList.clear();
2343   EHPadWorkList.clear();
2344 }
2345 
2346 void MachineBlockPlacement::optimizeBranches() {
2347   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2348   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2349 
2350   // Now that all the basic blocks in the chain have the proper layout,
2351   // make a final call to AnalyzeBranch with AllowModify set.
2352   // Indeed, the target may be able to optimize the branches in a way we
2353   // cannot because all branches may not be analyzable.
2354   // E.g., the target may be able to remove an unconditional branch to
2355   // a fallthrough when it occurs after predicated terminators.
2356   for (MachineBasicBlock *ChainBB : FunctionChain) {
2357     Cond.clear();
2358     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2359     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2360       // If PrevBB has a two-way branch, try to re-order the branches
2361       // such that we branch to the successor with higher probability first.
2362       if (TBB && !Cond.empty() && FBB &&
2363           MBPI->getEdgeProbability(ChainBB, FBB) >
2364               MBPI->getEdgeProbability(ChainBB, TBB) &&
2365           !TII->reverseBranchCondition(Cond)) {
2366         DEBUG(dbgs() << "Reverse order of the two branches: "
2367                      << getBlockName(ChainBB) << "\n");
2368         DEBUG(dbgs() << "    Edge probability: "
2369                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2370                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2371         DebugLoc dl; // FIXME: this is nowhere
2372         TII->removeBranch(*ChainBB);
2373         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2374         ChainBB->updateTerminator();
2375       }
2376     }
2377   }
2378 }
2379 
2380 void MachineBlockPlacement::alignBlocks() {
2381   // Walk through the backedges of the function now that we have fully laid out
2382   // the basic blocks and align the destination of each backedge. We don't rely
2383   // exclusively on the loop info here so that we can align backedges in
2384   // unnatural CFGs and backedges that were introduced purely because of the
2385   // loop rotations done during this layout pass.
2386   if (F->getFunction()->optForSize())
2387     return;
2388   BlockChain &FunctionChain = *BlockToChain[&F->front()];
2389   if (FunctionChain.begin() == FunctionChain.end())
2390     return; // Empty chain.
2391 
2392   const BranchProbability ColdProb(1, 5); // 20%
2393   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2394   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2395   for (MachineBasicBlock *ChainBB : FunctionChain) {
2396     if (ChainBB == *FunctionChain.begin())
2397       continue;
2398 
2399     // Don't align non-looping basic blocks. These are unlikely to execute
2400     // enough times to matter in practice. Note that we'll still handle
2401     // unnatural CFGs inside of a natural outer loop (the common case) and
2402     // rotated loops.
2403     MachineLoop *L = MLI->getLoopFor(ChainBB);
2404     if (!L)
2405       continue;
2406 
2407     unsigned Align = TLI->getPrefLoopAlignment(L);
2408     if (!Align)
2409       continue; // Don't care about loop alignment.
2410 
2411     // If the block is cold relative to the function entry don't waste space
2412     // aligning it.
2413     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2414     if (Freq < WeightedEntryFreq)
2415       continue;
2416 
2417     // If the block is cold relative to its loop header, don't align it
2418     // regardless of what edges into the block exist.
2419     MachineBasicBlock *LoopHeader = L->getHeader();
2420     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2421     if (Freq < (LoopHeaderFreq * ColdProb))
2422       continue;
2423 
2424     // Check for the existence of a non-layout predecessor which would benefit
2425     // from aligning this block.
2426     MachineBasicBlock *LayoutPred =
2427         &*std::prev(MachineFunction::iterator(ChainBB));
2428 
2429     // Force alignment if all the predecessors are jumps. We already checked
2430     // that the block isn't cold above.
2431     if (!LayoutPred->isSuccessor(ChainBB)) {
2432       ChainBB->setAlignment(Align);
2433       continue;
2434     }
2435 
2436     // Align this block if the layout predecessor's edge into this block is
2437     // cold relative to the block. When this is true, other predecessors make up
2438     // all of the hot entries into the block and thus alignment is likely to be
2439     // important.
2440     BranchProbability LayoutProb =
2441         MBPI->getEdgeProbability(LayoutPred, ChainBB);
2442     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2443     if (LayoutEdgeFreq <= (Freq * ColdProb))
2444       ChainBB->setAlignment(Align);
2445   }
2446 }
2447 
2448 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2449 /// it was duplicated into its chain predecessor and removed.
2450 /// \p BB    - Basic block that may be duplicated.
2451 ///
2452 /// \p LPred - Chosen layout predecessor of \p BB.
2453 ///            Updated to be the chain end if LPred is removed.
2454 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2455 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2456 ///                  Used to identify which blocks to update predecessor
2457 ///                  counts.
2458 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2459 ///                          chosen in the given order due to unnatural CFG
2460 ///                          only needed if \p BB is removed and
2461 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2462 /// @return true if \p BB was removed.
2463 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2464     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2465     const MachineBasicBlock *LoopHeaderBB,
2466     BlockChain &Chain, BlockFilterSet *BlockFilter,
2467     MachineFunction::iterator &PrevUnplacedBlockIt) {
2468   bool Removed, DuplicatedToLPred;
2469   bool DuplicatedToOriginalLPred;
2470   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2471                                     PrevUnplacedBlockIt,
2472                                     DuplicatedToLPred);
2473   if (!Removed)
2474     return false;
2475   DuplicatedToOriginalLPred = DuplicatedToLPred;
2476   // Iteratively try to duplicate again. It can happen that a block that is
2477   // duplicated into is still small enough to be duplicated again.
2478   // No need to call markBlockSuccessors in this case, as the blocks being
2479   // duplicated from here on are already scheduled.
2480   // Note that DuplicatedToLPred always implies Removed.
2481   while (DuplicatedToLPred) {
2482     assert (Removed && "Block must have been removed to be duplicated into its "
2483             "layout predecessor.");
2484     MachineBasicBlock *DupBB, *DupPred;
2485     // The removal callback causes Chain.end() to be updated when a block is
2486     // removed. On the first pass through the loop, the chain end should be the
2487     // same as it was on function entry. On subsequent passes, because we are
2488     // duplicating the block at the end of the chain, if it is removed the
2489     // chain will have shrunk by one block.
2490     BlockChain::iterator ChainEnd = Chain.end();
2491     DupBB = *(--ChainEnd);
2492     // Now try to duplicate again.
2493     if (ChainEnd == Chain.begin())
2494       break;
2495     DupPred = *std::prev(ChainEnd);
2496     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2497                                       PrevUnplacedBlockIt,
2498                                       DuplicatedToLPred);
2499   }
2500   // If BB was duplicated into LPred, it is now scheduled. But because it was
2501   // removed, markChainSuccessors won't be called for its chain. Instead we
2502   // call markBlockSuccessors for LPred to achieve the same effect. This must go
2503   // at the end because repeating the tail duplication can increase the number
2504   // of unscheduled predecessors.
2505   LPred = *std::prev(Chain.end());
2506   if (DuplicatedToOriginalLPred)
2507     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2508   return true;
2509 }
2510 
2511 /// Tail duplicate \p BB into (some) predecessors if profitable.
2512 /// \p BB    - Basic block that may be duplicated
2513 /// \p LPred - Chosen layout predecessor of \p BB
2514 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2515 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2516 ///                  Used to identify which blocks to update predecessor
2517 ///                  counts.
2518 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2519 ///                          chosen in the given order due to unnatural CFG
2520 ///                          only needed if \p BB is removed and
2521 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
2522 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2523 ///                        only be true if the block was removed.
2524 /// \return  - True if the block was duplicated into all preds and removed.
2525 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2526     MachineBasicBlock *BB, MachineBasicBlock *LPred,
2527     BlockChain &Chain, BlockFilterSet *BlockFilter,
2528     MachineFunction::iterator &PrevUnplacedBlockIt,
2529     bool &DuplicatedToLPred) {
2530   DuplicatedToLPred = false;
2531   if (!shouldTailDuplicate(BB))
2532     return false;
2533 
2534   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
2535         << BB->getNumber() << "\n");
2536 
2537   // This has to be a callback because none of it can be done after
2538   // BB is deleted.
2539   bool Removed = false;
2540   auto RemovalCallback =
2541       [&](MachineBasicBlock *RemBB) {
2542         // Signal to outer function
2543         Removed = true;
2544 
2545         // Conservative default.
2546         bool InWorkList = true;
2547         // Remove from the Chain and Chain Map
2548         if (BlockToChain.count(RemBB)) {
2549           BlockChain *Chain = BlockToChain[RemBB];
2550           InWorkList = Chain->UnscheduledPredecessors == 0;
2551           Chain->remove(RemBB);
2552           BlockToChain.erase(RemBB);
2553         }
2554 
2555         // Handle the unplaced block iterator
2556         if (&(*PrevUnplacedBlockIt) == RemBB) {
2557           PrevUnplacedBlockIt++;
2558         }
2559 
2560         // Handle the Work Lists
2561         if (InWorkList) {
2562           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2563           if (RemBB->isEHPad())
2564             RemoveList = EHPadWorkList;
2565           RemoveList.erase(
2566               remove_if(RemoveList,
2567                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
2568               RemoveList.end());
2569         }
2570 
2571         // Handle the filter set
2572         if (BlockFilter) {
2573           BlockFilter->remove(RemBB);
2574         }
2575 
2576         // Remove the block from loop info.
2577         MLI->removeBlock(RemBB);
2578         if (RemBB == PreferredLoopExit)
2579           PreferredLoopExit = nullptr;
2580 
2581         DEBUG(dbgs() << "TailDuplicator deleted block: "
2582               << getBlockName(RemBB) << "\n");
2583       };
2584   auto RemovalCallbackRef =
2585       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2586 
2587   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2588   bool IsSimple = TailDup.isSimpleBB(BB);
2589   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2590                                  &DuplicatedPreds, &RemovalCallbackRef);
2591 
2592   // Update UnscheduledPredecessors to reflect tail-duplication.
2593   DuplicatedToLPred = false;
2594   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2595     // We're only looking for unscheduled predecessors that match the filter.
2596     BlockChain* PredChain = BlockToChain[Pred];
2597     if (Pred == LPred)
2598       DuplicatedToLPred = true;
2599     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2600         || PredChain == &Chain)
2601       continue;
2602     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2603       if (BlockFilter && !BlockFilter->count(NewSucc))
2604         continue;
2605       BlockChain *NewChain = BlockToChain[NewSucc];
2606       if (NewChain != &Chain && NewChain != PredChain)
2607         NewChain->UnscheduledPredecessors++;
2608     }
2609   }
2610   return Removed;
2611 }
2612 
2613 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2614   if (skipFunction(*MF.getFunction()))
2615     return false;
2616 
2617   // Check for single-block functions and skip them.
2618   if (std::next(MF.begin()) == MF.end())
2619     return false;
2620 
2621   F = &MF;
2622   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2623   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2624       getAnalysis<MachineBlockFrequencyInfo>());
2625   MLI = &getAnalysis<MachineLoopInfo>();
2626   TII = MF.getSubtarget().getInstrInfo();
2627   TLI = MF.getSubtarget().getTargetLowering();
2628   MPDT = nullptr;
2629 
2630   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2631   // there are no MachineLoops.
2632   PreferredLoopExit = nullptr;
2633 
2634   if (TailDupPlacement) {
2635     MPDT = &getAnalysis<MachinePostDominatorTree>();
2636     unsigned TailDupSize = TailDupPlacementThreshold;
2637     if (MF.getFunction()->optForSize())
2638       TailDupSize = 1;
2639     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2640     precomputeTriangleChains();
2641   }
2642 
2643   assert(BlockToChain.empty());
2644 
2645   buildCFGChains();
2646 
2647   // Changing the layout can create new tail merging opportunities.
2648   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2649   // TailMerge can create jump into if branches that make CFG irreducible for
2650   // HW that requires structured CFG.
2651   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2652                          PassConfig->getEnableTailMerge() &&
2653                          BranchFoldPlacement;
2654   // No tail merging opportunities if the block number is less than four.
2655   if (MF.size() > 3 && EnableTailMerge) {
2656     unsigned TailMergeSize = TailDupPlacementThreshold + 1;
2657     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2658                     *MBPI, TailMergeSize);
2659 
2660     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2661                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2662                             /*AfterBlockPlacement=*/true)) {
2663       // Redo the layout if tail merging creates/removes/moves blocks.
2664       BlockToChain.clear();
2665       // Must redo the post-dominator tree if blocks were changed.
2666       if (MPDT)
2667         MPDT->runOnMachineFunction(MF);
2668       ChainAllocator.DestroyAll();
2669       buildCFGChains();
2670     }
2671   }
2672 
2673   optimizeBranches();
2674   alignBlocks();
2675 
2676   BlockToChain.clear();
2677   ChainAllocator.DestroyAll();
2678 
2679   if (AlignAllBlock)
2680     // Align all of the blocks in the function to a specific alignment.
2681     for (MachineBasicBlock &MBB : MF)
2682       MBB.setAlignment(AlignAllBlock);
2683   else if (AlignAllNonFallThruBlocks) {
2684     // Align all of the blocks that have no fall-through predecessors to a
2685     // specific alignment.
2686     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2687       auto LayoutPred = std::prev(MBI);
2688       if (!LayoutPred->isSuccessor(&*MBI))
2689         MBI->setAlignment(AlignAllNonFallThruBlocks);
2690     }
2691   }
2692   if (ViewBlockLayoutWithBFI != GVDT_None &&
2693       (ViewBlockFreqFuncName.empty() ||
2694        F->getFunction()->getName().equals(ViewBlockFreqFuncName))) {
2695     MBFI->view("MBP." + MF.getName(), false);
2696   }
2697 
2698 
2699   // We always return true as we have no way to track whether the final order
2700   // differs from the original order.
2701   return true;
2702 }
2703 
2704 namespace {
2705 /// \brief A pass to compute block placement statistics.
2706 ///
2707 /// A separate pass to compute interesting statistics for evaluating block
2708 /// placement. This is separate from the actual placement pass so that they can
2709 /// be computed in the absence of any placement transformations or when using
2710 /// alternative placement strategies.
2711 class MachineBlockPlacementStats : public MachineFunctionPass {
2712   /// \brief A handle to the branch probability pass.
2713   const MachineBranchProbabilityInfo *MBPI;
2714 
2715   /// \brief A handle to the function-wide block frequency pass.
2716   const MachineBlockFrequencyInfo *MBFI;
2717 
2718 public:
2719   static char ID; // Pass identification, replacement for typeid
2720   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2721     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2722   }
2723 
2724   bool runOnMachineFunction(MachineFunction &F) override;
2725 
2726   void getAnalysisUsage(AnalysisUsage &AU) const override {
2727     AU.addRequired<MachineBranchProbabilityInfo>();
2728     AU.addRequired<MachineBlockFrequencyInfo>();
2729     AU.setPreservesAll();
2730     MachineFunctionPass::getAnalysisUsage(AU);
2731   }
2732 };
2733 }
2734 
2735 char MachineBlockPlacementStats::ID = 0;
2736 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2737 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2738                       "Basic Block Placement Stats", false, false)
2739 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2740 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2741 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2742                     "Basic Block Placement Stats", false, false)
2743 
2744 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2745   // Check for single-block functions and skip them.
2746   if (std::next(F.begin()) == F.end())
2747     return false;
2748 
2749   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2750   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2751 
2752   for (MachineBasicBlock &MBB : F) {
2753     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2754     Statistic &NumBranches =
2755         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2756     Statistic &BranchTakenFreq =
2757         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2758     for (MachineBasicBlock *Succ : MBB.successors()) {
2759       // Skip if this successor is a fallthrough.
2760       if (MBB.isLayoutSuccessor(Succ))
2761         continue;
2762 
2763       BlockFrequency EdgeFreq =
2764           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2765       ++NumBranches;
2766       BranchTakenFreq += EdgeFreq.getFrequency();
2767     }
2768   }
2769 
2770   return false;
2771 }
2772