1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/Support/Allocator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "block-placement" 54 55 STATISTIC(NumCondBranches, "Number of conditional branches"); 56 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 57 STATISTIC(CondBranchTakenFreq, 58 "Potential frequency of taking conditional branches"); 59 STATISTIC(UncondBranchTakenFreq, 60 "Potential frequency of taking unconditional branches"); 61 62 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 63 cl::desc("Force the alignment of all " 64 "blocks in the function."), 65 cl::init(0), cl::Hidden); 66 67 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 68 "align-all-nofallthru-blocks", 69 cl::desc("Force the alignment of all " 70 "blocks that have no fall-through predecessors (i.e. don't add " 71 "nops that are executed)."), 72 cl::init(0), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> ExitBlockBias( 76 "block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 static cl::opt<bool> OutlineOptionalBranches( 82 "outline-optional-branches", 83 cl::desc("Put completely optional branches, i.e. branches with a common " 84 "post dominator, out of line."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<unsigned> OutlineOptionalThreshold( 88 "outline-optional-threshold", 89 cl::desc("Don't outline optional branches that are a single block with an " 90 "instruction count below this threshold"), 91 cl::init(4), cl::Hidden); 92 93 static cl::opt<unsigned> LoopToColdBlockRatio( 94 "loop-to-cold-block-ratio", 95 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 96 "(frequency of block) is greater than this ratio"), 97 cl::init(5), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probablistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 121 static cl::opt<bool> 122 BranchFoldPlacement("branch-fold-placement", 123 cl::desc("Perform branch folding during placement. " 124 "Reduces code size."), 125 cl::init(true), cl::Hidden); 126 127 extern cl::opt<unsigned> StaticLikelyProb; 128 129 namespace { 130 class BlockChain; 131 /// \brief Type for our function-wide basic block -> block chain mapping. 132 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 133 } 134 135 namespace { 136 /// \brief A chain of blocks which will be laid out contiguously. 137 /// 138 /// This is the datastructure representing a chain of consecutive blocks that 139 /// are profitable to layout together in order to maximize fallthrough 140 /// probabilities and code locality. We also can use a block chain to represent 141 /// a sequence of basic blocks which have some external (correctness) 142 /// requirement for sequential layout. 143 /// 144 /// Chains can be built around a single basic block and can be merged to grow 145 /// them. They participate in a block-to-chain mapping, which is updated 146 /// automatically as chains are merged together. 147 class BlockChain { 148 /// \brief The sequence of blocks belonging to this chain. 149 /// 150 /// This is the sequence of blocks for a particular chain. These will be laid 151 /// out in-order within the function. 152 SmallVector<MachineBasicBlock *, 4> Blocks; 153 154 /// \brief A handle to the function-wide basic block to block chain mapping. 155 /// 156 /// This is retained in each block chain to simplify the computation of child 157 /// block chains for SCC-formation and iteration. We store the edges to child 158 /// basic blocks, and map them back to their associated chains using this 159 /// structure. 160 BlockToChainMapType &BlockToChain; 161 162 public: 163 /// \brief Construct a new BlockChain. 164 /// 165 /// This builds a new block chain representing a single basic block in the 166 /// function. It also registers itself as the chain that block participates 167 /// in with the BlockToChain mapping. 168 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 169 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 170 assert(BB && "Cannot create a chain with a null basic block"); 171 BlockToChain[BB] = this; 172 } 173 174 /// \brief Iterator over blocks within the chain. 175 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 176 177 /// \brief Beginning of blocks within the chain. 178 iterator begin() { return Blocks.begin(); } 179 180 /// \brief End of blocks within the chain. 181 iterator end() { return Blocks.end(); } 182 183 /// \brief Merge a block chain into this one. 184 /// 185 /// This routine merges a block chain into this one. It takes care of forming 186 /// a contiguous sequence of basic blocks, updating the edge list, and 187 /// updating the block -> chain mapping. It does not free or tear down the 188 /// old chain, but the old chain's block list is no longer valid. 189 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 190 assert(BB); 191 assert(!Blocks.empty()); 192 193 // Fast path in case we don't have a chain already. 194 if (!Chain) { 195 assert(!BlockToChain[BB]); 196 Blocks.push_back(BB); 197 BlockToChain[BB] = this; 198 return; 199 } 200 201 assert(BB == *Chain->begin()); 202 assert(Chain->begin() != Chain->end()); 203 204 // Update the incoming blocks to point to this chain, and add them to the 205 // chain structure. 206 for (MachineBasicBlock *ChainBB : *Chain) { 207 Blocks.push_back(ChainBB); 208 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 209 BlockToChain[ChainBB] = this; 210 } 211 } 212 213 #ifndef NDEBUG 214 /// \brief Dump the blocks in this chain. 215 LLVM_DUMP_METHOD void dump() { 216 for (MachineBasicBlock *MBB : *this) 217 MBB->dump(); 218 } 219 #endif // NDEBUG 220 221 /// \brief Count of predecessors of any block within the chain which have not 222 /// yet been scheduled. In general, we will delay scheduling this chain 223 /// until those predecessors are scheduled (or we find a sufficiently good 224 /// reason to override this heuristic.) Note that when forming loop chains, 225 /// blocks outside the loop are ignored and treated as if they were already 226 /// scheduled. 227 /// 228 /// Note: This field is reinitialized multiple times - once for each loop, 229 /// and then once for the function as a whole. 230 unsigned UnscheduledPredecessors; 231 }; 232 } 233 234 namespace { 235 class MachineBlockPlacement : public MachineFunctionPass { 236 /// \brief A typedef for a block filter set. 237 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 238 239 /// \brief A handle to the branch probability pass. 240 const MachineBranchProbabilityInfo *MBPI; 241 242 /// \brief A handle to the function-wide block frequency pass. 243 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 244 245 /// \brief A handle to the loop info. 246 MachineLoopInfo *MLI; 247 248 /// \brief A handle to the target's instruction info. 249 const TargetInstrInfo *TII; 250 251 /// \brief A handle to the target's lowering info. 252 const TargetLoweringBase *TLI; 253 254 /// \brief A handle to the post dominator tree. 255 MachineDominatorTree *MDT; 256 257 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 258 /// all terminators of the MachineFunction. 259 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 260 261 /// \brief Allocator and owner of BlockChain structures. 262 /// 263 /// We build BlockChains lazily while processing the loop structure of 264 /// a function. To reduce malloc traffic, we allocate them using this 265 /// slab-like allocator, and destroy them after the pass completes. An 266 /// important guarantee is that this allocator produces stable pointers to 267 /// the chains. 268 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 269 270 /// \brief Function wide BasicBlock to BlockChain mapping. 271 /// 272 /// This mapping allows efficiently moving from any given basic block to the 273 /// BlockChain it participates in, if any. We use it to, among other things, 274 /// allow implicitly defining edges between chains as the existing edges 275 /// between basic blocks. 276 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 277 278 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 279 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 280 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 281 const BlockFilterSet *BlockFilter = nullptr); 282 BranchProbability 283 collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, 284 const BlockFilterSet *BlockFilter, 285 SmallVector<MachineBasicBlock *, 4> &Successors); 286 bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, 287 BlockChain &Chain, 288 const BlockFilterSet *BlockFilter, 289 BranchProbability SuccProb, 290 BranchProbability HotProb); 291 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 292 BlockChain &Chain, 293 const BlockFilterSet *BlockFilter); 294 MachineBasicBlock * 295 selectBestCandidateBlock(BlockChain &Chain, 296 SmallVectorImpl<MachineBasicBlock *> &WorkList); 297 MachineBasicBlock * 298 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 299 MachineFunction::iterator &PrevUnplacedBlockIt, 300 const BlockFilterSet *BlockFilter); 301 302 /// \brief Add a basic block to the work list if it is apropriate. 303 /// 304 /// If the optional parameter BlockFilter is provided, only MBB 305 /// present in the set will be added to the worklist. If nullptr 306 /// is provided, no filtering occurs. 307 void fillWorkLists(MachineBasicBlock *MBB, 308 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 309 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 310 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 311 const BlockFilterSet *BlockFilter); 312 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 313 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 314 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 315 const BlockFilterSet *BlockFilter = nullptr); 316 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 317 const BlockFilterSet &LoopBlockSet); 318 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 319 const BlockFilterSet &LoopBlockSet); 320 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 321 void buildLoopChains(MachineFunction &F, MachineLoop &L); 322 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 323 const BlockFilterSet &LoopBlockSet); 324 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 325 const BlockFilterSet &LoopBlockSet); 326 void collectMustExecuteBBs(MachineFunction &F); 327 void buildCFGChains(MachineFunction &F); 328 void optimizeBranches(MachineFunction &F); 329 void alignBlocks(MachineFunction &F); 330 331 public: 332 static char ID; // Pass identification, replacement for typeid 333 MachineBlockPlacement() : MachineFunctionPass(ID) { 334 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 335 } 336 337 bool runOnMachineFunction(MachineFunction &F) override; 338 339 void getAnalysisUsage(AnalysisUsage &AU) const override { 340 AU.addRequired<MachineBranchProbabilityInfo>(); 341 AU.addRequired<MachineBlockFrequencyInfo>(); 342 AU.addRequired<MachineDominatorTree>(); 343 AU.addRequired<MachineLoopInfo>(); 344 AU.addRequired<TargetPassConfig>(); 345 MachineFunctionPass::getAnalysisUsage(AU); 346 } 347 }; 348 } 349 350 char MachineBlockPlacement::ID = 0; 351 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 352 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 353 "Branch Probability Basic Block Placement", false, false) 354 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 355 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 356 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 357 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 358 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 359 "Branch Probability Basic Block Placement", false, false) 360 361 #ifndef NDEBUG 362 /// \brief Helper to print the name of a MBB. 363 /// 364 /// Only used by debug logging. 365 static std::string getBlockName(MachineBasicBlock *BB) { 366 std::string Result; 367 raw_string_ostream OS(Result); 368 OS << "BB#" << BB->getNumber(); 369 OS << " ('" << BB->getName() << "')"; 370 OS.flush(); 371 return Result; 372 } 373 #endif 374 375 /// \brief Mark a chain's successors as having one fewer preds. 376 /// 377 /// When a chain is being merged into the "placed" chain, this routine will 378 /// quickly walk the successors of each block in the chain and mark them as 379 /// having one fewer active predecessor. It also adds any successors of this 380 /// chain which reach the zero-predecessor state to the worklist passed in. 381 void MachineBlockPlacement::markChainSuccessors( 382 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 383 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 384 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 385 const BlockFilterSet *BlockFilter) { 386 // Walk all the blocks in this chain, marking their successors as having 387 // a predecessor placed. 388 for (MachineBasicBlock *MBB : Chain) { 389 // Add any successors for which this is the only un-placed in-loop 390 // predecessor to the worklist as a viable candidate for CFG-neutral 391 // placement. No subsequent placement of this block will violate the CFG 392 // shape, so we get to use heuristics to choose a favorable placement. 393 for (MachineBasicBlock *Succ : MBB->successors()) { 394 if (BlockFilter && !BlockFilter->count(Succ)) 395 continue; 396 BlockChain &SuccChain = *BlockToChain[Succ]; 397 // Disregard edges within a fixed chain, or edges to the loop header. 398 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 399 continue; 400 401 // This is a cross-chain edge that is within the loop, so decrement the 402 // loop predecessor count of the destination chain. 403 if (SuccChain.UnscheduledPredecessors == 0 || 404 --SuccChain.UnscheduledPredecessors > 0) 405 continue; 406 407 auto *MBB = *SuccChain.begin(); 408 if (MBB->isEHPad()) 409 EHPadWorkList.push_back(MBB); 410 else 411 BlockWorkList.push_back(MBB); 412 } 413 } 414 } 415 416 /// This helper function collects the set of successors of block 417 /// \p BB that are allowed to be its layout successors, and return 418 /// the total branch probability of edges from \p BB to those 419 /// blocks. 420 BranchProbability MachineBlockPlacement::collectViableSuccessors( 421 MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, 422 SmallVector<MachineBasicBlock *, 4> &Successors) { 423 // Adjust edge probabilities by excluding edges pointing to blocks that is 424 // either not in BlockFilter or is already in the current chain. Consider the 425 // following CFG: 426 // 427 // --->A 428 // | / \ 429 // | B C 430 // | \ / \ 431 // ----D E 432 // 433 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 434 // A->C is chosen as a fall-through, D won't be selected as a successor of C 435 // due to CFG constraint (the probability of C->D is not greater than 436 // HotProb to break top-oorder). If we exclude E that is not in BlockFilter 437 // when calculating the probability of C->D, D will be selected and we 438 // will get A C D B as the layout of this loop. 439 auto AdjustedSumProb = BranchProbability::getOne(); 440 for (MachineBasicBlock *Succ : BB->successors()) { 441 bool SkipSucc = false; 442 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 443 SkipSucc = true; 444 } else { 445 BlockChain *SuccChain = BlockToChain[Succ]; 446 if (SuccChain == &Chain) { 447 SkipSucc = true; 448 } else if (Succ != *SuccChain->begin()) { 449 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 450 continue; 451 } 452 } 453 if (SkipSucc) 454 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 455 else 456 Successors.push_back(Succ); 457 } 458 459 return AdjustedSumProb; 460 } 461 462 /// The helper function returns the branch probability that is adjusted 463 /// or normalized over the new total \p AdjustedSumProb. 464 465 static BranchProbability 466 getAdjustedProbability(BranchProbability OrigProb, 467 BranchProbability AdjustedSumProb) { 468 BranchProbability SuccProb; 469 uint32_t SuccProbN = OrigProb.getNumerator(); 470 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 471 if (SuccProbN >= SuccProbD) 472 SuccProb = BranchProbability::getOne(); 473 else 474 SuccProb = BranchProbability(SuccProbN, SuccProbD); 475 476 return SuccProb; 477 } 478 479 /// When the option OutlineOptionalBranches is on, this method 480 /// checks if the fallthrough candidate block \p Succ (of block 481 /// \p BB) also has other unscheduled predecessor blocks which 482 /// are also successors of \p BB (forming triagular shape CFG). 483 /// If none of such predecessors are small, it returns true. 484 /// The caller can choose to select \p Succ as the layout successors 485 /// so that \p Succ's predecessors (optional branches) can be 486 /// outlined. 487 /// FIXME: fold this with more general layout cost analysis. 488 bool MachineBlockPlacement::shouldPredBlockBeOutlined( 489 MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, 490 const BlockFilterSet *BlockFilter, BranchProbability SuccProb, 491 BranchProbability HotProb) { 492 if (!OutlineOptionalBranches) 493 return false; 494 // If we outline optional branches, look whether Succ is unavoidable, i.e. 495 // dominates all terminators of the MachineFunction. If it does, other 496 // successors must be optional. Don't do this for cold branches. 497 if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { 498 for (MachineBasicBlock *Pred : Succ->predecessors()) { 499 // Check whether there is an unplaced optional branch. 500 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 501 BlockToChain[Pred] == &Chain) 502 continue; 503 // Check whether the optional branch has exactly one BB. 504 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 505 continue; 506 // Check whether the optional branch is small. 507 if (Pred->size() < OutlineOptionalThreshold) 508 return false; 509 } 510 return true; 511 } else 512 return false; 513 } 514 515 /// \brief Select the best successor for a block. 516 /// 517 /// This looks across all successors of a particular block and attempts to 518 /// select the "best" one to be the layout successor. It only considers direct 519 /// successors which also pass the block filter. It will attempt to avoid 520 /// breaking CFG structure, but cave and break such structures in the case of 521 /// very hot successor edges. 522 /// 523 /// \returns The best successor block found, or null if none are viable. 524 MachineBasicBlock * 525 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 526 BlockChain &Chain, 527 const BlockFilterSet *BlockFilter) { 528 const BranchProbability HotProb(StaticLikelyProb, 100); 529 530 MachineBasicBlock *BestSucc = nullptr; 531 auto BestProb = BranchProbability::getZero(); 532 533 SmallVector<MachineBasicBlock *, 4> Successors; 534 auto AdjustedSumProb = 535 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 536 537 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 538 for (MachineBasicBlock *Succ : Successors) { 539 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 540 BranchProbability SuccProb = 541 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 542 543 // This heuristic is off by default. 544 if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, 545 HotProb)) 546 return Succ; 547 548 // Only consider successors which are either "hot", or wouldn't violate 549 // any CFG constraints. 550 BlockChain &SuccChain = *BlockToChain[Succ]; 551 if (SuccChain.UnscheduledPredecessors != 0) { 552 if (SuccProb < HotProb) { 553 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 554 << " (prob) (CFG conflict)\n"); 555 continue; 556 } 557 558 // Make sure that a hot successor doesn't have a globally more 559 // important predecessor. 560 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 561 bool BadCFGConflict = false; 562 for (MachineBasicBlock *Pred : Succ->predecessors()) { 563 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 564 (BlockFilter && !BlockFilter->count(Pred)) || 565 BlockToChain[Pred] == &Chain) 566 continue; 567 BlockFrequency PredEdgeFreq = 568 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 569 // A B 570 // \ / 571 // C 572 // We layout ACB iff A.freq > C.freq * HotProb 573 // i.e. A.freq > A.freq * HotProb + B.freq * HotProb 574 // i.e. A.freq * (1 - HotProb) > B.freq * HotProb 575 // A: CandidateEdge 576 // B: PredEdge 577 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 578 BadCFGConflict = true; 579 break; 580 } 581 } 582 if (BadCFGConflict) { 583 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 584 << " (prob) (non-cold CFG conflict)\n"); 585 continue; 586 } 587 } 588 589 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 590 << " (prob)" 591 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 592 << "\n"); 593 if (BestSucc && BestProb >= SuccProb) 594 continue; 595 BestSucc = Succ; 596 BestProb = SuccProb; 597 } 598 return BestSucc; 599 } 600 601 /// \brief Select the best block from a worklist. 602 /// 603 /// This looks through the provided worklist as a list of candidate basic 604 /// blocks and select the most profitable one to place. The definition of 605 /// profitable only really makes sense in the context of a loop. This returns 606 /// the most frequently visited block in the worklist, which in the case of 607 /// a loop, is the one most desirable to be physically close to the rest of the 608 /// loop body in order to improve icache behavior. 609 /// 610 /// \returns The best block found, or null if none are viable. 611 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 612 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 613 // Once we need to walk the worklist looking for a candidate, cleanup the 614 // worklist of already placed entries. 615 // FIXME: If this shows up on profiles, it could be folded (at the cost of 616 // some code complexity) into the loop below. 617 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 618 [&](MachineBasicBlock *BB) { 619 return BlockToChain.lookup(BB) == &Chain; 620 }), 621 WorkList.end()); 622 623 if (WorkList.empty()) 624 return nullptr; 625 626 bool IsEHPad = WorkList[0]->isEHPad(); 627 628 MachineBasicBlock *BestBlock = nullptr; 629 BlockFrequency BestFreq; 630 for (MachineBasicBlock *MBB : WorkList) { 631 assert(MBB->isEHPad() == IsEHPad); 632 633 BlockChain &SuccChain = *BlockToChain[MBB]; 634 if (&SuccChain == &Chain) 635 continue; 636 637 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 638 639 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 640 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 641 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 642 643 // For ehpad, we layout the least probable first as to avoid jumping back 644 // from least probable landingpads to more probable ones. 645 // 646 // FIXME: Using probability is probably (!) not the best way to achieve 647 // this. We should probably have a more principled approach to layout 648 // cleanup code. 649 // 650 // The goal is to get: 651 // 652 // +--------------------------+ 653 // | V 654 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 655 // 656 // Rather than: 657 // 658 // +-------------------------------------+ 659 // V | 660 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 661 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 662 continue; 663 664 BestBlock = MBB; 665 BestFreq = CandidateFreq; 666 } 667 668 return BestBlock; 669 } 670 671 /// \brief Retrieve the first unplaced basic block. 672 /// 673 /// This routine is called when we are unable to use the CFG to walk through 674 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 675 /// We walk through the function's blocks in order, starting from the 676 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 677 /// re-scanning the entire sequence on repeated calls to this routine. 678 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 679 MachineFunction &F, const BlockChain &PlacedChain, 680 MachineFunction::iterator &PrevUnplacedBlockIt, 681 const BlockFilterSet *BlockFilter) { 682 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 683 ++I) { 684 if (BlockFilter && !BlockFilter->count(&*I)) 685 continue; 686 if (BlockToChain[&*I] != &PlacedChain) { 687 PrevUnplacedBlockIt = I; 688 // Now select the head of the chain to which the unplaced block belongs 689 // as the block to place. This will force the entire chain to be placed, 690 // and satisfies the requirements of merging chains. 691 return *BlockToChain[&*I]->begin(); 692 } 693 } 694 return nullptr; 695 } 696 697 void MachineBlockPlacement::fillWorkLists( 698 MachineBasicBlock *MBB, 699 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 700 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 701 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 702 const BlockFilterSet *BlockFilter = nullptr) { 703 BlockChain &Chain = *BlockToChain[MBB]; 704 if (!UpdatedPreds.insert(&Chain).second) 705 return; 706 707 assert(Chain.UnscheduledPredecessors == 0); 708 for (MachineBasicBlock *ChainBB : Chain) { 709 assert(BlockToChain[ChainBB] == &Chain); 710 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 711 if (BlockFilter && !BlockFilter->count(Pred)) 712 continue; 713 if (BlockToChain[Pred] == &Chain) 714 continue; 715 ++Chain.UnscheduledPredecessors; 716 } 717 } 718 719 if (Chain.UnscheduledPredecessors != 0) 720 return; 721 722 MBB = *Chain.begin(); 723 if (MBB->isEHPad()) 724 EHPadWorkList.push_back(MBB); 725 else 726 BlockWorkList.push_back(MBB); 727 } 728 729 void MachineBlockPlacement::buildChain( 730 MachineBasicBlock *BB, BlockChain &Chain, 731 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 732 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 733 const BlockFilterSet *BlockFilter) { 734 assert(BB); 735 assert(BlockToChain[BB] == &Chain); 736 MachineFunction &F = *BB->getParent(); 737 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 738 739 MachineBasicBlock *LoopHeaderBB = BB; 740 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 741 BlockFilter); 742 BB = *std::prev(Chain.end()); 743 for (;;) { 744 assert(BB); 745 assert(BlockToChain[BB] == &Chain); 746 assert(*std::prev(Chain.end()) == BB); 747 748 // Look for the best viable successor if there is one to place immediately 749 // after this block. 750 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 751 752 // If an immediate successor isn't available, look for the best viable 753 // block among those we've identified as not violating the loop's CFG at 754 // this point. This won't be a fallthrough, but it will increase locality. 755 if (!BestSucc) 756 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 757 if (!BestSucc) 758 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 759 760 if (!BestSucc) { 761 BestSucc = 762 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 763 if (!BestSucc) 764 break; 765 766 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 767 "layout successor until the CFG reduces\n"); 768 } 769 770 // Place this block, updating the datastructures to reflect its placement. 771 BlockChain &SuccChain = *BlockToChain[BestSucc]; 772 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 773 // we selected a successor that didn't fit naturally into the CFG. 774 SuccChain.UnscheduledPredecessors = 0; 775 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 776 << getBlockName(BestSucc) << "\n"); 777 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 778 BlockFilter); 779 Chain.merge(BestSucc, &SuccChain); 780 BB = *std::prev(Chain.end()); 781 } 782 783 DEBUG(dbgs() << "Finished forming chain for header block " 784 << getBlockName(*Chain.begin()) << "\n"); 785 } 786 787 /// \brief Find the best loop top block for layout. 788 /// 789 /// Look for a block which is strictly better than the loop header for laying 790 /// out at the top of the loop. This looks for one and only one pattern: 791 /// a latch block with no conditional exit. This block will cause a conditional 792 /// jump around it or will be the bottom of the loop if we lay it out in place, 793 /// but if it it doesn't end up at the bottom of the loop for any reason, 794 /// rotation alone won't fix it. Because such a block will always result in an 795 /// unconditional jump (for the backedge) rotating it in front of the loop 796 /// header is always profitable. 797 MachineBasicBlock * 798 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 799 const BlockFilterSet &LoopBlockSet) { 800 // Check that the header hasn't been fused with a preheader block due to 801 // crazy branches. If it has, we need to start with the header at the top to 802 // prevent pulling the preheader into the loop body. 803 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 804 if (!LoopBlockSet.count(*HeaderChain.begin())) 805 return L.getHeader(); 806 807 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 808 << "\n"); 809 810 BlockFrequency BestPredFreq; 811 MachineBasicBlock *BestPred = nullptr; 812 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 813 if (!LoopBlockSet.count(Pred)) 814 continue; 815 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 816 << Pred->succ_size() << " successors, "; 817 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 818 if (Pred->succ_size() > 1) 819 continue; 820 821 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 822 if (!BestPred || PredFreq > BestPredFreq || 823 (!(PredFreq < BestPredFreq) && 824 Pred->isLayoutSuccessor(L.getHeader()))) { 825 BestPred = Pred; 826 BestPredFreq = PredFreq; 827 } 828 } 829 830 // If no direct predecessor is fine, just use the loop header. 831 if (!BestPred) { 832 DEBUG(dbgs() << " final top unchanged\n"); 833 return L.getHeader(); 834 } 835 836 // Walk backwards through any straight line of predecessors. 837 while (BestPred->pred_size() == 1 && 838 (*BestPred->pred_begin())->succ_size() == 1 && 839 *BestPred->pred_begin() != L.getHeader()) 840 BestPred = *BestPred->pred_begin(); 841 842 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 843 return BestPred; 844 } 845 846 /// \brief Find the best loop exiting block for layout. 847 /// 848 /// This routine implements the logic to analyze the loop looking for the best 849 /// block to layout at the top of the loop. Typically this is done to maximize 850 /// fallthrough opportunities. 851 MachineBasicBlock * 852 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 853 const BlockFilterSet &LoopBlockSet) { 854 // We don't want to layout the loop linearly in all cases. If the loop header 855 // is just a normal basic block in the loop, we want to look for what block 856 // within the loop is the best one to layout at the top. However, if the loop 857 // header has be pre-merged into a chain due to predecessors not having 858 // analyzable branches, *and* the predecessor it is merged with is *not* part 859 // of the loop, rotating the header into the middle of the loop will create 860 // a non-contiguous range of blocks which is Very Bad. So start with the 861 // header and only rotate if safe. 862 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 863 if (!LoopBlockSet.count(*HeaderChain.begin())) 864 return nullptr; 865 866 BlockFrequency BestExitEdgeFreq; 867 unsigned BestExitLoopDepth = 0; 868 MachineBasicBlock *ExitingBB = nullptr; 869 // If there are exits to outer loops, loop rotation can severely limit 870 // fallthrough opportunites unless it selects such an exit. Keep a set of 871 // blocks where rotating to exit with that block will reach an outer loop. 872 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 873 874 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 875 << "\n"); 876 for (MachineBasicBlock *MBB : L.getBlocks()) { 877 BlockChain &Chain = *BlockToChain[MBB]; 878 // Ensure that this block is at the end of a chain; otherwise it could be 879 // mid-way through an inner loop or a successor of an unanalyzable branch. 880 if (MBB != *std::prev(Chain.end())) 881 continue; 882 883 // Now walk the successors. We need to establish whether this has a viable 884 // exiting successor and whether it has a viable non-exiting successor. 885 // We store the old exiting state and restore it if a viable looping 886 // successor isn't found. 887 MachineBasicBlock *OldExitingBB = ExitingBB; 888 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 889 bool HasLoopingSucc = false; 890 for (MachineBasicBlock *Succ : MBB->successors()) { 891 if (Succ->isEHPad()) 892 continue; 893 if (Succ == MBB) 894 continue; 895 BlockChain &SuccChain = *BlockToChain[Succ]; 896 // Don't split chains, either this chain or the successor's chain. 897 if (&Chain == &SuccChain) { 898 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 899 << getBlockName(Succ) << " (chain conflict)\n"); 900 continue; 901 } 902 903 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 904 if (LoopBlockSet.count(Succ)) { 905 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 906 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 907 HasLoopingSucc = true; 908 continue; 909 } 910 911 unsigned SuccLoopDepth = 0; 912 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 913 SuccLoopDepth = ExitLoop->getLoopDepth(); 914 if (ExitLoop->contains(&L)) 915 BlocksExitingToOuterLoop.insert(MBB); 916 } 917 918 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 919 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 920 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 921 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 922 // Note that we bias this toward an existing layout successor to retain 923 // incoming order in the absence of better information. The exit must have 924 // a frequency higher than the current exit before we consider breaking 925 // the layout. 926 BranchProbability Bias(100 - ExitBlockBias, 100); 927 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 928 ExitEdgeFreq > BestExitEdgeFreq || 929 (MBB->isLayoutSuccessor(Succ) && 930 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 931 BestExitEdgeFreq = ExitEdgeFreq; 932 ExitingBB = MBB; 933 } 934 } 935 936 if (!HasLoopingSucc) { 937 // Restore the old exiting state, no viable looping successor was found. 938 ExitingBB = OldExitingBB; 939 BestExitEdgeFreq = OldBestExitEdgeFreq; 940 } 941 } 942 // Without a candidate exiting block or with only a single block in the 943 // loop, just use the loop header to layout the loop. 944 if (!ExitingBB || L.getNumBlocks() == 1) 945 return nullptr; 946 947 // Also, if we have exit blocks which lead to outer loops but didn't select 948 // one of them as the exiting block we are rotating toward, disable loop 949 // rotation altogether. 950 if (!BlocksExitingToOuterLoop.empty() && 951 !BlocksExitingToOuterLoop.count(ExitingBB)) 952 return nullptr; 953 954 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 955 return ExitingBB; 956 } 957 958 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 959 /// 960 /// Once we have built a chain, try to rotate it to line up the hot exit block 961 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 962 /// branches. For example, if the loop has fallthrough into its header and out 963 /// of its bottom already, don't rotate it. 964 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 965 MachineBasicBlock *ExitingBB, 966 const BlockFilterSet &LoopBlockSet) { 967 if (!ExitingBB) 968 return; 969 970 MachineBasicBlock *Top = *LoopChain.begin(); 971 bool ViableTopFallthrough = false; 972 for (MachineBasicBlock *Pred : Top->predecessors()) { 973 BlockChain *PredChain = BlockToChain[Pred]; 974 if (!LoopBlockSet.count(Pred) && 975 (!PredChain || Pred == *std::prev(PredChain->end()))) { 976 ViableTopFallthrough = true; 977 break; 978 } 979 } 980 981 // If the header has viable fallthrough, check whether the current loop 982 // bottom is a viable exiting block. If so, bail out as rotating will 983 // introduce an unnecessary branch. 984 if (ViableTopFallthrough) { 985 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 986 for (MachineBasicBlock *Succ : Bottom->successors()) { 987 BlockChain *SuccChain = BlockToChain[Succ]; 988 if (!LoopBlockSet.count(Succ) && 989 (!SuccChain || Succ == *SuccChain->begin())) 990 return; 991 } 992 } 993 994 BlockChain::iterator ExitIt = 995 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 996 if (ExitIt == LoopChain.end()) 997 return; 998 999 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1000 } 1001 1002 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1003 /// 1004 /// With profile data, we can determine the cost in terms of missed fall through 1005 /// opportunities when rotating a loop chain and select the best rotation. 1006 /// Basically, there are three kinds of cost to consider for each rotation: 1007 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1008 /// the loop to the loop header. 1009 /// 2. The possibly missed fall through edges (if they exist) from the loop 1010 /// exits to BB out of the loop. 1011 /// 3. The missed fall through edge (if it exists) from the last BB to the 1012 /// first BB in the loop chain. 1013 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1014 /// We select the best rotation with the smallest cost. 1015 void MachineBlockPlacement::rotateLoopWithProfile( 1016 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 1017 auto HeaderBB = L.getHeader(); 1018 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 1019 auto RotationPos = LoopChain.end(); 1020 1021 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1022 1023 // A utility lambda that scales up a block frequency by dividing it by a 1024 // branch probability which is the reciprocal of the scale. 1025 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1026 unsigned Scale) -> BlockFrequency { 1027 if (Scale == 0) 1028 return 0; 1029 // Use operator / between BlockFrequency and BranchProbability to implement 1030 // saturating multiplication. 1031 return Freq / BranchProbability(1, Scale); 1032 }; 1033 1034 // Compute the cost of the missed fall-through edge to the loop header if the 1035 // chain head is not the loop header. As we only consider natural loops with 1036 // single header, this computation can be done only once. 1037 BlockFrequency HeaderFallThroughCost(0); 1038 for (auto *Pred : HeaderBB->predecessors()) { 1039 BlockChain *PredChain = BlockToChain[Pred]; 1040 if (!LoopBlockSet.count(Pred) && 1041 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1042 auto EdgeFreq = 1043 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1044 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1045 // If the predecessor has only an unconditional jump to the header, we 1046 // need to consider the cost of this jump. 1047 if (Pred->succ_size() == 1) 1048 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1049 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1050 } 1051 } 1052 1053 // Here we collect all exit blocks in the loop, and for each exit we find out 1054 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1055 // as the sum of frequencies of exit edges we collect here, excluding the exit 1056 // edge from the tail of the loop chain. 1057 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1058 for (auto BB : LoopChain) { 1059 auto LargestExitEdgeProb = BranchProbability::getZero(); 1060 for (auto *Succ : BB->successors()) { 1061 BlockChain *SuccChain = BlockToChain[Succ]; 1062 if (!LoopBlockSet.count(Succ) && 1063 (!SuccChain || Succ == *SuccChain->begin())) { 1064 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1065 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1066 } 1067 } 1068 if (LargestExitEdgeProb > BranchProbability::getZero()) { 1069 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 1070 ExitsWithFreq.emplace_back(BB, ExitFreq); 1071 } 1072 } 1073 1074 // In this loop we iterate every block in the loop chain and calculate the 1075 // cost assuming the block is the head of the loop chain. When the loop ends, 1076 // we should have found the best candidate as the loop chain's head. 1077 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1078 EndIter = LoopChain.end(); 1079 Iter != EndIter; Iter++, TailIter++) { 1080 // TailIter is used to track the tail of the loop chain if the block we are 1081 // checking (pointed by Iter) is the head of the chain. 1082 if (TailIter == LoopChain.end()) 1083 TailIter = LoopChain.begin(); 1084 1085 auto TailBB = *TailIter; 1086 1087 // Calculate the cost by putting this BB to the top. 1088 BlockFrequency Cost = 0; 1089 1090 // If the current BB is the loop header, we need to take into account the 1091 // cost of the missed fall through edge from outside of the loop to the 1092 // header. 1093 if (Iter != HeaderIter) 1094 Cost += HeaderFallThroughCost; 1095 1096 // Collect the loop exit cost by summing up frequencies of all exit edges 1097 // except the one from the chain tail. 1098 for (auto &ExitWithFreq : ExitsWithFreq) 1099 if (TailBB != ExitWithFreq.first) 1100 Cost += ExitWithFreq.second; 1101 1102 // The cost of breaking the once fall-through edge from the tail to the top 1103 // of the loop chain. Here we need to consider three cases: 1104 // 1. If the tail node has only one successor, then we will get an 1105 // additional jmp instruction. So the cost here is (MisfetchCost + 1106 // JumpInstCost) * tail node frequency. 1107 // 2. If the tail node has two successors, then we may still get an 1108 // additional jmp instruction if the layout successor after the loop 1109 // chain is not its CFG successor. Note that the more frequently executed 1110 // jmp instruction will be put ahead of the other one. Assume the 1111 // frequency of those two branches are x and y, where x is the frequency 1112 // of the edge to the chain head, then the cost will be 1113 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1114 // 3. If the tail node has more than two successors (this rarely happens), 1115 // we won't consider any additional cost. 1116 if (TailBB->isSuccessor(*Iter)) { 1117 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1118 if (TailBB->succ_size() == 1) 1119 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1120 MisfetchCost + JumpInstCost); 1121 else if (TailBB->succ_size() == 2) { 1122 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1123 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1124 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1125 ? TailBBFreq * TailToHeadProb.getCompl() 1126 : TailToHeadFreq; 1127 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1128 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1129 } 1130 } 1131 1132 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1133 << " to the top: " << Cost.getFrequency() << "\n"); 1134 1135 if (Cost < SmallestRotationCost) { 1136 SmallestRotationCost = Cost; 1137 RotationPos = Iter; 1138 } 1139 } 1140 1141 if (RotationPos != LoopChain.end()) { 1142 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1143 << " to the top\n"); 1144 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1145 } 1146 } 1147 1148 /// \brief Collect blocks in the given loop that are to be placed. 1149 /// 1150 /// When profile data is available, exclude cold blocks from the returned set; 1151 /// otherwise, collect all blocks in the loop. 1152 MachineBlockPlacement::BlockFilterSet 1153 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1154 BlockFilterSet LoopBlockSet; 1155 1156 // Filter cold blocks off from LoopBlockSet when profile data is available. 1157 // Collect the sum of frequencies of incoming edges to the loop header from 1158 // outside. If we treat the loop as a super block, this is the frequency of 1159 // the loop. Then for each block in the loop, we calculate the ratio between 1160 // its frequency and the frequency of the loop block. When it is too small, 1161 // don't add it to the loop chain. If there are outer loops, then this block 1162 // will be merged into the first outer loop chain for which this block is not 1163 // cold anymore. This needs precise profile data and we only do this when 1164 // profile data is available. 1165 if (F.getFunction()->getEntryCount()) { 1166 BlockFrequency LoopFreq(0); 1167 for (auto LoopPred : L.getHeader()->predecessors()) 1168 if (!L.contains(LoopPred)) 1169 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1170 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1171 1172 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1173 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1174 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1175 continue; 1176 LoopBlockSet.insert(LoopBB); 1177 } 1178 } else 1179 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1180 1181 return LoopBlockSet; 1182 } 1183 1184 /// \brief Forms basic block chains from the natural loop structures. 1185 /// 1186 /// These chains are designed to preserve the existing *structure* of the code 1187 /// as much as possible. We can then stitch the chains together in a way which 1188 /// both preserves the topological structure and minimizes taken conditional 1189 /// branches. 1190 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1191 MachineLoop &L) { 1192 // First recurse through any nested loops, building chains for those inner 1193 // loops. 1194 for (MachineLoop *InnerLoop : L) 1195 buildLoopChains(F, *InnerLoop); 1196 1197 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1198 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1199 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1200 1201 // Check if we have profile data for this function. If yes, we will rotate 1202 // this loop by modeling costs more precisely which requires the profile data 1203 // for better layout. 1204 bool RotateLoopWithProfile = 1205 ForcePreciseRotationCost || 1206 (PreciseRotationCost && F.getFunction()->getEntryCount()); 1207 1208 // First check to see if there is an obviously preferable top block for the 1209 // loop. This will default to the header, but may end up as one of the 1210 // predecessors to the header if there is one which will result in strictly 1211 // fewer branches in the loop body. 1212 // When we use profile data to rotate the loop, this is unnecessary. 1213 MachineBasicBlock *LoopTop = 1214 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1215 1216 // If we selected just the header for the loop top, look for a potentially 1217 // profitable exit block in the event that rotating the loop can eliminate 1218 // branches by placing an exit edge at the bottom. 1219 MachineBasicBlock *ExitingBB = nullptr; 1220 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1221 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1222 1223 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1224 1225 // FIXME: This is a really lame way of walking the chains in the loop: we 1226 // walk the blocks, and use a set to prevent visiting a particular chain 1227 // twice. 1228 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1229 assert(LoopChain.UnscheduledPredecessors == 0); 1230 UpdatedPreds.insert(&LoopChain); 1231 1232 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1233 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1234 &LoopBlockSet); 1235 1236 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1237 1238 if (RotateLoopWithProfile) 1239 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1240 else 1241 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1242 1243 DEBUG({ 1244 // Crash at the end so we get all of the debugging output first. 1245 bool BadLoop = false; 1246 if (LoopChain.UnscheduledPredecessors) { 1247 BadLoop = true; 1248 dbgs() << "Loop chain contains a block without its preds placed!\n" 1249 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1250 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1251 } 1252 for (MachineBasicBlock *ChainBB : LoopChain) { 1253 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1254 if (!LoopBlockSet.erase(ChainBB)) { 1255 // We don't mark the loop as bad here because there are real situations 1256 // where this can occur. For example, with an unanalyzable fallthrough 1257 // from a loop block to a non-loop block or vice versa. 1258 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1259 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1260 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1261 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1262 } 1263 } 1264 1265 if (!LoopBlockSet.empty()) { 1266 BadLoop = true; 1267 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1268 dbgs() << "Loop contains blocks never placed into a chain!\n" 1269 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1270 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1271 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1272 } 1273 assert(!BadLoop && "Detected problems with the placement of this loop."); 1274 }); 1275 } 1276 1277 /// When OutlineOpitonalBranches is on, this method colects BBs that 1278 /// dominates all terminator blocks of the function \p F. 1279 void MachineBlockPlacement::collectMustExecuteBBs(MachineFunction &F) { 1280 if (OutlineOptionalBranches) { 1281 // Find the nearest common dominator of all of F's terminators. 1282 MachineBasicBlock *Terminator = nullptr; 1283 for (MachineBasicBlock &MBB : F) { 1284 if (MBB.succ_size() == 0) { 1285 if (Terminator == nullptr) 1286 Terminator = &MBB; 1287 else 1288 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1289 } 1290 } 1291 1292 // MBBs dominating this common dominator are unavoidable. 1293 UnavoidableBlocks.clear(); 1294 for (MachineBasicBlock &MBB : F) { 1295 if (MDT->dominates(&MBB, Terminator)) { 1296 UnavoidableBlocks.insert(&MBB); 1297 } 1298 } 1299 } 1300 } 1301 1302 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1303 // Ensure that every BB in the function has an associated chain to simplify 1304 // the assumptions of the remaining algorithm. 1305 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1306 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1307 MachineBasicBlock *BB = &*FI; 1308 BlockChain *Chain = 1309 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1310 // Also, merge any blocks which we cannot reason about and must preserve 1311 // the exact fallthrough behavior for. 1312 for (;;) { 1313 Cond.clear(); 1314 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1315 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1316 break; 1317 1318 MachineFunction::iterator NextFI = std::next(FI); 1319 MachineBasicBlock *NextBB = &*NextFI; 1320 // Ensure that the layout successor is a viable block, as we know that 1321 // fallthrough is a possibility. 1322 assert(NextFI != FE && "Can't fallthrough past the last block."); 1323 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1324 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1325 << "\n"); 1326 Chain->merge(NextBB, nullptr); 1327 FI = NextFI; 1328 BB = NextBB; 1329 } 1330 } 1331 1332 // Turned on with OutlineOptionalBranches option 1333 collectMustExecuteBBs(F); 1334 1335 // Build any loop-based chains. 1336 for (MachineLoop *L : *MLI) 1337 buildLoopChains(F, *L); 1338 1339 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1340 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1341 1342 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1343 for (MachineBasicBlock &MBB : F) 1344 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1345 1346 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1347 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1348 1349 #ifndef NDEBUG 1350 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1351 #endif 1352 DEBUG({ 1353 // Crash at the end so we get all of the debugging output first. 1354 bool BadFunc = false; 1355 FunctionBlockSetType FunctionBlockSet; 1356 for (MachineBasicBlock &MBB : F) 1357 FunctionBlockSet.insert(&MBB); 1358 1359 for (MachineBasicBlock *ChainBB : FunctionChain) 1360 if (!FunctionBlockSet.erase(ChainBB)) { 1361 BadFunc = true; 1362 dbgs() << "Function chain contains a block not in the function!\n" 1363 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1364 } 1365 1366 if (!FunctionBlockSet.empty()) { 1367 BadFunc = true; 1368 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1369 dbgs() << "Function contains blocks never placed into a chain!\n" 1370 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1371 } 1372 assert(!BadFunc && "Detected problems with the block placement."); 1373 }); 1374 1375 // Splice the blocks into place. 1376 MachineFunction::iterator InsertPos = F.begin(); 1377 for (MachineBasicBlock *ChainBB : FunctionChain) { 1378 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1379 : " ... ") 1380 << getBlockName(ChainBB) << "\n"); 1381 if (InsertPos != MachineFunction::iterator(ChainBB)) 1382 F.splice(InsertPos, ChainBB); 1383 else 1384 ++InsertPos; 1385 1386 // Update the terminator of the previous block. 1387 if (ChainBB == *FunctionChain.begin()) 1388 continue; 1389 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1390 1391 // FIXME: It would be awesome of updateTerminator would just return rather 1392 // than assert when the branch cannot be analyzed in order to remove this 1393 // boiler plate. 1394 Cond.clear(); 1395 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1396 1397 // The "PrevBB" is not yet updated to reflect current code layout, so, 1398 // o. it may fall-through to a block without explict "goto" instruction 1399 // before layout, and no longer fall-through it after layout; or 1400 // o. just opposite. 1401 // 1402 // AnalyzeBranch() may return erroneous value for FBB when these two 1403 // situations take place. For the first scenario FBB is mistakenly set NULL; 1404 // for the 2nd scenario, the FBB, which is expected to be NULL, is 1405 // mistakenly pointing to "*BI". 1406 // Thus, if the future change needs to use FBB before the layout is set, it 1407 // has to correct FBB first by using the code similar to the following: 1408 // 1409 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1410 // PrevBB->updateTerminator(); 1411 // Cond.clear(); 1412 // TBB = FBB = nullptr; 1413 // if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1414 // // FIXME: This should never take place. 1415 // TBB = FBB = nullptr; 1416 // } 1417 // } 1418 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) 1419 PrevBB->updateTerminator(); 1420 } 1421 1422 // Fixup the last block. 1423 Cond.clear(); 1424 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1425 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1426 F.back().updateTerminator(); 1427 } 1428 1429 void MachineBlockPlacement::optimizeBranches(MachineFunction &F) { 1430 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1431 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1432 1433 // Now that all the basic blocks in the chain have the proper layout, 1434 // make a final call to AnalyzeBranch with AllowModify set. 1435 // Indeed, the target may be able to optimize the branches in a way we 1436 // cannot because all branches may not be analyzable. 1437 // E.g., the target may be able to remove an unconditional branch to 1438 // a fallthrough when it occurs after predicated terminators. 1439 for (MachineBasicBlock *ChainBB : FunctionChain) { 1440 Cond.clear(); 1441 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1442 if (!TII->AnalyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 1443 // If PrevBB has a two-way branch, try to re-order the branches 1444 // such that we branch to the successor with higher probability first. 1445 if (TBB && !Cond.empty() && FBB && 1446 MBPI->getEdgeProbability(ChainBB, FBB) > 1447 MBPI->getEdgeProbability(ChainBB, TBB) && 1448 !TII->ReverseBranchCondition(Cond)) { 1449 DEBUG(dbgs() << "Reverse order of the two branches: " 1450 << getBlockName(ChainBB) << "\n"); 1451 DEBUG(dbgs() << " Edge probability: " 1452 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 1453 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 1454 DebugLoc dl; // FIXME: this is nowhere 1455 TII->RemoveBranch(*ChainBB); 1456 TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); 1457 ChainBB->updateTerminator(); 1458 } 1459 } 1460 } 1461 } 1462 1463 void MachineBlockPlacement::alignBlocks(MachineFunction &F) { 1464 // Walk through the backedges of the function now that we have fully laid out 1465 // the basic blocks and align the destination of each backedge. We don't rely 1466 // exclusively on the loop info here so that we can align backedges in 1467 // unnatural CFGs and backedges that were introduced purely because of the 1468 // loop rotations done during this layout pass. 1469 if (F.getFunction()->optForSize()) 1470 return; 1471 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1472 if (FunctionChain.begin() == FunctionChain.end()) 1473 return; // Empty chain. 1474 1475 const BranchProbability ColdProb(1, 5); // 20% 1476 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1477 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1478 for (MachineBasicBlock *ChainBB : FunctionChain) { 1479 if (ChainBB == *FunctionChain.begin()) 1480 continue; 1481 1482 // Don't align non-looping basic blocks. These are unlikely to execute 1483 // enough times to matter in practice. Note that we'll still handle 1484 // unnatural CFGs inside of a natural outer loop (the common case) and 1485 // rotated loops. 1486 MachineLoop *L = MLI->getLoopFor(ChainBB); 1487 if (!L) 1488 continue; 1489 1490 unsigned Align = TLI->getPrefLoopAlignment(L); 1491 if (!Align) 1492 continue; // Don't care about loop alignment. 1493 1494 // If the block is cold relative to the function entry don't waste space 1495 // aligning it. 1496 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1497 if (Freq < WeightedEntryFreq) 1498 continue; 1499 1500 // If the block is cold relative to its loop header, don't align it 1501 // regardless of what edges into the block exist. 1502 MachineBasicBlock *LoopHeader = L->getHeader(); 1503 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1504 if (Freq < (LoopHeaderFreq * ColdProb)) 1505 continue; 1506 1507 // Check for the existence of a non-layout predecessor which would benefit 1508 // from aligning this block. 1509 MachineBasicBlock *LayoutPred = 1510 &*std::prev(MachineFunction::iterator(ChainBB)); 1511 1512 // Force alignment if all the predecessors are jumps. We already checked 1513 // that the block isn't cold above. 1514 if (!LayoutPred->isSuccessor(ChainBB)) { 1515 ChainBB->setAlignment(Align); 1516 continue; 1517 } 1518 1519 // Align this block if the layout predecessor's edge into this block is 1520 // cold relative to the block. When this is true, other predecessors make up 1521 // all of the hot entries into the block and thus alignment is likely to be 1522 // important. 1523 BranchProbability LayoutProb = 1524 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1525 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1526 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1527 ChainBB->setAlignment(Align); 1528 } 1529 } 1530 1531 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1532 if (skipFunction(*F.getFunction())) 1533 return false; 1534 1535 // Check for single-block functions and skip them. 1536 if (std::next(F.begin()) == F.end()) 1537 return false; 1538 1539 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1540 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 1541 getAnalysis<MachineBlockFrequencyInfo>()); 1542 MLI = &getAnalysis<MachineLoopInfo>(); 1543 TII = F.getSubtarget().getInstrInfo(); 1544 TLI = F.getSubtarget().getTargetLowering(); 1545 MDT = &getAnalysis<MachineDominatorTree>(); 1546 assert(BlockToChain.empty()); 1547 1548 buildCFGChains(F); 1549 1550 // Changing the layout can create new tail merging opportunities. 1551 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 1552 // TailMerge can create jump into if branches that make CFG irreducible for 1553 // HW that requires structurized CFG. 1554 bool EnableTailMerge = !F.getTarget().requiresStructuredCFG() && 1555 PassConfig->getEnableTailMerge() && 1556 BranchFoldPlacement; 1557 // No tail merging opportunities if the block number is less than four. 1558 if (F.size() > 3 && EnableTailMerge) { 1559 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 1560 *MBPI); 1561 1562 if (BF.OptimizeFunction(F, TII, F.getSubtarget().getRegisterInfo(), 1563 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 1564 /*AfterBlockPlacement=*/true)) { 1565 // Redo the layout if tail merging creates/removes/moves blocks. 1566 BlockToChain.clear(); 1567 ChainAllocator.DestroyAll(); 1568 buildCFGChains(F); 1569 } 1570 } 1571 1572 optimizeBranches(F); 1573 alignBlocks(F); 1574 1575 BlockToChain.clear(); 1576 ChainAllocator.DestroyAll(); 1577 1578 if (AlignAllBlock) 1579 // Align all of the blocks in the function to a specific alignment. 1580 for (MachineBasicBlock &MBB : F) 1581 MBB.setAlignment(AlignAllBlock); 1582 else if (AlignAllNonFallThruBlocks) { 1583 // Align all of the blocks that have no fall-through predecessors to a 1584 // specific alignment. 1585 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1586 auto LayoutPred = std::prev(MBI); 1587 if (!LayoutPred->isSuccessor(&*MBI)) 1588 MBI->setAlignment(AlignAllNonFallThruBlocks); 1589 } 1590 } 1591 1592 // We always return true as we have no way to track whether the final order 1593 // differs from the original order. 1594 return true; 1595 } 1596 1597 namespace { 1598 /// \brief A pass to compute block placement statistics. 1599 /// 1600 /// A separate pass to compute interesting statistics for evaluating block 1601 /// placement. This is separate from the actual placement pass so that they can 1602 /// be computed in the absence of any placement transformations or when using 1603 /// alternative placement strategies. 1604 class MachineBlockPlacementStats : public MachineFunctionPass { 1605 /// \brief A handle to the branch probability pass. 1606 const MachineBranchProbabilityInfo *MBPI; 1607 1608 /// \brief A handle to the function-wide block frequency pass. 1609 const MachineBlockFrequencyInfo *MBFI; 1610 1611 public: 1612 static char ID; // Pass identification, replacement for typeid 1613 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1614 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1615 } 1616 1617 bool runOnMachineFunction(MachineFunction &F) override; 1618 1619 void getAnalysisUsage(AnalysisUsage &AU) const override { 1620 AU.addRequired<MachineBranchProbabilityInfo>(); 1621 AU.addRequired<MachineBlockFrequencyInfo>(); 1622 AU.setPreservesAll(); 1623 MachineFunctionPass::getAnalysisUsage(AU); 1624 } 1625 }; 1626 } 1627 1628 char MachineBlockPlacementStats::ID = 0; 1629 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1630 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1631 "Basic Block Placement Stats", false, false) 1632 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1633 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1634 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1635 "Basic Block Placement Stats", false, false) 1636 1637 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1638 // Check for single-block functions and skip them. 1639 if (std::next(F.begin()) == F.end()) 1640 return false; 1641 1642 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1643 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1644 1645 for (MachineBasicBlock &MBB : F) { 1646 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1647 Statistic &NumBranches = 1648 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1649 Statistic &BranchTakenFreq = 1650 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1651 for (MachineBasicBlock *Succ : MBB.successors()) { 1652 // Skip if this successor is a fallthrough. 1653 if (MBB.isLayoutSuccessor(Succ)) 1654 continue; 1655 1656 BlockFrequency EdgeFreq = 1657 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1658 ++NumBranches; 1659 BranchTakenFreq += EdgeFreq.getFrequency(); 1660 } 1661 } 1662 1663 return false; 1664 } 1665