1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <forward_list> 54 #include <functional> 55 #include <utility> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "block-placement" 59 60 STATISTIC(NumCondBranches, "Number of conditional branches"); 61 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 62 STATISTIC(CondBranchTakenFreq, 63 "Potential frequency of taking conditional branches"); 64 STATISTIC(UncondBranchTakenFreq, 65 "Potential frequency of taking unconditional branches"); 66 67 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 68 cl::desc("Force the alignment of all " 69 "blocks in the function."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 73 "align-all-nofallthru-blocks", 74 cl::desc("Force the alignment of all " 75 "blocks that have no fall-through predecessors (i.e. don't add " 76 "nops that are executed)."), 77 cl::init(0), cl::Hidden); 78 79 // FIXME: Find a good default for this flag and remove the flag. 80 static cl::opt<unsigned> ExitBlockBias( 81 "block-placement-exit-block-bias", 82 cl::desc("Block frequency percentage a loop exit block needs " 83 "over the original exit to be considered the new exit."), 84 cl::init(0), cl::Hidden); 85 86 // Definition: 87 // - Outlining: placement of a basic block outside the chain or hot path. 88 89 static cl::opt<unsigned> LoopToColdBlockRatio( 90 "loop-to-cold-block-ratio", 91 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 92 "(frequency of block) is greater than this ratio"), 93 cl::init(5), cl::Hidden); 94 95 static cl::opt<bool> 96 PreciseRotationCost("precise-rotation-cost", 97 cl::desc("Model the cost of loop rotation more " 98 "precisely by using profile data."), 99 cl::init(false), cl::Hidden); 100 static cl::opt<bool> 101 ForcePreciseRotationCost("force-precise-rotation-cost", 102 cl::desc("Force the use of precise cost " 103 "loop rotation strategy."), 104 cl::init(false), cl::Hidden); 105 106 static cl::opt<unsigned> MisfetchCost( 107 "misfetch-cost", 108 cl::desc("Cost that models the probabilistic risk of an instruction " 109 "misfetch due to a jump comparing to falling through, whose cost " 110 "is zero."), 111 cl::init(1), cl::Hidden); 112 113 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 114 cl::desc("Cost of jump instructions."), 115 cl::init(1), cl::Hidden); 116 static cl::opt<bool> 117 TailDupPlacement("tail-dup-placement", 118 cl::desc("Perform tail duplication during placement. " 119 "Creates more fallthrough opportunites in " 120 "outline branches."), 121 cl::init(true), cl::Hidden); 122 123 static cl::opt<bool> 124 BranchFoldPlacement("branch-fold-placement", 125 cl::desc("Perform branch folding during placement. " 126 "Reduces code size."), 127 cl::init(true), cl::Hidden); 128 129 // Heuristic for tail duplication. 130 static cl::opt<unsigned> TailDupPlacementThreshold( 131 "tail-dup-placement-threshold", 132 cl::desc("Instruction cutoff for tail duplication during layout. " 133 "Tail merging during layout is forced to have a threshold " 134 "that won't conflict."), cl::init(2), 135 cl::Hidden); 136 137 // Heuristic for tail duplication. 138 static cl::opt<unsigned> TailDupPlacementPenalty( 139 "tail-dup-placement-penalty", 140 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 141 "Copying can increase fallthrough, but it also increases icache " 142 "pressure. This parameter controls the penalty to account for that. " 143 "Percent as integer."), 144 cl::init(2), 145 cl::Hidden); 146 147 // Heuristic for triangle chains. 148 static cl::opt<unsigned> TriangleChainCount( 149 "triangle-chain-count", 150 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 151 "triangle tail duplication heuristic to kick in. 0 to disable."), 152 cl::init(2), 153 cl::Hidden); 154 155 extern cl::opt<unsigned> StaticLikelyProb; 156 extern cl::opt<unsigned> ProfileLikelyProb; 157 158 // Internal option used to control BFI display only after MBP pass. 159 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 160 // -view-block-layout-with-bfi= 161 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 162 163 // Command line option to specify the name of the function for CFG dump 164 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 165 extern cl::opt<std::string> ViewBlockFreqFuncName; 166 167 namespace { 168 class BlockChain; 169 /// \brief Type for our function-wide basic block -> block chain mapping. 170 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 171 } 172 173 namespace { 174 /// \brief A chain of blocks which will be laid out contiguously. 175 /// 176 /// This is the datastructure representing a chain of consecutive blocks that 177 /// are profitable to layout together in order to maximize fallthrough 178 /// probabilities and code locality. We also can use a block chain to represent 179 /// a sequence of basic blocks which have some external (correctness) 180 /// requirement for sequential layout. 181 /// 182 /// Chains can be built around a single basic block and can be merged to grow 183 /// them. They participate in a block-to-chain mapping, which is updated 184 /// automatically as chains are merged together. 185 class BlockChain { 186 /// \brief The sequence of blocks belonging to this chain. 187 /// 188 /// This is the sequence of blocks for a particular chain. These will be laid 189 /// out in-order within the function. 190 SmallVector<MachineBasicBlock *, 4> Blocks; 191 192 /// \brief A handle to the function-wide basic block to block chain mapping. 193 /// 194 /// This is retained in each block chain to simplify the computation of child 195 /// block chains for SCC-formation and iteration. We store the edges to child 196 /// basic blocks, and map them back to their associated chains using this 197 /// structure. 198 BlockToChainMapType &BlockToChain; 199 200 public: 201 /// \brief Construct a new BlockChain. 202 /// 203 /// This builds a new block chain representing a single basic block in the 204 /// function. It also registers itself as the chain that block participates 205 /// in with the BlockToChain mapping. 206 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 207 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 208 assert(BB && "Cannot create a chain with a null basic block"); 209 BlockToChain[BB] = this; 210 } 211 212 /// \brief Iterator over blocks within the chain. 213 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 214 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 215 216 /// \brief Beginning of blocks within the chain. 217 iterator begin() { return Blocks.begin(); } 218 const_iterator begin() const { return Blocks.begin(); } 219 220 /// \brief End of blocks within the chain. 221 iterator end() { return Blocks.end(); } 222 const_iterator end() const { return Blocks.end(); } 223 224 bool remove(MachineBasicBlock* BB) { 225 for(iterator i = begin(); i != end(); ++i) { 226 if (*i == BB) { 227 Blocks.erase(i); 228 return true; 229 } 230 } 231 return false; 232 } 233 234 /// \brief Merge a block chain into this one. 235 /// 236 /// This routine merges a block chain into this one. It takes care of forming 237 /// a contiguous sequence of basic blocks, updating the edge list, and 238 /// updating the block -> chain mapping. It does not free or tear down the 239 /// old chain, but the old chain's block list is no longer valid. 240 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 241 assert(BB); 242 assert(!Blocks.empty()); 243 244 // Fast path in case we don't have a chain already. 245 if (!Chain) { 246 assert(!BlockToChain[BB]); 247 Blocks.push_back(BB); 248 BlockToChain[BB] = this; 249 return; 250 } 251 252 assert(BB == *Chain->begin()); 253 assert(Chain->begin() != Chain->end()); 254 255 // Update the incoming blocks to point to this chain, and add them to the 256 // chain structure. 257 for (MachineBasicBlock *ChainBB : *Chain) { 258 Blocks.push_back(ChainBB); 259 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 260 BlockToChain[ChainBB] = this; 261 } 262 } 263 264 #ifndef NDEBUG 265 /// \brief Dump the blocks in this chain. 266 LLVM_DUMP_METHOD void dump() { 267 for (MachineBasicBlock *MBB : *this) 268 MBB->dump(); 269 } 270 #endif // NDEBUG 271 272 /// \brief Count of predecessors of any block within the chain which have not 273 /// yet been scheduled. In general, we will delay scheduling this chain 274 /// until those predecessors are scheduled (or we find a sufficiently good 275 /// reason to override this heuristic.) Note that when forming loop chains, 276 /// blocks outside the loop are ignored and treated as if they were already 277 /// scheduled. 278 /// 279 /// Note: This field is reinitialized multiple times - once for each loop, 280 /// and then once for the function as a whole. 281 unsigned UnscheduledPredecessors; 282 }; 283 } 284 285 namespace { 286 class MachineBlockPlacement : public MachineFunctionPass { 287 /// \brief A typedef for a block filter set. 288 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 289 290 /// Pair struct containing basic block and taildup profitiability 291 struct BlockAndTailDupResult { 292 MachineBasicBlock *BB; 293 bool ShouldTailDup; 294 }; 295 296 /// Triple struct containing edge weight and the edge. 297 struct WeightedEdge { 298 BlockFrequency Weight; 299 MachineBasicBlock *Src; 300 MachineBasicBlock *Dest; 301 }; 302 303 /// \brief work lists of blocks that are ready to be laid out 304 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 305 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 306 307 /// Edges that have already been computed as optimal. 308 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 309 310 /// \brief Machine Function 311 MachineFunction *F; 312 313 /// \brief A handle to the branch probability pass. 314 const MachineBranchProbabilityInfo *MBPI; 315 316 /// \brief A handle to the function-wide block frequency pass. 317 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 318 319 /// \brief A handle to the loop info. 320 MachineLoopInfo *MLI; 321 322 /// \brief Preferred loop exit. 323 /// Member variable for convenience. It may be removed by duplication deep 324 /// in the call stack. 325 MachineBasicBlock *PreferredLoopExit; 326 327 /// \brief A handle to the target's instruction info. 328 const TargetInstrInfo *TII; 329 330 /// \brief A handle to the target's lowering info. 331 const TargetLoweringBase *TLI; 332 333 /// \brief A handle to the post dominator tree. 334 MachinePostDominatorTree *MPDT; 335 336 /// \brief Duplicator used to duplicate tails during placement. 337 /// 338 /// Placement decisions can open up new tail duplication opportunities, but 339 /// since tail duplication affects placement decisions of later blocks, it 340 /// must be done inline. 341 TailDuplicator TailDup; 342 343 /// \brief Allocator and owner of BlockChain structures. 344 /// 345 /// We build BlockChains lazily while processing the loop structure of 346 /// a function. To reduce malloc traffic, we allocate them using this 347 /// slab-like allocator, and destroy them after the pass completes. An 348 /// important guarantee is that this allocator produces stable pointers to 349 /// the chains. 350 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 351 352 /// \brief Function wide BasicBlock to BlockChain mapping. 353 /// 354 /// This mapping allows efficiently moving from any given basic block to the 355 /// BlockChain it participates in, if any. We use it to, among other things, 356 /// allow implicitly defining edges between chains as the existing edges 357 /// between basic blocks. 358 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 359 360 #ifndef NDEBUG 361 /// The set of basic blocks that have terminators that cannot be fully 362 /// analyzed. These basic blocks cannot be re-ordered safely by 363 /// MachineBlockPlacement, and we must preserve physical layout of these 364 /// blocks and their successors through the pass. 365 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 366 #endif 367 368 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 369 /// if the count goes to 0, add them to the appropriate work list. 370 void markChainSuccessors( 371 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 372 const BlockFilterSet *BlockFilter = nullptr); 373 374 /// Decrease the UnscheduledPredecessors count for a single block, and 375 /// if the count goes to 0, add them to the appropriate work list. 376 void markBlockSuccessors( 377 const BlockChain &Chain, const MachineBasicBlock *BB, 378 const MachineBasicBlock *LoopHeaderBB, 379 const BlockFilterSet *BlockFilter = nullptr); 380 381 BranchProbability 382 collectViableSuccessors( 383 const MachineBasicBlock *BB, const BlockChain &Chain, 384 const BlockFilterSet *BlockFilter, 385 SmallVector<MachineBasicBlock *, 4> &Successors); 386 bool shouldPredBlockBeOutlined( 387 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 388 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 389 BranchProbability SuccProb, BranchProbability HotProb); 390 bool repeatedlyTailDuplicateBlock( 391 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 392 const MachineBasicBlock *LoopHeaderBB, 393 BlockChain &Chain, BlockFilterSet *BlockFilter, 394 MachineFunction::iterator &PrevUnplacedBlockIt); 395 bool maybeTailDuplicateBlock( 396 MachineBasicBlock *BB, MachineBasicBlock *LPred, 397 BlockChain &Chain, BlockFilterSet *BlockFilter, 398 MachineFunction::iterator &PrevUnplacedBlockIt, 399 bool &DuplicatedToPred); 400 bool hasBetterLayoutPredecessor( 401 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 402 const BlockChain &SuccChain, BranchProbability SuccProb, 403 BranchProbability RealSuccProb, const BlockChain &Chain, 404 const BlockFilterSet *BlockFilter); 405 BlockAndTailDupResult selectBestSuccessor( 406 const MachineBasicBlock *BB, const BlockChain &Chain, 407 const BlockFilterSet *BlockFilter); 408 MachineBasicBlock *selectBestCandidateBlock( 409 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 410 MachineBasicBlock *getFirstUnplacedBlock( 411 const BlockChain &PlacedChain, 412 MachineFunction::iterator &PrevUnplacedBlockIt, 413 const BlockFilterSet *BlockFilter); 414 415 /// \brief Add a basic block to the work list if it is appropriate. 416 /// 417 /// If the optional parameter BlockFilter is provided, only MBB 418 /// present in the set will be added to the worklist. If nullptr 419 /// is provided, no filtering occurs. 420 void fillWorkLists(const MachineBasicBlock *MBB, 421 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 422 const BlockFilterSet *BlockFilter); 423 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 424 BlockFilterSet *BlockFilter = nullptr); 425 MachineBasicBlock *findBestLoopTop( 426 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 427 MachineBasicBlock *findBestLoopExit( 428 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 429 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 430 void buildLoopChains(const MachineLoop &L); 431 void rotateLoop( 432 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 433 const BlockFilterSet &LoopBlockSet); 434 void rotateLoopWithProfile( 435 BlockChain &LoopChain, const MachineLoop &L, 436 const BlockFilterSet &LoopBlockSet); 437 void buildCFGChains(); 438 void optimizeBranches(); 439 void alignBlocks(); 440 /// Returns true if a block should be tail-duplicated to increase fallthrough 441 /// opportunities. 442 bool shouldTailDuplicate(MachineBasicBlock *BB); 443 /// Check the edge frequencies to see if tail duplication will increase 444 /// fallthroughs. 445 bool isProfitableToTailDup( 446 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 447 BranchProbability AdjustedSumProb, 448 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 449 /// Check for a trellis layout. 450 bool isTrellis(const MachineBasicBlock *BB, 451 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 452 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 453 /// Get the best successor given a trellis layout. 454 BlockAndTailDupResult getBestTrellisSuccessor( 455 const MachineBasicBlock *BB, 456 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 457 BranchProbability AdjustedSumProb, const BlockChain &Chain, 458 const BlockFilterSet *BlockFilter); 459 /// Get the best pair of non-conflicting edges. 460 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 461 const MachineBasicBlock *BB, 462 SmallVector<SmallVector<WeightedEdge, 8>, 2> &Edges); 463 /// Returns true if a block can tail duplicate into all unplaced 464 /// predecessors. Filters based on loop. 465 bool canTailDuplicateUnplacedPreds( 466 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 467 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 468 /// Find chains of triangles to tail-duplicate where a global analysis works, 469 /// but a local analysis would not find them. 470 void precomputeTriangleChains(); 471 472 public: 473 static char ID; // Pass identification, replacement for typeid 474 MachineBlockPlacement() : MachineFunctionPass(ID) { 475 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 476 } 477 478 bool runOnMachineFunction(MachineFunction &F) override; 479 480 void getAnalysisUsage(AnalysisUsage &AU) const override { 481 AU.addRequired<MachineBranchProbabilityInfo>(); 482 AU.addRequired<MachineBlockFrequencyInfo>(); 483 if (TailDupPlacement) 484 AU.addRequired<MachinePostDominatorTree>(); 485 AU.addRequired<MachineLoopInfo>(); 486 AU.addRequired<TargetPassConfig>(); 487 MachineFunctionPass::getAnalysisUsage(AU); 488 } 489 }; 490 } 491 492 char MachineBlockPlacement::ID = 0; 493 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 494 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 495 "Branch Probability Basic Block Placement", false, false) 496 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 497 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 498 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 499 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 500 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 501 "Branch Probability Basic Block Placement", false, false) 502 503 #ifndef NDEBUG 504 /// \brief Helper to print the name of a MBB. 505 /// 506 /// Only used by debug logging. 507 static std::string getBlockName(const MachineBasicBlock *BB) { 508 std::string Result; 509 raw_string_ostream OS(Result); 510 OS << "BB#" << BB->getNumber(); 511 OS << " ('" << BB->getName() << "')"; 512 OS.flush(); 513 return Result; 514 } 515 #endif 516 517 /// \brief Mark a chain's successors as having one fewer preds. 518 /// 519 /// When a chain is being merged into the "placed" chain, this routine will 520 /// quickly walk the successors of each block in the chain and mark them as 521 /// having one fewer active predecessor. It also adds any successors of this 522 /// chain which reach the zero-predecessor state to the appropriate worklist. 523 void MachineBlockPlacement::markChainSuccessors( 524 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 525 const BlockFilterSet *BlockFilter) { 526 // Walk all the blocks in this chain, marking their successors as having 527 // a predecessor placed. 528 for (MachineBasicBlock *MBB : Chain) { 529 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 530 } 531 } 532 533 /// \brief Mark a single block's successors as having one fewer preds. 534 /// 535 /// Under normal circumstances, this is only called by markChainSuccessors, 536 /// but if a block that was to be placed is completely tail-duplicated away, 537 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 538 /// for just that block. 539 void MachineBlockPlacement::markBlockSuccessors( 540 const BlockChain &Chain, const MachineBasicBlock *MBB, 541 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 542 // Add any successors for which this is the only un-placed in-loop 543 // predecessor to the worklist as a viable candidate for CFG-neutral 544 // placement. No subsequent placement of this block will violate the CFG 545 // shape, so we get to use heuristics to choose a favorable placement. 546 for (MachineBasicBlock *Succ : MBB->successors()) { 547 if (BlockFilter && !BlockFilter->count(Succ)) 548 continue; 549 BlockChain &SuccChain = *BlockToChain[Succ]; 550 // Disregard edges within a fixed chain, or edges to the loop header. 551 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 552 continue; 553 554 // This is a cross-chain edge that is within the loop, so decrement the 555 // loop predecessor count of the destination chain. 556 if (SuccChain.UnscheduledPredecessors == 0 || 557 --SuccChain.UnscheduledPredecessors > 0) 558 continue; 559 560 auto *NewBB = *SuccChain.begin(); 561 if (NewBB->isEHPad()) 562 EHPadWorkList.push_back(NewBB); 563 else 564 BlockWorkList.push_back(NewBB); 565 } 566 } 567 568 /// This helper function collects the set of successors of block 569 /// \p BB that are allowed to be its layout successors, and return 570 /// the total branch probability of edges from \p BB to those 571 /// blocks. 572 BranchProbability MachineBlockPlacement::collectViableSuccessors( 573 const MachineBasicBlock *BB, const BlockChain &Chain, 574 const BlockFilterSet *BlockFilter, 575 SmallVector<MachineBasicBlock *, 4> &Successors) { 576 // Adjust edge probabilities by excluding edges pointing to blocks that is 577 // either not in BlockFilter or is already in the current chain. Consider the 578 // following CFG: 579 // 580 // --->A 581 // | / \ 582 // | B C 583 // | \ / \ 584 // ----D E 585 // 586 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 587 // A->C is chosen as a fall-through, D won't be selected as a successor of C 588 // due to CFG constraint (the probability of C->D is not greater than 589 // HotProb to break top-order). If we exclude E that is not in BlockFilter 590 // when calculating the probability of C->D, D will be selected and we 591 // will get A C D B as the layout of this loop. 592 auto AdjustedSumProb = BranchProbability::getOne(); 593 for (MachineBasicBlock *Succ : BB->successors()) { 594 bool SkipSucc = false; 595 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 596 SkipSucc = true; 597 } else { 598 BlockChain *SuccChain = BlockToChain[Succ]; 599 if (SuccChain == &Chain) { 600 SkipSucc = true; 601 } else if (Succ != *SuccChain->begin()) { 602 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 603 continue; 604 } 605 } 606 if (SkipSucc) 607 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 608 else 609 Successors.push_back(Succ); 610 } 611 612 return AdjustedSumProb; 613 } 614 615 /// The helper function returns the branch probability that is adjusted 616 /// or normalized over the new total \p AdjustedSumProb. 617 static BranchProbability 618 getAdjustedProbability(BranchProbability OrigProb, 619 BranchProbability AdjustedSumProb) { 620 BranchProbability SuccProb; 621 uint32_t SuccProbN = OrigProb.getNumerator(); 622 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 623 if (SuccProbN >= SuccProbD) 624 SuccProb = BranchProbability::getOne(); 625 else 626 SuccProb = BranchProbability(SuccProbN, SuccProbD); 627 628 return SuccProb; 629 } 630 631 /// Check if \p BB has exactly the successors in \p Successors. 632 static bool 633 hasSameSuccessors(MachineBasicBlock &BB, 634 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 635 if (BB.succ_size() != Successors.size()) 636 return false; 637 // We don't want to count self-loops 638 if (Successors.count(&BB)) 639 return false; 640 for (MachineBasicBlock *Succ : BB.successors()) 641 if (!Successors.count(Succ)) 642 return false; 643 return true; 644 } 645 646 /// Check if a block should be tail duplicated to increase fallthrough 647 /// opportunities. 648 /// \p BB Block to check. 649 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 650 // Blocks with single successors don't create additional fallthrough 651 // opportunities. Don't duplicate them. TODO: When conditional exits are 652 // analyzable, allow them to be duplicated. 653 bool IsSimple = TailDup.isSimpleBB(BB); 654 655 if (BB->succ_size() == 1) 656 return false; 657 return TailDup.shouldTailDuplicate(IsSimple, *BB); 658 } 659 660 /// Compare 2 BlockFrequency's with a small penalty for \p A. 661 /// In order to be conservative, we apply a X% penalty to account for 662 /// increased icache pressure and static heuristics. For small frequencies 663 /// we use only the numerators to improve accuracy. For simplicity, we assume the 664 /// penalty is less than 100% 665 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 666 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 667 uint64_t EntryFreq) { 668 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 669 BlockFrequency Gain = A - B; 670 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 671 } 672 673 /// Check the edge frequencies to see if tail duplication will increase 674 /// fallthroughs. It only makes sense to call this function when 675 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 676 /// always locally profitable if we would have picked \p Succ without 677 /// considering duplication. 678 bool MachineBlockPlacement::isProfitableToTailDup( 679 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 680 BranchProbability QProb, 681 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 682 // We need to do a probability calculation to make sure this is profitable. 683 // First: does succ have a successor that post-dominates? This affects the 684 // calculation. The 2 relevant cases are: 685 // BB BB 686 // | \Qout | \Qout 687 // P| C |P C 688 // = C' = C' 689 // | /Qin | /Qin 690 // | / | / 691 // Succ Succ 692 // / \ | \ V 693 // U/ =V |U \ 694 // / \ = D 695 // D E | / 696 // | / 697 // |/ 698 // PDom 699 // '=' : Branch taken for that CFG edge 700 // In the second case, Placing Succ while duplicating it into C prevents the 701 // fallthrough of Succ into either D or PDom, because they now have C as an 702 // unplaced predecessor 703 704 // Start by figuring out which case we fall into 705 MachineBasicBlock *PDom = nullptr; 706 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 707 // Only scan the relevant successors 708 auto AdjustedSuccSumProb = 709 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 710 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 711 auto BBFreq = MBFI->getBlockFreq(BB); 712 auto SuccFreq = MBFI->getBlockFreq(Succ); 713 BlockFrequency P = BBFreq * PProb; 714 BlockFrequency Qout = BBFreq * QProb; 715 uint64_t EntryFreq = MBFI->getEntryFreq(); 716 // If there are no more successors, it is profitable to copy, as it strictly 717 // increases fallthrough. 718 if (SuccSuccs.size() == 0) 719 return greaterWithBias(P, Qout, EntryFreq); 720 721 auto BestSuccSucc = BranchProbability::getZero(); 722 // Find the PDom or the best Succ if no PDom exists. 723 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 724 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 725 if (Prob > BestSuccSucc) 726 BestSuccSucc = Prob; 727 if (PDom == nullptr) 728 if (MPDT->dominates(SuccSucc, Succ)) { 729 PDom = SuccSucc; 730 break; 731 } 732 } 733 // For the comparisons, we need to know Succ's best incoming edge that isn't 734 // from BB. 735 auto SuccBestPred = BlockFrequency(0); 736 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 737 if (SuccPred == Succ || SuccPred == BB 738 || BlockToChain[SuccPred] == &Chain 739 || (BlockFilter && !BlockFilter->count(SuccPred))) 740 continue; 741 auto Freq = MBFI->getBlockFreq(SuccPred) 742 * MBPI->getEdgeProbability(SuccPred, Succ); 743 if (Freq > SuccBestPred) 744 SuccBestPred = Freq; 745 } 746 // Qin is Succ's best unplaced incoming edge that isn't BB 747 BlockFrequency Qin = SuccBestPred; 748 // If it doesn't have a post-dominating successor, here is the calculation: 749 // BB BB 750 // | \Qout | \ 751 // P| C | = 752 // = C' | C 753 // | /Qin | | 754 // | / | C' (+Succ) 755 // Succ Succ /| 756 // / \ | \/ | 757 // U/ =V | == | 758 // / \ | / \| 759 // D E D E 760 // '=' : Branch taken for that CFG edge 761 // Cost in the first case is: P + V 762 // For this calculation, we always assume P > Qout. If Qout > P 763 // The result of this function will be ignored at the caller. 764 // Let F = SuccFreq - Qin 765 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 766 767 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 768 BranchProbability UProb = BestSuccSucc; 769 BranchProbability VProb = AdjustedSuccSumProb - UProb; 770 BlockFrequency F = SuccFreq - Qin; 771 BlockFrequency V = SuccFreq * VProb; 772 BlockFrequency QinU = std::min(Qin, F) * UProb; 773 BlockFrequency BaseCost = P + V; 774 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 775 return greaterWithBias(BaseCost, DupCost, EntryFreq); 776 } 777 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 778 BranchProbability VProb = AdjustedSuccSumProb - UProb; 779 BlockFrequency U = SuccFreq * UProb; 780 BlockFrequency V = SuccFreq * VProb; 781 BlockFrequency F = SuccFreq - Qin; 782 // If there is a post-dominating successor, here is the calculation: 783 // BB BB BB BB 784 // | \Qout | \ | \Qout | \ 785 // |P C | = |P C | = 786 // = C' |P C = C' |P C 787 // | /Qin | | | /Qin | | 788 // | / | C' (+Succ) | / | C' (+Succ) 789 // Succ Succ /| Succ Succ /| 790 // | \ V | \/ | | \ V | \/ | 791 // |U \ |U /\ =? |U = |U /\ | 792 // = D = = =?| | D | = =| 793 // | / |/ D | / |/ D 794 // | / | / | = | / 795 // |/ | / |/ | = 796 // Dom Dom Dom Dom 797 // '=' : Branch taken for that CFG edge 798 // The cost for taken branches in the first case is P + U 799 // Let F = SuccFreq - Qin 800 // The cost in the second case (assuming independence), given the layout: 801 // BB, Succ, (C+Succ), D, Dom or the layout: 802 // BB, Succ, D, Dom, (C+Succ) 803 // is Qout + max(F, Qin) * U + min(F, Qin) 804 // compare P + U vs Qout + P * U + Qin. 805 // 806 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 807 // 808 // For the 3rd case, the cost is P + 2 * V 809 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 810 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 811 if (UProb > AdjustedSuccSumProb / 2 && 812 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 813 Chain, BlockFilter)) 814 // Cases 3 & 4 815 return greaterWithBias( 816 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 817 EntryFreq); 818 // Cases 1 & 2 819 return greaterWithBias((P + U), 820 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 821 std::max(Qin, F) * UProb), 822 EntryFreq); 823 } 824 825 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 826 /// successors form the lower part of a trellis. A successor set S forms the 827 /// lower part of a trellis if all of the predecessors of S are either in S or 828 /// have all of S as successors. We ignore trellises where BB doesn't have 2 829 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 830 /// are very uncommon and complex to compute optimally. Allowing edges within S 831 /// is not strictly a trellis, but the same algorithm works, so we allow it. 832 bool MachineBlockPlacement::isTrellis( 833 const MachineBasicBlock *BB, 834 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 835 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 836 // Technically BB could form a trellis with branching factor higher than 2. 837 // But that's extremely uncommon. 838 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 839 return false; 840 841 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 842 BB->succ_end()); 843 // To avoid reviewing the same predecessors twice. 844 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 845 846 for (MachineBasicBlock *Succ : ViableSuccs) { 847 int PredCount = 0; 848 for (auto SuccPred : Succ->predecessors()) { 849 // Allow triangle successors, but don't count them. 850 if (Successors.count(SuccPred)) { 851 // Make sure that it is actually a triangle. 852 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 853 if (!Successors.count(CheckSucc)) 854 return false; 855 continue; 856 } 857 const BlockChain *PredChain = BlockToChain[SuccPred]; 858 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 859 PredChain == &Chain || PredChain == BlockToChain[Succ]) 860 continue; 861 ++PredCount; 862 // Perform the successor check only once. 863 if (!SeenPreds.insert(SuccPred).second) 864 continue; 865 if (!hasSameSuccessors(*SuccPred, Successors)) 866 return false; 867 } 868 // If one of the successors has only BB as a predecessor, it is not a 869 // trellis. 870 if (PredCount < 1) 871 return false; 872 } 873 return true; 874 } 875 876 /// Pick the highest total weight pair of edges that can both be laid out. 877 /// The edges in \p Edges[0] are assumed to have a different destination than 878 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 879 /// the individual highest weight edges to the 2 different destinations, or in 880 /// case of a conflict, one of them should be replaced with a 2nd best edge. 881 std::pair<MachineBlockPlacement::WeightedEdge, 882 MachineBlockPlacement::WeightedEdge> 883 MachineBlockPlacement::getBestNonConflictingEdges( 884 const MachineBasicBlock *BB, 885 SmallVector<SmallVector<MachineBlockPlacement::WeightedEdge, 8>, 2> 886 &Edges) { 887 // Sort the edges, and then for each successor, find the best incoming 888 // predecessor. If the best incoming predecessors aren't the same, 889 // then that is clearly the best layout. If there is a conflict, one of the 890 // successors will have to fallthrough from the second best predecessor. We 891 // compare which combination is better overall. 892 893 // Sort for highest frequency. 894 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 895 896 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 897 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 898 auto BestA = Edges[0].begin(); 899 auto BestB = Edges[1].begin(); 900 // Arrange for the correct answer to be in BestA and BestB 901 // If the 2 best edges don't conflict, the answer is already there. 902 if (BestA->Src == BestB->Src) { 903 // Compare the total fallthrough of (Best + Second Best) for both pairs 904 auto SecondBestA = std::next(BestA); 905 auto SecondBestB = std::next(BestB); 906 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 907 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 908 if (BestAScore < BestBScore) 909 BestA = SecondBestA; 910 else 911 BestB = SecondBestB; 912 } 913 // Arrange for the BB edge to be in BestA if it exists. 914 if (BestB->Src == BB) 915 std::swap(BestA, BestB); 916 return std::make_pair(*BestA, *BestB); 917 } 918 919 /// Get the best successor from \p BB based on \p BB being part of a trellis. 920 /// We only handle trellises with 2 successors, so the algorithm is 921 /// straightforward: Find the best pair of edges that don't conflict. We find 922 /// the best incoming edge for each successor in the trellis. If those conflict, 923 /// we consider which of them should be replaced with the second best. 924 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 925 /// comes from \p BB, it will be in \p BestEdges[0] 926 MachineBlockPlacement::BlockAndTailDupResult 927 MachineBlockPlacement::getBestTrellisSuccessor( 928 const MachineBasicBlock *BB, 929 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 930 BranchProbability AdjustedSumProb, const BlockChain &Chain, 931 const BlockFilterSet *BlockFilter) { 932 933 BlockAndTailDupResult Result = {nullptr, false}; 934 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 935 BB->succ_end()); 936 937 // We assume size 2 because it's common. For general n, we would have to do 938 // the Hungarian algorithm, but it's not worth the complexity because more 939 // than 2 successors is fairly uncommon, and a trellis even more so. 940 if (Successors.size() != 2 || ViableSuccs.size() != 2) 941 return Result; 942 943 // Collect the edge frequencies of all edges that form the trellis. 944 SmallVector<SmallVector<WeightedEdge, 8>, 2> Edges(2); 945 int SuccIndex = 0; 946 for (auto Succ : ViableSuccs) { 947 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 948 // Skip any placed predecessors that are not BB 949 if (SuccPred != BB) 950 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 951 BlockToChain[SuccPred] == &Chain || 952 BlockToChain[SuccPred] == BlockToChain[Succ]) 953 continue; 954 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 955 MBPI->getEdgeProbability(SuccPred, Succ); 956 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 957 } 958 ++SuccIndex; 959 } 960 961 // Pick the best combination of 2 edges from all the edges in the trellis. 962 WeightedEdge BestA, BestB; 963 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 964 965 if (BestA.Src != BB) { 966 // If we have a trellis, and BB doesn't have the best fallthrough edges, 967 // we shouldn't choose any successor. We've already looked and there's a 968 // better fallthrough edge for all the successors. 969 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 970 return Result; 971 } 972 973 // Did we pick the triangle edge? If tail-duplication is profitable, do 974 // that instead. Otherwise merge the triangle edge now while we know it is 975 // optimal. 976 if (BestA.Dest == BestB.Src) { 977 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 978 // would be better. 979 MachineBasicBlock *Succ1 = BestA.Dest; 980 MachineBasicBlock *Succ2 = BestB.Dest; 981 // Check to see if tail-duplication would be profitable. 982 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 983 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 984 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 985 Chain, BlockFilter)) { 986 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 987 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 988 dbgs() << " Selected: " << getBlockName(Succ2) 989 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 990 Result.BB = Succ2; 991 Result.ShouldTailDup = true; 992 return Result; 993 } 994 } 995 // We have already computed the optimal edge for the other side of the 996 // trellis. 997 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 998 999 auto TrellisSucc = BestA.Dest; 1000 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1001 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1002 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1003 << ", probability: " << SuccProb << " (Trellis)\n"); 1004 Result.BB = TrellisSucc; 1005 return Result; 1006 } 1007 1008 /// When the option TailDupPlacement is on, this method checks if the 1009 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1010 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1011 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1012 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1013 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1014 if (!shouldTailDuplicate(Succ)) 1015 return false; 1016 1017 // For CFG checking. 1018 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1019 BB->succ_end()); 1020 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1021 // Make sure all unplaced and unfiltered predecessors can be 1022 // tail-duplicated into. 1023 // Skip any blocks that are already placed or not in this loop. 1024 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1025 || BlockToChain[Pred] == &Chain) 1026 continue; 1027 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1028 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1029 // This will result in a trellis after tail duplication, so we don't 1030 // need to copy Succ into this predecessor. In the presence 1031 // of a trellis tail duplication can continue to be profitable. 1032 // For example: 1033 // A A 1034 // |\ |\ 1035 // | \ | \ 1036 // | C | C+BB 1037 // | / | | 1038 // |/ | | 1039 // BB => BB | 1040 // |\ |\/| 1041 // | \ |/\| 1042 // | D | D 1043 // | / | / 1044 // |/ |/ 1045 // Succ Succ 1046 // 1047 // After BB was duplicated into C, the layout looks like the one on the 1048 // right. BB and C now have the same successors. When considering 1049 // whether Succ can be duplicated into all its unplaced predecessors, we 1050 // ignore C. 1051 // We can do this because C already has a profitable fallthrough, namely 1052 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1053 // duplication and for this test. 1054 // 1055 // This allows trellises to be laid out in 2 separate chains 1056 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1057 // because it allows the creation of 2 fallthrough paths with links 1058 // between them, and we correctly identify the best layout for these 1059 // CFGs. We want to extend trellises that the user created in addition 1060 // to trellises created by tail-duplication, so we just look for the 1061 // CFG. 1062 continue; 1063 return false; 1064 } 1065 } 1066 return true; 1067 } 1068 1069 /// Find chains of triangles where we believe it would be profitable to 1070 /// tail-duplicate them all, but a local analysis would not find them. 1071 /// There are 3 ways this can be profitable: 1072 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1073 /// longer chains) 1074 /// 2) The chains are statically correlated. Branch probabilities have a very 1075 /// U-shaped distribution. 1076 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1077 /// If the branches in a chain are likely to be from the same side of the 1078 /// distribution as their predecessor, but are independent at runtime, this 1079 /// transformation is profitable. (Because the cost of being wrong is a small 1080 /// fixed cost, unlike the standard triangle layout where the cost of being 1081 /// wrong scales with the # of triangles.) 1082 /// 3) The chains are dynamically correlated. If the probability that a previous 1083 /// branch was taken positively influences whether the next branch will be 1084 /// taken 1085 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1086 void MachineBlockPlacement::precomputeTriangleChains() { 1087 struct TriangleChain { 1088 unsigned Count; 1089 std::forward_list<MachineBasicBlock*> Edges; 1090 TriangleChain(MachineBasicBlock* src, MachineBasicBlock *dst) { 1091 Edges.push_front(src); 1092 Edges.push_front(dst); 1093 Count = 1; 1094 } 1095 1096 void append(MachineBasicBlock *dst) { 1097 assert(!Edges.empty() && Edges.front()->isSuccessor(dst) && 1098 "Attempting to append a block that is not a successor."); 1099 Edges.push_front(dst); 1100 ++Count; 1101 } 1102 1103 MachineBasicBlock *getKey() { 1104 return Edges.front(); 1105 } 1106 }; 1107 1108 if (TriangleChainCount == 0) 1109 return; 1110 1111 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1112 // Map from last block to the chain that contains it. This allows us to extend 1113 // chains as we find new triangles. 1114 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1115 for (MachineBasicBlock &BB : *F) { 1116 // If BB doesn't have 2 successors, it doesn't start a triangle. 1117 if (BB.succ_size() != 2) 1118 continue; 1119 MachineBasicBlock *PDom = nullptr; 1120 for (MachineBasicBlock *Succ : BB.successors()) { 1121 if (!MPDT->dominates(Succ, &BB)) 1122 continue; 1123 PDom = Succ; 1124 break; 1125 } 1126 // If BB doesn't have a post-dominating successor, it doesn't form a 1127 // triangle. 1128 if (PDom == nullptr) 1129 continue; 1130 // If PDom has a hint that it is low probability, skip this triangle. 1131 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1132 continue; 1133 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1134 // we're looking for. 1135 if (!shouldTailDuplicate(PDom)) 1136 continue; 1137 bool CanTailDuplicate = true; 1138 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1139 // isn't the kind of triangle we're looking for. 1140 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1141 if (Pred == &BB) 1142 continue; 1143 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1144 CanTailDuplicate = false; 1145 break; 1146 } 1147 } 1148 // If we can't tail-duplicate PDom to its predecessors, then skip this 1149 // triangle. 1150 if (!CanTailDuplicate) 1151 continue; 1152 1153 // Now we have an interesting triangle. Insert it if it's not part of an 1154 // existing chain 1155 // Note: This cannot be replaced with a call insert() or emplace() because 1156 // the find key is BB, but the insert/emplace key is PDom. 1157 auto Found = TriangleChainMap.find(&BB); 1158 // If it is, remove the chain from the map, grow it, and put it back in the 1159 // map with the end as the new key. 1160 if (Found != TriangleChainMap.end()) { 1161 TriangleChain Chain = std::move(Found->second); 1162 TriangleChainMap.erase(Found); 1163 Chain.append(PDom); 1164 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1165 } else { 1166 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1167 assert (InsertResult.second && "Block seen twice."); 1168 (void) InsertResult; 1169 } 1170 } 1171 1172 for (auto &ChainPair : TriangleChainMap) { 1173 TriangleChain &Chain = ChainPair.second; 1174 // Benchmarking has shown that due to branch correlation duplicating 2 or 1175 // more triangles is profitable, despite the calculations assuming 1176 // independence. 1177 if (Chain.Count < TriangleChainCount) 1178 continue; 1179 MachineBasicBlock *dst = Chain.Edges.front(); 1180 Chain.Edges.pop_front(); 1181 for (MachineBasicBlock *src : Chain.Edges) { 1182 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1183 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1184 ComputedEdges[src] = { dst, true }; 1185 dst = src; 1186 } 1187 } 1188 } 1189 1190 // When profile is not present, return the StaticLikelyProb. 1191 // When profile is available, we need to handle the triangle-shape CFG. 1192 static BranchProbability getLayoutSuccessorProbThreshold( 1193 const MachineBasicBlock *BB) { 1194 if (!BB->getParent()->getFunction()->getEntryCount()) 1195 return BranchProbability(StaticLikelyProb, 100); 1196 if (BB->succ_size() == 2) { 1197 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1198 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1199 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1200 /* See case 1 below for the cost analysis. For BB->Succ to 1201 * be taken with smaller cost, the following needs to hold: 1202 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1203 * So the threshold T in the calculation below 1204 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1205 * So T / (1 - T) = 2, Yielding T = 2/3 1206 * Also adding user specified branch bias, we have 1207 * T = (2/3)*(ProfileLikelyProb/50) 1208 * = (2*ProfileLikelyProb)/150) 1209 */ 1210 return BranchProbability(2 * ProfileLikelyProb, 150); 1211 } 1212 } 1213 return BranchProbability(ProfileLikelyProb, 100); 1214 } 1215 1216 /// Checks to see if the layout candidate block \p Succ has a better layout 1217 /// predecessor than \c BB. If yes, returns true. 1218 /// \p SuccProb: The probability adjusted for only remaining blocks. 1219 /// Only used for logging 1220 /// \p RealSuccProb: The un-adjusted probability. 1221 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1222 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1223 /// considered 1224 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1225 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1226 const BlockChain &SuccChain, BranchProbability SuccProb, 1227 BranchProbability RealSuccProb, const BlockChain &Chain, 1228 const BlockFilterSet *BlockFilter) { 1229 1230 // There isn't a better layout when there are no unscheduled predecessors. 1231 if (SuccChain.UnscheduledPredecessors == 0) 1232 return false; 1233 1234 // There are two basic scenarios here: 1235 // ------------------------------------- 1236 // Case 1: triangular shape CFG (if-then): 1237 // BB 1238 // | \ 1239 // | \ 1240 // | Pred 1241 // | / 1242 // Succ 1243 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1244 // set Succ as the layout successor of BB. Picking Succ as BB's 1245 // successor breaks the CFG constraints (FIXME: define these constraints). 1246 // With this layout, Pred BB 1247 // is forced to be outlined, so the overall cost will be cost of the 1248 // branch taken from BB to Pred, plus the cost of back taken branch 1249 // from Pred to Succ, as well as the additional cost associated 1250 // with the needed unconditional jump instruction from Pred To Succ. 1251 1252 // The cost of the topological order layout is the taken branch cost 1253 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1254 // must hold: 1255 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1256 // < freq(BB->Succ) * taken_branch_cost. 1257 // Ignoring unconditional jump cost, we get 1258 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1259 // prob(BB->Succ) > 2 * prob(BB->Pred) 1260 // 1261 // When real profile data is available, we can precisely compute the 1262 // probability threshold that is needed for edge BB->Succ to be considered. 1263 // Without profile data, the heuristic requires the branch bias to be 1264 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1265 // ----------------------------------------------------------------- 1266 // Case 2: diamond like CFG (if-then-else): 1267 // S 1268 // / \ 1269 // | \ 1270 // BB Pred 1271 // \ / 1272 // Succ 1273 // .. 1274 // 1275 // The current block is BB and edge BB->Succ is now being evaluated. 1276 // Note that edge S->BB was previously already selected because 1277 // prob(S->BB) > prob(S->Pred). 1278 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1279 // choose Pred, we will have a topological ordering as shown on the left 1280 // in the picture below. If we choose Succ, we have the solution as shown 1281 // on the right: 1282 // 1283 // topo-order: 1284 // 1285 // S----- ---S 1286 // | | | | 1287 // ---BB | | BB 1288 // | | | | 1289 // | pred-- | Succ-- 1290 // | | | | 1291 // ---succ ---pred-- 1292 // 1293 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1294 // = freq(S->Pred) + freq(S->BB) 1295 // 1296 // If we have profile data (i.e, branch probabilities can be trusted), the 1297 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1298 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1299 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1300 // means the cost of topological order is greater. 1301 // When profile data is not available, however, we need to be more 1302 // conservative. If the branch prediction is wrong, breaking the topo-order 1303 // will actually yield a layout with large cost. For this reason, we need 1304 // strong biased branch at block S with Prob(S->BB) in order to select 1305 // BB->Succ. This is equivalent to looking the CFG backward with backward 1306 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1307 // profile data). 1308 // -------------------------------------------------------------------------- 1309 // Case 3: forked diamond 1310 // S 1311 // / \ 1312 // / \ 1313 // BB Pred 1314 // | \ / | 1315 // | \ / | 1316 // | X | 1317 // | / \ | 1318 // | / \ | 1319 // S1 S2 1320 // 1321 // The current block is BB and edge BB->S1 is now being evaluated. 1322 // As above S->BB was already selected because 1323 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1324 // 1325 // topo-order: 1326 // 1327 // S-------| ---S 1328 // | | | | 1329 // ---BB | | BB 1330 // | | | | 1331 // | Pred----| | S1---- 1332 // | | | | 1333 // --(S1 or S2) ---Pred-- 1334 // | 1335 // S2 1336 // 1337 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1338 // + min(freq(Pred->S1), freq(Pred->S2)) 1339 // Non-topo-order cost: 1340 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1341 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1342 // is 0. Then the non topo layout is better when 1343 // freq(S->Pred) < freq(BB->S1). 1344 // This is exactly what is checked below. 1345 // Note there are other shapes that apply (Pred may not be a single block, 1346 // but they all fit this general pattern.) 1347 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1348 1349 // Make sure that a hot successor doesn't have a globally more 1350 // important predecessor. 1351 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1352 bool BadCFGConflict = false; 1353 1354 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1355 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1356 (BlockFilter && !BlockFilter->count(Pred)) || 1357 BlockToChain[Pred] == &Chain || 1358 // This check is redundant except for look ahead. This function is 1359 // called for lookahead by isProfitableToTailDup when BB hasn't been 1360 // placed yet. 1361 (Pred == BB)) 1362 continue; 1363 // Do backward checking. 1364 // For all cases above, we need a backward checking to filter out edges that 1365 // are not 'strongly' biased. 1366 // BB Pred 1367 // \ / 1368 // Succ 1369 // We select edge BB->Succ if 1370 // freq(BB->Succ) > freq(Succ) * HotProb 1371 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1372 // HotProb 1373 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1374 // Case 1 is covered too, because the first equation reduces to: 1375 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1376 BlockFrequency PredEdgeFreq = 1377 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1378 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1379 BadCFGConflict = true; 1380 break; 1381 } 1382 } 1383 1384 if (BadCFGConflict) { 1385 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1386 << " (prob) (non-cold CFG conflict)\n"); 1387 return true; 1388 } 1389 1390 return false; 1391 } 1392 1393 /// \brief Select the best successor for a block. 1394 /// 1395 /// This looks across all successors of a particular block and attempts to 1396 /// select the "best" one to be the layout successor. It only considers direct 1397 /// successors which also pass the block filter. It will attempt to avoid 1398 /// breaking CFG structure, but cave and break such structures in the case of 1399 /// very hot successor edges. 1400 /// 1401 /// \returns The best successor block found, or null if none are viable, along 1402 /// with a boolean indicating if tail duplication is necessary. 1403 MachineBlockPlacement::BlockAndTailDupResult 1404 MachineBlockPlacement::selectBestSuccessor( 1405 const MachineBasicBlock *BB, const BlockChain &Chain, 1406 const BlockFilterSet *BlockFilter) { 1407 const BranchProbability HotProb(StaticLikelyProb, 100); 1408 1409 BlockAndTailDupResult BestSucc = { nullptr, false }; 1410 auto BestProb = BranchProbability::getZero(); 1411 1412 SmallVector<MachineBasicBlock *, 4> Successors; 1413 auto AdjustedSumProb = 1414 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1415 1416 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1417 1418 // if we already precomputed the best successor for BB, return that if still 1419 // applicable. 1420 auto FoundEdge = ComputedEdges.find(BB); 1421 if (FoundEdge != ComputedEdges.end()) { 1422 MachineBasicBlock *Succ = FoundEdge->second.BB; 1423 ComputedEdges.erase(FoundEdge); 1424 BlockChain *SuccChain = BlockToChain[Succ]; 1425 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1426 SuccChain != &Chain && Succ == *SuccChain->begin()) 1427 return FoundEdge->second; 1428 } 1429 1430 // if BB is part of a trellis, Use the trellis to determine the optimal 1431 // fallthrough edges 1432 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1433 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1434 BlockFilter); 1435 1436 // For blocks with CFG violations, we may be able to lay them out anyway with 1437 // tail-duplication. We keep this vector so we can perform the probability 1438 // calculations the minimum number of times. 1439 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1440 DupCandidates; 1441 for (MachineBasicBlock *Succ : Successors) { 1442 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1443 BranchProbability SuccProb = 1444 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1445 1446 BlockChain &SuccChain = *BlockToChain[Succ]; 1447 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1448 // predecessor that yields lower global cost. 1449 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1450 Chain, BlockFilter)) { 1451 // If tail duplication would make Succ profitable, place it. 1452 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1453 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1454 continue; 1455 } 1456 1457 DEBUG( 1458 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1459 << SuccProb 1460 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1461 << "\n"); 1462 1463 if (BestSucc.BB && BestProb >= SuccProb) { 1464 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1465 continue; 1466 } 1467 1468 DEBUG(dbgs() << " Setting it as best candidate\n"); 1469 BestSucc.BB = Succ; 1470 BestProb = SuccProb; 1471 } 1472 // Handle the tail duplication candidates in order of decreasing probability. 1473 // Stop at the first one that is profitable. Also stop if they are less 1474 // profitable than BestSucc. Position is important because we preserve it and 1475 // prefer first best match. Here we aren't comparing in order, so we capture 1476 // the position instead. 1477 if (DupCandidates.size() != 0) { 1478 auto cmp = 1479 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1480 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1481 return std::get<0>(a) > std::get<0>(b); 1482 }; 1483 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1484 } 1485 for(auto &Tup : DupCandidates) { 1486 BranchProbability DupProb; 1487 MachineBasicBlock *Succ; 1488 std::tie(DupProb, Succ) = Tup; 1489 if (DupProb < BestProb) 1490 break; 1491 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1492 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1493 DEBUG( 1494 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1495 << DupProb 1496 << " (Tail Duplicate)\n"); 1497 BestSucc.BB = Succ; 1498 BestSucc.ShouldTailDup = true; 1499 break; 1500 } 1501 } 1502 1503 if (BestSucc.BB) 1504 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1505 1506 return BestSucc; 1507 } 1508 1509 /// \brief Select the best block from a worklist. 1510 /// 1511 /// This looks through the provided worklist as a list of candidate basic 1512 /// blocks and select the most profitable one to place. The definition of 1513 /// profitable only really makes sense in the context of a loop. This returns 1514 /// the most frequently visited block in the worklist, which in the case of 1515 /// a loop, is the one most desirable to be physically close to the rest of the 1516 /// loop body in order to improve i-cache behavior. 1517 /// 1518 /// \returns The best block found, or null if none are viable. 1519 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1520 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1521 // Once we need to walk the worklist looking for a candidate, cleanup the 1522 // worklist of already placed entries. 1523 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1524 // some code complexity) into the loop below. 1525 WorkList.erase(remove_if(WorkList, 1526 [&](MachineBasicBlock *BB) { 1527 return BlockToChain.lookup(BB) == &Chain; 1528 }), 1529 WorkList.end()); 1530 1531 if (WorkList.empty()) 1532 return nullptr; 1533 1534 bool IsEHPad = WorkList[0]->isEHPad(); 1535 1536 MachineBasicBlock *BestBlock = nullptr; 1537 BlockFrequency BestFreq; 1538 for (MachineBasicBlock *MBB : WorkList) { 1539 assert(MBB->isEHPad() == IsEHPad); 1540 1541 BlockChain &SuccChain = *BlockToChain[MBB]; 1542 if (&SuccChain == &Chain) 1543 continue; 1544 1545 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1546 1547 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1548 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1549 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1550 1551 // For ehpad, we layout the least probable first as to avoid jumping back 1552 // from least probable landingpads to more probable ones. 1553 // 1554 // FIXME: Using probability is probably (!) not the best way to achieve 1555 // this. We should probably have a more principled approach to layout 1556 // cleanup code. 1557 // 1558 // The goal is to get: 1559 // 1560 // +--------------------------+ 1561 // | V 1562 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1563 // 1564 // Rather than: 1565 // 1566 // +-------------------------------------+ 1567 // V | 1568 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1569 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1570 continue; 1571 1572 BestBlock = MBB; 1573 BestFreq = CandidateFreq; 1574 } 1575 1576 return BestBlock; 1577 } 1578 1579 /// \brief Retrieve the first unplaced basic block. 1580 /// 1581 /// This routine is called when we are unable to use the CFG to walk through 1582 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1583 /// We walk through the function's blocks in order, starting from the 1584 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1585 /// re-scanning the entire sequence on repeated calls to this routine. 1586 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1587 const BlockChain &PlacedChain, 1588 MachineFunction::iterator &PrevUnplacedBlockIt, 1589 const BlockFilterSet *BlockFilter) { 1590 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1591 ++I) { 1592 if (BlockFilter && !BlockFilter->count(&*I)) 1593 continue; 1594 if (BlockToChain[&*I] != &PlacedChain) { 1595 PrevUnplacedBlockIt = I; 1596 // Now select the head of the chain to which the unplaced block belongs 1597 // as the block to place. This will force the entire chain to be placed, 1598 // and satisfies the requirements of merging chains. 1599 return *BlockToChain[&*I]->begin(); 1600 } 1601 } 1602 return nullptr; 1603 } 1604 1605 void MachineBlockPlacement::fillWorkLists( 1606 const MachineBasicBlock *MBB, 1607 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1608 const BlockFilterSet *BlockFilter = nullptr) { 1609 BlockChain &Chain = *BlockToChain[MBB]; 1610 if (!UpdatedPreds.insert(&Chain).second) 1611 return; 1612 1613 assert(Chain.UnscheduledPredecessors == 0); 1614 for (MachineBasicBlock *ChainBB : Chain) { 1615 assert(BlockToChain[ChainBB] == &Chain); 1616 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1617 if (BlockFilter && !BlockFilter->count(Pred)) 1618 continue; 1619 if (BlockToChain[Pred] == &Chain) 1620 continue; 1621 ++Chain.UnscheduledPredecessors; 1622 } 1623 } 1624 1625 if (Chain.UnscheduledPredecessors != 0) 1626 return; 1627 1628 MachineBasicBlock *BB = *Chain.begin(); 1629 if (BB->isEHPad()) 1630 EHPadWorkList.push_back(BB); 1631 else 1632 BlockWorkList.push_back(BB); 1633 } 1634 1635 void MachineBlockPlacement::buildChain( 1636 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1637 BlockFilterSet *BlockFilter) { 1638 assert(HeadBB && "BB must not be null.\n"); 1639 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1640 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1641 1642 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1643 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1644 MachineBasicBlock *BB = *std::prev(Chain.end()); 1645 for (;;) { 1646 assert(BB && "null block found at end of chain in loop."); 1647 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1648 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1649 1650 1651 // Look for the best viable successor if there is one to place immediately 1652 // after this block. 1653 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1654 MachineBasicBlock* BestSucc = Result.BB; 1655 bool ShouldTailDup = Result.ShouldTailDup; 1656 if (TailDupPlacement) 1657 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1658 1659 // If an immediate successor isn't available, look for the best viable 1660 // block among those we've identified as not violating the loop's CFG at 1661 // this point. This won't be a fallthrough, but it will increase locality. 1662 if (!BestSucc) 1663 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1664 if (!BestSucc) 1665 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1666 1667 if (!BestSucc) { 1668 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1669 if (!BestSucc) 1670 break; 1671 1672 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1673 "layout successor until the CFG reduces\n"); 1674 } 1675 1676 // Placement may have changed tail duplication opportunities. 1677 // Check for that now. 1678 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1679 // If the chosen successor was duplicated into all its predecessors, 1680 // don't bother laying it out, just go round the loop again with BB as 1681 // the chain end. 1682 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1683 BlockFilter, PrevUnplacedBlockIt)) 1684 continue; 1685 } 1686 1687 // Place this block, updating the datastructures to reflect its placement. 1688 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1689 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1690 // we selected a successor that didn't fit naturally into the CFG. 1691 SuccChain.UnscheduledPredecessors = 0; 1692 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1693 << getBlockName(BestSucc) << "\n"); 1694 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1695 Chain.merge(BestSucc, &SuccChain); 1696 BB = *std::prev(Chain.end()); 1697 } 1698 1699 DEBUG(dbgs() << "Finished forming chain for header block " 1700 << getBlockName(*Chain.begin()) << "\n"); 1701 } 1702 1703 /// \brief Find the best loop top block for layout. 1704 /// 1705 /// Look for a block which is strictly better than the loop header for laying 1706 /// out at the top of the loop. This looks for one and only one pattern: 1707 /// a latch block with no conditional exit. This block will cause a conditional 1708 /// jump around it or will be the bottom of the loop if we lay it out in place, 1709 /// but if it it doesn't end up at the bottom of the loop for any reason, 1710 /// rotation alone won't fix it. Because such a block will always result in an 1711 /// unconditional jump (for the backedge) rotating it in front of the loop 1712 /// header is always profitable. 1713 MachineBasicBlock * 1714 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1715 const BlockFilterSet &LoopBlockSet) { 1716 // Placing the latch block before the header may introduce an extra branch 1717 // that skips this block the first time the loop is executed, which we want 1718 // to avoid when optimising for size. 1719 // FIXME: in theory there is a case that does not introduce a new branch, 1720 // i.e. when the layout predecessor does not fallthrough to the loop header. 1721 // In practice this never happens though: there always seems to be a preheader 1722 // that can fallthrough and that is also placed before the header. 1723 if (F->getFunction()->optForSize()) 1724 return L.getHeader(); 1725 1726 // Check that the header hasn't been fused with a preheader block due to 1727 // crazy branches. If it has, we need to start with the header at the top to 1728 // prevent pulling the preheader into the loop body. 1729 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1730 if (!LoopBlockSet.count(*HeaderChain.begin())) 1731 return L.getHeader(); 1732 1733 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1734 << "\n"); 1735 1736 BlockFrequency BestPredFreq; 1737 MachineBasicBlock *BestPred = nullptr; 1738 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1739 if (!LoopBlockSet.count(Pred)) 1740 continue; 1741 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1742 << Pred->succ_size() << " successors, "; 1743 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1744 if (Pred->succ_size() > 1) 1745 continue; 1746 1747 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1748 if (!BestPred || PredFreq > BestPredFreq || 1749 (!(PredFreq < BestPredFreq) && 1750 Pred->isLayoutSuccessor(L.getHeader()))) { 1751 BestPred = Pred; 1752 BestPredFreq = PredFreq; 1753 } 1754 } 1755 1756 // If no direct predecessor is fine, just use the loop header. 1757 if (!BestPred) { 1758 DEBUG(dbgs() << " final top unchanged\n"); 1759 return L.getHeader(); 1760 } 1761 1762 // Walk backwards through any straight line of predecessors. 1763 while (BestPred->pred_size() == 1 && 1764 (*BestPred->pred_begin())->succ_size() == 1 && 1765 *BestPred->pred_begin() != L.getHeader()) 1766 BestPred = *BestPred->pred_begin(); 1767 1768 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1769 return BestPred; 1770 } 1771 1772 /// \brief Find the best loop exiting block for layout. 1773 /// 1774 /// This routine implements the logic to analyze the loop looking for the best 1775 /// block to layout at the top of the loop. Typically this is done to maximize 1776 /// fallthrough opportunities. 1777 MachineBasicBlock * 1778 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1779 const BlockFilterSet &LoopBlockSet) { 1780 // We don't want to layout the loop linearly in all cases. If the loop header 1781 // is just a normal basic block in the loop, we want to look for what block 1782 // within the loop is the best one to layout at the top. However, if the loop 1783 // header has be pre-merged into a chain due to predecessors not having 1784 // analyzable branches, *and* the predecessor it is merged with is *not* part 1785 // of the loop, rotating the header into the middle of the loop will create 1786 // a non-contiguous range of blocks which is Very Bad. So start with the 1787 // header and only rotate if safe. 1788 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1789 if (!LoopBlockSet.count(*HeaderChain.begin())) 1790 return nullptr; 1791 1792 BlockFrequency BestExitEdgeFreq; 1793 unsigned BestExitLoopDepth = 0; 1794 MachineBasicBlock *ExitingBB = nullptr; 1795 // If there are exits to outer loops, loop rotation can severely limit 1796 // fallthrough opportunities unless it selects such an exit. Keep a set of 1797 // blocks where rotating to exit with that block will reach an outer loop. 1798 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1799 1800 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1801 << "\n"); 1802 for (MachineBasicBlock *MBB : L.getBlocks()) { 1803 BlockChain &Chain = *BlockToChain[MBB]; 1804 // Ensure that this block is at the end of a chain; otherwise it could be 1805 // mid-way through an inner loop or a successor of an unanalyzable branch. 1806 if (MBB != *std::prev(Chain.end())) 1807 continue; 1808 1809 // Now walk the successors. We need to establish whether this has a viable 1810 // exiting successor and whether it has a viable non-exiting successor. 1811 // We store the old exiting state and restore it if a viable looping 1812 // successor isn't found. 1813 MachineBasicBlock *OldExitingBB = ExitingBB; 1814 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1815 bool HasLoopingSucc = false; 1816 for (MachineBasicBlock *Succ : MBB->successors()) { 1817 if (Succ->isEHPad()) 1818 continue; 1819 if (Succ == MBB) 1820 continue; 1821 BlockChain &SuccChain = *BlockToChain[Succ]; 1822 // Don't split chains, either this chain or the successor's chain. 1823 if (&Chain == &SuccChain) { 1824 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1825 << getBlockName(Succ) << " (chain conflict)\n"); 1826 continue; 1827 } 1828 1829 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1830 if (LoopBlockSet.count(Succ)) { 1831 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1832 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1833 HasLoopingSucc = true; 1834 continue; 1835 } 1836 1837 unsigned SuccLoopDepth = 0; 1838 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1839 SuccLoopDepth = ExitLoop->getLoopDepth(); 1840 if (ExitLoop->contains(&L)) 1841 BlocksExitingToOuterLoop.insert(MBB); 1842 } 1843 1844 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1845 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1846 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1847 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1848 // Note that we bias this toward an existing layout successor to retain 1849 // incoming order in the absence of better information. The exit must have 1850 // a frequency higher than the current exit before we consider breaking 1851 // the layout. 1852 BranchProbability Bias(100 - ExitBlockBias, 100); 1853 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1854 ExitEdgeFreq > BestExitEdgeFreq || 1855 (MBB->isLayoutSuccessor(Succ) && 1856 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1857 BestExitEdgeFreq = ExitEdgeFreq; 1858 ExitingBB = MBB; 1859 } 1860 } 1861 1862 if (!HasLoopingSucc) { 1863 // Restore the old exiting state, no viable looping successor was found. 1864 ExitingBB = OldExitingBB; 1865 BestExitEdgeFreq = OldBestExitEdgeFreq; 1866 } 1867 } 1868 // Without a candidate exiting block or with only a single block in the 1869 // loop, just use the loop header to layout the loop. 1870 if (!ExitingBB) { 1871 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1872 return nullptr; 1873 } 1874 if (L.getNumBlocks() == 1) { 1875 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1876 return nullptr; 1877 } 1878 1879 // Also, if we have exit blocks which lead to outer loops but didn't select 1880 // one of them as the exiting block we are rotating toward, disable loop 1881 // rotation altogether. 1882 if (!BlocksExitingToOuterLoop.empty() && 1883 !BlocksExitingToOuterLoop.count(ExitingBB)) 1884 return nullptr; 1885 1886 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1887 return ExitingBB; 1888 } 1889 1890 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1891 /// 1892 /// Once we have built a chain, try to rotate it to line up the hot exit block 1893 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1894 /// branches. For example, if the loop has fallthrough into its header and out 1895 /// of its bottom already, don't rotate it. 1896 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1897 const MachineBasicBlock *ExitingBB, 1898 const BlockFilterSet &LoopBlockSet) { 1899 if (!ExitingBB) 1900 return; 1901 1902 MachineBasicBlock *Top = *LoopChain.begin(); 1903 bool ViableTopFallthrough = false; 1904 for (MachineBasicBlock *Pred : Top->predecessors()) { 1905 BlockChain *PredChain = BlockToChain[Pred]; 1906 if (!LoopBlockSet.count(Pred) && 1907 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1908 ViableTopFallthrough = true; 1909 break; 1910 } 1911 } 1912 1913 // If the header has viable fallthrough, check whether the current loop 1914 // bottom is a viable exiting block. If so, bail out as rotating will 1915 // introduce an unnecessary branch. 1916 if (ViableTopFallthrough) { 1917 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1918 for (MachineBasicBlock *Succ : Bottom->successors()) { 1919 BlockChain *SuccChain = BlockToChain[Succ]; 1920 if (!LoopBlockSet.count(Succ) && 1921 (!SuccChain || Succ == *SuccChain->begin())) 1922 return; 1923 } 1924 } 1925 1926 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1927 if (ExitIt == LoopChain.end()) 1928 return; 1929 1930 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1931 } 1932 1933 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1934 /// 1935 /// With profile data, we can determine the cost in terms of missed fall through 1936 /// opportunities when rotating a loop chain and select the best rotation. 1937 /// Basically, there are three kinds of cost to consider for each rotation: 1938 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1939 /// the loop to the loop header. 1940 /// 2. The possibly missed fall through edges (if they exist) from the loop 1941 /// exits to BB out of the loop. 1942 /// 3. The missed fall through edge (if it exists) from the last BB to the 1943 /// first BB in the loop chain. 1944 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1945 /// We select the best rotation with the smallest cost. 1946 void MachineBlockPlacement::rotateLoopWithProfile( 1947 BlockChain &LoopChain, const MachineLoop &L, 1948 const BlockFilterSet &LoopBlockSet) { 1949 auto HeaderBB = L.getHeader(); 1950 auto HeaderIter = find(LoopChain, HeaderBB); 1951 auto RotationPos = LoopChain.end(); 1952 1953 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1954 1955 // A utility lambda that scales up a block frequency by dividing it by a 1956 // branch probability which is the reciprocal of the scale. 1957 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1958 unsigned Scale) -> BlockFrequency { 1959 if (Scale == 0) 1960 return 0; 1961 // Use operator / between BlockFrequency and BranchProbability to implement 1962 // saturating multiplication. 1963 return Freq / BranchProbability(1, Scale); 1964 }; 1965 1966 // Compute the cost of the missed fall-through edge to the loop header if the 1967 // chain head is not the loop header. As we only consider natural loops with 1968 // single header, this computation can be done only once. 1969 BlockFrequency HeaderFallThroughCost(0); 1970 for (auto *Pred : HeaderBB->predecessors()) { 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!LoopBlockSet.count(Pred) && 1973 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1974 auto EdgeFreq = 1975 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1976 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1977 // If the predecessor has only an unconditional jump to the header, we 1978 // need to consider the cost of this jump. 1979 if (Pred->succ_size() == 1) 1980 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1981 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1982 } 1983 } 1984 1985 // Here we collect all exit blocks in the loop, and for each exit we find out 1986 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1987 // as the sum of frequencies of exit edges we collect here, excluding the exit 1988 // edge from the tail of the loop chain. 1989 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1990 for (auto BB : LoopChain) { 1991 auto LargestExitEdgeProb = BranchProbability::getZero(); 1992 for (auto *Succ : BB->successors()) { 1993 BlockChain *SuccChain = BlockToChain[Succ]; 1994 if (!LoopBlockSet.count(Succ) && 1995 (!SuccChain || Succ == *SuccChain->begin())) { 1996 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 1997 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 1998 } 1999 } 2000 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2001 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2002 ExitsWithFreq.emplace_back(BB, ExitFreq); 2003 } 2004 } 2005 2006 // In this loop we iterate every block in the loop chain and calculate the 2007 // cost assuming the block is the head of the loop chain. When the loop ends, 2008 // we should have found the best candidate as the loop chain's head. 2009 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2010 EndIter = LoopChain.end(); 2011 Iter != EndIter; Iter++, TailIter++) { 2012 // TailIter is used to track the tail of the loop chain if the block we are 2013 // checking (pointed by Iter) is the head of the chain. 2014 if (TailIter == LoopChain.end()) 2015 TailIter = LoopChain.begin(); 2016 2017 auto TailBB = *TailIter; 2018 2019 // Calculate the cost by putting this BB to the top. 2020 BlockFrequency Cost = 0; 2021 2022 // If the current BB is the loop header, we need to take into account the 2023 // cost of the missed fall through edge from outside of the loop to the 2024 // header. 2025 if (Iter != HeaderIter) 2026 Cost += HeaderFallThroughCost; 2027 2028 // Collect the loop exit cost by summing up frequencies of all exit edges 2029 // except the one from the chain tail. 2030 for (auto &ExitWithFreq : ExitsWithFreq) 2031 if (TailBB != ExitWithFreq.first) 2032 Cost += ExitWithFreq.second; 2033 2034 // The cost of breaking the once fall-through edge from the tail to the top 2035 // of the loop chain. Here we need to consider three cases: 2036 // 1. If the tail node has only one successor, then we will get an 2037 // additional jmp instruction. So the cost here is (MisfetchCost + 2038 // JumpInstCost) * tail node frequency. 2039 // 2. If the tail node has two successors, then we may still get an 2040 // additional jmp instruction if the layout successor after the loop 2041 // chain is not its CFG successor. Note that the more frequently executed 2042 // jmp instruction will be put ahead of the other one. Assume the 2043 // frequency of those two branches are x and y, where x is the frequency 2044 // of the edge to the chain head, then the cost will be 2045 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2046 // 3. If the tail node has more than two successors (this rarely happens), 2047 // we won't consider any additional cost. 2048 if (TailBB->isSuccessor(*Iter)) { 2049 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2050 if (TailBB->succ_size() == 1) 2051 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2052 MisfetchCost + JumpInstCost); 2053 else if (TailBB->succ_size() == 2) { 2054 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2055 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2056 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2057 ? TailBBFreq * TailToHeadProb.getCompl() 2058 : TailToHeadFreq; 2059 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2060 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2061 } 2062 } 2063 2064 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2065 << " to the top: " << Cost.getFrequency() << "\n"); 2066 2067 if (Cost < SmallestRotationCost) { 2068 SmallestRotationCost = Cost; 2069 RotationPos = Iter; 2070 } 2071 } 2072 2073 if (RotationPos != LoopChain.end()) { 2074 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2075 << " to the top\n"); 2076 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2077 } 2078 } 2079 2080 /// \brief Collect blocks in the given loop that are to be placed. 2081 /// 2082 /// When profile data is available, exclude cold blocks from the returned set; 2083 /// otherwise, collect all blocks in the loop. 2084 MachineBlockPlacement::BlockFilterSet 2085 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2086 BlockFilterSet LoopBlockSet; 2087 2088 // Filter cold blocks off from LoopBlockSet when profile data is available. 2089 // Collect the sum of frequencies of incoming edges to the loop header from 2090 // outside. If we treat the loop as a super block, this is the frequency of 2091 // the loop. Then for each block in the loop, we calculate the ratio between 2092 // its frequency and the frequency of the loop block. When it is too small, 2093 // don't add it to the loop chain. If there are outer loops, then this block 2094 // will be merged into the first outer loop chain for which this block is not 2095 // cold anymore. This needs precise profile data and we only do this when 2096 // profile data is available. 2097 if (F->getFunction()->getEntryCount()) { 2098 BlockFrequency LoopFreq(0); 2099 for (auto LoopPred : L.getHeader()->predecessors()) 2100 if (!L.contains(LoopPred)) 2101 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2102 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2103 2104 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2105 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2106 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2107 continue; 2108 LoopBlockSet.insert(LoopBB); 2109 } 2110 } else 2111 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2112 2113 return LoopBlockSet; 2114 } 2115 2116 /// \brief Forms basic block chains from the natural loop structures. 2117 /// 2118 /// These chains are designed to preserve the existing *structure* of the code 2119 /// as much as possible. We can then stitch the chains together in a way which 2120 /// both preserves the topological structure and minimizes taken conditional 2121 /// branches. 2122 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2123 // First recurse through any nested loops, building chains for those inner 2124 // loops. 2125 for (const MachineLoop *InnerLoop : L) 2126 buildLoopChains(*InnerLoop); 2127 2128 assert(BlockWorkList.empty()); 2129 assert(EHPadWorkList.empty()); 2130 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2131 2132 // Check if we have profile data for this function. If yes, we will rotate 2133 // this loop by modeling costs more precisely which requires the profile data 2134 // for better layout. 2135 bool RotateLoopWithProfile = 2136 ForcePreciseRotationCost || 2137 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2138 2139 // First check to see if there is an obviously preferable top block for the 2140 // loop. This will default to the header, but may end up as one of the 2141 // predecessors to the header if there is one which will result in strictly 2142 // fewer branches in the loop body. 2143 // When we use profile data to rotate the loop, this is unnecessary. 2144 MachineBasicBlock *LoopTop = 2145 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2146 2147 // If we selected just the header for the loop top, look for a potentially 2148 // profitable exit block in the event that rotating the loop can eliminate 2149 // branches by placing an exit edge at the bottom. 2150 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2151 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2152 2153 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2154 2155 // FIXME: This is a really lame way of walking the chains in the loop: we 2156 // walk the blocks, and use a set to prevent visiting a particular chain 2157 // twice. 2158 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2159 assert(LoopChain.UnscheduledPredecessors == 0); 2160 UpdatedPreds.insert(&LoopChain); 2161 2162 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2163 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2164 2165 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2166 2167 if (RotateLoopWithProfile) 2168 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2169 else 2170 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2171 2172 DEBUG({ 2173 // Crash at the end so we get all of the debugging output first. 2174 bool BadLoop = false; 2175 if (LoopChain.UnscheduledPredecessors) { 2176 BadLoop = true; 2177 dbgs() << "Loop chain contains a block without its preds placed!\n" 2178 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2179 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2180 } 2181 for (MachineBasicBlock *ChainBB : LoopChain) { 2182 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2183 if (!LoopBlockSet.remove(ChainBB)) { 2184 // We don't mark the loop as bad here because there are real situations 2185 // where this can occur. For example, with an unanalyzable fallthrough 2186 // from a loop block to a non-loop block or vice versa. 2187 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2188 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2189 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2190 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2191 } 2192 } 2193 2194 if (!LoopBlockSet.empty()) { 2195 BadLoop = true; 2196 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2197 dbgs() << "Loop contains blocks never placed into a chain!\n" 2198 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2199 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2200 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2201 } 2202 assert(!BadLoop && "Detected problems with the placement of this loop."); 2203 }); 2204 2205 BlockWorkList.clear(); 2206 EHPadWorkList.clear(); 2207 } 2208 2209 void MachineBlockPlacement::buildCFGChains() { 2210 // Ensure that every BB in the function has an associated chain to simplify 2211 // the assumptions of the remaining algorithm. 2212 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2213 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2214 ++FI) { 2215 MachineBasicBlock *BB = &*FI; 2216 BlockChain *Chain = 2217 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2218 // Also, merge any blocks which we cannot reason about and must preserve 2219 // the exact fallthrough behavior for. 2220 for (;;) { 2221 Cond.clear(); 2222 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2223 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2224 break; 2225 2226 MachineFunction::iterator NextFI = std::next(FI); 2227 MachineBasicBlock *NextBB = &*NextFI; 2228 // Ensure that the layout successor is a viable block, as we know that 2229 // fallthrough is a possibility. 2230 assert(NextFI != FE && "Can't fallthrough past the last block."); 2231 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2232 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2233 << "\n"); 2234 Chain->merge(NextBB, nullptr); 2235 #ifndef NDEBUG 2236 BlocksWithUnanalyzableExits.insert(&*BB); 2237 #endif 2238 FI = NextFI; 2239 BB = NextBB; 2240 } 2241 } 2242 2243 // Build any loop-based chains. 2244 PreferredLoopExit = nullptr; 2245 for (MachineLoop *L : *MLI) 2246 buildLoopChains(*L); 2247 2248 assert(BlockWorkList.empty()); 2249 assert(EHPadWorkList.empty()); 2250 2251 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2252 for (MachineBasicBlock &MBB : *F) 2253 fillWorkLists(&MBB, UpdatedPreds); 2254 2255 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2256 buildChain(&F->front(), FunctionChain); 2257 2258 #ifndef NDEBUG 2259 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2260 #endif 2261 DEBUG({ 2262 // Crash at the end so we get all of the debugging output first. 2263 bool BadFunc = false; 2264 FunctionBlockSetType FunctionBlockSet; 2265 for (MachineBasicBlock &MBB : *F) 2266 FunctionBlockSet.insert(&MBB); 2267 2268 for (MachineBasicBlock *ChainBB : FunctionChain) 2269 if (!FunctionBlockSet.erase(ChainBB)) { 2270 BadFunc = true; 2271 dbgs() << "Function chain contains a block not in the function!\n" 2272 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2273 } 2274 2275 if (!FunctionBlockSet.empty()) { 2276 BadFunc = true; 2277 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2278 dbgs() << "Function contains blocks never placed into a chain!\n" 2279 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2280 } 2281 assert(!BadFunc && "Detected problems with the block placement."); 2282 }); 2283 2284 // Splice the blocks into place. 2285 MachineFunction::iterator InsertPos = F->begin(); 2286 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2287 for (MachineBasicBlock *ChainBB : FunctionChain) { 2288 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2289 : " ... ") 2290 << getBlockName(ChainBB) << "\n"); 2291 if (InsertPos != MachineFunction::iterator(ChainBB)) 2292 F->splice(InsertPos, ChainBB); 2293 else 2294 ++InsertPos; 2295 2296 // Update the terminator of the previous block. 2297 if (ChainBB == *FunctionChain.begin()) 2298 continue; 2299 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2300 2301 // FIXME: It would be awesome of updateTerminator would just return rather 2302 // than assert when the branch cannot be analyzed in order to remove this 2303 // boiler plate. 2304 Cond.clear(); 2305 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2306 2307 #ifndef NDEBUG 2308 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2309 // Given the exact block placement we chose, we may actually not _need_ to 2310 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2311 // do that at this point is a bug. 2312 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2313 !PrevBB->canFallThrough()) && 2314 "Unexpected block with un-analyzable fallthrough!"); 2315 Cond.clear(); 2316 TBB = FBB = nullptr; 2317 } 2318 #endif 2319 2320 // The "PrevBB" is not yet updated to reflect current code layout, so, 2321 // o. it may fall-through to a block without explicit "goto" instruction 2322 // before layout, and no longer fall-through it after layout; or 2323 // o. just opposite. 2324 // 2325 // analyzeBranch() may return erroneous value for FBB when these two 2326 // situations take place. For the first scenario FBB is mistakenly set NULL; 2327 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2328 // mistakenly pointing to "*BI". 2329 // Thus, if the future change needs to use FBB before the layout is set, it 2330 // has to correct FBB first by using the code similar to the following: 2331 // 2332 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2333 // PrevBB->updateTerminator(); 2334 // Cond.clear(); 2335 // TBB = FBB = nullptr; 2336 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2337 // // FIXME: This should never take place. 2338 // TBB = FBB = nullptr; 2339 // } 2340 // } 2341 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2342 PrevBB->updateTerminator(); 2343 } 2344 2345 // Fixup the last block. 2346 Cond.clear(); 2347 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2348 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2349 F->back().updateTerminator(); 2350 2351 BlockWorkList.clear(); 2352 EHPadWorkList.clear(); 2353 } 2354 2355 void MachineBlockPlacement::optimizeBranches() { 2356 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2357 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2358 2359 // Now that all the basic blocks in the chain have the proper layout, 2360 // make a final call to AnalyzeBranch with AllowModify set. 2361 // Indeed, the target may be able to optimize the branches in a way we 2362 // cannot because all branches may not be analyzable. 2363 // E.g., the target may be able to remove an unconditional branch to 2364 // a fallthrough when it occurs after predicated terminators. 2365 for (MachineBasicBlock *ChainBB : FunctionChain) { 2366 Cond.clear(); 2367 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2368 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2369 // If PrevBB has a two-way branch, try to re-order the branches 2370 // such that we branch to the successor with higher probability first. 2371 if (TBB && !Cond.empty() && FBB && 2372 MBPI->getEdgeProbability(ChainBB, FBB) > 2373 MBPI->getEdgeProbability(ChainBB, TBB) && 2374 !TII->reverseBranchCondition(Cond)) { 2375 DEBUG(dbgs() << "Reverse order of the two branches: " 2376 << getBlockName(ChainBB) << "\n"); 2377 DEBUG(dbgs() << " Edge probability: " 2378 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2379 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2380 DebugLoc dl; // FIXME: this is nowhere 2381 TII->removeBranch(*ChainBB); 2382 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2383 ChainBB->updateTerminator(); 2384 } 2385 } 2386 } 2387 } 2388 2389 void MachineBlockPlacement::alignBlocks() { 2390 // Walk through the backedges of the function now that we have fully laid out 2391 // the basic blocks and align the destination of each backedge. We don't rely 2392 // exclusively on the loop info here so that we can align backedges in 2393 // unnatural CFGs and backedges that were introduced purely because of the 2394 // loop rotations done during this layout pass. 2395 if (F->getFunction()->optForSize()) 2396 return; 2397 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2398 if (FunctionChain.begin() == FunctionChain.end()) 2399 return; // Empty chain. 2400 2401 const BranchProbability ColdProb(1, 5); // 20% 2402 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2403 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2404 for (MachineBasicBlock *ChainBB : FunctionChain) { 2405 if (ChainBB == *FunctionChain.begin()) 2406 continue; 2407 2408 // Don't align non-looping basic blocks. These are unlikely to execute 2409 // enough times to matter in practice. Note that we'll still handle 2410 // unnatural CFGs inside of a natural outer loop (the common case) and 2411 // rotated loops. 2412 MachineLoop *L = MLI->getLoopFor(ChainBB); 2413 if (!L) 2414 continue; 2415 2416 unsigned Align = TLI->getPrefLoopAlignment(L); 2417 if (!Align) 2418 continue; // Don't care about loop alignment. 2419 2420 // If the block is cold relative to the function entry don't waste space 2421 // aligning it. 2422 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2423 if (Freq < WeightedEntryFreq) 2424 continue; 2425 2426 // If the block is cold relative to its loop header, don't align it 2427 // regardless of what edges into the block exist. 2428 MachineBasicBlock *LoopHeader = L->getHeader(); 2429 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2430 if (Freq < (LoopHeaderFreq * ColdProb)) 2431 continue; 2432 2433 // Check for the existence of a non-layout predecessor which would benefit 2434 // from aligning this block. 2435 MachineBasicBlock *LayoutPred = 2436 &*std::prev(MachineFunction::iterator(ChainBB)); 2437 2438 // Force alignment if all the predecessors are jumps. We already checked 2439 // that the block isn't cold above. 2440 if (!LayoutPred->isSuccessor(ChainBB)) { 2441 ChainBB->setAlignment(Align); 2442 continue; 2443 } 2444 2445 // Align this block if the layout predecessor's edge into this block is 2446 // cold relative to the block. When this is true, other predecessors make up 2447 // all of the hot entries into the block and thus alignment is likely to be 2448 // important. 2449 BranchProbability LayoutProb = 2450 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2451 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2452 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2453 ChainBB->setAlignment(Align); 2454 } 2455 } 2456 2457 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2458 /// it was duplicated into its chain predecessor and removed. 2459 /// \p BB - Basic block that may be duplicated. 2460 /// 2461 /// \p LPred - Chosen layout predecessor of \p BB. 2462 /// Updated to be the chain end if LPred is removed. 2463 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2464 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2465 /// Used to identify which blocks to update predecessor 2466 /// counts. 2467 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2468 /// chosen in the given order due to unnatural CFG 2469 /// only needed if \p BB is removed and 2470 /// \p PrevUnplacedBlockIt pointed to \p BB. 2471 /// @return true if \p BB was removed. 2472 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2473 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2474 const MachineBasicBlock *LoopHeaderBB, 2475 BlockChain &Chain, BlockFilterSet *BlockFilter, 2476 MachineFunction::iterator &PrevUnplacedBlockIt) { 2477 bool Removed, DuplicatedToLPred; 2478 bool DuplicatedToOriginalLPred; 2479 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2480 PrevUnplacedBlockIt, 2481 DuplicatedToLPred); 2482 if (!Removed) 2483 return false; 2484 DuplicatedToOriginalLPred = DuplicatedToLPred; 2485 // Iteratively try to duplicate again. It can happen that a block that is 2486 // duplicated into is still small enough to be duplicated again. 2487 // No need to call markBlockSuccessors in this case, as the blocks being 2488 // duplicated from here on are already scheduled. 2489 // Note that DuplicatedToLPred always implies Removed. 2490 while (DuplicatedToLPred) { 2491 assert (Removed && "Block must have been removed to be duplicated into its " 2492 "layout predecessor."); 2493 MachineBasicBlock *DupBB, *DupPred; 2494 // The removal callback causes Chain.end() to be updated when a block is 2495 // removed. On the first pass through the loop, the chain end should be the 2496 // same as it was on function entry. On subsequent passes, because we are 2497 // duplicating the block at the end of the chain, if it is removed the 2498 // chain will have shrunk by one block. 2499 BlockChain::iterator ChainEnd = Chain.end(); 2500 DupBB = *(--ChainEnd); 2501 // Now try to duplicate again. 2502 if (ChainEnd == Chain.begin()) 2503 break; 2504 DupPred = *std::prev(ChainEnd); 2505 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2506 PrevUnplacedBlockIt, 2507 DuplicatedToLPred); 2508 } 2509 // If BB was duplicated into LPred, it is now scheduled. But because it was 2510 // removed, markChainSuccessors won't be called for its chain. Instead we 2511 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2512 // at the end because repeating the tail duplication can increase the number 2513 // of unscheduled predecessors. 2514 LPred = *std::prev(Chain.end()); 2515 if (DuplicatedToOriginalLPred) 2516 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2517 return true; 2518 } 2519 2520 /// Tail duplicate \p BB into (some) predecessors if profitable. 2521 /// \p BB - Basic block that may be duplicated 2522 /// \p LPred - Chosen layout predecessor of \p BB 2523 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2524 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2525 /// Used to identify which blocks to update predecessor 2526 /// counts. 2527 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2528 /// chosen in the given order due to unnatural CFG 2529 /// only needed if \p BB is removed and 2530 /// \p PrevUnplacedBlockIt pointed to \p BB. 2531 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2532 /// only be true if the block was removed. 2533 /// \return - True if the block was duplicated into all preds and removed. 2534 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2535 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2536 BlockChain &Chain, BlockFilterSet *BlockFilter, 2537 MachineFunction::iterator &PrevUnplacedBlockIt, 2538 bool &DuplicatedToLPred) { 2539 DuplicatedToLPred = false; 2540 if (!shouldTailDuplicate(BB)) 2541 return false; 2542 2543 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2544 << BB->getNumber() << "\n"); 2545 2546 // This has to be a callback because none of it can be done after 2547 // BB is deleted. 2548 bool Removed = false; 2549 auto RemovalCallback = 2550 [&](MachineBasicBlock *RemBB) { 2551 // Signal to outer function 2552 Removed = true; 2553 2554 // Conservative default. 2555 bool InWorkList = true; 2556 // Remove from the Chain and Chain Map 2557 if (BlockToChain.count(RemBB)) { 2558 BlockChain *Chain = BlockToChain[RemBB]; 2559 InWorkList = Chain->UnscheduledPredecessors == 0; 2560 Chain->remove(RemBB); 2561 BlockToChain.erase(RemBB); 2562 } 2563 2564 // Handle the unplaced block iterator 2565 if (&(*PrevUnplacedBlockIt) == RemBB) { 2566 PrevUnplacedBlockIt++; 2567 } 2568 2569 // Handle the Work Lists 2570 if (InWorkList) { 2571 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2572 if (RemBB->isEHPad()) 2573 RemoveList = EHPadWorkList; 2574 RemoveList.erase( 2575 remove_if(RemoveList, 2576 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2577 RemoveList.end()); 2578 } 2579 2580 // Handle the filter set 2581 if (BlockFilter) { 2582 BlockFilter->remove(RemBB); 2583 } 2584 2585 // Remove the block from loop info. 2586 MLI->removeBlock(RemBB); 2587 if (RemBB == PreferredLoopExit) 2588 PreferredLoopExit = nullptr; 2589 2590 DEBUG(dbgs() << "TailDuplicator deleted block: " 2591 << getBlockName(RemBB) << "\n"); 2592 }; 2593 auto RemovalCallbackRef = 2594 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2595 2596 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2597 bool IsSimple = TailDup.isSimpleBB(BB); 2598 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2599 &DuplicatedPreds, &RemovalCallbackRef); 2600 2601 // Update UnscheduledPredecessors to reflect tail-duplication. 2602 DuplicatedToLPred = false; 2603 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2604 // We're only looking for unscheduled predecessors that match the filter. 2605 BlockChain* PredChain = BlockToChain[Pred]; 2606 if (Pred == LPred) 2607 DuplicatedToLPred = true; 2608 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2609 || PredChain == &Chain) 2610 continue; 2611 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2612 if (BlockFilter && !BlockFilter->count(NewSucc)) 2613 continue; 2614 BlockChain *NewChain = BlockToChain[NewSucc]; 2615 if (NewChain != &Chain && NewChain != PredChain) 2616 NewChain->UnscheduledPredecessors++; 2617 } 2618 } 2619 return Removed; 2620 } 2621 2622 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2623 if (skipFunction(*MF.getFunction())) 2624 return false; 2625 2626 // Check for single-block functions and skip them. 2627 if (std::next(MF.begin()) == MF.end()) 2628 return false; 2629 2630 F = &MF; 2631 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2632 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2633 getAnalysis<MachineBlockFrequencyInfo>()); 2634 MLI = &getAnalysis<MachineLoopInfo>(); 2635 TII = MF.getSubtarget().getInstrInfo(); 2636 TLI = MF.getSubtarget().getTargetLowering(); 2637 MPDT = nullptr; 2638 2639 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2640 // there are no MachineLoops. 2641 PreferredLoopExit = nullptr; 2642 2643 assert(BlockToChain.empty()); 2644 assert(ComputedEdges.empty()); 2645 2646 if (TailDupPlacement) { 2647 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2648 unsigned TailDupSize = TailDupPlacementThreshold; 2649 if (MF.getFunction()->optForSize()) 2650 TailDupSize = 1; 2651 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2652 precomputeTriangleChains(); 2653 } 2654 2655 buildCFGChains(); 2656 2657 // Changing the layout can create new tail merging opportunities. 2658 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2659 // TailMerge can create jump into if branches that make CFG irreducible for 2660 // HW that requires structured CFG. 2661 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2662 PassConfig->getEnableTailMerge() && 2663 BranchFoldPlacement; 2664 // No tail merging opportunities if the block number is less than four. 2665 if (MF.size() > 3 && EnableTailMerge) { 2666 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2667 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2668 *MBPI, TailMergeSize); 2669 2670 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2671 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2672 /*AfterBlockPlacement=*/true)) { 2673 // Redo the layout if tail merging creates/removes/moves blocks. 2674 BlockToChain.clear(); 2675 ComputedEdges.clear(); 2676 // Must redo the post-dominator tree if blocks were changed. 2677 if (MPDT) 2678 MPDT->runOnMachineFunction(MF); 2679 ChainAllocator.DestroyAll(); 2680 buildCFGChains(); 2681 } 2682 } 2683 2684 optimizeBranches(); 2685 alignBlocks(); 2686 2687 BlockToChain.clear(); 2688 ComputedEdges.clear(); 2689 ChainAllocator.DestroyAll(); 2690 2691 if (AlignAllBlock) 2692 // Align all of the blocks in the function to a specific alignment. 2693 for (MachineBasicBlock &MBB : MF) 2694 MBB.setAlignment(AlignAllBlock); 2695 else if (AlignAllNonFallThruBlocks) { 2696 // Align all of the blocks that have no fall-through predecessors to a 2697 // specific alignment. 2698 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2699 auto LayoutPred = std::prev(MBI); 2700 if (!LayoutPred->isSuccessor(&*MBI)) 2701 MBI->setAlignment(AlignAllNonFallThruBlocks); 2702 } 2703 } 2704 if (ViewBlockLayoutWithBFI != GVDT_None && 2705 (ViewBlockFreqFuncName.empty() || 2706 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2707 MBFI->view("MBP." + MF.getName(), false); 2708 } 2709 2710 2711 // We always return true as we have no way to track whether the final order 2712 // differs from the original order. 2713 return true; 2714 } 2715 2716 namespace { 2717 /// \brief A pass to compute block placement statistics. 2718 /// 2719 /// A separate pass to compute interesting statistics for evaluating block 2720 /// placement. This is separate from the actual placement pass so that they can 2721 /// be computed in the absence of any placement transformations or when using 2722 /// alternative placement strategies. 2723 class MachineBlockPlacementStats : public MachineFunctionPass { 2724 /// \brief A handle to the branch probability pass. 2725 const MachineBranchProbabilityInfo *MBPI; 2726 2727 /// \brief A handle to the function-wide block frequency pass. 2728 const MachineBlockFrequencyInfo *MBFI; 2729 2730 public: 2731 static char ID; // Pass identification, replacement for typeid 2732 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2733 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2734 } 2735 2736 bool runOnMachineFunction(MachineFunction &F) override; 2737 2738 void getAnalysisUsage(AnalysisUsage &AU) const override { 2739 AU.addRequired<MachineBranchProbabilityInfo>(); 2740 AU.addRequired<MachineBlockFrequencyInfo>(); 2741 AU.setPreservesAll(); 2742 MachineFunctionPass::getAnalysisUsage(AU); 2743 } 2744 }; 2745 } 2746 2747 char MachineBlockPlacementStats::ID = 0; 2748 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2749 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2750 "Basic Block Placement Stats", false, false) 2751 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2752 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2753 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2754 "Basic Block Placement Stats", false, false) 2755 2756 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2757 // Check for single-block functions and skip them. 2758 if (std::next(F.begin()) == F.end()) 2759 return false; 2760 2761 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2762 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2763 2764 for (MachineBasicBlock &MBB : F) { 2765 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2766 Statistic &NumBranches = 2767 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2768 Statistic &BranchTakenFreq = 2769 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2770 for (MachineBasicBlock *Succ : MBB.successors()) { 2771 // Skip if this successor is a fallthrough. 2772 if (MBB.isLayoutSuccessor(Succ)) 2773 continue; 2774 2775 BlockFrequency EdgeFreq = 2776 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2777 ++NumBranches; 2778 BranchTakenFreq += EdgeFreq.getFrequency(); 2779 } 2780 } 2781 2782 return false; 2783 } 2784