xref: /llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp (revision b7eee2c3fe953df5f5aa1f543759d9a1e54d5ef7)
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants, and target indices) that a variable
14 /// fragment might be located, qualified by a DIExpression and indirect-ness
15 /// flag, while each variable is identified by a DebugVariable object. The
16 /// availability of an expression begins when a DBG_VALUE instruction specifies
17 /// the location of a DebugVariable, and continues until that location is
18 /// clobbered or re-specified by a different DBG_VALUE for the same
19 /// DebugVariable.
20 ///
21 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
22 /// placed to extend variable locations as far they're available. This file
23 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
24 /// locations, using the VarLoc class.
25 ///
26 /// The canonical "available expressions" problem doesn't have expression
27 /// clobbering, instead when a variable is re-assigned, any expressions using
28 /// that variable get invalidated. LiveDebugValues can map onto "available
29 /// expressions" by having every register represented by a variable, which is
30 /// used in an expression that becomes available at a DBG_VALUE instruction.
31 /// When the register is clobbered, its variable is effectively reassigned, and
32 /// expressions computed from it become unavailable. A similar construct is
33 /// needed when a DebugVariable has its location re-specified, to invalidate
34 /// all other locations for that DebugVariable.
35 ///
36 /// Using the dataflow analysis to compute the available expressions, we create
37 /// a DBG_VALUE at the beginning of each block where the expression is
38 /// live-in. This propagates variable locations into every basic block where
39 /// the location can be determined, rather than only having DBG_VALUEs in blocks
40 /// where locations are specified due to an assignment or some optimization.
41 /// Movements of values between registers and spill slots are annotated with
42 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
43 /// DbgEntityHistoryCalculator to focus on only the locations within individual
44 /// blocks, facilitating testing and improving modularity.
45 ///
46 /// We follow an optimisic dataflow approach, with this lattice:
47 ///
48 /// \verbatim
49 ///                    ┬ "Unknown"
50 ///                          |
51 ///                          v
52 ///                         True
53 ///                          |
54 ///                          v
55 ///                      ⊥ False
56 /// \endverbatim With "True" signifying that the expression is available (and
57 /// thus a DebugVariable's location is the corresponding register), while
58 /// "False" signifies that the expression is unavailable. "Unknown"s never
59 /// survive to the end of the analysis (see below).
60 ///
61 /// Formally, all DebugVariable locations that are live-out of a block are
62 /// initialized to \top.  A blocks live-in values take the meet of the lattice
63 /// value for every predecessors live-outs, except for the entry block, where
64 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
65 /// function for a block assigns an expression for a DebugVariable to be "True"
66 /// if a DBG_VALUE in the block specifies it; "False" if the location is
67 /// clobbered; or the live-in value if it is unaffected by the block. We
68 /// visit each block in reverse post order until a fixedpoint is reached. The
69 /// solution produced is maximal.
70 ///
71 /// Intuitively, we start by assuming that every expression / variable location
72 /// is at least "True", and then propagate "False" from the entry block and any
73 /// clobbers until there are no more changes to make. This gives us an accurate
74 /// solution because all incorrect locations will have a "False" propagated into
75 /// them. It also gives us a solution that copes well with loops by assuming
76 /// that variable locations are live-through every loop, and then removing those
77 /// that are not through dataflow.
78 ///
79 /// Within LiveDebugValues: each variable location is represented by a
80 /// VarLoc object that identifies the source variable, the set of
81 /// machine-locations that currently describe it (a single location for
82 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
83 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
84 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
85 /// corresponds to one of the VarLoc's machine-locations and can be used to
86 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
87 /// locations, the dataflow analysis in this pass identifies locations by their
88 /// indices in the VarLocMap, meaning all the variable locations in a block can
89 /// be described by a sparse vector of VarLocMap indices.
90 ///
91 /// All the storage for the dataflow analysis is local to the ExtendRanges
92 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
93 /// in and out lattice values for each block. "OpenRanges" maintains a list of
94 /// variable locations and, with the "process" method, evaluates the transfer
95 /// function of each block. "flushPendingLocs" installs debug value instructions
96 /// for each live-in location at the start of blocks, while "Transfers" records
97 /// transfers of values between machine-locations.
98 ///
99 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
100 /// implementation. Instead, unvisited blocks implicitly have all lattice
101 /// values set as "Unknown". After being visited, there will be path back to
102 /// the entry block where the lattice value is "False", and as the transfer
103 /// function cannot make new "Unknown" locations, there are no scenarios where
104 /// a block can have an "Unknown" location after being visited. Similarly, we
105 /// don't enumerate all possible variable locations before exploring the
106 /// function: when a new location is discovered, all blocks previously explored
107 /// were implicitly "False" but unrecorded, and become explicitly "False" when
108 /// a new VarLoc is created with its bit not set in predecessor InLocs or
109 /// OutLocs.
110 ///
111 //===----------------------------------------------------------------------===//
112 
113 #include "LiveDebugValues.h"
114 
115 #include "llvm/ADT/CoalescingBitVector.h"
116 #include "llvm/ADT/DenseMap.h"
117 #include "llvm/ADT/PostOrderIterator.h"
118 #include "llvm/ADT/SmallPtrSet.h"
119 #include "llvm/ADT/SmallSet.h"
120 #include "llvm/ADT/SmallVector.h"
121 #include "llvm/ADT/Statistic.h"
122 #include "llvm/BinaryFormat/Dwarf.h"
123 #include "llvm/CodeGen/LexicalScopes.h"
124 #include "llvm/CodeGen/MachineBasicBlock.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineMemOperand.h"
129 #include "llvm/CodeGen/MachineOperand.h"
130 #include "llvm/CodeGen/PseudoSourceValue.h"
131 #include "llvm/CodeGen/TargetFrameLowering.h"
132 #include "llvm/CodeGen/TargetInstrInfo.h"
133 #include "llvm/CodeGen/TargetLowering.h"
134 #include "llvm/CodeGen/TargetPassConfig.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/Config/llvm-config.h"
138 #include "llvm/IR/DebugInfoMetadata.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCRegisterInfo.h"
142 #include "llvm/Support/Casting.h"
143 #include "llvm/Support/Debug.h"
144 #include "llvm/Support/TypeSize.h"
145 #include "llvm/Support/raw_ostream.h"
146 #include "llvm/Target/TargetMachine.h"
147 #include <cassert>
148 #include <cstdint>
149 #include <functional>
150 #include <map>
151 #include <optional>
152 #include <queue>
153 #include <tuple>
154 #include <utility>
155 #include <vector>
156 
157 using namespace llvm;
158 
159 #define DEBUG_TYPE "livedebugvalues"
160 
161 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
162 
163 /// If \p Op is a stack or frame register return true, otherwise return false.
164 /// This is used to avoid basing the debug entry values on the registers, since
165 /// we do not support it at the moment.
166 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
167                                   const MachineInstr &MI,
168                                   const TargetRegisterInfo *TRI) {
169   if (!Op.isReg())
170     return false;
171 
172   const MachineFunction *MF = MI.getParent()->getParent();
173   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
174   Register SP = TLI->getStackPointerRegisterToSaveRestore();
175   Register FP = TRI->getFrameRegister(*MF);
176   Register Reg = Op.getReg();
177 
178   return Reg && Reg != SP && Reg != FP;
179 }
180 
181 namespace {
182 
183 // Max out the number of statically allocated elements in DefinedRegsSet, as
184 // this prevents fallback to std::set::count() operations.
185 using DefinedRegsSet = SmallSet<Register, 32>;
186 
187 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
188 // that represent Entry Values; every VarLoc in the set will also appear
189 // exactly once at Location=0.
190 // As a result, each VarLoc may appear more than once in this "set", but each
191 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
192 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
193 // is the set of all VarLocs.
194 using VarLocSet = CoalescingBitVector<uint64_t>;
195 
196 /// A type-checked pair of {Register Location (or 0), Index}, used to index
197 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
198 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
199 /// type-checker helps ensure that the conversions aren't lossy.
200 ///
201 /// Why encode a location /into/ the VarLocMap index? This makes it possible
202 /// to find the open VarLocs killed by a register def very quickly. This is a
203 /// performance-critical operation for LiveDebugValues.
204 struct LocIndex {
205   using u32_location_t = uint32_t;
206   using u32_index_t = uint32_t;
207 
208   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
209                            // \ref MCRegister), so we have plenty of range left
210                            // here to encode non-register locations.
211   u32_index_t Index;
212 
213   /// The location that has an entry for every VarLoc in the map.
214   static constexpr u32_location_t kUniversalLocation = 0;
215 
216   /// The first location that is reserved for VarLocs with locations of kind
217   /// RegisterKind.
218   static constexpr u32_location_t kFirstRegLocation = 1;
219 
220   /// The first location greater than 0 that is not reserved for VarLocs with
221   /// locations of kind RegisterKind.
222   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
223 
224   /// A special location reserved for VarLocs with locations of kind
225   /// SpillLocKind.
226   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
227 
228   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
229   /// EntryValueCopyBackupKind.
230   static constexpr u32_location_t kEntryValueBackupLocation =
231       kFirstInvalidRegLocation + 1;
232 
233   /// A special location reserved for VarLocs with locations of kind
234   /// WasmLocKind.
235   /// TODO Placing all Wasm target index locations in this single kWasmLocation
236   /// may cause slowdown in compilation time in very large functions. Consider
237   /// giving a each target index/offset pair its own u32_location_t if this
238   /// becomes a problem.
239   static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2;
240 
241   /// The first location that is reserved for VarLocs with locations of kind
242   /// VirtualRegisterKind.
243   static constexpr u32_location_t kFirstVirtualRegLocation = 1 << 31;
244 
245   LocIndex(u32_location_t Location, u32_index_t Index)
246       : Location(Location), Index(Index) {}
247 
248   uint64_t getAsRawInteger() const {
249     return (static_cast<uint64_t>(Location) << 32) | Index;
250   }
251 
252   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
253     static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t),
254                   "Cannot convert raw integer to LocIndex");
255     return {static_cast<u32_location_t>(ID >> 32),
256             static_cast<u32_index_t>(ID)};
257   }
258 
259   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
260   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
261   static uint64_t rawIndexForReg(Register Reg) {
262     return LocIndex(Reg, 0).getAsRawInteger();
263   }
264 
265   /// Return a range covering all set indices in the interval reserved for
266   /// \p Location in \p Set.
267   static auto indexRangeForLocation(const VarLocSet &Set,
268                                     u32_location_t Location) {
269     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
270     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
271     return Set.half_open_range(Start, End);
272   }
273 };
274 
275 // Simple Set for storing all the VarLoc Indices at a Location bucket.
276 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
277 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
278 // appear in any two of these, as each VarLoc appears at most once in any
279 // Location bucket.
280 using LocIndices = SmallVector<LocIndex, 2>;
281 
282 class VarLocBasedLDV : public LDVImpl {
283 private:
284   const TargetRegisterInfo *TRI;
285   const TargetInstrInfo *TII;
286   const TargetFrameLowering *TFI;
287   TargetPassConfig *TPC;
288   BitVector CalleeSavedRegs;
289   LexicalScopes LS;
290   VarLocSet::Allocator Alloc;
291 
292   const MachineInstr *LastNonDbgMI;
293 
294   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
295 
296   using FragmentInfo = DIExpression::FragmentInfo;
297   using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
298 
299   /// A pair of debug variable and value location.
300   struct VarLoc {
301     // The location at which a spilled variable resides. It consists of a
302     // register and an offset.
303     struct SpillLoc {
304       unsigned SpillBase;
305       StackOffset SpillOffset;
306       bool operator==(const SpillLoc &Other) const {
307         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
308       }
309       bool operator!=(const SpillLoc &Other) const {
310         return !(*this == Other);
311       }
312     };
313 
314     // Target indices used for wasm-specific locations.
315     struct WasmLoc {
316       // One of TargetIndex values defined in WebAssembly.h. We deal with
317       // local-related TargetIndex in this analysis (TI_LOCAL and
318       // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled
319       // separately WebAssemblyDebugFixup pass, and we don't associate debug
320       // info with values in global operands (TI_GLOBAL_RELOC) at the moment.
321       int Index;
322       int64_t Offset;
323       bool operator==(const WasmLoc &Other) const {
324         return Index == Other.Index && Offset == Other.Offset;
325       }
326       bool operator!=(const WasmLoc &Other) const { return !(*this == Other); }
327     };
328 
329     /// Identity of the variable at this location.
330     const DebugVariable Var;
331 
332     /// The expression applied to this location.
333     const DIExpression *Expr;
334 
335     /// DBG_VALUE to clone var/expr information from if this location
336     /// is moved.
337     const MachineInstr &MI;
338 
339     enum class MachineLocKind {
340       InvalidKind = 0,
341       RegisterKind,
342       SpillLocKind,
343       ImmediateKind,
344       WasmLocKind
345     };
346 
347     enum class EntryValueLocKind {
348       NonEntryValueKind = 0,
349       EntryValueKind,
350       EntryValueBackupKind,
351       EntryValueCopyBackupKind
352     } EVKind = EntryValueLocKind::NonEntryValueKind;
353 
354     /// The value location. Stored separately to avoid repeatedly
355     /// extracting it from MI.
356     union MachineLocValue {
357       uint64_t RegNo;
358       SpillLoc SpillLocation;
359       uint64_t Hash;
360       int64_t Immediate;
361       const ConstantFP *FPImm;
362       const ConstantInt *CImm;
363       WasmLoc WasmLocation;
364       MachineLocValue() : Hash(0) {}
365     };
366 
367     /// A single machine location; its Kind is either a register, spill
368     /// location, or immediate value.
369     /// If the VarLoc is not a NonEntryValueKind, then it will use only a
370     /// single MachineLoc of RegisterKind.
371     struct MachineLoc {
372       MachineLocKind Kind;
373       MachineLocValue Value;
374       bool operator==(const MachineLoc &Other) const {
375         if (Kind != Other.Kind)
376           return false;
377         switch (Kind) {
378         case MachineLocKind::SpillLocKind:
379           return Value.SpillLocation == Other.Value.SpillLocation;
380         case MachineLocKind::WasmLocKind:
381           return Value.WasmLocation == Other.Value.WasmLocation;
382         case MachineLocKind::RegisterKind:
383         case MachineLocKind::ImmediateKind:
384           return Value.Hash == Other.Value.Hash;
385         default:
386           llvm_unreachable("Invalid kind");
387         }
388       }
389       bool operator<(const MachineLoc &Other) const {
390         switch (Kind) {
391         case MachineLocKind::SpillLocKind:
392           return std::make_tuple(
393                      Kind, Value.SpillLocation.SpillBase,
394                      Value.SpillLocation.SpillOffset.getFixed(),
395                      Value.SpillLocation.SpillOffset.getScalable()) <
396                  std::make_tuple(
397                      Other.Kind, Other.Value.SpillLocation.SpillBase,
398                      Other.Value.SpillLocation.SpillOffset.getFixed(),
399                      Other.Value.SpillLocation.SpillOffset.getScalable());
400         case MachineLocKind::WasmLocKind:
401           return std::make_tuple(Kind, Value.WasmLocation.Index,
402                                  Value.WasmLocation.Offset) <
403                  std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index,
404                                  Other.Value.WasmLocation.Offset);
405         case MachineLocKind::RegisterKind:
406         case MachineLocKind::ImmediateKind:
407           return std::tie(Kind, Value.Hash) <
408                  std::tie(Other.Kind, Other.Value.Hash);
409         default:
410           llvm_unreachable("Invalid kind");
411         }
412       }
413     };
414 
415     /// The set of machine locations used to determine the variable's value, in
416     /// conjunction with Expr. Initially populated with MI's debug operands,
417     /// but may be transformed independently afterwards.
418     SmallVector<MachineLoc, 8> Locs;
419     /// Used to map the index of each location in Locs back to the index of its
420     /// original debug operand in MI. Used when multiple location operands are
421     /// coalesced and the original MI's operands need to be accessed while
422     /// emitting a debug value.
423     SmallVector<unsigned, 8> OrigLocMap;
424 
425     VarLoc(const MachineInstr &MI)
426         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
427               MI.getDebugLoc()->getInlinedAt()),
428           Expr(MI.getDebugExpression()), MI(MI) {
429       assert(MI.isDebugValue() && "not a DBG_VALUE");
430       assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
431              "malformed DBG_VALUE");
432       for (const MachineOperand &Op : MI.debug_operands()) {
433         MachineLoc ML = GetLocForOp(Op);
434         auto It = find(Locs, ML);
435         if (It == Locs.end()) {
436           Locs.push_back(ML);
437           OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
438         } else {
439           // ML duplicates an element in Locs; replace references to Op
440           // with references to the duplicating element.
441           unsigned OpIdx = Locs.size();
442           unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
443           Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
444         }
445       }
446 
447       // We create the debug entry values from the factory functions rather
448       // than from this ctor.
449       assert(EVKind != EntryValueLocKind::EntryValueKind &&
450              !isEntryBackupLoc());
451     }
452 
453     static MachineLoc GetLocForOp(const MachineOperand &Op) {
454       MachineLocKind Kind;
455       MachineLocValue Loc;
456       if (Op.isReg()) {
457         Kind = MachineLocKind::RegisterKind;
458         Loc.RegNo = Op.getReg();
459       } else if (Op.isImm()) {
460         Kind = MachineLocKind::ImmediateKind;
461         Loc.Immediate = Op.getImm();
462       } else if (Op.isFPImm()) {
463         Kind = MachineLocKind::ImmediateKind;
464         Loc.FPImm = Op.getFPImm();
465       } else if (Op.isCImm()) {
466         Kind = MachineLocKind::ImmediateKind;
467         Loc.CImm = Op.getCImm();
468       } else if (Op.isTargetIndex()) {
469         Kind = MachineLocKind::WasmLocKind;
470         Loc.WasmLocation = {Op.getIndex(), Op.getOffset()};
471       } else
472         llvm_unreachable("Invalid Op kind for MachineLoc.");
473       return {Kind, Loc};
474     }
475 
476     /// Take the variable and machine-location in DBG_VALUE MI, and build an
477     /// entry location using the given expression.
478     static VarLoc CreateEntryLoc(const MachineInstr &MI,
479                                  const DIExpression *EntryExpr, Register Reg) {
480       VarLoc VL(MI);
481       assert(VL.Locs.size() == 1 &&
482              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
483       VL.EVKind = EntryValueLocKind::EntryValueKind;
484       VL.Expr = EntryExpr;
485       VL.Locs[0].Value.RegNo = Reg;
486       return VL;
487     }
488 
489     /// Take the variable and machine-location from the DBG_VALUE (from the
490     /// function entry), and build an entry value backup location. The backup
491     /// location will turn into the normal location if the backup is valid at
492     /// the time of the primary location clobbering.
493     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
494                                        const DIExpression *EntryExpr) {
495       VarLoc VL(MI);
496       assert(VL.Locs.size() == 1 &&
497              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
498       VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
499       VL.Expr = EntryExpr;
500       return VL;
501     }
502 
503     /// Take the variable and machine-location from the DBG_VALUE (from the
504     /// function entry), and build a copy of an entry value backup location by
505     /// setting the register location to NewReg.
506     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
507                                            const DIExpression *EntryExpr,
508                                            Register NewReg) {
509       VarLoc VL(MI);
510       assert(VL.Locs.size() == 1 &&
511              VL.Locs[0].Kind == MachineLocKind::RegisterKind);
512       VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
513       VL.Expr = EntryExpr;
514       VL.Locs[0].Value.RegNo = NewReg;
515       return VL;
516     }
517 
518     /// Copy the register location in DBG_VALUE MI, updating the register to
519     /// be NewReg.
520     static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
521                                 Register NewReg) {
522       VarLoc VL = OldVL;
523       for (MachineLoc &ML : VL.Locs)
524         if (ML == OldML) {
525           ML.Kind = MachineLocKind::RegisterKind;
526           ML.Value.RegNo = NewReg;
527           return VL;
528         }
529       llvm_unreachable("Should have found OldML in new VarLoc.");
530     }
531 
532     /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
533     /// locating it in the specified spill location.
534     static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
535                                  unsigned SpillBase, StackOffset SpillOffset) {
536       VarLoc VL = OldVL;
537       for (MachineLoc &ML : VL.Locs)
538         if (ML == OldML) {
539           ML.Kind = MachineLocKind::SpillLocKind;
540           ML.Value.SpillLocation = {SpillBase, SpillOffset};
541           return VL;
542         }
543       llvm_unreachable("Should have found OldML in new VarLoc.");
544     }
545 
546     /// Create a DBG_VALUE representing this VarLoc in the given function.
547     /// Copies variable-specific information such as DILocalVariable and
548     /// inlining information from the original DBG_VALUE instruction, which may
549     /// have been several transfers ago.
550     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
551       assert(!isEntryBackupLoc() &&
552              "Tried to produce DBG_VALUE for backup VarLoc");
553       const DebugLoc &DbgLoc = MI.getDebugLoc();
554       bool Indirect = MI.isIndirectDebugValue();
555       const auto &IID = MI.getDesc();
556       const DILocalVariable *Var = MI.getDebugVariable();
557       NumInserted++;
558 
559       const DIExpression *DIExpr = Expr;
560       SmallVector<MachineOperand, 8> MOs;
561       for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
562         MachineLocKind LocKind = Locs[I].Kind;
563         MachineLocValue Loc = Locs[I].Value;
564         const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
565         switch (LocKind) {
566         case MachineLocKind::RegisterKind:
567           // An entry value is a register location -- but with an updated
568           // expression. The register location of such DBG_VALUE is always the
569           // one from the entry DBG_VALUE, it does not matter if the entry value
570           // was copied in to another register due to some optimizations.
571           // Non-entry value register locations are like the source
572           // DBG_VALUE, but with the register number from this VarLoc.
573           MOs.push_back(MachineOperand::CreateReg(
574               EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
575                                                           : Register(Loc.RegNo),
576               false));
577           break;
578         case MachineLocKind::SpillLocKind: {
579           // Spills are indirect DBG_VALUEs, with a base register and offset.
580           // Use the original DBG_VALUEs expression to build the spilt location
581           // on top of. FIXME: spill locations created before this pass runs
582           // are not recognized, and not handled here.
583           unsigned Base = Loc.SpillLocation.SpillBase;
584           auto *TRI = MF.getSubtarget().getRegisterInfo();
585           if (MI.isNonListDebugValue()) {
586             auto Deref = Indirect ? DIExpression::DerefAfter : 0;
587             DIExpr = TRI->prependOffsetExpression(
588                 DIExpr, DIExpression::ApplyOffset | Deref,
589                 Loc.SpillLocation.SpillOffset);
590             Indirect = true;
591           } else {
592             SmallVector<uint64_t, 4> Ops;
593             TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
594             Ops.push_back(dwarf::DW_OP_deref);
595             DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
596           }
597           MOs.push_back(MachineOperand::CreateReg(Base, false));
598           break;
599         }
600         case MachineLocKind::ImmediateKind: {
601           MOs.push_back(Orig);
602           break;
603         }
604         case MachineLocKind::WasmLocKind: {
605           MOs.push_back(Orig);
606           break;
607         }
608         case MachineLocKind::InvalidKind:
609           llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
610         }
611       }
612       return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
613     }
614 
615     /// Is the Loc field a constant or constant object?
616     bool isConstant(MachineLocKind Kind) const {
617       return Kind == MachineLocKind::ImmediateKind;
618     }
619 
620     /// Check if the Loc field is an entry backup location.
621     bool isEntryBackupLoc() const {
622       return EVKind == EntryValueLocKind::EntryValueBackupKind ||
623              EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
624     }
625 
626     /// If this variable is described by register \p Reg holding the entry
627     /// value, return true.
628     bool isEntryValueBackupReg(Register Reg) const {
629       return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
630     }
631 
632     /// If this variable is described by register \p Reg holding a copy of the
633     /// entry value, return true.
634     bool isEntryValueCopyBackupReg(Register Reg) const {
635       return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
636              usesReg(Reg);
637     }
638 
639     /// If this variable is described in whole or part by \p Reg, return true.
640     bool usesReg(Register Reg) const {
641       MachineLoc RegML;
642       RegML.Kind = MachineLocKind::RegisterKind;
643       RegML.Value.RegNo = Reg;
644       return is_contained(Locs, RegML);
645     }
646 
647     /// If this variable is described in whole or part by \p Reg, return true.
648     unsigned getRegIdx(Register Reg) const {
649       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
650         if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
651             Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
652           return Idx;
653       llvm_unreachable("Could not find given Reg in Locs");
654     }
655 
656     /// If this variable is described in whole or part by 1 or more registers,
657     /// add each of them to \p Regs and return true.
658     bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
659       bool AnyRegs = false;
660       for (const auto &Loc : Locs)
661         if (Loc.Kind == MachineLocKind::RegisterKind) {
662           Regs.push_back(Loc.Value.RegNo);
663           AnyRegs = true;
664         }
665       return AnyRegs;
666     }
667 
668     bool containsSpillLocs() const {
669       return any_of(Locs, [](VarLoc::MachineLoc ML) {
670         return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
671       });
672     }
673 
674     /// If this variable is described in whole or part by \p SpillLocation,
675     /// return true.
676     bool usesSpillLoc(SpillLoc SpillLocation) const {
677       MachineLoc SpillML;
678       SpillML.Kind = MachineLocKind::SpillLocKind;
679       SpillML.Value.SpillLocation = SpillLocation;
680       return is_contained(Locs, SpillML);
681     }
682 
683     /// If this variable is described in whole or part by \p SpillLocation,
684     /// return the index .
685     unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
686       for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
687         if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
688             Locs[Idx].Value.SpillLocation == SpillLocation)
689           return Idx;
690       llvm_unreachable("Could not find given SpillLoc in Locs");
691     }
692 
693     bool containsWasmLocs() const {
694       return any_of(Locs, [](VarLoc::MachineLoc ML) {
695         return ML.Kind == VarLoc::MachineLocKind::WasmLocKind;
696       });
697     }
698 
699     /// If this variable is described in whole or part by \p WasmLocation,
700     /// return true.
701     bool usesWasmLoc(WasmLoc WasmLocation) const {
702       MachineLoc WasmML;
703       WasmML.Kind = MachineLocKind::WasmLocKind;
704       WasmML.Value.WasmLocation = WasmLocation;
705       return is_contained(Locs, WasmML);
706     }
707 
708     /// Determine whether the lexical scope of this value's debug location
709     /// dominates MBB.
710     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
711       return LS.dominates(MI.getDebugLoc().get(), &MBB);
712     }
713 
714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
715     // TRI and TII can be null.
716     void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII,
717               raw_ostream &Out = dbgs()) const {
718       Out << "VarLoc(";
719       for (const MachineLoc &MLoc : Locs) {
720         if (Locs.begin() != &MLoc)
721           Out << ", ";
722         switch (MLoc.Kind) {
723         case MachineLocKind::RegisterKind:
724           Out << printReg(MLoc.Value.RegNo, TRI);
725           break;
726         case MachineLocKind::SpillLocKind:
727           Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
728           Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
729               << MLoc.Value.SpillLocation.SpillOffset.getScalable()
730               << "x vscale"
731               << "]";
732           break;
733         case MachineLocKind::ImmediateKind:
734           Out << MLoc.Value.Immediate;
735           break;
736         case MachineLocKind::WasmLocKind: {
737           if (TII) {
738             auto Indices = TII->getSerializableTargetIndices();
739             auto Found =
740                 find_if(Indices, [&](const std::pair<int, const char *> &I) {
741                   return I.first == MLoc.Value.WasmLocation.Index;
742                 });
743             assert(Found != Indices.end());
744             Out << Found->second;
745             if (MLoc.Value.WasmLocation.Offset > 0)
746               Out << " + " << MLoc.Value.WasmLocation.Offset;
747           } else {
748             Out << "WasmLoc";
749           }
750           break;
751         }
752         case MachineLocKind::InvalidKind:
753           llvm_unreachable("Invalid VarLoc in dump method");
754         }
755       }
756 
757       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
758       if (Var.getInlinedAt())
759         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
760       else
761         Out << "(null))";
762 
763       if (isEntryBackupLoc())
764         Out << " (backup loc)\n";
765       else
766         Out << "\n";
767     }
768 #endif
769 
770     bool operator==(const VarLoc &Other) const {
771       return std::tie(EVKind, Var, Expr, Locs) ==
772              std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
773     }
774 
775     /// This operator guarantees that VarLocs are sorted by Variable first.
776     bool operator<(const VarLoc &Other) const {
777       return std::tie(Var, EVKind, Locs, Expr) <
778              std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
779     }
780   };
781 
782 #ifndef NDEBUG
783   using VarVec = SmallVector<VarLoc, 32>;
784 #endif
785 
786   /// VarLocMap is used for two things:
787   /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
788   ///    virtually insert a VarLoc into a VarLocSet.
789   /// 2) Given a LocIndex, look up the unique associated VarLoc.
790   class VarLocMap {
791     /// Map a VarLoc to an index within the vector reserved for its location
792     /// within Loc2Vars.
793     std::map<VarLoc, LocIndices> Var2Indices;
794 
795     /// Map a location to a vector which holds VarLocs which live in that
796     /// location.
797     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
798 
799   public:
800     /// Retrieve LocIndices for \p VL.
801     LocIndices insert(const VarLoc &VL) {
802       LocIndices &Indices = Var2Indices[VL];
803       // If Indices is not empty, VL is already in the map.
804       if (!Indices.empty())
805         return Indices;
806       SmallVector<LocIndex::u32_location_t, 4> Locations;
807       // LocIndices are determined by EVKind and MLs; each Register has a
808       // unique location, while all SpillLocs use a single bucket, and any EV
809       // VarLocs use only the Backup bucket or none at all (except the
810       // compulsory entry at the universal location index). LocIndices will
811       // always have an index at the universal location index as the last index.
812       if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
813         VL.getDescribingRegs(Locations);
814         assert(all_of(Locations,
815                       [](auto RegNo) {
816                         return (RegNo < LocIndex::kFirstInvalidRegLocation) ||
817                                (LocIndex::kFirstVirtualRegLocation <= RegNo);
818                       }) &&
819                "Physical or virtual register out of range?");
820         if (VL.containsSpillLocs())
821           Locations.push_back(LocIndex::kSpillLocation);
822         if (VL.containsWasmLocs())
823           Locations.push_back(LocIndex::kWasmLocation);
824       } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
825         LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
826         Locations.push_back(Loc);
827       }
828       Locations.push_back(LocIndex::kUniversalLocation);
829       for (LocIndex::u32_location_t Location : Locations) {
830         auto &Vars = Loc2Vars[Location];
831         Indices.push_back(
832             {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
833         Vars.push_back(VL);
834       }
835       return Indices;
836     }
837 
838     LocIndices getAllIndices(const VarLoc &VL) const {
839       auto IndIt = Var2Indices.find(VL);
840       assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
841       return IndIt->second;
842     }
843 
844     /// Retrieve the unique VarLoc associated with \p ID.
845     const VarLoc &operator[](LocIndex ID) const {
846       auto LocIt = Loc2Vars.find(ID.Location);
847       assert(LocIt != Loc2Vars.end() && "Location not tracked");
848       return LocIt->second[ID.Index];
849     }
850   };
851 
852   using VarLocInMBB =
853       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
854   struct TransferDebugPair {
855     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
856     LocIndex LocationID;        ///< Location number for the transfer dest.
857   };
858   using TransferMap = SmallVector<TransferDebugPair, 4>;
859   // Types for recording Entry Var Locations emitted by a single MachineInstr,
860   // as well as recording MachineInstr which last defined a register.
861   using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
862   using RegDefToInstMap = DenseMap<Register, MachineInstr *>;
863 
864   // Types for recording sets of variable fragments that overlap. For a given
865   // local variable, we record all other fragments of that variable that could
866   // overlap it, to reduce search time.
867   using FragmentOfVar =
868       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
869   using OverlapMap =
870       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
871 
872   // Helper while building OverlapMap, a map of all fragments seen for a given
873   // DILocalVariable.
874   using VarToFragments =
875       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
876 
877   /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
878   /// to \p Collected once, in order of insertion into \p VarLocIDs.
879   static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
880                                 const VarLocSet &CollectFrom,
881                                 const VarLocMap &VarLocIDs);
882 
883   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
884   /// by \p CollectFrom.
885   void getUsedRegs(const VarLocSet &CollectFrom,
886                    SmallVectorImpl<Register> &UsedRegs) const;
887 
888   /// This holds the working set of currently open ranges. For fast
889   /// access, this is done both as a set of VarLocIDs, and a map of
890   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
891   /// previous open ranges for the same variable. In addition, we keep
892   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
893   /// methods act differently depending on whether a VarLoc is primary
894   /// location or backup one. In the case the VarLoc is backup location
895   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
896   /// we perform the operation on the Vars.
897   class OpenRangesSet {
898     VarLocSet::Allocator &Alloc;
899     VarLocSet VarLocs;
900     // Map the DebugVariable to recent primary location ID.
901     SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
902     // Map the DebugVariable to recent backup location ID.
903     SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
904     OverlapMap &OverlappingFragments;
905 
906   public:
907     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
908         : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
909 
910     const VarLocSet &getVarLocs() const { return VarLocs; }
911 
912     // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
913     // This method is needed to get every VarLoc once, as each VarLoc may have
914     // multiple indices in a VarLocMap (corresponding to each applicable
915     // location), but all VarLocs appear exactly once at the universal location
916     // index.
917     void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
918                           const VarLocMap &VarLocIDs) const {
919       collectAllVarLocs(Collected, VarLocs, VarLocIDs);
920     }
921 
922     /// Terminate all open ranges for VL.Var by removing it from the set.
923     void erase(const VarLoc &VL);
924 
925     /// Terminate all open ranges listed as indices in \c KillSet with
926     /// \c Location by removing them from the set.
927     void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
928                LocIndex::u32_location_t Location);
929 
930     /// Insert a new range into the set.
931     void insert(LocIndices VarLocIDs, const VarLoc &VL);
932 
933     /// Insert a set of ranges.
934     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
935 
936     std::optional<LocIndices> getEntryValueBackup(DebugVariable Var);
937 
938     /// Empty the set.
939     void clear() {
940       VarLocs.clear();
941       Vars.clear();
942       EntryValuesBackupVars.clear();
943     }
944 
945     /// Return whether the set is empty or not.
946     bool empty() const {
947       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
948              Vars.empty() == VarLocs.empty() &&
949              "open ranges are inconsistent");
950       return VarLocs.empty();
951     }
952 
953     /// Get an empty range of VarLoc IDs.
954     auto getEmptyVarLocRange() const {
955       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
956                                                        getVarLocs().end());
957     }
958 
959     /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
960     auto getRegisterVarLocs(Register Reg) const {
961       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
962     }
963 
964     /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
965     auto getSpillVarLocs() const {
966       return LocIndex::indexRangeForLocation(getVarLocs(),
967                                              LocIndex::kSpillLocation);
968     }
969 
970     /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
971     /// EntryValueCopyBackupKind.
972     auto getEntryValueBackupVarLocs() const {
973       return LocIndex::indexRangeForLocation(
974           getVarLocs(), LocIndex::kEntryValueBackupLocation);
975     }
976 
977     /// Get all set IDs for VarLocs with MLs of kind WasmLocKind.
978     auto getWasmVarLocs() const {
979       return LocIndex::indexRangeForLocation(getVarLocs(),
980                                              LocIndex::kWasmLocation);
981     }
982   };
983 
984   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
985   /// RegisterKind which are located in any reg in \p Regs. The IDs for each
986   /// VarLoc correspond to entries in the universal location bucket, which every
987   /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
988   static void collectIDsForRegs(VarLocsInRange &Collected,
989                                 const DefinedRegsSet &Regs,
990                                 const VarLocSet &CollectFrom,
991                                 const VarLocMap &VarLocIDs);
992 
993   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
994     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
995     if (!VLS)
996       VLS = std::make_unique<VarLocSet>(Alloc);
997     return *VLS;
998   }
999 
1000   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
1001                                    const VarLocInMBB &Locs) const {
1002     auto It = Locs.find(MBB);
1003     assert(It != Locs.end() && "MBB not in map");
1004     return *It->second;
1005   }
1006 
1007   /// Tests whether this instruction is a spill to a stack location.
1008   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1009 
1010   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1011   /// criteria to make this decision:
1012   /// - Is this instruction a store to a spill slot?
1013   /// - Is there a register operand that is both used and killed?
1014   /// TODO: Store optimization can fold spills into other stores (including
1015   /// other spills). We do not handle this yet (more than one memory operand).
1016   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1017                        Register &Reg);
1018 
1019   /// Returns true if the given machine instruction is a debug value which we
1020   /// can emit entry values for.
1021   ///
1022   /// Currently, we generate debug entry values only for parameters that are
1023   /// unmodified throughout the function and located in a register.
1024   bool isEntryValueCandidate(const MachineInstr &MI,
1025                              const DefinedRegsSet &Regs) const;
1026 
1027   /// If a given instruction is identified as a spill, return the spill location
1028   /// and set \p Reg to the spilled register.
1029   std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1030                                                        MachineFunction *MF,
1031                                                        Register &Reg);
1032   /// Given a spill instruction, extract the register and offset used to
1033   /// address the spill location in a target independent way.
1034   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1035   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
1036                                TransferMap &Transfers, VarLocMap &VarLocIDs,
1037                                LocIndex OldVarID, TransferKind Kind,
1038                                const VarLoc::MachineLoc &OldLoc,
1039                                Register NewReg = Register());
1040 
1041   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
1042                           VarLocMap &VarLocIDs,
1043                           InstToEntryLocMap &EntryValTransfers,
1044                           RegDefToInstMap &RegSetInstrs);
1045   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
1046                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
1047   void cleanupEntryValueTransfers(const MachineInstr *MI,
1048                                   OpenRangesSet &OpenRanges,
1049                                   VarLocMap &VarLocIDs, const VarLoc &EntryVL,
1050                                   InstToEntryLocMap &EntryValTransfers);
1051   void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
1052                         VarLocMap &VarLocIDs, const VarLoc &EntryVL,
1053                         InstToEntryLocMap &EntryValTransfers,
1054                         RegDefToInstMap &RegSetInstrs);
1055   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
1056                        VarLocMap &VarLocIDs,
1057                        InstToEntryLocMap &EntryValTransfers,
1058                        VarLocsInRange &KillSet);
1059   void recordEntryValue(const MachineInstr &MI,
1060                         const DefinedRegsSet &DefinedRegs,
1061                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
1062   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
1063                             VarLocMap &VarLocIDs, TransferMap &Transfers);
1064   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
1065                            VarLocMap &VarLocIDs,
1066                            InstToEntryLocMap &EntryValTransfers,
1067                            RegDefToInstMap &RegSetInstrs);
1068   void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
1069                        VarLocMap &VarLocIDs);
1070   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
1071                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
1072 
1073   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1074                VarLocMap &VarLocIDs, TransferMap &Transfers,
1075                InstToEntryLocMap &EntryValTransfers,
1076                RegDefToInstMap &RegSetInstrs);
1077 
1078   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
1079                              OverlapMap &OLapMap);
1080 
1081   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1082             const VarLocMap &VarLocIDs,
1083             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1084             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1085 
1086   /// Create DBG_VALUE insts for inlocs that have been propagated but
1087   /// had their instruction creation deferred.
1088   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1089 
1090   bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1091                     TargetPassConfig *TPC, unsigned InputBBLimit,
1092                     unsigned InputDbgValLimit) override;
1093 
1094 public:
1095   /// Default construct and initialize the pass.
1096   VarLocBasedLDV();
1097 
1098   ~VarLocBasedLDV();
1099 
1100   /// Print to ostream with a message.
1101   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1102                         const VarLocMap &VarLocIDs, const char *msg,
1103                         raw_ostream &Out) const;
1104 };
1105 
1106 } // end anonymous namespace
1107 
1108 //===----------------------------------------------------------------------===//
1109 //            Implementation
1110 //===----------------------------------------------------------------------===//
1111 
1112 VarLocBasedLDV::VarLocBasedLDV() = default;
1113 
1114 VarLocBasedLDV::~VarLocBasedLDV() = default;
1115 
1116 /// Erase a variable from the set of open ranges, and additionally erase any
1117 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1118 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1119 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1120 /// location, erase the variable from the Vars set.
1121 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1122   // Erasure helper.
1123   auto DoErase = [&VL, this](DebugVariable VarToErase) {
1124     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1125     auto It = EraseFrom->find(VarToErase);
1126     if (It != EraseFrom->end()) {
1127       LocIndices IDs = It->second;
1128       for (LocIndex ID : IDs)
1129         VarLocs.reset(ID.getAsRawInteger());
1130       EraseFrom->erase(It);
1131     }
1132   };
1133 
1134   DebugVariable Var = VL.Var;
1135 
1136   // Erase the variable/fragment that ends here.
1137   DoErase(Var);
1138 
1139   // Extract the fragment. Interpret an empty fragment as one that covers all
1140   // possible bits.
1141   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1142 
1143   // There may be fragments that overlap the designated fragment. Look them up
1144   // in the pre-computed overlap map, and erase them too.
1145   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1146   if (MapIt != OverlappingFragments.end()) {
1147     for (auto Fragment : MapIt->second) {
1148       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1149       if (!DebugVariable::isDefaultFragment(Fragment))
1150         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1151       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1152     }
1153   }
1154 }
1155 
1156 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1157                                           const VarLocMap &VarLocIDs,
1158                                           LocIndex::u32_location_t Location) {
1159   VarLocSet RemoveSet(Alloc);
1160   for (LocIndex::u32_index_t ID : KillSet) {
1161     const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1162     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1163     EraseFrom->erase(VL.Var);
1164     LocIndices VLI = VarLocIDs.getAllIndices(VL);
1165     for (LocIndex ID : VLI)
1166       RemoveSet.set(ID.getAsRawInteger());
1167   }
1168   VarLocs.intersectWithComplement(RemoveSet);
1169 }
1170 
1171 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1172                                                      const VarLocMap &Map) {
1173   VarLocsInRange UniqueVarLocIDs;
1174   DefinedRegsSet Regs;
1175   Regs.insert(LocIndex::kUniversalLocation);
1176   collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1177   for (uint64_t ID : UniqueVarLocIDs) {
1178     LocIndex Idx = LocIndex::fromRawInteger(ID);
1179     const VarLoc &VarL = Map[Idx];
1180     const LocIndices Indices = Map.getAllIndices(VarL);
1181     insert(Indices, VarL);
1182   }
1183 }
1184 
1185 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1186                                            const VarLoc &VL) {
1187   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1188   for (LocIndex ID : VarLocIDs)
1189     VarLocs.set(ID.getAsRawInteger());
1190   InsertInto->insert({VL.Var, VarLocIDs});
1191 }
1192 
1193 /// Return the Loc ID of an entry value backup location, if it exists for the
1194 /// variable.
1195 std::optional<LocIndices>
1196 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1197   auto It = EntryValuesBackupVars.find(Var);
1198   if (It != EntryValuesBackupVars.end())
1199     return It->second;
1200 
1201   return std::nullopt;
1202 }
1203 
1204 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1205                                        const DefinedRegsSet &Regs,
1206                                        const VarLocSet &CollectFrom,
1207                                        const VarLocMap &VarLocIDs) {
1208   assert(!Regs.empty() && "Nothing to collect");
1209   SmallVector<Register, 32> SortedRegs;
1210   append_range(SortedRegs, Regs);
1211   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1212   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1213   auto End = CollectFrom.end();
1214   for (Register Reg : SortedRegs) {
1215     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1216     // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1217     // live in Reg.
1218     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1219     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1220     It.advanceToLowerBound(FirstIndexForReg);
1221 
1222     // Iterate through that half-open interval and collect all the set IDs.
1223     for (; It != End && *It < FirstInvalidIndex; ++It) {
1224       LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1225       const VarLoc &VL = VarLocIDs[ItIdx];
1226       LocIndices LI = VarLocIDs.getAllIndices(VL);
1227       // For now, the back index is always the universal location index.
1228       assert(LI.back().Location == LocIndex::kUniversalLocation &&
1229              "Unexpected order of LocIndices for VarLoc; was it inserted into "
1230              "the VarLocMap correctly?");
1231       Collected.insert(LI.back().Index);
1232     }
1233 
1234     if (It == End)
1235       return;
1236   }
1237 }
1238 
1239 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1240                                  SmallVectorImpl<Register> &UsedRegs) const {
1241   // All register-based VarLocs are assigned indices greater than or equal to
1242   // FirstRegIndex.
1243   uint64_t FirstRegIndex =
1244       LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1245   uint64_t FirstInvalidIndex =
1246       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1247   uint64_t FirstVirtualRegIndex =
1248       LocIndex::rawIndexForReg(LocIndex::kFirstVirtualRegLocation);
1249   auto doGetUsedRegs = [&](VarLocSet::const_iterator &It) {
1250     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1251     // which register and add it to UsedRegs.
1252     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1253     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1254            "Duplicate used reg");
1255     UsedRegs.push_back(FoundReg);
1256 
1257     // Skip to the next /set/ register. Note that this finds a lower bound, so
1258     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1259     // guaranteed to move on to the next register (or to end()).
1260     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1261     It.advanceToLowerBound(NextRegIndex);
1262   };
1263   for (auto It = CollectFrom.find(FirstRegIndex),
1264             End = CollectFrom.find(FirstInvalidIndex);
1265        It != End;) {
1266     doGetUsedRegs(It);
1267   }
1268   for (auto It = CollectFrom.find(FirstVirtualRegIndex),
1269             End = CollectFrom.end();
1270        It != End;) {
1271     doGetUsedRegs(It);
1272   }
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 //            Debug Range Extension Implementation
1277 //===----------------------------------------------------------------------===//
1278 
1279 #ifndef NDEBUG
1280 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1281                                        const VarLocInMBB &V,
1282                                        const VarLocMap &VarLocIDs,
1283                                        const char *msg,
1284                                        raw_ostream &Out) const {
1285   Out << '\n' << msg << '\n';
1286   for (const MachineBasicBlock &BB : MF) {
1287     if (!V.count(&BB))
1288       continue;
1289     const VarLocSet &L = getVarLocsInMBB(&BB, V);
1290     if (L.empty())
1291       continue;
1292     SmallVector<VarLoc, 32> VarLocs;
1293     collectAllVarLocs(VarLocs, L, VarLocIDs);
1294     Out << "MBB: " << BB.getNumber() << ":\n";
1295     for (const VarLoc &VL : VarLocs) {
1296       Out << " Var: " << VL.Var.getVariable()->getName();
1297       Out << " MI: ";
1298       VL.dump(TRI, TII, Out);
1299     }
1300   }
1301   Out << "\n";
1302 }
1303 #endif
1304 
1305 VarLocBasedLDV::VarLoc::SpillLoc
1306 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1307   assert(MI.hasOneMemOperand() &&
1308          "Spill instruction does not have exactly one memory operand?");
1309   auto MMOI = MI.memoperands_begin();
1310   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1311   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1312          "Inconsistent memory operand in spill instruction");
1313   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1314   const MachineBasicBlock *MBB = MI.getParent();
1315   Register Reg;
1316   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1317   return {Reg, Offset};
1318 }
1319 
1320 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
1321 /// Transfer, which uses the to-be-deleted \p EntryVL.
1322 void VarLocBasedLDV::cleanupEntryValueTransfers(
1323     const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1324     const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
1325   if (EntryValTransfers.empty() || TRInst == nullptr)
1326     return;
1327 
1328   auto TransRange = EntryValTransfers.equal_range(TRInst);
1329   for (auto &TDPair : llvm::make_range(TransRange)) {
1330     const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
1331     if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
1332         std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
1333                  EmittedEV.Expr)) {
1334       OpenRanges.erase(EmittedEV);
1335       EntryValTransfers.erase(TRInst);
1336       break;
1337     }
1338   }
1339 }
1340 
1341 /// Try to salvage the debug entry value if we encounter a new debug value
1342 /// describing the same parameter, otherwise stop tracking the value. Return
1343 /// true if we should stop tracking the entry value and do the cleanup of
1344 /// emitted Entry Value Transfers, otherwise return false.
1345 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1346                                       OpenRangesSet &OpenRanges,
1347                                       VarLocMap &VarLocIDs,
1348                                       const VarLoc &EntryVL,
1349                                       InstToEntryLocMap &EntryValTransfers,
1350                                       RegDefToInstMap &RegSetInstrs) {
1351   // Skip the DBG_VALUE which is the debug entry value itself.
1352   if (&MI == &EntryVL.MI)
1353     return;
1354 
1355   // If the parameter's location is not register location, we can not track
1356   // the entry value any more. It doesn't have the TransferInst which defines
1357   // register, so no Entry Value Transfers have been emitted already.
1358   if (!MI.getDebugOperand(0).isReg())
1359     return;
1360 
1361   // Try to get non-debug instruction responsible for the DBG_VALUE.
1362   const MachineInstr *TransferInst = nullptr;
1363   Register Reg = MI.getDebugOperand(0).getReg();
1364   if (Reg.isValid() && RegSetInstrs.contains(Reg))
1365     TransferInst = RegSetInstrs.find(Reg)->second;
1366 
1367   // Case of the parameter's DBG_VALUE at the start of entry MBB.
1368   if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
1369     return;
1370 
1371   // If the debug expression from the DBG_VALUE is not empty, we can assume the
1372   // parameter's value has changed indicating that we should stop tracking its
1373   // entry value as well.
1374   if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
1375     // If the DBG_VALUE comes from a copy instruction that copies the entry
1376     // value, it means the parameter's value has not changed and we should be
1377     // able to use its entry value.
1378     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1379     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1380     // does not indicate the parameter modification.)
1381     auto DestSrc = TII->isCopyLikeInstr(*TransferInst);
1382     if (DestSrc) {
1383       const MachineOperand *SrcRegOp, *DestRegOp;
1384       SrcRegOp = DestSrc->Source;
1385       DestRegOp = DestSrc->Destination;
1386       if (Reg == DestRegOp->getReg()) {
1387         for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1388           const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1389           if (VL.isEntryValueCopyBackupReg(Reg) &&
1390               // Entry Values should not be variadic.
1391               VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1392             return;
1393         }
1394       }
1395     }
1396   }
1397 
1398   LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1399              MI.print(dbgs(), /*IsStandalone*/ false,
1400                       /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1401                       /*AddNewLine*/ true, TII));
1402   cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
1403                              EntryValTransfers);
1404   OpenRanges.erase(EntryVL);
1405 }
1406 
1407 /// End all previous ranges related to @MI and start a new range from @MI
1408 /// if it is a DBG_VALUE instr.
1409 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1410                                         OpenRangesSet &OpenRanges,
1411                                         VarLocMap &VarLocIDs,
1412                                         InstToEntryLocMap &EntryValTransfers,
1413                                         RegDefToInstMap &RegSetInstrs) {
1414   if (!MI.isDebugValue())
1415     return;
1416   const DILocalVariable *Var = MI.getDebugVariable();
1417   const DIExpression *Expr = MI.getDebugExpression();
1418   const DILocation *DebugLoc = MI.getDebugLoc();
1419   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1420   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1421          "Expected inlined-at fields to agree");
1422 
1423   DebugVariable V(Var, Expr, InlinedAt);
1424 
1425   // Check if this DBG_VALUE indicates a parameter's value changing.
1426   // If that is the case, we should stop tracking its entry value.
1427   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1428   if (Var->isParameter() && EntryValBackupID) {
1429     const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1430     removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
1431                      RegSetInstrs);
1432   }
1433 
1434   if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1435         return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1436                MO.isCImm() || MO.isTargetIndex();
1437       })) {
1438     // Use normal VarLoc constructor for registers and immediates.
1439     VarLoc VL(MI);
1440     // End all previous ranges of VL.Var.
1441     OpenRanges.erase(VL);
1442 
1443     LocIndices IDs = VarLocIDs.insert(VL);
1444     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1445     OpenRanges.insert(IDs, VL);
1446   } else if (MI.memoperands().size() > 0) {
1447     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1448   } else {
1449     // This must be an undefined location. If it has an open range, erase it.
1450     assert(MI.isUndefDebugValue() &&
1451            "Unexpected non-undef DBG_VALUE encountered");
1452     VarLoc VL(MI);
1453     OpenRanges.erase(VL);
1454   }
1455 }
1456 
1457 // This should be removed later, doesn't fit the new design.
1458 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1459                                        const VarLocSet &CollectFrom,
1460                                        const VarLocMap &VarLocIDs) {
1461   // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1462   // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1463   // in Reg.
1464   uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1465   uint64_t FirstInvalidIndex =
1466       LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1467   // Iterate through that half-open interval and collect all the set IDs.
1468   for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1469        It != End && *It < FirstInvalidIndex; ++It) {
1470     LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1471     Collected.push_back(VarLocIDs[RegIdx]);
1472   }
1473 }
1474 
1475 /// Turn the entry value backup locations into primary locations.
1476 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1477                                      OpenRangesSet &OpenRanges,
1478                                      VarLocMap &VarLocIDs,
1479                                      InstToEntryLocMap &EntryValTransfers,
1480                                      VarLocsInRange &KillSet) {
1481   // Do not insert entry value locations after a terminator.
1482   if (MI.isTerminator())
1483     return;
1484 
1485   for (uint32_t ID : KillSet) {
1486     // The KillSet IDs are indices for the universal location bucket.
1487     LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1488     const VarLoc &VL = VarLocIDs[Idx];
1489     if (!VL.Var.getVariable()->isParameter())
1490       continue;
1491 
1492     auto DebugVar = VL.Var;
1493     std::optional<LocIndices> EntryValBackupIDs =
1494         OpenRanges.getEntryValueBackup(DebugVar);
1495 
1496     // If the parameter has the entry value backup, it means we should
1497     // be able to use its entry value.
1498     if (!EntryValBackupIDs)
1499       continue;
1500 
1501     const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1502     VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr,
1503                                              EntryVL.Locs[0].Value.RegNo);
1504     LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1505     assert(EntryValueIDs.size() == 1 &&
1506            "EntryValue loc should not be variadic");
1507     EntryValTransfers.insert({&MI, EntryValueIDs.back()});
1508     OpenRanges.insert(EntryValueIDs, EntryLoc);
1509   }
1510 }
1511 
1512 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1513 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1514 /// new VarLoc. If \p NewReg is different than default zero value then the
1515 /// new location will be register location created by the copy like instruction,
1516 /// otherwise it is variable's location on the stack.
1517 void VarLocBasedLDV::insertTransferDebugPair(
1518     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1519     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1520     const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1521   const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1522 
1523   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1524     LocIndices LocIds = VarLocIDs.insert(VL);
1525 
1526     // Close this variable's previous location range.
1527     OpenRanges.erase(VL);
1528 
1529     // Record the new location as an open range, and a postponed transfer
1530     // inserting a DBG_VALUE for this location.
1531     OpenRanges.insert(LocIds, VL);
1532     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1533     TransferDebugPair MIP = {&MI, LocIds.back()};
1534     Transfers.push_back(MIP);
1535   };
1536 
1537   // End all previous ranges of VL.Var.
1538   OpenRanges.erase(VarLocIDs[OldVarID]);
1539   switch (Kind) {
1540   case TransferKind::TransferCopy: {
1541     assert(NewReg &&
1542            "No register supplied when handling a copy of a debug value");
1543     // Create a DBG_VALUE instruction to describe the Var in its new
1544     // register location.
1545     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1546     ProcessVarLoc(VL);
1547     LLVM_DEBUG({
1548       dbgs() << "Creating VarLoc for register copy:";
1549       VL.dump(TRI, TII);
1550     });
1551     return;
1552   }
1553   case TransferKind::TransferSpill: {
1554     // Create a DBG_VALUE instruction to describe the Var in its spilled
1555     // location.
1556     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1557     VarLoc VL = VarLoc::CreateSpillLoc(
1558         OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1559     ProcessVarLoc(VL);
1560     LLVM_DEBUG({
1561       dbgs() << "Creating VarLoc for spill:";
1562       VL.dump(TRI, TII);
1563     });
1564     return;
1565   }
1566   case TransferKind::TransferRestore: {
1567     assert(NewReg &&
1568            "No register supplied when handling a restore of a debug value");
1569     // DebugInstr refers to the pre-spill location, therefore we can reuse
1570     // its expression.
1571     VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1572     ProcessVarLoc(VL);
1573     LLVM_DEBUG({
1574       dbgs() << "Creating VarLoc for restore:";
1575       VL.dump(TRI, TII);
1576     });
1577     return;
1578   }
1579   }
1580   llvm_unreachable("Invalid transfer kind");
1581 }
1582 
1583 /// A definition of a register may mark the end of a range.
1584 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
1585                                          OpenRangesSet &OpenRanges,
1586                                          VarLocMap &VarLocIDs,
1587                                          InstToEntryLocMap &EntryValTransfers,
1588                                          RegDefToInstMap &RegSetInstrs) {
1589 
1590   // Meta Instructions do not affect the debug liveness of any register they
1591   // define.
1592   if (MI.isMetaInstruction())
1593     return;
1594 
1595   MachineFunction *MF = MI.getMF();
1596   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1597   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1598 
1599   // Find the regs killed by MI, and find regmasks of preserved regs.
1600   DefinedRegsSet DeadRegs;
1601   SmallVector<const uint32_t *, 4> RegMasks;
1602   for (const MachineOperand &MO : MI.operands()) {
1603     // Determine whether the operand is a register def.
1604     if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1605         !(MI.isCall() && MO.getReg() == SP)) {
1606       // Remove ranges of all aliased registers.
1607       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1608         // FIXME: Can we break out of this loop early if no insertion occurs?
1609         DeadRegs.insert((*RAI).id());
1610       RegSetInstrs.erase(MO.getReg());
1611       RegSetInstrs.insert({MO.getReg(), &MI});
1612     } else if (MO.isRegMask()) {
1613       RegMasks.push_back(MO.getRegMask());
1614     }
1615   }
1616 
1617   // Erase VarLocs which reside in one of the dead registers. For performance
1618   // reasons, it's critical to not iterate over the full set of open VarLocs.
1619   // Iterate over the set of dying/used regs instead.
1620   if (!RegMasks.empty()) {
1621     SmallVector<Register, 32> UsedRegs;
1622     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1623     for (Register Reg : UsedRegs) {
1624       // Remove ranges of all clobbered registers. Register masks don't usually
1625       // list SP as preserved. Assume that call instructions never clobber SP,
1626       // because some backends (e.g., AArch64) never list SP in the regmask.
1627       // While the debug info may be off for an instruction or two around
1628       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1629       // still a better user experience.
1630       if (Reg == SP)
1631         continue;
1632       bool AnyRegMaskKillsReg =
1633           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1634             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1635           });
1636       if (AnyRegMaskKillsReg)
1637         DeadRegs.insert(Reg);
1638       if (AnyRegMaskKillsReg) {
1639         RegSetInstrs.erase(Reg);
1640         RegSetInstrs.insert({Reg, &MI});
1641       }
1642     }
1643   }
1644 
1645   if (DeadRegs.empty())
1646     return;
1647 
1648   VarLocsInRange KillSet;
1649   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1650   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1651 
1652   if (TPC) {
1653     auto &TM = TPC->getTM<TargetMachine>();
1654     if (TM.Options.ShouldEmitDebugEntryValues())
1655       emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
1656   }
1657 }
1658 
1659 void VarLocBasedLDV::transferWasmDef(MachineInstr &MI,
1660                                      OpenRangesSet &OpenRanges,
1661                                      VarLocMap &VarLocIDs) {
1662   // If this is not a Wasm local.set or local.tee, which sets local values,
1663   // return.
1664   int Index;
1665   int64_t Offset;
1666   if (!TII->isExplicitTargetIndexDef(MI, Index, Offset))
1667     return;
1668 
1669   // Find the target indices killed by MI, and delete those variable locations
1670   // from the open range.
1671   VarLocsInRange KillSet;
1672   VarLoc::WasmLoc Loc{Index, Offset};
1673   for (uint64_t ID : OpenRanges.getWasmVarLocs()) {
1674     LocIndex Idx = LocIndex::fromRawInteger(ID);
1675     const VarLoc &VL = VarLocIDs[Idx];
1676     assert(VL.containsWasmLocs() && "Broken VarLocSet?");
1677     if (VL.usesWasmLoc(Loc))
1678       KillSet.insert(ID);
1679   }
1680   OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation);
1681 }
1682 
1683 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1684                                          MachineFunction *MF) {
1685   // TODO: Handle multiple stores folded into one.
1686   if (!MI.hasOneMemOperand())
1687     return false;
1688 
1689   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1690     return false; // This is not a spill instruction, since no valid size was
1691                   // returned from either function.
1692 
1693   return true;
1694 }
1695 
1696 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1697                                       MachineFunction *MF, Register &Reg) {
1698   if (!isSpillInstruction(MI, MF))
1699     return false;
1700 
1701   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1702     if (!MO.isReg() || !MO.isUse()) {
1703       Reg = 0;
1704       return false;
1705     }
1706     Reg = MO.getReg();
1707     return MO.isKill();
1708   };
1709 
1710   for (const MachineOperand &MO : MI.operands()) {
1711     // In a spill instruction generated by the InlineSpiller the spilled
1712     // register has its kill flag set.
1713     if (isKilledReg(MO, Reg))
1714       return true;
1715     if (Reg != 0) {
1716       // Check whether next instruction kills the spilled register.
1717       // FIXME: Current solution does not cover search for killed register in
1718       // bundles and instructions further down the chain.
1719       auto NextI = std::next(MI.getIterator());
1720       // Skip next instruction that points to basic block end iterator.
1721       if (MI.getParent()->end() == NextI)
1722         continue;
1723       Register RegNext;
1724       for (const MachineOperand &MONext : NextI->operands()) {
1725         // Return true if we came across the register from the
1726         // previous spill instruction that is killed in NextI.
1727         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1728           return true;
1729       }
1730     }
1731   }
1732   // Return false if we didn't find spilled register.
1733   return false;
1734 }
1735 
1736 std::optional<VarLocBasedLDV::VarLoc::SpillLoc>
1737 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1738                                      MachineFunction *MF, Register &Reg) {
1739   if (!MI.hasOneMemOperand())
1740     return std::nullopt;
1741 
1742   // FIXME: Handle folded restore instructions with more than one memory
1743   // operand.
1744   if (MI.getRestoreSize(TII)) {
1745     Reg = MI.getOperand(0).getReg();
1746     return extractSpillBaseRegAndOffset(MI);
1747   }
1748   return std::nullopt;
1749 }
1750 
1751 /// A spilled register may indicate that we have to end the current range of
1752 /// a variable and create a new one for the spill location.
1753 /// A restored register may indicate the reverse situation.
1754 /// We don't want to insert any instructions in process(), so we just create
1755 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1756 /// It will be inserted into the BB when we're done iterating over the
1757 /// instructions.
1758 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1759                                                  OpenRangesSet &OpenRanges,
1760                                                  VarLocMap &VarLocIDs,
1761                                                  TransferMap &Transfers) {
1762   MachineFunction *MF = MI.getMF();
1763   TransferKind TKind;
1764   Register Reg;
1765   std::optional<VarLoc::SpillLoc> Loc;
1766 
1767   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1768 
1769   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1770   // written to, then close the variable location. The value in memory
1771   // will have changed.
1772   VarLocsInRange KillSet;
1773   if (isSpillInstruction(MI, MF)) {
1774     Loc = extractSpillBaseRegAndOffset(MI);
1775     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1776       LocIndex Idx = LocIndex::fromRawInteger(ID);
1777       const VarLoc &VL = VarLocIDs[Idx];
1778       assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1779       if (VL.usesSpillLoc(*Loc)) {
1780         // This location is overwritten by the current instruction -- terminate
1781         // the open range, and insert an explicit DBG_VALUE $noreg.
1782         //
1783         // Doing this at a later stage would require re-interpreting all
1784         // DBG_VALUes and DIExpressions to identify whether they point at
1785         // memory, and then analysing all memory writes to see if they
1786         // overwrite that memory, which is expensive.
1787         //
1788         // At this stage, we already know which DBG_VALUEs are for spills and
1789         // where they are located; it's best to fix handle overwrites now.
1790         KillSet.insert(ID);
1791         unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1792         VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1793         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1794         LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1795         Transfers.push_back({&MI, UndefLocIDs.back()});
1796       }
1797     }
1798     OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1799   }
1800 
1801   // Try to recognise spill and restore instructions that may create a new
1802   // variable location.
1803   if (isLocationSpill(MI, MF, Reg)) {
1804     TKind = TransferKind::TransferSpill;
1805     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1806     LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI)
1807                       << "\n");
1808   } else {
1809     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1810       return;
1811     TKind = TransferKind::TransferRestore;
1812     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1813     LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI)
1814                       << "\n");
1815   }
1816   // Check if the register or spill location is the location of a debug value.
1817   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1818   if (TKind == TransferKind::TransferSpill)
1819     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1820   else if (TKind == TransferKind::TransferRestore)
1821     TransferCandidates = OpenRanges.getSpillVarLocs();
1822   for (uint64_t ID : TransferCandidates) {
1823     LocIndex Idx = LocIndex::fromRawInteger(ID);
1824     const VarLoc &VL = VarLocIDs[Idx];
1825     unsigned LocIdx;
1826     if (TKind == TransferKind::TransferSpill) {
1827       assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1828       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1829                         << VL.Var.getVariable()->getName() << ")\n");
1830       LocIdx = VL.getRegIdx(Reg);
1831     } else {
1832       assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1833              "Broken VarLocSet?");
1834       if (!VL.usesSpillLoc(*Loc))
1835         // The spill location is not the location of a debug value.
1836         continue;
1837       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1838                         << VL.Var.getVariable()->getName() << ")\n");
1839       LocIdx = VL.getSpillLocIdx(*Loc);
1840     }
1841     VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1842     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1843                             MLoc, Reg);
1844     // FIXME: A comment should explain why it's correct to return early here,
1845     // if that is in fact correct.
1846     return;
1847   }
1848 }
1849 
1850 /// If \p MI is a register copy instruction, that copies a previously tracked
1851 /// value from one register to another register that is callee saved, we
1852 /// create new DBG_VALUE instruction  described with copy destination register.
1853 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1854                                            OpenRangesSet &OpenRanges,
1855                                            VarLocMap &VarLocIDs,
1856                                            TransferMap &Transfers) {
1857   auto DestSrc = TII->isCopyLikeInstr(MI);
1858   if (!DestSrc)
1859     return;
1860 
1861   const MachineOperand *DestRegOp = DestSrc->Destination;
1862   const MachineOperand *SrcRegOp = DestSrc->Source;
1863 
1864   if (!DestRegOp->isDef())
1865     return;
1866 
1867   auto isCalleeSavedReg = [&](Register Reg) {
1868     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1869       if (CalleeSavedRegs.test((*RAI).id()))
1870         return true;
1871     return false;
1872   };
1873 
1874   Register SrcReg = SrcRegOp->getReg();
1875   Register DestReg = DestRegOp->getReg();
1876 
1877   // We want to recognize instructions where destination register is callee
1878   // saved register. If register that could be clobbered by the call is
1879   // included, there would be a great chance that it is going to be clobbered
1880   // soon. It is more likely that previous register location, which is callee
1881   // saved, is going to stay unclobbered longer, even if it is killed.
1882   if (!isCalleeSavedReg(DestReg))
1883     return;
1884 
1885   // Remember an entry value movement. If we encounter a new debug value of
1886   // a parameter describing only a moving of the value around, rather then
1887   // modifying it, we are still able to use the entry value if needed.
1888   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1889     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1890       LocIndex Idx = LocIndex::fromRawInteger(ID);
1891       const VarLoc &VL = VarLocIDs[Idx];
1892       if (VL.isEntryValueBackupReg(SrcReg)) {
1893         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1894         VarLoc EntryValLocCopyBackup =
1895             VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg);
1896         // Stop tracking the original entry value.
1897         OpenRanges.erase(VL);
1898 
1899         // Start tracking the entry value copy.
1900         LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1901         OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1902         break;
1903       }
1904     }
1905   }
1906 
1907   if (!SrcRegOp->isKill())
1908     return;
1909 
1910   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1911     LocIndex Idx = LocIndex::fromRawInteger(ID);
1912     assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1913     VarLoc::MachineLocValue Loc;
1914     Loc.RegNo = SrcReg;
1915     VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1916     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1917                             TransferKind::TransferCopy, MLoc, DestReg);
1918     // FIXME: A comment should explain why it's correct to return early here,
1919     // if that is in fact correct.
1920     return;
1921   }
1922 }
1923 
1924 /// Terminate all open ranges at the end of the current basic block.
1925 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1926                                          OpenRangesSet &OpenRanges,
1927                                          VarLocInMBB &OutLocs,
1928                                          const VarLocMap &VarLocIDs) {
1929   bool Changed = false;
1930   LLVM_DEBUG({
1931     VarVec VarLocs;
1932     OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1933     for (VarLoc &VL : VarLocs) {
1934       // Copy OpenRanges to OutLocs, if not already present.
1935       dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1936       VL.dump(TRI, TII);
1937     }
1938   });
1939   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1940   Changed = VLS != OpenRanges.getVarLocs();
1941   // New OutLocs set may be different due to spill, restore or register
1942   // copy instruction processing.
1943   if (Changed)
1944     VLS = OpenRanges.getVarLocs();
1945   OpenRanges.clear();
1946   return Changed;
1947 }
1948 
1949 /// Accumulate a mapping between each DILocalVariable fragment and other
1950 /// fragments of that DILocalVariable which overlap. This reduces work during
1951 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1952 /// known-to-overlap fragments are present".
1953 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1954 ///           fragment usage.
1955 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1956 ///           Variable which are known to exist.
1957 /// \param OverlappingFragments The overlap map being constructed, from one
1958 ///           Var/Fragment pair to a vector of fragments known to overlap.
1959 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1960                                             VarToFragments &SeenFragments,
1961                                             OverlapMap &OverlappingFragments) {
1962   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1963                       MI.getDebugLoc()->getInlinedAt());
1964   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1965 
1966   // If this is the first sighting of this variable, then we are guaranteed
1967   // there are currently no overlapping fragments either. Initialize the set
1968   // of seen fragments, record no overlaps for the current one, and return.
1969   auto [SeenIt, Inserted] = SeenFragments.try_emplace(MIVar.getVariable());
1970   if (Inserted) {
1971     SeenIt->second.insert(ThisFragment);
1972 
1973     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1974     return;
1975   }
1976 
1977   // If this particular Variable/Fragment pair already exists in the overlap
1978   // map, it has already been accounted for.
1979   auto IsInOLapMap =
1980       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1981   if (!IsInOLapMap.second)
1982     return;
1983 
1984   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1985   auto &AllSeenFragments = SeenIt->second;
1986 
1987   // Otherwise, examine all other seen fragments for this variable, with "this"
1988   // fragment being a previously unseen fragment. Record any pair of
1989   // overlapping fragments.
1990   for (const auto &ASeenFragment : AllSeenFragments) {
1991     // Does this previously seen fragment overlap?
1992     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1993       // Yes: Mark the current fragment as being overlapped.
1994       ThisFragmentsOverlaps.push_back(ASeenFragment);
1995       // Mark the previously seen fragment as being overlapped by the current
1996       // one.
1997       auto ASeenFragmentsOverlaps =
1998           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1999       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
2000              "Previously seen var fragment has no vector of overlaps");
2001       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2002     }
2003   }
2004 
2005   AllSeenFragments.insert(ThisFragment);
2006 }
2007 
2008 /// This routine creates OpenRanges.
2009 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
2010                              VarLocMap &VarLocIDs, TransferMap &Transfers,
2011                              InstToEntryLocMap &EntryValTransfers,
2012                              RegDefToInstMap &RegSetInstrs) {
2013   if (!MI.isDebugInstr())
2014     LastNonDbgMI = &MI;
2015   transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
2016                      RegSetInstrs);
2017   transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
2018                       RegSetInstrs);
2019   transferWasmDef(MI, OpenRanges, VarLocIDs);
2020   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
2021   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
2022 }
2023 
2024 /// This routine joins the analysis results of all incoming edges in @MBB by
2025 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
2026 /// source variable in all the predecessors of @MBB reside in the same location.
2027 bool VarLocBasedLDV::join(
2028     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
2029     const VarLocMap &VarLocIDs,
2030     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2031     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
2032   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2033 
2034   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
2035 
2036   // For all predecessors of this MBB, find the set of VarLocs that
2037   // can be joined.
2038   int NumVisited = 0;
2039   for (auto *p : MBB.predecessors()) {
2040     // Ignore backedges if we have not visited the predecessor yet. As the
2041     // predecessor hasn't yet had locations propagated into it, most locations
2042     // will not yet be valid, so treat them as all being uninitialized and
2043     // potentially valid. If a location guessed to be correct here is
2044     // invalidated later, we will remove it when we revisit this block.
2045     if (!Visited.count(p)) {
2046       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
2047                         << "\n");
2048       continue;
2049     }
2050     auto OL = OutLocs.find(p);
2051     // Join is null in case of empty OutLocs from any of the pred.
2052     if (OL == OutLocs.end())
2053       return false;
2054 
2055     // Just copy over the Out locs to incoming locs for the first visited
2056     // predecessor, and for all other predecessors join the Out locs.
2057     VarLocSet &OutLocVLS = *OL->second;
2058     if (!NumVisited)
2059       InLocsT = OutLocVLS;
2060     else
2061       InLocsT &= OutLocVLS;
2062 
2063     LLVM_DEBUG({
2064       if (!InLocsT.empty()) {
2065         VarVec VarLocs;
2066         collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
2067         for (const VarLoc &VL : VarLocs)
2068           dbgs() << "  gathered candidate incoming var: "
2069                  << VL.Var.getVariable()->getName() << "\n";
2070       }
2071     });
2072 
2073     NumVisited++;
2074   }
2075 
2076   // Filter out DBG_VALUES that are out of scope.
2077   VarLocSet KillSet(Alloc);
2078   bool IsArtificial = ArtificialBlocks.count(&MBB);
2079   if (!IsArtificial) {
2080     for (uint64_t ID : InLocsT) {
2081       LocIndex Idx = LocIndex::fromRawInteger(ID);
2082       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
2083         KillSet.set(ID);
2084         LLVM_DEBUG({
2085           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
2086           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
2087         });
2088       }
2089     }
2090   }
2091   InLocsT.intersectWithComplement(KillSet);
2092 
2093   // As we are processing blocks in reverse post-order we
2094   // should have processed at least one predecessor, unless it
2095   // is the entry block which has no predecessor.
2096   assert((NumVisited || MBB.pred_empty()) &&
2097          "Should have processed at least one predecessor");
2098 
2099   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
2100   bool Changed = false;
2101   if (ILS != InLocsT) {
2102     ILS = InLocsT;
2103     Changed = true;
2104   }
2105 
2106   return Changed;
2107 }
2108 
2109 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
2110                                        VarLocMap &VarLocIDs) {
2111   // PendingInLocs records all locations propagated into blocks, which have
2112   // not had DBG_VALUE insts created. Go through and create those insts now.
2113   for (auto &Iter : PendingInLocs) {
2114     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
2115     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
2116     VarLocSet &Pending = *Iter.second;
2117 
2118     SmallVector<VarLoc, 32> VarLocs;
2119     collectAllVarLocs(VarLocs, Pending, VarLocIDs);
2120 
2121     for (VarLoc DiffIt : VarLocs) {
2122       // The ID location is live-in to MBB -- work out what kind of machine
2123       // location it is and create a DBG_VALUE.
2124       if (DiffIt.isEntryBackupLoc())
2125         continue;
2126       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
2127       MBB.insert(MBB.instr_begin(), MI);
2128 
2129       (void)MI;
2130       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
2131     }
2132   }
2133 }
2134 
2135 bool VarLocBasedLDV::isEntryValueCandidate(
2136     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
2137   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
2138 
2139   // TODO: Add support for local variables that are expressed in terms of
2140   // parameters entry values.
2141   // TODO: Add support for modified arguments that can be expressed
2142   // by using its entry value.
2143   auto *DIVar = MI.getDebugVariable();
2144   if (!DIVar->isParameter())
2145     return false;
2146 
2147   // Do not consider parameters that belong to an inlined function.
2148   if (MI.getDebugLoc()->getInlinedAt())
2149     return false;
2150 
2151   // Only consider parameters that are described using registers. Parameters
2152   // that are passed on the stack are not yet supported, so ignore debug
2153   // values that are described by the frame or stack pointer.
2154   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
2155     return false;
2156 
2157   // If a parameter's value has been propagated from the caller, then the
2158   // parameter's DBG_VALUE may be described using a register defined by some
2159   // instruction in the entry block, in which case we shouldn't create an
2160   // entry value.
2161   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
2162     return false;
2163 
2164   // TODO: Add support for parameters that have a pre-existing debug expressions
2165   // (e.g. fragments).
2166   // A simple deref expression is equivalent to an indirect debug value.
2167   const DIExpression *Expr = MI.getDebugExpression();
2168   if (Expr->getNumElements() > 0 && !Expr->isDeref())
2169     return false;
2170 
2171   return true;
2172 }
2173 
2174 /// Collect all register defines (including aliases) for the given instruction.
2175 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2176                            const TargetRegisterInfo *TRI) {
2177   for (const MachineOperand &MO : MI.all_defs()) {
2178     if (MO.getReg() && MO.getReg().isPhysical()) {
2179       Regs.insert(MO.getReg());
2180       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2181         Regs.insert(*AI);
2182     }
2183   }
2184 }
2185 
2186 /// This routine records the entry values of function parameters. The values
2187 /// could be used as backup values. If we loose the track of some unmodified
2188 /// parameters, the backup values will be used as a primary locations.
2189 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2190                                        const DefinedRegsSet &DefinedRegs,
2191                                        OpenRangesSet &OpenRanges,
2192                                        VarLocMap &VarLocIDs) {
2193   if (TPC) {
2194     auto &TM = TPC->getTM<TargetMachine>();
2195     if (!TM.Options.ShouldEmitDebugEntryValues())
2196       return;
2197   }
2198 
2199   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2200                   MI.getDebugLoc()->getInlinedAt());
2201 
2202   if (!isEntryValueCandidate(MI, DefinedRegs) ||
2203       OpenRanges.getEntryValueBackup(V))
2204     return;
2205 
2206   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2207 
2208   // Create the entry value and use it as a backup location until it is
2209   // valid. It is valid until a parameter is not changed.
2210   DIExpression *NewExpr =
2211       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2212   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr);
2213   LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2214   OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2215 }
2216 
2217 /// Calculate the liveness information for the given machine function and
2218 /// extend ranges across basic blocks.
2219 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
2220                                   MachineDominatorTree *DomTree,
2221                                   TargetPassConfig *TPC, unsigned InputBBLimit,
2222                                   unsigned InputDbgValLimit) {
2223   (void)DomTree;
2224   LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n");
2225 
2226   if (!MF.getFunction().getSubprogram())
2227     // VarLocBaseLDV will already have removed all DBG_VALUEs.
2228     return false;
2229 
2230   // Skip functions from NoDebug compilation units.
2231   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2232       DICompileUnit::NoDebug)
2233     return false;
2234 
2235   TRI = MF.getSubtarget().getRegisterInfo();
2236   TII = MF.getSubtarget().getInstrInfo();
2237   TFI = MF.getSubtarget().getFrameLowering();
2238   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2239   this->TPC = TPC;
2240   LS.initialize(MF);
2241 
2242   bool Changed = false;
2243   bool OLChanged = false;
2244   bool MBBJoined = false;
2245 
2246   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
2247   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2248   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2249                               // Ranges that are open until end of bb.
2250   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
2251   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
2252   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
2253                               // spills, copies and restores).
2254   // Map responsible MI to attached Transfer emitted from Backup Entry Value.
2255   InstToEntryLocMap EntryValTransfers;
2256   // Map a Register to the last MI which clobbered it.
2257   RegDefToInstMap RegSetInstrs;
2258 
2259   VarToFragments SeenFragments;
2260 
2261   // Blocks which are artificial, i.e. blocks which exclusively contain
2262   // instructions without locations, or with line 0 locations.
2263   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2264 
2265   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2266   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2267   std::priority_queue<unsigned int, std::vector<unsigned int>,
2268                       std::greater<unsigned int>>
2269       Worklist;
2270   std::priority_queue<unsigned int, std::vector<unsigned int>,
2271                       std::greater<unsigned int>>
2272       Pending;
2273 
2274   // Set of register defines that are seen when traversing the entry block
2275   // looking for debug entry value candidates.
2276   DefinedRegsSet DefinedRegs;
2277 
2278   // Only in the case of entry MBB collect DBG_VALUEs representing
2279   // function parameters in order to generate debug entry values for them.
2280   MachineBasicBlock &First_MBB = *(MF.begin());
2281   for (auto &MI : First_MBB) {
2282     collectRegDefs(MI, DefinedRegs, TRI);
2283     if (MI.isDebugValue())
2284       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2285   }
2286 
2287   // Initialize per-block structures and scan for fragment overlaps.
2288   for (auto &MBB : MF)
2289     for (auto &MI : MBB)
2290       if (MI.isDebugValue())
2291         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2292 
2293   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2294     if (const DebugLoc &DL = MI.getDebugLoc())
2295       return DL.getLine() != 0;
2296     return false;
2297   };
2298   for (auto &MBB : MF)
2299     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2300       ArtificialBlocks.insert(&MBB);
2301 
2302   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2303                               "OutLocs after initialization", dbgs()));
2304 
2305   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2306   unsigned int RPONumber = 0;
2307   for (MachineBasicBlock *MBB : RPOT) {
2308     OrderToBB[RPONumber] = MBB;
2309     BBToOrder[MBB] = RPONumber;
2310     Worklist.push(RPONumber);
2311     ++RPONumber;
2312   }
2313 
2314   if (RPONumber > InputBBLimit) {
2315     unsigned NumInputDbgValues = 0;
2316     for (auto &MBB : MF)
2317       for (auto &MI : MBB)
2318         if (MI.isDebugValue())
2319           ++NumInputDbgValues;
2320     if (NumInputDbgValues > InputDbgValLimit) {
2321       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2322                         << " has " << RPONumber << " basic blocks and "
2323                         << NumInputDbgValues
2324                         << " input DBG_VALUEs, exceeding limits.\n");
2325       return false;
2326     }
2327   }
2328 
2329   // This is a standard "union of predecessor outs" dataflow problem.
2330   // To solve it, we perform join() and process() using the two worklist method
2331   // until the ranges converge.
2332   // Ranges have converged when both worklists are empty.
2333   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2334   while (!Worklist.empty() || !Pending.empty()) {
2335     // We track what is on the pending worklist to avoid inserting the same
2336     // thing twice.  We could avoid this with a custom priority queue, but this
2337     // is probably not worth it.
2338     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2339     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2340     while (!Worklist.empty()) {
2341       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2342       Worklist.pop();
2343       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2344                        ArtificialBlocks);
2345       MBBJoined |= Visited.insert(MBB).second;
2346       if (MBBJoined) {
2347         MBBJoined = false;
2348         Changed = true;
2349         // Now that we have started to extend ranges across BBs we need to
2350         // examine spill, copy and restore instructions to see whether they
2351         // operate with registers that correspond to user variables.
2352         // First load any pending inlocs.
2353         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2354         LastNonDbgMI = nullptr;
2355         RegSetInstrs.clear();
2356         for (auto &MI : *MBB)
2357           process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
2358                   RegSetInstrs);
2359         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2360 
2361         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2362                                     "OutLocs after propagating", dbgs()));
2363         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2364                                     "InLocs after propagating", dbgs()));
2365 
2366         if (OLChanged) {
2367           OLChanged = false;
2368           for (auto *s : MBB->successors())
2369             if (OnPending.insert(s).second) {
2370               Pending.push(BBToOrder[s]);
2371             }
2372         }
2373       }
2374     }
2375     Worklist.swap(Pending);
2376     // At this point, pending must be empty, since it was just the empty
2377     // worklist
2378     assert(Pending.empty() && "Pending should be empty");
2379   }
2380 
2381   // Add any DBG_VALUE instructions created by location transfers.
2382   for (auto &TR : Transfers) {
2383     assert(!TR.TransferInst->isTerminator() &&
2384            "Cannot insert DBG_VALUE after terminator");
2385     MachineBasicBlock *MBB = TR.TransferInst->getParent();
2386     const VarLoc &VL = VarLocIDs[TR.LocationID];
2387     MachineInstr *MI = VL.BuildDbgValue(MF);
2388     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2389   }
2390   Transfers.clear();
2391 
2392   // Add DBG_VALUEs created using Backup Entry Value location.
2393   for (auto &TR : EntryValTransfers) {
2394     MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
2395     assert(!TRInst->isTerminator() &&
2396            "Cannot insert DBG_VALUE after terminator");
2397     MachineBasicBlock *MBB = TRInst->getParent();
2398     const VarLoc &VL = VarLocIDs[TR.second];
2399     MachineInstr *MI = VL.BuildDbgValue(MF);
2400     MBB->insertAfterBundle(TRInst->getIterator(), MI);
2401   }
2402   EntryValTransfers.clear();
2403 
2404   // Deferred inlocs will not have had any DBG_VALUE insts created; do
2405   // that now.
2406   flushPendingLocs(InLocs, VarLocIDs);
2407 
2408   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2409   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2410   return Changed;
2411 }
2412 
2413 LDVImpl *
2414 llvm::makeVarLocBasedLiveDebugValues()
2415 {
2416   return new VarLocBasedLDV();
2417 }
2418