1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file VarLocBasedImpl.cpp 10 /// 11 /// LiveDebugValues is an optimistic "available expressions" dataflow 12 /// algorithm. The set of expressions is the set of machine locations 13 /// (registers, spill slots, constants, and target indices) that a variable 14 /// fragment might be located, qualified by a DIExpression and indirect-ness 15 /// flag, while each variable is identified by a DebugVariable object. The 16 /// availability of an expression begins when a DBG_VALUE instruction specifies 17 /// the location of a DebugVariable, and continues until that location is 18 /// clobbered or re-specified by a different DBG_VALUE for the same 19 /// DebugVariable. 20 /// 21 /// The output of LiveDebugValues is additional DBG_VALUE instructions, 22 /// placed to extend variable locations as far they're available. This file 23 /// and the VarLocBasedLDV class is an implementation that explicitly tracks 24 /// locations, using the VarLoc class. 25 /// 26 /// The canonical "available expressions" problem doesn't have expression 27 /// clobbering, instead when a variable is re-assigned, any expressions using 28 /// that variable get invalidated. LiveDebugValues can map onto "available 29 /// expressions" by having every register represented by a variable, which is 30 /// used in an expression that becomes available at a DBG_VALUE instruction. 31 /// When the register is clobbered, its variable is effectively reassigned, and 32 /// expressions computed from it become unavailable. A similar construct is 33 /// needed when a DebugVariable has its location re-specified, to invalidate 34 /// all other locations for that DebugVariable. 35 /// 36 /// Using the dataflow analysis to compute the available expressions, we create 37 /// a DBG_VALUE at the beginning of each block where the expression is 38 /// live-in. This propagates variable locations into every basic block where 39 /// the location can be determined, rather than only having DBG_VALUEs in blocks 40 /// where locations are specified due to an assignment or some optimization. 41 /// Movements of values between registers and spill slots are annotated with 42 /// DBG_VALUEs too to track variable values bewteen locations. All this allows 43 /// DbgEntityHistoryCalculator to focus on only the locations within individual 44 /// blocks, facilitating testing and improving modularity. 45 /// 46 /// We follow an optimisic dataflow approach, with this lattice: 47 /// 48 /// \verbatim 49 /// ┬ "Unknown" 50 /// | 51 /// v 52 /// True 53 /// | 54 /// v 55 /// ⊥ False 56 /// \endverbatim With "True" signifying that the expression is available (and 57 /// thus a DebugVariable's location is the corresponding register), while 58 /// "False" signifies that the expression is unavailable. "Unknown"s never 59 /// survive to the end of the analysis (see below). 60 /// 61 /// Formally, all DebugVariable locations that are live-out of a block are 62 /// initialized to \top. A blocks live-in values take the meet of the lattice 63 /// value for every predecessors live-outs, except for the entry block, where 64 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer 65 /// function for a block assigns an expression for a DebugVariable to be "True" 66 /// if a DBG_VALUE in the block specifies it; "False" if the location is 67 /// clobbered; or the live-in value if it is unaffected by the block. We 68 /// visit each block in reverse post order until a fixedpoint is reached. The 69 /// solution produced is maximal. 70 /// 71 /// Intuitively, we start by assuming that every expression / variable location 72 /// is at least "True", and then propagate "False" from the entry block and any 73 /// clobbers until there are no more changes to make. This gives us an accurate 74 /// solution because all incorrect locations will have a "False" propagated into 75 /// them. It also gives us a solution that copes well with loops by assuming 76 /// that variable locations are live-through every loop, and then removing those 77 /// that are not through dataflow. 78 /// 79 /// Within LiveDebugValues: each variable location is represented by a 80 /// VarLoc object that identifies the source variable, the set of 81 /// machine-locations that currently describe it (a single location for 82 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that 83 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p 84 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which 85 /// corresponds to one of the VarLoc's machine-locations and can be used to 86 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine 87 /// locations, the dataflow analysis in this pass identifies locations by their 88 /// indices in the VarLocMap, meaning all the variable locations in a block can 89 /// be described by a sparse vector of VarLocMap indices. 90 /// 91 /// All the storage for the dataflow analysis is local to the ExtendRanges 92 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the 93 /// in and out lattice values for each block. "OpenRanges" maintains a list of 94 /// variable locations and, with the "process" method, evaluates the transfer 95 /// function of each block. "flushPendingLocs" installs debug value instructions 96 /// for each live-in location at the start of blocks, while "Transfers" records 97 /// transfers of values between machine-locations. 98 /// 99 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the 100 /// implementation. Instead, unvisited blocks implicitly have all lattice 101 /// values set as "Unknown". After being visited, there will be path back to 102 /// the entry block where the lattice value is "False", and as the transfer 103 /// function cannot make new "Unknown" locations, there are no scenarios where 104 /// a block can have an "Unknown" location after being visited. Similarly, we 105 /// don't enumerate all possible variable locations before exploring the 106 /// function: when a new location is discovered, all blocks previously explored 107 /// were implicitly "False" but unrecorded, and become explicitly "False" when 108 /// a new VarLoc is created with its bit not set in predecessor InLocs or 109 /// OutLocs. 110 /// 111 //===----------------------------------------------------------------------===// 112 113 #include "LiveDebugValues.h" 114 115 #include "llvm/ADT/CoalescingBitVector.h" 116 #include "llvm/ADT/DenseMap.h" 117 #include "llvm/ADT/PostOrderIterator.h" 118 #include "llvm/ADT/SmallPtrSet.h" 119 #include "llvm/ADT/SmallSet.h" 120 #include "llvm/ADT/SmallVector.h" 121 #include "llvm/ADT/Statistic.h" 122 #include "llvm/BinaryFormat/Dwarf.h" 123 #include "llvm/CodeGen/LexicalScopes.h" 124 #include "llvm/CodeGen/MachineBasicBlock.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineMemOperand.h" 129 #include "llvm/CodeGen/MachineOperand.h" 130 #include "llvm/CodeGen/PseudoSourceValue.h" 131 #include "llvm/CodeGen/TargetFrameLowering.h" 132 #include "llvm/CodeGen/TargetInstrInfo.h" 133 #include "llvm/CodeGen/TargetLowering.h" 134 #include "llvm/CodeGen/TargetPassConfig.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/Config/llvm-config.h" 138 #include "llvm/IR/DebugInfoMetadata.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCRegisterInfo.h" 142 #include "llvm/Support/Casting.h" 143 #include "llvm/Support/Debug.h" 144 #include "llvm/Support/TypeSize.h" 145 #include "llvm/Support/raw_ostream.h" 146 #include "llvm/Target/TargetMachine.h" 147 #include <cassert> 148 #include <cstdint> 149 #include <functional> 150 #include <map> 151 #include <optional> 152 #include <queue> 153 #include <tuple> 154 #include <utility> 155 #include <vector> 156 157 using namespace llvm; 158 159 #define DEBUG_TYPE "livedebugvalues" 160 161 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 162 163 /// If \p Op is a stack or frame register return true, otherwise return false. 164 /// This is used to avoid basing the debug entry values on the registers, since 165 /// we do not support it at the moment. 166 static bool isRegOtherThanSPAndFP(const MachineOperand &Op, 167 const MachineInstr &MI, 168 const TargetRegisterInfo *TRI) { 169 if (!Op.isReg()) 170 return false; 171 172 const MachineFunction *MF = MI.getParent()->getParent(); 173 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 174 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 175 Register FP = TRI->getFrameRegister(*MF); 176 Register Reg = Op.getReg(); 177 178 return Reg && Reg != SP && Reg != FP; 179 } 180 181 namespace { 182 183 // Max out the number of statically allocated elements in DefinedRegsSet, as 184 // this prevents fallback to std::set::count() operations. 185 using DefinedRegsSet = SmallSet<Register, 32>; 186 187 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs 188 // that represent Entry Values; every VarLoc in the set will also appear 189 // exactly once at Location=0. 190 // As a result, each VarLoc may appear more than once in this "set", but each 191 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a 192 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 193 // is the set of all VarLocs. 194 using VarLocSet = CoalescingBitVector<uint64_t>; 195 196 /// A type-checked pair of {Register Location (or 0), Index}, used to index 197 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int 198 /// for insertion into a \ref VarLocSet, and efficiently converted back. The 199 /// type-checker helps ensure that the conversions aren't lossy. 200 /// 201 /// Why encode a location /into/ the VarLocMap index? This makes it possible 202 /// to find the open VarLocs killed by a register def very quickly. This is a 203 /// performance-critical operation for LiveDebugValues. 204 struct LocIndex { 205 using u32_location_t = uint32_t; 206 using u32_index_t = uint32_t; 207 208 u32_location_t Location; // Physical registers live in the range [1;2^30) (see 209 // \ref MCRegister), so we have plenty of range left 210 // here to encode non-register locations. 211 u32_index_t Index; 212 213 /// The location that has an entry for every VarLoc in the map. 214 static constexpr u32_location_t kUniversalLocation = 0; 215 216 /// The first location that is reserved for VarLocs with locations of kind 217 /// RegisterKind. 218 static constexpr u32_location_t kFirstRegLocation = 1; 219 220 /// The first location greater than 0 that is not reserved for VarLocs with 221 /// locations of kind RegisterKind. 222 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; 223 224 /// A special location reserved for VarLocs with locations of kind 225 /// SpillLocKind. 226 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; 227 228 /// A special location reserved for VarLocs of kind EntryValueBackupKind and 229 /// EntryValueCopyBackupKind. 230 static constexpr u32_location_t kEntryValueBackupLocation = 231 kFirstInvalidRegLocation + 1; 232 233 /// A special location reserved for VarLocs with locations of kind 234 /// WasmLocKind. 235 /// TODO Placing all Wasm target index locations in this single kWasmLocation 236 /// may cause slowdown in compilation time in very large functions. Consider 237 /// giving a each target index/offset pair its own u32_location_t if this 238 /// becomes a problem. 239 static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; 240 241 /// The first location that is reserved for VarLocs with locations of kind 242 /// VirtualRegisterKind. 243 static constexpr u32_location_t kFirstVirtualRegLocation = 1 << 31; 244 245 LocIndex(u32_location_t Location, u32_index_t Index) 246 : Location(Location), Index(Index) {} 247 248 uint64_t getAsRawInteger() const { 249 return (static_cast<uint64_t>(Location) << 32) | Index; 250 } 251 252 template<typename IntT> static LocIndex fromRawInteger(IntT ID) { 253 static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t), 254 "Cannot convert raw integer to LocIndex"); 255 return {static_cast<u32_location_t>(ID >> 32), 256 static_cast<u32_index_t>(ID)}; 257 } 258 259 /// Get the start of the interval reserved for VarLocs of kind RegisterKind 260 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. 261 static uint64_t rawIndexForReg(Register Reg) { 262 return LocIndex(Reg, 0).getAsRawInteger(); 263 } 264 265 /// Return a range covering all set indices in the interval reserved for 266 /// \p Location in \p Set. 267 static auto indexRangeForLocation(const VarLocSet &Set, 268 u32_location_t Location) { 269 uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); 270 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); 271 return Set.half_open_range(Start, End); 272 } 273 }; 274 275 // Simple Set for storing all the VarLoc Indices at a Location bucket. 276 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; 277 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not 278 // appear in any two of these, as each VarLoc appears at most once in any 279 // Location bucket. 280 using LocIndices = SmallVector<LocIndex, 2>; 281 282 class VarLocBasedLDV : public LDVImpl { 283 private: 284 const TargetRegisterInfo *TRI; 285 const TargetInstrInfo *TII; 286 const TargetFrameLowering *TFI; 287 TargetPassConfig *TPC; 288 BitVector CalleeSavedRegs; 289 LexicalScopes LS; 290 VarLocSet::Allocator Alloc; 291 292 const MachineInstr *LastNonDbgMI; 293 294 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; 295 296 using FragmentInfo = DIExpression::FragmentInfo; 297 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; 298 299 /// A pair of debug variable and value location. 300 struct VarLoc { 301 // The location at which a spilled variable resides. It consists of a 302 // register and an offset. 303 struct SpillLoc { 304 unsigned SpillBase; 305 StackOffset SpillOffset; 306 bool operator==(const SpillLoc &Other) const { 307 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; 308 } 309 bool operator!=(const SpillLoc &Other) const { 310 return !(*this == Other); 311 } 312 }; 313 314 // Target indices used for wasm-specific locations. 315 struct WasmLoc { 316 // One of TargetIndex values defined in WebAssembly.h. We deal with 317 // local-related TargetIndex in this analysis (TI_LOCAL and 318 // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled 319 // separately WebAssemblyDebugFixup pass, and we don't associate debug 320 // info with values in global operands (TI_GLOBAL_RELOC) at the moment. 321 int Index; 322 int64_t Offset; 323 bool operator==(const WasmLoc &Other) const { 324 return Index == Other.Index && Offset == Other.Offset; 325 } 326 bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } 327 }; 328 329 /// Identity of the variable at this location. 330 const DebugVariable Var; 331 332 /// The expression applied to this location. 333 const DIExpression *Expr; 334 335 /// DBG_VALUE to clone var/expr information from if this location 336 /// is moved. 337 const MachineInstr &MI; 338 339 enum class MachineLocKind { 340 InvalidKind = 0, 341 RegisterKind, 342 SpillLocKind, 343 ImmediateKind, 344 WasmLocKind 345 }; 346 347 enum class EntryValueLocKind { 348 NonEntryValueKind = 0, 349 EntryValueKind, 350 EntryValueBackupKind, 351 EntryValueCopyBackupKind 352 } EVKind = EntryValueLocKind::NonEntryValueKind; 353 354 /// The value location. Stored separately to avoid repeatedly 355 /// extracting it from MI. 356 union MachineLocValue { 357 uint64_t RegNo; 358 SpillLoc SpillLocation; 359 uint64_t Hash; 360 int64_t Immediate; 361 const ConstantFP *FPImm; 362 const ConstantInt *CImm; 363 WasmLoc WasmLocation; 364 MachineLocValue() : Hash(0) {} 365 }; 366 367 /// A single machine location; its Kind is either a register, spill 368 /// location, or immediate value. 369 /// If the VarLoc is not a NonEntryValueKind, then it will use only a 370 /// single MachineLoc of RegisterKind. 371 struct MachineLoc { 372 MachineLocKind Kind; 373 MachineLocValue Value; 374 bool operator==(const MachineLoc &Other) const { 375 if (Kind != Other.Kind) 376 return false; 377 switch (Kind) { 378 case MachineLocKind::SpillLocKind: 379 return Value.SpillLocation == Other.Value.SpillLocation; 380 case MachineLocKind::WasmLocKind: 381 return Value.WasmLocation == Other.Value.WasmLocation; 382 case MachineLocKind::RegisterKind: 383 case MachineLocKind::ImmediateKind: 384 return Value.Hash == Other.Value.Hash; 385 default: 386 llvm_unreachable("Invalid kind"); 387 } 388 } 389 bool operator<(const MachineLoc &Other) const { 390 switch (Kind) { 391 case MachineLocKind::SpillLocKind: 392 return std::make_tuple( 393 Kind, Value.SpillLocation.SpillBase, 394 Value.SpillLocation.SpillOffset.getFixed(), 395 Value.SpillLocation.SpillOffset.getScalable()) < 396 std::make_tuple( 397 Other.Kind, Other.Value.SpillLocation.SpillBase, 398 Other.Value.SpillLocation.SpillOffset.getFixed(), 399 Other.Value.SpillLocation.SpillOffset.getScalable()); 400 case MachineLocKind::WasmLocKind: 401 return std::make_tuple(Kind, Value.WasmLocation.Index, 402 Value.WasmLocation.Offset) < 403 std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index, 404 Other.Value.WasmLocation.Offset); 405 case MachineLocKind::RegisterKind: 406 case MachineLocKind::ImmediateKind: 407 return std::tie(Kind, Value.Hash) < 408 std::tie(Other.Kind, Other.Value.Hash); 409 default: 410 llvm_unreachable("Invalid kind"); 411 } 412 } 413 }; 414 415 /// The set of machine locations used to determine the variable's value, in 416 /// conjunction with Expr. Initially populated with MI's debug operands, 417 /// but may be transformed independently afterwards. 418 SmallVector<MachineLoc, 8> Locs; 419 /// Used to map the index of each location in Locs back to the index of its 420 /// original debug operand in MI. Used when multiple location operands are 421 /// coalesced and the original MI's operands need to be accessed while 422 /// emitting a debug value. 423 SmallVector<unsigned, 8> OrigLocMap; 424 425 VarLoc(const MachineInstr &MI) 426 : Var(MI.getDebugVariable(), MI.getDebugExpression(), 427 MI.getDebugLoc()->getInlinedAt()), 428 Expr(MI.getDebugExpression()), MI(MI) { 429 assert(MI.isDebugValue() && "not a DBG_VALUE"); 430 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && 431 "malformed DBG_VALUE"); 432 for (const MachineOperand &Op : MI.debug_operands()) { 433 MachineLoc ML = GetLocForOp(Op); 434 auto It = find(Locs, ML); 435 if (It == Locs.end()) { 436 Locs.push_back(ML); 437 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); 438 } else { 439 // ML duplicates an element in Locs; replace references to Op 440 // with references to the duplicating element. 441 unsigned OpIdx = Locs.size(); 442 unsigned DuplicatingIdx = std::distance(Locs.begin(), It); 443 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); 444 } 445 } 446 447 // We create the debug entry values from the factory functions rather 448 // than from this ctor. 449 assert(EVKind != EntryValueLocKind::EntryValueKind && 450 !isEntryBackupLoc()); 451 } 452 453 static MachineLoc GetLocForOp(const MachineOperand &Op) { 454 MachineLocKind Kind; 455 MachineLocValue Loc; 456 if (Op.isReg()) { 457 Kind = MachineLocKind::RegisterKind; 458 Loc.RegNo = Op.getReg(); 459 } else if (Op.isImm()) { 460 Kind = MachineLocKind::ImmediateKind; 461 Loc.Immediate = Op.getImm(); 462 } else if (Op.isFPImm()) { 463 Kind = MachineLocKind::ImmediateKind; 464 Loc.FPImm = Op.getFPImm(); 465 } else if (Op.isCImm()) { 466 Kind = MachineLocKind::ImmediateKind; 467 Loc.CImm = Op.getCImm(); 468 } else if (Op.isTargetIndex()) { 469 Kind = MachineLocKind::WasmLocKind; 470 Loc.WasmLocation = {Op.getIndex(), Op.getOffset()}; 471 } else 472 llvm_unreachable("Invalid Op kind for MachineLoc."); 473 return {Kind, Loc}; 474 } 475 476 /// Take the variable and machine-location in DBG_VALUE MI, and build an 477 /// entry location using the given expression. 478 static VarLoc CreateEntryLoc(const MachineInstr &MI, 479 const DIExpression *EntryExpr, Register Reg) { 480 VarLoc VL(MI); 481 assert(VL.Locs.size() == 1 && 482 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 483 VL.EVKind = EntryValueLocKind::EntryValueKind; 484 VL.Expr = EntryExpr; 485 VL.Locs[0].Value.RegNo = Reg; 486 return VL; 487 } 488 489 /// Take the variable and machine-location from the DBG_VALUE (from the 490 /// function entry), and build an entry value backup location. The backup 491 /// location will turn into the normal location if the backup is valid at 492 /// the time of the primary location clobbering. 493 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, 494 const DIExpression *EntryExpr) { 495 VarLoc VL(MI); 496 assert(VL.Locs.size() == 1 && 497 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 498 VL.EVKind = EntryValueLocKind::EntryValueBackupKind; 499 VL.Expr = EntryExpr; 500 return VL; 501 } 502 503 /// Take the variable and machine-location from the DBG_VALUE (from the 504 /// function entry), and build a copy of an entry value backup location by 505 /// setting the register location to NewReg. 506 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, 507 const DIExpression *EntryExpr, 508 Register NewReg) { 509 VarLoc VL(MI); 510 assert(VL.Locs.size() == 1 && 511 VL.Locs[0].Kind == MachineLocKind::RegisterKind); 512 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; 513 VL.Expr = EntryExpr; 514 VL.Locs[0].Value.RegNo = NewReg; 515 return VL; 516 } 517 518 /// Copy the register location in DBG_VALUE MI, updating the register to 519 /// be NewReg. 520 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, 521 Register NewReg) { 522 VarLoc VL = OldVL; 523 for (MachineLoc &ML : VL.Locs) 524 if (ML == OldML) { 525 ML.Kind = MachineLocKind::RegisterKind; 526 ML.Value.RegNo = NewReg; 527 return VL; 528 } 529 llvm_unreachable("Should have found OldML in new VarLoc."); 530 } 531 532 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc 533 /// locating it in the specified spill location. 534 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, 535 unsigned SpillBase, StackOffset SpillOffset) { 536 VarLoc VL = OldVL; 537 for (MachineLoc &ML : VL.Locs) 538 if (ML == OldML) { 539 ML.Kind = MachineLocKind::SpillLocKind; 540 ML.Value.SpillLocation = {SpillBase, SpillOffset}; 541 return VL; 542 } 543 llvm_unreachable("Should have found OldML in new VarLoc."); 544 } 545 546 /// Create a DBG_VALUE representing this VarLoc in the given function. 547 /// Copies variable-specific information such as DILocalVariable and 548 /// inlining information from the original DBG_VALUE instruction, which may 549 /// have been several transfers ago. 550 MachineInstr *BuildDbgValue(MachineFunction &MF) const { 551 assert(!isEntryBackupLoc() && 552 "Tried to produce DBG_VALUE for backup VarLoc"); 553 const DebugLoc &DbgLoc = MI.getDebugLoc(); 554 bool Indirect = MI.isIndirectDebugValue(); 555 const auto &IID = MI.getDesc(); 556 const DILocalVariable *Var = MI.getDebugVariable(); 557 NumInserted++; 558 559 const DIExpression *DIExpr = Expr; 560 SmallVector<MachineOperand, 8> MOs; 561 for (unsigned I = 0, E = Locs.size(); I < E; ++I) { 562 MachineLocKind LocKind = Locs[I].Kind; 563 MachineLocValue Loc = Locs[I].Value; 564 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); 565 switch (LocKind) { 566 case MachineLocKind::RegisterKind: 567 // An entry value is a register location -- but with an updated 568 // expression. The register location of such DBG_VALUE is always the 569 // one from the entry DBG_VALUE, it does not matter if the entry value 570 // was copied in to another register due to some optimizations. 571 // Non-entry value register locations are like the source 572 // DBG_VALUE, but with the register number from this VarLoc. 573 MOs.push_back(MachineOperand::CreateReg( 574 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() 575 : Register(Loc.RegNo), 576 false)); 577 break; 578 case MachineLocKind::SpillLocKind: { 579 // Spills are indirect DBG_VALUEs, with a base register and offset. 580 // Use the original DBG_VALUEs expression to build the spilt location 581 // on top of. FIXME: spill locations created before this pass runs 582 // are not recognized, and not handled here. 583 unsigned Base = Loc.SpillLocation.SpillBase; 584 auto *TRI = MF.getSubtarget().getRegisterInfo(); 585 if (MI.isNonListDebugValue()) { 586 auto Deref = Indirect ? DIExpression::DerefAfter : 0; 587 DIExpr = TRI->prependOffsetExpression( 588 DIExpr, DIExpression::ApplyOffset | Deref, 589 Loc.SpillLocation.SpillOffset); 590 Indirect = true; 591 } else { 592 SmallVector<uint64_t, 4> Ops; 593 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); 594 Ops.push_back(dwarf::DW_OP_deref); 595 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); 596 } 597 MOs.push_back(MachineOperand::CreateReg(Base, false)); 598 break; 599 } 600 case MachineLocKind::ImmediateKind: { 601 MOs.push_back(Orig); 602 break; 603 } 604 case MachineLocKind::WasmLocKind: { 605 MOs.push_back(Orig); 606 break; 607 } 608 case MachineLocKind::InvalidKind: 609 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); 610 } 611 } 612 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); 613 } 614 615 /// Is the Loc field a constant or constant object? 616 bool isConstant(MachineLocKind Kind) const { 617 return Kind == MachineLocKind::ImmediateKind; 618 } 619 620 /// Check if the Loc field is an entry backup location. 621 bool isEntryBackupLoc() const { 622 return EVKind == EntryValueLocKind::EntryValueBackupKind || 623 EVKind == EntryValueLocKind::EntryValueCopyBackupKind; 624 } 625 626 /// If this variable is described by register \p Reg holding the entry 627 /// value, return true. 628 bool isEntryValueBackupReg(Register Reg) const { 629 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); 630 } 631 632 /// If this variable is described by register \p Reg holding a copy of the 633 /// entry value, return true. 634 bool isEntryValueCopyBackupReg(Register Reg) const { 635 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && 636 usesReg(Reg); 637 } 638 639 /// If this variable is described in whole or part by \p Reg, return true. 640 bool usesReg(Register Reg) const { 641 MachineLoc RegML; 642 RegML.Kind = MachineLocKind::RegisterKind; 643 RegML.Value.RegNo = Reg; 644 return is_contained(Locs, RegML); 645 } 646 647 /// If this variable is described in whole or part by \p Reg, return true. 648 unsigned getRegIdx(Register Reg) const { 649 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 650 if (Locs[Idx].Kind == MachineLocKind::RegisterKind && 651 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) 652 return Idx; 653 llvm_unreachable("Could not find given Reg in Locs"); 654 } 655 656 /// If this variable is described in whole or part by 1 or more registers, 657 /// add each of them to \p Regs and return true. 658 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { 659 bool AnyRegs = false; 660 for (const auto &Loc : Locs) 661 if (Loc.Kind == MachineLocKind::RegisterKind) { 662 Regs.push_back(Loc.Value.RegNo); 663 AnyRegs = true; 664 } 665 return AnyRegs; 666 } 667 668 bool containsSpillLocs() const { 669 return any_of(Locs, [](VarLoc::MachineLoc ML) { 670 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; 671 }); 672 } 673 674 /// If this variable is described in whole or part by \p SpillLocation, 675 /// return true. 676 bool usesSpillLoc(SpillLoc SpillLocation) const { 677 MachineLoc SpillML; 678 SpillML.Kind = MachineLocKind::SpillLocKind; 679 SpillML.Value.SpillLocation = SpillLocation; 680 return is_contained(Locs, SpillML); 681 } 682 683 /// If this variable is described in whole or part by \p SpillLocation, 684 /// return the index . 685 unsigned getSpillLocIdx(SpillLoc SpillLocation) const { 686 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) 687 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && 688 Locs[Idx].Value.SpillLocation == SpillLocation) 689 return Idx; 690 llvm_unreachable("Could not find given SpillLoc in Locs"); 691 } 692 693 bool containsWasmLocs() const { 694 return any_of(Locs, [](VarLoc::MachineLoc ML) { 695 return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; 696 }); 697 } 698 699 /// If this variable is described in whole or part by \p WasmLocation, 700 /// return true. 701 bool usesWasmLoc(WasmLoc WasmLocation) const { 702 MachineLoc WasmML; 703 WasmML.Kind = MachineLocKind::WasmLocKind; 704 WasmML.Value.WasmLocation = WasmLocation; 705 return is_contained(Locs, WasmML); 706 } 707 708 /// Determine whether the lexical scope of this value's debug location 709 /// dominates MBB. 710 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { 711 return LS.dominates(MI.getDebugLoc().get(), &MBB); 712 } 713 714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 715 // TRI and TII can be null. 716 void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, 717 raw_ostream &Out = dbgs()) const { 718 Out << "VarLoc("; 719 for (const MachineLoc &MLoc : Locs) { 720 if (Locs.begin() != &MLoc) 721 Out << ", "; 722 switch (MLoc.Kind) { 723 case MachineLocKind::RegisterKind: 724 Out << printReg(MLoc.Value.RegNo, TRI); 725 break; 726 case MachineLocKind::SpillLocKind: 727 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); 728 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " 729 << MLoc.Value.SpillLocation.SpillOffset.getScalable() 730 << "x vscale" 731 << "]"; 732 break; 733 case MachineLocKind::ImmediateKind: 734 Out << MLoc.Value.Immediate; 735 break; 736 case MachineLocKind::WasmLocKind: { 737 if (TII) { 738 auto Indices = TII->getSerializableTargetIndices(); 739 auto Found = 740 find_if(Indices, [&](const std::pair<int, const char *> &I) { 741 return I.first == MLoc.Value.WasmLocation.Index; 742 }); 743 assert(Found != Indices.end()); 744 Out << Found->second; 745 if (MLoc.Value.WasmLocation.Offset > 0) 746 Out << " + " << MLoc.Value.WasmLocation.Offset; 747 } else { 748 Out << "WasmLoc"; 749 } 750 break; 751 } 752 case MachineLocKind::InvalidKind: 753 llvm_unreachable("Invalid VarLoc in dump method"); 754 } 755 } 756 757 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; 758 if (Var.getInlinedAt()) 759 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; 760 else 761 Out << "(null))"; 762 763 if (isEntryBackupLoc()) 764 Out << " (backup loc)\n"; 765 else 766 Out << "\n"; 767 } 768 #endif 769 770 bool operator==(const VarLoc &Other) const { 771 return std::tie(EVKind, Var, Expr, Locs) == 772 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); 773 } 774 775 /// This operator guarantees that VarLocs are sorted by Variable first. 776 bool operator<(const VarLoc &Other) const { 777 return std::tie(Var, EVKind, Locs, Expr) < 778 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); 779 } 780 }; 781 782 #ifndef NDEBUG 783 using VarVec = SmallVector<VarLoc, 32>; 784 #endif 785 786 /// VarLocMap is used for two things: 787 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to 788 /// virtually insert a VarLoc into a VarLocSet. 789 /// 2) Given a LocIndex, look up the unique associated VarLoc. 790 class VarLocMap { 791 /// Map a VarLoc to an index within the vector reserved for its location 792 /// within Loc2Vars. 793 std::map<VarLoc, LocIndices> Var2Indices; 794 795 /// Map a location to a vector which holds VarLocs which live in that 796 /// location. 797 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; 798 799 public: 800 /// Retrieve LocIndices for \p VL. 801 LocIndices insert(const VarLoc &VL) { 802 LocIndices &Indices = Var2Indices[VL]; 803 // If Indices is not empty, VL is already in the map. 804 if (!Indices.empty()) 805 return Indices; 806 SmallVector<LocIndex::u32_location_t, 4> Locations; 807 // LocIndices are determined by EVKind and MLs; each Register has a 808 // unique location, while all SpillLocs use a single bucket, and any EV 809 // VarLocs use only the Backup bucket or none at all (except the 810 // compulsory entry at the universal location index). LocIndices will 811 // always have an index at the universal location index as the last index. 812 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { 813 VL.getDescribingRegs(Locations); 814 assert(all_of(Locations, 815 [](auto RegNo) { 816 return (RegNo < LocIndex::kFirstInvalidRegLocation) || 817 (LocIndex::kFirstVirtualRegLocation <= RegNo); 818 }) && 819 "Physical or virtual register out of range?"); 820 if (VL.containsSpillLocs()) 821 Locations.push_back(LocIndex::kSpillLocation); 822 if (VL.containsWasmLocs()) 823 Locations.push_back(LocIndex::kWasmLocation); 824 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { 825 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; 826 Locations.push_back(Loc); 827 } 828 Locations.push_back(LocIndex::kUniversalLocation); 829 for (LocIndex::u32_location_t Location : Locations) { 830 auto &Vars = Loc2Vars[Location]; 831 Indices.push_back( 832 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); 833 Vars.push_back(VL); 834 } 835 return Indices; 836 } 837 838 LocIndices getAllIndices(const VarLoc &VL) const { 839 auto IndIt = Var2Indices.find(VL); 840 assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); 841 return IndIt->second; 842 } 843 844 /// Retrieve the unique VarLoc associated with \p ID. 845 const VarLoc &operator[](LocIndex ID) const { 846 auto LocIt = Loc2Vars.find(ID.Location); 847 assert(LocIt != Loc2Vars.end() && "Location not tracked"); 848 return LocIt->second[ID.Index]; 849 } 850 }; 851 852 using VarLocInMBB = 853 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; 854 struct TransferDebugPair { 855 MachineInstr *TransferInst; ///< Instruction where this transfer occurs. 856 LocIndex LocationID; ///< Location number for the transfer dest. 857 }; 858 using TransferMap = SmallVector<TransferDebugPair, 4>; 859 // Types for recording Entry Var Locations emitted by a single MachineInstr, 860 // as well as recording MachineInstr which last defined a register. 861 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; 862 using RegDefToInstMap = DenseMap<Register, MachineInstr *>; 863 864 // Types for recording sets of variable fragments that overlap. For a given 865 // local variable, we record all other fragments of that variable that could 866 // overlap it, to reduce search time. 867 using FragmentOfVar = 868 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 869 using OverlapMap = 870 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 871 872 // Helper while building OverlapMap, a map of all fragments seen for a given 873 // DILocalVariable. 874 using VarToFragments = 875 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 876 877 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added 878 /// to \p Collected once, in order of insertion into \p VarLocIDs. 879 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 880 const VarLocSet &CollectFrom, 881 const VarLocMap &VarLocIDs); 882 883 /// Get the registers which are used by VarLocs of kind RegisterKind tracked 884 /// by \p CollectFrom. 885 void getUsedRegs(const VarLocSet &CollectFrom, 886 SmallVectorImpl<Register> &UsedRegs) const; 887 888 /// This holds the working set of currently open ranges. For fast 889 /// access, this is done both as a set of VarLocIDs, and a map of 890 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all 891 /// previous open ranges for the same variable. In addition, we keep 892 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert 893 /// methods act differently depending on whether a VarLoc is primary 894 /// location or backup one. In the case the VarLoc is backup location 895 /// we will erase/insert from the EntryValuesBackupVars map, otherwise 896 /// we perform the operation on the Vars. 897 class OpenRangesSet { 898 VarLocSet::Allocator &Alloc; 899 VarLocSet VarLocs; 900 // Map the DebugVariable to recent primary location ID. 901 SmallDenseMap<DebugVariable, LocIndices, 8> Vars; 902 // Map the DebugVariable to recent backup location ID. 903 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; 904 OverlapMap &OverlappingFragments; 905 906 public: 907 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) 908 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} 909 910 const VarLocSet &getVarLocs() const { return VarLocs; } 911 912 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. 913 // This method is needed to get every VarLoc once, as each VarLoc may have 914 // multiple indices in a VarLocMap (corresponding to each applicable 915 // location), but all VarLocs appear exactly once at the universal location 916 // index. 917 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, 918 const VarLocMap &VarLocIDs) const { 919 collectAllVarLocs(Collected, VarLocs, VarLocIDs); 920 } 921 922 /// Terminate all open ranges for VL.Var by removing it from the set. 923 void erase(const VarLoc &VL); 924 925 /// Terminate all open ranges listed as indices in \c KillSet with 926 /// \c Location by removing them from the set. 927 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, 928 LocIndex::u32_location_t Location); 929 930 /// Insert a new range into the set. 931 void insert(LocIndices VarLocIDs, const VarLoc &VL); 932 933 /// Insert a set of ranges. 934 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); 935 936 std::optional<LocIndices> getEntryValueBackup(DebugVariable Var); 937 938 /// Empty the set. 939 void clear() { 940 VarLocs.clear(); 941 Vars.clear(); 942 EntryValuesBackupVars.clear(); 943 } 944 945 /// Return whether the set is empty or not. 946 bool empty() const { 947 assert(Vars.empty() == EntryValuesBackupVars.empty() && 948 Vars.empty() == VarLocs.empty() && 949 "open ranges are inconsistent"); 950 return VarLocs.empty(); 951 } 952 953 /// Get an empty range of VarLoc IDs. 954 auto getEmptyVarLocRange() const { 955 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), 956 getVarLocs().end()); 957 } 958 959 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. 960 auto getRegisterVarLocs(Register Reg) const { 961 return LocIndex::indexRangeForLocation(getVarLocs(), Reg); 962 } 963 964 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. 965 auto getSpillVarLocs() const { 966 return LocIndex::indexRangeForLocation(getVarLocs(), 967 LocIndex::kSpillLocation); 968 } 969 970 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or 971 /// EntryValueCopyBackupKind. 972 auto getEntryValueBackupVarLocs() const { 973 return LocIndex::indexRangeForLocation( 974 getVarLocs(), LocIndex::kEntryValueBackupLocation); 975 } 976 977 /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. 978 auto getWasmVarLocs() const { 979 return LocIndex::indexRangeForLocation(getVarLocs(), 980 LocIndex::kWasmLocation); 981 } 982 }; 983 984 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind 985 /// RegisterKind which are located in any reg in \p Regs. The IDs for each 986 /// VarLoc correspond to entries in the universal location bucket, which every 987 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. 988 static void collectIDsForRegs(VarLocsInRange &Collected, 989 const DefinedRegsSet &Regs, 990 const VarLocSet &CollectFrom, 991 const VarLocMap &VarLocIDs); 992 993 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { 994 std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; 995 if (!VLS) 996 VLS = std::make_unique<VarLocSet>(Alloc); 997 return *VLS; 998 } 999 1000 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, 1001 const VarLocInMBB &Locs) const { 1002 auto It = Locs.find(MBB); 1003 assert(It != Locs.end() && "MBB not in map"); 1004 return *It->second; 1005 } 1006 1007 /// Tests whether this instruction is a spill to a stack location. 1008 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1009 1010 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1011 /// criteria to make this decision: 1012 /// - Is this instruction a store to a spill slot? 1013 /// - Is there a register operand that is both used and killed? 1014 /// TODO: Store optimization can fold spills into other stores (including 1015 /// other spills). We do not handle this yet (more than one memory operand). 1016 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1017 Register &Reg); 1018 1019 /// Returns true if the given machine instruction is a debug value which we 1020 /// can emit entry values for. 1021 /// 1022 /// Currently, we generate debug entry values only for parameters that are 1023 /// unmodified throughout the function and located in a register. 1024 bool isEntryValueCandidate(const MachineInstr &MI, 1025 const DefinedRegsSet &Regs) const; 1026 1027 /// If a given instruction is identified as a spill, return the spill location 1028 /// and set \p Reg to the spilled register. 1029 std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1030 MachineFunction *MF, 1031 Register &Reg); 1032 /// Given a spill instruction, extract the register and offset used to 1033 /// address the spill location in a target independent way. 1034 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1035 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, 1036 TransferMap &Transfers, VarLocMap &VarLocIDs, 1037 LocIndex OldVarID, TransferKind Kind, 1038 const VarLoc::MachineLoc &OldLoc, 1039 Register NewReg = Register()); 1040 1041 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 1042 VarLocMap &VarLocIDs, 1043 InstToEntryLocMap &EntryValTransfers, 1044 RegDefToInstMap &RegSetInstrs); 1045 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, 1046 VarLocMap &VarLocIDs, TransferMap &Transfers); 1047 void cleanupEntryValueTransfers(const MachineInstr *MI, 1048 OpenRangesSet &OpenRanges, 1049 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 1050 InstToEntryLocMap &EntryValTransfers); 1051 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, 1052 VarLocMap &VarLocIDs, const VarLoc &EntryVL, 1053 InstToEntryLocMap &EntryValTransfers, 1054 RegDefToInstMap &RegSetInstrs); 1055 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, 1056 VarLocMap &VarLocIDs, 1057 InstToEntryLocMap &EntryValTransfers, 1058 VarLocsInRange &KillSet); 1059 void recordEntryValue(const MachineInstr &MI, 1060 const DefinedRegsSet &DefinedRegs, 1061 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); 1062 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, 1063 VarLocMap &VarLocIDs, TransferMap &Transfers); 1064 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 1065 VarLocMap &VarLocIDs, 1066 InstToEntryLocMap &EntryValTransfers, 1067 RegDefToInstMap &RegSetInstrs); 1068 void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, 1069 VarLocMap &VarLocIDs); 1070 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, 1071 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); 1072 1073 void process(MachineInstr &MI, OpenRangesSet &OpenRanges, 1074 VarLocMap &VarLocIDs, TransferMap &Transfers, 1075 InstToEntryLocMap &EntryValTransfers, 1076 RegDefToInstMap &RegSetInstrs); 1077 1078 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, 1079 OverlapMap &OLapMap); 1080 1081 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 1082 const VarLocMap &VarLocIDs, 1083 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1084 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); 1085 1086 /// Create DBG_VALUE insts for inlocs that have been propagated but 1087 /// had their instruction creation deferred. 1088 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); 1089 1090 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, 1091 TargetPassConfig *TPC, unsigned InputBBLimit, 1092 unsigned InputDbgValLimit) override; 1093 1094 public: 1095 /// Default construct and initialize the pass. 1096 VarLocBasedLDV(); 1097 1098 ~VarLocBasedLDV(); 1099 1100 /// Print to ostream with a message. 1101 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, 1102 const VarLocMap &VarLocIDs, const char *msg, 1103 raw_ostream &Out) const; 1104 }; 1105 1106 } // end anonymous namespace 1107 1108 //===----------------------------------------------------------------------===// 1109 // Implementation 1110 //===----------------------------------------------------------------------===// 1111 1112 VarLocBasedLDV::VarLocBasedLDV() = default; 1113 1114 VarLocBasedLDV::~VarLocBasedLDV() = default; 1115 1116 /// Erase a variable from the set of open ranges, and additionally erase any 1117 /// fragments that may overlap it. If the VarLoc is a backup location, erase 1118 /// the variable from the EntryValuesBackupVars set, indicating we should stop 1119 /// tracking its backup entry location. Otherwise, if the VarLoc is primary 1120 /// location, erase the variable from the Vars set. 1121 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { 1122 // Erasure helper. 1123 auto DoErase = [&VL, this](DebugVariable VarToErase) { 1124 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1125 auto It = EraseFrom->find(VarToErase); 1126 if (It != EraseFrom->end()) { 1127 LocIndices IDs = It->second; 1128 for (LocIndex ID : IDs) 1129 VarLocs.reset(ID.getAsRawInteger()); 1130 EraseFrom->erase(It); 1131 } 1132 }; 1133 1134 DebugVariable Var = VL.Var; 1135 1136 // Erase the variable/fragment that ends here. 1137 DoErase(Var); 1138 1139 // Extract the fragment. Interpret an empty fragment as one that covers all 1140 // possible bits. 1141 FragmentInfo ThisFragment = Var.getFragmentOrDefault(); 1142 1143 // There may be fragments that overlap the designated fragment. Look them up 1144 // in the pre-computed overlap map, and erase them too. 1145 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); 1146 if (MapIt != OverlappingFragments.end()) { 1147 for (auto Fragment : MapIt->second) { 1148 VarLocBasedLDV::OptFragmentInfo FragmentHolder; 1149 if (!DebugVariable::isDefaultFragment(Fragment)) 1150 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); 1151 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); 1152 } 1153 } 1154 } 1155 1156 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, 1157 const VarLocMap &VarLocIDs, 1158 LocIndex::u32_location_t Location) { 1159 VarLocSet RemoveSet(Alloc); 1160 for (LocIndex::u32_index_t ID : KillSet) { 1161 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; 1162 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1163 EraseFrom->erase(VL.Var); 1164 LocIndices VLI = VarLocIDs.getAllIndices(VL); 1165 for (LocIndex ID : VLI) 1166 RemoveSet.set(ID.getAsRawInteger()); 1167 } 1168 VarLocs.intersectWithComplement(RemoveSet); 1169 } 1170 1171 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, 1172 const VarLocMap &Map) { 1173 VarLocsInRange UniqueVarLocIDs; 1174 DefinedRegsSet Regs; 1175 Regs.insert(LocIndex::kUniversalLocation); 1176 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); 1177 for (uint64_t ID : UniqueVarLocIDs) { 1178 LocIndex Idx = LocIndex::fromRawInteger(ID); 1179 const VarLoc &VarL = Map[Idx]; 1180 const LocIndices Indices = Map.getAllIndices(VarL); 1181 insert(Indices, VarL); 1182 } 1183 } 1184 1185 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, 1186 const VarLoc &VL) { 1187 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; 1188 for (LocIndex ID : VarLocIDs) 1189 VarLocs.set(ID.getAsRawInteger()); 1190 InsertInto->insert({VL.Var, VarLocIDs}); 1191 } 1192 1193 /// Return the Loc ID of an entry value backup location, if it exists for the 1194 /// variable. 1195 std::optional<LocIndices> 1196 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { 1197 auto It = EntryValuesBackupVars.find(Var); 1198 if (It != EntryValuesBackupVars.end()) 1199 return It->second; 1200 1201 return std::nullopt; 1202 } 1203 1204 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, 1205 const DefinedRegsSet &Regs, 1206 const VarLocSet &CollectFrom, 1207 const VarLocMap &VarLocIDs) { 1208 assert(!Regs.empty() && "Nothing to collect"); 1209 SmallVector<Register, 32> SortedRegs; 1210 append_range(SortedRegs, Regs); 1211 array_pod_sort(SortedRegs.begin(), SortedRegs.end()); 1212 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); 1213 auto End = CollectFrom.end(); 1214 for (Register Reg : SortedRegs) { 1215 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains 1216 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which 1217 // live in Reg. 1218 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); 1219 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); 1220 It.advanceToLowerBound(FirstIndexForReg); 1221 1222 // Iterate through that half-open interval and collect all the set IDs. 1223 for (; It != End && *It < FirstInvalidIndex; ++It) { 1224 LocIndex ItIdx = LocIndex::fromRawInteger(*It); 1225 const VarLoc &VL = VarLocIDs[ItIdx]; 1226 LocIndices LI = VarLocIDs.getAllIndices(VL); 1227 // For now, the back index is always the universal location index. 1228 assert(LI.back().Location == LocIndex::kUniversalLocation && 1229 "Unexpected order of LocIndices for VarLoc; was it inserted into " 1230 "the VarLocMap correctly?"); 1231 Collected.insert(LI.back().Index); 1232 } 1233 1234 if (It == End) 1235 return; 1236 } 1237 } 1238 1239 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, 1240 SmallVectorImpl<Register> &UsedRegs) const { 1241 // All register-based VarLocs are assigned indices greater than or equal to 1242 // FirstRegIndex. 1243 uint64_t FirstRegIndex = 1244 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); 1245 uint64_t FirstInvalidIndex = 1246 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); 1247 uint64_t FirstVirtualRegIndex = 1248 LocIndex::rawIndexForReg(LocIndex::kFirstVirtualRegLocation); 1249 auto doGetUsedRegs = [&](VarLocSet::const_iterator &It) { 1250 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out 1251 // which register and add it to UsedRegs. 1252 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; 1253 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && 1254 "Duplicate used reg"); 1255 UsedRegs.push_back(FoundReg); 1256 1257 // Skip to the next /set/ register. Note that this finds a lower bound, so 1258 // even if there aren't any VarLocs living in `FoundReg+1`, we're still 1259 // guaranteed to move on to the next register (or to end()). 1260 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); 1261 It.advanceToLowerBound(NextRegIndex); 1262 }; 1263 for (auto It = CollectFrom.find(FirstRegIndex), 1264 End = CollectFrom.find(FirstInvalidIndex); 1265 It != End;) { 1266 doGetUsedRegs(It); 1267 } 1268 for (auto It = CollectFrom.find(FirstVirtualRegIndex), 1269 End = CollectFrom.end(); 1270 It != End;) { 1271 doGetUsedRegs(It); 1272 } 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // Debug Range Extension Implementation 1277 //===----------------------------------------------------------------------===// 1278 1279 #ifndef NDEBUG 1280 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, 1281 const VarLocInMBB &V, 1282 const VarLocMap &VarLocIDs, 1283 const char *msg, 1284 raw_ostream &Out) const { 1285 Out << '\n' << msg << '\n'; 1286 for (const MachineBasicBlock &BB : MF) { 1287 if (!V.count(&BB)) 1288 continue; 1289 const VarLocSet &L = getVarLocsInMBB(&BB, V); 1290 if (L.empty()) 1291 continue; 1292 SmallVector<VarLoc, 32> VarLocs; 1293 collectAllVarLocs(VarLocs, L, VarLocIDs); 1294 Out << "MBB: " << BB.getNumber() << ":\n"; 1295 for (const VarLoc &VL : VarLocs) { 1296 Out << " Var: " << VL.Var.getVariable()->getName(); 1297 Out << " MI: "; 1298 VL.dump(TRI, TII, Out); 1299 } 1300 } 1301 Out << "\n"; 1302 } 1303 #endif 1304 1305 VarLocBasedLDV::VarLoc::SpillLoc 1306 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1307 assert(MI.hasOneMemOperand() && 1308 "Spill instruction does not have exactly one memory operand?"); 1309 auto MMOI = MI.memoperands_begin(); 1310 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1311 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1312 "Inconsistent memory operand in spill instruction"); 1313 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1314 const MachineBasicBlock *MBB = MI.getParent(); 1315 Register Reg; 1316 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1317 return {Reg, Offset}; 1318 } 1319 1320 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the 1321 /// Transfer, which uses the to-be-deleted \p EntryVL. 1322 void VarLocBasedLDV::cleanupEntryValueTransfers( 1323 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, 1324 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { 1325 if (EntryValTransfers.empty() || TRInst == nullptr) 1326 return; 1327 1328 auto TransRange = EntryValTransfers.equal_range(TRInst); 1329 for (auto &TDPair : llvm::make_range(TransRange)) { 1330 const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; 1331 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == 1332 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, 1333 EmittedEV.Expr)) { 1334 OpenRanges.erase(EmittedEV); 1335 EntryValTransfers.erase(TRInst); 1336 break; 1337 } 1338 } 1339 } 1340 1341 /// Try to salvage the debug entry value if we encounter a new debug value 1342 /// describing the same parameter, otherwise stop tracking the value. Return 1343 /// true if we should stop tracking the entry value and do the cleanup of 1344 /// emitted Entry Value Transfers, otherwise return false. 1345 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, 1346 OpenRangesSet &OpenRanges, 1347 VarLocMap &VarLocIDs, 1348 const VarLoc &EntryVL, 1349 InstToEntryLocMap &EntryValTransfers, 1350 RegDefToInstMap &RegSetInstrs) { 1351 // Skip the DBG_VALUE which is the debug entry value itself. 1352 if (&MI == &EntryVL.MI) 1353 return; 1354 1355 // If the parameter's location is not register location, we can not track 1356 // the entry value any more. It doesn't have the TransferInst which defines 1357 // register, so no Entry Value Transfers have been emitted already. 1358 if (!MI.getDebugOperand(0).isReg()) 1359 return; 1360 1361 // Try to get non-debug instruction responsible for the DBG_VALUE. 1362 const MachineInstr *TransferInst = nullptr; 1363 Register Reg = MI.getDebugOperand(0).getReg(); 1364 if (Reg.isValid() && RegSetInstrs.contains(Reg)) 1365 TransferInst = RegSetInstrs.find(Reg)->second; 1366 1367 // Case of the parameter's DBG_VALUE at the start of entry MBB. 1368 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) 1369 return; 1370 1371 // If the debug expression from the DBG_VALUE is not empty, we can assume the 1372 // parameter's value has changed indicating that we should stop tracking its 1373 // entry value as well. 1374 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { 1375 // If the DBG_VALUE comes from a copy instruction that copies the entry 1376 // value, it means the parameter's value has not changed and we should be 1377 // able to use its entry value. 1378 // TODO: Try to keep tracking of an entry value if we encounter a propagated 1379 // DBG_VALUE describing the copy of the entry value. (Propagated entry value 1380 // does not indicate the parameter modification.) 1381 auto DestSrc = TII->isCopyLikeInstr(*TransferInst); 1382 if (DestSrc) { 1383 const MachineOperand *SrcRegOp, *DestRegOp; 1384 SrcRegOp = DestSrc->Source; 1385 DestRegOp = DestSrc->Destination; 1386 if (Reg == DestRegOp->getReg()) { 1387 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1388 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; 1389 if (VL.isEntryValueCopyBackupReg(Reg) && 1390 // Entry Values should not be variadic. 1391 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) 1392 return; 1393 } 1394 } 1395 } 1396 } 1397 1398 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; 1399 MI.print(dbgs(), /*IsStandalone*/ false, 1400 /*SkipOpers*/ false, /*SkipDebugLoc*/ false, 1401 /*AddNewLine*/ true, TII)); 1402 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, 1403 EntryValTransfers); 1404 OpenRanges.erase(EntryVL); 1405 } 1406 1407 /// End all previous ranges related to @MI and start a new range from @MI 1408 /// if it is a DBG_VALUE instr. 1409 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, 1410 OpenRangesSet &OpenRanges, 1411 VarLocMap &VarLocIDs, 1412 InstToEntryLocMap &EntryValTransfers, 1413 RegDefToInstMap &RegSetInstrs) { 1414 if (!MI.isDebugValue()) 1415 return; 1416 const DILocalVariable *Var = MI.getDebugVariable(); 1417 const DIExpression *Expr = MI.getDebugExpression(); 1418 const DILocation *DebugLoc = MI.getDebugLoc(); 1419 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1420 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1421 "Expected inlined-at fields to agree"); 1422 1423 DebugVariable V(Var, Expr, InlinedAt); 1424 1425 // Check if this DBG_VALUE indicates a parameter's value changing. 1426 // If that is the case, we should stop tracking its entry value. 1427 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); 1428 if (Var->isParameter() && EntryValBackupID) { 1429 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; 1430 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, 1431 RegSetInstrs); 1432 } 1433 1434 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { 1435 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || 1436 MO.isCImm() || MO.isTargetIndex(); 1437 })) { 1438 // Use normal VarLoc constructor for registers and immediates. 1439 VarLoc VL(MI); 1440 // End all previous ranges of VL.Var. 1441 OpenRanges.erase(VL); 1442 1443 LocIndices IDs = VarLocIDs.insert(VL); 1444 // Add the VarLoc to OpenRanges from this DBG_VALUE. 1445 OpenRanges.insert(IDs, VL); 1446 } else if (MI.memoperands().size() > 0) { 1447 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); 1448 } else { 1449 // This must be an undefined location. If it has an open range, erase it. 1450 assert(MI.isUndefDebugValue() && 1451 "Unexpected non-undef DBG_VALUE encountered"); 1452 VarLoc VL(MI); 1453 OpenRanges.erase(VL); 1454 } 1455 } 1456 1457 // This should be removed later, doesn't fit the new design. 1458 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, 1459 const VarLocSet &CollectFrom, 1460 const VarLocMap &VarLocIDs) { 1461 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all 1462 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live 1463 // in Reg. 1464 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); 1465 uint64_t FirstInvalidIndex = 1466 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); 1467 // Iterate through that half-open interval and collect all the set IDs. 1468 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); 1469 It != End && *It < FirstInvalidIndex; ++It) { 1470 LocIndex RegIdx = LocIndex::fromRawInteger(*It); 1471 Collected.push_back(VarLocIDs[RegIdx]); 1472 } 1473 } 1474 1475 /// Turn the entry value backup locations into primary locations. 1476 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, 1477 OpenRangesSet &OpenRanges, 1478 VarLocMap &VarLocIDs, 1479 InstToEntryLocMap &EntryValTransfers, 1480 VarLocsInRange &KillSet) { 1481 // Do not insert entry value locations after a terminator. 1482 if (MI.isTerminator()) 1483 return; 1484 1485 for (uint32_t ID : KillSet) { 1486 // The KillSet IDs are indices for the universal location bucket. 1487 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); 1488 const VarLoc &VL = VarLocIDs[Idx]; 1489 if (!VL.Var.getVariable()->isParameter()) 1490 continue; 1491 1492 auto DebugVar = VL.Var; 1493 std::optional<LocIndices> EntryValBackupIDs = 1494 OpenRanges.getEntryValueBackup(DebugVar); 1495 1496 // If the parameter has the entry value backup, it means we should 1497 // be able to use its entry value. 1498 if (!EntryValBackupIDs) 1499 continue; 1500 1501 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; 1502 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr, 1503 EntryVL.Locs[0].Value.RegNo); 1504 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); 1505 assert(EntryValueIDs.size() == 1 && 1506 "EntryValue loc should not be variadic"); 1507 EntryValTransfers.insert({&MI, EntryValueIDs.back()}); 1508 OpenRanges.insert(EntryValueIDs, EntryLoc); 1509 } 1510 } 1511 1512 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc 1513 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with 1514 /// new VarLoc. If \p NewReg is different than default zero value then the 1515 /// new location will be register location created by the copy like instruction, 1516 /// otherwise it is variable's location on the stack. 1517 void VarLocBasedLDV::insertTransferDebugPair( 1518 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, 1519 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, 1520 const VarLoc::MachineLoc &OldLoc, Register NewReg) { 1521 const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; 1522 1523 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { 1524 LocIndices LocIds = VarLocIDs.insert(VL); 1525 1526 // Close this variable's previous location range. 1527 OpenRanges.erase(VL); 1528 1529 // Record the new location as an open range, and a postponed transfer 1530 // inserting a DBG_VALUE for this location. 1531 OpenRanges.insert(LocIds, VL); 1532 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); 1533 TransferDebugPair MIP = {&MI, LocIds.back()}; 1534 Transfers.push_back(MIP); 1535 }; 1536 1537 // End all previous ranges of VL.Var. 1538 OpenRanges.erase(VarLocIDs[OldVarID]); 1539 switch (Kind) { 1540 case TransferKind::TransferCopy: { 1541 assert(NewReg && 1542 "No register supplied when handling a copy of a debug value"); 1543 // Create a DBG_VALUE instruction to describe the Var in its new 1544 // register location. 1545 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1546 ProcessVarLoc(VL); 1547 LLVM_DEBUG({ 1548 dbgs() << "Creating VarLoc for register copy:"; 1549 VL.dump(TRI, TII); 1550 }); 1551 return; 1552 } 1553 case TransferKind::TransferSpill: { 1554 // Create a DBG_VALUE instruction to describe the Var in its spilled 1555 // location. 1556 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); 1557 VarLoc VL = VarLoc::CreateSpillLoc( 1558 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); 1559 ProcessVarLoc(VL); 1560 LLVM_DEBUG({ 1561 dbgs() << "Creating VarLoc for spill:"; 1562 VL.dump(TRI, TII); 1563 }); 1564 return; 1565 } 1566 case TransferKind::TransferRestore: { 1567 assert(NewReg && 1568 "No register supplied when handling a restore of a debug value"); 1569 // DebugInstr refers to the pre-spill location, therefore we can reuse 1570 // its expression. 1571 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); 1572 ProcessVarLoc(VL); 1573 LLVM_DEBUG({ 1574 dbgs() << "Creating VarLoc for restore:"; 1575 VL.dump(TRI, TII); 1576 }); 1577 return; 1578 } 1579 } 1580 llvm_unreachable("Invalid transfer kind"); 1581 } 1582 1583 /// A definition of a register may mark the end of a range. 1584 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, 1585 OpenRangesSet &OpenRanges, 1586 VarLocMap &VarLocIDs, 1587 InstToEntryLocMap &EntryValTransfers, 1588 RegDefToInstMap &RegSetInstrs) { 1589 1590 // Meta Instructions do not affect the debug liveness of any register they 1591 // define. 1592 if (MI.isMetaInstruction()) 1593 return; 1594 1595 MachineFunction *MF = MI.getMF(); 1596 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1597 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1598 1599 // Find the regs killed by MI, and find regmasks of preserved regs. 1600 DefinedRegsSet DeadRegs; 1601 SmallVector<const uint32_t *, 4> RegMasks; 1602 for (const MachineOperand &MO : MI.operands()) { 1603 // Determine whether the operand is a register def. 1604 if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && 1605 !(MI.isCall() && MO.getReg() == SP)) { 1606 // Remove ranges of all aliased registers. 1607 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1608 // FIXME: Can we break out of this loop early if no insertion occurs? 1609 DeadRegs.insert((*RAI).id()); 1610 RegSetInstrs.erase(MO.getReg()); 1611 RegSetInstrs.insert({MO.getReg(), &MI}); 1612 } else if (MO.isRegMask()) { 1613 RegMasks.push_back(MO.getRegMask()); 1614 } 1615 } 1616 1617 // Erase VarLocs which reside in one of the dead registers. For performance 1618 // reasons, it's critical to not iterate over the full set of open VarLocs. 1619 // Iterate over the set of dying/used regs instead. 1620 if (!RegMasks.empty()) { 1621 SmallVector<Register, 32> UsedRegs; 1622 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); 1623 for (Register Reg : UsedRegs) { 1624 // Remove ranges of all clobbered registers. Register masks don't usually 1625 // list SP as preserved. Assume that call instructions never clobber SP, 1626 // because some backends (e.g., AArch64) never list SP in the regmask. 1627 // While the debug info may be off for an instruction or two around 1628 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is 1629 // still a better user experience. 1630 if (Reg == SP) 1631 continue; 1632 bool AnyRegMaskKillsReg = 1633 any_of(RegMasks, [Reg](const uint32_t *RegMask) { 1634 return MachineOperand::clobbersPhysReg(RegMask, Reg); 1635 }); 1636 if (AnyRegMaskKillsReg) 1637 DeadRegs.insert(Reg); 1638 if (AnyRegMaskKillsReg) { 1639 RegSetInstrs.erase(Reg); 1640 RegSetInstrs.insert({Reg, &MI}); 1641 } 1642 } 1643 } 1644 1645 if (DeadRegs.empty()) 1646 return; 1647 1648 VarLocsInRange KillSet; 1649 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); 1650 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); 1651 1652 if (TPC) { 1653 auto &TM = TPC->getTM<TargetMachine>(); 1654 if (TM.Options.ShouldEmitDebugEntryValues()) 1655 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); 1656 } 1657 } 1658 1659 void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, 1660 OpenRangesSet &OpenRanges, 1661 VarLocMap &VarLocIDs) { 1662 // If this is not a Wasm local.set or local.tee, which sets local values, 1663 // return. 1664 int Index; 1665 int64_t Offset; 1666 if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) 1667 return; 1668 1669 // Find the target indices killed by MI, and delete those variable locations 1670 // from the open range. 1671 VarLocsInRange KillSet; 1672 VarLoc::WasmLoc Loc{Index, Offset}; 1673 for (uint64_t ID : OpenRanges.getWasmVarLocs()) { 1674 LocIndex Idx = LocIndex::fromRawInteger(ID); 1675 const VarLoc &VL = VarLocIDs[Idx]; 1676 assert(VL.containsWasmLocs() && "Broken VarLocSet?"); 1677 if (VL.usesWasmLoc(Loc)) 1678 KillSet.insert(ID); 1679 } 1680 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation); 1681 } 1682 1683 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, 1684 MachineFunction *MF) { 1685 // TODO: Handle multiple stores folded into one. 1686 if (!MI.hasOneMemOperand()) 1687 return false; 1688 1689 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1690 return false; // This is not a spill instruction, since no valid size was 1691 // returned from either function. 1692 1693 return true; 1694 } 1695 1696 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, 1697 MachineFunction *MF, Register &Reg) { 1698 if (!isSpillInstruction(MI, MF)) 1699 return false; 1700 1701 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { 1702 if (!MO.isReg() || !MO.isUse()) { 1703 Reg = 0; 1704 return false; 1705 } 1706 Reg = MO.getReg(); 1707 return MO.isKill(); 1708 }; 1709 1710 for (const MachineOperand &MO : MI.operands()) { 1711 // In a spill instruction generated by the InlineSpiller the spilled 1712 // register has its kill flag set. 1713 if (isKilledReg(MO, Reg)) 1714 return true; 1715 if (Reg != 0) { 1716 // Check whether next instruction kills the spilled register. 1717 // FIXME: Current solution does not cover search for killed register in 1718 // bundles and instructions further down the chain. 1719 auto NextI = std::next(MI.getIterator()); 1720 // Skip next instruction that points to basic block end iterator. 1721 if (MI.getParent()->end() == NextI) 1722 continue; 1723 Register RegNext; 1724 for (const MachineOperand &MONext : NextI->operands()) { 1725 // Return true if we came across the register from the 1726 // previous spill instruction that is killed in NextI. 1727 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1728 return true; 1729 } 1730 } 1731 } 1732 // Return false if we didn't find spilled register. 1733 return false; 1734 } 1735 1736 std::optional<VarLocBasedLDV::VarLoc::SpillLoc> 1737 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1738 MachineFunction *MF, Register &Reg) { 1739 if (!MI.hasOneMemOperand()) 1740 return std::nullopt; 1741 1742 // FIXME: Handle folded restore instructions with more than one memory 1743 // operand. 1744 if (MI.getRestoreSize(TII)) { 1745 Reg = MI.getOperand(0).getReg(); 1746 return extractSpillBaseRegAndOffset(MI); 1747 } 1748 return std::nullopt; 1749 } 1750 1751 /// A spilled register may indicate that we have to end the current range of 1752 /// a variable and create a new one for the spill location. 1753 /// A restored register may indicate the reverse situation. 1754 /// We don't want to insert any instructions in process(), so we just create 1755 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. 1756 /// It will be inserted into the BB when we're done iterating over the 1757 /// instructions. 1758 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, 1759 OpenRangesSet &OpenRanges, 1760 VarLocMap &VarLocIDs, 1761 TransferMap &Transfers) { 1762 MachineFunction *MF = MI.getMF(); 1763 TransferKind TKind; 1764 Register Reg; 1765 std::optional<VarLoc::SpillLoc> Loc; 1766 1767 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1768 1769 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1770 // written to, then close the variable location. The value in memory 1771 // will have changed. 1772 VarLocsInRange KillSet; 1773 if (isSpillInstruction(MI, MF)) { 1774 Loc = extractSpillBaseRegAndOffset(MI); 1775 for (uint64_t ID : OpenRanges.getSpillVarLocs()) { 1776 LocIndex Idx = LocIndex::fromRawInteger(ID); 1777 const VarLoc &VL = VarLocIDs[Idx]; 1778 assert(VL.containsSpillLocs() && "Broken VarLocSet?"); 1779 if (VL.usesSpillLoc(*Loc)) { 1780 // This location is overwritten by the current instruction -- terminate 1781 // the open range, and insert an explicit DBG_VALUE $noreg. 1782 // 1783 // Doing this at a later stage would require re-interpreting all 1784 // DBG_VALUes and DIExpressions to identify whether they point at 1785 // memory, and then analysing all memory writes to see if they 1786 // overwrite that memory, which is expensive. 1787 // 1788 // At this stage, we already know which DBG_VALUEs are for spills and 1789 // where they are located; it's best to fix handle overwrites now. 1790 KillSet.insert(ID); 1791 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); 1792 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; 1793 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); 1794 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); 1795 Transfers.push_back({&MI, UndefLocIDs.back()}); 1796 } 1797 } 1798 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); 1799 } 1800 1801 // Try to recognise spill and restore instructions that may create a new 1802 // variable location. 1803 if (isLocationSpill(MI, MF, Reg)) { 1804 TKind = TransferKind::TransferSpill; 1805 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); 1806 LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI) 1807 << "\n"); 1808 } else { 1809 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1810 return; 1811 TKind = TransferKind::TransferRestore; 1812 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); 1813 LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI) 1814 << "\n"); 1815 } 1816 // Check if the register or spill location is the location of a debug value. 1817 auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); 1818 if (TKind == TransferKind::TransferSpill) 1819 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); 1820 else if (TKind == TransferKind::TransferRestore) 1821 TransferCandidates = OpenRanges.getSpillVarLocs(); 1822 for (uint64_t ID : TransferCandidates) { 1823 LocIndex Idx = LocIndex::fromRawInteger(ID); 1824 const VarLoc &VL = VarLocIDs[Idx]; 1825 unsigned LocIdx; 1826 if (TKind == TransferKind::TransferSpill) { 1827 assert(VL.usesReg(Reg) && "Broken VarLocSet?"); 1828 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' 1829 << VL.Var.getVariable()->getName() << ")\n"); 1830 LocIdx = VL.getRegIdx(Reg); 1831 } else { 1832 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && 1833 "Broken VarLocSet?"); 1834 if (!VL.usesSpillLoc(*Loc)) 1835 // The spill location is not the location of a debug value. 1836 continue; 1837 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' 1838 << VL.Var.getVariable()->getName() << ")\n"); 1839 LocIdx = VL.getSpillLocIdx(*Loc); 1840 } 1841 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; 1842 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, 1843 MLoc, Reg); 1844 // FIXME: A comment should explain why it's correct to return early here, 1845 // if that is in fact correct. 1846 return; 1847 } 1848 } 1849 1850 /// If \p MI is a register copy instruction, that copies a previously tracked 1851 /// value from one register to another register that is callee saved, we 1852 /// create new DBG_VALUE instruction described with copy destination register. 1853 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, 1854 OpenRangesSet &OpenRanges, 1855 VarLocMap &VarLocIDs, 1856 TransferMap &Transfers) { 1857 auto DestSrc = TII->isCopyLikeInstr(MI); 1858 if (!DestSrc) 1859 return; 1860 1861 const MachineOperand *DestRegOp = DestSrc->Destination; 1862 const MachineOperand *SrcRegOp = DestSrc->Source; 1863 1864 if (!DestRegOp->isDef()) 1865 return; 1866 1867 auto isCalleeSavedReg = [&](Register Reg) { 1868 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1869 if (CalleeSavedRegs.test((*RAI).id())) 1870 return true; 1871 return false; 1872 }; 1873 1874 Register SrcReg = SrcRegOp->getReg(); 1875 Register DestReg = DestRegOp->getReg(); 1876 1877 // We want to recognize instructions where destination register is callee 1878 // saved register. If register that could be clobbered by the call is 1879 // included, there would be a great chance that it is going to be clobbered 1880 // soon. It is more likely that previous register location, which is callee 1881 // saved, is going to stay unclobbered longer, even if it is killed. 1882 if (!isCalleeSavedReg(DestReg)) 1883 return; 1884 1885 // Remember an entry value movement. If we encounter a new debug value of 1886 // a parameter describing only a moving of the value around, rather then 1887 // modifying it, we are still able to use the entry value if needed. 1888 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { 1889 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { 1890 LocIndex Idx = LocIndex::fromRawInteger(ID); 1891 const VarLoc &VL = VarLocIDs[Idx]; 1892 if (VL.isEntryValueBackupReg(SrcReg)) { 1893 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); 1894 VarLoc EntryValLocCopyBackup = 1895 VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg); 1896 // Stop tracking the original entry value. 1897 OpenRanges.erase(VL); 1898 1899 // Start tracking the entry value copy. 1900 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); 1901 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); 1902 break; 1903 } 1904 } 1905 } 1906 1907 if (!SrcRegOp->isKill()) 1908 return; 1909 1910 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { 1911 LocIndex Idx = LocIndex::fromRawInteger(ID); 1912 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); 1913 VarLoc::MachineLocValue Loc; 1914 Loc.RegNo = SrcReg; 1915 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; 1916 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, 1917 TransferKind::TransferCopy, MLoc, DestReg); 1918 // FIXME: A comment should explain why it's correct to return early here, 1919 // if that is in fact correct. 1920 return; 1921 } 1922 } 1923 1924 /// Terminate all open ranges at the end of the current basic block. 1925 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, 1926 OpenRangesSet &OpenRanges, 1927 VarLocInMBB &OutLocs, 1928 const VarLocMap &VarLocIDs) { 1929 bool Changed = false; 1930 LLVM_DEBUG({ 1931 VarVec VarLocs; 1932 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); 1933 for (VarLoc &VL : VarLocs) { 1934 // Copy OpenRanges to OutLocs, if not already present. 1935 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; 1936 VL.dump(TRI, TII); 1937 } 1938 }); 1939 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); 1940 Changed = VLS != OpenRanges.getVarLocs(); 1941 // New OutLocs set may be different due to spill, restore or register 1942 // copy instruction processing. 1943 if (Changed) 1944 VLS = OpenRanges.getVarLocs(); 1945 OpenRanges.clear(); 1946 return Changed; 1947 } 1948 1949 /// Accumulate a mapping between each DILocalVariable fragment and other 1950 /// fragments of that DILocalVariable which overlap. This reduces work during 1951 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1952 /// known-to-overlap fragments are present". 1953 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1954 /// fragment usage. 1955 /// \param SeenFragments Map from DILocalVariable to all fragments of that 1956 /// Variable which are known to exist. 1957 /// \param OverlappingFragments The overlap map being constructed, from one 1958 /// Var/Fragment pair to a vector of fragments known to overlap. 1959 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, 1960 VarToFragments &SeenFragments, 1961 OverlapMap &OverlappingFragments) { 1962 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1963 MI.getDebugLoc()->getInlinedAt()); 1964 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1965 1966 // If this is the first sighting of this variable, then we are guaranteed 1967 // there are currently no overlapping fragments either. Initialize the set 1968 // of seen fragments, record no overlaps for the current one, and return. 1969 auto [SeenIt, Inserted] = SeenFragments.try_emplace(MIVar.getVariable()); 1970 if (Inserted) { 1971 SeenIt->second.insert(ThisFragment); 1972 1973 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1974 return; 1975 } 1976 1977 // If this particular Variable/Fragment pair already exists in the overlap 1978 // map, it has already been accounted for. 1979 auto IsInOLapMap = 1980 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1981 if (!IsInOLapMap.second) 1982 return; 1983 1984 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1985 auto &AllSeenFragments = SeenIt->second; 1986 1987 // Otherwise, examine all other seen fragments for this variable, with "this" 1988 // fragment being a previously unseen fragment. Record any pair of 1989 // overlapping fragments. 1990 for (const auto &ASeenFragment : AllSeenFragments) { 1991 // Does this previously seen fragment overlap? 1992 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1993 // Yes: Mark the current fragment as being overlapped. 1994 ThisFragmentsOverlaps.push_back(ASeenFragment); 1995 // Mark the previously seen fragment as being overlapped by the current 1996 // one. 1997 auto ASeenFragmentsOverlaps = 1998 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); 1999 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && 2000 "Previously seen var fragment has no vector of overlaps"); 2001 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 2002 } 2003 } 2004 2005 AllSeenFragments.insert(ThisFragment); 2006 } 2007 2008 /// This routine creates OpenRanges. 2009 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, 2010 VarLocMap &VarLocIDs, TransferMap &Transfers, 2011 InstToEntryLocMap &EntryValTransfers, 2012 RegDefToInstMap &RegSetInstrs) { 2013 if (!MI.isDebugInstr()) 2014 LastNonDbgMI = &MI; 2015 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, 2016 RegSetInstrs); 2017 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, 2018 RegSetInstrs); 2019 transferWasmDef(MI, OpenRanges, VarLocIDs); 2020 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); 2021 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); 2022 } 2023 2024 /// This routine joins the analysis results of all incoming edges in @MBB by 2025 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same 2026 /// source variable in all the predecessors of @MBB reside in the same location. 2027 bool VarLocBasedLDV::join( 2028 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, 2029 const VarLocMap &VarLocIDs, 2030 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2031 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { 2032 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2033 2034 VarLocSet InLocsT(Alloc); // Temporary incoming locations. 2035 2036 // For all predecessors of this MBB, find the set of VarLocs that 2037 // can be joined. 2038 int NumVisited = 0; 2039 for (auto *p : MBB.predecessors()) { 2040 // Ignore backedges if we have not visited the predecessor yet. As the 2041 // predecessor hasn't yet had locations propagated into it, most locations 2042 // will not yet be valid, so treat them as all being uninitialized and 2043 // potentially valid. If a location guessed to be correct here is 2044 // invalidated later, we will remove it when we revisit this block. 2045 if (!Visited.count(p)) { 2046 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() 2047 << "\n"); 2048 continue; 2049 } 2050 auto OL = OutLocs.find(p); 2051 // Join is null in case of empty OutLocs from any of the pred. 2052 if (OL == OutLocs.end()) 2053 return false; 2054 2055 // Just copy over the Out locs to incoming locs for the first visited 2056 // predecessor, and for all other predecessors join the Out locs. 2057 VarLocSet &OutLocVLS = *OL->second; 2058 if (!NumVisited) 2059 InLocsT = OutLocVLS; 2060 else 2061 InLocsT &= OutLocVLS; 2062 2063 LLVM_DEBUG({ 2064 if (!InLocsT.empty()) { 2065 VarVec VarLocs; 2066 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); 2067 for (const VarLoc &VL : VarLocs) 2068 dbgs() << " gathered candidate incoming var: " 2069 << VL.Var.getVariable()->getName() << "\n"; 2070 } 2071 }); 2072 2073 NumVisited++; 2074 } 2075 2076 // Filter out DBG_VALUES that are out of scope. 2077 VarLocSet KillSet(Alloc); 2078 bool IsArtificial = ArtificialBlocks.count(&MBB); 2079 if (!IsArtificial) { 2080 for (uint64_t ID : InLocsT) { 2081 LocIndex Idx = LocIndex::fromRawInteger(ID); 2082 if (!VarLocIDs[Idx].dominates(LS, MBB)) { 2083 KillSet.set(ID); 2084 LLVM_DEBUG({ 2085 auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); 2086 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; 2087 }); 2088 } 2089 } 2090 } 2091 InLocsT.intersectWithComplement(KillSet); 2092 2093 // As we are processing blocks in reverse post-order we 2094 // should have processed at least one predecessor, unless it 2095 // is the entry block which has no predecessor. 2096 assert((NumVisited || MBB.pred_empty()) && 2097 "Should have processed at least one predecessor"); 2098 2099 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); 2100 bool Changed = false; 2101 if (ILS != InLocsT) { 2102 ILS = InLocsT; 2103 Changed = true; 2104 } 2105 2106 return Changed; 2107 } 2108 2109 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, 2110 VarLocMap &VarLocIDs) { 2111 // PendingInLocs records all locations propagated into blocks, which have 2112 // not had DBG_VALUE insts created. Go through and create those insts now. 2113 for (auto &Iter : PendingInLocs) { 2114 // Map is keyed on a constant pointer, unwrap it so we can insert insts. 2115 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); 2116 VarLocSet &Pending = *Iter.second; 2117 2118 SmallVector<VarLoc, 32> VarLocs; 2119 collectAllVarLocs(VarLocs, Pending, VarLocIDs); 2120 2121 for (VarLoc DiffIt : VarLocs) { 2122 // The ID location is live-in to MBB -- work out what kind of machine 2123 // location it is and create a DBG_VALUE. 2124 if (DiffIt.isEntryBackupLoc()) 2125 continue; 2126 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); 2127 MBB.insert(MBB.instr_begin(), MI); 2128 2129 (void)MI; 2130 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); 2131 } 2132 } 2133 } 2134 2135 bool VarLocBasedLDV::isEntryValueCandidate( 2136 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { 2137 assert(MI.isDebugValue() && "This must be DBG_VALUE."); 2138 2139 // TODO: Add support for local variables that are expressed in terms of 2140 // parameters entry values. 2141 // TODO: Add support for modified arguments that can be expressed 2142 // by using its entry value. 2143 auto *DIVar = MI.getDebugVariable(); 2144 if (!DIVar->isParameter()) 2145 return false; 2146 2147 // Do not consider parameters that belong to an inlined function. 2148 if (MI.getDebugLoc()->getInlinedAt()) 2149 return false; 2150 2151 // Only consider parameters that are described using registers. Parameters 2152 // that are passed on the stack are not yet supported, so ignore debug 2153 // values that are described by the frame or stack pointer. 2154 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) 2155 return false; 2156 2157 // If a parameter's value has been propagated from the caller, then the 2158 // parameter's DBG_VALUE may be described using a register defined by some 2159 // instruction in the entry block, in which case we shouldn't create an 2160 // entry value. 2161 if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) 2162 return false; 2163 2164 // TODO: Add support for parameters that have a pre-existing debug expressions 2165 // (e.g. fragments). 2166 // A simple deref expression is equivalent to an indirect debug value. 2167 const DIExpression *Expr = MI.getDebugExpression(); 2168 if (Expr->getNumElements() > 0 && !Expr->isDeref()) 2169 return false; 2170 2171 return true; 2172 } 2173 2174 /// Collect all register defines (including aliases) for the given instruction. 2175 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, 2176 const TargetRegisterInfo *TRI) { 2177 for (const MachineOperand &MO : MI.all_defs()) { 2178 if (MO.getReg() && MO.getReg().isPhysical()) { 2179 Regs.insert(MO.getReg()); 2180 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 2181 Regs.insert(*AI); 2182 } 2183 } 2184 } 2185 2186 /// This routine records the entry values of function parameters. The values 2187 /// could be used as backup values. If we loose the track of some unmodified 2188 /// parameters, the backup values will be used as a primary locations. 2189 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, 2190 const DefinedRegsSet &DefinedRegs, 2191 OpenRangesSet &OpenRanges, 2192 VarLocMap &VarLocIDs) { 2193 if (TPC) { 2194 auto &TM = TPC->getTM<TargetMachine>(); 2195 if (!TM.Options.ShouldEmitDebugEntryValues()) 2196 return; 2197 } 2198 2199 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), 2200 MI.getDebugLoc()->getInlinedAt()); 2201 2202 if (!isEntryValueCandidate(MI, DefinedRegs) || 2203 OpenRanges.getEntryValueBackup(V)) 2204 return; 2205 2206 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); 2207 2208 // Create the entry value and use it as a backup location until it is 2209 // valid. It is valid until a parameter is not changed. 2210 DIExpression *NewExpr = 2211 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); 2212 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr); 2213 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); 2214 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); 2215 } 2216 2217 /// Calculate the liveness information for the given machine function and 2218 /// extend ranges across basic blocks. 2219 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, 2220 MachineDominatorTree *DomTree, 2221 TargetPassConfig *TPC, unsigned InputBBLimit, 2222 unsigned InputDbgValLimit) { 2223 (void)DomTree; 2224 LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n"); 2225 2226 if (!MF.getFunction().getSubprogram()) 2227 // VarLocBaseLDV will already have removed all DBG_VALUEs. 2228 return false; 2229 2230 // Skip functions from NoDebug compilation units. 2231 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == 2232 DICompileUnit::NoDebug) 2233 return false; 2234 2235 TRI = MF.getSubtarget().getRegisterInfo(); 2236 TII = MF.getSubtarget().getInstrInfo(); 2237 TFI = MF.getSubtarget().getFrameLowering(); 2238 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2239 this->TPC = TPC; 2240 LS.initialize(MF); 2241 2242 bool Changed = false; 2243 bool OLChanged = false; 2244 bool MBBJoined = false; 2245 2246 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. 2247 OverlapMap OverlapFragments; // Map of overlapping variable fragments. 2248 OpenRangesSet OpenRanges(Alloc, OverlapFragments); 2249 // Ranges that are open until end of bb. 2250 VarLocInMBB OutLocs; // Ranges that exist beyond bb. 2251 VarLocInMBB InLocs; // Ranges that are incoming after joining. 2252 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as 2253 // spills, copies and restores). 2254 // Map responsible MI to attached Transfer emitted from Backup Entry Value. 2255 InstToEntryLocMap EntryValTransfers; 2256 // Map a Register to the last MI which clobbered it. 2257 RegDefToInstMap RegSetInstrs; 2258 2259 VarToFragments SeenFragments; 2260 2261 // Blocks which are artificial, i.e. blocks which exclusively contain 2262 // instructions without locations, or with line 0 locations. 2263 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 2264 2265 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 2266 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 2267 std::priority_queue<unsigned int, std::vector<unsigned int>, 2268 std::greater<unsigned int>> 2269 Worklist; 2270 std::priority_queue<unsigned int, std::vector<unsigned int>, 2271 std::greater<unsigned int>> 2272 Pending; 2273 2274 // Set of register defines that are seen when traversing the entry block 2275 // looking for debug entry value candidates. 2276 DefinedRegsSet DefinedRegs; 2277 2278 // Only in the case of entry MBB collect DBG_VALUEs representing 2279 // function parameters in order to generate debug entry values for them. 2280 MachineBasicBlock &First_MBB = *(MF.begin()); 2281 for (auto &MI : First_MBB) { 2282 collectRegDefs(MI, DefinedRegs, TRI); 2283 if (MI.isDebugValue()) 2284 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); 2285 } 2286 2287 // Initialize per-block structures and scan for fragment overlaps. 2288 for (auto &MBB : MF) 2289 for (auto &MI : MBB) 2290 if (MI.isDebugValue()) 2291 accumulateFragmentMap(MI, SeenFragments, OverlapFragments); 2292 2293 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2294 if (const DebugLoc &DL = MI.getDebugLoc()) 2295 return DL.getLine() != 0; 2296 return false; 2297 }; 2298 for (auto &MBB : MF) 2299 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2300 ArtificialBlocks.insert(&MBB); 2301 2302 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2303 "OutLocs after initialization", dbgs())); 2304 2305 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2306 unsigned int RPONumber = 0; 2307 for (MachineBasicBlock *MBB : RPOT) { 2308 OrderToBB[RPONumber] = MBB; 2309 BBToOrder[MBB] = RPONumber; 2310 Worklist.push(RPONumber); 2311 ++RPONumber; 2312 } 2313 2314 if (RPONumber > InputBBLimit) { 2315 unsigned NumInputDbgValues = 0; 2316 for (auto &MBB : MF) 2317 for (auto &MI : MBB) 2318 if (MI.isDebugValue()) 2319 ++NumInputDbgValues; 2320 if (NumInputDbgValues > InputDbgValLimit) { 2321 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() 2322 << " has " << RPONumber << " basic blocks and " 2323 << NumInputDbgValues 2324 << " input DBG_VALUEs, exceeding limits.\n"); 2325 return false; 2326 } 2327 } 2328 2329 // This is a standard "union of predecessor outs" dataflow problem. 2330 // To solve it, we perform join() and process() using the two worklist method 2331 // until the ranges converge. 2332 // Ranges have converged when both worklists are empty. 2333 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2334 while (!Worklist.empty() || !Pending.empty()) { 2335 // We track what is on the pending worklist to avoid inserting the same 2336 // thing twice. We could avoid this with a custom priority queue, but this 2337 // is probably not worth it. 2338 SmallPtrSet<MachineBasicBlock *, 16> OnPending; 2339 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2340 while (!Worklist.empty()) { 2341 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2342 Worklist.pop(); 2343 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, 2344 ArtificialBlocks); 2345 MBBJoined |= Visited.insert(MBB).second; 2346 if (MBBJoined) { 2347 MBBJoined = false; 2348 Changed = true; 2349 // Now that we have started to extend ranges across BBs we need to 2350 // examine spill, copy and restore instructions to see whether they 2351 // operate with registers that correspond to user variables. 2352 // First load any pending inlocs. 2353 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); 2354 LastNonDbgMI = nullptr; 2355 RegSetInstrs.clear(); 2356 for (auto &MI : *MBB) 2357 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, 2358 RegSetInstrs); 2359 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); 2360 2361 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, 2362 "OutLocs after propagating", dbgs())); 2363 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, 2364 "InLocs after propagating", dbgs())); 2365 2366 if (OLChanged) { 2367 OLChanged = false; 2368 for (auto *s : MBB->successors()) 2369 if (OnPending.insert(s).second) { 2370 Pending.push(BBToOrder[s]); 2371 } 2372 } 2373 } 2374 } 2375 Worklist.swap(Pending); 2376 // At this point, pending must be empty, since it was just the empty 2377 // worklist 2378 assert(Pending.empty() && "Pending should be empty"); 2379 } 2380 2381 // Add any DBG_VALUE instructions created by location transfers. 2382 for (auto &TR : Transfers) { 2383 assert(!TR.TransferInst->isTerminator() && 2384 "Cannot insert DBG_VALUE after terminator"); 2385 MachineBasicBlock *MBB = TR.TransferInst->getParent(); 2386 const VarLoc &VL = VarLocIDs[TR.LocationID]; 2387 MachineInstr *MI = VL.BuildDbgValue(MF); 2388 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); 2389 } 2390 Transfers.clear(); 2391 2392 // Add DBG_VALUEs created using Backup Entry Value location. 2393 for (auto &TR : EntryValTransfers) { 2394 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); 2395 assert(!TRInst->isTerminator() && 2396 "Cannot insert DBG_VALUE after terminator"); 2397 MachineBasicBlock *MBB = TRInst->getParent(); 2398 const VarLoc &VL = VarLocIDs[TR.second]; 2399 MachineInstr *MI = VL.BuildDbgValue(MF); 2400 MBB->insertAfterBundle(TRInst->getIterator(), MI); 2401 } 2402 EntryValTransfers.clear(); 2403 2404 // Deferred inlocs will not have had any DBG_VALUE insts created; do 2405 // that now. 2406 flushPendingLocs(InLocs, VarLocIDs); 2407 2408 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); 2409 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); 2410 return Changed; 2411 } 2412 2413 LDVImpl * 2414 llvm::makeVarLocBasedLiveDebugValues() 2415 { 2416 return new VarLocBasedLDV(); 2417 } 2418